WorldWideScience

Sample records for computational biology

  1. Women are underrepresented in computational biology: An analysis of the scholarly literature in biology, computer science and computational biology.

    Directory of Open Access Journals (Sweden)

    Kevin S Bonham

    2017-10-01

    Full Text Available While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.

  2. Women are underrepresented in computational biology: An analysis of the scholarly literature in biology, computer science and computational biology.

    Science.gov (United States)

    Bonham, Kevin S; Stefan, Melanie I

    2017-10-01

    While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.

  3. Computational Biology and High Performance Computing 2000

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L.; Arkin, Adam P.

    2000-10-19

    The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

  4. Computational biology

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2011-01-01

    Computation via biological devices has been the subject of close scrutiny since von Neumann’s early work some 60 years ago. In spite of the many relevant works in this field, the notion of programming biological devices seems to be, at best, ill-defined. While many devices are claimed or proved t...

  5. Michael Levitt and Computational Biology

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Michael Levitt and Computational Biology Resources with Michael Levitt, PhD, professor of structural biology at the Stanford University School of Medicine, has function. ... Levitt's early work pioneered computational structural biology, which helped to predict

  6. Synthetic biology: engineering molecular computers

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Complicated systems cannot survive the rigors of a chaotic environment, without balancing mechanisms that sense, decide upon and counteract the exerted disturbances. Especially so with living organisms, forced by competition to incredible complexities, escalating also their self-controlling plight. Therefore, they compute. Can we harness biological mechanisms to create artificial computing systems? Biology offers several levels of design abstraction: molecular machines, cells, organisms... ranging from the more easily-defined to the more inherently complex. At the bottom of this stack we find the nucleic acids, RNA and DNA, with their digital structure and relatively precise interactions. They are central enablers of designing artificial biological systems, in the confluence of engineering and biology, that we call Synthetic biology. In the first part, let us follow their trail towards an overview of building computing machines with molecules -- and in the second part, take the case study of iGEM Greece 201...

  7. A first attempt to bring computational biology into advanced high school biology classrooms.

    Science.gov (United States)

    Gallagher, Suzanne Renick; Coon, William; Donley, Kristin; Scott, Abby; Goldberg, Debra S

    2011-10-01

    Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.

  8. Computational aspects of systematic biology.

    Science.gov (United States)

    Lilburn, Timothy G; Harrison, Scott H; Cole, James R; Garrity, George M

    2006-06-01

    We review the resources available to systematic biologists who wish to use computers to build classifications. Algorithm development is in an early stage, and only a few examples of integrated applications for systematic biology are available. The availability of data is crucial if systematic biology is to enter the computer age.

  9. Graphics processing units in bioinformatics, computational biology and systems biology.

    Science.gov (United States)

    Nobile, Marco S; Cazzaniga, Paolo; Tangherloni, Andrea; Besozzi, Daniela

    2017-09-01

    Several studies in Bioinformatics, Computational Biology and Systems Biology rely on the definition of physico-chemical or mathematical models of biological systems at different scales and levels of complexity, ranging from the interaction of atoms in single molecules up to genome-wide interaction networks. Traditional computational methods and software tools developed in these research fields share a common trait: they can be computationally demanding on Central Processing Units (CPUs), therefore limiting their applicability in many circumstances. To overcome this issue, general-purpose Graphics Processing Units (GPUs) are gaining an increasing attention by the scientific community, as they can considerably reduce the running time required by standard CPU-based software, and allow more intensive investigations of biological systems. In this review, we present a collection of GPU tools recently developed to perform computational analyses in life science disciplines, emphasizing the advantages and the drawbacks in the use of these parallel architectures. The complete list of GPU-powered tools here reviewed is available at http://bit.ly/gputools. © The Author 2016. Published by Oxford University Press.

  10. Modelling, abstraction, and computation in systems biology: A view from computer science.

    Science.gov (United States)

    Melham, Tom

    2013-04-01

    Systems biology is centrally engaged with computational modelling across multiple scales and at many levels of abstraction. Formal modelling, precise and formalised abstraction relationships, and computation also lie at the heart of computer science--and over the past decade a growing number of computer scientists have been bringing their discipline's core intellectual and computational tools to bear on biology in fascinating new ways. This paper explores some of the apparent points of contact between the two fields, in the context of a multi-disciplinary discussion on conceptual foundations of systems biology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Computational Tools for Stem Cell Biology.

    Science.gov (United States)

    Bian, Qin; Cahan, Patrick

    2016-12-01

    For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Computer Models and Automata Theory in Biology and Medicine

    CERN Document Server

    Baianu, I C

    2004-01-01

    The applications of computers to biological and biomedical problem solving goes back to the very beginnings of computer science, automata theory [1], and mathematical biology [2]. With the advent of more versatile and powerful computers, biological and biomedical applications of computers have proliferated so rapidly that it would be virtually impossible to compile a comprehensive review of all developments in this field. Limitations of computer simulations in biology have also come under close scrutiny, and claims have been made that biological systems have limited information processing power [3]. Such general conjectures do not, however, deter biologists and biomedical researchers from developing new computer applications in biology and medicine. Microprocessors are being widely employed in biological laboratories both for automatic data acquisition/processing and modeling; one particular area, which is of great biomedical interest, involves fast digital image processing and is already established for rout...

  13. Integrating interactive computational modeling in biology curricula.

    Directory of Open Access Journals (Sweden)

    Tomáš Helikar

    2015-03-01

    Full Text Available While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  14. Integrating interactive computational modeling in biology curricula.

    Science.gov (United States)

    Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A

    2015-03-01

    While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  15. Computational Modeling of Biological Systems From Molecules to Pathways

    CERN Document Server

    2012-01-01

    Computational modeling is emerging as a powerful new approach for studying and manipulating biological systems. Many diverse methods have been developed to model, visualize, and rationally alter these systems at various length scales, from atomic resolution to the level of cellular pathways. Processes taking place at larger time and length scales, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. Computational Modeling of Biological Systems: From Molecules to Pathways provides an overview of established computational methods for the modeling of biologically and medically relevant systems. It is suitable for researchers and professionals working in the fields of biophysics, computational biology, systems biology, and molecular medicine.

  16. UC Merced Center for Computational Biology Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, Michael; Watanabe, Masakatsu

    2010-11-30

    Final report for the UC Merced Center for Computational Biology. The Center for Computational Biology (CCB) was established to support multidisciplinary scientific research and academic programs in computational biology at the new University of California campus in Merced. In 2003, the growing gap between biology research and education was documented in a report from the National Academy of Sciences, Bio2010 Transforming Undergraduate Education for Future Research Biologists. We believed that a new type of biological sciences undergraduate and graduate programs that emphasized biological concepts and considered biology as an information science would have a dramatic impact in enabling the transformation of biology. UC Merced as newest UC campus and the first new U.S. research university of the 21st century was ideally suited to adopt an alternate strategy - to create a new Biological Sciences majors and graduate group that incorporated the strong computational and mathematical vision articulated in the Bio2010 report. CCB aimed to leverage this strong commitment at UC Merced to develop a new educational program based on the principle of biology as a quantitative, model-driven science. Also we expected that the center would be enable the dissemination of computational biology course materials to other university and feeder institutions, and foster research projects that exemplify a mathematical and computations-based approach to the life sciences. As this report describes, the CCB has been successful in achieving these goals, and multidisciplinary computational biology is now an integral part of UC Merced undergraduate, graduate and research programs in the life sciences. The CCB began in fall 2004 with the aid of an award from U.S. Department of Energy (DOE), under its Genomes to Life program of support for the development of research and educational infrastructure in the modern biological sciences. This report to DOE describes the research and academic programs

  17. Ranked retrieval of Computational Biology models.

    Science.gov (United States)

    Henkel, Ron; Endler, Lukas; Peters, Andre; Le Novère, Nicolas; Waltemath, Dagmar

    2010-08-11

    The study of biological systems demands computational support. If targeting a biological problem, the reuse of existing computational models can save time and effort. Deciding for potentially suitable models, however, becomes more challenging with the increasing number of computational models available, and even more when considering the models' growing complexity. Firstly, among a set of potential model candidates it is difficult to decide for the model that best suits ones needs. Secondly, it is hard to grasp the nature of an unknown model listed in a search result set, and to judge how well it fits for the particular problem one has in mind. Here we present an improved search approach for computational models of biological processes. It is based on existing retrieval and ranking methods from Information Retrieval. The approach incorporates annotations suggested by MIRIAM, and additional meta-information. It is now part of the search engine of BioModels Database, a standard repository for computational models. The introduced concept and implementation are, to our knowledge, the first application of Information Retrieval techniques on model search in Computational Systems Biology. Using the example of BioModels Database, it was shown that the approach is feasible and extends the current possibilities to search for relevant models. The advantages of our system over existing solutions are that we incorporate a rich set of meta-information, and that we provide the user with a relevance ranking of the models found for a query. Better search capabilities in model databases are expected to have a positive effect on the reuse of existing models.

  18. Computational biology and bioinformatics in Nigeria.

    Science.gov (United States)

    Fatumo, Segun A; Adoga, Moses P; Ojo, Opeolu O; Oluwagbemi, Olugbenga; Adeoye, Tolulope; Ewejobi, Itunuoluwa; Adebiyi, Marion; Adebiyi, Ezekiel; Bewaji, Clement; Nashiru, Oyekanmi

    2014-04-01

    Over the past few decades, major advances in the field of molecular biology, coupled with advances in genomic technologies, have led to an explosive growth in the biological data generated by the scientific community. The critical need to process and analyze such a deluge of data and turn it into useful knowledge has caused bioinformatics to gain prominence and importance. Bioinformatics is an interdisciplinary research area that applies techniques, methodologies, and tools in computer and information science to solve biological problems. In Nigeria, bioinformatics has recently played a vital role in the advancement of biological sciences. As a developing country, the importance of bioinformatics is rapidly gaining acceptance, and bioinformatics groups comprised of biologists, computer scientists, and computer engineers are being constituted at Nigerian universities and research institutes. In this article, we present an overview of bioinformatics education and research in Nigeria. We also discuss professional societies and academic and research institutions that play central roles in advancing the discipline in Nigeria. Finally, we propose strategies that can bolster bioinformatics education and support from policy makers in Nigeria, with potential positive implications for other developing countries.

  19. Computational biology and bioinformatics in Nigeria.

    Directory of Open Access Journals (Sweden)

    Segun A Fatumo

    2014-04-01

    Full Text Available Over the past few decades, major advances in the field of molecular biology, coupled with advances in genomic technologies, have led to an explosive growth in the biological data generated by the scientific community. The critical need to process and analyze such a deluge of data and turn it into useful knowledge has caused bioinformatics to gain prominence and importance. Bioinformatics is an interdisciplinary research area that applies techniques, methodologies, and tools in computer and information science to solve biological problems. In Nigeria, bioinformatics has recently played a vital role in the advancement of biological sciences. As a developing country, the importance of bioinformatics is rapidly gaining acceptance, and bioinformatics groups comprised of biologists, computer scientists, and computer engineers are being constituted at Nigerian universities and research institutes. In this article, we present an overview of bioinformatics education and research in Nigeria. We also discuss professional societies and academic and research institutions that play central roles in advancing the discipline in Nigeria. Finally, we propose strategies that can bolster bioinformatics education and support from policy makers in Nigeria, with potential positive implications for other developing countries.

  20. Application of computational intelligence to biology

    CERN Document Server

    Sekhar, Akula

    2016-01-01

    This book is a contribution of translational and allied research to the proceedings of the International Conference on Computational Intelligence and Soft Computing. It explains how various computational intelligence techniques can be applied to investigate various biological problems. It is a good read for Research Scholars, Engineers, Medical Doctors and Bioinformatics researchers.

  1. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    Science.gov (United States)

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  2. Computational biology for ageing

    Science.gov (United States)

    Wieser, Daniela; Papatheodorou, Irene; Ziehm, Matthias; Thornton, Janet M.

    2011-01-01

    High-throughput genomic and proteomic technologies have generated a wealth of publicly available data on ageing. Easy access to these data, and their computational analysis, is of great importance in order to pinpoint the causes and effects of ageing. Here, we provide a description of the existing databases and computational tools on ageing that are available for researchers. We also describe the computational approaches to data interpretation in the field of ageing including gene expression, comparative and pathway analyses, and highlight the challenges for future developments. We review recent biological insights gained from applying bioinformatics methods to analyse and interpret ageing data in different organisms, tissues and conditions. PMID:21115530

  3. Biocellion: accelerating computer simulation of multicellular biological system models.

    Science.gov (United States)

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-11-01

    Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Computing Platforms for Big Biological Data Analytics: Perspectives and Challenges.

    Science.gov (United States)

    Yin, Zekun; Lan, Haidong; Tan, Guangming; Lu, Mian; Vasilakos, Athanasios V; Liu, Weiguo

    2017-01-01

    The last decade has witnessed an explosion in the amount of available biological sequence data, due to the rapid progress of high-throughput sequencing projects. However, the biological data amount is becoming so great that traditional data analysis platforms and methods can no longer meet the need to rapidly perform data analysis tasks in life sciences. As a result, both biologists and computer scientists are facing the challenge of gaining a profound insight into the deepest biological functions from big biological data. This in turn requires massive computational resources. Therefore, high performance computing (HPC) platforms are highly needed as well as efficient and scalable algorithms that can take advantage of these platforms. In this paper, we survey the state-of-the-art HPC platforms for big biological data analytics. We first list the characteristics of big biological data and popular computing platforms. Then we provide a taxonomy of different biological data analysis applications and a survey of the way they have been mapped onto various computing platforms. After that, we present a case study to compare the efficiency of different computing platforms for handling the classical biological sequence alignment problem. At last we discuss the open issues in big biological data analytics.

  5. Computational structural biology: methods and applications

    National Research Council Canada - National Science Library

    Schwede, Torsten; Peitsch, Manuel Claude

    2008-01-01

    ... sequencing reinforced the observation that structural information is needed to understand the detailed function and mechanism of biological molecules such as enzyme reactions and molecular recognition events. Furthermore, structures are obviously key to the design of molecules with new or improved functions. In this context, computational structural biology...

  6. Micro-Computers in Biology Inquiry.

    Science.gov (United States)

    Barnato, Carolyn; Barrett, Kathy

    1981-01-01

    Describes the modification of computer programs (BISON and POLLUT) to accommodate species and areas indigenous to the Pacific Coast area. Suggests that these programs, suitable for PET microcomputers, may foster a long-term, ongoing, inquiry-directed approach in biology. (DS)

  7. 6th International Conference on Practical Applications of Computational Biology & Bioinformatics

    CERN Document Server

    Luscombe, Nicholas; Fdez-Riverola, Florentino; Rodríguez, Juan; Practical Applications of Computational Biology & Bioinformatics

    2012-01-01

    The growth in the Bioinformatics and Computational Biology fields over the last few years has been remarkable.. The analysis of the datasets of Next Generation Sequencing needs new algorithms and approaches from fields such as Databases, Statistics, Data Mining, Machine Learning, Optimization, Computer Science and Artificial Intelligence. Also Systems Biology has also been emerging as an alternative to the reductionist view that dominated biological research in the last decades. This book presents the results of the  6th International Conference on Practical Applications of Computational Biology & Bioinformatics held at University of Salamanca, Spain, 28-30th March, 2012 which brought together interdisciplinary scientists that have a strong background in the biological and computational sciences.

  8. How Computers are Arming biology!

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 23; Issue 1. In-vitro to In-silico - How Computers are Arming biology! Geetha Sugumaran Sushila Rajagopal. Face to Face Volume 23 Issue 1 January 2018 pp 83-102. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Computational Biology Support: RECOMB Conference Series (Conference Support)

    Energy Technology Data Exchange (ETDEWEB)

    Michael Waterman

    2006-06-15

    This funding was support for student and postdoctoral attendance at the Annual Recomb Conference from 2001 to 2005. The RECOMB Conference series was founded in 1997 to provide a scientific forum for theoretical advances in computational biology and their applications in molecular biology and medicine. The conference series aims at attracting research contributions in all areas of computational molecular biology. Typical, but not exclusive, the topics of interest are: Genomics, Molecular sequence analysis, Recognition of genes and regulatory elements, Molecular evolution, Protein structure, Structural genomics, Gene Expression, Gene Networks, Drug Design, Combinatorial libraries, Computational proteomics, and Structural and functional genomics. The origins of the conference came from the mathematical and computational side of the field, and there remains to be a certain focus on computational advances. However, the effective use of computational techniques to biological innovation is also an important aspect of the conference. The conference had a growing number of attendees, topping 300 in recent years and often exceeding 500. The conference program includes between 30 and 40 contributed papers, that are selected by a international program committee with around 30 experts during a rigorous review process rivaling the editorial procedure for top-rate scientific journals. In previous years papers selection has been made from up to 130--200 submissions from well over a dozen countries. 10-page extended abstracts of the contributed papers are collected in a volume published by ACM Press and Springer, and are available at the conference. Full versions of a selection of the papers are published annually in a special issue of the Journal of Computational Biology devoted to the RECOMB Conference. A further point in the program is a lively poster session. From 120-300 posters have been presented each year at RECOMB 2000. One of the highlights of each RECOMB conference is a

  10. Catalyzing Inquiry at the Interface of Computing and Biology

    Energy Technology Data Exchange (ETDEWEB)

    John Wooley; Herbert S. Lin

    2005-10-30

    This study is the first comprehensive NRC study that suggests a high-level intellectual structure for Federal agencies for supporting work at the biology/computing interface. The report seeks to establish the intellectual legitimacy of a fundamentally cross-disciplinary collaboration between biologists and computer scientists. That is, while some universities are increasingly favorable to research at the intersection, life science researchers at other universities are strongly impeded in their efforts to collaborate. This report addresses these impediments and describes proven strategies for overcoming them. An important feature of the report is the use of well-documented examples that describe clearly to individuals not trained in computer science the value and usage of computing across the biological sciences, from genes and proteins to networks and pathways, from organelles to cells, and from individual organisms to populations and ecosystems. It is hoped that these examples will be useful to students in the life sciences to motivate (continued) study in computer science that will enable them to be more facile users of computing in their future biological studies.

  11. 9th International Conference on Practical Applications of Computational Biology and Bioinformatics

    CERN Document Server

    Rocha, Miguel; Fdez-Riverola, Florentino; Paz, Juan

    2015-01-01

    This proceedings presents recent practical applications of Computational Biology and  Bioinformatics. It contains the proceedings of the 9th International Conference on Practical Applications of Computational Biology & Bioinformatics held at University of Salamanca, Spain, at June 3rd-5th, 2015. The International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB) is an annual international meeting dedicated to emerging and challenging applied research in Bioinformatics and Computational Biology. Biological and biomedical research are increasingly driven by experimental techniques that challenge our ability to analyse, process and extract meaningful knowledge from the underlying data. The impressive capabilities of next generation sequencing technologies, together with novel and ever evolving distinct types of omics data technologies, have put an increasingly complex set of challenges for the growing fields of Bioinformatics and Computational Biology. The analysis o...

  12. Computational biology in the cloud: methods and new insights from computing at scale.

    Science.gov (United States)

    Kasson, Peter M

    2013-01-01

    The past few years have seen both explosions in the size of biological data sets and the proliferation of new, highly flexible on-demand computing capabilities. The sheer amount of information available from genomic and metagenomic sequencing, high-throughput proteomics, experimental and simulation datasets on molecular structure and dynamics affords an opportunity for greatly expanded insight, but it creates new challenges of scale for computation, storage, and interpretation of petascale data. Cloud computing resources have the potential to help solve these problems by offering a utility model of computing and storage: near-unlimited capacity, the ability to burst usage, and cheap and flexible payment models. Effective use of cloud computing on large biological datasets requires dealing with non-trivial problems of scale and robustness, since performance-limiting factors can change substantially when a dataset grows by a factor of 10,000 or more. New computing paradigms are thus often needed. The use of cloud platforms also creates new opportunities to share data, reduce duplication, and to provide easy reproducibility by making the datasets and computational methods easily available.

  13. Computational Biomechanics Theoretical Background and BiologicalBiomedical Problems

    CERN Document Server

    Tanaka, Masao; Nakamura, Masanori

    2012-01-01

    Rapid developments have taken place in biological/biomedical measurement and imaging technologies as well as in computer analysis and information technologies. The increase in data obtained with such technologies invites the reader into a virtual world that represents realistic biological tissue or organ structures in digital form and allows for simulation and what is called “in silico medicine.” This volume is the third in a textbook series and covers both the basics of continuum mechanics of biosolids and biofluids and the theoretical core of computational methods for continuum mechanics analyses. Several biomechanics problems are provided for better understanding of computational modeling and analysis. Topics include the mechanics of solid and fluid bodies, fundamental characteristics of biosolids and biofluids, computational methods in biomechanics analysis/simulation, practical problems in orthopedic biomechanics, dental biomechanics, ophthalmic biomechanics, cardiovascular biomechanics, hemodynamics...

  14. Applications of membrane computing in systems and synthetic biology

    CERN Document Server

    Gheorghe, Marian; Pérez-Jiménez, Mario

    2014-01-01

    Membrane Computing was introduced as a computational paradigm in Natural Computing. The models introduced, called Membrane (or P) Systems, provide a coherent platform to describe and study living cells as computational systems. Membrane Systems have been investigated for their computational aspects and employed to model problems in other fields, like: Computer Science, Linguistics, Biology, Economy, Computer Graphics, Robotics, etc. Their inherent parallelism, heterogeneity and intrinsic versatility allow them to model a broad range of processes and phenomena, being also an efficient means to solve and analyze problems in a novel way. Membrane Computing has been used to model biological systems, becoming with time a thorough modeling paradigm comparable, in its modeling and predicting capabilities, to more established models in this area. This book is the result of the need to collect, in an organic way, different facets of this paradigm. The chapters of this book, together with the web pages accompanying th...

  15. Applicability of Computational Systems Biology in Toxicology

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning; Hadrup, Niels; Audouze, Karine Marie Laure

    2014-01-01

    be used to establish hypotheses on links between the chemical and human diseases. Such information can also be applied for designing more intelligent animal/cell experiments that can test the established hypotheses. Here, we describe how and why to apply an integrative systems biology method......Systems biology as a research field has emerged within the last few decades. Systems biology, often defined as the antithesis of the reductionist approach, integrates information about individual components of a biological system. In integrative systems biology, large data sets from various sources...... and databases are used to model and predict effects of chemicals on, for instance, human health. In toxicology, computational systems biology enables identification of important pathways and molecules from large data sets; tasks that can be extremely laborious when performed by a classical literature search...

  16. WE-DE-202-00: Connecting Radiation Physics with Computational Biology

    International Nuclear Information System (INIS)

    2016-01-01

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  17. WE-DE-202-00: Connecting Radiation Physics with Computational Biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  18. DOE EPSCoR Initiative in Structural and computational Biology/Bioinformatics

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Susan S.

    2008-02-21

    The overall goal of the DOE EPSCoR Initiative in Structural and Computational Biology was to enhance the competiveness of Vermont research in these scientific areas. To develop self-sustaining infrastructure, we increased the critical mass of faculty, developed shared resources that made junior researchers more competitive for federal research grants, implemented programs to train graduate and undergraduate students who participated in these research areas and provided seed money for research projects. During the time period funded by this DOE initiative: (1) four new faculty were recruited to the University of Vermont using DOE resources, three in Computational Biology and one in Structural Biology; (2) technical support was provided for the Computational and Structural Biology facilities; (3) twenty-two graduate students were directly funded by fellowships; (4) fifteen undergraduate students were supported during the summer; and (5) twenty-eight pilot projects were supported. Taken together these dollars resulted in a plethora of published papers, many in high profile journals in the fields and directly impacted competitive extramural funding based on structural or computational biology resulting in 49 million dollars awarded in grants (Appendix I), a 600% return on investment by DOE, the State and University.

  19. Computing paths and cycles in biological interaction graphs

    Directory of Open Access Journals (Sweden)

    von Kamp Axel

    2009-06-01

    Full Text Available Abstract Background Interaction graphs (signed directed graphs provide an important qualitative modeling approach for Systems Biology. They enable the analysis of causal relationships in cellular networks and can even be useful for predicting qualitative aspects of systems dynamics. Fundamental issues in the analysis of interaction graphs are the enumeration of paths and cycles (feedback loops and the calculation of shortest positive/negative paths. These computational problems have been discussed only to a minor extent in the context of Systems Biology and in particular the shortest signed paths problem requires algorithmic developments. Results We first review algorithms for the enumeration of paths and cycles and show that these algorithms are superior to a recently proposed enumeration approach based on elementary-modes computation. The main part of this work deals with the computation of shortest positive/negative paths, an NP-complete problem for which only very few algorithms are described in the literature. We propose extensions and several new algorithm variants for computing either exact results or approximations. Benchmarks with various concrete biological networks show that exact results can sometimes be obtained in networks with several hundred nodes. A class of even larger graphs can still be treated exactly by a new algorithm combining exhaustive and simple search strategies. For graphs, where the computation of exact solutions becomes time-consuming or infeasible, we devised an approximative algorithm with polynomial complexity. Strikingly, in realistic networks (where a comparison with exact results was possible this algorithm delivered results that are very close or equal to the exact values. This phenomenon can probably be attributed to the particular topology of cellular signaling and regulatory networks which contain a relatively low number of negative feedback loops. Conclusion The calculation of shortest positive

  20. The case for biological quantum computer elements

    Science.gov (United States)

    Baer, Wolfgang; Pizzi, Rita

    2009-05-01

    An extension to vonNeumann's analysis of quantum theory suggests self-measurement is a fundamental process of Nature. By mapping the quantum computer to the brain architecture we will argue that the cognitive experience results from a measurement of a quantum memory maintained by biological entities. The insight provided by this mapping suggests quantum effects are not restricted to small atomic and nuclear phenomena but are an integral part of our own cognitive experience and further that the architecture of a quantum computer system parallels that of a conscious brain. We will then review the suggestions for biological quantum elements in basic neural structures and address the de-coherence objection by arguing for a self- measurement event model of Nature. We will argue that to first order approximation the universe is composed of isolated self-measurement events which guaranties coherence. Controlled de-coherence is treated as the input/output interactions between quantum elements of a quantum computer and the quantum memory maintained by biological entities cognizant of the quantum calculation results. Lastly we will present stem-cell based neuron experiments conducted by one of us with the aim of demonstrating the occurrence of quantum effects in living neural networks and discuss future research projects intended to reach this objective.

  1. 7th International Conference on Practical Applications of Computational Biology & Bioinformatics

    CERN Document Server

    Nanni, Loris; Rocha, Miguel; Fdez-Riverola, Florentino

    2013-01-01

    The growth in the Bioinformatics and Computational Biology fields over the last few years has been remarkable and the trend is to increase its pace. In fact, the need for computational techniques that can efficiently handle the huge amounts of data produced by the new experimental techniques in Biology is still increasing driven by new advances in Next Generation Sequencing, several types of the so called omics data and image acquisition, just to name a few. The analysis of the datasets that produces and its integration call for new algorithms and approaches from fields such as Databases, Statistics, Data Mining, Machine Learning, Optimization, Computer Science and Artificial Intelligence. Within this scenario of increasing data availability, Systems Biology has also been emerging as an alternative to the reductionist view that dominated biological research in the last decades. Indeed, Biology is more and more a science of information requiring tools from the computational sciences. In the last few years, we ...

  2. 11th International Conference on Practical Applications of Computational Biology & Bioinformatics

    CERN Document Server

    Mohamad, Mohd; Rocha, Miguel; Paz, Juan; Pinto, Tiago

    2017-01-01

    Biological and biomedical research are increasingly driven by experimental techniques that challenge our ability to analyse, process and extract meaningful knowledge from the underlying data. The impressive capabilities of next-generation sequencing technologies, together with novel and constantly evolving, distinct types of omics data technologies, have created an increasingly complex set of challenges for the growing fields of Bioinformatics and Computational Biology. The analysis of the datasets produced and their integration call for new algorithms and approaches from fields such as Databases, Statistics, Data Mining, Machine Learning, Optimization, Computer Science and Artificial Intelligence. Clearly, Biology is more and more a science of information and requires tools from the computational sciences. In the last few years, we have seen the rise of a new generation of interdisciplinary scientists with a strong background in the biological and computational sciences. In this context, the interaction of r...

  3. 8th International Conference on Practical Applications of Computational Biology & Bioinformatics

    CERN Document Server

    Rocha, Miguel; Fdez-Riverola, Florentino; Santana, Juan

    2014-01-01

    Biological and biomedical research are increasingly driven by experimental techniques that challenge our ability to analyse, process and extract meaningful knowledge from the underlying data. The impressive capabilities of next generation sequencing technologies, together with novel and ever evolving distinct types of omics data technologies, have put an increasingly complex set of challenges for the growing fields of Bioinformatics and Computational Biology. The analysis of the datasets produced and their integration call for new algorithms and approaches from fields such as Databases, Statistics, Data Mining, Machine Learning, Optimization, Computer Science and Artificial Intelligence. Clearly, Biology is more and more a science of information requiring tools from the computational sciences. In the last few years, we have seen the surge of a new generation of interdisciplinary scientists that have a strong background in the biological and computational sciences. In this context, the interaction of researche...

  4. 10th International Conference on Practical Applications of Computational Biology & Bioinformatics

    CERN Document Server

    Rocha, Miguel; Fdez-Riverola, Florentino; Mayo, Francisco; Paz, Juan

    2016-01-01

    Biological and biomedical research are increasingly driven by experimental techniques that challenge our ability to analyse, process and extract meaningful knowledge from the underlying data. The impressive capabilities of next generation sequencing technologies, together with novel and ever evolving distinct types of omics data technologies, have put an increasingly complex set of challenges for the growing fields of Bioinformatics and Computational Biology. The analysis of the datasets produced and their integration call for new algorithms and approaches from fields such as Databases, Statistics, Data Mining, Machine Learning, Optimization, Computer Science and Artificial Intelligence. Clearly, Biology is more and more a science of information requiring tools from the computational sciences. In the last few years, we have seen the surge of a new generation of interdisciplinary scientists that have a strong background in the biological and computational sciences. In this context, the interaction of researche...

  5. Notions of similarity for computational biology models

    KAUST Repository

    Waltemath, Dagmar

    2016-03-21

    Computational models used in biology are rapidly increasing in complexity, size, and numbers. To build such large models, researchers need to rely on software tools for model retrieval, model combination, and version control. These tools need to be able to quantify the differences and similarities between computational models. However, depending on the specific application, the notion of similarity may greatly vary. A general notion of model similarity, applicable to various types of models, is still missing. Here, we introduce a general notion of quantitative model similarities, survey the use of existing model comparison methods in model building and management, and discuss potential applications of model comparison. To frame model comparison as a general problem, we describe a theoretical approach to defining and computing similarities based on different model aspects. Potentially relevant aspects of a model comprise its references to biological entities, network structure, mathematical equations and parameters, and dynamic behaviour. Future similarity measures could combine these model aspects in flexible, problem-specific ways in order to mimic users\\' intuition about model similarity, and to support complex model searches in databases.

  6. Notions of similarity for computational biology models

    KAUST Repository

    Waltemath, Dagmar; Henkel, Ron; Hoehndorf, Robert; Kacprowski, Tim; Knuepfer, Christian; Liebermeister, Wolfram

    2016-01-01

    Computational models used in biology are rapidly increasing in complexity, size, and numbers. To build such large models, researchers need to rely on software tools for model retrieval, model combination, and version control. These tools need to be able to quantify the differences and similarities between computational models. However, depending on the specific application, the notion of similarity may greatly vary. A general notion of model similarity, applicable to various types of models, is still missing. Here, we introduce a general notion of quantitative model similarities, survey the use of existing model comparison methods in model building and management, and discuss potential applications of model comparison. To frame model comparison as a general problem, we describe a theoretical approach to defining and computing similarities based on different model aspects. Potentially relevant aspects of a model comprise its references to biological entities, network structure, mathematical equations and parameters, and dynamic behaviour. Future similarity measures could combine these model aspects in flexible, problem-specific ways in order to mimic users' intuition about model similarity, and to support complex model searches in databases.

  7. Structure, function, and behaviour of computational models in systems biology.

    Science.gov (United States)

    Knüpfer, Christian; Beckstein, Clemens; Dittrich, Peter; Le Novère, Nicolas

    2013-05-31

    Systems Biology develops computational models in order to understand biological phenomena. The increasing number and complexity of such "bio-models" necessitate computer support for the overall modelling task. Computer-aided modelling has to be based on a formal semantic description of bio-models. But, even if computational bio-models themselves are represented precisely in terms of mathematical expressions their full meaning is not yet formally specified and only described in natural language. We present a conceptual framework - the meaning facets - which can be used to rigorously specify the semantics of bio-models. A bio-model has a dual interpretation: On the one hand it is a mathematical expression which can be used in computational simulations (intrinsic meaning). On the other hand the model is related to the biological reality (extrinsic meaning). We show that in both cases this interpretation should be performed from three perspectives: the meaning of the model's components (structure), the meaning of the model's intended use (function), and the meaning of the model's dynamics (behaviour). In order to demonstrate the strengths of the meaning facets framework we apply it to two semantically related models of the cell cycle. Thereby, we make use of existing approaches for computer representation of bio-models as much as possible and sketch the missing pieces. The meaning facets framework provides a systematic in-depth approach to the semantics of bio-models. It can serve two important purposes: First, it specifies and structures the information which biologists have to take into account if they build, use and exchange models. Secondly, because it can be formalised, the framework is a solid foundation for any sort of computer support in bio-modelling. The proposed conceptual framework establishes a new methodology for modelling in Systems Biology and constitutes a basis for computer-aided collaborative research.

  8. 2nd Colombian Congress on Computational Biology and Bioinformatics

    CERN Document Server

    Cristancho, Marco; Isaza, Gustavo; Pinzón, Andrés; Rodríguez, Juan

    2014-01-01

    This volume compiles accepted contributions for the 2nd Edition of the Colombian Computational Biology and Bioinformatics Congress CCBCOL, after a rigorous review process in which 54 papers were accepted for publication from 119 submitted contributions. Bioinformatics and Computational Biology are areas of knowledge that have emerged due to advances that have taken place in the Biological Sciences and its integration with Information Sciences. The expansion of projects involving the study of genomes has led the way in the production of vast amounts of sequence data which needs to be organized, analyzed and stored to understand phenomena associated with living organisms related to their evolution, behavior in different ecosystems, and the development of applications that can be derived from this analysis.  .

  9. The ISCB Student Council Internship Program: Expanding computational biology capacity worldwide.

    Science.gov (United States)

    Anupama, Jigisha; Francescatto, Margherita; Rahman, Farzana; Fatima, Nazeefa; DeBlasio, Dan; Shanmugam, Avinash Kumar; Satagopam, Venkata; Santos, Alberto; Kolekar, Pandurang; Michaut, Magali; Guney, Emre

    2018-01-01

    Education and training are two essential ingredients for a successful career. On one hand, universities provide students a curriculum for specializing in one's field of study, and on the other, internships complement coursework and provide invaluable training experience for a fruitful career. Consequently, undergraduates and graduates are encouraged to undertake an internship during the course of their degree. The opportunity to explore one's research interests in the early stages of their education is important for students because it improves their skill set and gives their career a boost. In the long term, this helps to close the gap between skills and employability among students across the globe and balance the research capacity in the field of computational biology. However, training opportunities are often scarce for computational biology students, particularly for those who reside in less-privileged regions. Aimed at helping students develop research and academic skills in computational biology and alleviating the divide across countries, the Student Council of the International Society for Computational Biology introduced its Internship Program in 2009. The Internship Program is committed to providing access to computational biology training, especially for students from developing regions, and improving competencies in the field. Here, we present how the Internship Program works and the impact of the internship opportunities so far, along with the challenges associated with this program.

  10. The ISCB Student Council Internship Program: Expanding computational biology capacity worldwide.

    Directory of Open Access Journals (Sweden)

    Jigisha Anupama

    2018-01-01

    Full Text Available Education and training are two essential ingredients for a successful career. On one hand, universities provide students a curriculum for specializing in one's field of study, and on the other, internships complement coursework and provide invaluable training experience for a fruitful career. Consequently, undergraduates and graduates are encouraged to undertake an internship during the course of their degree. The opportunity to explore one's research interests in the early stages of their education is important for students because it improves their skill set and gives their career a boost. In the long term, this helps to close the gap between skills and employability among students across the globe and balance the research capacity in the field of computational biology. However, training opportunities are often scarce for computational biology students, particularly for those who reside in less-privileged regions. Aimed at helping students develop research and academic skills in computational biology and alleviating the divide across countries, the Student Council of the International Society for Computational Biology introduced its Internship Program in 2009. The Internship Program is committed to providing access to computational biology training, especially for students from developing regions, and improving competencies in the field. Here, we present how the Internship Program works and the impact of the internship opportunities so far, along with the challenges associated with this program.

  11. Novel opportunities for computational biology and sociology in drug discovery☆

    Science.gov (United States)

    Yao, Lixia; Evans, James A.; Rzhetsky, Andrey

    2013-01-01

    Current drug discovery is impossible without sophisticated modeling and computation. In this review we outline previous advances in computational biology and, by tracing the steps involved in pharmaceutical development, explore a range of novel, high-value opportunities for computational innovation in modeling the biological process of disease and the social process of drug discovery. These opportunities include text mining for new drug leads, modeling molecular pathways and predicting the efficacy of drug cocktails, analyzing genetic overlap between diseases and predicting alternative drug use. Computation can also be used to model research teams and innovative regions and to estimate the value of academy–industry links for scientific and human benefit. Attention to these opportunities could promise punctuated advance and will complement the well-established computational work on which drug discovery currently relies. PMID:20349528

  12. Novel opportunities for computational biology and sociology in drug discovery

    Science.gov (United States)

    Yao, Lixia

    2009-01-01

    Drug discovery today is impossible without sophisticated modeling and computation. In this review we touch on previous advances in computational biology and by tracing the steps involved in pharmaceutical development, we explore a range of novel, high value opportunities for computational innovation in modeling the biological process of disease and the social process of drug discovery. These opportunities include text mining for new drug leads, modeling molecular pathways and predicting the efficacy of drug cocktails, analyzing genetic overlap between diseases and predicting alternative drug use. Computation can also be used to model research teams and innovative regions and to estimate the value of academy-industry ties for scientific and human benefit. Attention to these opportunities could promise punctuated advance, and will complement the well-established computational work on which drug discovery currently relies. PMID:19674801

  13. Computational protein design-the next generation tool to expand synthetic biology applications.

    Science.gov (United States)

    Gainza-Cirauqui, Pablo; Correia, Bruno Emanuel

    2018-05-02

    One powerful approach to engineer synthetic biology pathways is the assembly of proteins sourced from one or more natural organisms. However, synthetic pathways often require custom functions or biophysical properties not displayed by natural proteins, limitations that could be overcome through modern protein engineering techniques. Structure-based computational protein design is a powerful tool to engineer new functional capabilities in proteins, and it is beginning to have a profound impact in synthetic biology. Here, we review efforts to increase the capabilities of synthetic biology using computational protein design. We focus primarily on computationally designed proteins not only validated in vitro, but also shown to modulate different activities in living cells. Efforts made to validate computational designs in cells can illustrate both the challenges and opportunities in the intersection of protein design and synthetic biology. We also highlight protein design approaches, which although not validated as conveyors of new cellular function in situ, may have rapid and innovative applications in synthetic biology. We foresee that in the near-future, computational protein design will vastly expand the functional capabilities of synthetic cells. Copyright © 2018. Published by Elsevier Ltd.

  14. A comprehensive approach to decipher biological computation to achieve next generation high-performance exascale computing.

    Energy Technology Data Exchange (ETDEWEB)

    James, Conrad D.; Schiess, Adrian B.; Howell, Jamie; Baca, Michael J.; Partridge, L. Donald; Finnegan, Patrick Sean; Wolfley, Steven L.; Dagel, Daryl James; Spahn, Olga Blum; Harper, Jason C.; Pohl, Kenneth Roy; Mickel, Patrick R.; Lohn, Andrew; Marinella, Matthew

    2013-10-01

    The human brain (volume=1200cm3) consumes 20W and is capable of performing > 10^16 operations/s. Current supercomputer technology has reached 1015 operations/s, yet it requires 1500m^3 and 3MW, giving the brain a 10^12 advantage in operations/s/W/cm^3. Thus, to reach exascale computation, two achievements are required: 1) improved understanding of computation in biological tissue, and 2) a paradigm shift towards neuromorphic computing where hardware circuits mimic properties of neural tissue. To address 1), we will interrogate corticostriatal networks in mouse brain tissue slices, specifically with regard to their frequency filtering capabilities as a function of input stimulus. To address 2), we will instantiate biological computing characteristics such as multi-bit storage into hardware devices with future computational and memory applications. Resistive memory devices will be modeled, designed, and fabricated in the MESA facility in consultation with our internal and external collaborators.

  15. Converting differential-equation models of biological systems to membrane computing.

    Science.gov (United States)

    Muniyandi, Ravie Chandren; Zin, Abdullah Mohd; Sanders, J W

    2013-12-01

    This paper presents a method to convert the deterministic, continuous representation of a biological system by ordinary differential equations into a non-deterministic, discrete membrane computation. The dynamics of the membrane computation is governed by rewrite rules operating at certain rates. That has the advantage of applying accurately to small systems, and to expressing rates of change that are determined locally, by region, but not necessary globally. Such spatial information augments the standard differentiable approach to provide a more realistic model. A biological case study of the ligand-receptor network of protein TGF-β is used to validate the effectiveness of the conversion method. It demonstrates the sense in which the behaviours and properties of the system are better preserved in the membrane computing model, suggesting that the proposed conversion method may prove useful for biological systems in particular. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Fundamentals of bioinformatics and computational biology methods and exercises in matlab

    CERN Document Server

    Singh, Gautam B

    2015-01-01

    This book offers comprehensive coverage of all the core topics of bioinformatics, and includes practical examples completed using the MATLAB bioinformatics toolbox™. It is primarily intended as a textbook for engineering and computer science students attending advanced undergraduate and graduate courses in bioinformatics and computational biology. The book develops bioinformatics concepts from the ground up, starting with an introductory chapter on molecular biology and genetics. This chapter will enable physical science students to fully understand and appreciate the ultimate goals of applying the principles of information technology to challenges in biological data management, sequence analysis, and systems biology. The first part of the book also includes a survey of existing biological databases, tools that have become essential in today’s biotechnology research. The second part of the book covers methodologies for retrieving biological information, including fundamental algorithms for sequence compar...

  17. Chinese Herbal Medicine Meets Biological Networks of Complex Diseases: A Computational Perspective

    OpenAIRE

    Shuo Gu; Jianfeng Pei

    2017-01-01

    With the rapid development of cheminformatics, computational biology, and systems biology, great progress has been made recently in the computational research of Chinese herbal medicine with in-depth understanding towards pharmacognosy. This paper summarized these studies in the aspects of computational methods, traditional Chinese medicine (TCM) compound databases, and TCM network pharmacology. Furthermore, we chose arachidonic acid metabolic network as a case study to demonstrate the regula...

  18. Parallel metaheuristics in computational biology: an asynchronous cooperative enhanced scatter search method

    OpenAIRE

    Penas, David R.; González, Patricia; Egea, José A.; Banga, Julio R.; Doallo, Ramón

    2015-01-01

    Metaheuristics are gaining increased attention as efficient solvers for hard global optimization problems arising in bioinformatics and computational systems biology. Scatter Search (SS) is one of the recent outstanding algorithms in that class. However, its application to very hard problems, like those considering parameter estimation in dynamic models of systems biology, still results in excessive computation times. In order to reduce the computational cost of the SS and improve its success...

  19. The Virtual Cell: a software environment for computational cell biology.

    Science.gov (United States)

    Loew, L M; Schaff, J C

    2001-10-01

    The newly emerging field of computational cell biology requires software tools that address the needs of a broad community of scientists. Cell biological processes are controlled by an interacting set of biochemical and electrophysiological events that are distributed within complex cellular structures. Computational modeling is familiar to researchers in fields such as molecular structure, neurobiology and metabolic pathway engineering, and is rapidly emerging in the area of gene expression. Although some of these established modeling approaches can be adapted to address problems of interest to cell biologists, relatively few software development efforts have been directed at the field as a whole. The Virtual Cell is a computational environment designed for cell biologists as well as for mathematical biologists and bioengineers. It serves to aid the construction of cell biological models and the generation of simulations from them. The system enables the formulation of both compartmental and spatial models, the latter with either idealized or experimentally derived geometries of one, two or three dimensions.

  20. ISCB Ebola Award for Important Future Research on the Computational Biology of Ebola Virus.

    Directory of Open Access Journals (Sweden)

    Peter D. Karp

    2015-01-01

    Full Text Available Speed is of the essence in combating Ebola; thus, computational approaches should form a significant component of Ebola research. As for the development of any modern drug, computational biology is uniquely positioned to contribute through comparative analysis of the genome sequences of Ebola strains as well as 3-D protein modeling. Other computational approaches to Ebola may include large-scale docking studies of Ebola proteins with human proteins and with small-molecule libraries, computational modeling of the spread of the virus, computational mining of the Ebola literature, and creation of a curated Ebola database. Taken together, such computational efforts could significantly accelerate traditional scientific approaches. In recognition of the need for important and immediate solutions from the field of computational biology against Ebola, the International Society for Computational Biology (ISCB announces a prize for an important computational advance in fighting the Ebola virus. ISCB will confer the ISCB Fight against Ebola Award, along with a prize of US$2,000, at its July 2016 annual meeting (ISCB Intelligent Systems for Molecular Biology [ISMB] 2016, Orlando, Florida.

  1. iTools: a framework for classification, categorization and integration of computational biology resources.

    Directory of Open Access Journals (Sweden)

    Ivo D Dinov

    2008-05-01

    Full Text Available The advancement of the computational biology field hinges on progress in three fundamental directions--the development of new computational algorithms, the availability of informatics resource management infrastructures and the capability of tools to interoperate and synergize. There is an explosion in algorithms and tools for computational biology, which makes it difficult for biologists to find, compare and integrate such resources. We describe a new infrastructure, iTools, for managing the query, traversal and comparison of diverse computational biology resources. Specifically, iTools stores information about three types of resources--data, software tools and web-services. The iTools design, implementation and resource meta-data content reflect the broad research, computational, applied and scientific expertise available at the seven National Centers for Biomedical Computing. iTools provides a system for classification, categorization and integration of different computational biology resources across space-and-time scales, biomedical problems, computational infrastructures and mathematical foundations. A large number of resources are already iTools-accessible to the community and this infrastructure is rapidly growing. iTools includes human and machine interfaces to its resource meta-data repository. Investigators or computer programs may utilize these interfaces to search, compare, expand, revise and mine meta-data descriptions of existent computational biology resources. We propose two ways to browse and display the iTools dynamic collection of resources. The first one is based on an ontology of computational biology resources, and the second one is derived from hyperbolic projections of manifolds or complex structures onto planar discs. iTools is an open source project both in terms of the source code development as well as its meta-data content. iTools employs a decentralized, portable, scalable and lightweight framework for long

  2. Interactomes to Biological Phase Space: a call to begin thinking at a new level in computational biology.

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, George S.; Brown, William Michael

    2007-09-01

    Techniques for high throughput determinations of interactomes, together with high resolution protein collocalizations maps within organelles and through membranes will soon create a vast resource. With these data, biological descriptions, akin to the high dimensional phase spaces familiar to physicists, will become possible. These descriptions will capture sufficient information to make possible realistic, system-level models of cells. The descriptions and the computational models they enable will require powerful computing techniques. This report is offered as a call to the computational biology community to begin thinking at this scale and as a challenge to develop the required algorithms and codes to make use of the new data.3

  3. From biological neural networks to thinking machines: Transitioning biological organizational principles to computer technology

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    The three-dimensional organization of the vestibular macula is under study by computer assisted reconstruction and simulation methods as a model for more complex neural systems. One goal of this research is to transition knowledge of biological neural network architecture and functioning to computer technology, to contribute to the development of thinking computers. Maculas are organized as weighted neural networks for parallel distributed processing of information. The network is characterized by non-linearity of its terminal/receptive fields. Wiring appears to develop through constrained randomness. A further property is the presence of two main circuits, highly channeled and distributed modifying, that are connected through feedforward-feedback collaterals and biasing subcircuit. Computer simulations demonstrate that differences in geometry of the feedback (afferent) collaterals affects the timing and the magnitude of voltage changes delivered to the spike initiation zone. Feedforward (efferent) collaterals act as voltage followers and likely inhibit neurons of the distributed modifying circuit. These results illustrate the importance of feedforward-feedback loops, of timing, and of inhibition in refining neural network output. They also suggest that it is the distributed modifying network that is most involved in adaptation, memory, and learning. Tests of macular adaptation, through hyper- and microgravitational studies, support this hypothesis since synapses in the distributed modifying circuit, but not the channeled circuit, are altered. Transitioning knowledge of biological systems to computer technology, however, remains problematical.

  4. Computational Biology and the Limits of Shared Vision

    DEFF Research Database (Denmark)

    Carusi, Annamaria

    2011-01-01

    of cases is necessary in order to gain a better perspective on social sharing of practices, and on what other factors this sharing is dependent upon. The article presents the case of currently emerging inter-disciplinary visual practices in the domain of computational biology, where the sharing of visual...... practices would be beneficial to the collaborations necessary for the research. Computational biology includes sub-domains where visual practices are coming to be shared across disciplines, and those where this is not occurring, and where the practices of others are resisted. A significant point......, its domain of study. Social practices alone are not sufficient to account for the shaping of evidence. The philosophy of Merleau-Ponty is introduced as providing an alternative framework for thinking of the complex inter-relations between all of these factors. This [End Page 300] philosophy enables us...

  5. Bioconductor: open software development for computational biology and bioinformatics

    DEFF Research Database (Denmark)

    Gentleman, R.C.; Carey, V.J.; Bates, D.M.

    2004-01-01

    The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry into interdisci......The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry...... into interdisciplinary scientific research, and promoting the achievement of remote reproducibility of research results. We describe details of our aims and methods, identify current challenges, compare Bioconductor to other open bioinformatics projects, and provide working examples....

  6. Chinese Herbal Medicine Meets Biological Networks of Complex Diseases: A Computational Perspective

    Directory of Open Access Journals (Sweden)

    Shuo Gu

    2017-01-01

    Full Text Available With the rapid development of cheminformatics, computational biology, and systems biology, great progress has been made recently in the computational research of Chinese herbal medicine with in-depth understanding towards pharmacognosy. This paper summarized these studies in the aspects of computational methods, traditional Chinese medicine (TCM compound databases, and TCM network pharmacology. Furthermore, we chose arachidonic acid metabolic network as a case study to demonstrate the regulatory function of herbal medicine in the treatment of inflammation at network level. Finally, a computational workflow for the network-based TCM study, derived from our previous successful applications, was proposed.

  7. Chinese Herbal Medicine Meets Biological Networks of Complex Diseases: A Computational Perspective.

    Science.gov (United States)

    Gu, Shuo; Pei, Jianfeng

    2017-01-01

    With the rapid development of cheminformatics, computational biology, and systems biology, great progress has been made recently in the computational research of Chinese herbal medicine with in-depth understanding towards pharmacognosy. This paper summarized these studies in the aspects of computational methods, traditional Chinese medicine (TCM) compound databases, and TCM network pharmacology. Furthermore, we chose arachidonic acid metabolic network as a case study to demonstrate the regulatory function of herbal medicine in the treatment of inflammation at network level. Finally, a computational workflow for the network-based TCM study, derived from our previous successful applications, was proposed.

  8. XIV Mediterranean Conference on Medical and Biological Engineering and Computing

    CERN Document Server

    Christofides, Stelios; Pattichis, Constantinos

    2016-01-01

    This volume presents the proceedings of Medicon 2016, held in Paphos, Cyprus. Medicon 2016 is the XIV in the series of regional meetings of the International Federation of Medical and Biological Engineering (IFMBE) in the Mediterranean. The goal of Medicon 2016 is to provide updated information on the state of the art on Medical and Biological Engineering and Computing under the main theme “Systems Medicine for the Delivery of Better Healthcare Services”. Medical and Biological Engineering and Computing cover complementary disciplines that hold great promise for the advancement of research and development in complex medical and biological systems. Research and development in these areas are impacting the science and technology by advancing fundamental concepts in translational medicine, by helping us understand human physiology and function at multiple levels, by improving tools and techniques for the detection, prevention and treatment of disease. Medicon 2016 provides a common platform for the cross fer...

  9. Computer-aided design of biological circuits using TinkerCell.

    Science.gov (United States)

    Chandran, Deepak; Bergmann, Frank T; Sauro, Herbert M

    2010-01-01

    Synthetic biology is an engineering discipline that builds on modeling practices from systems biology and wet-lab techniques from genetic engineering. As synthetic biology advances, efficient procedures will be developed that will allow a synthetic biologist to design, analyze, and build biological networks. In this idealized pipeline, computer-aided design (CAD) is a necessary component. The role of a CAD application would be to allow efficient transition from a general design to a final product. TinkerCell is a design tool for serving this purpose in synthetic biology. In TinkerCell, users build biological networks using biological parts and modules. The network can be analyzed using one of several functions provided by TinkerCell or custom programs from third-party sources. Since best practices for modeling and constructing synthetic biology networks have not yet been established, TinkerCell is designed as a flexible and extensible application that can adjust itself to changes in the field. © 2010 Landes Bioscience

  10. Modeling biological problems in computer science: a case study in genome assembly.

    Science.gov (United States)

    Medvedev, Paul

    2018-01-30

    As computer scientists working in bioinformatics/computational biology, we often face the challenge of coming up with an algorithm to answer a biological question. This occurs in many areas, such as variant calling, alignment and assembly. In this tutorial, we use the example of the genome assembly problem to demonstrate how to go from a question in the biological realm to a solution in the computer science realm. We show the modeling process step-by-step, including all the intermediate failed attempts. Please note this is not an introduction to how genome assembly algorithms work and, if treated as such, would be incomplete and unnecessarily long-winded. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Computational intelligence, medicine and biology selected links

    CERN Document Server

    Zaitseva, Elena

    2015-01-01

    This book contains an interesting and state-of the art collection of chapters presenting several examples of attempts to developing modern tools utilizing computational intelligence in different real life problems encountered by humans. Reasoning, prediction, modeling, optimization, decision making, etc. need modern, soft and intelligent algorithms, methods and methodologies to solve, in the efficient ways, problems appearing in human activity. The contents of the book is divided into two parts. Part I, consisting of four chapters, is devoted to selected links of computational intelligence, medicine, health care and biomechanics. Several problems are considered: estimation of healthcare system reliability, classification of ultrasound thyroid images, application of fuzzy logic to measure weight status and central fatness, and deriving kinematics directly from video records. Part II, also consisting of four chapters, is devoted to selected links of computational intelligence and biology. The common denominato...

  12. Using a Computer Animation to Teach High School Molecular Biology

    Science.gov (United States)

    Rotbain, Yosi; Marbach-Ad, Gili; Stavy, Ruth

    2008-01-01

    We present an active way to use a computer animation in secondary molecular genetics class. For this purpose we developed an activity booklet that helps students to work interactively with a computer animation which deals with abstract concepts and processes in molecular biology. The achievements of the experimental group were compared with those…

  13. Filling the gap between biology and computer science.

    Science.gov (United States)

    Aguilar-Ruiz, Jesús S; Moore, Jason H; Ritchie, Marylyn D

    2008-07-17

    This editorial introduces BioData Mining, a new journal which publishes research articles related to advances in computational methods and techniques for the extraction of useful knowledge from heterogeneous biological data. We outline the aims and scope of the journal, introduce the publishing model and describe the open peer review policy, which fosters interaction within the research community.

  14. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision

    OpenAIRE

    Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of tra...

  15. MACBenAbim: A Multi-platform Mobile Application for searching keyterms in Computational Biology and Bioinformatics.

    Science.gov (United States)

    Oluwagbemi, Olugbenga O; Adewumi, Adewole; Esuruoso, Abimbola

    2012-01-01

    Computational biology and bioinformatics are gradually gaining grounds in Africa and other developing nations of the world. However, in these countries, some of the challenges of computational biology and bioinformatics education are inadequate infrastructures, and lack of readily-available complementary and motivational tools to support learning as well as research. This has lowered the morale of many promising undergraduates, postgraduates and researchers from aspiring to undertake future study in these fields. In this paper, we developed and described MACBenAbim (Multi-platform Mobile Application for Computational Biology and Bioinformatics), a flexible user-friendly tool to search for, define and describe the meanings of keyterms in computational biology and bioinformatics, thus expanding the frontiers of knowledge of the users. This tool also has the capability of achieving visualization of results on a mobile multi-platform context. MACBenAbim is available from the authors for non-commercial purposes.

  16. 7th World Congress on Nature and Biologically Inspired Computing

    CERN Document Server

    Engelbrecht, Andries; Abraham, Ajith; Plessis, Mathys; Snášel, Václav; Muda, Azah

    2016-01-01

    World Congress on Nature and Biologically Inspired Computing (NaBIC) is organized to discuss the state-of-the-art as well as to address various issues with respect to Nurturing Intelligent Computing Towards Advancement of Machine Intelligence. This Volume contains the papers presented in the Seventh World Congress (NaBIC’15) held in Pietermaritzburg, South Africa during December 01-03, 2015. The 39 papers presented in this Volume were carefully reviewed and selected. The Volume would be a valuable reference to researchers, students and practitioners in the computational intelligence field.

  17. Discovery of novel bacterial toxins by genomics and computational biology.

    Science.gov (United States)

    Doxey, Andrew C; Mansfield, Michael J; Montecucco, Cesare

    2018-06-01

    Hundreds and hundreds of bacterial protein toxins are presently known. Traditionally, toxin identification begins with pathological studies of bacterial infectious disease. Following identification and cultivation of a bacterial pathogen, the protein toxin is purified from the culture medium and its pathogenic activity is studied using the methods of biochemistry and structural biology, cell biology, tissue and organ biology, and appropriate animal models, supplemented by bioimaging techniques. The ongoing and explosive development of high-throughput DNA sequencing and bioinformatic approaches have set in motion a revolution in many fields of biology, including microbiology. One consequence is that genes encoding novel bacterial toxins can be identified by bioinformatic and computational methods based on previous knowledge accumulated from studies of the biology and pathology of thousands of known bacterial protein toxins. Starting from the paradigmatic cases of diphtheria toxin, tetanus and botulinum neurotoxins, this review discusses traditional experimental approaches as well as bioinformatics and genomics-driven approaches that facilitate the discovery of novel bacterial toxins. We discuss recent work on the identification of novel botulinum-like toxins from genera such as Weissella, Chryseobacterium, and Enteroccocus, and the implications of these computationally identified toxins in the field. Finally, we discuss the promise of metagenomics in the discovery of novel toxins and their ecological niches, and present data suggesting the existence of uncharacterized, botulinum-like toxin genes in insect gut metagenomes. Copyright © 2018. Published by Elsevier Ltd.

  18. Inter-level relations in computer science, biology, and psychology

    NARCIS (Netherlands)

    Boogerd, Fred; Bruggeman, Frank; Jonker, Catholijn; Looren de Jong, Huib; Tamminga, Allard; Treur, Jan; Westerhoff, Hans; Wijngaards, Wouter

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an *empirical* turn in the philosophy of mind. Rather than concentrate on *a priori* discussions of inter-level relations between “completed” sciences, a case is made for the actual study of the way

  19. Inter-level relations in computer science, biology, and psychology

    NARCIS (Netherlands)

    Boogerd, F.; Bruggeman, F.; Jonker, C.M.; Looren de Jong, H.; Tamminga, A.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between 'completed' sciences, a case is made for the actual study of the way

  20. Inter-level relations in computer science, biology and psychology

    NARCIS (Netherlands)

    Boogerd, F.C.; Bruggeman, F.J.; Jonker, C.M.; Looren De Jong, H.; Tamminga, A.M.; Treur, J.; Westerhoff, H.V.; Wijngaards, W.C.A.

    2002-01-01

    Investigations into inter-level relations in computer science, biology and psychology call for an empirical turn in the philosophy of mind. Rather than concentrate on a priori discussions of inter-level relations between "completed" sciences, a case is made for the actual study of the way

  1. Application of computational systems biology to explore environmental toxicity hazards

    DEFF Research Database (Denmark)

    Audouze, Karine Marie Laure; Grandjean, Philippe

    2011-01-01

    Background: Computer-based modeling is part of a new approach to predictive toxicology.Objectives: We investigated the usefulness of an integrated computational systems biology approach in a case study involving the isomers and metabolites of the pesticide dichlorodiphenyltrichloroethane (DDT......) to ascertain their possible links to relevant adverse effects.Methods: We extracted chemical-protein association networks for each DDT isomer and its metabolites using ChemProt, a disease chemical biology database that includes both binding and gene expression data, and we explored protein-protein interactions...... using a human interactome network. To identify associated dysfunctions and diseases, we integrated protein-disease annotations into the protein complexes using the Online Mendelian Inheritance in Man database and the Comparative Toxicogenomics Database.Results: We found 175 human proteins linked to p,p´-DDT...

  2. Computing chemical organizations in biological networks.

    Science.gov (United States)

    Centler, Florian; Kaleta, Christoph; di Fenizio, Pietro Speroni; Dittrich, Peter

    2008-07-15

    Novel techniques are required to analyze computational models of intracellular processes as they increase steadily in size and complexity. The theory of chemical organizations has recently been introduced as such a technique that links the topology of biochemical reaction network models to their dynamical repertoire. The network is decomposed into algebraically closed and self-maintaining subnetworks called organizations. They form a hierarchy representing all feasible system states including all steady states. We present three algorithms to compute the hierarchy of organizations for network models provided in SBML format. Two of them compute the complete organization hierarchy, while the third one uses heuristics to obtain a subset of all organizations for large models. While the constructive approach computes the hierarchy starting from the smallest organization in a bottom-up fashion, the flux-based approach employs self-maintaining flux distributions to determine organizations. A runtime comparison on 16 different network models of natural systems showed that none of the two exhaustive algorithms is superior in all cases. Studying a 'genome-scale' network model with 762 species and 1193 reactions, we demonstrate how the organization hierarchy helps to uncover the model structure and allows to evaluate the model's quality, for example by detecting components and subsystems of the model whose maintenance is not explained by the model. All data and a Java implementation that plugs into the Systems Biology Workbench is available from http://www.minet.uni-jena.de/csb/prj/ot/tools.

  3. Where mathematics, computer science, linguistics and biology meet essays in honour of Gheorghe Păun

    CERN Document Server

    Mitrana, Victor

    2001-01-01

    In the last years, it was observed an increasing interest of computer scientists in the structure of biological molecules and the way how they can be manipulated in vitro in order to define theoretical models of computation based on genetic engineering tools. Along the same lines, a parallel interest is growing regarding the process of evolution of living organisms. Much of the current data for genomes are expressed in the form of maps which are now becoming available and permit the study of the evolution of organisms at the scale of genome for the first time. On the other hand, there is an active trend nowadays throughout the field of computational biology toward abstracted, hierarchical views of biological sequences, which is very much in the spirit of computational linguistics. In the last decades, results and methods in the field of formal language theory that might be applied to the description of biological sequences were pointed out.

  4. Biology Students Building Computer Simulations Using StarLogo TNG

    Science.gov (United States)

    Smith, V. Anne; Duncan, Ishbel

    2011-01-01

    Confidence is an important issue for biology students in handling computational concepts. This paper describes a practical in which honours-level bioscience students simulate complex animal behaviour using StarLogo TNG, a freely-available graphical programming environment. The practical consists of two sessions, the first of which guides students…

  5. Community-driven computational biology with Debian Linux.

    Science.gov (United States)

    Möller, Steffen; Krabbenhöft, Hajo Nils; Tille, Andreas; Paleino, David; Williams, Alan; Wolstencroft, Katy; Goble, Carole; Holland, Richard; Belhachemi, Dominique; Plessy, Charles

    2010-12-21

    The Open Source movement and its technologies are popular in the bioinformatics community because they provide freely available tools and resources for research. In order to feed the steady demand for updates on software and associated data, a service infrastructure is required for sharing and providing these tools to heterogeneous computing environments. The Debian Med initiative provides ready and coherent software packages for medical informatics and bioinformatics. These packages can be used together in Taverna workflows via the UseCase plugin to manage execution on local or remote machines. If such packages are available in cloud computing environments, the underlying hardware and the analysis pipelines can be shared along with the software. Debian Med closes the gap between developers and users. It provides a simple method for offering new releases of software and data resources, thus provisioning a local infrastructure for computational biology. For geographically distributed teams it can ensure they are working on the same versions of tools, in the same conditions. This contributes to the world-wide networking of researchers.

  6. The transhumanism of Ray Kurzweil. Is biological ontology reducible to computation?

    Directory of Open Access Journals (Sweden)

    Javier Monserrat

    2016-02-01

    Full Text Available Computer programs, primarily engineering machine vision and programming of somatic sensors, have already allowed, and they will do it more perfectly in the future, to build high perfection androids or cyborgs. They will collaborate with man and open new moral reflections to respect the ontological dignity in the new humanoid machines. In addition, both men and new androids will be in connection with huge external computer networks that will grow up to almost incredible levels the efficiency in the domain of body and nature. However, our current scientific knowledge, on the one hand, about hardware and software that will support both the humanoid machines and external computer networks, made with existing engineering (and also the foreseeable medium and even long term engineering and, on the other hand, our scientific knowledge about animal and human behavior from neural-biological structures that produce a psychic system, allow us to establish that there is no scientific basis to talk about an ontological identity between the computational machines and man. Accordingly, different ontologies (computational machines and biological entities will produce various different functional systems. There may be simulation, but never ontological identity. These ideas are essential to assess the transhumanism of Ray Kurzweil.

  7. A framework to establish credibility of computational models in biology.

    Science.gov (United States)

    Patterson, Eann A; Whelan, Maurice P

    2017-10-01

    Computational models in biology and biomedical science are often constructed to aid people's understanding of phenomena or to inform decisions with socioeconomic consequences. Model credibility is the willingness of people to trust a model's predictions and is often difficult to establish for computational biology models. A 3 × 3 matrix has been proposed to allow such models to be categorised with respect to their testability and epistemic foundation in order to guide the selection of an appropriate process of validation to supply evidence to establish credibility. Three approaches to validation are identified that can be deployed depending on whether a model is deemed untestable, testable or lies somewhere in between. In the latter two cases, the validation process involves the quantification of uncertainty which is a key output. The issues arising due to the complexity and inherent variability of biological systems are discussed and the creation of 'digital twins' proposed as a means to alleviate the issues and provide a more robust, transparent and traceable route to model credibility and acceptance. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Exploiting graphics processing units for computational biology and bioinformatics.

    Science.gov (United States)

    Payne, Joshua L; Sinnott-Armstrong, Nicholas A; Moore, Jason H

    2010-09-01

    Advances in the video gaming industry have led to the production of low-cost, high-performance graphics processing units (GPUs) that possess more memory bandwidth and computational capability than central processing units (CPUs), the standard workhorses of scientific computing. With the recent release of generalpurpose GPUs and NVIDIA's GPU programming language, CUDA, graphics engines are being adopted widely in scientific computing applications, particularly in the fields of computational biology and bioinformatics. The goal of this article is to concisely present an introduction to GPU hardware and programming, aimed at the computational biologist or bioinformaticist. To this end, we discuss the primary differences between GPU and CPU architecture, introduce the basics of the CUDA programming language, and discuss important CUDA programming practices, such as the proper use of coalesced reads, data types, and memory hierarchies. We highlight each of these topics in the context of computing the all-pairs distance between instances in a dataset, a common procedure in numerous disciplines of scientific computing. We conclude with a runtime analysis of the GPU and CPU implementations of the all-pairs distance calculation. We show our final GPU implementation to outperform the CPU implementation by a factor of 1700.

  9. Computational Systems Chemical Biology

    OpenAIRE

    Oprea, Tudor I.; May, Elebeoba E.; Leitão, Andrei; Tropsha, Alexander

    2011-01-01

    There is a critical need for improving the level of chemistry awareness in systems biology. The data and information related to modulation of genes and proteins by small molecules continue to accumulate at the same time as simulation tools in systems biology and whole body physiologically-based pharmacokinetics (PBPK) continue to evolve. We called this emerging area at the interface between chemical biology and systems biology systems chemical biology, SCB (Oprea et al., 2007).

  10. Multiobjective optimization in bioinformatics and computational biology.

    Science.gov (United States)

    Handl, Julia; Kell, Douglas B; Knowles, Joshua

    2007-01-01

    This paper reviews the application of multiobjective optimization in the fields of bioinformatics and computational biology. A survey of existing work, organized by application area, forms the main body of the review, following an introduction to the key concepts in multiobjective optimization. An original contribution of the review is the identification of five distinct "contexts," giving rise to multiple objectives: These are used to explain the reasons behind the use of multiobjective optimization in each application area and also to point the way to potential future uses of the technique.

  11. Final report for Conference Support Grant "From Computational Biophysics to Systems Biology - CBSB12"

    Energy Technology Data Exchange (ETDEWEB)

    Hansmann, Ulrich H.E.

    2012-07-02

    This report summarizes the outcome of the international workshop From Computational Biophysics to Systems Biology (CBSB12) which was held June 3-5, 2012, at the University of Tennessee Conference Center in Knoxville, TN, and supported by DOE through the Conference Support Grant 120174. The purpose of CBSB12 was to provide a forum for the interaction between a data-mining interested systems biology community and a simulation and first-principle oriented computational biophysics/biochemistry community. CBSB12 was the sixth in a series of workshops of the same name organized in recent years, and the second that has been held in the USA. As in previous years, it gave researchers from physics, biology, and computer science an opportunity to acquaint each other with current trends in computational biophysics and systems biology, to explore venues of cooperation, and to establish together a detailed understanding of cells at a molecular level. The conference grant of $10,000 was used to cover registration fees and provide travel fellowships to selected students and postdoctoral scientists. By educating graduate students and providing a forum for young scientists to perform research into the working of cells at a molecular level, the workshop adds to DOE's mission of paving the way to exploit the abilities of living systems to capture, store and utilize energy.

  12. ADAM: analysis of discrete models of biological systems using computer algebra.

    Science.gov (United States)

    Hinkelmann, Franziska; Brandon, Madison; Guang, Bonny; McNeill, Rustin; Blekherman, Grigoriy; Veliz-Cuba, Alan; Laubenbacher, Reinhard

    2011-07-20

    Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, to gain a better understanding of them. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. There exist software tools to analyze discrete models, but they either lack the algorithmic functionality to analyze complex models deterministically or they are inaccessible to many users as they require understanding the underlying algorithm and implementation, do not have a graphical user interface, or are hard to install. Efficient analysis methods that are accessible to modelers and easy to use are needed. We propose a method for efficiently identifying attractors and introduce the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness and robustness. For a large set of published complex discrete models, ADAM identified the attractors in less than one second. Discrete modeling techniques are a useful tool for analyzing complex biological systems and there is a need in the biological community for accessible efficient analysis tools. ADAM provides analysis methods based on mathematical algorithms as a web

  13. Secure Encapsulation and Publication of Biological Services in the Cloud Computing Environment

    Science.gov (United States)

    Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon

    2013-01-01

    Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved. PMID:24078906

  14. Secure Encapsulation and Publication of Biological Services in the Cloud Computing Environment

    Directory of Open Access Journals (Sweden)

    Weizhe Zhang

    2013-01-01

    Full Text Available Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved.

  15. Secure encapsulation and publication of biological services in the cloud computing environment.

    Science.gov (United States)

    Zhang, Weizhe; Wang, Xuehui; Lu, Bo; Kim, Tai-hoon

    2013-01-01

    Secure encapsulation and publication for bioinformatics software products based on web service are presented, and the basic function of biological information is realized in the cloud computing environment. In the encapsulation phase, the workflow and function of bioinformatics software are conducted, the encapsulation interfaces are designed, and the runtime interaction between users and computers is simulated. In the publication phase, the execution and management mechanisms and principles of the GRAM components are analyzed. The functions such as remote user job submission and job status query are implemented by using the GRAM components. The services of bioinformatics software are published to remote users. Finally the basic prototype system of the biological cloud is achieved.

  16. Parallel computing and molecular dynamics of biological membranes

    International Nuclear Information System (INIS)

    La Penna, G.; Letardi, S.; Minicozzi, V.; Morante, S.; Rossi, G.C.; Salina, G.

    1998-01-01

    In this talk I discuss the general question of the portability of molecular dynamics codes for diffusive systems on parallel computers of the APE family. The intrinsic single precision of the today available platforms does not seem to affect the numerical accuracy of the simulations, while the absence of integer addressing from CPU to individual nodes puts strong constraints on possible programming strategies. Liquids can be satisfactorily simulated using the ''systolic'' method. For more complex systems, like the biological ones at which we are ultimately interested in, the ''domain decomposition'' approach is best suited to beat the quadratic growth of the inter-molecular computational time with the number of atoms of the system. The promising perspectives of using this strategy for extensive simulations of lipid bilayers are briefly reviewed. (orig.)

  17. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision.

    Science.gov (United States)

    Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method.

  18. A Novel Method to Verify Multilevel Computational Models of Biological Systems Using Multiscale Spatio-Temporal Meta Model Checking.

    Science.gov (United States)

    Pârvu, Ovidiu; Gilbert, David

    2016-01-01

    Insights gained from multilevel computational models of biological systems can be translated into real-life applications only if the model correctness has been verified first. One of the most frequently employed in silico techniques for computational model verification is model checking. Traditional model checking approaches only consider the evolution of numeric values, such as concentrations, over time and are appropriate for computational models of small scale systems (e.g. intracellular networks). However for gaining a systems level understanding of how biological organisms function it is essential to consider more complex large scale biological systems (e.g. organs). Verifying computational models of such systems requires capturing both how numeric values and properties of (emergent) spatial structures (e.g. area of multicellular population) change over time and across multiple levels of organization, which are not considered by existing model checking approaches. To address this limitation we have developed a novel approximate probabilistic multiscale spatio-temporal meta model checking methodology for verifying multilevel computational models relative to specifications describing the desired/expected system behaviour. The methodology is generic and supports computational models encoded using various high-level modelling formalisms because it is defined relative to time series data and not the models used to generate it. In addition, the methodology can be automatically adapted to case study specific types of spatial structures and properties using the spatio-temporal meta model checking concept. To automate the computational model verification process we have implemented the model checking approach in the software tool Mule (http://mule.modelchecking.org). Its applicability is illustrated against four systems biology computational models previously published in the literature encoding the rat cardiovascular system dynamics, the uterine contractions of labour

  19. Computer modeling in developmental biology: growing today, essential tomorrow.

    Science.gov (United States)

    Sharpe, James

    2017-12-01

    D'Arcy Thompson was a true pioneer, applying mathematical concepts and analyses to the question of morphogenesis over 100 years ago. The centenary of his famous book, On Growth and Form , is therefore a great occasion on which to review the types of computer modeling now being pursued to understand the development of organs and organisms. Here, I present some of the latest modeling projects in the field, covering a wide range of developmental biology concepts, from molecular patterning to tissue morphogenesis. Rather than classifying them according to scientific question, or scale of problem, I focus instead on the different ways that modeling contributes to the scientific process and discuss the likely future of modeling in developmental biology. © 2017. Published by The Company of Biologists Ltd.

  20. Stochastic processes, multiscale modeling, and numerical methods for computational cellular biology

    CERN Document Server

    2017-01-01

    This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of s...

  1. Mathematical computer simulation of the process of ultrasound interaction with biological medium

    International Nuclear Information System (INIS)

    Yakovleva, T.; Nassiri, D.; Ciantar, D.

    1996-01-01

    The aim of the paper is to study theoretically the interaction of ultrasound irradiation with biological medium and the peculiarities of ultrasound scattering by inhomogeneities of biological tissue, which can be represented by fractal structures. This investigation has been used for the construction of the computer model of three-dimensional ultrasonic imaging system what gives the possibility to define more accurately the pathological changes in such a tissue by means of its image analysis. Poster 180. (author)

  2. MOLNs: A CLOUD PLATFORM FOR INTERACTIVE, REPRODUCIBLE, AND SCALABLE SPATIAL STOCHASTIC COMPUTATIONAL EXPERIMENTS IN SYSTEMS BIOLOGY USING PyURDME.

    Science.gov (United States)

    Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas

    2016-01-01

    Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments.

  3. Periodicity computation of generalized mathematical biology problems involving delay differential equations.

    Science.gov (United States)

    Jasim Mohammed, M; Ibrahim, Rabha W; Ahmad, M Z

    2017-03-01

    In this paper, we consider a low initial population model. Our aim is to study the periodicity computation of this model by using neutral differential equations, which are recognized in various studies including biology. We generalize the neutral Rayleigh equation for the third-order by exploiting the model of fractional calculus, in particular the Riemann-Liouville differential operator. We establish the existence and uniqueness of a periodic computational outcome. The technique depends on the continuation theorem of the coincidence degree theory. Besides, an example is presented to demonstrate the finding.

  4. The Effects of 3D Computer Simulation on Biology Students' Achievement and Memory Retention

    Science.gov (United States)

    Elangovan, Tavasuria; Ismail, Zurida

    2014-01-01

    A quasi experimental study was conducted for six weeks to determine the effectiveness of two different 3D computer simulation based teaching methods, that is, realistic simulation and non-realistic simulation on Form Four Biology students' achievement and memory retention in Perak, Malaysia. A sample of 136 Form Four Biology students in Perak,…

  5. Computer Literacy for Life Sciences: Helping the Digital-Era Biology Undergraduates Face Today's Research

    Science.gov (United States)

    Smolinski, Tomasz G.

    2010-01-01

    Computer literacy plays a critical role in today's life sciences research. Without the ability to use computers to efficiently manipulate and analyze large amounts of data resulting from biological experiments and simulations, many of the pressing questions in the life sciences could not be answered. Today's undergraduates, despite the ubiquity of…

  6. Interdisciplinary research and education at the biology-engineering-computer science interface: a perspective.

    Science.gov (United States)

    Tadmor, Brigitta; Tidor, Bruce

    2005-09-01

    Progress in the life sciences, including genome sequencing and high-throughput experimentation, offers an opportunity for understanding biology and medicine from a systems perspective. This 'new view', which complements the more traditional component-based approach, involves the integration of biological research with approaches from engineering disciplines and computer science. The result is more than a new set of technologies. Rather, it promises a fundamental reconceptualization of the life sciences based on the development of quantitative and predictive models to describe crucial processes. To achieve this change, learning communities are being formed at the interface of the life sciences, engineering and computer science. Through these communities, research and education will be integrated across disciplines and the challenges associated with multidisciplinary team-based science will be addressed.

  7. Toward computational cumulative biology by combining models of biological datasets.

    Science.gov (United States)

    Faisal, Ali; Peltonen, Jaakko; Georgii, Elisabeth; Rung, Johan; Kaski, Samuel

    2014-01-01

    A main challenge of data-driven sciences is how to make maximal use of the progressively expanding databases of experimental datasets in order to keep research cumulative. We introduce the idea of a modeling-based dataset retrieval engine designed for relating a researcher's experimental dataset to earlier work in the field. The search is (i) data-driven to enable new findings, going beyond the state of the art of keyword searches in annotations, (ii) modeling-driven, to include both biological knowledge and insights learned from data, and (iii) scalable, as it is accomplished without building one unified grand model of all data. Assuming each dataset has been modeled beforehand, by the researchers or automatically by database managers, we apply a rapidly computable and optimizable combination model to decompose a new dataset into contributions from earlier relevant models. By using the data-driven decomposition, we identify a network of interrelated datasets from a large annotated human gene expression atlas. While tissue type and disease were major driving forces for determining relevant datasets, the found relationships were richer, and the model-based search was more accurate than the keyword search; moreover, it recovered biologically meaningful relationships that are not straightforwardly visible from annotations-for instance, between cells in different developmental stages such as thymocytes and T-cells. Data-driven links and citations matched to a large extent; the data-driven links even uncovered corrections to the publication data, as two of the most linked datasets were not highly cited and turned out to have wrong publication entries in the database.

  8. ISCB Ebola Award for Important Future Research on the Computational Biology of Ebola Virus

    OpenAIRE

    Karp, P.D.; Berger, B.; Kovats, D.; Lengauer, T.; Linial, M.; Sabeti, P.; Hide, W.; Rost, B.

    2015-01-01

    Speed is of the essence in combating Ebola; thus, computational approaches should form a significant component of Ebola research. As for the development of any modern drug, computational biology is uniquely positioned to contribute through comparative analysis of the genome sequences of Ebola strains as well as 3-D protein modeling. Other computational approaches to Ebola may include large-scale docking studies of Ebola proteins with human proteins and with small-molecule libraries, computati...

  9. An interdepartmental Ph.D. program in computational biology and bioinformatics: the Yale perspective.

    Science.gov (United States)

    Gerstein, Mark; Greenbaum, Dov; Cheung, Kei; Miller, Perry L

    2007-02-01

    Computational biology and bioinformatics (CBB), the terms often used interchangeably, represent a rapidly evolving biological discipline. With the clear potential for discovery and innovation, and the need to deal with the deluge of biological data, many academic institutions are committing significant resources to develop CBB research and training programs. Yale formally established an interdepartmental Ph.D. program in CBB in May 2003. This paper describes Yale's program, discussing the scope of the field, the program's goals and curriculum, as well as a number of issues that arose in implementing the program. (Further updated information is available from the program's website, www.cbb.yale.edu.)

  10. Large Scale Computing and Storage Requirements for Biological and Environmental Research

    Energy Technology Data Exchange (ETDEWEB)

    DOE Office of Science, Biological and Environmental Research Program Office (BER),

    2009-09-30

    In May 2009, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR), and DOE's Office of Biological and Environmental Research (BER) held a workshop to characterize HPC requirements for BER-funded research over the subsequent three to five years. The workshop revealed several key points, in addition to achieving its goal of collecting and characterizing computing requirements. Chief among them: scientific progress in BER-funded research is limited by current allocations of computational resources. Additionally, growth in mission-critical computing -- combined with new requirements for collaborative data manipulation and analysis -- will demand ever increasing computing, storage, network, visualization, reliability and service richness from NERSC. This report expands upon these key points and adds others. It also presents a number of"case studies" as significant representative samples of the needs of science teams within BER. Workshop participants were asked to codify their requirements in this"case study" format, summarizing their science goals, methods of solution, current and 3-5 year computing requirements, and special software and support needs. Participants were also asked to describe their strategy for computing in the highly parallel,"multi-core" environment that is expected to dominate HPC architectures over the next few years.

  11. Derivation and computation of discrete-delay and continuous-delay SDEs in mathematical biology.

    Science.gov (United States)

    Allen, Edward J

    2014-06-01

    Stochastic versions of several discrete-delay and continuous-delay differential equations, useful in mathematical biology, are derived from basic principles carefully taking into account the demographic, environmental, or physiological randomness in the dynamic processes. In particular, stochastic delay differential equation (SDDE) models are derived and studied for Nicholson's blowflies equation, Hutchinson's equation, an SIS epidemic model with delay, bacteria/phage dynamics, and glucose/insulin levels. Computational methods for approximating the SDDE models are described. Comparisons between computational solutions of the SDDEs and independently formulated Monte Carlo calculations support the accuracy of the derivations and of the computational methods.

  12. Delivering The Benefits of Chemical-Biological Integration in Computational Toxicology at the EPA (ACS Fall meeting)

    Science.gov (United States)

    Abstract: Researchers at the EPA’s National Center for Computational Toxicology integrate advances in biology, chemistry, and computer science to examine the toxicity of chemicals and help prioritize chemicals for further research based on potential human health risks. The intent...

  13. Defining Biological Networks for Noise Buffering and Signaling Sensitivity Using Approximate Bayesian Computation

    Directory of Open Access Journals (Sweden)

    Shuqiang Wang

    2014-01-01

    Full Text Available Reliable information processing in cells requires high sensitivity to changes in the input signal but low sensitivity to random fluctuations in the transmitted signal. There are often many alternative biological circuits qualifying for this biological function. Distinguishing theses biological models and finding the most suitable one are essential, as such model ranking, by experimental evidence, will help to judge the support of the working hypotheses forming each model. Here, we employ the approximate Bayesian computation (ABC method based on sequential Monte Carlo (SMC to search for biological circuits that can maintain signaling sensitivity while minimizing noise propagation, focusing on cases where the noise is characterized by rapid fluctuations. By systematically analyzing three-component circuits, we rank these biological circuits and identify three-basic-biological-motif buffering noise while maintaining sensitivity to long-term changes in input signals. We discuss in detail a particular implementation in control of nutrient homeostasis in yeast. The principal component analysis of the posterior provides insight into the nature of the reaction between nodes.

  14. Discovering local patterns of co - evolution: computational aspects and biological examples

    Directory of Open Access Journals (Sweden)

    Tuller Tamir

    2010-01-01

    Full Text Available Abstract Background Co-evolution is the process in which two (or more sets of orthologs exhibit a similar or correlative pattern of evolution. Co-evolution is a powerful way to learn about the functional interdependencies between sets of genes and cellular functions and to predict physical interactions. More generally, it can be used for answering fundamental questions about the evolution of biological systems. Orthologs that exhibit a strong signal of co-evolution in a certain part of the evolutionary tree may show a mild signal of co-evolution in other branches of the tree. The major reasons for this phenomenon are noise in the biological input, genes that gain or lose functions, and the fact that some measures of co-evolution relate to rare events such as positive selection. Previous publications in the field dealt with the problem of finding sets of genes that co-evolved along an entire underlying phylogenetic tree, without considering the fact that often co-evolution is local. Results In this work, we describe a new set of biological problems that are related to finding patterns of local co-evolution. We discuss their computational complexity and design algorithms for solving them. These algorithms outperform other bi-clustering methods as they are designed specifically for solving the set of problems mentioned above. We use our approach to trace the co-evolution of fungal, eukaryotic, and mammalian genes at high resolution across the different parts of the corresponding phylogenetic trees. Specifically, we discover regions in the fungi tree that are enriched with positive evolution. We show that metabolic genes exhibit a remarkable level of co-evolution and different patterns of co-evolution in various biological datasets. In addition, we find that protein complexes that are related to gene expression exhibit non-homogenous levels of co-evolution across different parts of the fungi evolutionary line. In the case of mammalian evolution

  15. Computer Simulation and Data Analysis in Molecular Biology and Biophysics An Introduction Using R

    CERN Document Server

    Bloomfield, Victor

    2009-01-01

    This book provides an introduction, suitable for advanced undergraduates and beginning graduate students, to two important aspects of molecular biology and biophysics: computer simulation and data analysis. It introduces tools to enable readers to learn and use fundamental methods for constructing quantitative models of biological mechanisms, both deterministic and with some elements of randomness, including complex reaction equilibria and kinetics, population models, and regulation of metabolism and development; to understand how concepts of probability can help in explaining important features of DNA sequences; and to apply a useful set of statistical methods to analysis of experimental data from spectroscopic, genomic, and proteomic sources. These quantitative tools are implemented using the free, open source software program R. R provides an excellent environment for general numerical and statistical computing and graphics, with capabilities similar to Matlab®. Since R is increasingly used in bioinformat...

  16. Dispensing processes impact apparent biological activity as determined by computational and statistical analyses.

    Directory of Open Access Journals (Sweden)

    Sean Ekins

    Full Text Available Dispensing and dilution processes may profoundly influence estimates of biological activity of compounds. Published data show Ephrin type-B receptor 4 IC50 values obtained via tip-based serial dilution and dispensing versus acoustic dispensing with direct dilution differ by orders of magnitude with no correlation or ranking of datasets. We generated computational 3D pharmacophores based on data derived by both acoustic and tip-based transfer. The computed pharmacophores differ significantly depending upon dispensing and dilution methods. The acoustic dispensing-derived pharmacophore correctly identified active compounds in a subsequent test set where the tip-based method failed. Data from acoustic dispensing generates a pharmacophore containing two hydrophobic features, one hydrogen bond donor and one hydrogen bond acceptor. This is consistent with X-ray crystallography studies of ligand-protein interactions and automatically generated pharmacophores derived from this structural data. In contrast, the tip-based data suggest a pharmacophore with two hydrogen bond acceptors, one hydrogen bond donor and no hydrophobic features. This pharmacophore is inconsistent with the X-ray crystallographic studies and automatically generated pharmacophores. In short, traditional dispensing processes are another important source of error in high-throughput screening that impacts computational and statistical analyses. These findings have far-reaching implications in biological research.

  17. Revision history aware repositories of computational models of biological systems.

    Science.gov (United States)

    Miller, Andrew K; Yu, Tommy; Britten, Randall; Cooling, Mike T; Lawson, James; Cowan, Dougal; Garny, Alan; Halstead, Matt D B; Hunter, Peter J; Nickerson, David P; Nunns, Geo; Wimalaratne, Sarala M; Nielsen, Poul M F

    2011-01-14

    Building repositories of computational models of biological systems ensures that published models are available for both education and further research, and can provide a source of smaller, previously verified models to integrate into a larger model. One problem with earlier repositories has been the limitations in facilities to record the revision history of models. Often, these facilities are limited to a linear series of versions which were deposited in the repository. This is problematic for several reasons. Firstly, there are many instances in the history of biological systems modelling where an 'ancestral' model is modified by different groups to create many different models. With a linear series of versions, if the changes made to one model are merged into another model, the merge appears as a single item in the history. This hides useful revision history information, and also makes further merges much more difficult, as there is no record of which changes have or have not already been merged. In addition, a long series of individual changes made outside of the repository are also all merged into a single revision when they are put back into the repository, making it difficult to separate out individual changes. Furthermore, many earlier repositories only retain the revision history of individual files, rather than of a group of files. This is an important limitation to overcome, because some types of models, such as CellML 1.1 models, can be developed as a collection of modules, each in a separate file. The need for revision history is widely recognised for computer software, and a lot of work has gone into developing version control systems and distributed version control systems (DVCSs) for tracking the revision history. However, to date, there has been no published research on how DVCSs can be applied to repositories of computational models of biological systems. We have extended the Physiome Model Repository software to be fully revision history aware

  18. Revision history aware repositories of computational models of biological systems

    Directory of Open Access Journals (Sweden)

    Nickerson David P

    2011-01-01

    Full Text Available Abstract Background Building repositories of computational models of biological systems ensures that published models are available for both education and further research, and can provide a source of smaller, previously verified models to integrate into a larger model. One problem with earlier repositories has been the limitations in facilities to record the revision history of models. Often, these facilities are limited to a linear series of versions which were deposited in the repository. This is problematic for several reasons. Firstly, there are many instances in the history of biological systems modelling where an 'ancestral' model is modified by different groups to create many different models. With a linear series of versions, if the changes made to one model are merged into another model, the merge appears as a single item in the history. This hides useful revision history information, and also makes further merges much more difficult, as there is no record of which changes have or have not already been merged. In addition, a long series of individual changes made outside of the repository are also all merged into a single revision when they are put back into the repository, making it difficult to separate out individual changes. Furthermore, many earlier repositories only retain the revision history of individual files, rather than of a group of files. This is an important limitation to overcome, because some types of models, such as CellML 1.1 models, can be developed as a collection of modules, each in a separate file. The need for revision history is widely recognised for computer software, and a lot of work has gone into developing version control systems and distributed version control systems (DVCSs for tracking the revision history. However, to date, there has been no published research on how DVCSs can be applied to repositories of computational models of biological systems. Results We have extended the Physiome Model

  19. What it takes to understand and cure a living system: computational systems biology and a systems biology-driven pharmacokinetics-pharmacodynamics platform

    NARCIS (Netherlands)

    Swat, Maciej; Kiełbasa, Szymon M.; Polak, Sebastian; Olivier, Brett; Bruggeman, Frank J.; Tulloch, Mark Quinton; Snoep, Jacky L.; Verhoeven, Arthur J.; Westerhoff, Hans V.

    2011-01-01

    The utility of model repositories is discussed in the context of systems biology (SB). It is shown how such repositories, and in particular their live versions, can be used for computational SB: we calculate the robustness of the yeast glycolytic network with respect to perturbations of one of its

  20. Computational brain models: Advances from system biology and future challenges

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-02-01

    Full Text Available Computational brain models focused on the interactions between neurons and astrocytes, modeled via metabolic reconstructions, are reviewed. The large source of experimental data provided by the -omics techniques and the advance/application of computational and data-management tools are being fundamental. For instance, in the understanding of the crosstalk between these cells, the key neuroprotective mechanisms mediated by astrocytes in specific metabolic scenarios (1 and the identification of biomarkers for neurodegenerative diseases (2,3. However, the modeling of these interactions demands a clear view of the metabolic and signaling pathways implicated, but most of them are controversial and are still under evaluation (4. Hence, to gain insight into the complexity of these interactions a current view of the main pathways implicated in the neuron-astrocyte communication processes have been made from recent experimental reports and reviews. Furthermore, target problems, limitations and main conclusions have been identified from metabolic models of the brain reported from 2010. Finally, key aspects to take into account into the development of a computational model of the brain and topics that could be approached from a systems biology perspective in future research are highlighted.

  1. Complex network problems in physics, computer science and biology

    Science.gov (United States)

    Cojocaru, Radu Ionut

    There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe

  2. G-LoSA: An efficient computational tool for local structure-centric biological studies and drug design.

    Science.gov (United States)

    Lee, Hui Sun; Im, Wonpil

    2016-04-01

    Molecular recognition by protein mostly occurs in a local region on the protein surface. Thus, an efficient computational method for accurate characterization of protein local structural conservation is necessary to better understand biology and drug design. We present a novel local structure alignment tool, G-LoSA. G-LoSA aligns protein local structures in a sequence order independent way and provides a GA-score, a chemical feature-based and size-independent structure similarity score. Our benchmark validation shows the robust performance of G-LoSA to the local structures of diverse sizes and characteristics, demonstrating its universal applicability to local structure-centric comparative biology studies. In particular, G-LoSA is highly effective in detecting conserved local regions on the entire surface of a given protein. In addition, the applications of G-LoSA to identifying template ligands and predicting ligand and protein binding sites illustrate its strong potential for computer-aided drug design. We hope that G-LoSA can be a useful computational method for exploring interesting biological problems through large-scale comparison of protein local structures and facilitating drug discovery research and development. G-LoSA is freely available to academic users at http://im.compbio.ku.edu/GLoSA/. © 2016 The Protein Society.

  3. Multiple-Swarm Ensembles: Improving the Predictive Power and Robustness of Predictive Models and Its Use in Computational Biology.

    Science.gov (United States)

    Alves, Pedro; Liu, Shuang; Wang, Daifeng; Gerstein, Mark

    2018-01-01

    Machine learning is an integral part of computational biology, and has already shown its use in various applications, such as prognostic tests. In the last few years in the non-biological machine learning community, ensembling techniques have shown their power in data mining competitions such as the Netflix challenge; however, such methods have not found wide use in computational biology. In this work, we endeavor to show how ensembling techniques can be applied to practical problems, including problems in the field of bioinformatics, and how they often outperform other machine learning techniques in both predictive power and robustness. Furthermore, we develop a methodology of ensembling, Multi-Swarm Ensemble (MSWE) by using multiple particle swarm optimizations and demonstrate its ability to further enhance the performance of ensembles.

  4. RISE OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY IN INDIA: A LOOK THROUGH PUBLICATIONS

    Directory of Open Access Journals (Sweden)

    Anjali Srivastava

    2017-09-01

    Full Text Available Computational biology and bioinformatics have been part and parcel of biomedical research for few decades now. However, the institutionalization of bioinformatics research took place with the establishment of Distributed Information Centres (DISCs in the research institutions of repute in various disciplines by the Department of Biotechnology, Government of India. Though, at initial stages, this endeavor was mainly focused on providing infrastructure for using information technology and internet based communication and tools for carrying out computational biology and in-silico assisted research in varied arena of research starting from disease biology to agricultural crops, spices, veterinary science and many more, the natural outcome of establishment of such facilities resulted into new experiments with bioinformatics tools. Thus, Biotechnology Information Systems (BTIS grew into a solid movement and a large number of publications started coming out of these centres. In the end of last century, bioinformatics started developing like a full-fledged research subject. In the last decade, a need was felt to actually make a factual estimation of the result of this endeavor of DBT which had, by then, established about two hundred centres in almost all disciplines of biomedical research. In a bid to evaluate the efforts and outcome of these centres, BTIS Centre at CSIR-CDRI, Lucknow was entrusted with collecting and collating the publications of these centres. However, when the full data was compiled, the DBT task force felt that the study must include Non-BTIS centres also so as to expand the report to have a glimpse of bioinformatics publications from the country.

  5. Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project.

    Science.gov (United States)

    Hucka, M; Finney, A; Bornstein, B J; Keating, S M; Shapiro, B E; Matthews, J; Kovitz, B L; Schilstra, M J; Funahashi, A; Doyle, J C; Kitano, H

    2004-06-01

    Biologists are increasingly recognising that computational modelling is crucial for making sense of the vast quantities of complex experimental data that are now being collected. The systems biology field needs agreed-upon information standards if models are to be shared, evaluated and developed cooperatively. Over the last four years, our team has been developing the Systems Biology Markup Language (SBML) in collaboration with an international community of modellers and software developers. SBML has become a de facto standard format for representing formal, quantitative and qualitative models at the level of biochemical reactions and regulatory networks. In this article, we summarise the current and upcoming versions of SBML and our efforts at developing software infrastructure for supporting and broadening its use. We also provide a brief overview of the many SBML-compatible software tools available today.

  6. COMPUTATIONAL MODELING AND SIMULATION IN BIOLOGY TEACHING: A MINIMALLY EXPLORED FIELD OF STUDY WITH A LOT OF POTENTIAL

    Directory of Open Access Journals (Sweden)

    Sonia López

    2016-09-01

    Full Text Available This study is part of a research project that aims to characterize the epistemological, psychological and didactic presuppositions of science teachers (Biology, Physics, Chemistry that implement Computational Modeling and Simulation (CMS activities as a part of their teaching practice. We present here a synthesis of a literature review on the subject, evidencing how in the last two decades this form of computer usage for science teaching has boomed in disciplines such as Physics and Chemistry, but in a lesser degree in Biology. Additionally, in the works that dwell on the use of CMS in Biology, we identified a lack of theoretical bases that support their epistemological, psychological and/or didactic postures. Accordingly, this generates significant considerations for the fields of research and teacher instruction in Science Education.

  7. Extending and Applying Spartan to Perform Temporal Sensitivity Analyses for Predicting Changes in Influential Biological Pathways in Computational Models.

    Science.gov (United States)

    Alden, Kieran; Timmis, Jon; Andrews, Paul S; Veiga-Fernandes, Henrique; Coles, Mark

    2017-01-01

    Through integrating real time imaging, computational modelling, and statistical analysis approaches, previous work has suggested that the induction of and response to cell adhesion factors is the key initiating pathway in early lymphoid tissue development, in contrast to the previously accepted view that the process is triggered by chemokine mediated cell recruitment. These model derived hypotheses were developed using spartan, an open-source sensitivity analysis toolkit designed to establish and understand the relationship between a computational model and the biological system that model captures. Here, we extend the functionality available in spartan to permit the production of statistical analyses that contrast the behavior exhibited by a computational model at various simulated time-points, enabling a temporal analysis that could suggest whether the influence of biological mechanisms changes over time. We exemplify this extended functionality by using the computational model of lymphoid tissue development as a time-lapse tool. By generating results at twelve- hour intervals, we show how the extensions to spartan have been used to suggest that lymphoid tissue development could be biphasic, and predict the time-point when a switch in the influence of biological mechanisms might occur.

  8. 10 years for the Journal of Bioinformatics and Computational Biology (2003-2013) -- a retrospective.

    Science.gov (United States)

    Eisenhaber, Frank; Sherman, Westley Arthur

    2014-06-01

    The Journal of Bioinformatics and Computational Biology (JBCB) started publishing scientific articles in 2003. It has established itself as home for solid research articles in the field (~ 60 per year) that are surprisingly well cited. JBCB has an important function as alternative publishing channel in addition to other, bigger journals.

  9. On the Modelling of Biological Patterns with Mechanochemical Models: Insights from Analysis and Computation

    KAUST Repository

    Moreo, P.; Gaffney, E. A.; Garcí a-Aznar, J. M.; Doblaré , M.

    2009-01-01

    The diversity of biological form is generated by a relatively small number of underlying mechanisms. Consequently, mathematical and computational modelling can, and does, provide insight into how cellular level interactions ultimately give rise

  10. More Ideas for Monitoring Biological Experiments with the BBC Computer: Absorption Spectra, Yeast Growth, Enzyme Reactions and Animal Behaviour.

    Science.gov (United States)

    Openshaw, Peter

    1988-01-01

    Presented are five ideas for A-level biology experiments using a laboratory computer interface. Topics investigated include photosynthesis, yeast growth, animal movements, pulse rates, and oxygen consumption and production by organisms. Includes instructions specific to the BBC computer system. (CW)

  11. Tuneable resolution as a systems biology approach for multi-scale, multi-compartment computational models.

    Science.gov (United States)

    Kirschner, Denise E; Hunt, C Anthony; Marino, Simeone; Fallahi-Sichani, Mohammad; Linderman, Jennifer J

    2014-01-01

    The use of multi-scale mathematical and computational models to study complex biological processes is becoming increasingly productive. Multi-scale models span a range of spatial and/or temporal scales and can encompass multi-compartment (e.g., multi-organ) models. Modeling advances are enabling virtual experiments to explore and answer questions that are problematic to address in the wet-lab. Wet-lab experimental technologies now allow scientists to observe, measure, record, and analyze experiments focusing on different system aspects at a variety of biological scales. We need the technical ability to mirror that same flexibility in virtual experiments using multi-scale models. Here we present a new approach, tuneable resolution, which can begin providing that flexibility. Tuneable resolution involves fine- or coarse-graining existing multi-scale models at the user's discretion, allowing adjustment of the level of resolution specific to a question, an experiment, or a scale of interest. Tuneable resolution expands options for revising and validating mechanistic multi-scale models, can extend the longevity of multi-scale models, and may increase computational efficiency. The tuneable resolution approach can be applied to many model types, including differential equation, agent-based, and hybrid models. We demonstrate our tuneable resolution ideas with examples relevant to infectious disease modeling, illustrating key principles at work. © 2014 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.

  12. Computational systems biology and dose-response modeling in relation to new directions in toxicity testing.

    Science.gov (United States)

    Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E; Conolly, Rory B

    2010-02-01

    The new paradigm envisioned for toxicity testing in the 21st century advocates shifting from the current animal-based testing process to a combination of in vitro cell-based studies, high-throughput techniques, and in silico modeling. A strategic component of the vision is the adoption of the systems biology approach to acquire, analyze, and interpret toxicity pathway data. As key toxicity pathways are identified and their wiring details elucidated using traditional and high-throughput techniques, there is a pressing need to understand their qualitative and quantitative behaviors in response to perturbation by both physiological signals and exogenous stressors. The complexity of these molecular networks makes the task of understanding cellular responses merely by human intuition challenging, if not impossible. This process can be aided by mathematical modeling and computer simulation of the networks and their dynamic behaviors. A number of theoretical frameworks were developed in the last century for understanding dynamical systems in science and engineering disciplines. These frameworks, which include metabolic control analysis, biochemical systems theory, nonlinear dynamics, and control theory, can greatly facilitate the process of organizing, analyzing, and understanding toxicity pathways. Such analysis will require a comprehensive examination of the dynamic properties of "network motifs"--the basic building blocks of molecular circuits. Network motifs like feedback and feedforward loops appear repeatedly in various molecular circuits across cell types and enable vital cellular functions like homeostasis, all-or-none response, memory, and biological rhythm. These functional motifs and associated qualitative and quantitative properties are the predominant source of nonlinearities observed in cellular dose response data. Complex response behaviors can arise from toxicity pathways built upon combinations of network motifs. While the field of computational cell

  13. Computation: A New Open Access Journal of Computational Chemistry, Computational Biology and Computational Engineering

    OpenAIRE

    Karlheinz Schwarz; Rainer Breitling; Christian Allen

    2013-01-01

    Computation (ISSN 2079-3197; http://www.mdpi.com/journal/computation) is an international scientific open access journal focusing on fundamental work in the field of computational science and engineering. Computational science has become essential in many research areas by contributing to solving complex problems in fundamental science all the way to engineering. The very broad range of application domains suggests structuring this journal into three sections, which are briefly characterized ...

  14. Phase-contrast x-ray computed tomography for biological imaging

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1997-10-01

    We have shown so far that 3D structures in biological sot tissues such as cancer can be revealed by phase-contrast x- ray computed tomography using an x-ray interferometer. As a next step, we aim at applications of this technique to in vivo observation, including radiographic applications. For this purpose, the size of view field is desired to be more than a few centimeters. Therefore, a larger x-ray interferometer should be used with x-rays of higher energy. We have evaluated the optimal x-ray energy from an aspect of does as a function of sample size. Moreover, desired spatial resolution to an image sensor is discussed as functions of x-ray energy and sample size, basing on a requirement in the analysis of interference fringes.

  15. A direct method for computing extreme value (Gumbel) parameters for gapped biological sequence alignments.

    Science.gov (United States)

    Quinn, Terrance; Sinkala, Zachariah

    2014-01-01

    We develop a general method for computing extreme value distribution (Gumbel, 1958) parameters for gapped alignments. Our approach uses mixture distribution theory to obtain associated BLOSUM matrices for gapped alignments, which in turn are used for determining significance of gapped alignment scores for pairs of biological sequences. We compare our results with parameters already obtained in the literature.

  16. Elastic Multi-scale Mechanisms: Computation and Biological Evolution.

    Science.gov (United States)

    Diaz Ochoa, Juan G

    2018-01-01

    Explanations based on low-level interacting elements are valuable and powerful since they contribute to identify the key mechanisms of biological functions. However, many dynamic systems based on low-level interacting elements with unambiguous, finite, and complete information of initial states generate future states that cannot be predicted, implying an increase of complexity and open-ended evolution. Such systems are like Turing machines, that overlap with dynamical systems that cannot halt. We argue that organisms find halting conditions by distorting these mechanisms, creating conditions for a constant creativity that drives evolution. We introduce a modulus of elasticity to measure the changes in these mechanisms in response to changes in the computed environment. We test this concept in a population of predators and predated cells with chemotactic mechanisms and demonstrate how the selection of a given mechanism depends on the entire population. We finally explore this concept in different frameworks and postulate that the identification of predictive mechanisms is only successful with small elasticity modulus.

  17. Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (Final Report)

    Science.gov (United States)

    EPA announced the release of the final report, Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology. This report describes new approaches that are faster, less resource intensive, and more robust that can help ...

  18. Biological and Environmental Research Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Biological and Environmental Research, March 28-31, 2016, Rockville, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Arkin, Adam [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bader, David C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Esnet; Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Esnet; Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Katherine [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Esnet; Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aluru, Srinivas [Georgia Inst. of Technology, Atlanta, GA (United States); Andersen, Amity [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Aprá, Edoardo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Azad, Ariful [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bates, Susan [National Center for Atmospheric Research, Boulder, CO (United States); Blaby, Ian [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaby-Haas, Crysten [Brookhaven National Lab. (BNL), Upton, NY (United States); Bonneau, Rich [New York Univ. (NYU), NY (United States); Bowen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bradford, Mark A. [Yale Univ., New Haven, CT (United States); Brodie, Eoin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, James (Ben) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buluc, Aydin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bernholdt, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bylaska, Eric [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Calvin, Kate [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cannon, Bill [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, Xingyuan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cheng, Xiaolin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cheung, Margaret [Univ. of Houston, Houston, TX (United States); Chowdhary, Kenny [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Colella, Phillip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Collins, Bill [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Compo, Gil [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Crowley, Mike [National Renewable Energy Lab. (NREL), Golden, CO (United States); Debusschere, Bert [Sandia National Lab. (SNL-CA), Livermore, CA (United States); D’Imperio, Nicholas [Brookhaven National Lab. (BNL), Upton, NY (United States); Dror, Ron [Stanford Univ., Stanford, CA (United States); Egan, Rob [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Evans, Katherine [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Friedberg, Iddo [Iowa State Univ., Ames, IA (United States); Fyke, Jeremy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gao, Zheng [Stony Brook Univ., Stony Brook, NY (United States); Georganas, Evangelos [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Giraldo, Frank [Naval Postgraduate School, Monterey, CA (United States); Gnanakaran, Gnana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Govind, Niri [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Grandy, Stuart [Univ. of New Hampshire, Durham, NH (United States); Gustafson, Bill [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hammond, Glenn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hargrove, William [USDA Forest Service, Washington, D.C. (United States); Heroux, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoffman, Forrest [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hofmeyr, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hunke, Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jackson, Charles [Univ. of Texas-Austin, Austin, TX (United States); Jacob, Rob [Argonne National Lab. (ANL), Argonne, IL (United States); Jacobson, Dan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobson, Matt [Univ. of California, San Francisco, CA (United States); Jain, Chirag [Georgia Inst. of Technology, Atlanta, GA (United States); Johansen, Hans [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Johnson, Jeff [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jones, Andy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jones, Phil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kalyanaraman, Ananth [Washington State Univ., Pullman, WA (United States); Kang, Senghwa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); King, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Koanantakool, Penporn [Univ. of California, Berkeley, CA (United States); Kollias, Pavlos [Stony Brook Univ., Stony Brook, NY (United States); Kopera, Michal [Univ. of California, Santa Cruz, CA (United States); Kotamarthi, Rao [Argonne National Lab. (ANL), Argonne, IL (United States); Kowalski, Karol [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Kumar, Jitendra [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kyrpides, Nikos [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xiaolin [Stony Brook Univ., Stony Brook, NY (United States); Lin, Wuyin [Brookhaven National Lab. (BNL), Upton, NY (United States); Link, Robert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Yangang [Brookhaven National Lab. (BNL), Upton, NY (United States); Loew, Leslie [Univ. of Connecticut, Storrs, CT (United States); Luke, Edward [Brookhaven National Lab. (BNL), Upton, NY (United States); Ma, Hsi -Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mahadevan, Radhakrishnan [Univ. of Toronto, Toronto, ON (Canada); Maranas, Costas [Pennsylvania State Univ., University Park, PA (United States); Martin, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Maslowski, Wieslaw [Naval Postgraduate School, Monterey, CA (United States); McCue, Lee Ann [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McInnes, Lois Curfman [Argonne National Lab. (ANL), Argonne, IL (United States); Mills, Richard [Intel Corp., Santa Clara, CA (United States); Molins Rafa, Sergi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morozov, Dmitriy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mostafavi, Sara [Center for Molecular Medicine and Therapeutics, Vancouver, BC (Canada); Moulton, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mourao, Zenaida [Univ. of Cambridge (United Kingdom); Najm, Habib [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ng, Bernard [Center for Molecular Medicine and Therapeutics, Vancouver, BC (Canada); Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Norman, Matt [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oh, Sang -Yun [Univ. of California, Santa Barbara, CA (United States); Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Chongle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pass, Rebecca [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pau, George S. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Petridis, Loukas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Prakash, Giri [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Price, Stephen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Randall, David [Colorado State Univ., Fort Collins, CO (United States); Renslow, Ryan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Riihimaki, Laura [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ringler, Todd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roberts, Andrew [Naval Postgraduate School, Monterey, CA (United States); Rokhsar, Dan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ruebel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Salinger, Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scheibe, Tim [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schulz, Roland [Intel, Mountain View, CA (United States); Sivaraman, Chitra [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Jeremy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sreepathi, Sarat [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Talbot, Jenifer [Boston Univ., Boston, MA (United States); Tantillo, D. J. [Univ. of California, Davis, CA (United States); Tartakovsky, Alex [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Taylor, Ronald [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Urban, Nathan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valiev, Marat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Wagner, Allon [Univ. of California, Berkeley, CA (United States); Wainwright, Haruko [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wieder, Will [NCAR/Univ. of Colorado, Boulder, CO (United States); Wiley, Steven [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Dean [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Worley, Pat [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xie, Shaocheng [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yelick, Kathy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yoo, Shinjae [Brookhaven National Lab. (BNL), Upton, NY (United States); Yosef, Niri [Univ. of California, Berkeley, CA (United States); Zhang, Minghua [Stony Brook Univ., Stony Brook, NY (United States)

    2016-03-31

    Understanding the fundamentals of genomic systems or the processes governing impactful weather patterns are examples of the types of simulation and modeling performed on the most advanced computing resources in America. High-performance computing and computational science together provide a necessary platform for the mission science conducted by the Biological and Environmental Research (BER) office at the U.S. Department of Energy (DOE). This report reviews BER’s computing needs and their importance for solving some of the toughest problems in BER’s portfolio. BER’s impact on science has been transformative. Mapping the human genome, including the U.S.-supported international Human Genome Project that DOE began in 1987, initiated the era of modern biotechnology and genomics-based systems biology. And since the 1950s, BER has been a core contributor to atmospheric, environmental, and climate science research, beginning with atmospheric circulation studies that were the forerunners of modern Earth system models (ESMs) and by pioneering the implementation of climate codes onto high-performance computers. See http://exascaleage.org/ber/ for more information.

  19. Computational Assessment of Pharmacokinetics and Biological Effects of Some Anabolic and Androgen Steroids.

    Science.gov (United States)

    Roman, Marin; Roman, Diana Larisa; Ostafe, Vasile; Ciorsac, Alecu; Isvoran, Adriana

    2018-02-05

    The aim of this study is to use computational approaches to predict the ADME-Tox profiles, pharmacokinetics, molecular targets, biological activity spectra and side/toxic effects of 31 anabolic and androgen steroids in humans. The following computational tools are used: (i) FAFDrugs4, SwissADME and admetSARfor obtaining the ADME-Tox profiles and for predicting pharmacokinetics;(ii) SwissTargetPrediction and PASS online for predicting the molecular targets and biological activities; (iii) PASS online, Toxtree, admetSAR and Endocrine Disruptomefor envisaging the specific toxicities; (iv) SwissDock to assess the interactions of investigated steroids with cytochromes involved in drugs metabolism. Investigated steroids usually reveal a high gastrointestinal absorption and a good oral bioavailability, may inhibit someof the human cytochromes involved in the metabolism of xenobiotics (CYP2C9 being the most affected) and reflect a good capacity for skin penetration. There are predicted numerous side effects of investigated steroids in humans: genotoxic carcinogenicity, hepatotoxicity, cardiovascular, hematotoxic and genitourinary effects, dermal irritations, endocrine disruption and reproductive dysfunction. These results are important to be known as an occupational exposure to anabolic and androgenic steroids at workplaces may occur and because there also is a deliberate human exposure to steroids for their performance enhancement and anti-aging properties.

  20. Computational Medicine

    DEFF Research Database (Denmark)

    Nygaard, Jens Vinge

    2017-01-01

    The Health Technology Program at Aarhus University applies computational biology to investigate the heterogeneity of tumours......The Health Technology Program at Aarhus University applies computational biology to investigate the heterogeneity of tumours...

  1. Gradient matching methods for computational inference in mechanistic models for systems biology: a review and comparative analysis

    Directory of Open Access Journals (Sweden)

    Benn eMacdonald

    2015-11-01

    Full Text Available Parameter inference in mathematical models of biological pathways, expressed as coupled ordinary differential equations (ODEs, is a challenging problem in contemporary systems biology. Conventional methods involve repeatedly solving the ODEs by numerical integration, which is computationally onerous and does not scale up to complex systems. Aimed at reducing the computational costs, new concepts based on gradient matching have recently been proposed in the computational statistics and machine learning literature. In a preliminary smoothing step, the time series data are interpolated; then, in a second step, the parameters of the ODEs are optimised so as to minimise some metric measuring the difference between the slopes of the tangents to the interpolants, and the time derivatives from the ODEs. In this way, the ODEs never have to be solved explicitly. This review provides a concise methodological overview of the current state-of-the-art methods for gradient matching in ODEs, followed by an empirical comparative evaluation based on a set of widely used and representative benchmark data.

  2. Computation: A New Open Access Journal of Computational Chemistry, Computational Biology and Computational Engineering

    Directory of Open Access Journals (Sweden)

    Karlheinz Schwarz

    2013-09-01

    Full Text Available Computation (ISSN 2079-3197; http://www.mdpi.com/journal/computation is an international scientific open access journal focusing on fundamental work in the field of computational science and engineering. Computational science has become essential in many research areas by contributing to solving complex problems in fundamental science all the way to engineering. The very broad range of application domains suggests structuring this journal into three sections, which are briefly characterized below. In each section a further focusing will be provided by occasionally organizing special issues on topics of high interests, collecting papers on fundamental work in the field. More applied papers should be submitted to their corresponding specialist journals. To help us achieve our goal with this journal, we have an excellent editorial board to advise us on the exciting current and future trends in computation from methodology to application. We very much look forward to hearing all about the research going on across the world. [...

  3. Experimental and Computational Characterization of Biological Liquid Crystals: A Review of Single-Molecule Bioassays

    Directory of Open Access Journals (Sweden)

    Sungsoo Na

    2009-09-01

    Full Text Available Quantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, but also the exploration of the free energy landscape for protein folding. In this work, we have reviewed the current state-of-art in single-molecule bioassays that enable quantitative studies on protein unfolding mechanics and/or various molecular interactions. Specifically, single-molecule pulling experiments based on atomic force microscopy (AFM have been overviewed. In addition, the computational simulations on single-molecule pulling experiments have been reviewed. We have also reviewed the AFM cantilever-based bioassay that provides insight into various molecular interactions. Our review highlights the AFM-based single-molecule bioassay for quantitative characterization of biological liquid crystals such as proteins.

  4. G‐LoSA: An efficient computational tool for local structure‐centric biological studies and drug design

    Science.gov (United States)

    2016-01-01

    Abstract Molecular recognition by protein mostly occurs in a local region on the protein surface. Thus, an efficient computational method for accurate characterization of protein local structural conservation is necessary to better understand biology and drug design. We present a novel local structure alignment tool, G‐LoSA. G‐LoSA aligns protein local structures in a sequence order independent way and provides a GA‐score, a chemical feature‐based and size‐independent structure similarity score. Our benchmark validation shows the robust performance of G‐LoSA to the local structures of diverse sizes and characteristics, demonstrating its universal applicability to local structure‐centric comparative biology studies. In particular, G‐LoSA is highly effective in detecting conserved local regions on the entire surface of a given protein. In addition, the applications of G‐LoSA to identifying template ligands and predicting ligand and protein binding sites illustrate its strong potential for computer‐aided drug design. We hope that G‐LoSA can be a useful computational method for exploring interesting biological problems through large‐scale comparison of protein local structures and facilitating drug discovery research and development. G‐LoSA is freely available to academic users at http://im.compbio.ku.edu/GLoSA/. PMID:26813336

  5. Computational Biology Methods for Characterization of Pluripotent Cells.

    Science.gov (United States)

    Araúzo-Bravo, Marcos J

    2016-01-01

    Pluripotent cells are a powerful tool for regenerative medicine and drug discovery. Several techniques have been developed to induce pluripotency, or to extract pluripotent cells from different tissues and biological fluids. However, the characterization of pluripotency requires tedious, expensive, time-consuming, and not always reliable wet-lab experiments; thus, an easy, standard quality-control protocol of pluripotency assessment remains to be established. Here to help comes the use of high-throughput techniques, and in particular, the employment of gene expression microarrays, which has become a complementary technique for cellular characterization. Research has shown that the transcriptomics comparison with an Embryonic Stem Cell (ESC) of reference is a good approach to assess the pluripotency. Under the premise that the best protocol is a computer software source code, here I propose and explain line by line a software protocol coded in R-Bioconductor for pluripotency assessment based on the comparison of transcriptomics data of pluripotent cells with an ESC of reference. I provide advice for experimental design, warning about possible pitfalls, and guides for results interpretation.

  6. Computational adaptive optics for broadband optical interferometric tomography of biological tissue.

    Science.gov (United States)

    Adie, Steven G; Graf, Benedikt W; Ahmad, Adeel; Carney, P Scott; Boppart, Stephen A

    2012-05-08

    Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.

  7. Effectiveness of computer-assisted learning in biology teaching in primary schools in Serbia

    Directory of Open Access Journals (Sweden)

    Županec Vera

    2013-01-01

    Full Text Available The paper analyzes the comparative effectiveness of Computer-Assisted Learning (CAL and the traditional teaching method in biology on primary school pupils. A stratified random sample consisted of 214 pupils from two primary schools in Novi Sad. The pupils in the experimental group learned the biology content (Chordate using CAL, whereas the pupils in the control group learned the same content using traditional teaching. The research design was the pretest-posttest equivalent groups design. All instruments (the pretest, the posttest and the retest contained the questions belonging to three different cognitive domains: knowing, applying, and reasoning. Arithmetic mean, standard deviation, and standard error were analyzed using the software package SPSS 14.0, and t-test was used in order to establish the difference between the same statistical indicators. The analysis of results of the post­test and the retest showed that the pupils from the CAL group achieved significantly higher quantity and quality of knowledge in all three cognitive domains than the pupils from the traditional group. The results accomplished by the pupils from the CAL group suggest that individual CAL should be more present in biology teaching in primary schools, with the aim of raising the quality of biology education in pupils. [Projekat Ministarstva nauke Republike Srbije, br. 179010: Quality of Educational System in Serbia in the European Perspective

  8. Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials

    International Nuclear Information System (INIS)

    Winkler, David A.

    2016-01-01

    Nanomaterials research is one of the fastest growing contemporary research areas. The unprecedented properties of these materials have meant that they are being incorporated into products very quickly. Regulatory agencies are concerned they cannot assess the potential hazards of these materials adequately, as data on the biological properties of nanomaterials are still relatively limited and expensive to acquire. Computational modelling methods have much to offer in helping understand the mechanisms by which toxicity may occur, and in predicting the likelihood of adverse biological impacts of materials not yet tested experimentally. This paper reviews the progress these methods, particularly those QSAR-based, have made in understanding and predicting potentially adverse biological effects of nanomaterials, and also the limitations and pitfalls of these methods. - Highlights: • Nanomaterials regulators need good information to make good decisions. • Nanomaterials and their interactions with biology are very complex. • Computational methods use existing data to predict properties of new nanomaterials. • Statistical, data driven modelling methods have been successfully applied to this task. • Much more must be learnt before robust toolkits will be widely usable by regulators.

  9. Chaste: an open source C++ library for computational physiology and biology.

    KAUST Repository

    Mirams, Gary R; Arthurs, Christopher J; Bernabeu, Miguel O; Bordas, Rafel; Cooper, Jonathan; Corrias, Alberto; Davit, Yohan; Dunn, Sara-Jane; Fletcher, Alexander G; Harvey, Daniel G; Marsh, Megan E; Osborne, James M; Pathmanathan, Pras; Pitt-Francis, Joe; Southern, James; Zemzemi, Nejib; Gavaghan, David J

    2013-01-01

    Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high-performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to 're-invent the wheel' with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials.

  10. Chaste: an open source C++ library for computational physiology and biology.

    Directory of Open Access Journals (Sweden)

    Gary R Mirams

    Full Text Available Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high-performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs. Re-use of these components avoids the need for researchers to 're-invent the wheel' with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials.

  11. Chaste: an open source C++ library for computational physiology and biology.

    KAUST Repository

    Mirams, Gary R

    2013-03-14

    Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high-performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to \\'re-invent the wheel\\' with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials.

  12. Hidden Markov models and other machine learning approaches in computational molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, P. [California Inst. of Tech., Pasadena, CA (United States)

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. Computational tools are increasingly needed to process the massive amounts of data, to organize and classify sequences, to detect weak similarities, to separate coding from non-coding regions, and reconstruct the underlying evolutionary history. The fundamental problem in machine learning is the same as in scientific reasoning in general, as well as statistical modeling: to come up with a good model for the data. In this tutorial four classes of models are reviewed. They are: Hidden Markov models; artificial Neural Networks; Belief Networks; and Stochastic Grammars. When dealing with DNA and protein primary sequences, Hidden Markov models are one of the most flexible and powerful alignments and data base searches. In this tutorial, attention is focused on the theory of Hidden Markov Models, and how to apply them to problems in molecular biology.

  13. The synergistic use of computation, chemistry and biology to discover novel peptide-based drugs: the time is right.

    Science.gov (United States)

    Audie, J; Boyd, C

    2010-01-01

    The case for peptide-based drugs is compelling. Due to their chemical, physical and conformational diversity, and relatively unproblematic toxicity and immunogenicity, peptides represent excellent starting material for drug discovery. Nature has solved many physiological and pharmacological problems through the use of peptides, polypeptides and proteins. If nature could solve such a diversity of challenging biological problems through the use of peptides, it seems reasonable to infer that human ingenuity will prove even more successful. And this, indeed, appears to be the case, as a number of scientific and methodological advances are making peptides and peptide-based compounds ever more promising pharmacological agents. Chief among these advances are powerful chemical and biological screening technologies for lead identification and optimization, methods for enhancing peptide in vivo stability, bioavailability and cell-permeability, and new delivery technologies. Other advances include the development and experimental validation of robust computational methods for peptide lead identification and optimization. Finally, scientific analysis, biology and chemistry indicate the prospect of designing relatively small peptides to therapeutically modulate so-called 'undruggable' protein-protein interactions. Taken together a clear picture is emerging: through the synergistic use of the scientific imagination and the computational, chemical and biological methods that are currently available, effective peptide therapeutics for novel targets can be designed that surpass even the proven peptidic designs of nature.

  14. Computer simulations for biological aging and sexual reproduction

    Directory of Open Access Journals (Sweden)

    DIETRICH STAUFFER

    2001-03-01

    Full Text Available The sexual version of the Penna model of biological aging, simulated since 1996, is compared here with alternative forms of reproduction as well as with models not involving aging. In particular we want to check how sexual forms of life could have evolved and won over earlier asexual forms hundreds of million years ago. This computer model is based on the mutation-accumulation theory of aging, using bits-strings to represent the genome. Its population dynamics is studied by Monte Carlo methods.A versão sexual do modelo de envelhecimento biológico de Penna, simulada desde 1996, é comparada aqui com formas alternativas de reprodução bem como com modelos que não envolvem envelhecimento. Em particular, queremos verificar como formas sexuais de vida poderiam ter evoluído e predominado sobre formas assexuais há centenas de milhões de anos. Este modelo computacional baseia-se na teoria do envelhecimento por acumulação de mutações, usando 'bits-strings' para representar o genoma. Sua dinâmica de populações é estudada por métodos de Monte Carlo.

  15. 2K09 and thereafter : the coming era of integrative bioinformatics, systems biology and intelligent computing for functional genomics and personalized medicine research

    Science.gov (United States)

    2010-01-01

    Significant interest exists in establishing synergistic research in bioinformatics, systems biology and intelligent computing. Supported by the United States National Science Foundation (NSF), International Society of Intelligent Biological Medicine (http://www.ISIBM.org), International Journal of Computational Biology and Drug Design (IJCBDD) and International Journal of Functional Informatics and Personalized Medicine, the ISIBM International Joint Conferences on Bioinformatics, Systems Biology and Intelligent Computing (ISIBM IJCBS 2009) attracted more than 300 papers and 400 researchers and medical doctors world-wide. It was the only inter/multidisciplinary conference aimed to promote synergistic research and education in bioinformatics, systems biology and intelligent computing. The conference committee was very grateful for the valuable advice and suggestions from honorary chairs, steering committee members and scientific leaders including Dr. Michael S. Waterman (USC, Member of United States National Academy of Sciences), Dr. Chih-Ming Ho (UCLA, Member of United States National Academy of Engineering and Academician of Academia Sinica), Dr. Wing H. Wong (Stanford, Member of United States National Academy of Sciences), Dr. Ruzena Bajcsy (UC Berkeley, Member of United States National Academy of Engineering and Member of United States Institute of Medicine of the National Academies), Dr. Mary Qu Yang (United States National Institutes of Health and Oak Ridge, DOE), Dr. Andrzej Niemierko (Harvard), Dr. A. Keith Dunker (Indiana), Dr. Brian D. Athey (Michigan), Dr. Weida Tong (FDA, United States Department of Health and Human Services), Dr. Cathy H. Wu (Georgetown), Dr. Dong Xu (Missouri), Drs. Arif Ghafoor and Okan K Ersoy (Purdue), Dr. Mark Borodovsky (Georgia Tech, President of ISIBM), Dr. Hamid R. Arabnia (UGA, Vice-President of ISIBM), and other scientific leaders. The committee presented the 2009 ISIBM Outstanding Achievement Awards to Dr. Joydeep Ghosh (UT

  16. Spatial Modeling Tools for Cell Biology

    National Research Council Canada - National Science Library

    Przekwas, Andrzej; Friend, Tom; Teixeira, Rodrigo; Chen, Z. J; Wilkerson, Patrick

    2006-01-01

    .... Scientific potentials and military relevance of computational biology and bioinformatics have inspired DARPA/IPTO's visionary BioSPICE project to develop computational framework and modeling tools for cell biology...

  17. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT,J.

    2004-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

  18. SED-ED, a workflow editor for computational biology experiments written in SED-ML.

    Science.gov (United States)

    Adams, Richard R

    2012-04-15

    The simulation experiment description markup language (SED-ML) is a new community data standard to encode computational biology experiments in a computer-readable XML format. Its widespread adoption will require the development of software support to work with SED-ML files. Here, we describe a software tool, SED-ED, to view, edit, validate and annotate SED-ML documents while shielding end-users from the underlying XML representation. SED-ED supports modellers who wish to create, understand and further develop a simulation description provided in SED-ML format. SED-ED is available as a standalone Java application, as an Eclipse plug-in and as an SBSI (www.sbsi.ed.ac.uk) plug-in, all under an MIT open-source license. Source code is at https://sed-ed-sedmleditor.googlecode.com/svn. The application itself is available from https://sourceforge.net/projects/jlibsedml/files/SED-ED/.

  19. Computational biomechanics

    International Nuclear Information System (INIS)

    Ethier, C.R.

    2004-01-01

    Computational biomechanics is a fast-growing field that integrates modern biological techniques and computer modelling to solve problems of medical and biological interest. Modelling of blood flow in the large arteries is the best-known application of computational biomechanics, but there are many others. Described here is work being carried out in the laboratory on the modelling of blood flow in the coronary arteries and on the transport of viral particles in the eye. (author)

  20. Computational local stiffness analysis of biological cell: High aspect ratio single wall carbon nanotube tip

    Energy Technology Data Exchange (ETDEWEB)

    TermehYousefi, Amin, E-mail: at.tyousefi@gmail.com [Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology (Kyutech) (Japan); Bagheri, Samira; Shahnazar, Sheida [Nanotechnology & Catalysis Research Centre (NANOCAT), IPS Building, University Malaya, 50603 Kuala Lumpur (Malaysia); Rahman, Md. Habibur [Department of Computer Science and Engineering, University of Asia Pacific, Green Road, Dhaka-1215 (Bangladesh); Kadri, Nahrizul Adib [Department of Biomedical Engineering, Faculty of Engineering, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-02-01

    Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nanoscale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cells. The proposed software was ABAQUS 6.13 CAE/CEL provided by Dassault Systems, which is a powerful finite element (FE) tool to perform the numerical analysis and visualize the interactions between proposed tip and membrane of the cell. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). Mooney–Rivlin hyperelastic model of the cell allows the simulation to obtain a new method for estimating the stiffness and spring constant of the cell. Stress and strain curve indicates the yield stress point which defines as a vertical stress and plan stress. Spring constant of the cell and the local stiffness was measured as well as the applied force of CNT-AFM tip on the contact area of the cell. This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cell analysis. - Graphical abstract: This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cells. The proposed software was ABAQUS 6.13 CAE/CEL provided by Dassault Systems. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). Mooney–Rivlin hyperelastic model of the cell allows the simulation to obtain a new method for estimating the stiffness and spring constant of the cell. Stress and strain curve indicates the yield stress point which defines as a vertical stress and plan stress. Spring constant of the cell and the local stiffness was measured as well

  1. Proceedings of the 8. Mediterranean Conference on Medical and Biological Engineering and Computing (Medicon `98)

    Energy Technology Data Exchange (ETDEWEB)

    Christofides, Stelios; Pattichis, Constantinos; Schizas, Christos; Keravnou-Papailiou, Elpida; Kaplanis, Prodromos; Spyros, Spyrou; Christodoulides, George; Theodoulou, Yiannis [eds.

    1999-12-31

    Medicon `98 is the eighth in the series of regional meetings of the International Federation of Medical and Biological Engineering (IFMBE) in the Mediterranean. The goal of Medicon `98 is to provide updated information on the state of the art on medical and biological engineering and computing. Medicon `98 was held in Lemesos, Cyprus, between 14-17 June, 1998. The full papers of the proceedings were published on CD and consisted of 190 invited and submitted papers. A book of abstracts was also published in paper form and was available to all the participants. Twenty seven papers fall within the scope of INIS and are dealing with Nuclear Medicine,Computerized Tomography, Radiology, Radiotherapy, Magnetic Resonance Imaging and Personnel Dosimetry (eds).

  2. Proceedings of the 8. Mediterranean Conference on Medical and Biological Engineering and Computing (Medicon '98)

    International Nuclear Information System (INIS)

    Christofides, Stelios; Pattichis, Constantinos; Schizas, Christos; Keravnou-Papailiou, Elpida; Kaplanis, Prodromos; Spyros, Spyrou; Christodoulides, George; Theodoulou, Yiannis

    1998-01-01

    Medicon '98 is the eighth in the series of regional meetings of the International Federation of Medical and Biological Engineering (IFMBE) in the Mediterranean. The goal of Medicon '98 is to provide updated information on the state of the art on medical and biological engineering and computing. Medicon '98 was held in Lemesos, Cyprus, between 14-17 June, 1998. The full papers of the proceedings were published on CD and consisted of 190 invited and submitted papers. A book of abstracts was also published in paper form and was available to all the participants. Twenty seven papers fall within the scope of INIS and are dealing with Nuclear Medicine,Computerized Tomography, Radiology, Radiotherapy, Magnetic Resonance Imaging and Personnel Dosimetry (eds)

  3. S100A4 and its role in metastasis – computational integration of data on biological networks.

    Science.gov (United States)

    Buetti-Dinh, Antoine; Pivkin, Igor V; Friedman, Ran

    2015-08-01

    Characterising signal transduction networks is fundamental to our understanding of biology. However, redundancy and different types of feedback mechanisms make it difficult to understand how variations of the network components contribute to a biological process. In silico modelling of signalling interactions therefore becomes increasingly useful for the development of successful therapeutic approaches. Unfortunately, quantitative information cannot be obtained for all of the proteins or complexes that comprise the network, which limits the usability of computational models. We developed a flexible computational framework for the analysis of biological signalling networks. We demonstrate our approach by studying the mechanism of metastasis promotion by the S100A4 protein, and suggest therapeutic strategies. The advantage of the proposed method is that only limited information (interaction type between species) is required to set up a steady-state network model. This permits a straightforward integration of experimental information where the lack of details are compensated by efficient sampling of the parameter space. We investigated regulatory properties of the S100A4 network and the role of different key components. The results show that S100A4 enhances the activity of matrix metalloproteinases (MMPs), causing higher cell dissociation. Moreover, it leads to an increased stability of the pathological state. Thus, avoiding metastasis in S100A4-expressing tumours requires multiple target inhibition. Moreover, the analysis could explain the previous failure of MMP inhibitors in clinical trials. Finally, our method is applicable to a wide range of biological questions that can be represented as directional networks.

  4. Report from the 2nd Summer School in Computational Biology organized by the Queen's University of Belfast

    Directory of Open Access Journals (Sweden)

    Frank Emmert-Streib

    2014-12-01

    Full Text Available In this paper, we present a meeting report for the 2nd Summer School in Computational Biology organized by the Queen's University of Belfast. We describe the organization of the summer school, its underlying concept and student feedback we received after the completion of the summer school.

  5. ACToR-AGGREGATED COMPUTATIONAL TOXICOLOGY ...

    Science.gov (United States)

    One goal of the field of computational toxicology is to predict chemical toxicity by combining computer models with biological and toxicological data. predict chemical toxicity by combining computer models with biological and toxicological data

  6. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  7. Community-driven development for computational biology at Sprints, Hackathons and Codefests.

    Science.gov (United States)

    Möller, Steffen; Afgan, Enis; Banck, Michael; Bonnal, Raoul J P; Booth, Timothy; Chilton, John; Cock, Peter J A; Gumbel, Markus; Harris, Nomi; Holland, Richard; Kalaš, Matúš; Kaján, László; Kibukawa, Eri; Powel, David R; Prins, Pjotr; Quinn, Jacqueline; Sallou, Olivier; Strozzi, Francesco; Seemann, Torsten; Sloggett, Clare; Soiland-Reyes, Stian; Spooner, William; Steinbiss, Sascha; Tille, Andreas; Travis, Anthony J; Guimera, Roman; Katayama, Toshiaki; Chapman, Brad A

    2014-01-01

    Computational biology comprises a wide range of technologies and approaches. Multiple technologies can be combined to create more powerful workflows if the individuals contributing the data or providing tools for its interpretation can find mutual understanding and consensus. Much conversation and joint investigation are required in order to identify and implement the best approaches. Traditionally, scientific conferences feature talks presenting novel technologies or insights, followed up by informal discussions during coffee breaks. In multi-institution collaborations, in order to reach agreement on implementation details or to transfer deeper insights in a technology and practical skills, a representative of one group typically visits the other. However, this does not scale well when the number of technologies or research groups is large. Conferences have responded to this issue by introducing Birds-of-a-Feather (BoF) sessions, which offer an opportunity for individuals with common interests to intensify their interaction. However, parallel BoF sessions often make it hard for participants to join multiple BoFs and find common ground between the different technologies, and BoFs are generally too short to allow time for participants to program together. This report summarises our experience with computational biology Codefests, Hackathons and Sprints, which are interactive developer meetings. They are structured to reduce the limitations of traditional scientific meetings described above by strengthening the interaction among peers and letting the participants determine the schedule and topics. These meetings are commonly run as loosely scheduled "unconferences" (self-organized identification of participants and topics for meetings) over at least two days, with early introductory talks to welcome and organize contributors, followed by intensive collaborative coding sessions. We summarise some prominent achievements of those meetings and describe differences in how

  8. Biophysics and systems biology.

    Science.gov (United States)

    Noble, Denis

    2010-03-13

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights.

  9. Molecular structure descriptors in the computer-aided design of biologically active compounds

    International Nuclear Information System (INIS)

    Raevsky, Oleg A

    1999-01-01

    The current state of description of molecular structure in computer-aided molecular design of biologically active compounds by means of descriptors is analysed. The information contents of descriptors increases in the following sequence: element-level descriptors-structural formulae descriptors-electronic structure descriptors-molecular shape descriptors-intermolecular interaction descriptors. Each subsequent class of descriptors normally covers information contained in the previous-level ones. It is emphasised that it is practically impossible to describe all the features of a molecular structure in terms of any single class of descriptors. It is recommended to optimise the number of descriptors used by means of appropriate statistical procedures and characteristics of structure-property models based on these descriptors. The bibliography includes 371 references.

  10. A comparative approach for the investigation of biological information processing: An examination of the structure and function of computer hard drives and DNA

    Science.gov (United States)

    2010-01-01

    Background The robust storage, updating and utilization of information are necessary for the maintenance and perpetuation of dynamic systems. These systems can exist as constructs of metal-oxide semiconductors and silicon, as in a digital computer, or in the "wetware" of organic compounds, proteins and nucleic acids that make up biological organisms. We propose that there are essential functional properties of centralized information-processing systems; for digital computers these properties reside in the computer's hard drive, and for eukaryotic cells they are manifest in the DNA and associated structures. Methods Presented herein is a descriptive framework that compares DNA and its associated proteins and sub-nuclear structure with the structure and function of the computer hard drive. We identify four essential properties of information for a centralized storage and processing system: (1) orthogonal uniqueness, (2) low level formatting, (3) high level formatting and (4) translation of stored to usable form. The corresponding aspects of the DNA complex and a computer hard drive are categorized using this classification. This is intended to demonstrate a functional equivalence between the components of the two systems, and thus the systems themselves. Results Both the DNA complex and the computer hard drive contain components that fulfill the essential properties of a centralized information storage and processing system. The functional equivalence of these components provides insight into both the design process of engineered systems and the evolved solutions addressing similar system requirements. However, there are points where the comparison breaks down, particularly when there are externally imposed information-organizing structures on the computer hard drive. A specific example of this is the imposition of the File Allocation Table (FAT) during high level formatting of the computer hard drive and the subsequent loading of an operating system (OS). Biological

  11. A comparative approach for the investigation of biological information processing: an examination of the structure and function of computer hard drives and DNA.

    Science.gov (United States)

    D'Onofrio, David J; An, Gary

    2010-01-21

    The robust storage, updating and utilization of information are necessary for the maintenance and perpetuation of dynamic systems. These systems can exist as constructs of metal-oxide semiconductors and silicon, as in a digital computer, or in the "wetware" of organic compounds, proteins and nucleic acids that make up biological organisms. We propose that there are essential functional properties of centralized information-processing systems; for digital computers these properties reside in the computer's hard drive, and for eukaryotic cells they are manifest in the DNA and associated structures. Presented herein is a descriptive framework that compares DNA and its associated proteins and sub-nuclear structure with the structure and function of the computer hard drive. We identify four essential properties of information for a centralized storage and processing system: (1) orthogonal uniqueness, (2) low level formatting, (3) high level formatting and (4) translation of stored to usable form. The corresponding aspects of the DNA complex and a computer hard drive are categorized using this classification. This is intended to demonstrate a functional equivalence between the components of the two systems, and thus the systems themselves. Both the DNA complex and the computer hard drive contain components that fulfill the essential properties of a centralized information storage and processing system. The functional equivalence of these components provides insight into both the design process of engineered systems and the evolved solutions addressing similar system requirements. However, there are points where the comparison breaks down, particularly when there are externally imposed information-organizing structures on the computer hard drive. A specific example of this is the imposition of the File Allocation Table (FAT) during high level formatting of the computer hard drive and the subsequent loading of an operating system (OS). Biological systems do not have an

  12. A comparative approach for the investigation of biological information processing: An examination of the structure and function of computer hard drives and DNA

    Directory of Open Access Journals (Sweden)

    D'Onofrio David J

    2010-01-01

    Full Text Available Abstract Background The robust storage, updating and utilization of information are necessary for the maintenance and perpetuation of dynamic systems. These systems can exist as constructs of metal-oxide semiconductors and silicon, as in a digital computer, or in the "wetware" of organic compounds, proteins and nucleic acids that make up biological organisms. We propose that there are essential functional properties of centralized information-processing systems; for digital computers these properties reside in the computer's hard drive, and for eukaryotic cells they are manifest in the DNA and associated structures. Methods Presented herein is a descriptive framework that compares DNA and its associated proteins and sub-nuclear structure with the structure and function of the computer hard drive. We identify four essential properties of information for a centralized storage and processing system: (1 orthogonal uniqueness, (2 low level formatting, (3 high level formatting and (4 translation of stored to usable form. The corresponding aspects of the DNA complex and a computer hard drive are categorized using this classification. This is intended to demonstrate a functional equivalence between the components of the two systems, and thus the systems themselves. Results Both the DNA complex and the computer hard drive contain components that fulfill the essential properties of a centralized information storage and processing system. The functional equivalence of these components provides insight into both the design process of engineered systems and the evolved solutions addressing similar system requirements. However, there are points where the comparison breaks down, particularly when there are externally imposed information-organizing structures on the computer hard drive. A specific example of this is the imposition of the File Allocation Table (FAT during high level formatting of the computer hard drive and the subsequent loading of an operating

  13. Organic Computing

    CERN Document Server

    Würtz, Rolf P

    2008-01-01

    Organic Computing is a research field emerging around the conviction that problems of organization in complex systems in computer science, telecommunications, neurobiology, molecular biology, ethology, and possibly even sociology can be tackled scientifically in a unified way. From the computer science point of view, the apparent ease in which living systems solve computationally difficult problems makes it inevitable to adopt strategies observed in nature for creating information processing machinery. In this book, the major ideas behind Organic Computing are delineated, together with a sparse sample of computational projects undertaken in this new field. Biological metaphors include evolution, neural networks, gene-regulatory networks, networks of brain modules, hormone system, insect swarms, and ant colonies. Applications are as diverse as system design, optimization, artificial growth, task allocation, clustering, routing, face recognition, and sign language understanding.

  14. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    of multiscale biological systems have been investigated and new research methods for automated Rietveld refinement and diffraction scattering computed tomography developed. The composite nature of biological materials was investigated at the atomic scale by looking at the consequences of interactions between...

  15. Biological neural networks as model systems for designing future parallel processing computers

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.

  16. COMODI: an ontology to characterise differences in versions of computational models in biology.

    Science.gov (United States)

    Scharm, Martin; Waltemath, Dagmar; Mendes, Pedro; Wolkenhauer, Olaf

    2016-07-11

    Open model repositories provide ready-to-reuse computational models of biological systems. Models within those repositories evolve over time, leading to different model versions. Taken together, the underlying changes reflect a model's provenance and thus can give valuable insights into the studied biology. Currently, however, changes cannot be semantically interpreted. To improve this situation, we developed an ontology of terms describing changes in models. The ontology can be used by scientists and within software to characterise model updates at the level of single changes. When studying or reusing a model, these annotations help with determining the relevance of a change in a given context. We manually studied changes in selected models from BioModels and the Physiome Model Repository. Using the BiVeS tool for difference detection, we then performed an automatic analysis of changes in all models published in these repositories. The resulting set of concepts led us to define candidate terms for the ontology. In a final step, we aggregated and classified these terms and built the first version of the ontology. We present COMODI, an ontology needed because COmputational MOdels DIffer. It empowers users and software to describe changes in a model on the semantic level. COMODI also enables software to implement user-specific filter options for the display of model changes. Finally, COMODI is a step towards predicting how a change in a model influences the simulation results. COMODI, coupled with our algorithm for difference detection, ensures the transparency of a model's evolution, and it enhances the traceability of updates and error corrections. COMODI is encoded in OWL. It is openly available at http://comodi.sems.uni-rostock.de/ .

  17. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  18. Micro-computed tomography imaging and analysis in developmental biology and toxicology.

    Science.gov (United States)

    Wise, L David; Winkelmann, Christopher T; Dogdas, Belma; Bagchi, Ansuman

    2013-06-01

    Micro-computed tomography (micro-CT) is a high resolution imaging technique that has expanded and strengthened in use since it was last reviewed in this journal in 2004. The technology has expanded to include more detailed analysis of bone, as well as soft tissues, by use of various contrast agents. It is increasingly applied to questions in developmental biology and developmental toxicology. Relatively high-throughput protocols now provide a powerful and efficient means to evaluate embryos and fetuses subjected to genetic manipulations or chemical exposures. This review provides an overview of the technology, including scanning, reconstruction, visualization, segmentation, and analysis of micro-CT generated images. This is followed by a review of more recent applications of the technology in some common laboratory species that highlight the diverse issues that can be addressed. Copyright © 2013 Wiley Periodicals, Inc.

  19. Proceedings of the 2013 MidSouth Computational Biology and Bioinformatics Society (MCBIOS) Conference.

    Science.gov (United States)

    Wren, Jonathan D; Dozmorov, Mikhail G; Burian, Dennis; Kaundal, Rakesh; Perkins, Andy; Perkins, Ed; Kupfer, Doris M; Springer, Gordon K

    2013-01-01

    The tenth annual conference of the MidSouth Computational Biology and Bioinformatics Society (MCBIOS 2013), "The 10th Anniversary in a Decade of Change: Discovery in a Sea of Data", took place at the Stoney Creek Inn & Conference Center in Columbia, Missouri on April 5-6, 2013. This year's Conference Chairs were Gordon Springer and Chi-Ren Shyu from the University of Missouri and Edward Perkins from the US Army Corps of Engineers Engineering Research and Development Center, who is also the current MCBIOS President (2012-3). There were 151 registrants and a total of 111 abstracts (51 oral presentations and 60 poster session abstracts).

  20. Computation of fields in an arbitrarily shaped heterogeneous dielectric or biological body by an iterative conjugate gradient method

    International Nuclear Information System (INIS)

    Wang, J.J.H.; Dubberley, J.R.

    1989-01-01

    Electromagnetic (EM) fields in a three-dimensional, arbitrarily shaped heterogeneous dielectric or biological body illuminated by a plane wave are computed by an iterative conjugate gradient method. The method is a generalized method of moments applied to the volume integral equation. Because no matrix is explicitly involved or stored, the present iterative method is capable of computing EM fields in objects an order of magnitude larger than those that can be handled by the conventional method of moments. Excellent numerical convergence is achieved. Perfect convergence to the result of the conventional moment method using the same basis and weighted with delta functions is consistently achieved in all the cases computed, indicating that these two algorithms (direct and interactive) are equivalent

  1. From computer to brain foundations of computational neuroscience

    CERN Document Server

    Lytton, William W

    2002-01-01

    Biology undergraduates, medical students and life-science graduate students often have limited mathematical skills. Similarly, physics, math and engineering students have little patience for the detailed facts that make up much of biological knowledge. Teaching computational neuroscience as an integrated discipline requires that both groups be brought forward onto common ground. This book does this by making ancillary material available in an appendix and providing basic explanations without becoming bogged down in unnecessary details. The book will be suitable for undergraduates and beginning graduate students taking a computational neuroscience course and also to anyone with an interest in the uses of the computer in modeling the nervous system.

  2. Birth/birth-death processes and their computable transition probabilities with biological applications.

    Science.gov (United States)

    Ho, Lam Si Tung; Xu, Jason; Crawford, Forrest W; Minin, Vladimir N; Suchard, Marc A

    2018-03-01

    Birth-death processes track the size of a univariate population, but many biological systems involve interaction between populations, necessitating models for two or more populations simultaneously. A lack of efficient methods for evaluating finite-time transition probabilities of bivariate processes, however, has restricted statistical inference in these models. Researchers rely on computationally expensive methods such as matrix exponentiation or Monte Carlo approximation, restricting likelihood-based inference to small systems, or indirect methods such as approximate Bayesian computation. In this paper, we introduce the birth/birth-death process, a tractable bivariate extension of the birth-death process, where rates are allowed to be nonlinear. We develop an efficient algorithm to calculate its transition probabilities using a continued fraction representation of their Laplace transforms. Next, we identify several exemplary models arising in molecular epidemiology, macro-parasite evolution, and infectious disease modeling that fall within this class, and demonstrate advantages of our proposed method over existing approaches to inference in these models. Notably, the ubiquitous stochastic susceptible-infectious-removed (SIR) model falls within this class, and we emphasize that computable transition probabilities newly enable direct inference of parameters in the SIR model. We also propose a very fast method for approximating the transition probabilities under the SIR model via a novel branching process simplification, and compare it to the continued fraction representation method with application to the 17th century plague in Eyam. Although the two methods produce similar maximum a posteriori estimates, the branching process approximation fails to capture the correlation structure in the joint posterior distribution.

  3. Scalable Computational Methods for the Analysis of High-Throughput Biological Data

    Energy Technology Data Exchange (ETDEWEB)

    Langston, Michael A. [Univ. of Tennessee, Knoxville, TN (United States)

    2012-09-06

    This primary focus of this research project is elucidating genetic regulatory mechanisms that control an organism's responses to low-dose ionizing radiation. Although low doses (at most ten centigrays) are not lethal to humans, they elicit a highly complex physiological response, with the ultimate outcome in terms of risk to human health unknown. The tools of molecular biology and computational science will be harnessed to study coordinated changes in gene expression that orchestrate the mechanisms a cell uses to manage the radiation stimulus. High performance implementations of novel algorithms that exploit the principles of fixed-parameter tractability will be used to extract gene sets suggestive of co-regulation. Genomic mining will be performed to scrutinize, winnow and highlight the most promising gene sets for more detailed investigation. The overall goal is to increase our understanding of the health risks associated with exposures to low levels of radiation.

  4. Documenting and predicting topic changes in Computers in Biology and Medicine: A bibliometric keyword analysis from 1990 to 2017

    Directory of Open Access Journals (Sweden)

    Oliver Faust

    Full Text Available The Computers in Biology and Medicine (CBM journal promotes the use of computing machinery in the fields of bioscience and medicine. Since the first volume in 1970, the importance of computers in these fields has grown dramatically, this is evident in the diversification of topics and an increase in the publication rate. In this study, we quantify both change and diversification of topics covered in. This is done by analysing the author supplied keywords, since they were electronically captured in 1990. The analysis starts by selecting 40 keywords, related to Medical (M (7, Data (D (10, Feature (F (17 and (AI (6 methods. Automated keyword clustering shows the statistical connection between the selected keywords. We found that the three most popular topics in CBM are: Support Vector Machine (SVM, Electroencephalography (EEG and IMAGE PROCESSING. In a separate analysis step, we bagged the selected keywords into sequential one year time slices and calculated the normalized appearance. The results were visualised with graphs that indicate the CBM topic changes. These graphs show that there was a transition from Artificial Neural Network (ANN to SVM. In 2006 SVM replaced ANN as the most important AI algorithm. Our investigation helps the editorial board to manage and embrace topic change. Furthermore, our analysis is interesting for the general reader, as the results can help them to adjust their research directions. Keywords: Research trends, Topic analysis, Topic detection and tracking, Text mining, Computers in biology and medicine

  5. Model checking biological systems described using ambient calculus

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Priami, Corrado; Qualia, Paola

    2005-01-01

    Model checking biological systems described using ambient calculus. In Proc. of the second International Workshop on Computational Methods in Systems Biology (CMSB04), Lecture Notes in Bioinformatics 3082:85-103, Springer, 2005.......Model checking biological systems described using ambient calculus. In Proc. of the second International Workshop on Computational Methods in Systems Biology (CMSB04), Lecture Notes in Bioinformatics 3082:85-103, Springer, 2005....

  6. Computational intelligence in multi-feature visual pattern recognition hand posture and face recognition using biologically inspired approaches

    CERN Document Server

    Pisharady, Pramod Kumar; Poh, Loh Ai

    2014-01-01

    This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds. The book has 3 parts. Part 1 describes various research issues in the field with a survey of the related literature. Part 2 presents computational intelligence based algorithms for feature selection and classification. The algorithms are discriminative and fast. The main application area considered is hand posture recognition. The book also discusses utility of these algorithms in other visual as well as non-visual pattern recognition tasks including face recognition, general object recognition and cancer / tumor classification. Part 3 presents biologically inspired algorithms for feature extraction. The visual cortex model based features discussed have invariance with respect to appearance and size of the hand, and provide good...

  7. A Reconfigurable and Biologically Inspired Paradigm for Computation Using Network-On-Chip and Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Jim Harkin

    2009-01-01

    Full Text Available FPGA devices have emerged as a popular platform for the rapid prototyping of biological Spiking Neural Networks (SNNs applications, offering the key requirement of reconfigurability. However, FPGAs do not efficiently realise the biologically plausible neuron and synaptic models of SNNs, and current FPGA routing structures cannot accommodate the high levels of interneuron connectivity inherent in complex SNNs. This paper highlights and discusses the current challenges of implementing scalable SNNs on reconfigurable FPGAs. The paper proposes a novel field programmable neural network architecture (EMBRACE, incorporating low-power analogue spiking neurons, interconnected using a Network-on-Chip architecture. Results on the evaluation of the EMBRACE architecture using the XOR benchmark problem are presented, and the performance of the architecture is discussed. The paper also discusses the adaptability of the EMBRACE architecture in supporting fault tolerant computing.

  8. Computational intelligence techniques for biological data mining: An overview

    Science.gov (United States)

    Faye, Ibrahima; Iqbal, Muhammad Javed; Said, Abas Md; Samir, Brahim Belhaouari

    2014-10-01

    Computational techniques have been successfully utilized for a highly accurate analysis and modeling of multifaceted and raw biological data gathered from various genome sequencing projects. These techniques are proving much more effective to overcome the limitations of the traditional in-vitro experiments on the constantly increasing sequence data. However, most critical problems that caught the attention of the researchers may include, but not limited to these: accurate structure and function prediction of unknown proteins, protein subcellular localization prediction, finding protein-protein interactions, protein fold recognition, analysis of microarray gene expression data, etc. To solve these problems, various classification and clustering techniques using machine learning have been extensively used in the published literature. These techniques include neural network algorithms, genetic algorithms, fuzzy ARTMAP, K-Means, K-NN, SVM, Rough set classifiers, decision tree and HMM based algorithms. Major difficulties in applying the above algorithms include the limitations found in the previous feature encoding and selection methods while extracting the best features, increasing classification accuracy and decreasing the running time overheads of the learning algorithms. The application of this research would be potentially useful in the drug design and in the diagnosis of some diseases. This paper presents a concise overview of the well-known protein classification techniques.

  9. Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms

    Science.gov (United States)

    Kaluza, Pablo; Urdapilleta, Eugenio

    2014-10-01

    Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron's computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error.

  10. The Air Force "In Silico" -- Computational Biology in 2025

    National Research Council Canada - National Science Library

    Coates, Christopher

    2007-01-01

    The biological sciences have recently experienced remarkable advances and there are now frequent claims that "we are on the advent of being able to model or simulate biological systems to the smallest, molecular detail...

  11. Information technology developments within the national biological information infrastructure

    Science.gov (United States)

    Cotter, G.; Frame, M.T.

    2000-01-01

    Looking out an office window or exploring a community park, one can easily see the tremendous challenges that biological information presents the computer science community. Biological information varies in format and content depending whether or not it is information pertaining to a particular species (i.e. Brown Tree Snake), or a specific ecosystem, which often includes multiple species, land use characteristics, and geospatially referenced information. The complexity and uniqueness of each individual species or ecosystem do not easily lend themselves to today's computer science tools and applications. To address the challenges that the biological enterprise presents the National Biological Information Infrastructure (NBII) (http://www.nbii.gov) was established in 1993. The NBII is designed to address these issues on a National scale within the United States, and through international partnerships abroad. This paper discusses current computer science efforts within the National Biological Information Infrastructure Program and future computer science research endeavors that are needed to address the ever-growing issues related to our Nation's biological concerns.

  12. FOREWORD: Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology and Mathematics

    Science.gov (United States)

    Kaski, K.; Salomaa, M.

    1990-01-01

    These are Proceedings of the Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology, and Mathematics, held August 25-26, 1989, at Lahti (Finland). The Symposium belongs to an annual series of Meetings, the first one of which was arranged in 1987 at Lund (Sweden) and the second one in 1988 at Kolle-Kolle near Copenhagen (Denmark). Although these Symposia have thus far been essentially Nordic events, their international character has increased significantly; the trend is vividly reflected through contributions in the present Topical Issue. The interdisciplinary nature of Computational Science is central to the activity; this fundamental aspect is also responsible, in an essential way, for its rapidly increasing impact. Crucially important to a wide spectrum of superficially disparate fields is the common need for extensive - and often quite demanding - computational modelling. For such theoretical models, no closed-form (analytical) solutions are available or they would be extremely difficult to find; hence one must rather resort to the Art of performing computational investigations. Among the unifying features in the computational research are the methods of simulation employed; methods which frequently are quite closely related with each other even for faculties of science that are quite unrelated. Computer simulation in Natural Sciences is presently apprehended as a discipline on its own right, occupying a broad region somewhere between the experimental and theoretical methods, but also partially overlapping with and complementing them. - Whichever its proper definition may be, the computational approach serves as a novel and an extremely versatile tool with which one can equally well perform "pure" experimental modelling and conduct "computational theory". Computational studies that have earlier been made possible only through supercomputers have opened unexpected, as well as exciting, novel frontiers equally in mathematics (e.g., fractals

  13. Multi-agent systems in epidemiology: a first step for computational biology in the study of vector-borne disease transmission

    Directory of Open Access Journals (Sweden)

    Guégan Jean-François

    2008-10-01

    Full Text Available Abstract Background Computational biology is often associated with genetic or genomic studies only. However, thanks to the increase of computational resources, computational models are appreciated as useful tools in many other scientific fields. Such modeling systems are particularly relevant for the study of complex systems, like the epidemiology of emerging infectious diseases. So far, mathematical models remain the main tool for the epidemiological and ecological analysis of infectious diseases, with SIR models could be seen as an implicit standard in epidemiology. Unfortunately, these models are based on differential equations and, therefore, can become very rapidly unmanageable due to the too many parameters which need to be taken into consideration. For instance, in the case of zoonotic and vector-borne diseases in wildlife many different potential host species could be involved in the life-cycle of disease transmission, and SIR models might not be the most suitable tool to truly capture the overall disease circulation within that environment. This limitation underlines the necessity to develop a standard spatial model that can cope with the transmission of disease in realistic ecosystems. Results Computational biology may prove to be flexible enough to take into account the natural complexity observed in both natural and man-made ecosystems. In this paper, we propose a new computational model to study the transmission of infectious diseases in a spatially explicit context. We developed a multi-agent system model for vector-borne disease transmission in a realistic spatial environment. Conclusion Here we describe in detail the general behavior of this model that we hope will become a standard reference for the study of vector-borne disease transmission in wildlife. To conclude, we show how this simple model could be easily adapted and modified to be used as a common framework for further research developments in this field.

  14. Continuous development of schemes for parallel computing of the electrostatics in biological systems: implementation in DelPhi.

    Science.gov (United States)

    Li, Chuan; Petukh, Marharyta; Li, Lin; Alexov, Emil

    2013-08-15

    Due to the enormous importance of electrostatics in molecular biology, calculating the electrostatic potential and corresponding energies has become a standard computational approach for the study of biomolecules and nano-objects immersed in water and salt phase or other media. However, the electrostatics of large macromolecules and macromolecular complexes, including nano-objects, may not be obtainable via explicit methods and even the standard continuum electrostatics methods may not be applicable due to high computational time and memory requirements. Here, we report further development of the parallelization scheme reported in our previous work (Li, et al., J. Comput. Chem. 2012, 33, 1960) to include parallelization of the molecular surface and energy calculations components of the algorithm. The parallelization scheme utilizes different approaches such as space domain parallelization, algorithmic parallelization, multithreading, and task scheduling, depending on the quantity being calculated. This allows for efficient use of the computing resources of the corresponding computer cluster. The parallelization scheme is implemented in the popular software DelPhi and results in speedup of several folds. As a demonstration of the efficiency and capability of this methodology, the electrostatic potential, and electric field distributions are calculated for the bovine mitochondrial supercomplex illustrating their complex topology, which cannot be obtained by modeling the supercomplex components alone. Copyright © 2013 Wiley Periodicals, Inc.

  15. A comparative analysis on computational methods for fitting an ERGM to biological network data

    Directory of Open Access Journals (Sweden)

    Sudipta Saha

    2015-03-01

    Full Text Available Exponential random graph models (ERGM based on graph theory are useful in studying global biological network structure using its local properties. However, computational methods for fitting such models are sensitive to the type, structure and the number of the local features of a network under study. In this paper, we compared computational methods for fitting an ERGM with local features of different types and structures. Two commonly used methods, such as the Markov Chain Monte Carlo Maximum Likelihood Estimation and the Maximum Pseudo Likelihood Estimation are considered for estimating the coefficients of network attributes. We compared the estimates of observed network to our random simulated network using both methods under ERGM. The motivation was to ascertain the extent to which an observed network would deviate from a randomly simulated network if the physical numbers of attributes were approximately same. Cut-off points of some common attributes of interest for different order of nodes were determined through simulations. We implemented our method to a known regulatory network database of Escherichia coli (E. coli.

  16. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Toward synthesizing executable models in biology.

    Science.gov (United States)

    Fisher, Jasmin; Piterman, Nir; Bodik, Rastislav

    2014-01-01

    Over the last decade, executable models of biological behaviors have repeatedly provided new scientific discoveries, uncovered novel insights, and directed new experimental avenues. These models are computer programs whose execution mechanistically simulates aspects of the cell's behaviors. If the observed behavior of the program agrees with the observed biological behavior, then the program explains the phenomena. This approach has proven beneficial for gaining new biological insights and directing new experimental avenues. One advantage of this approach is that techniques for analysis of computer programs can be applied to the analysis of executable models. For example, one can confirm that a model agrees with experiments for all possible executions of the model (corresponding to all environmental conditions), even if there are a huge number of executions. Various formal methods have been adapted for this context, for example, model checking or symbolic analysis of state spaces. To avoid manual construction of executable models, one can apply synthesis, a method to produce programs automatically from high-level specifications. In the context of biological modeling, synthesis would correspond to extracting executable models from experimental data. We survey recent results about the usage of the techniques underlying synthesis of computer programs for the inference of biological models from experimental data. We describe synthesis of biological models from curated mutation experiment data, inferring network connectivity models from phosphoproteomic data, and synthesis of Boolean networks from gene expression data. While much work has been done on automated analysis of similar datasets using machine learning and artificial intelligence, using synthesis techniques provides new opportunities such as efficient computation of disambiguating experiments, as well as the ability to produce different kinds of models automatically from biological data.

  18. Effective use of latent semantic indexing and computational linguistics in biological and biomedical applications.

    Science.gov (United States)

    Chen, Hongyu; Martin, Bronwen; Daimon, Caitlin M; Maudsley, Stuart

    2013-01-01

    Text mining is rapidly becoming an essential technique for the annotation and analysis of large biological data sets. Biomedical literature currently increases at a rate of several thousand papers per week, making automated information retrieval methods the only feasible method of managing this expanding corpus. With the increasing prevalence of open-access journals and constant growth of publicly-available repositories of biomedical literature, literature mining has become much more effective with respect to the extraction of biomedically-relevant data. In recent years, text mining of popular databases such as MEDLINE has evolved from basic term-searches to more sophisticated natural language processing techniques, indexing and retrieval methods, structural analysis and integration of literature with associated metadata. In this review, we will focus on Latent Semantic Indexing (LSI), a computational linguistics technique increasingly used for a variety of biological purposes. It is noted for its ability to consistently outperform benchmark Boolean text searches and co-occurrence models at information retrieval and its power to extract indirect relationships within a data set. LSI has been used successfully to formulate new hypotheses, generate novel connections from existing data, and validate empirical data.

  19. Computing health quality measures using Informatics for Integrating Biology and the Bedside.

    Science.gov (United States)

    Klann, Jeffrey G; Murphy, Shawn N

    2013-04-19

    The Health Quality Measures Format (HQMF) is a Health Level 7 (HL7) standard for expressing computable Clinical Quality Measures (CQMs). Creating tools to process HQMF queries in clinical databases will become increasingly important as the United States moves forward with its Health Information Technology Strategic Plan to Stages 2 and 3 of the Meaningful Use incentive program (MU2 and MU3). Informatics for Integrating Biology and the Bedside (i2b2) is one of the analytical databases used as part of the Office of the National Coordinator (ONC)'s Query Health platform to move toward this goal. Our goal is to integrate i2b2 with the Query Health HQMF architecture, to prepare for other HQMF use-cases (such as MU2 and MU3), and to articulate the functional overlap between i2b2 and HQMF. Therefore, we analyze the structure of HQMF, and then we apply this understanding to HQMF computation on the i2b2 clinical analytical database platform. Specifically, we develop a translator between two query languages, HQMF and i2b2, so that the i2b2 platform can compute HQMF queries. We use the HQMF structure of queries for aggregate reporting, which define clinical data elements and the temporal and logical relationships between them. We use the i2b2 XML format, which allows flexible querying of a complex clinical data repository in an easy-to-understand domain-specific language. The translator can represent nearly any i2b2-XML query as HQMF and execute in i2b2 nearly any HQMF query expressible in i2b2-XML. This translator is part of the freely available reference implementation of the QueryHealth initiative. We analyze limitations of the conversion and find it covers many, but not all, of the complex temporal and logical operators required by quality measures. HQMF is an expressive language for defining quality measures, and it will be important to understand and implement for CQM computation, in both meaningful use and population health. However, its current form might allow

  20. Demystifying computer science for molecular ecologists.

    Science.gov (United States)

    Belcaid, Mahdi; Toonen, Robert J

    2015-06-01

    In this age of data-driven science and high-throughput biology, computational thinking is becoming an increasingly important skill for tackling both new and long-standing biological questions. However, despite its obvious importance and conspicuous integration into many areas of biology, computer science is still viewed as an obscure field that has, thus far, permeated into only a few of the biology curricula across the nation. A national survey has shown that lack of computational literacy in environmental sciences is the norm rather than the exception [Valle & Berdanier (2012) Bulletin of the Ecological Society of America, 93, 373-389]. In this article, we seek to introduce a few important concepts in computer science with the aim of providing a context-specific introduction aimed at research biologists. Our goal was to help biologists understand some of the most important mainstream computational concepts to better appreciate bioinformatics methods and trade-offs that are not obvious to the uninitiated. © 2015 John Wiley & Sons Ltd.

  1. Computational tools for high-throughput discovery in biology

    OpenAIRE

    Jones, Neil Christopher

    2007-01-01

    High throughput data acquisition technology has inarguably transformed the landscape of the life sciences, in part by making possible---and necessary---the computational disciplines of bioinformatics and biomedical informatics. These fields focus primarily on developing tools for analyzing data and generating hypotheses about objects in nature, and it is in this context that we address three pressing problems in the fields of the computational life sciences which each require computing capaci...

  2. Programming in biomolecular computation

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2011-01-01

    Our goal is to provide a top-down approach to biomolecular computation. In spite of widespread discussion about connections between biology and computation, one question seems notable by its absence: Where are the programs? We identify a number of common features in programming that seem...... conspicuously absent from the literature on biomolecular computing; to partially redress this absence, we introduce a model of computation that is evidently programmable, by programs reminiscent of low-level computer machine code; and at the same time biologically plausible: its functioning is defined...... by a single and relatively small set of chemical-like reaction rules. Further properties: the model is stored-program: programs are the same as data, so programs are not only executable, but are also compilable and interpretable. It is universal: all computable functions can be computed (in natural ways...

  3. Computational biology approaches to plant metabolism and photosynthesis: applications for corals in times of climate change and environmental stress.

    Science.gov (United States)

    Crabbe, M James C

    2010-08-01

    Knowledge of factors that are important in reef resilience helps us to understand how reef ecosystems react following major anthropogenic and environmental disturbances. The symbiotic relationship between the photosynthetic zooxanthellae algal cells and corals is that the zooxanthellae provide the coral with carbon, while the coral provides protection and access to enough light for the zooxanthellae to photosynthesise. This article reviews some recent advances in computational biology relevant to photosynthetic organisms, including Beyesian approaches to kinetics, computational methods for flux balances in metabolic processes, and determination of clades of zooxanthallae. Application of these systems will be important in the conservation of coral reefs in times of climate change and environmental stress.

  4. A comparative approach for the investigation of biological information processing: An examination of the structure and function of computer hard drives and DNA

    OpenAIRE

    D'Onofrio, David J; An, Gary

    2010-01-01

    Abstract Background The robust storage, updating and utilization of information are necessary for the maintenance and perpetuation of dynamic systems. These systems can exist as constructs of metal-oxide semiconductors and silicon, as in a digital computer, or in the "wetware" of organic compounds, proteins and nucleic acids that make up biological organisms. We propose that there are essential functional properties of centralized information-processing systems; for digital computers these pr...

  5. 7th International Workshop on Natural Computing

    CERN Document Server

    Hagiya, Masami

    2015-01-01

    This book highlights recent advances in natural computing, including biology and its theory, bio-inspired computing, computational aesthetics, computational models and theories, computing with natural media, philosophy of natural computing and educational technology. It presents extended versions of the best papers selected from the symposium “7th International Workshop on Natural Computing” (IWNC7), held in Tokyo, Japan, in 2013. The target audience is not limited to researchers working in natural computing but also those active in biological engineering, fine/media art design, aesthetics and philosophy.

  6. Uncertainty in biology a computational modeling approach

    CERN Document Server

    Gomez-Cabrero, David

    2016-01-01

    Computational modeling of biomedical processes is gaining more and more weight in the current research into the etiology of biomedical problems and potential treatment strategies.  Computational modeling allows to reduce, refine and replace animal experimentation as well as to translate findings obtained in these experiments to the human background. However these biomedical problems are inherently complex with a myriad of influencing factors, which strongly complicates the model building and validation process.  This book wants to address four main issues related to the building and validation of computational models of biomedical processes: Modeling establishment under uncertainty Model selection and parameter fitting Sensitivity analysis and model adaptation Model predictions under uncertainty In each of the abovementioned areas, the book discusses a number of key-techniques by means of a general theoretical description followed by one or more practical examples.  This book is intended for graduate stude...

  7. Towards Synthesizing Executable Models in Biology

    Directory of Open Access Journals (Sweden)

    Jasmin eFisher

    2014-12-01

    Full Text Available Over the last decade, executable models of biological behaviors have repeatedly provided new scientific discoveries, uncovered novel insights, and directed new experimental avenues. These models are computer programs whose execution mechanistically simulates aspects of the cell’s behaviors. If the observed behavior of the program agrees with the observed biological behavior, then the program explains the phenomena. This approach has proven beneficial for gaining new biological insights and directing new experimental avenues. One advantage of this approach is that techniques for analysis of computer programs can be applied to the analysis of executable models. For example, one can confirm that a model agrees with experiments for all possible executions of the model (corresponding to all environmental conditions, even if there are a huge number of executions. Various formal methods have been adapted for this context, for example, model checking or symbolic analysis of state spaces. To avoid manual construction of executable models, one can apply synthesis, a method to produce programs automatically from high-level specifications. In the context of biological modelling, synthesis would correspond to extracting executable models from experimental data. We survey recent results about the usage of the techniques underlying synthesis of computer programs for the inference of biological models from experimental data. We describe synthesis of biological models from curated mutation experiment data, inferring network connectivity models from phosphoproteomic data, and synthesis of Boolean networks from gene expression data. While much work has been done on automated analysis of similar datasets using machine learning and artificial intelligence, using synthesis techniques provides new opportunities such as efficient computation of disambiguating experiments, as well as the ability to produce different kinds of models automatically from biological data.

  8. Decomposing dendrophilia. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by W. Tecumseh Fitch

    Science.gov (United States)

    Honing, Henkjan; Zuidema, Willem

    2014-09-01

    The future of cognitive science will be about bridging neuroscience and behavioral studies, with essential roles played by comparative biology, formal modeling, and the theory of computation. Nowhere will this integration be more strongly needed than in understanding the biological basis of language and music. We thus strongly sympathize with the general framework that Fitch [1] proposes, and welcome the remarkably broad and readable review he presents to support it.

  9. Essential numerical computer methods

    CERN Document Server

    Johnson, Michael L

    2010-01-01

    The use of computers and computational methods has become ubiquitous in biological and biomedical research. During the last 2 decades most basic algorithms have not changed, but what has is the huge increase in computer speed and ease of use, along with the corresponding orders of magnitude decrease in cost. A general perception exists that the only applications of computers and computer methods in biological and biomedical research are either basic statistical analysis or the searching of DNA sequence data bases. While these are important applications they only scratch the surface of the current and potential applications of computers and computer methods in biomedical research. The various chapters within this volume include a wide variety of applications that extend far beyond this limited perception. As part of the Reliable Lab Solutions series, Essential Numerical Computer Methods brings together chapters from volumes 210, 240, 321, 383, 384, 454, and 467 of Methods in Enzymology. These chapters provide ...

  10. 8th International Workshop on Natural Computing

    CERN Document Server

    Hagiya, Masami

    2016-01-01

    This book highlights recent advances in natural computing, including biology and its theory, bio-inspired computing, computational aesthetics, computational models and theories, computing with natural media, philosophy of natural computing, and educational technology. It presents extended versions of the best papers selected from the “8th International Workshop on Natural Computing” (IWNC8), a symposium held in Hiroshima, Japan, in 2014. The target audience is not limited to researchers working in natural computing but also includes those active in biological engineering, fine/media art design, aesthetics, and philosophy.

  11. Node fingerprinting: an efficient heuristic for aligning biological networks.

    Science.gov (United States)

    Radu, Alex; Charleston, Michael

    2014-10-01

    With the continuing increase in availability of biological data and improvements to biological models, biological network analysis has become a promising area of research. An emerging technique for the analysis of biological networks is through network alignment. Network alignment has been used to calculate genetic distance, similarities between regulatory structures, and the effect of external forces on gene expression, and to depict conditional activity of expression modules in cancer. Network alignment is algorithmically complex, and therefore we must rely on heuristics, ideally as efficient and accurate as possible. The majority of current techniques for network alignment rely on precomputed information, such as with protein sequence alignment, or on tunable network alignment parameters, which may introduce an increased computational overhead. Our presented algorithm, which we call Node Fingerprinting (NF), is appropriate for performing global pairwise network alignment without precomputation or tuning, can be fully parallelized, and is able to quickly compute an accurate alignment between two biological networks. It has performed as well as or better than existing algorithms on biological and simulated data, and with fewer computational resources. The algorithmic validation performed demonstrates the low computational resource requirements of NF.

  12. Opportunities in plant synthetic biology.

    Science.gov (United States)

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  13. 16th International Conference on Hybrid Intelligent Systems and the 8th World Congress on Nature and Biologically Inspired Computing

    CERN Document Server

    Haqiq, Abdelkrim; Alimi, Adel; Mezzour, Ghita; Rokbani, Nizar; Muda, Azah

    2017-01-01

    This book presents the latest research in hybrid intelligent systems. It includes 57 carefully selected papers from the 16th International Conference on Hybrid Intelligent Systems (HIS 2016) and the 8th World Congress on Nature and Biologically Inspired Computing (NaBIC 2016), held on November 21–23, 2016 in Marrakech, Morocco. HIS - NaBIC 2016 was jointly organized by the Machine Intelligence Research Labs (MIR Labs), USA; Hassan 1st University, Settat, Morocco and University of Sfax, Tunisia. Hybridization of intelligent systems is a promising research field in modern artificial/computational intelligence and is concerned with the development of the next generation of intelligent systems. The conference’s main aim is to inspire further exploration of the intriguing potential of hybrid intelligent systems and bio-inspired computing. As such, the book is a valuable resource for practicing engineers /scientists and researchers working in the field of computational intelligence and artificial intelligence.

  14. Computer algebra applications

    International Nuclear Information System (INIS)

    Calmet, J.

    1982-01-01

    A survey of applications based either on fundamental algorithms in computer algebra or on the use of a computer algebra system is presented. Recent work in biology, chemistry, physics, mathematics and computer science is discussed. In particular, applications in high energy physics (quantum electrodynamics), celestial mechanics and general relativity are reviewed. (Auth.)

  15. An introduction to the mathematics of biology with computer algebra models

    CERN Document Server

    Yeargers, Edward K; Herod, James V

    1996-01-01

    Biology is a source of fascination for most scientists, whether their training is in the life sciences or not. In particular, there is a special satisfaction in discovering an understanding of biology in the context of another science like mathematics. Fortunately there are plenty of interesting (and fun) problems in biology, and virtually all scientific disciplines have become the richer for it. For example, two major journals, Mathematical Biosciences and Journal of Mathematical Biology, have tripled in size since their inceptions 20-25 years ago. The various sciences have a great deal to give to one another, but there are still too many fences separating them. In writing this book we have adopted the philosophy that mathematical biology is not merely the intrusion of one science into another, but has a unity of its own, in which both the biology and the math­ ematics should be equal and complete, and should flow smoothly into and out of one another. We have taught mathematical biology with this philosophy...

  16. The computational linguistics of biological sequences

    Energy Technology Data Exchange (ETDEWEB)

    Searls, D. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. Protein sequences are analogous in many respects, particularly their folding behavior. Proteins have a much richer variety of interactions, but in theory the same linguistic principles could come to bear in describing dependencies between distant residues that arise by virtue of three-dimensional structure. This tutorial will concentrate on nucleic acid sequences.

  17. Synthetic Biology: Knowledge Accessed by Everyone (Open Sources)

    Science.gov (United States)

    Sánchez Reyes, Patricia Margarita

    2016-01-01

    Using the principles of biology, along with engineering and with the help of computer, scientists manage to copy. DNA sequences from nature and use them to create new organisms. DNA is created through engineering and computer science managing to create life inside a laboratory. We cannot dismiss the role that synthetic biology could lead in…

  18. Fundamentals of natural computing basic concepts, algorithms, and applications

    CERN Document Server

    de Castro, Leandro Nunes

    2006-01-01

    Introduction A Small Sample of Ideas The Philosophy of Natural Computing The Three Branches: A Brief Overview When to Use Natural Computing Approaches Conceptualization General Concepts PART I - COMPUTING INSPIRED BY NATURE Evolutionary Computing Problem Solving as a Search Task Hill Climbing and Simulated Annealing Evolutionary Biology Evolutionary Computing The Other Main Evolutionary Algorithms From Evolutionary Biology to Computing Scope of Evolutionary Computing Neurocomputing The Nervous System Artif

  19. Ab initio computational study of vincristine as a biological active compound: NMR and NBO analyses

    Directory of Open Access Journals (Sweden)

    Shiva Joohari

    2015-06-01

    Full Text Available Vincristine is a biological active alkaloid that has been used clinically against a variety of neoplasms. In the current study we have theoretically investigated the magnetic properties of titled compound to predict physical and chemical properties of vincristine as a biological inhibitor. Ab initio computation using HF and B3LYP with 3-21G(d and 6-31G(d level of theory have been performed and then magnetic shielding tensor (, ppm, shielding asymmetry (, magnetic shielding anisotropy (aniso, ppm, the skew of a tensor (K, chemical shift anisotropy ( and chemical shift ( were calculated to indicate the details of the interaction mechanism between microtubules and vincristine. Moreover, EHOMO, ELUMO and Ebg were evaluated. The maximum and minimum values of Ebg were found in HF/3-21g and B3LYP/3-21g respectively. It was also uggested that O24, O37, O49 and O55 with minimum values of iso, are active sites of titled compound. Furthermore the calculated chemical shifts were compared with experimental data in DMSO and CDCl3 solvents.

  20. Heuristic Strategies in Systems Biology

    Directory of Open Access Journals (Sweden)

    Fridolin Gross

    2016-06-01

    Full Text Available Systems biology is sometimes presented as providing a superior approach to the problem of biological complexity. Its use of ‘unbiased’ methods and formal quantitative tools might lead to the impression that the human factor is effectively eliminated. However, a closer look reveals that this impression is misguided. Systems biologists cannot simply assemble molecular information and compute biological behavior. Instead, systems biology’s main contribution is to accelerate the discovery of mechanisms by applying models as heuristic tools. These models rely on a variety of idealizing and simplifying assumptions in order to be efficient for this purpose. The strategies of systems biologists are similar to those of experimentalists in that they attempt to reduce the complexity of the discovery process. Analyzing and comparing these strategies, or ‘heuristics’, reveals the importance of the human factor in computational approaches and helps to situate systems biology within the epistemic landscape of the life sciences.

  1. Industrial systems biology and its impact on synthetic biology of yeast cell factories

    DEFF Research Database (Denmark)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-01-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools......, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex...... regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal...

  2. On the Modelling of Biological Patterns with Mechanochemical Models: Insights from Analysis and Computation

    KAUST Repository

    Moreo, P.

    2009-11-14

    The diversity of biological form is generated by a relatively small number of underlying mechanisms. Consequently, mathematical and computational modelling can, and does, provide insight into how cellular level interactions ultimately give rise to higher level structure. Given cells respond to mechanical stimuli, it is therefore important to consider the effects of these responses within biological self-organisation models. Here, we consider the self-organisation properties of a mechanochemical model previously developed by three of the authors in Acta Biomater. 4, 613-621 (2008), which is capable of reproducing the behaviour of a population of cells cultured on an elastic substrate in response to a variety of stimuli. In particular, we examine the conditions under which stable spatial patterns can emerge with this model, focusing on the influence of mechanical stimuli and the interplay of non-local phenomena. To this end, we have performed a linear stability analysis and numerical simulations based on a mixed finite element formulation, which have allowed us to study the dynamical behaviour of the system in terms of the qualitative shape of the dispersion relation. We show that the consideration of mechanotaxis, namely changes in migration speeds and directions in response to mechanical stimuli alters the conditions for pattern formation in a singular manner. Furthermore without non-local effects, responses to mechanical stimuli are observed to result in dispersion relations with positive growth rates at arbitrarily large wavenumbers, in turn yielding heterogeneity at the cellular level in model predictions. This highlights the sensitivity and necessity of non-local effects in mechanically influenced biological pattern formation models and the ultimate failure of the continuum approximation in their absence. © 2009 Society for Mathematical Biology.

  3. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B

    2016-01-01

    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  4. Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.

    Science.gov (United States)

    Shen, Wenfeng; Wei, Daming; Xu, Weimin; Zhu, Xin; Yuan, Shizhong

    2010-10-01

    Biological computations like electrocardiological modelling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of electrocardiograms (ECGs) in a personal computer environment with an Intel CPU of Core (TM) 2 Quad Q6600 and a GPU of Geforce 8800GT, with software support by OpenMP and CUDA. It was tested in three parallelization device setups: (a) a four-core CPU without a general-purpose GPU, (b) a general-purpose GPU plus 1 core of CPU, and (c) a four-core CPU plus a general-purpose GPU. To effectively take advantage of a multi-core CPU and a general-purpose GPU, an algorithm based on load-prediction dynamic scheduling was developed and applied to setting (c). In the simulation with 1600 time steps, the speedup of the parallel computation as compared to the serial computation was 3.9 in setting (a), 16.8 in setting (b), and 20.0 in setting (c). This study demonstrates that a current PC with a multi-core CPU and a general-purpose GPU provides a good environment for parallel computations in biological modelling and simulation studies. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Computational biomechanics for medicine imaging, modeling and computing

    CERN Document Server

    Doyle, Barry; Wittek, Adam; Nielsen, Poul; Miller, Karol

    2016-01-01

    The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologies and advancements. This volume comprises eighteen of the newest approaches and applications of computational biomechanics, from researchers in Australia, New Zealand, USA, UK, Switzerland, Scotland, France and Russia. Some of the interesting topics discussed are: tailored computational models; traumatic brain injury; soft-tissue mechanics; medical image analysis; and clinically-relevant simulations. One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. We hope the research presented within this book series will contribute to overcoming this grand challenge.

  6. Computational methods for three-dimensional microscopy reconstruction

    CERN Document Server

    Frank, Joachim

    2014-01-01

    Approaches to the recovery of three-dimensional information on a biological object, which are often formulated or implemented initially in an intuitive way, are concisely described here based on physical models of the object and the image-formation process. Both three-dimensional electron microscopy and X-ray tomography can be captured in the same mathematical framework, leading to closely-related computational approaches, but the methodologies differ in detail and hence pose different challenges. The editors of this volume, Gabor T. Herman and Joachim Frank, are experts in the respective methodologies and present research at the forefront of biological imaging and structural biology.   Computational Methods for Three-Dimensional Microscopy Reconstruction will serve as a useful resource for scholars interested in the development of computational methods for structural biology and cell biology, particularly in the area of 3D imaging and modeling.

  7. Network biology: Describing biological systems by complex networks. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    Science.gov (United States)

    Jalili, Mahdi

    2018-03-01

    I enjoyed reading Gosak et al. review on analysing biological systems from network science perspective [1]. Network science, first started within Physics community, is now a mature multidisciplinary field of science with many applications ranging from Ecology to biology, medicine, social sciences, engineering and computer science. Gosak et al. discussed how biological systems can be modelled and described by complex network theory which is an important application of network science. Although there has been considerable progress in network biology over the past two decades, this is just the beginning and network science has a great deal to offer to biology and medical sciences.

  8. The Systems Biology Research Tool: evolvable open-source software

    Directory of Open Access Journals (Sweden)

    Wright Jeremiah

    2008-06-01

    Full Text Available Abstract Background Research in the field of systems biology requires software for a variety of purposes. Software must be used to store, retrieve, analyze, and sometimes even to collect the data obtained from system-level (often high-throughput experiments. Software must also be used to implement mathematical models and algorithms required for simulation and theoretical predictions on the system-level. Results We introduce a free, easy-to-use, open-source, integrated software platform called the Systems Biology Research Tool (SBRT to facilitate the computational aspects of systems biology. The SBRT currently performs 35 methods for analyzing stoichiometric networks and 16 methods from fields such as graph theory, geometry, algebra, and combinatorics. New computational techniques can be added to the SBRT via process plug-ins, providing a high degree of evolvability and a unifying framework for software development in systems biology. Conclusion The Systems Biology Research Tool represents a technological advance for systems biology. This software can be used to make sophisticated computational techniques accessible to everyone (including those with no programming ability, to facilitate cooperation among researchers, and to expedite progress in the field of systems biology.

  9. Quantitative computational models of molecular self-assembly in systems biology.

    Science.gov (United States)

    Thomas, Marcus; Schwartz, Russell

    2017-05-23

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.

  10. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  11. Integrating biological redesign: where synthetic biology came from and where it needs to go.

    Science.gov (United States)

    Way, Jeffrey C; Collins, James J; Keasling, Jay D; Silver, Pamela A

    2014-03-27

    Synthetic biology seeks to extend approaches from engineering and computation to redesign of biology, with goals such as generating new chemicals, improving human health, and addressing environmental issues. Early on, several guiding principles of synthetic biology were articulated, including design according to specification, separation of design from fabrication, use of standardized biological parts and organisms, and abstraction. We review the utility of these principles over the past decade in light of the field's accomplishments in building complex systems based on microbial transcription and metabolism and describe the progress in mammalian cell engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Programming in biomolecular computation

    DEFF Research Database (Denmark)

    Hartmann, Lars Røeboe; Jones, Neil; Simonsen, Jakob Grue

    2010-01-01

    in a strong sense: a universal algorithm exists, that is able to execute any program, and is not asymptotically inefficient. A prototype model has been implemented (for now in silico on a conventional computer). This work opens new perspectives on just how computation may be specified at the biological level......., by programs reminiscent of low-level computer machine code; and at the same time biologically plausible: its functioning is defined by a single and relatively small set of chemical-like reaction rules. Further properties: the model is stored-program: programs are the same as data, so programs are not only...... executable, but are also compilable and interpretable. It is universal: all computable functions can be computed (in natural ways and without arcane encodings of data and algorithm); it is also uniform: new “hardware” is not needed to solve new problems; and (last but not least) it is Turing complete...

  13. Analyzing the Biology on the System Level

    OpenAIRE

    Tong, Wei

    2016-01-01

    Although various genome projects have provided us enormous static sequence information, understanding of the sophisticated biology continues to require integrating the computational modeling, system analysis, technology development for experiments, and quantitative experiments all together to analyze the biology architecture on various levels, which is just the origin of systems biology subject. This review discusses the object, its characteristics, and research attentions in systems biology,...

  14. CoreFlow: a computational platform for integration, analysis and modeling of complex biological data.

    Science.gov (United States)

    Pasculescu, Adrian; Schoof, Erwin M; Creixell, Pau; Zheng, Yong; Olhovsky, Marina; Tian, Ruijun; So, Jonathan; Vanderlaan, Rachel D; Pawson, Tony; Linding, Rune; Colwill, Karen

    2014-04-04

    A major challenge in mass spectrometry and other large-scale applications is how to handle, integrate, and model the data that is produced. Given the speed at which technology advances and the need to keep pace with biological experiments, we designed a computational platform, CoreFlow, which provides programmers with a framework to manage data in real-time. It allows users to upload data into a relational database (MySQL), and to create custom scripts in high-level languages such as R, Python, or Perl for processing, correcting and modeling this data. CoreFlow organizes these scripts into project-specific pipelines, tracks interdependencies between related tasks, and enables the generation of summary reports as well as publication-quality images. As a result, the gap between experimental and computational components of a typical large-scale biology project is reduced, decreasing the time between data generation, analysis and manuscript writing. CoreFlow is being released to the scientific community as an open-sourced software package complete with proteomics-specific examples, which include corrections for incomplete isotopic labeling of peptides (SILAC) or arginine-to-proline conversion, and modeling of multiple/selected reaction monitoring (MRM/SRM) results. CoreFlow was purposely designed as an environment for programmers to rapidly perform data analysis. These analyses are assembled into project-specific workflows that are readily shared with biologists to guide the next stages of experimentation. Its simple yet powerful interface provides a structure where scripts can be written and tested virtually simultaneously to shorten the life cycle of code development for a particular task. The scripts are exposed at every step so that a user can quickly see the relationships between the data, the assumptions that have been made, and the manipulations that have been performed. Since the scripts use commonly available programming languages, they can easily be

  15. [Genotoxic modification of nucleic acid bases and biological consequences of it. Review and prospects of experimental and computational investigations

    Science.gov (United States)

    Poltev, V. I.; Bruskov, V. I.; Shuliupina, N. V.; Rein, R.; Shibata, M.; Ornstein, R.; Miller, J.

    1993-01-01

    The review is presented of experimental and computational data on the influence of genotoxic modification of bases (deamination, alkylation, oxidation) on the structure and biological functioning of nucleic acids. Pathways are discussed for the influence of modification on coding properties of bases, on possible errors of nucleic acid biosynthesis, and on configurations of nucleotide mispairs. The atomic structure of nucleic acid fragments with modified bases and the role of base damages in mutagenesis and carcinogenesis are considered.

  16. Quantum annealing versus classical machine learning applied to a simplified computational biology problem

    Science.gov (United States)

    Li, Richard Y.; Di Felice, Rosa; Rohs, Remo; Lidar, Daniel A.

    2018-01-01

    Transcription factors regulate gene expression, but how these proteins recognize and specifically bind to their DNA targets is still debated. Machine learning models are effective means to reveal interaction mechanisms. Here we studied the ability of a quantum machine learning approach to predict binding specificity. Using simplified datasets of a small number of DNA sequences derived from actual binding affinity experiments, we trained a commercially available quantum annealer to classify and rank transcription factor binding. The results were compared to state-of-the-art classical approaches for the same simplified datasets, including simulated annealing, simulated quantum annealing, multiple linear regression, LASSO, and extreme gradient boosting. Despite technological limitations, we find a slight advantage in classification performance and nearly equal ranking performance using the quantum annealer for these fairly small training data sets. Thus, we propose that quantum annealing might be an effective method to implement machine learning for certain computational biology problems. PMID:29652405

  17. Quantum annealing versus classical machine learning applied to a simplified computational biology problem

    Science.gov (United States)

    Li, Richard Y.; Di Felice, Rosa; Rohs, Remo; Lidar, Daniel A.

    2018-03-01

    Transcription factors regulate gene expression, but how these proteins recognize and specifically bind to their DNA targets is still debated. Machine learning models are effective means to reveal interaction mechanisms. Here we studied the ability of a quantum machine learning approach to classify and rank binding affinities. Using simplified data sets of a small number of DNA sequences derived from actual binding affinity experiments, we trained a commercially available quantum annealer to classify and rank transcription factor binding. The results were compared to state-of-the-art classical approaches for the same simplified data sets, including simulated annealing, simulated quantum annealing, multiple linear regression, LASSO, and extreme gradient boosting. Despite technological limitations, we find a slight advantage in classification performance and nearly equal ranking performance using the quantum annealer for these fairly small training data sets. Thus, we propose that quantum annealing might be an effective method to implement machine learning for certain computational biology problems.

  18. Multiscale models and stochastic simulation methods for computing rare but key binding events in cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Guerrier, C. [Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, 46 rue d' Ulm, 75005 Paris (France); Holcman, D., E-mail: david.holcman@ens.fr [Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, 46 rue d' Ulm, 75005 Paris (France); Mathematical Institute, Oxford OX2 6GG, Newton Institute (United Kingdom)

    2017-07-01

    The main difficulty in simulating diffusion processes at a molecular level in cell microdomains is due to the multiple scales involving nano- to micrometers. Few to many particles have to be simulated and simultaneously tracked while there are exploring a large portion of the space for binding small targets, such as buffers or active sites. Bridging the small and large spatial scales is achieved by rare events representing Brownian particles finding small targets and characterized by long-time distribution. These rare events are the bottleneck of numerical simulations. A naive stochastic simulation requires running many Brownian particles together, which is computationally greedy and inefficient. Solving the associated partial differential equations is also difficult due to the time dependent boundary conditions, narrow passages and mixed boundary conditions at small windows. We present here two reduced modeling approaches for a fast computation of diffusing fluxes in microdomains. The first approach is based on a Markov mass-action law equations coupled to a Markov chain. The second is a Gillespie's method based on the narrow escape theory for coarse-graining the geometry of the domain into Poissonian rates. The main application concerns diffusion in cellular biology, where we compute as an example the distribution of arrival times of calcium ions to small hidden targets to trigger vesicular release.

  19. Multiscale models and stochastic simulation methods for computing rare but key binding events in cell biology

    International Nuclear Information System (INIS)

    Guerrier, C.; Holcman, D.

    2017-01-01

    The main difficulty in simulating diffusion processes at a molecular level in cell microdomains is due to the multiple scales involving nano- to micrometers. Few to many particles have to be simulated and simultaneously tracked while there are exploring a large portion of the space for binding small targets, such as buffers or active sites. Bridging the small and large spatial scales is achieved by rare events representing Brownian particles finding small targets and characterized by long-time distribution. These rare events are the bottleneck of numerical simulations. A naive stochastic simulation requires running many Brownian particles together, which is computationally greedy and inefficient. Solving the associated partial differential equations is also difficult due to the time dependent boundary conditions, narrow passages and mixed boundary conditions at small windows. We present here two reduced modeling approaches for a fast computation of diffusing fluxes in microdomains. The first approach is based on a Markov mass-action law equations coupled to a Markov chain. The second is a Gillespie's method based on the narrow escape theory for coarse-graining the geometry of the domain into Poissonian rates. The main application concerns diffusion in cellular biology, where we compute as an example the distribution of arrival times of calcium ions to small hidden targets to trigger vesicular release.

  20. Teaching Molecular Biology with Microcomputers.

    Science.gov (United States)

    Reiss, Rebecca; Jameson, David

    1984-01-01

    Describes a series of computer programs that use simulation and gaming techniques to present the basic principles of the central dogma of molecular genetics, mutation, and the genetic code. A history of discoveries in molecular biology is presented and the evolution of these computer assisted instructional programs is described. (MBR)

  1. On the limitations of standard statistical modeling in biological systems: a full Bayesian approach for biology.

    Science.gov (United States)

    Gomez-Ramirez, Jaime; Sanz, Ricardo

    2013-09-01

    One of the most important scientific challenges today is the quantitative and predictive understanding of biological function. Classical mathematical and computational approaches have been enormously successful in modeling inert matter, but they may be inadequate to address inherent features of biological systems. We address the conceptual and methodological obstacles that lie in the inverse problem in biological systems modeling. We introduce a full Bayesian approach (FBA), a theoretical framework to study biological function, in which probability distributions are conditional on biophysical information that physically resides in the biological system that is studied by the scientist. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. CoreFlow: A computational platform for integration, analysis and modeling of complex biological data

    DEFF Research Database (Denmark)

    Pasculescu, Adrian; Schoof, Erwin; Creixell, Pau

    2014-01-01

    between data generation, analysis and manuscript writing. CoreFlow is being released to the scientific community as an open-sourced software package complete with proteomics-specific examples, which include corrections for incomplete isotopic labeling of peptides (SILAC) or arginine-to-proline conversion......A major challenge in mass spectrometry and other large-scale applications is how to handle, integrate, and model the data that is produced. Given the speed at which technology advances and the need to keep pace with biological experiments, we designed a computational platform, CoreFlow, which...... provides programmers with a framework to manage data in real-time. It allows users to upload data into a relational database (MySQL), and to create custom scripts in high-level languages such as R, Python, or Perl for processing, correcting and modeling this data. CoreFlow organizes these scripts...

  3. Mathematical modeling of biological processes

    CERN Document Server

    Friedman, Avner

    2014-01-01

    This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.

  4. Data integration in biological research: an overview.

    Science.gov (United States)

    Lapatas, Vasileios; Stefanidakis, Michalis; Jimenez, Rafael C; Via, Allegra; Schneider, Maria Victoria

    2015-12-01

    Data sharing, integration and annotation are essential to ensure the reproducibility of the analysis and interpretation of the experimental findings. Often these activities are perceived as a role that bioinformaticians and computer scientists have to take with no or little input from the experimental biologist. On the contrary, biological researchers, being the producers and often the end users of such data, have a big role in enabling biological data integration. The quality and usefulness of data integration depend on the existence and adoption of standards, shared formats, and mechanisms that are suitable for biological researchers to submit and annotate the data, so it can be easily searchable, conveniently linked and consequently used for further biological analysis and discovery. Here, we provide background on what is data integration from a computational science point of view, how it has been applied to biological research, which key aspects contributed to its success and future directions.

  5. Deep Learning and Applications in Computational Biology

    KAUST Repository

    Zeng, Jianyang

    2016-01-01

    -transcriptional gene regulation. Though numerous computational methods have been developed for modeling RBP binding preferences, discovering a complete structural representation of the RBP targets by integrating their available structural features in all three

  6. Telemetry System of Biological Parameters

    Directory of Open Access Journals (Sweden)

    Jan Spisak

    2005-01-01

    Full Text Available The mobile telemetry system of biological parameters serves for reading and wireless data transfer of measured values of selected biological parameters to an outlying computer. It concerns basically long time monitoring of vital function of car pilot.The goal of this projects is to propose mobile telemetry system for reading, wireless transfer and processing of biological parameters of car pilot during physical and psychical stress. It has to be made with respect to minimal consumption, weight and maximal device mobility. This system has to eliminate signal noise, which is created by biological artifacts and disturbances during the data transfer.

  7. Machine learning in computational biology to accelerate high-throughput protein expression.

    Science.gov (United States)

    Sastry, Anand; Monk, Jonathan; Tegel, Hanna; Uhlen, Mathias; Palsson, Bernhard O; Rockberg, Johan; Brunk, Elizabeth

    2017-08-15

    The Human Protein Atlas (HPA) enables the simultaneous characterization of thousands of proteins across various tissues to pinpoint their spatial location in the human body. This has been achieved through transcriptomics and high-throughput immunohistochemistry-based approaches, where over 40 000 unique human protein fragments have been expressed in E. coli. These datasets enable quantitative tracking of entire cellular proteomes and present new avenues for understanding molecular-level properties influencing expression and solubility. Combining computational biology and machine learning identifies protein properties that hinder the HPA high-throughput antibody production pipeline. We predict protein expression and solubility with accuracies of 70% and 80%, respectively, based on a subset of key properties (aromaticity, hydropathy and isoelectric point). We guide the selection of protein fragments based on these characteristics to optimize high-throughput experimentation. We present the machine learning workflow as a series of IPython notebooks hosted on GitHub (https://github.com/SBRG/Protein_ML). The workflow can be used as a template for analysis of further expression and solubility datasets. ebrunk@ucsd.edu or johanr@biotech.kth.se. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. When cloud computing meets bioinformatics: a review.

    Science.gov (United States)

    Zhou, Shuigeng; Liao, Ruiqi; Guan, Jihong

    2013-10-01

    In the past decades, with the rapid development of high-throughput technologies, biology research has generated an unprecedented amount of data. In order to store and process such a great amount of data, cloud computing and MapReduce were applied to many fields of bioinformatics. In this paper, we first introduce the basic concepts of cloud computing and MapReduce, and their applications in bioinformatics. We then highlight some problems challenging the applications of cloud computing and MapReduce to bioinformatics. Finally, we give a brief guideline for using cloud computing in biology research.

  9. CSBB: synthetic biology research at Newcastle University.

    Science.gov (United States)

    Goñi-Moreno, Angel; Wipat, Anil; Krasnogor, Natalio

    2017-06-15

    The Centre for Synthetic Biology and the Bioeconomy (CSBB) brings together a far-reaching multidisciplinary community across all Newcastle University's faculties - Medical Sciences, Science, Agriculture and Engineering, and Humanities, Arts and Social Sciences. The CSBB focuses on many different areas of Synthetic Biology, including bioprocessing, computational design and in vivo computation, as well as improving understanding of basic molecular machinery. Such breadth is supported by major national and international research funding, a range of industrial partners in the North East of England and beyond, as well as a large number of doctoral and post-doctoral researchers. The CSBB trains the next generation of scientists through a 1-year MSc in Synthetic Biology. © 2017 The Author(s).

  10. Standard biological parts knowledgebase.

    Directory of Open Access Journals (Sweden)

    Michal Galdzicki

    2011-02-01

    Full Text Available We have created the Knowledgebase of Standard Biological Parts (SBPkb as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org. The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org. SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL, a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  11. Standard Biological Parts Knowledgebase

    Science.gov (United States)

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M.; Gennari, John H.

    2011-01-01

    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate “promoter” parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible. PMID:21390321

  12. Standard biological parts knowledgebase.

    Science.gov (United States)

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M; Gennari, John H

    2011-02-24

    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  13. Computational challenges in modeling gene regulatory events.

    Science.gov (United States)

    Pataskar, Abhijeet; Tiwari, Vijay K

    2016-10-19

    Cellular transcriptional programs driven by genetic and epigenetic mechanisms could be better understood by integrating "omics" data and subsequently modeling the gene-regulatory events. Toward this end, computational biology should keep pace with evolving experimental procedures and data availability. This article gives an exemplified account of the current computational challenges in molecular biology.

  14. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    Science.gov (United States)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Physical properties of biological entities: an introduction to the ontology of physics for biology.

    Directory of Open Access Journals (Sweden)

    Daniel L Cook

    Full Text Available As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB, a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration.

  16. Physical properties of biological entities: an introduction to the ontology of physics for biology.

    Science.gov (United States)

    Cook, Daniel L; Bookstein, Fred L; Gennari, John H

    2011-01-01

    As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB), a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration. © 2011 Cook et al.

  17. Genomes, Phylogeny, and Evolutionary Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Monica

    2005-03-25

    With the completion of the human genome and the growing number of diverse genomes being sequenced, a new age of evolutionary research is currently taking shape. The myriad of technological breakthroughs in biology that are leading to the unification of broad scientific fields such as molecular biology, biochemistry, physics, mathematics and computer science are now known as systems biology. Here I present an overview, with an emphasis on eukaryotes, of how the postgenomics era is adopting comparative approaches that go beyond comparisons among model organisms to shape the nascent field of evolutionary systems biology.

  18. Enhancing Lecture Presentations in Introductory Biology with Computer-Based Multimedia.

    Science.gov (United States)

    Fifield, Steve; Peifer, Rick

    1994-01-01

    Uses illustrations and text to discuss convenient ways to organize and present computer-based multimedia to students in lecture classes. Includes the following topics: (1) Effects of illustrations on learning; (2) Using computer-based illustrations in lecture; (3) MacPresents-Multimedia Presentation Software; (4) Advantages of computer-based…

  19. Parallel computing works!

    CERN Document Server

    Fox, Geoffrey C; Messina, Guiseppe C

    2014-01-01

    A clear illustration of how parallel computers can be successfully appliedto large-scale scientific computations. This book demonstrates how avariety of applications in physics, biology, mathematics and other scienceswere implemented on real parallel computers to produce new scientificresults. It investigates issues of fine-grained parallelism relevant forfuture supercomputers with particular emphasis on hypercube architecture. The authors describe how they used an experimental approach to configuredifferent massively parallel machines, design and implement basic systemsoftware, and develop

  20. Quantifying electron transfer reactions in biological systems

    DEFF Research Database (Denmark)

    Sjulstok, Emil Sjulstok; Olsen, Jógvan Magnus Haugaard; Solov'yov, Ilia A

    2015-01-01

    which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between...

  1. Computer simulation of induced electric currents and fields in biological bodies by 60 Hz magnetic fields

    International Nuclear Information System (INIS)

    Xi Weiguo; Stuchly, M.A.; Gandhi, O.P.

    1993-01-01

    Possible health effects of human exposure to 60 Hz magnetic fields are a subject of increasing concern. An understanding of the coupling of electromagnetic fields to human body tissues is essential for assessment of their biological effects. A method is presented for the computerized simulation of induced electric currents and fields in bodies of men and rodents from power-line frequency magnetic fields. In the impedance method, the body is represented by a 3 dimensional impedance network. The computational model consists of several tens of thousands of cubic numerical cells and thus represented a realistic shape. The modelling for humans is performed with two models, a heterogeneous model based on cross-section anatomy and a homogeneous one using an average tissue conductivity. A summary of computed results of induced electric currents and fields is presented. It is confirmed that induced currents are lower than endangerous current levels for most environmental exposures. However, the induced current density varies greatly, with the maximum being at least 10 times larger than the average. This difference is likely to be greater when more detailed anatomy and morphology are considered. 15 refs., 2 figs., 1 tab

  2. An overview of bioinformatics methods for modeling biological pathways in yeast.

    Science.gov (United States)

    Hou, Jie; Acharya, Lipi; Zhu, Dongxiao; Cheng, Jianlin

    2016-03-01

    The advent of high-throughput genomics techniques, along with the completion of genome sequencing projects, identification of protein-protein interactions and reconstruction of genome-scale pathways, has accelerated the development of systems biology research in the yeast organism Saccharomyces cerevisiae In particular, discovery of biological pathways in yeast has become an important forefront in systems biology, which aims to understand the interactions among molecules within a cell leading to certain cellular processes in response to a specific environment. While the existing theoretical and experimental approaches enable the investigation of well-known pathways involved in metabolism, gene regulation and signal transduction, bioinformatics methods offer new insights into computational modeling of biological pathways. A wide range of computational approaches has been proposed in the past for reconstructing biological pathways from high-throughput datasets. Here we review selected bioinformatics approaches for modeling biological pathways inS. cerevisiae, including metabolic pathways, gene-regulatory pathways and signaling pathways. We start with reviewing the research on biological pathways followed by discussing key biological databases. In addition, several representative computational approaches for modeling biological pathways in yeast are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    NARCIS (Netherlands)

    He, F.; Murabito, E.; Westerhoff, H.V.

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out throughin silicotheoretical studies with the aim to guide and complement furtherin vitroandin vivoexperimental

  4. Synthetic biology: an emerging engineering discipline.

    Science.gov (United States)

    Cheng, Allen A; Lu, Timothy K

    2012-01-01

    Over the past decade, synthetic biology has emerged as an engineering discipline for biological systems. Compared with other substrates, biology poses a unique set of engineering challenges resulting from an incomplete understanding of natural biological systems and tools for manipulating them. To address these challenges, synthetic biology is advancing from developing proof-of-concept designs to focusing on core platforms for rational and high-throughput biological engineering. These platforms span the entire biological design cycle, including DNA construction, parts libraries, computational design tools, and interfaces for manipulating and probing synthetic circuits. The development of these enabling technologies requires an engineering mindset to be applied to biology, with an emphasis on generalizable techniques in addition to application-specific designs. This review aims to discuss the progress and challenges in synthetic biology and to illustrate areas where synthetic biology may impact biomedical engineering and human health.

  5. Seventh Medical Image Computing and Computer Assisted Intervention Conference (MICCAI 2012)

    CERN Document Server

    Miller, Karol; Nielsen, Poul; Computational Biomechanics for Medicine : Models, Algorithms and Implementation

    2013-01-01

    One of the greatest challenges for mechanical engineers is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. This book is an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. Computational Biomechanics for Medicine: Models, Algorithms and Implementation collects the papers from the Seventh Computational Biomechanics for Medicine Workshop held in Nice in conjunction with the Medical Image Computing and Computer Assisted Intervention conference. The topics covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, and medical robotics.

  6. Emission computed tomography

    International Nuclear Information System (INIS)

    Budinger, T.F.; Gullberg, G.T.; Huesman, R.H.

    1979-01-01

    This chapter is devoted to the methods of computer assisted tomography for determination of the three-dimensional distribution of gamma-emitting radionuclides in the human body. The major applications of emission computed tomography are in biological research and medical diagnostic procedures. The objectives of these procedures are to make quantitative measurements of in vivo biochemical and hemodynamic functions

  7. A computer simulation approach to quantify the true area and true area compressibility modulus of biological membranes

    International Nuclear Information System (INIS)

    Chacón, Enrique; Tarazona, Pedro; Bresme, Fernando

    2015-01-01

    We present a new computational approach to quantify the area per lipid and the area compressibility modulus of biological membranes. Our method relies on the analysis of the membrane fluctuations using our recently introduced coupled undulatory (CU) mode [Tarazona et al., J. Chem. Phys. 139, 094902 (2013)], which provides excellent estimates of the bending modulus of model membranes. Unlike the projected area, widely used in computer simulations of membranes, the CU area is thermodynamically consistent. This new area definition makes it possible to accurately estimate the area of the undulating bilayer, and the area per lipid, by excluding any contributions related to the phospholipid protrusions. We find that the area per phospholipid and the area compressibility modulus features a negligible dependence with system size, making possible their computation using truly small bilayers, involving a few hundred lipids. The area compressibility modulus obtained from the analysis of the CU area fluctuations is fully consistent with the Hooke’s law route. Unlike existing methods, our approach relies on a single simulation, and no a priori knowledge of the bending modulus is required. We illustrate our method by analyzing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers using the coarse grained MARTINI force-field. The area per lipid and area compressibility modulus obtained with our method and the MARTINI forcefield are consistent with previous studies of these bilayers

  8. Computer prediction of biological activity of 2-methyl(phenyl-6,9-epoksybenzo[g]quinoline-4,5,10-Trion and 5-methyl-(1,2,4-triazolo[4,3-a] quinoline

    Directory of Open Access Journals (Sweden)

    Yu. V. Karpenko

    2015-04-01

    Full Text Available , One of the priority measures, which are evaluated in the creation of new effective medicines, is their high selective effect and lack of side effects. A considerable interest is the possibility of combining several structures of heterocycles in one molecule, such as quinoline and furan, which may cause an increase in biological activity of these combined compounds or an emergence of new properties. It is known that derivatives of 1,2,4-triazolo[4,3-a]quinoline have anticonvulsant effect and treat the syndrome of disorders with the nervous system. The aim of research. The main purpose of this work was an establishment of combinatorial library of bioregulators, which combines structures 5,8-dioksoquinoline and furan (1-8, quinoline and triazole (9-12, using computer program PASS (Prediction Activitity Spectra for Substances. Virtual screening of heterocycles derivatives was conducted to determine the direction of their bioactivity researches. Materials and methods. The virtual screening of compounds was performed by using the computer program PASS (Prediction Activity Spectra for Substances. For the specific activity the increase of Pa quantity and the decrease of the Pi quantity, helps to get the greater chance to detect this activity in the experiment. Predicting the probability of substance manifestation of specific types of biological activity determines which tests are the most appropriate for studying the biological activity of specific chemical substances and which substances of those that are available to the researcher likely will show the desired effect. With theoretical prediction the most likely basic structures of new compounds with desired biological effect, which best suits the task will be selected. Results. Analysis of computer prediction demonstrates the promising search of antineoplastic, antibiotic, analgesic and other types of activity in some of these compounds. An important instant of prediction of these substances is

  9. From Levy to Brownian: a computational model based on biological fluctuation.

    Directory of Open Access Journals (Sweden)

    Surya G Nurzaman

    Full Text Available BACKGROUND: Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently, experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that can realize such behavior. METHODOLOGY/PRINCIPAL FINDINGS: We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly faced patchy environment where the density alternates. CONCLUSIONS/SIGNIFICANCE: Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy environment are also discussed. The model provides a framework for further investigation on the role of internal noise in realizing adaptive and efficient foraging behavior.

  10. The Human Genome Project: Biology, Computers, and Privacy.

    Science.gov (United States)

    Cutter, Mary Ann G.; Drexler, Edward; Gottesman, Kay S.; Goulding, Philip G.; McCullough, Laurence B.; McInerney, Joseph D.; Micikas, Lynda B.; Mural, Richard J.; Murray, Jeffrey C.; Zola, John

    This module, for high school teachers, is the second of two modules about the Human Genome Project (HGP) produced by the Biological Sciences Curriculum Study (BSCS). The first section of this module provides background information for teachers about the structure and objectives of the HGP, aspects of the science and technology that underlie the…

  11. Controllability and observability of Boolean networks arising from biology

    Science.gov (United States)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  12. Quantum computing based on semiconductor nanowires

    NARCIS (Netherlands)

    Frolov, S.M.; Plissard, S.R.; Nadj-Perge, S.; Kouwenhoven, L.P.; Bakkers, E.P.A.M.

    2013-01-01

    A quantum computer will have computational power beyond that of conventional computers, which can be exploited for solving important and complex problems, such as predicting the conformations of large biological molecules. Materials play a major role in this emerging technology, as they can enable

  13. A distributed approach for parameters estimation in System Biology models

    International Nuclear Information System (INIS)

    Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.

    2009-01-01

    Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical models is yet unknown or uncertain. A possible computational solution is the parameter estimation, that is the identification of the parameter values that determine the best model fitting respect to experimental data. We have developed an environment to distribute each run of the parameter estimation algorithm on a different computational resource. The key feature of the implementation is a relational database that allows the user to swap the candidate solutions among the working nodes during the computations. The comparison of the distributed implementation with the parallel one showed that the presented approach enables a faster and better parameter estimation of systems biology models.

  14. TinkerCell: modular CAD tool for synthetic biology

    Science.gov (United States)

    Chandran, Deepak; Bergmann, Frank T; Sauro, Herbert M

    2009-01-01

    Background Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD) is necessary in order to bridge the gap between computational modeling and biological data. Using a CAD application, it would be possible to construct models using available biological "parts" and directly generate the DNA sequence that represents the model, thus increasing the efficiency of design and construction of synthetic networks. Results An application named TinkerCell has been developed in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various third-party C and Python programs that are hosted by TinkerCell via an extensive C and Python application programming interface (API). TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at . Conclusion An ideal CAD application for engineering biological systems would provide features such as: building and simulating networks, analyzing robustness of networks, and searching databases for components that meet the design criteria. At the current state of synthetic biology, there are no established methods for measuring robustness or identifying components that fit a design. The same is true for databases of biological parts. TinkerCell's flexible modeling framework allows it to cope with changes in the field. Such changes may involve the way parts are characterized or the way synthetic networks are modeled and analyzed computationally. TinkerCell can readily

  15. TinkerCell: modular CAD tool for synthetic biology

    Directory of Open Access Journals (Sweden)

    Bergmann Frank T

    2009-10-01

    Full Text Available Abstract Background Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD is necessary in order to bridge the gap between computational modeling and biological data. Using a CAD application, it would be possible to construct models using available biological "parts" and directly generate the DNA sequence that represents the model, thus increasing the efficiency of design and construction of synthetic networks. Results An application named TinkerCell has been developed in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various third-party C and Python programs that are hosted by TinkerCell via an extensive C and Python application programming interface (API. TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at http://www.tinkercell.com. Conclusion An ideal CAD application for engineering biological systems would provide features such as: building and simulating networks, analyzing robustness of networks, and searching databases for components that meet the design criteria. At the current state of synthetic biology, there are no established methods for measuring robustness or identifying components that fit a design. The same is true for databases of biological parts. TinkerCell's flexible modeling framework allows it to cope with changes in the field. Such changes may involve the way parts are characterized or the way synthetic networks are modeled

  16. Genome Annotation in a Community College Cell Biology Lab

    Science.gov (United States)

    Beagley, C. Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning…

  17. From Lévy to Brownian: a computational model based on biological fluctuation.

    Science.gov (United States)

    Nurzaman, Surya G; Matsumoto, Yoshio; Nakamura, Yutaka; Shirai, Kazumichi; Koizumi, Satoshi; Ishiguro, Hiroshi

    2011-02-03

    Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently, experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that can realize such behavior. We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly faced patchy environment where the density alternates. Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy environment are also discussed. The model provides a framework for further investigation on the role of internal noise in realizing adaptive and efficient foraging behavior.

  18. Causal biological network database: a comprehensive platform of causal biological network models focused on the pulmonary and vascular systems.

    Science.gov (United States)

    Boué, Stéphanie; Talikka, Marja; Westra, Jurjen Willem; Hayes, William; Di Fabio, Anselmo; Park, Jennifer; Schlage, Walter K; Sewer, Alain; Fields, Brett; Ansari, Sam; Martin, Florian; Veljkovic, Emilija; Kenney, Renee; Peitsch, Manuel C; Hoeng, Julia

    2015-01-01

    With the wealth of publications and data available, powerful and transparent computational approaches are required to represent measured data and scientific knowledge in a computable and searchable format. We developed a set of biological network models, scripted in the Biological Expression Language, that reflect causal signaling pathways across a wide range of biological processes, including cell fate, cell stress, cell proliferation, inflammation, tissue repair and angiogenesis in the pulmonary and cardiovascular context. This comprehensive collection of networks is now freely available to the scientific community in a centralized web-based repository, the Causal Biological Network database, which is composed of over 120 manually curated and well annotated biological network models and can be accessed at http://causalbionet.com. The website accesses a MongoDB, which stores all versions of the networks as JSON objects and allows users to search for genes, proteins, biological processes, small molecules and keywords in the network descriptions to retrieve biological networks of interest. The content of the networks can be visualized and browsed. Nodes and edges can be filtered and all supporting evidence for the edges can be browsed and is linked to the original articles in PubMed. Moreover, networks may be downloaded for further visualization and evaluation. Database URL: http://causalbionet.com © The Author(s) 2015. Published by Oxford University Press.

  19. Philosophy of Systems and Synthetic Biology

    DEFF Research Database (Denmark)

    Green, Sara

    2017-01-01

    This entry aims to clarify how systems and synthetic biology contribute to and extend discussions within philosophy of science. Unlike fields such as developmental biology or molecular biology, systems and synthetic biology are not easily demarcated by a focus on a specific subject area or level...... of organization. Rather, they are characterized by the development and application of mathematical, computational, and synthetic modeling strategies in response to complex problems and challenges within the life sciences. Proponents of systems and synthetic biology often stress the necessity of a perspective...... that goes beyond the scope of molecular biology and genetic engineering, respectively. With the emphasis on systems and interaction networks, the approaches explicitly engage in one of the oldest philosophical discussions on the relationship between parts and wholes, or between reductionism and holism...

  20. Micro-separation toward systems biology.

    Science.gov (United States)

    Liu, Bi-Feng; Xu, Bo; Zhang, Guisen; Du, Wei; Luo, Qingming

    2006-02-17

    Current biology is experiencing transformation in logic or philosophy that forces us to reevaluate the concept of cell, tissue or entire organism as a collection of individual components. Systems biology that aims at understanding biological system at the systems level is an emerging research area, which involves interdisciplinary collaborations of life sciences, computational and mathematical sciences, systems engineering, and analytical technology, etc. For analytical chemistry, developing innovative methods to meet the requirement of systems biology represents new challenges as also opportunities and responsibility. In this review, systems biology-oriented micro-separation technologies are introduced for comprehensive profiling of genome, proteome and metabolome, characterization of biomolecules interaction and single cell analysis such as capillary electrophoresis, ultra-thin layer gel electrophoresis, micro-column liquid chromatography, and their multidimensional combinations, parallel integrations, microfabricated formats, and nano technology involvement. Future challenges and directions are also suggested.

  1. Advances in unconventional computing

    CERN Document Server

    2017-01-01

    The unconventional computing is a niche for interdisciplinary science, cross-bred of computer science, physics, mathematics, chemistry, electronic engineering, biology, material science and nanotechnology. The aims of this book are to uncover and exploit principles and mechanisms of information processing in and functional properties of physical, chemical and living systems to develop efficient algorithms, design optimal architectures and manufacture working prototypes of future and emergent computing devices. This first volume presents theoretical foundations of the future and emergent computing paradigms and architectures. The topics covered are computability, (non-)universality and complexity of computation; physics of computation, analog and quantum computing; reversible and asynchronous devices; cellular automata and other mathematical machines; P-systems and cellular computing; infinity and spatial computation; chemical and reservoir computing. The book is the encyclopedia, the first ever complete autho...

  2. Applying differential dynamic logic to reconfigurable biological networks.

    Science.gov (United States)

    Figueiredo, Daniel; Martins, Manuel A; Chaves, Madalena

    2017-09-01

    Qualitative and quantitative modeling frameworks are widely used for analysis of biological regulatory networks, the former giving a preliminary overview of the system's global dynamics and the latter providing more detailed solutions. Another approach is to model biological regulatory networks as hybrid systems, i.e., systems which can display both continuous and discrete dynamic behaviors. Actually, the development of synthetic biology has shown that this is a suitable way to think about biological systems, which can often be constructed as networks with discrete controllers, and present hybrid behaviors. In this paper we discuss this approach as a special case of the reconfigurability paradigm, well studied in Computer Science (CS). In CS there are well developed computational tools to reason about hybrid systems. We argue that it is worth applying such tools in a biological context. One interesting tool is differential dynamic logic (dL), which has recently been developed by Platzer and applied to many case-studies. In this paper we discuss some simple examples of biological regulatory networks to illustrate how dL can be used as an alternative, or also as a complement to methods already used. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Analog synthetic biology.

    Science.gov (United States)

    Sarpeshkar, R

    2014-03-28

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations.

  4. Cyclobutane-Containing Alkaloids: Origin, Synthesis, and Biological Activities

    OpenAIRE

    Sergeiko, Anastasia; Poroikov, Vladimir V; Hanuš, Lumir O; Dembitsky, Valery M

    2008-01-01

    Present review describes research on novel natural cyclobutane-containing alkaloids isolated from terrestrial and marine species. More than 60 biological active compounds have been confirmed to have antimicrobial, antibacterial, antitumor, and other activities. The structures, synthesis, origins, and biological activities of a selection of cyclobutane-containing alkaloids are reviewed. With the computer program PASS some additional biological activities are also predicted, which point toward ...

  5. Reproducible computational biology experiments with SED-ML--the Simulation Experiment Description Markup Language.

    Science.gov (United States)

    Waltemath, Dagmar; Adams, Richard; Bergmann, Frank T; Hucka, Michael; Kolpakov, Fedor; Miller, Andrew K; Moraru, Ion I; Nickerson, David; Sahle, Sven; Snoep, Jacky L; Le Novère, Nicolas

    2011-12-15

    The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from different fields of research

  6. Reproducible computational biology experiments with SED-ML - The Simulation Experiment Description Markup Language

    Science.gov (United States)

    2011-01-01

    Background The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. Results In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. Conclusions With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from

  7. Complex fluids in biological systems experiment, theory, and computation

    CERN Document Server

    2015-01-01

    This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solut...

  8. Molecular dynamics simulations and applications in computational toxicology and nanotoxicology.

    Science.gov (United States)

    Selvaraj, Chandrabose; Sakkiah, Sugunadevi; Tong, Weida; Hong, Huixiao

    2018-02-01

    Nanotoxicology studies toxicity of nanomaterials and has been widely applied in biomedical researches to explore toxicity of various biological systems. Investigating biological systems through in vivo and in vitro methods is expensive and time taking. Therefore, computational toxicology, a multi-discipline field that utilizes computational power and algorithms to examine toxicology of biological systems, has gained attractions to scientists. Molecular dynamics (MD) simulations of biomolecules such as proteins and DNA are popular for understanding of interactions between biological systems and chemicals in computational toxicology. In this paper, we review MD simulation methods, protocol for running MD simulations and their applications in studies of toxicity and nanotechnology. We also briefly summarize some popular software tools for execution of MD simulations. Published by Elsevier Ltd.

  9. Engineering a Biological Revolution.

    Science.gov (United States)

    Matheson, Susan

    2017-01-26

    The new field of synthetic biology promises to change health care, computer technology, the production of biofuels, and more. Students participating in the International Genetically Engineered Machine (iGEM) competition are on the front lines of this revolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Development of Soft Computing and Applications in Agricultural and Biological Engineering

    Science.gov (United States)

    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and...

  11. Agent-Based Modeling in Molecular Systems Biology.

    Science.gov (United States)

    Soheilypour, Mohammad; Mofrad, Mohammad R K

    2018-06-08

    Molecular systems orchestrating the biology of the cell typically involve a complex web of interactions among various components and span a vast range of spatial and temporal scales. Computational methods have advanced our understanding of the behavior of molecular systems by enabling us to test assumptions and hypotheses, explore the effect of different parameters on the outcome, and eventually guide experiments. While several different mathematical and computational methods are developed to study molecular systems at different spatiotemporal scales, there is still a need for methods that bridge the gap between spatially-detailed and computationally-efficient approaches. In this review, we summarize the capabilities of agent-based modeling (ABM) as an emerging molecular systems biology technique that provides researchers with a new tool in exploring the dynamics of molecular systems/pathways in health and disease. © 2018 WILEY Periodicals, Inc.

  12. Nature, computation and complexity

    International Nuclear Information System (INIS)

    Binder, P-M; Ellis, G F R

    2016-01-01

    The issue of whether the unfolding of events in the world can be considered a computation is explored in this paper. We come to different conclusions for inert and for living systems (‘no’ and ‘qualified yes’, respectively). We suggest that physical computation as we know it exists only as a tool of complex biological systems: us. (paper)

  13. Data Integration and Mining for Synthetic Biology Design.

    Science.gov (United States)

    Mısırlı, Göksel; Hallinan, Jennifer; Pocock, Matthew; Lord, Phillip; McLaughlin, James Alastair; Sauro, Herbert; Wipat, Anil

    2016-10-21

    One aim of synthetic biologists is to create novel and predictable biological systems from simpler modular parts. This approach is currently hampered by a lack of well-defined and characterized parts and devices. However, there is a wealth of existing biological information, which can be used to identify and characterize biological parts, and their design constraints in the literature and numerous biological databases. However, this information is spread among these databases in many different formats. New computational approaches are required to make this information available in an integrated format that is more amenable to data mining. A tried and tested approach to this problem is to map disparate data sources into a single data set, with common syntax and semantics, to produce a data warehouse or knowledge base. Ontologies have been used extensively in the life sciences, providing this common syntax and semantics as a model for a given biological domain, in a fashion that is amenable to computational analysis and reasoning. Here, we present an ontology for applications in synthetic biology design, SyBiOnt, which facilitates the modeling of information about biological parts and their relationships. SyBiOnt was used to create the SyBiOntKB knowledge base, incorporating and building upon existing life sciences ontologies and standards. The reasoning capabilities of ontologies were then applied to automate the mining of biological parts from this knowledge base. We propose that this approach will be useful to speed up synthetic biology design and ultimately help facilitate the automation of the biological engineering life cycle.

  14. A computer program for monitoring the biological treatment of waste waters (CDBAR); Programa informatico para el control de la depuracion biologica de aguas residuales (CDBAR)

    Energy Technology Data Exchange (ETDEWEB)

    Bove Porta, J.; Milan Cabre, D.

    2001-07-01

    The problems, such as bulking, foaming, etc., involved in managing a waste water treatment plant (WWTP) employing an activated sludge biological process have a biochemical origin. Correcting them requires identifying the micro-organisms responsible for the pathology in question, whether the problems are due to there being too many or too few of these organisms. It is therefore necessary to have a good microscope and staff trained in identifying such micro-organisms. Never the less, to attain speed and efficiency, it is necessary to have more means. That is why the CDBAR project was carried out. This is a simple computer application that includes numerous photographs of microscopic organisms from samples taken in Spain and Portugal. Once the anomaly has been identified, the computer application it-self includes a program of corrective actions that will allow the biological reactor, the most important part of a WWTP, to function normally. Finally, a glossary has been prepared so that the meaning of any term can be looked up quickly and easily. (Author) 16 refs.

  15. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    Directory of Open Access Journals (Sweden)

    Joyeeta Dutta-Moscato

    2014-01-01

    Full Text Available This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC, Richard Hersheberger, PhD (Currently, Dean at Roswell Park, and Megan Seippel, MS (the administrator launched the University of Pittsburgh Cancer Institute (UPCI Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical

  16. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    Science.gov (United States)

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  17. Parametric inference for biological sequence analysis.

    Science.gov (United States)

    Pachter, Lior; Sturmfels, Bernd

    2004-11-16

    One of the major successes in computational biology has been the unification, by using the graphical model formalism, of a multitude of algorithms for annotating and comparing biological sequences. Graphical models that have been applied to these problems include hidden Markov models for annotation, tree models for phylogenetics, and pair hidden Markov models for alignment. A single algorithm, the sum-product algorithm, solves many of the inference problems that are associated with different statistical models. This article introduces the polytope propagation algorithm for computing the Newton polytope of an observation from a graphical model. This algorithm is a geometric version of the sum-product algorithm and is used to analyze the parametric behavior of maximum a posteriori inference calculations for graphical models.

  18. Prototype Biology-Based Radiation Risk Module Project

    Science.gov (United States)

    Terrier, Douglas; Clayton, Ronald G.; Patel, Zarana; Hu, Shaowen; Huff, Janice

    2015-01-01

    Biological effects of space radiation and risk mitigation are strategic knowledge gaps for the Evolvable Mars Campaign. The current epidemiology-based NASA Space Cancer Risk (NSCR) model contains large uncertainties (HAT #6.5a) due to lack of information on the radiobiology of galactic cosmic rays (GCR) and lack of human data. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. Our proposed study will compare DNA damage, histological, and cell kinetic parameters after irradiation in normal 2D human cells versus 3D tissue models, and it will use a multi-scale computational model (CHASTE) to investigate various biological processes that may contribute to carcinogenesis, including radiation-induced cellular signaling pathways. This cross-disciplinary work, with biological validation of an evolvable mathematical computational model, will help reduce uncertainties within NSCR and aid risk mitigation for radiation-induced carcinogenesis.

  19. Mapping biological systems to network systems

    CERN Document Server

    Rathore, Heena

    2016-01-01

    The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully ...

  20. The nature and use of prediction skills in a biological computer simulation

    Science.gov (United States)

    Lavoie, Derrick R.; Good, Ron

    The primary goal of this study was to examine the science process skill of prediction using qualitative research methodology. The think-aloud interview, modeled after Ericsson and Simon (1984), let to the identification of 63 program exploration and prediction behaviors.The performance of seven formal and seven concrete operational high-school biology students were videotaped during a three-phase learning sequence on water pollution. Subjects explored the effects of five independent variables on two dependent variables over time using a computer-simulation program. Predictions were made concerning the effect of the independent variables upon dependent variables through time. Subjects were identified according to initial knowledge of the subject matter and success at solving three selected prediction problems.Successful predictors generally had high initial knowledge of the subject matter and were formal operational. Unsuccessful predictors generally had low initial knowledge and were concrete operational. High initial knowledge seemed to be more important to predictive success than stage of Piagetian cognitive development.Successful prediction behaviors involved systematic manipulation of the independent variables, note taking, identification and use of appropriate independent-dependent variable relationships, high interest and motivation, and in general, higher-level thinking skills. Behaviors characteristic of unsuccessful predictors were nonsystematic manipulation of independent variables, lack of motivation and persistence, misconceptions, and the identification and use of inappropriate independent-dependent variable relationships.

  1. A Friendly-Biological Reactor SIMulator (BioReSIM for studying biological processes in wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Raul Molina

    2014-12-01

    Full Text Available Biological processes for wastewater treatments are inherently dynamic systems because of the large variations in the influent wastewater flow rate, concentration composition and the adaptive behavior of the involved microorganisms. Moreover, the sludge retention time (SRT is a critical factor to understand the bioreactor performances when changes in the influent or in the operation conditions take place. Since SRT are usually in the range of 10-30 days, the performance of biological reactors needs a long time to be monitored in a regular laboratory demonstration, limiting the knowledge that can be obtained in the experimental lab practice. In order to overcome this lack, mathematical models and computer simulations are useful tools to describe biochemical processes and predict the overall performance of bioreactors under different working operation conditions and variations of the inlet wastewater composition. The mathematical solution of the model could be difficult as numerous biochemical processes can be considered. Additionally, biological reactors description (mass balance, etc. needs models represented by partial or/and ordinary differential equations associated to algebraic expressions, that require complex computational codes to obtain the numerical solutions. Different kind of software for mathematical modeling can be used, from large degree of freedom simulators capable of free models definition (as AQUASIM, to closed predefined model structure programs (as BIOWIN. The first ones usually require long learning curves, whereas the second ones could be excessively rigid for specific wastewater treatment systems. As alternative, we present Biological Reactor SIMulator (BioReSIM, a MATLAB code for the simulation of sequencing batch reactors (SBR and rotating biological contactors (RBC as biological systems of suspended and attached biomass for wastewater treatment, respectively. This BioReSIM allows the evaluation of simple and complex

  2. Bayes in biological anthropology.

    Science.gov (United States)

    Konigsberg, Lyle W; Frankenberg, Susan R

    2013-12-01

    In this article, we both contend and illustrate that biological anthropologists, particularly in the Americas, often think like Bayesians but act like frequentists when it comes to analyzing a wide variety of data. In other words, while our research goals and perspectives are rooted in probabilistic thinking and rest on prior knowledge, we often proceed to use statistical hypothesis tests and confidence interval methods unrelated (or tenuously related) to the research questions of interest. We advocate for applying Bayesian analyses to a number of different bioanthropological questions, especially since many of the programming and computational challenges to doing so have been overcome in the past two decades. To facilitate such applications, this article explains Bayesian principles and concepts, and provides concrete examples of Bayesian computer simulations and statistics that address questions relevant to biological anthropology, focusing particularly on bioarchaeology and forensic anthropology. It also simultaneously reviews the use of Bayesian methods and inference within the discipline to date. This article is intended to act as primer to Bayesian methods and inference in biological anthropology, explaining the relationships of various methods to likelihoods or probabilities and to classical statistical models. Our contention is not that traditional frequentist statistics should be rejected outright, but that there are many situations where biological anthropology is better served by taking a Bayesian approach. To this end it is hoped that the examples provided in this article will assist researchers in choosing from among the broad array of statistical methods currently available. Copyright © 2013 Wiley Periodicals, Inc.

  3. An online model composition tool for system biology models.

    Science.gov (United States)

    Coskun, Sarp A; Cicek, A Ercument; Lai, Nicola; Dash, Ranjan K; Ozsoyoglu, Z Meral; Ozsoyoglu, Gultekin

    2013-09-05

    There are multiple representation formats for Systems Biology computational models, and the Systems Biology Markup Language (SBML) is one of the most widely used. SBML is used to capture, store, and distribute computational models by Systems Biology data sources (e.g., the BioModels Database) and researchers. Therefore, there is a need for all-in-one web-based solutions that support advance SBML functionalities such as uploading, editing, composing, visualizing, simulating, querying, and browsing computational models. We present the design and implementation of the Model Composition Tool (Interface) within the PathCase-SB (PathCase Systems Biology) web portal. The tool helps users compose systems biology models to facilitate the complex process of merging systems biology models. We also present three tools that support the model composition tool, namely, (1) Model Simulation Interface that generates a visual plot of the simulation according to user's input, (2) iModel Tool as a platform for users to upload their own models to compose, and (3) SimCom Tool that provides a side by side comparison of models being composed in the same pathway. Finally, we provide a web site that hosts BioModels Database models and a separate web site that hosts SBML Test Suite models. Model composition tool (and the other three tools) can be used with little or no knowledge of the SBML document structure. For this reason, students or anyone who wants to learn about systems biology will benefit from the described functionalities. SBML Test Suite models will be a nice starting point for beginners. And, for more advanced purposes, users will able to access and employ models of the BioModels Database as well.

  4. The Case for Cyberlearning: Genomics (and Dragons!) in the High School Biology Classroom

    Science.gov (United States)

    Southworth, Meghan; Mokros, Jan; Dorsey, Chad; Smith, Randy

    2010-01-01

    GENIQUEST is a cyberlearning computer program that allows students to investigate biological data using a research-based instructional model. In this article, the authors make the case for using cyberlearning to teach students about the rapidly growing fields of genomics and computational biology. (Contains 2 figures and 1 online resource.)

  5. Creation of computer system for simulation nanoparticles interaction with biological objects concept

    International Nuclear Information System (INIS)

    Sarana, Yu.V.; Smol'nik, N.S.; Mel'nov, S.B.

    2014-01-01

    Main problem of nanotoxicology is that biological effects of most nanoparticles are unknown. So creation of system predictioning nanoparticles biological activity spectra is a great challenge. Here we give a concept of such system creation; it includes 6 stages realization of which help to implement nanotechnology most safely and effectively. (authors)

  6. Biologically inspired collision avoidance system for unmanned vehicles

    Science.gov (United States)

    Ortiz, Fernando E.; Graham, Brett; Spagnoli, Kyle; Kelmelis, Eric J.

    2009-05-01

    In this project, we collaborate with researchers in the neuroscience department at the University of Delaware to develop an Field Programmable Gate Array (FPGA)-based embedded computer, inspired by the brains of small vertebrates (fish). The mechanisms of object detection and avoidance in fish have been extensively studied by our Delaware collaborators. The midbrain optic tectum is a biological multimodal navigation controller capable of processing input from all senses that convey spatial information, including vision, audition, touch, and lateral-line (water current sensing in fish). Unfortunately, computational complexity makes these models too slow for use in real-time applications. These simulations are run offline on state-of-the-art desktop computers, presenting a gap between the application and the target platform: a low-power embedded device. EM Photonics has expertise in developing of high-performance computers based on commodity platforms such as graphic cards (GPUs) and FPGAs. FPGAs offer (1) high computational power, low power consumption and small footprint (in line with typical autonomous vehicle constraints), and (2) the ability to implement massively-parallel computational architectures, which can be leveraged to closely emulate biological systems. Combining UD's brain modeling algorithms and the power of FPGAs, this computer enables autonomous navigation in complex environments, and further types of onboard neural processing in future applications.

  7. The next step in biology: a periodic table?

    Science.gov (United States)

    Dhar, Pawan K

    2007-08-01

    Systems biology is an approach to explain the behaviour of a system in relation to its individual components. Synthetic biology uses key hierarchical and modular concepts of systems biology to engineer novel biological systems. In my opinion the next step in biology is to use molecule-to-phenotype data using these approaches and integrate them in the form a periodic table. A periodic table in biology would provide chassis to classify, systematize and compare diversity of component properties vis-a-vis system behaviour. Using periodic table it could be possible to compute higher- level interactions from component properties. This paper examines the concept of building a bio-periodic table using protein fold as the fundamental unit.

  8. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.

    Science.gov (United States)

    Kriegeskorte, Nikolaus

    2015-11-24

    Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.

  9. An evolving computational platform for biological mass spectrometry: workflows, statistics and data mining with MASSyPup64.

    Science.gov (United States)

    Winkler, Robert

    2015-01-01

    In biological mass spectrometry, crude instrumental data need to be converted into meaningful theoretical models. Several data processing and data evaluation steps are required to come to the final results. These operations are often difficult to reproduce, because of too specific computing platforms. This effect, known as 'workflow decay', can be diminished by using a standardized informatic infrastructure. Thus, we compiled an integrated platform, which contains ready-to-use tools and workflows for mass spectrometry data analysis. Apart from general unit operations, such as peak picking and identification of proteins and metabolites, we put a strong emphasis on the statistical validation of results and Data Mining. MASSyPup64 includes e.g., the OpenMS/TOPPAS framework, the Trans-Proteomic-Pipeline programs, the ProteoWizard tools, X!Tandem, Comet and SpiderMass. The statistical computing language R is installed with packages for MS data analyses, such as XCMS/metaXCMS and MetabR. The R package Rattle provides a user-friendly access to multiple Data Mining methods. Further, we added the non-conventional spreadsheet program teapot for editing large data sets and a command line tool for transposing large matrices. Individual programs, console commands and modules can be integrated using the Workflow Management System (WMS) taverna. We explain the useful combination of the tools by practical examples: (1) A workflow for protein identification and validation, with subsequent Association Analysis of peptides, (2) Cluster analysis and Data Mining in targeted Metabolomics, and (3) Raw data processing, Data Mining and identification of metabolites in untargeted Metabolomics. Association Analyses reveal relationships between variables across different sample sets. We present its application for finding co-occurring peptides, which can be used for target proteomics, the discovery of alternative biomarkers and protein-protein interactions. Data Mining derived models

  10. Computational Psychosomatics and Computational Psychiatry: Toward a Joint Framework for Differential Diagnosis.

    Science.gov (United States)

    Petzschner, Frederike H; Weber, Lilian A E; Gard, Tim; Stephan, Klaas E

    2017-09-15

    This article outlines how a core concept from theories of homeostasis and cybernetics, the inference-control loop, may be used to guide differential diagnosis in computational psychiatry and computational psychosomatics. In particular, we discuss 1) how conceptualizing perception and action as inference-control loops yields a joint computational perspective on brain-world and brain-body interactions and 2) how the concrete formulation of this loop as a hierarchical Bayesian model points to key computational quantities that inform a taxonomy of potential disease mechanisms. We consider the utility of this perspective for differential diagnosis in concrete clinical applications. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Synthetic analog computation in living cells.

    Science.gov (United States)

    Daniel, Ramiz; Rubens, Jacob R; Sarpeshkar, Rahul; Lu, Timothy K

    2013-05-30

    A central goal of synthetic biology is to achieve multi-signal integration and processing in living cells for diagnostic, therapeutic and biotechnology applications. Digital logic has been used to build small-scale circuits, but other frameworks may be needed for efficient computation in the resource-limited environments of cells. Here we demonstrate that synthetic analog gene circuits can be engineered to execute sophisticated computational functions in living cells using just three transcription factors. Such synthetic analog gene circuits exploit feedback to implement logarithmically linear sensing, addition, ratiometric and power-law computations. The circuits exhibit Weber's law behaviour as in natural biological systems, operate over a wide dynamic range of up to four orders of magnitude and can be designed to have tunable transfer functions. Our circuits can be composed to implement higher-order functions that are well described by both intricate biochemical models and simple mathematical functions. By exploiting analog building-block functions that are already naturally present in cells, this approach efficiently implements arithmetic operations and complex functions in the logarithmic domain. Such circuits may lead to new applications for synthetic biology and biotechnology that require complex computations with limited parts, need wide-dynamic-range biosensing or would benefit from the fine control of gene expression.

  12. Inferring biological functions of guanylyl cyclases with computational methods

    KAUST Repository

    Alquraishi, May Majed; Meier, Stuart Kurt

    2013-01-01

    A number of studies have shown that functionally related genes are often co-expressed and that computational based co-expression analysis can be used to accurately identify functional relationships between genes and by inference, their encoded proteins. Here we describe how a computational based co-expression analysis can be used to link the function of a specific gene of interest to a defined cellular response. Using a worked example we demonstrate how this methodology is used to link the function of the Arabidopsis Wall-Associated Kinase-Like 10 gene, which encodes a functional guanylyl cyclase, to host responses to pathogens. © Springer Science+Business Media New York 2013.

  13. Inferring biological functions of guanylyl cyclases with computational methods

    KAUST Repository

    Alquraishi, May Majed

    2013-09-03

    A number of studies have shown that functionally related genes are often co-expressed and that computational based co-expression analysis can be used to accurately identify functional relationships between genes and by inference, their encoded proteins. Here we describe how a computational based co-expression analysis can be used to link the function of a specific gene of interest to a defined cellular response. Using a worked example we demonstrate how this methodology is used to link the function of the Arabidopsis Wall-Associated Kinase-Like 10 gene, which encodes a functional guanylyl cyclase, to host responses to pathogens. © Springer Science+Business Media New York 2013.

  14. The Computational Sensorimotor Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Computational Sensorimotor Systems Lab focuses on the exploration, analysis, modeling and implementation of biological sensorimotor systems for both scientific...

  15. Proceedings of the ninth annual conference of the IEEE Engineering in Medicine and Biology Society

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    This book contains over 100 papers. Some of the titles are: Angular integrations and inter-projections correlation effects in CT reconstruction; Supercomputing environment for biomedical research; Program towards a computational molecular biology; Current problems in molecular biology computing; Signal averaging applied to positron emission tomography; First experimental results from a high spatial resolution PET prototype; and A coherent approach in computer-aided radiotherapy

  16. Computational methods for protein identification from mass spectrometry data.

    Directory of Open Access Journals (Sweden)

    Leo McHugh

    2008-02-01

    Full Text Available Protein identification using mass spectrometry is an indispensable computational tool in the life sciences. A dramatic increase in the use of proteomic strategies to understand the biology of living systems generates an ongoing need for more effective, efficient, and accurate computational methods for protein identification. A wide range of computational methods, each with various implementations, are available to complement different proteomic approaches. A solid knowledge of the range of algorithms available and, more critically, the accuracy and effectiveness of these techniques is essential to ensure as many of the proteins as possible, within any particular experiment, are correctly identified. Here, we undertake a systematic review of the currently available methods and algorithms for interpreting, managing, and analyzing biological data associated with protein identification. We summarize the advances in computational solutions as they have responded to corresponding advances in mass spectrometry hardware. The evolution of scoring algorithms and metrics for automated protein identification are also discussed with a focus on the relative performance of different techniques. We also consider the relative advantages and limitations of different techniques in particular biological contexts. Finally, we present our perspective on future developments in the area of computational protein identification by considering the most recent literature on new and promising approaches to the problem as well as identifying areas yet to be explored and the potential application of methods from other areas of computational biology.

  17. Intelligent biology and medicine in 2015: advancing interdisciplinary education, collaboration, and data science.

    Science.gov (United States)

    Huang, Kun; Liu, Yunlong; Huang, Yufei; Li, Lang; Cooper, Lee; Ruan, Jianhua; Zhao, Zhongming

    2016-08-22

    We summarize the 2015 International Conference on Intelligent Biology and Medicine (ICIBM 2015) and the editorial report of the supplement to BMC Genomics. The supplement includes 20 research articles selected from the manuscripts submitted to ICIBM 2015. The conference was held on November 13-15, 2015 at Indianapolis, Indiana, USA. It included eight scientific sessions, three tutorials, four keynote presentations, three highlight talks, and a poster session that covered current research in bioinformatics, systems biology, computational biology, biotechnologies, and computational medicine.

  18. Discovering and validating biological hypotheses from coherent patterns in functional genomics data

    Energy Technology Data Exchange (ETDEWEB)

    Joachimiak, Marcin Pawel

    2008-08-12

    The area of transcriptomics analysis is among the more established in computational biology, having evolved in both technology and experimental design. Transcriptomics has a strong impetus to develop sophisticated computational methods due to the large amounts of available whole-genome datasets for many species and because of powerful applications in regulatory network reconstruction as well as elucidation and modeling of cellular transcriptional responses. While gene expression microarray data can be noisy and comparisons across experiments challenging, there are a number of sophisticated methods that aid in arriving at statistically and biologically significant conclusions. As such, computational transcriptomics analysis can provide guidance for analysis of results from newer experimental technologies. More recently, search methods have been developed to identify modules of genes, which exhibit coherent expression patterns in only a subset of experimental conditions. The latest advances in these methods allow to integrate multiple data types anddatasets, both experimental and computational, within a single statistical framework accounting for data confidence and relevance to specific biological questions. Such frameworks provide a unified environment for the exploration of specific biological hypothesis and for the discovery of coherent data patterns along with the evidence supporting them.

  19. International Conference on Intelligent Systems for Molecular Biology (ISMB)

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Debra; Hibbs, Matthew; Kall, Lukas; Komandurglayavilli, Ravikumar; Mahony, Shaun; Marinescu, Voichita; Mayrose, Itay; Minin, Vladimir; Neeman, Yossef; Nimrod, Guy; Novotny, Marian; Opiyo, Stephen; Portugaly, Elon; Sadka, Tali; Sakabe, Noboru; Sarkar, Indra; Schaub, Marc; Shafer, Paul; Shmygelska, Olena; Singer, Gregory; Song, Yun; Soumyaroop, Bhattacharya; Stadler, Michael; Strope, Pooja; Su, Rong; Tabach, Yuval; Tae, Hongseok; Taylor, Todd; Terribilini, Michael; Thomas, Asha; Tran, Nam; Tseng, Tsai-Tien; Vashist, Akshay; Vijaya, Parthiban; Wang, Kai; Wang, Ting; Wei, Lai; Woo, Yong; Wu, Chunlei; Yamanishi, Yoshihiro; Yan, Changhui; Yang, Jack; Yang, Mary; Ye, Ping; Zhang, Miao

    2009-12-29

    The Intelligent Systems for Molecular Biology (ISMB) conference has provided a general forum for disseminating the latest developments in bioinformatics on an annual basis for the past 13 years. ISMB is a multidisciplinary conference that brings together scientists from computer science, molecular biology, mathematics and statistics. The goal of the ISMB meeting is to bring together biologists and computational scientists in a focus on actual biological problems, i.e., not simply theoretical calculations. The combined focus on "intelligent systems" and actual biological data makes ISMB a unique and highly important meeting, and 13 years of experience in holding the conference has resulted in a consistently well organized, well attended, and highly respected annual conference. The ISMB 2005 meeting was held June 25-29, 2005 at the Renaissance Center in Detroit, Michigan. The meeting attracted over 1,730 attendees. The science presented was exceptional, and in the course of the five-day meeting, 56 scientific papers, 710 posters, 47 Oral Abstracts, 76 Software demonstrations, and 14 tutorials were presented. The attendees represented a broad spectrum of backgrounds with 7% from commercial companies, over 28% qualifying for student registration, and 41 countries were represented at the conference, emphasizing its important international aspect. The ISMB conference is especially important because the cultures of computer science and biology are so disparate. ISMB, as a full-scale technical conference with refereed proceedings that have been indexed by both MEDLINE and Current Contents since 1996, bridges this cultural gap.

  20. Computer vision for an autonomous mobile robot

    CSIR Research Space (South Africa)

    Withey, Daniel J

    2015-10-01

    Full Text Available Computer vision systems are essential for practical, autonomous, mobile robots – machines that employ artificial intelligence and control their own motion within an environment. As with biological systems, computer vision systems include the vision...

  1. Machine learning and computer vision approaches for phenotypic profiling.

    Science.gov (United States)

    Grys, Ben T; Lo, Dara S; Sahin, Nil; Kraus, Oren Z; Morris, Quaid; Boone, Charles; Andrews, Brenda J

    2017-01-02

    With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. © 2017 Grys et al.

  2. Development of a computational system for management of risks in radiosterilization processes of biological tissues

    International Nuclear Information System (INIS)

    Montoya, Cynara Viterbo

    2009-01-01

    Risk management can be understood to be a systematic management which aims to identify record and control the risks of a process. Applying risk management becomes a complex activity, due to the variety of professionals involved. In order to execute risk management the following are requirements of paramount importance: the experience, discernment and judgment of a multidisciplinary team, guided by means of quality tools, so as to provide standardization in the process of investigating the cause and effects of risks and dynamism in obtaining the objective desired, i.e. the reduction and control of the risk. This work aims to develop a computational system of risk management (software) which makes it feasible to diagnose the risks of the processes of radiosterilization of biological tissues. The methodology adopted was action-research, according to which the researcher performs an active role in the establishment of the problems found, in the follow-up and in the evaluation of the actions taken owing to the problems. The scenario of this action-research was the Laboratory of Biological Tissues (LTB) in the Radiation Technology Center IPEN/CNEN-SP - Sao Paulo/Brazil. The software developed was executed in PHP and Flash/MySQL language, the server (hosting), the software is available on the Internet (www.vcrisk.com.br), which the user can access from anywhere by means of the login/access password previously sent by email to the team responsible for the tissue to be analyzed. The software presents friendly navigability whereby the user is directed step-by-step in the process of investigating the risk up to the means of reducing it. The software 'makes' the user comply with the term and present the effectiveness of the actions taken to reduce the risk. Applying this system provided the organization (LTB/CTR/IPEN) with dynamic communication, effective between the members of the multidisciplinary team: a) in decision-making; b) in lessons learned; c) in knowing the new risk

  3. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    International Nuclear Information System (INIS)

    McMahon, S.

    2016-01-01

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  4. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, S. [Massachusetts General Hospital and Harvard Medical School (United States)

    2016-06-15

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  5. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    International Nuclear Information System (INIS)

    Hules, John A.

    2008-01-01

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics

  6. Approximate Bayesian computation.

    Directory of Open Access Journals (Sweden)

    Mikael Sunnåker

    Full Text Available Approximate Bayesian computation (ABC constitutes a class of computational methods rooted in Bayesian statistics. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and approximations whose impact needs to be carefully assessed. Furthermore, the wider application domain of ABC exacerbates the challenges of parameter estimation and model selection. ABC has rapidly gained popularity over the last years and in particular for the analysis of complex problems arising in biological sciences (e.g., in population genetics, ecology, epidemiology, and systems biology.

  7. Function of dynamic models in systems biology: linking structure to behaviour.

    Science.gov (United States)

    Knüpfer, Christian; Beckstein, Clemens

    2013-10-08

    Dynamic models in Systems Biology are used in computational simulation experiments for addressing biological questions. The complexity of the modelled biological systems and the growing number and size of the models calls for computer support for modelling and simulation in Systems Biology. This computer support has to be based on formal representations of relevant knowledge fragments. In this paper we describe different functional aspects of dynamic models. This description is conceptually embedded in our "meaning facets" framework which systematises the interpretation of dynamic models in structural, functional and behavioural facets. Here we focus on how function links the structure and the behaviour of a model. Models play a specific role (teleological function) in the scientific process of finding explanations for dynamic phenomena. In order to fulfil this role a model has to be used in simulation experiments (pragmatical function). A simulation experiment always refers to a specific situation and a state of the model and the modelled system (conditional function). We claim that the function of dynamic models refers to both the simulation experiment executed by software (intrinsic function) and the biological experiment which produces the phenomena under investigation (extrinsic function). We use the presented conceptual framework for the function of dynamic models to review formal accounts for functional aspects of models in Systems Biology, such as checklists, ontologies, and formal languages. Furthermore, we identify missing formal accounts for some of the functional aspects. In order to fill one of these gaps we propose an ontology for the teleological function of models. We have thoroughly analysed the role and use of models in Systems Biology. The resulting conceptual framework for the function of models is an important first step towards a comprehensive formal representation of the functional knowledge involved in the modelling and simulation process

  8. A review of imaging techniques for systems biology

    Directory of Open Access Journals (Sweden)

    Po Ming J

    2008-08-01

    Full Text Available Abstract This paper presents a review of imaging techniques and of their utility in system biology. During the last decade systems biology has matured into a distinct field and imaging has been increasingly used to enable the interplay of experimental and theoretical biology. In this review, we describe and compare the roles of microscopy, ultrasound, CT (Computed Tomography, MRI (Magnetic Resonance Imaging, PET (Positron Emission Tomography, and molecular probes such as quantum dots and nanoshells in systems biology. As a unified application area among these different imaging techniques, examples in cancer targeting are highlighted.

  9. Integrative Systems Biology Applied to Toxicology

    DEFF Research Database (Denmark)

    Kongsbak, Kristine Grønning

    associated with combined exposure to multiple chemicals. Testing all possible combinations of the tens of thousands environmental chemicals is impractical. This PhD project was launched to apply existing computational systems biology methods to toxicological research. In this thesis, I present in three...... of a system thereby suggesting new ways of thinking specific toxicological endpoints. Furthermore, computational methods can serve as valuable input for the hypothesis generating phase of the preparations of a research project....

  10. STICK: Spike Time Interval Computational Kernel, a Framework for General Purpose Computation Using Neurons, Precise Timing, Delays, and Synchrony.

    Science.gov (United States)

    Lagorce, Xavier; Benosman, Ryad

    2015-11-01

    There has been significant research over the past two decades in developing new platforms for spiking neural computation. Current neural computers are primarily developed to mimic biology. They use neural networks, which can be trained to perform specific tasks to mainly solve pattern recognition problems. These machines can do more than simulate biology; they allow us to rethink our current paradigm of computation. The ultimate goal is to develop brain-inspired general purpose computation architectures that can breach the current bottleneck introduced by the von Neumann architecture. This work proposes a new framework for such a machine. We show that the use of neuron-like units with precise timing representation, synaptic diversity, and temporal delays allows us to set a complete, scalable compact computation framework. The framework provides both linear and nonlinear operations, allowing us to represent and solve any function. We show usability in solving real use cases from simple differential equations to sets of nonlinear differential equations leading to chaotic attractors.

  11. Systems Biology of the Fluxome

    Directory of Open Access Journals (Sweden)

    Miguel A. Aon

    2015-07-01

    Full Text Available The advent of high throughput -omics has made the accumulation of comprehensive data sets possible, consisting of changes in genes, transcripts, proteins and metabolites. Systems biology-inspired computational methods for translating metabolomics data into fluxomics provide a direct functional, dynamic readout of metabolic networks. When combined with appropriate experimental design, these methods deliver insightful knowledge about cellular function under diverse conditions. The use of computational models accounting for detailed kinetics and regulatory mechanisms allow us to unravel the control and regulatory properties of the fluxome under steady and time-dependent behaviors. This approach extends the analysis of complex systems from description to prediction, including control of complex dynamic behavior ranging from biological rhythms to catastrophic lethal arrhythmias. The powerful quantitative metabolomics-fluxomics approach will help our ability to engineer unicellular and multicellular organisms evolve from trial-and-error to a more predictable process, and from cells to organ and organisms.

  12. Argudas: lessons for argumentation in biology based on a gene expression use case.

    Science.gov (United States)

    McLeod, Kenneth; Ferguson, Gus; Burger, Albert

    2012-01-25

    In situ hybridisation gene expression information helps biologists identify where a gene is expressed. However, the databases that republish the experimental information online are often both incomplete and inconsistent. Non-monotonic reasoning can help resolve such difficulties - one such form of reasoning is computational argumentation. Essentially this involves asking a computer to debate (i.e. reason about) the validity of a particular statement. Arguments are produced for both sides - the statement is true and, the statement is false - then the most powerful argument is used. In this work the computer is asked to debate whether or not a gene is expressed in a particular mouse anatomical structure. The information generated during the debate can be passed to the biological end-user, enabling their own decision-making process. This paper examines the evolution of a system, Argudas, which tests using computational argumentation in an in situ gene hybridisation gene expression use case. Argudas reasons using information extracted from several different online resources that publish gene expression information for the mouse. The development and evaluation of two prototypes is discussed. Throughout a number of issues shall be raised including the appropriateness of computational argumentation in biology and the challenges faced when integrating apparently similar online biological databases. From the work described in this paper it is clear that for argumentation to be effective in the biological domain the argumentation community need to develop further the tools and resources they provide. Additionally, the biological community must tackle the incongruity between overlapping and adjacent resources, thus facilitating the integration and modelling of biological information. Finally, this work highlights both the importance of, and difficulty in creating, a good model of the domain.

  13. Internet vis-a-vis marine biology

    Digital Repository Service at National Institute of Oceanography (India)

    Chavan, V.S.

    Internet is an amalgum of networks which reaches to more than 100 million people across the globe. The satellite-telecommunication based computer network web hosts information on every aspect of life. Marine biology related information too is being...

  14. The Robotic Scientist: Distilling Natural Laws from Experimental Data, from Cognitive Robotics to Computational Biology

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, Hod [Cornell University

    2011-10-25

    Can machines discover analytical laws automatically? For centuries, scientists have attempted to identify and document analytical laws that underlie physical phenomena in nature. Despite the prevalence of computing power, the process of finding natural laws and their corresponding equations has resisted automation. A key challenge to finding analytic relations automatically is defining algorithmically what makes a correlation in observed data important and insightful. By seeking dynamical invariants and symmetries, we show how we can go from finding just predictive models to finding deeper conservation laws. We demonstrated this approach by automatically searching motion-tracking data captured from various physical systems, ranging from simple harmonic oscillators to chaotic double-pendula. Without any prior knowledge about physics, kinematics, or geometry, the algorithm discovered Hamiltonians, Lagrangians, and other laws of geometric and momentum conservation. The discovery rate accelerated as laws found for simpler systems were used to bootstrap explanations for more complex systems, gradually uncovering the “alphabet” used to describe those systems. Application to modeling physical and biological systems will be shown.

  15. The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production

    Directory of Open Access Journals (Sweden)

    Tilmann Weber

    2016-06-01

    Full Text Available Natural products are among the most important sources of lead molecules for drug discovery. With the development of affordable whole-genome sequencing technologies and other ‘omics tools, the field of natural products research is currently undergoing a shift in paradigms. While, for decades, mainly analytical and chemical methods gave access to this group of compounds, nowadays genomics-based methods offer complementary approaches to find, identify and characterize such molecules. This paradigm shift also resulted in a high demand for computational tools to assist researchers in their daily work. In this context, this review gives a summary of tools and databases that currently are available to mine, identify and characterize natural product biosynthesis pathways and their producers based on ‘omics data. A web portal called Secondary Metabolite Bioinformatics Portal (SMBP at http://www.secondarymetabolites.org is introduced to provide a one-stop catalog and links to these bioinformatics resources. In addition, an outlook is presented how the existing tools and those to be developed will influence synthetic biology approaches in the natural products field.

  16. 20170312 - Computer Simulation of Developmental ...

    Science.gov (United States)

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  17. How do biological systems escape 'chaotic' state?

    Indian Academy of Sciences (India)

    B J Rao

    2018-02-13

    Feb 13, 2018 ... Lorencova 2016), sociology, physics, computer science, economics and even biology ... dynamic complexity associated with them at multiple levels? .... Social anthropology and the science of chaos (Oxford: Berghahn Books).

  18. Technical Development and Application of Soft Computing in Agricultural and Biological Engineering

    Science.gov (United States)

    Soft computing is a set of “inexact” computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and...

  19. Morphogenesis and pattern formation in biological systems experiments and models

    CERN Document Server

    Noji, Sumihare; Ueno, Naoto; Maini, Philip

    2003-01-01

    A central goal of current biology is to decode the mechanisms that underlie the processes of morphogenesis and pattern formation. Concerned with the analysis of those phenomena, this book covers a broad range of research fields, including developmental biology, molecular biology, plant morphogenesis, ecology, epidemiology, medicine, paleontology, evolutionary biology, mathematical biology, and computational biology. In Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models, experimental and theoretical aspects of biology are integrated for the construction and investigation of models of complex processes. This collection of articles on the latest advances by leading researchers not only brings together work from a wide spectrum of disciplines, but also provides a stepping-stone to the creation of new areas of discovery.

  20. A Computational Framework for Bioimaging Simulation

    Science.gov (United States)

    Watabe, Masaki; Arjunan, Satya N. V.; Fukushima, Seiya; Iwamoto, Kazunari; Kozuka, Jun; Matsuoka, Satomi; Shindo, Yuki; Ueda, Masahiro; Takahashi, Koichi

    2015-01-01

    Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units. PMID:26147508

  1. A Computational Framework for Bioimaging Simulation.

    Science.gov (United States)

    Watabe, Masaki; Arjunan, Satya N V; Fukushima, Seiya; Iwamoto, Kazunari; Kozuka, Jun; Matsuoka, Satomi; Shindo, Yuki; Ueda, Masahiro; Takahashi, Koichi

    2015-01-01

    Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units.

  2. A Computational Framework for Bioimaging Simulation.

    Directory of Open Access Journals (Sweden)

    Masaki Watabe

    Full Text Available Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units.

  3. Computerised modelling for developmental biology : an exploration with case studies

    NARCIS (Netherlands)

    Bertens, Laura M.F.

    2012-01-01

    Many studies in developmental biology rely on the construction and analysis of models. This research presents a broad view of modelling approaches for developmental biology, with a focus on computational methods. An overview of modelling techniques is given, followed by several case studies. Using

  4. STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB

    KAUST Repository

    Klingbeil, G.; Erban, R.; Giles, M.; Maini, P. K.

    2011-01-01

    Motivation: The importance of stochasticity in biological systems is becoming increasingly recognized and the computational cost of biologically realistic stochastic simulations urgently requires development of efficient software. We present a new

  5. Computational Intelligence for Engineering Systems

    CERN Document Server

    Madureira, A; Vale, Zita

    2011-01-01

    "Computational Intelligence for Engineering Systems" provides an overview and original analysis of new developments and advances in several areas of computational intelligence. Computational Intelligence have become the road-map for engineers to develop and analyze novel techniques to solve problems in basic sciences (such as physics, chemistry and biology) and engineering, environmental, life and social sciences. The contributions are written by international experts, who provide up-to-date aspects of the topics discussed and present recent, original insights into their own experien

  6. Biologically important conformational features of DNA as interpreted by quantum mechanics and molecular mechanics computations of its simple fragments.

    Science.gov (United States)

    Poltev, V; Anisimov, V M; Dominguez, V; Gonzalez, E; Deriabina, A; Garcia, D; Rivas, F; Polteva, N A

    2018-02-01

    Deciphering the mechanism of functioning of DNA as the carrier of genetic information requires identifying inherent factors determining its structure and function. Following this path, our previous DFT studies attributed the origin of unique conformational characteristics of right-handed Watson-Crick duplexes (WCDs) to the conformational profile of deoxydinucleoside monophosphates (dDMPs) serving as the minimal repeating units of DNA strand. According to those findings, the directionality of the sugar-phosphate chain and the characteristic ranges of dihedral angles of energy minima combined with the geometric differences between purines and pyrimidines determine the dependence on base sequence of the three-dimensional (3D) structure of WCDs. This work extends our computational study to complementary deoxydinucleotide-monophosphates (cdDMPs) of non-standard conformation, including those of Z-family, Hoogsteen duplexes, parallel-stranded structures, and duplexes with mispaired bases. For most of these systems, except Z-conformation, computations closely reproduce experimental data within the tolerance of characteristic limits of dihedral parameters for each conformation family. Computation of cdDMPs with Z-conformation reveals that their experimental structures do not correspond to the internal energy minimum. This finding establishes the leading role of external factors in formation of the Z-conformation. Energy minima of cdDMPs of non-Watson-Crick duplexes demonstrate different sequence-dependence features than those known for WCDs. The obtained results provide evidence that the biologically important regularities of 3D structure distinguish WCDs from duplexes having non-Watson-Crick nucleotide pairing.

  7. Simulation of biological ion channels with technology computer-aided design.

    Science.gov (United States)

    Pandey, Santosh; Bortei-Doku, Akwete; White, Marvin H

    2007-01-01

    Computer simulations of realistic ion channel structures have always been challenging and a subject of rigorous study. Simulations based on continuum electrostatics have proven to be computationally cheap and reasonably accurate in predicting a channel's behavior. In this paper we discuss the use of a device simulator, SILVACO, to build a solid-state model for KcsA channel and study its steady-state response. SILVACO is a well-established program, typically used by electrical engineers to simulate the process flow and electrical characteristics of solid-state devices. By employing this simulation program, we have presented an alternative computing platform for performing ion channel simulations, besides the known methods of writing codes in programming languages. With the ease of varying the different parameters in the channel's vestibule and the ability of incorporating surface charges, we have shown the wide-ranging possibilities of using a device simulator for ion channel simulations. Our simulated results closely agree with the experimental data, validating our model.

  8. Agent-based modelling in synthetic biology.

    Science.gov (United States)

    Gorochowski, Thomas E

    2016-11-30

    Biological systems exhibit complex behaviours that emerge at many different levels of organization. These span the regulation of gene expression within single cells to the use of quorum sensing to co-ordinate the action of entire bacterial colonies. Synthetic biology aims to make the engineering of biology easier, offering an opportunity to control natural systems and develop new synthetic systems with useful prescribed behaviours. However, in many cases, it is not understood how individual cells should be programmed to ensure the emergence of a required collective behaviour. Agent-based modelling aims to tackle this problem, offering a framework in which to simulate such systems and explore cellular design rules. In this article, I review the use of agent-based models in synthetic biology, outline the available computational tools, and provide details on recently engineered biological systems that are amenable to this approach. I further highlight the challenges facing this methodology and some of the potential future directions. © 2016 The Author(s).

  9. LASER BIOLOGY: Optomechanical tests of hydrated biological tissues subjected to laser shaping

    Science.gov (United States)

    Omel'chenko, A. I.; Sobol', E. N.

    2008-03-01

    The mechanical properties of a matrix are studied upon changing the size and shape of biological tissues during dehydration caused by weak laser-induced heating. The cartilage deformation, dehydration dynamics, and hydraulic conductivity are measured upon laser heating. The hydrated state and the shape of samples of separated fascias and cartilaginous tissues were controlled by using computer-aided processing of tissue images in polarised light.

  10. High-throughput open source computational methods for genetics and genomics

    NARCIS (Netherlands)

    Prins, J.C.P.

    2015-01-01

    Biology is increasingly data driven by virtue of the development of high-throughput technologies, such as DNA and RNA sequencing. Computational biology and bioinformatics are scientific disciplines that cross-over between the disciplines of biology, informatics and statistics; which is clearly

  11. Computational aspects of feedback in neural circuits.

    Directory of Open Access Journals (Sweden)

    Wolfgang Maass

    2007-01-01

    Full Text Available It has previously been shown that generic cortical microcircuit models can perform complex real-time computations on continuous input streams, provided that these computations can be carried out with a rapidly fading memory. We investigate the computational capability of such circuits in the more realistic case where not only readout neurons, but in addition a few neurons within the circuit, have been trained for specific tasks. This is essentially equivalent to the case where the output of trained readout neurons is fed back into the circuit. We show that this new model overcomes the limitation of a rapidly fading memory. In fact, we prove that in the idealized case without noise it can carry out any conceivable digital or analog computation on time-varying inputs. But even with noise, the resulting computational model can perform a large class of biologically relevant real-time computations that require a nonfading memory. We demonstrate these computational implications of feedback both theoretically, and through computer simulations of detailed cortical microcircuit models that are subject to noise and have complex inherent dynamics. We show that the application of simple learning procedures (such as linear regression or perceptron learning to a few neurons enables such circuits to represent time over behaviorally relevant long time spans, to integrate evidence from incoming spike trains over longer periods of time, and to process new information contained in such spike trains in diverse ways according to the current internal state of the circuit. In particular we show that such generic cortical microcircuits with feedback provide a new model for working memory that is consistent with a large set of biological constraints. Although this article examines primarily the computational role of feedback in circuits of neurons, the mathematical principles on which its analysis is based apply to a variety of dynamical systems. Hence they may also

  12. Computer Center: Software Review.

    Science.gov (United States)

    Duhrkopf, Richard, Ed.; Belshe, John F., Ed.

    1988-01-01

    Reviews a software package, "Mitosis-Meiosis," available for Apple II or IBM computers with colorgraphics capabilities. Describes the documentation, presentation and flexibility of the program. Rates the program based on graphics and usability in a biology classroom. (CW)

  13. Computing the functional proteome

    DEFF Research Database (Denmark)

    O'Brien, Edward J.; Palsson, Bernhard

    2015-01-01

    Constraint-based models enable the computation of feasible, optimal, and realized biological phenotypes from reaction network reconstructions and constraints on their operation. To date, stoichiometric reconstructions have largely focused on metabolism, resulting in genome-scale metabolic models (M...

  14. Computational Embryology and Predictive Toxicology of Cleft Palate

    Science.gov (United States)

    Capacity to model and simulate key events in developmental toxicity using computational systems biology and biological knowledge steps closer to hazard identification across the vast landscape of untested environmental chemicals. In this context, we chose cleft palate as a model ...

  15. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    International Nuclear Information System (INIS)

    Lewis, Daniel D.; Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng

    2014-01-01

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  16. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Daniel D. [Integrative Genetics and Genomics, University of California Davis, Davis, CA (United States); Department of Biomedical Engineering, University of California Davis, Davis, CA (United States); Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng, E-mail: cmtan@ucdavis.edu [Department of Biomedical Engineering, University of California Davis, Davis, CA (United States)

    2014-12-09

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  17. Cell illustrator 4.0: a computational platform for systems biology.

    Science.gov (United States)

    Nagasaki, Masao; Saito, Ayumu; Jeong, Euna; Li, Chen; Kojima, Kaname; Ikeda, Emi; Miyano, Satoru

    2011-01-01

    Cell Illustrator is a software platform for Systems Biology that uses the concept of Petri net for modeling and simulating biopathways. It is intended for biological scientists working at bench. The latest version of Cell Illustrator 4.0 uses Java Web Start technology and is enhanced with new capabilities, including: automatic graph grid layout algorithms using ontology information; tools using Cell System Markup Language (CSML) 3.0 and Cell System Ontology 3.0; parameter search module; high-performance simulation module; CSML database management system; conversion from CSML model to programming languages (FORTRAN, C, C++, Java, Python and Perl); import from SBML, CellML, and BioPAX; and, export to SVG and HTML. Cell Illustrator employs an extension of hybrid Petri net in an object-oriented style so that biopathway models can include objects such as DNA sequence, molecular density, 3D localization information, transcription with frame-shift, translation with codon table, as well as biochemical reactions.

  18. 2D neural hardware versus 3D biological ones

    Energy Technology Data Exchange (ETDEWEB)

    Beiu, V.

    1998-12-31

    This paper will present important limitations of hardware neural nets as opposed to biological neural nets (i.e. the real ones). The author starts by discussing neural structures and their biological inspirations, while mentioning the simplifications leading to artificial neural nets. Going further, the focus will be on hardware constraints. The author will present recent results for three different alternatives of implementing neural networks: digital, threshold gate, and analog, while the area and the delay will be related to neurons' fan-in and weights' precision. Based on all of these, it will be shown why hardware implementations cannot cope with their biological inspiration with respect to their power of computation: the mapping onto silicon lacking the third dimension of biological nets. This translates into reduced fan-in, and leads to reduced precision. The main conclusion is that one is faced with the following alternatives: (1) try to cope with the limitations imposed by silicon, by speeding up the computation of the elementary silicon neurons; (2) investigate solutions which would allow one to use the third dimension, e.g. using optical interconnections.

  19. Efficient computation of spaced seeds

    Directory of Open Access Journals (Sweden)

    Ilie Silvana

    2012-02-01

    Full Text Available Abstract Background The most frequently used tools in bioinformatics are those searching for similarities, or local alignments, between biological sequences. Since the exact dynamic programming algorithm is quadratic, linear-time heuristics such as BLAST are used. Spaced seeds are much more sensitive than the consecutive seed of BLAST and using several seeds represents the current state of the art in approximate search for biological sequences. The most important aspect is computing highly sensitive seeds. Since the problem seems hard, heuristic algorithms are used. The leading software in the common Bernoulli model is the SpEED program. Findings SpEED uses a hill climbing method based on the overlap complexity heuristic. We propose a new algorithm for this heuristic that improves its speed by over one order of magnitude. We use the new implementation to compute improved seeds for several software programs. We compute as well multiple seeds of the same weight as MegaBLAST, that greatly improve its sensitivity. Conclusion Multiple spaced seeds are being successfully used in bioinformatics software programs. Enabling researchers to compute very fast high quality seeds will help expanding the range of their applications.

  20. Topology in Molecular Biology

    CERN Document Server

    Monastyrsky, Michail Ilych

    2007-01-01

    The book presents a class of new results in molecular biology for which topological methods and ideas are important. These include: the large-scale conformation properties of DNA; computational methods (Monte Carlo) allowing the simulation of large-scale properties of DNA; the tangle model of DNA recombination and other applications of Knot theory; dynamics of supercoiled DNA and biocatalitic properties of DNA; the structure of proteins; and other very recent problems in molecular biology. The text also provides a short course of modern topology intended for the broad audience of biologists and physicists. The authors are renowned specialists in their fields and some of the new results presented here are documented for the first time in monographic form.

  1. Computational disease modeling – fact or fiction?

    Directory of Open Access Journals (Sweden)

    Stephan Klaas

    2009-06-01

    Full Text Available Abstract Background Biomedical research is changing due to the rapid accumulation of experimental data at an unprecedented scale, revealing increasing degrees of complexity of biological processes. Life Sciences are facing a transition from a descriptive to a mechanistic approach that reveals principles of cells, cellular networks, organs, and their interactions across several spatial and temporal scales. There are two conceptual traditions in biological computational-modeling. The bottom-up approach emphasizes complex intracellular molecular models and is well represented within the systems biology community. On the other hand, the physics-inspired top-down modeling strategy identifies and selects features of (presumably essential relevance to the phenomena of interest and combines available data in models of modest complexity. Results The workshop, "ESF Exploratory Workshop on Computational disease Modeling", examined the challenges that computational modeling faces in contributing to the understanding and treatment of complex multi-factorial diseases. Participants at the meeting agreed on two general conclusions. First, we identified the critical importance of developing analytical tools for dealing with model and parameter uncertainty. Second, the development of predictive hierarchical models spanning several scales beyond intracellular molecular networks was identified as a major objective. This contrasts with the current focus within the systems biology community on complex molecular modeling. Conclusion During the workshop it became obvious that diverse scientific modeling cultures (from computational neuroscience, theory, data-driven machine-learning approaches, agent-based modeling, network modeling and stochastic-molecular simulations would benefit from intense cross-talk on shared theoretical issues in order to make progress on clinically relevant problems.

  2. Synthesis and biological evaluation of the progenitor of a new class of cephalosporin analogues, with a particular focus on structure-based computational analysis.

    Directory of Open Access Journals (Sweden)

    Anna Verdino

    Full Text Available We present the synthesis and biological evaluation of the prototype of a new class of cephalosporins, containing an additional isolated beta lactam ring with two phenyl substituents. This new compound is effective against Gram positive microorganisms, with a potency similar to that of ceftriaxone, a cephalosporin widely used in clinics and taken as a reference, and with no cytotoxicity against two different human cell lines, even at a concentration much higher than the minimal inhibitory concentration tested. Additionally, a deep computational analysis has been conducted with the aim of understanding the contribution of its moieties to the binding energy towards several penicillin-binding proteins from both Gram positive and Gram negative bacteria. All these results will help us developing derivatives of this compound with improved chemical and biological properties, such as a broader spectrum of action and/or an increased affinity towards their molecular targets.

  3. Hidden Markov processes theory and applications to biology

    CERN Document Server

    Vidyasagar, M

    2014-01-01

    This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are t

  4. Genome Scale Modeling in Systems Biology: Algorithms and Resources

    Science.gov (United States)

    Najafi, Ali; Bidkhori, Gholamreza; Bozorgmehr, Joseph H.; Koch, Ina; Masoudi-Nejad, Ali

    2014-01-01

    In recent years, in silico studies and trial simulations have complemented experimental procedures. A model is a description of a system, and a system is any collection of interrelated objects; an object, moreover, is some elemental unit upon which observations can be made but whose internal structure either does not exist or is ignored. Therefore, any network analysis approach is critical for successful quantitative modeling of biological systems. This review highlights some of most popular and important modeling algorithms, tools, and emerging standards for representing, simulating and analyzing cellular networks in five sections. Also, we try to show these concepts by means of simple example and proper images and graphs. Overall, systems biology aims for a holistic description and understanding of biological processes by an integration of analytical experimental approaches along with synthetic computational models. In fact, biological networks have been developed as a platform for integrating information from high to low-throughput experiments for the analysis of biological systems. We provide an overview of all processes used in modeling and simulating biological networks in such a way that they can become easily understandable for researchers with both biological and mathematical backgrounds. Consequently, given the complexity of generated experimental data and cellular networks, it is no surprise that researchers have turned to computer simulation and the development of more theory-based approaches to augment and assist in the development of a fully quantitative understanding of cellular dynamics. PMID:24822031

  5. SSTRAP: A computational model for genomic motif discovery ...

    African Journals Online (AJOL)

    Computational methods can potentially provide high-quality prediction of biological molecules such as DNA binding sites and Transcription factors and therefore reduce the time needed for experimental verification and challenges associated with experimental methods. These biological molecules or motifs have significant ...

  6. Towards a cyberinfrastructure for the biological sciences: progress, visions and challenges.

    Science.gov (United States)

    Stein, Lincoln D

    2008-09-01

    Biology is an information-driven science. Large-scale data sets from genomics, physiology, population genetics and imaging are driving research at a dizzying rate. Simultaneously, interdisciplinary collaborations among experimental biologists, theorists, statisticians and computer scientists have become the key to making effective use of these data sets. However, too many biologists have trouble accessing and using these electronic data sets and tools effectively. A 'cyberinfrastructure' is a combination of databases, network protocols and computational services that brings people, information and computational tools together to perform science in this information-driven world. This article reviews the components of a biological cyberinfrastructure, discusses current and pending implementations, and notes the many challenges that lie ahead.

  7. How computational models can help unlock biological systems.

    Science.gov (United States)

    Brodland, G Wayne

    2015-12-01

    With computation models playing an ever increasing role in the advancement of science, it is important that researchers understand what it means to model something; recognize the implications of the conceptual, mathematical and algorithmic steps of model construction; and comprehend what models can and cannot do. Here, we use examples to show that models can serve a wide variety of roles, including hypothesis testing, generating new insights, deepening understanding, suggesting and interpreting experiments, tracing chains of causation, doing sensitivity analyses, integrating knowledge, and inspiring new approaches. We show that models can bring together information of different kinds and do so across a range of length scales, as they do in multi-scale, multi-faceted embryogenesis models, some of which connect gene expression, the cytoskeleton, cell properties, tissue mechanics, morphogenetic movements and phenotypes. Models cannot replace experiments nor can they prove that particular mechanisms are at work in a given situation. But they can demonstrate whether or not a proposed mechanism is sufficient to produce an observed phenomenon. Although the examples in this article are taken primarily from the field of embryo mechanics, most of the arguments and discussion are applicable to any form of computational modelling. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  8. Towards a Population Dynamics Theory for Evolutionary Computing: Learning from Biological Population Dynamics in Nature

    Science.gov (United States)

    Ma, Zhanshan (Sam)

    In evolutionary computing (EC), population size is one of the critical parameters that a researcher has to deal with. Hence, it was no surprise that the pioneers of EC, such as De Jong (1975) and Holland (1975), had already studied the population sizing from the very beginning of EC. What is perhaps surprising is that more than three decades later, we still largely depend on the experience or ad-hoc trial-and-error approach to set the population size. For example, in a recent monograph, Eiben and Smith (2003) indicated: "In almost all EC applications, the population size is constant and does not change during the evolutionary search." Despite enormous research on this issue in recent years, we still lack a well accepted theory for population sizing. In this paper, I propose to develop a population dynamics theory forEC with the inspiration from the population dynamics theory of biological populations in nature. Essentially, the EC population is considered as a dynamic system over time (generations) and space (search space or fitness landscape), similar to the spatial and temporal dynamics of biological populations in nature. With this conceptual mapping, I propose to 'transplant' the biological population dynamics theory to EC via three steps: (i) experimentally test the feasibility—whether or not emulating natural population dynamics improves the EC performance; (ii) comparatively study the underlying mechanisms—why there are improvements, primarily via statistical modeling analysis; (iii) conduct theoretical analysis with theoretical models such as percolation theory and extended evolutionary game theory that are generally applicable to both EC and natural populations. This article is a summary of a series of studies we have performed to achieve the general goal [27][30]-[32]. In the following, I start with an extremely brief introduction on the theory and models of natural population dynamics (Sections 1 & 2). In Sections 4 to 6, I briefly discuss three

  9. Multi-objective optimization of a compact pressurized water nuclear reactor computational model for biological shielding design using innovative materials

    Energy Technology Data Exchange (ETDEWEB)

    Tunes, M.A., E-mail: matheus.tunes@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil); Oliveira, C.R.E. de, E-mail: cassiano@unm.edu [Department of Nuclear Engineering, The University of New Mexico, Farris Engineering Center, 221, Albuquerque, NM 87131-1070 (United States); Schön, C.G., E-mail: schoen@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil)

    2017-03-15

    Highlights: • Use of two n-γ transport codes leads to optimized model of compact nuclear reactor. • It was possible to safely reduce both weight and volume of the biological shielding. • Best configuration obtained by using new composites for both γ and n attenuation. - Abstract: The aim of the present work is to develop a computational model of a compact pressurized water nuclear reactor (PWR) to investigate the use of innovative materials to enhance the biological shielding effectiveness. Two radiation transport codes were used: the first one – MCNP – for the PWR design and the GEM/EVENT to simulate (in a 1D slab) the behavior of several materials and shielding thickness on gamma and neutron radiation. Additionally MATLAB Optimization Toolbox was used to provide new geometric configurations of the slab aiming at reducing the volume and weight of the walls by means of a cost/objective function. It is demonstrated in the reactor model that the dose rate outside biological shielding has been reduced by one order of magnitude for the optimized model compared with the initial configuration. Volume and weight of the shielding walls were also reduced. The results indicated that one-dimensional deterministic code to reach an optimized geometry and test materials, combined with a three-dimensional model of a compact nuclear reactor in a stochastic code, is a fast and efficient procedure to test shielding performance and optimization before the experimental assessment. A major outcome of this research is that composite materials (ECOMASS 2150TU96) may replace (with advantages) traditional shielding materials without jeopardizing the nuclear power plant safety assurance.

  10. Inverse problems in systems biology

    International Nuclear Information System (INIS)

    Engl, Heinz W; Lu, James; Müller, Stefan; Flamm, Christoph; Schuster, Peter; Kügler, Philipp

    2009-01-01

    Systems biology is a new discipline built upon the premise that an understanding of how cells and organisms carry out their functions cannot be gained by looking at cellular components in isolation. Instead, consideration of the interplay between the parts of systems is indispensable for analyzing, modeling, and predicting systems' behavior. Studying biological processes under this premise, systems biology combines experimental techniques and computational methods in order to construct predictive models. Both in building and utilizing models of biological systems, inverse problems arise at several occasions, for example, (i) when experimental time series and steady state data are used to construct biochemical reaction networks, (ii) when model parameters are identified that capture underlying mechanisms or (iii) when desired qualitative behavior such as bistability or limit cycle oscillations is engineered by proper choices of parameter combinations. In this paper we review principles of the modeling process in systems biology and illustrate the ill-posedness and regularization of parameter identification problems in that context. Furthermore, we discuss the methodology of qualitative inverse problems and demonstrate how sparsity enforcing regularization allows the determination of key reaction mechanisms underlying the qualitative behavior. (topical review)

  11. Bioinformatics process management: information flow via a computational journal

    Directory of Open Access Journals (Sweden)

    Lushington Gerald

    2007-12-01

    Full Text Available Abstract This paper presents the Bioinformatics Computational Journal (BCJ, a framework for conducting and managing computational experiments in bioinformatics and computational biology. These experiments often involve series of computations, data searches, filters, and annotations which can benefit from a structured environment. Systems to manage computational experiments exist, ranging from libraries with standard data models to elaborate schemes to chain together input and output between applications. Yet, although such frameworks are available, their use is not widespread–ad hoc scripts are often required to bind applications together. The BCJ explores another solution to this problem through a computer based environment suitable for on-site use, which builds on the traditional laboratory notebook paradigm. It provides an intuitive, extensible paradigm designed for expressive composition of applications. Extensive features facilitate sharing data, computational methods, and entire experiments. By focusing on the bioinformatics and computational biology domain, the scope of the computational framework was narrowed, permitting us to implement a capable set of features for this domain. This report discusses the features determined critical by our system and other projects, along with design issues. We illustrate the use of our implementation of the BCJ on two domain-specific examples.

  12. Mammalian synthetic biology for studying the cell.

    Science.gov (United States)

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  13. BioNSi: A Discrete Biological Network Simulator Tool.

    Science.gov (United States)

    Rubinstein, Amir; Bracha, Noga; Rudner, Liat; Zucker, Noga; Sloin, Hadas E; Chor, Benny

    2016-08-05

    Modeling and simulation of biological networks is an effective and widely used research methodology. The Biological Network Simulator (BioNSi) is a tool for modeling biological networks and simulating their discrete-time dynamics, implemented as a Cytoscape App. BioNSi includes a visual representation of the network that enables researchers to construct, set the parameters, and observe network behavior under various conditions. To construct a network instance in BioNSi, only partial, qualitative biological data suffices. The tool is aimed for use by experimental biologists and requires no prior computational or mathematical expertise. BioNSi is freely available at http://bionsi.wix.com/bionsi , where a complete user guide and a step-by-step manual can also be found.

  14. Mechanics of Biological Tissues and Biomaterials: Current Trends

    OpenAIRE

    Amir A. Zadpoor

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address variou...

  15. Computational modeling of neural plasticity for self-organization of neural networks.

    Science.gov (United States)

    Chrol-Cannon, Joseph; Jin, Yaochu

    2014-11-01

    Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Computer Simulation of Developmental Processes and ...

    Science.gov (United States)

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  17. Parallel computing in genomic research: advances and applications

    Directory of Open Access Journals (Sweden)

    Ocaña K

    2015-11-01

    Full Text Available Kary Ocaña,1 Daniel de Oliveira2 1National Laboratory of Scientific Computing, Petrópolis, Rio de Janeiro, 2Institute of Computing, Fluminense Federal University, Niterói, Brazil Abstract: Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities. Keywords: high-performance computing, genomic research, cloud computing, grid computing, cluster computing, parallel computing

  18. Sixth Computational Biomechanics for Medicine Workshop

    CERN Document Server

    Nielsen, Poul MF; Miller, Karol; Computational Biomechanics for Medicine : Deformation and Flow

    2012-01-01

    One of the greatest challenges for mechanical engineers is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. This book is an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. Computational Biomechanics for Medicine: Deformation and Flow collects the papers from the Sixth Computational Biomechanics for Medicine Workshop held in Toronto in conjunction with the Medical Image Computing and Computer Assisted Intervention conference. The topics covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, and medical robotics.

  19. Anomalous Diffusion within the Transcriptome as a Bio-Inspired Computing Framework for Resilience

    Directory of Open Access Journals (Sweden)

    William Seffens

    2017-07-01

    Full Text Available Much of biology-inspired computer science is based on the Central Dogma, as implemented with genetic algorithms or evolutionary computation. That 60-year-old biological principle based on the genome, transcriptome and proteasome is becoming overshadowed by a new paradigm of complex ordered associations and connections between layers of biological entities, such as interactomes, metabolomics, etc. We define a new hierarchical concept as the “Connectosome”, and propose new venues of computational data structures based on a conceptual framework called “Grand Ensemble” which contains the Central Dogma as a subset. Connectedness and communication within and between living or biology-inspired systems comprise ensembles from which a physical computing system can be conceived. In this framework the delivery of messages is filtered by size and a simple and rapid semantic analysis of their content. This work aims to initiate discussion on the Grand Ensemble in network biology as a representation of a Persistent Turing Machine. This framework adding interaction and persistency to the classic Turing-machine model uses metrics based on resilience that has application to dynamic optimization problem solving in Genetic Programming.

  20. Tav4SB: integrating tools for analysis of kinetic models of biological systems.

    Science.gov (United States)

    Rybiński, Mikołaj; Lula, Michał; Banasik, Paweł; Lasota, Sławomir; Gambin, Anna

    2012-04-05

    Progress in the modeling of biological systems strongly relies on the availability of specialized computer-aided tools. To that end, the Taverna Workbench eases integration of software tools for life science research and provides a common workflow-based framework for computational experiments in Biology. The Taverna services for Systems Biology (Tav4SB) project provides a set of new Web service operations, which extend the functionality of the Taverna Workbench in a domain of systems biology. Tav4SB operations allow you to perform numerical simulations or model checking of, respectively, deterministic or stochastic semantics of biological models. On top of this functionality, Tav4SB enables the construction of high-level experiments. As an illustration of possibilities offered by our project we apply the multi-parameter sensitivity analysis. To visualize the results of model analysis a flexible plotting operation is provided as well. Tav4SB operations are executed in a simple grid environment, integrating heterogeneous software such as Mathematica, PRISM and SBML ODE Solver. The user guide, contact information, full documentation of available Web service operations, workflows and other additional resources can be found at the Tav4SB project's Web page: http://bioputer.mimuw.edu.pl/tav4sb/. The Tav4SB Web service provides a set of integrated tools in the domain for which Web-based applications are still not as widely available as for other areas of computational biology. Moreover, we extend the dedicated hardware base for computationally expensive task of simulating cellular models. Finally, we promote the standardization of models and experiments as well as accessibility and usability of remote services.

  1. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Science.gov (United States)

    Goff, Stephen A.; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E.; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H.; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B. S.; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M.; Cranston, Karen A.; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J.; White, Jeffery W.; Leebens-Mack, James; Donoghue, Michael J.; Spalding, Edgar P.; Vision, Todd J.; Myers, Christopher R.; Lowenthal, David; Enquist, Brian J.; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services. PMID:22645531

  2. The iPlant Collaborative: Cyberinfrastructure for Plant Biology.

    Science.gov (United States)

    Goff, Stephen A; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B S; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M; Cranston, Karen A; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J; White, Jeffery W; Leebens-Mack, James; Donoghue, Michael J; Spalding, Edgar P; Vision, Todd J; Myers, Christopher R; Lowenthal, David; Enquist, Brian J; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan

    2011-01-01

    The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

  3. The iPlant Collaborative: Cyberinfrastructure for Plant Biology

    Directory of Open Access Journals (Sweden)

    Stephen A Goff

    2011-07-01

    Full Text Available The iPlant Collaborative (iPlant is a United States National Science Foundation (NSF funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006. iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.

  4. The Virtual Institute for Integrative Biology (VIIB)

    International Nuclear Information System (INIS)

    Rivera, G.; Gonzalez-Nieto, F.; Perez-Acle, T.; Isea, R.; Holmes, D. S.

    2007-01-01

    The Virtual Institute for Integrative Biology (VII B) is a Latin American initiative for achieving global collaborative e-Science in the areas of bioinformatics, genome biology, systems biology, Metagenomic, medical applications and nanobiotechnolgy. The scientific agenda of VIIB includes: construction of databases for comparative genomic, the AlterORF database for alternate open reading frames discovery in genomes, bioinformatics services and protein simulations for biotechnological and medical applications. Human resource development has been promoted through co-sponsored students and shared teaching and seminars via video conferencing. E-Science challenges include: inter operability and connectivity concerns, high performance computing limitations, and the development of customized computational frameworks and flexible work flows to efficiently exploit shared resources without causing impediments to the user. Outreach programs include training workshops and classes for high school teachers and students and the new Adopt-a-Gene initiative. The VIIB has proved an effective way for small teams to transcend the critical mass problem, to overcome geographic limitations, to harness the power of large scale, collaborative science and improve the visibility of Latin American science It may provide a useful paradigm for developing further e-Science initiatives in Latin America and other emerging regions. (Author)

  5. Unmet needs for analyzing biological big data: A survey of 704 NSF principal investigators.

    Science.gov (United States)

    Barone, Lindsay; Williams, Jason; Micklos, David

    2017-10-01

    In a 2016 survey of 704 National Science Foundation (NSF) Biological Sciences Directorate principal investigators (BIO PIs), nearly 90% indicated they are currently or will soon be analyzing large data sets. BIO PIs considered a range of computational needs important to their work, including high performance computing (HPC), bioinformatics support, multistep workflows, updated analysis software, and the ability to store, share, and publish data. Previous studies in the United States and Canada emphasized infrastructure needs. However, BIO PIs said the most pressing unmet needs are training in data integration, data management, and scaling analyses for HPC-acknowledging that data science skills will be required to build a deeper understanding of life. This portends a growing data knowledge gap in biology and challenges institutions and funding agencies to redouble their support for computational training in biology.

  6. GRAPES: a software for parallel searching on biological graphs targeting multi-core architectures.

    Directory of Open Access Journals (Sweden)

    Rosalba Giugno

    Full Text Available Biological applications, from genomics to ecology, deal with graphs that represents the structure of interactions. Analyzing such data requires searching for subgraphs in collections of graphs. This task is computationally expensive. Even though multicore architectures, from commodity computers to more advanced symmetric multiprocessing (SMP, offer scalable computing power, currently published software implementations for indexing and graph matching are fundamentally sequential. As a consequence, such software implementations (i do not fully exploit available parallel computing power and (ii they do not scale with respect to the size of graphs in the database. We present GRAPES, software for parallel searching on databases of large biological graphs. GRAPES implements a parallel version of well-established graph searching algorithms, and introduces new strategies which naturally lead to a faster parallel searching system especially for large graphs. GRAPES decomposes graphs into subcomponents that can be efficiently searched in parallel. We show the performance of GRAPES on representative biological datasets containing antiviral chemical compounds, DNA, RNA, proteins, protein contact maps and protein interactions networks.

  7. Introduction to morphogenetic computing

    CERN Document Server

    Resconi, Germano; Xu, Guanglin

    2017-01-01

    This book offers a concise introduction to morphogenetic computing, showing that its use makes global and local relations, defects in crystal non-Euclidean geometry databases with source and sink, genetic algorithms, and neural networks more stable and efficient. It also presents applications to database, language, nanotechnology with defects, biological genetic structure, electrical circuit, and big data structure. In Turing machines, input and output states form a system – when the system is in one state, the input is transformed into output. This computation is always deterministic and without any possible contradiction or defects. In natural computation there are defects and contradictions that have to be solved to give a coherent and effective computation. The new computation generates the morphology of the system that assumes different forms in time. Genetic process is the prototype of the morphogenetic computing. At the Boolean logic truth value, we substitute a set of truth (active sets) values with...

  8. The computational psychiatry of reward: Broken brains or misguided minds?

    Directory of Open Access Journals (Sweden)

    Michael eMoutoussis

    2015-09-01

    Full Text Available Research into the biological basis of emotional and motivational disorders is in danger of riding roughshod over a patient-centred psychiatry and falling into the dualist errors of the past, i.e. by treating mind and brain as conceptually distinct. We argue that a psychiatry informed by computational neuroscience, computational psychiatry, can obviate this danger. Through a focus on the reasoning processes by which humans attempt to maximise reward (and minimise punishment, and how such reasoning is expressed neurally, computational psychiatry can render obsolete the polarity between biological and psychosocial conceptions of illness. Here, the term 'psychological' comes to refer to information processing performed by biological agents, seen in light of underlying goals. We reflect on the implications of this perspective for a definition of mental disorder, including what is entailed in asserting that a particular disorder is ‘biological’ or ‘psychological’ in origin. We propose that a computational approach assists in understanding the topography of mental disorder, while cautioning that the point at which eccentric reasoning constitutes disorder often remains a matter of cultural judgement.

  9. A cyber-linked undergraduate research experience in computational biomolecular structure prediction and design.

    Science.gov (United States)

    Alford, Rebecca F; Leaver-Fay, Andrew; Gonzales, Lynda; Dolan, Erin L; Gray, Jeffrey J

    2017-12-01

    Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology.

  10. A cyber-linked undergraduate research experience in computational biomolecular structure prediction and design.

    Directory of Open Access Journals (Sweden)

    Rebecca F Alford

    2017-12-01

    Full Text Available Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology.

  11. Genome annotation in a community college cell biology lab.

    Science.gov (United States)

    Beagley, C Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning skills. Additionally, the project strengthens student understanding of the scientific method and contributes to student learning gains in curricular objectives centered around basic molecular biology, specifically, the Central Dogma. Importantly, inclusion of this project in the laboratory course provides students with a positive learning environment and allows for the use of cooperative learning strategies to increase overall student success. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  12. Persistent Memory in Single Node Delay-Coupled Reservoir Computing.

    Science.gov (United States)

    Kovac, André David; Koall, Maximilian; Pipa, Gordon; Toutounji, Hazem

    2016-01-01

    Delays are ubiquitous in biological systems, ranging from genetic regulatory networks and synaptic conductances, to predator/pray population interactions. The evidence is mounting, not only to the presence of delays as physical constraints in signal propagation speed, but also to their functional role in providing dynamical diversity to the systems that comprise them. The latter observation in biological systems inspired the recent development of a computational architecture that harnesses this dynamical diversity, by delay-coupling a single nonlinear element to itself. This architecture is a particular realization of Reservoir Computing, where stimuli are injected into the system in time rather than in space as is the case with classical recurrent neural network realizations. This architecture also exhibits an internal memory which fades in time, an important prerequisite to the functioning of any reservoir computing device. However, fading memory is also a limitation to any computation that requires persistent storage. In order to overcome this limitation, the current work introduces an extended version to the single node Delay-Coupled Reservoir, that is based on trained linear feedback. We show by numerical simulations that adding task-specific linear feedback to the single node Delay-Coupled Reservoir extends the class of solvable tasks to those that require nonfading memory. We demonstrate, through several case studies, the ability of the extended system to carry out complex nonlinear computations that depend on past information, whereas the computational power of the system with fading memory alone quickly deteriorates. Our findings provide the theoretical basis for future physical realizations of a biologically-inspired ultrafast computing device with extended functionality.

  13. Perspective: Reaches of chemical physics in biology

    Science.gov (United States)

    Gruebele, Martin; Thirumalai, D.

    2013-01-01

    Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry. PMID:24089712

  14. Perspective: Reaches of chemical physics in biology.

    Science.gov (United States)

    Gruebele, Martin; Thirumalai, D

    2013-09-28

    Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry.

  15. Synthetic biology expands chemical control of microorganisms.

    Science.gov (United States)

    Ford, Tyler J; Silver, Pamela A

    2015-10-01

    The tools of synthetic biology allow researchers to change the ways engineered organisms respond to chemical stimuli. Decades of basic biology research and new efforts in computational protein and RNA design have led to the development of small molecule sensors that can be used to alter organism function. These new functions leap beyond the natural propensities of the engineered organisms. They can range from simple fluorescence or growth reporting to pathogen killing, and can involve metabolic coordination among multiple cells or organisms. Herein, we discuss how synthetic biology alters microorganisms' responses to chemical stimuli resulting in the development of microbes as toxicity sensors, disease treatments, and chemical factories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. High-performance computing using FPGAs

    CERN Document Server

    Benkrid, Khaled

    2013-01-01

    This book is concerned with the emerging field of High Performance Reconfigurable Computing (HPRC), which aims to harness the high performance and relative low power of reconfigurable hardware–in the form Field Programmable Gate Arrays (FPGAs)–in High Performance Computing (HPC) applications. It presents the latest developments in this field from applications, architecture, and tools and methodologies points of view. We hope that this work will form a reference for existing researchers in the field, and entice new researchers and developers to join the HPRC community.  The book includes:  Thirteen application chapters which present the most important application areas tackled by high performance reconfigurable computers, namely: financial computing, bioinformatics and computational biology, data search and processing, stencil computation e.g. computational fluid dynamics and seismic modeling, cryptanalysis, astronomical N-body simulation, and circuit simulation.     Seven architecture chapters which...

  17. Statistical approach for selection of biologically informative genes.

    Science.gov (United States)

    Das, Samarendra; Rai, Anil; Mishra, D C; Rai, Shesh N

    2018-05-20

    Selection of informative genes from high dimensional gene expression data has emerged as an important research area in genomics. Many gene selection techniques have been proposed so far are either based on relevancy or redundancy measure. Further, the performance of these techniques has been adjudged through post selection classification accuracy computed through a classifier using the selected genes. This performance metric may be statistically sound but may not be biologically relevant. A statistical approach, i.e. Boot-MRMR, was proposed based on a composite measure of maximum relevance and minimum redundancy, which is both statistically sound and biologically relevant for informative gene selection. For comparative evaluation of the proposed approach, we developed two biological sufficient criteria, i.e. Gene Set Enrichment with QTL (GSEQ) and biological similarity score based on Gene Ontology (GO). Further, a systematic and rigorous evaluation of the proposed technique with 12 existing gene selection techniques was carried out using five gene expression datasets. This evaluation was based on a broad spectrum of statistically sound (e.g. subject classification) and biological relevant (based on QTL and GO) criteria under a multiple criteria decision-making framework. The performance analysis showed that the proposed technique selects informative genes which are more biologically relevant. The proposed technique is also found to be quite competitive with the existing techniques with respect to subject classification and computational time. Our results also showed that under the multiple criteria decision-making setup, the proposed technique is best for informative gene selection over the available alternatives. Based on the proposed approach, an R Package, i.e. BootMRMR has been developed and available at https://cran.r-project.org/web/packages/BootMRMR. This study will provide a practical guide to select statistical techniques for selecting informative genes

  18. High Performance Computing and Storage Requirements for Biological and Environmental Research Target 2017

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Wasserman, Harvey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)

    2013-05-01

    The National Energy Research Scientific Computing Center (NERSC) is the primary computing center for the DOE Office of Science, serving approximately 4,500 users working on some 650 projects that involve nearly 600 codes in a wide variety of scientific disciplines. In addition to large-­scale computing and storage resources NERSC provides support and expertise that help scientists make efficient use of its systems. The latest review revealed several key requirements, in addition to achieving its goal of characterizing BER computing and storage needs.

  19. Computational models of airway branching morphogenesis.

    Science.gov (United States)

    Varner, Victor D; Nelson, Celeste M

    2017-07-01

    The bronchial network of the mammalian lung consists of millions of dichotomous branches arranged in a highly complex, space-filling tree. Recent computational models of branching morphogenesis in the lung have helped uncover the biological mechanisms that construct this ramified architecture. In this review, we focus on three different theoretical approaches - geometric modeling, reaction-diffusion modeling, and continuum mechanical modeling - and discuss how, taken together, these models have identified the geometric principles necessary to build an efficient bronchial network, as well as the patterning mechanisms that specify airway geometry in the developing embryo. We emphasize models that are integrated with biological experiments and suggest how recent progress in computational modeling has advanced our understanding of airway branching morphogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Function-Based Algorithms for Biological Sequences

    Science.gov (United States)

    Mohanty, Pragyan Sheela P.

    2015-01-01

    Two problems at two different abstraction levels of computational biology are studied. At the molecular level, efficient pattern matching algorithms in DNA sequences are presented. For gene order data, an efficient data structure is presented capable of storing all gene re-orderings in a systematic manner. A common characteristic of presented…

  1. Computational neuroscience a first course

    CERN Document Server

    Mallot, Hanspeter A

    2013-01-01

    Computational Neuroscience - A First Course provides an essential introduction to computational neuroscience and  equips readers with a fundamental understanding of modeling the nervous system at the membrane, cellular, and network level. The book, which grew out of a lecture series held regularly for more than ten years to graduate students in neuroscience with backgrounds in biology, psychology and medicine, takes its readers on a journey through three fundamental domains of computational neuroscience: membrane biophysics, systems theory and artificial neural networks. The required mathematical concepts are kept as intuitive and simple as possible throughout the book, making it fully accessible to readers who are less familiar with mathematics. Overall, Computational Neuroscience - A First Course represents an essential reference guide for all neuroscientists who use computational methods in their daily work, as well as for any theoretical scientist approaching the field of computational neuroscience.

  2. The next step in biology: A periodic table?

    Indian Academy of Sciences (India)

    PRAKASH KUMAR

    2007-08-06

    Aug 6, 2007 ... from computer science, mathematics and engineering to solve a biological problem. ... fulfill human needs of energy, environment, health–to name a few. ... scalar process (diffusion)? Probably some more questions that merit ...

  3. From biological and social network metaphors to coupled bio-social wireless networks

    Science.gov (United States)

    Barrett, Christopher L.; Eubank, Stephen; Anil Kumar, V.S.; Marathe, Madhav V.

    2010-01-01

    Biological and social analogies have been long applied to complex systems. Inspiration has been drawn from biological solutions to solve problems in engineering products and systems, ranging from Velcro to camouflage to robotics to adaptive and learning computing methods. In this paper, we present an overview of recent advances in understanding biological systems as networks and use this understanding to design and analyse wireless communication networks. We expand on two applications, namely cognitive sensing and control and wireless epidemiology. We discuss how our work in these two applications is motivated by biological metaphors. We believe that recent advances in computing and communications coupled with advances in health and social sciences raise the possibility of studying coupled bio-social communication networks. We argue that we can better utilise the advances in our understanding of one class of networks to better our understanding of the other. PMID:21643462

  4. [Application of microelectronics CAD tools to synthetic biology].

    Science.gov (United States)

    Madec, Morgan; Haiech, Jacques; Rosati, Élise; Rezgui, Abir; Gendrault, Yves; Lallement, Christophe

    2017-02-01

    Synthetic biology is an emerging science that aims to create new biological functions that do not exist in nature, based on the knowledge acquired in life science over the last century. Since the beginning of this century, several projects in synthetic biology have emerged. The complexity of the developed artificial bio-functions is relatively low so that empirical design methods could be used for the design process. Nevertheless, with the increasing complexity of biological circuits, this is no longer the case and a large number of computer aided design softwares have been developed in the past few years. These tools include languages for the behavioral description and the mathematical modelling of biological systems, simulators at different levels of abstraction, libraries of biological devices and circuit design automation algorithms. All of these tools already exist in other fields of engineering sciences, particularly in microelectronics. This is the approach that is put forward in this paper. © 2017 médecine/sciences – Inserm.

  5. Medical image computing and computer-assisted intervention - MICCAI 2005. Proceedings; Pt. 1

    International Nuclear Information System (INIS)

    Duncan, J.S.; Gerig, G.

    2005-01-01

    The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis. (orig.)

  6. Medical image computing and computer science intervention. MICCAI 2005. Pt. 2. Proceedings

    International Nuclear Information System (INIS)

    Duncan, J.S.; Yale Univ., New Haven, CT; Gerig, G.

    2005-01-01

    The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis. (orig.)

  7. Medical image computing and computer-assisted intervention - MICCAI 2005. Proceedings; Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.S. [Yale Univ., New Haven, CT (United States). Dept. of Biomedical Engineering and Diagnostic Radiology; Gerig, G. (eds.) [North Carolina Univ., Chapel Hill (United States). Dept. of Computer Science

    2005-07-01

    The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis. (orig.)

  8. Medical image computing and computer science intervention. MICCAI 2005. Pt. 2. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.S. [Yale Univ., New Haven, CT (United States). Dept. of Biomedical Engineering]|[Yale Univ., New Haven, CT (United States). Dept. of Diagnostic Radiology; Gerig, G. (eds.) [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Computer Science

    2005-07-01

    The two-volume set LNCS 3749 and LNCS 3750 constitutes the refereed proceedings of the 8th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2005, held in Palm Springs, CA, USA, in October 2005. Based on rigorous peer reviews the program committee selected 237 carefully revised full papers from 632 submissions for presentation in two volumes. The first volume includes all the contributions related to image analysis and validation, vascular image segmentation, image registration, diffusion tensor image analysis, image segmentation and analysis, clinical applications - validation, imaging systems - visualization, computer assisted diagnosis, cellular and molecular image analysis, physically-based modeling, robotics and intervention, medical image computing for clinical applications, and biological imaging - simulation and modeling. The second volume collects the papers related to robotics, image-guided surgery and interventions, image registration, medical image computing, structural and functional brain analysis, model-based image analysis, image-guided intervention: simulation, modeling and display, and image segmentation and analysis. (orig.)

  9. Computational methods in metabolic engineering for strain design.

    Science.gov (United States)

    Long, Matthew R; Ong, Wai Kit; Reed, Jennifer L

    2015-08-01

    Metabolic engineering uses genetic approaches to control microbial metabolism to produce desired compounds. Computational tools can identify new biological routes to chemicals and the changes needed in host metabolism to improve chemical production. Recent computational efforts have focused on exploring what compounds can be made biologically using native, heterologous, and/or enzymes with broad specificity. Additionally, computational methods have been developed to suggest different types of genetic modifications (e.g. gene deletion/addition or up/down regulation), as well as suggest strategies meeting different criteria (e.g. high yield, high productivity, or substrate co-utilization). Strategies to improve the runtime performances have also been developed, which allow for more complex metabolic engineering strategies to be identified. Future incorporation of kinetic considerations will further improve strain design algorithms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Action spectra affect variability of the climatology of biologically effective ultraviolet radiation on cloud-free days.

    Science.gov (United States)

    Grifoni, D; Zipoli, G; Sabatini, F; Messeri, G; Bacci, L

    2013-12-01

    Action spectrum (AS) describes the relative effectiveness of ultraviolet (UV) radiation in producing biological effects and allows spectral UV irradiance to be weighted in order to compute biologically effective UV radiation (UVBE). The aim of this research was to study the seasonal and latitudinal distribution over Europe of daily UVBE doses responsible for various biological effects on humans and plants. Clear sky UV radiation spectra were computed at 30-min time intervals for the first day of each month of the year for Rome, Potsdam and Trondheim using a radiative transfer model fed with climatological data. Spectral data were weighted using AS for erythema, vitamin D synthesis, cataract and photokeratitis for humans, while the generalised plant damage and the plant damage AS were used for plants. The daily UVBE doses for the above-mentioned biological processes were computed and are analysed in this study. The patterns of variation due to season (for each location) and latitude (for each date) resulted as being specific for each adopted AS. The biological implications of these results are briefly discussed highlighting the importance of a specific UVBE climatology for each biological process.

  11. Action spectra affect variability of the climatology of biologically effective ultraviolet radiation on cloud-free days

    International Nuclear Information System (INIS)

    Grifoni, D.; Zipoli, G.; Sabatini, F.; Messeri, G.; Bacci, L.

    2013-01-01

    Action spectrum (AS) describes the relative effectiveness of ultraviolet (UV) radiation in producing biological effects and allows spectral UV irradiance to be weighted in order to compute biologically effective UV radiation (UVBE). The aim of this research was to study the seasonal and latitudinal distribution over Europe of daily UVBE doses responsible for various biological effects on humans and plants. Clear sky UV radiation spectra were computed at 30-min time intervals for the first day of each month of the year for Rome, Potsdam and Trondheim using a radiative transfer model fed with climatological data. Spectral data were weighted using AS for erythema, vitamin D synthesis, cataract and photo-keratitis for humans, while the generalised plant damage and the plant damage AS were used for plants. The daily UVBE doses for the above-mentioned biological processes were computed and are analysed in this study. The patterns of variation due to season (for each location) and latitude (for each date) resulted as being specific for each adopted AS. The biological implications of these results are briefly discussed highlighting the importance of a specific UVBE climatology for each biological process. (authors)

  12. Unmet needs for analyzing biological big data: A survey of 704 NSF principal investigators.

    Directory of Open Access Journals (Sweden)

    Lindsay Barone

    2017-10-01

    Full Text Available In a 2016 survey of 704 National Science Foundation (NSF Biological Sciences Directorate principal investigators (BIO PIs, nearly 90% indicated they are currently or will soon be analyzing large data sets. BIO PIs considered a range of computational needs important to their work, including high performance computing (HPC, bioinformatics support, multistep workflows, updated analysis software, and the ability to store, share, and publish data. Previous studies in the United States and Canada emphasized infrastructure needs. However, BIO PIs said the most pressing unmet needs are training in data integration, data management, and scaling analyses for HPC-acknowledging that data science skills will be required to build a deeper understanding of life. This portends a growing data knowledge gap in biology and challenges institutions and funding agencies to redouble their support for computational training in biology.

  13. Simple Calculation Programs for Biology Immunological Methods

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Simple Calculation Programs for Biology Immunological Methods. Computation of Ab/Ag Concentration from EISA data. Graphical Method; Raghava et al., 1992, J. Immuno. Methods 153: 263. Determination of affinity of Monoclonal Antibody. Using non-competitive ...

  14. Biological substantiation of antipsychotic-associated pneumonia: Systematic literature review and computational analyses.

    Science.gov (United States)

    Sultana, Janet; Calabró, Marco; Garcia-Serna, Ricard; Ferrajolo, Carmen; Crisafulli, Concetta; Mestres, Jordi; Trifirò', Gianluca

    2017-01-01

    Antipsychotic (AP) safety has been widely investigated. However, mechanisms underlying AP-associated pneumonia are not well-defined. The aim of this study was to investigate the known mechanisms of AP-associated pneumonia through a systematic literature review, confirm these mechanisms using an independent data source on drug targets and attempt to identify novel AP drug targets potentially linked to pneumonia. A search was conducted in Medline and Web of Science to identify studies exploring the association between pneumonia and antipsychotic use, from which information on hypothesized mechanism of action was extracted. All studies had to be in English and had to concern AP use as an intervention in persons of any age and for any indication, provided that the outcome was pneumonia. Information on the study design, population, exposure, outcome, risk estimate and mechanism of action was tabulated. Public repositories of pharmacology and drug safety data were used to identify the receptor binding profile and AP safety events. Cytoscape was then used to map biological pathways that could link AP targets and off-targets to pneumonia. The literature search yielded 200 articles; 41 were included in the review. Thirty studies reported a hypothesized mechanism of action, most commonly activation/inhibition of cholinergic, histaminergic and dopaminergic receptors. In vitro pharmacology data confirmed receptor affinities identified in the literature review. Two targets, thromboxane A2 receptor (TBXA2R) and platelet activating factor receptor (PTAFR) were found to be novel AP target receptors potentially associated with pneumonia. Biological pathways constructed using Cytoscape identified plausible biological links potentially leading to pneumonia downstream of TBXA2R and PTAFR. Innovative approaches for biological substantiation of drug-adverse event associations may strengthen evidence on drug safety profiles and help to tailor pharmacological therapies to patient risk

  15. Mechanics of Biological Tissues and Biomaterials: Current Trends (editorial)

    OpenAIRE

    Zadpoor, A.A.

    2015-01-01

    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address variou...

  16. Instrumental neutron activation analysis of biological samples

    International Nuclear Information System (INIS)

    Guinn, V.P.; Gavrilas, M.

    1990-01-01

    The elemental compositions of 18 biological reference materials have been processed, for 14 stepped combinations of irradiation/decay/counting times, by the INAA Advance Prediction Computer Program. The 18 materials studied include 11 plant materials, 5 animal materials, and 2 other biological materials. Of these 18 materials, 14 are NBS Standard Reference Materials and four are IAEA reference materials. Overall, the results show that a mean of 52% of the input elements can be determined to a relative standard deviation of ±10% or better by reactor flux (thermal plus epithermal) INAA

  17. Yeast systems biology to unravel the network of life

    DEFF Research Database (Denmark)

    Mustacchi, Roberta; Hohmann, S; Nielsen, Jens

    2006-01-01

    Systems biology focuses on obtaining a quantitative description of complete biological systems, even complete cellular function. In this way, it will be possible to perform computer-guided design of novel drugs, advanced therapies for treatment of complex diseases, and to perform in silico design....... Furthermore, it serves as an industrial workhorse for production of a wide range of chemicals and pharmaceuticals. Systems biology involves the combination of novel experimental techniques from different disciplines as well as functional genomics, bioinformatics and mathematical modelling, and hence no single...... laboratory has access to all the necessary competences. For this reason the Yeast Systems Biology Network (YSBN) has been established. YSBN will coordinate research efforts, in yeast systems biology and, through the recently obtained EU funding for a Coordination Action, it will be possible to set...

  18. Computational Psychiatry

    Science.gov (United States)

    Wang, Xiao-Jing; Krystal, John H.

    2014-01-01

    Psychiatric disorders such as autism and schizophrenia arise from abnormalities in brain systems that underlie cognitive, emotional and social functions. The brain is enormously complex and its abundant feedback loops on multiple scales preclude intuitive explication of circuit functions. In close interplay with experiments, theory and computational modeling are essential for understanding how, precisely, neural circuits generate flexible behaviors and their impairments give rise to psychiatric symptoms. This Perspective highlights recent progress in applying computational neuroscience to the study of mental disorders. We outline basic approaches, including identification of core deficits that cut across disease categories, biologically-realistic modeling bridging cellular and synaptic mechanisms with behavior, model-aided diagnosis. The need for new research strategies in psychiatry is urgent. Computational psychiatry potentially provides powerful tools for elucidating pathophysiology that may inform both diagnosis and treatment. To achieve this promise will require investment in cross-disciplinary training and research in this nascent field. PMID:25442941

  19. Persistent Memory in Single Node Delay-Coupled Reservoir Computing.

    Directory of Open Access Journals (Sweden)

    André David Kovac

    Full Text Available Delays are ubiquitous in biological systems, ranging from genetic regulatory networks and synaptic conductances, to predator/pray population interactions. The evidence is mounting, not only to the presence of delays as physical constraints in signal propagation speed, but also to their functional role in providing dynamical diversity to the systems that comprise them. The latter observation in biological systems inspired the recent development of a computational architecture that harnesses this dynamical diversity, by delay-coupling a single nonlinear element to itself. This architecture is a particular realization of Reservoir Computing, where stimuli are injected into the system in time rather than in space as is the case with classical recurrent neural network realizations. This architecture also exhibits an internal memory which fades in time, an important prerequisite to the functioning of any reservoir computing device. However, fading memory is also a limitation to any computation that requires persistent storage. In order to overcome this limitation, the current work introduces an extended version to the single node Delay-Coupled Reservoir, that is based on trained linear feedback. We show by numerical simulations that adding task-specific linear feedback to the single node Delay-Coupled Reservoir extends the class of solvable tasks to those that require nonfading memory. We demonstrate, through several case studies, the ability of the extended system to carry out complex nonlinear computations that depend on past information, whereas the computational power of the system with fading memory alone quickly deteriorates. Our findings provide the theoretical basis for future physical realizations of a biologically-inspired ultrafast computing device with extended functionality.

  20. Strategies for structuring interdisciplinary education in Systems Biology

    DEFF Research Database (Denmark)

    Cvijovic, Marija; Höfer, Thomas; Aćimović, Jure

    2016-01-01

    function by employing experimental data, mathematical models and computational simulations. As Systems Biology is inherently multidisciplinary, education within this field meets numerous hurdles including departmental barriers, availability of all required expertise locally, appropriate teaching material...... and example curricula. As university education at the Bachelor’s level is traditionally built upon disciplinary degrees, we believe that the most effective way to implement education in Systems Biology would be at the Master’s level, as it offers a more flexible framework. Our team of experts and active...... performers of Systems Biology education suggest here (i) a definition of the skills that students should acquire within a Master’s programme in Systems Biology, (ii) a possible basic educational curriculum with flexibility to adjust to different application areas and local research strengths, (iii...

  1. Computer - based modeling in extract sciences research -III ...

    African Journals Online (AJOL)

    Molecular modeling techniques have been of great applicability in the study of the biological sciences and other exact science fields like agriculture, mathematics, computer science and the like. In this write up, a list of computer programs for predicting, for instance, the structure of proteins has been provided. Discussions on ...

  2. Elucidating reaction mechanisms on quantum computers

    Science.gov (United States)

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias

    2017-01-01

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources. PMID:28674011

  3. Elucidating reaction mechanisms on quantum computers

    Science.gov (United States)

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias

    2017-07-01

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.

  4. Elucidating reaction mechanisms on quantum computers.

    Science.gov (United States)

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M; Wecker, Dave; Troyer, Matthias

    2017-07-18

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.

  5. Semantic Web meets Integrative Biology: a survey.

    Science.gov (United States)

    Chen, Huajun; Yu, Tong; Chen, Jake Y

    2013-01-01

    Integrative Biology (IB) uses experimental or computational quantitative technologies to characterize biological systems at the molecular, cellular, tissue and population levels. IB typically involves the integration of the data, knowledge and capabilities across disciplinary boundaries in order to solve complex problems. We identify a series of bioinformatics problems posed by interdisciplinary integration: (i) data integration that interconnects structured data across related biomedical domains; (ii) ontology integration that brings jargons, terminologies and taxonomies from various disciplines into a unified network of ontologies; (iii) knowledge integration that integrates disparate knowledge elements from multiple sources; (iv) service integration that build applications out of services provided by different vendors. We argue that IB can benefit significantly from the integration solutions enabled by Semantic Web (SW) technologies. The SW enables scientists to share content beyond the boundaries of applications and websites, resulting into a web of data that is meaningful and understandable to any computers. In this review, we provide insight into how SW technologies can be used to build open, standardized and interoperable solutions for interdisciplinary integration on a global basis. We present a rich set of case studies in system biology, integrative neuroscience, bio-pharmaceutics and translational medicine, to highlight the technical features and benefits of SW applications in IB.

  6. Maze learning by a hybrid brain-computer system.

    Science.gov (United States)

    Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan

    2016-09-13

    The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation.

  7. Maze learning by a hybrid brain-computer system

    Science.gov (United States)

    Wu, Zhaohui; Zheng, Nenggan; Zhang, Shaowu; Zheng, Xiaoxiang; Gao, Liqiang; Su, Lijuan

    2016-09-01

    The combination of biological and artificial intelligence is particularly driven by two major strands of research: one involves the control of mechanical, usually prosthetic, devices by conscious biological subjects, whereas the other involves the control of animal behaviour by stimulating nervous systems electrically or optically. However, to our knowledge, no study has demonstrated that spatial learning in a computer-based system can affect the learning and decision making behaviour of the biological component, namely a rat, when these two types of intelligence are wired together to form a new intelligent entity. Here, we show how rule operations conducted by computing components contribute to a novel hybrid brain-computer system, i.e., ratbots, exhibit superior learning abilities in a maze learning task, even when their vision and whisker sensation were blocked. We anticipate that our study will encourage other researchers to investigate combinations of various rule operations and other artificial intelligence algorithms with the learning and memory processes of organic brains to develop more powerful cyborg intelligence systems. Our results potentially have profound implications for a variety of applications in intelligent systems and neural rehabilitation.

  8. SIAM Conference on Computational Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-08-29

    The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third mode of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS

  9. Soft computing techniques in engineering applications

    CERN Document Server

    Zhong, Baojiang

    2014-01-01

    The Soft Computing techniques, which are based on the information processing of biological systems are now massively used in the area of pattern recognition, making prediction & planning, as well as acting on the environment. Ideally speaking, soft computing is not a subject of homogeneous concepts and techniques; rather, it is an amalgamation of distinct methods that confirms to its guiding principle. At present, the main aim of soft computing is to exploit the tolerance for imprecision and uncertainty to achieve tractability, robustness and low solutions cost. The principal constituents of soft computing techniques are probabilistic reasoning, fuzzy logic, neuro-computing, genetic algorithms, belief networks, chaotic systems, as well as learning theory. This book covers contributions from various authors to demonstrate the use of soft computing techniques in various applications of engineering.  

  10. An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.

    Directory of Open Access Journals (Sweden)

    Afnizanfaizal Abdullah

    Full Text Available The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.

  11. An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.

    Science.gov (United States)

    Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N V

    2013-01-01

    The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.

  12. Computational Intelligence and Decision Making Trends and Applications

    CERN Document Server

    Madureira, Ana; Marques, Viriato

    2013-01-01

    This book provides a general overview and original analysis of new developments and applications in several areas of Computational Intelligence and Information Systems. Computational Intelligence has become an important tool for engineers to develop and analyze novel techniques to solve problems in basic sciences such as physics, chemistry, biology, engineering, environment and social sciences.   The material contained in this book addresses the foundations and applications of Artificial Intelligence and Decision Support Systems, Complex and Biological Inspired Systems, Simulation and Evolution of Real and Artificial Life Forms, Intelligent Models and Control Systems, Knowledge and Learning Technologies, Web Semantics and Ontologies, Intelligent Tutoring Systems, Intelligent Power Systems, Self-Organized and Distributed Systems, Intelligent Manufacturing Systems and Affective Computing. The contributions have all been written by international experts, who provide current views on the topics discussed and pr...

  13. Computational Modeling in Tissue Engineering

    CERN Document Server

    2013-01-01

    One of the major challenges in tissue engineering is the translation of biological knowledge on complex cell and tissue behavior into a predictive and robust engineering process. Mastering this complexity is an essential step towards clinical applications of tissue engineering. This volume discusses computational modeling tools that allow studying the biological complexity in a more quantitative way. More specifically, computational tools can help in:  (i) quantifying and optimizing the tissue engineering product, e.g. by adapting scaffold design to optimize micro-environmental signals or by adapting selection criteria to improve homogeneity of the selected cell population; (ii) quantifying and optimizing the tissue engineering process, e.g. by adapting bioreactor design to improve quality and quantity of the final product; and (iii) assessing the influence of the in vivo environment on the behavior of the tissue engineering product, e.g. by investigating vascular ingrowth. The book presents examples of each...

  14. Theoretical discussion for quantum computation in biological systems

    Science.gov (United States)

    Baer, Wolfgang

    2010-04-01

    Analysis of the brain as a physical system, that has the capacity of generating a display of every day observed experiences and contains some knowledge of the physical reality which stimulates those experiences, suggests the brain executes a self-measurement process described by quantum theory. Assuming physical reality is a universe of interacting self-measurement loops, we present a model of space as a field of cells executing such self-measurement activities. Empty space is the observable associated with the measurement of this field when the mass and charge density defining the material aspect of the cells satisfy the least action principle. Content is the observable associated with the measurement of the quantum wave function ψ interpreted as mass-charge displacements. The illusion of space and its content incorporated into cognitive biological systems is evidence of self-measurement activity that can be associated with quantum operations.

  15. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    Science.gov (United States)

    Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network. PMID:20810955

  16. Mathematical biology modules based on modern molecular biology and modern discrete mathematics.

    Science.gov (United States)

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network.

  17. Computational Protein Design

    DEFF Research Database (Denmark)

    Johansson, Kristoffer Enøe

    Proteins are the major functional group of molecules in biology. The impact of protein science on medicine and chemical productions is rapidly increasing. However, the greatest potential remains to be realized. The fi eld of protein design has advanced computational modeling from a tool of support...... to a central method that enables new developments. For example, novel enzymes with functions not found in natural proteins have been de novo designed to give enough activity for experimental optimization. This thesis presents the current state-of-the-art within computational design methods together...... with a novel method based on probability theory. With the aim of assembling a complete pipeline for protein design, this work touches upon several aspects of protein design. The presented work is the computational half of a design project where the other half is dedicated to the experimental part...

  18. Recent advances in modeling languages for pathway maps and computable biological networks.

    Science.gov (United States)

    Slater, Ted

    2014-02-01

    As our theories of systems biology grow more sophisticated, the models we use to represent them become larger and more complex. Languages necessarily have the expressivity and flexibility required to represent these models in ways that support high-resolution annotation, and provide for simulation and analysis that are sophisticated enough to allow researchers to master their data in the proper context. These languages also need to facilitate model sharing and collaboration, which is currently best done by using uniform data structures (such as graphs) and language standards. In this brief review, we discuss three of the most recent systems biology modeling languages to appear: BEL, PySB and BCML, and examine how they meet these needs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.

    Science.gov (United States)

    Schwemmer, Michael A; Fairhall, Adrienne L; Denéve, Sophie; Shea-Brown, Eric T

    2015-07-15

    While spike timing has been shown to carry detailed stimulus information at the sensory periphery, its possible role in network computation is less clear. Most models of computation by neural networks are based on population firing rates. In equivalent spiking implementations, firing is assumed to be random such that averaging across populations of neurons recovers the rate-based approach. Recently, however, Denéve and colleagues have suggested that the spiking behavior of neurons may be fundamental to how neuronal networks compute, with precise spike timing determined by each neuron's contribution to producing the desired output (Boerlin and Denéve, 2011; Boerlin et al., 2013). By postulating that each neuron fires to reduce the error in the network's output, it was demonstrated that linear computations can be performed by networks of integrate-and-fire neurons that communicate through instantaneous synapses. This left open, however, the possibility that realistic networks, with conductance-based neurons with subthreshold nonlinearity and the slower timescales of biophysical synapses, may not fit into this framework. Here, we show how the spike-based approach can be extended to biophysically plausible networks. We then show that our network reproduces a number of key features of cortical networks including irregular and Poisson-like spike times and a tight balance between excitation and inhibition. Lastly, we discuss how the behavior of our model scales with network size or with the number of neurons "recorded" from a larger computing network. These results significantly increase the biological plausibility of the spike-based approach to network computation. We derive a network of neurons with standard spike-generating currents and synapses with realistic timescales that computes based upon the principle that the precise timing of each spike is important for the computation. We then show that our network reproduces a number of key features of cortical networks

  20. Synthetic biology advances for pharmaceutical production

    OpenAIRE

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems.

  1. Networks as a Privileged Way to Develop Mesoscopic Level Approaches in Systems Biology

    OpenAIRE

    Alessandro Giuliani

    2014-01-01

    The methodologies advocated in computational biology are in many cases proper system-level approaches. These methodologies are variously connected to the notion of “mesosystem” and thus on the focus on relational structures that are at the basis of biological regulation. Here, I describe how the formalization of biological systems by means of graph theory constitutes an extremely fruitful approach to biology. I suggest the epistemological relevance of the notion of graph resides in its multil...

  2. Molecular Science Computing Facility Scientific Challenges: Linking Across Scales

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.; Windus, Theresa L.

    2005-07-01

    The purpose of this document is to define the evolving science drivers for performing environmental molecular research at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and to provide guidance associated with the next-generation high-performance computing center that must be developed at EMSL's Molecular Science Computing Facility (MSCF) in order to address this critical research. The MSCF is the pre-eminent computing facility?supported by the U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research (BER)?tailored to provide the fastest time-to-solution for current computational challenges in chemistry and biology, as well as providing the means for broad research in the molecular and environmental sciences. The MSCF provides integral resources and expertise to emerging EMSL Scientific Grand Challenges and Collaborative Access Teams that are designed to leverage the multiple integrated research capabilities of EMSL, thereby creating a synergy between computation and experiment to address environmental molecular science challenges critical to DOE and the nation.

  3. Computational Streetscapes

    Directory of Open Access Journals (Sweden)

    Paul M. Torrens

    2016-09-01

    Full Text Available Streetscapes have presented a long-standing interest in many fields. Recently, there has been a resurgence of attention on streetscape issues, catalyzed in large part by computing. Because of computing, there is more understanding, vistas, data, and analysis of and on streetscape phenomena than ever before. This diversity of lenses trained on streetscapes permits us to address long-standing questions, such as how people use information while mobile, how interactions with people and things occur on streets, how we might safeguard crowds, how we can design services to assist pedestrians, and how we could better support special populations as they traverse cities. Amid each of these avenues of inquiry, computing is facilitating new ways of posing these questions, particularly by expanding the scope of what-if exploration that is possible. With assistance from computing, consideration of streetscapes now reaches across scales, from the neurological interactions that form among place cells in the brain up to informatics that afford real-time views of activity over whole urban spaces. For some streetscape phenomena, computing allows us to build realistic but synthetic facsimiles in computation, which can function as artificial laboratories for testing ideas. In this paper, I review the domain science for studying streetscapes from vantages in physics, urban studies, animation and the visual arts, psychology, biology, and behavioral geography. I also review the computational developments shaping streetscape science, with particular emphasis on modeling and simulation as informed by data acquisition and generation, data models, path-planning heuristics, artificial intelligence for navigation and way-finding, timing, synthetic vision, steering routines, kinematics, and geometrical treatment of collision detection and avoidance. I also discuss the implications that the advances in computing streetscapes might have on emerging developments in cyber

  4. Optomechanical tests of hydrated biological tissues subjected to laser shaping

    International Nuclear Information System (INIS)

    Omel'chenko, A I; Sobol', E N

    2008-01-01

    The mechanical properties of a matrix are studied upon changing the size and shape of biological tissues during dehydration caused by weak laser-induced heating. The cartilage deformation, dehydration dynamics, and hydraulic conductivity are measured upon laser heating. The hydrated state and the shape of samples of separated fascias and cartilaginous tissues were controlled by using computer-aided processing of tissue images in polarised light. (laser biology)

  5. Integration of Principles of Systems Biology and Radiation Biology: Toward Development of in silico Models to Optimize IUdR-Mediated Radiosensitization of DNA Mismatch Repair Deficient (Damage Tolerant) Human Cancers

    International Nuclear Information System (INIS)

    Kinsella, Timothy J.; Gurkan-Cavusoglu, Evren; Du, Weinan; Loparo, Kenneth A.

    2011-01-01

    Over the last 7 years, we have focused our experimental and computational research efforts on improving our understanding of the biochemical, molecular, and cellular processing of iododeoxyuridine (IUdR) and ionizing radiation (IR) induced DNA base damage by DNA mismatch repair (MMR). These coordinated research efforts, sponsored by the National Cancer Institute Integrative Cancer Biology Program (ICBP), brought together system scientists with expertise in engineering, mathematics, and complex systems theory and translational cancer researchers with expertise in radiation biology. Our overall goal was to begin to develop computational models of IUdR- and/or IR-induced base damage processing by MMR that may provide new clinical strategies to optimize IUdR-mediated radiosensitization in MMR deficient (MMR − ) “damage tolerant” human cancers. Using multiple scales of experimental testing, ranging from purified protein systems to in vitro (cellular) and to in vivo (human tumor xenografts in athymic mice) models, we have begun to integrate and interpolate these experimental data with hybrid stochastic biochemical models of MMR damage processing and probabilistic cell cycle regulation models through a systems biology approach. In this article, we highlight the results and current status of our integration of radiation biology approaches and computational modeling to enhance IUdR-mediated radiosensitization in MMR − damage tolerant cancers.

  6. Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.

    Science.gov (United States)

    Lan, Haidong; Chan, Yuandong; Xu, Kai; Schmidt, Bertil; Peng, Shaoliang; Liu, Weiguo

    2016-07-19

    Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence datasets and use Xeon Phi shuffle operations to improve I/O efficiency. Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.com/turbo0628/LSDBS-mpi .

  7. COMPUTATIONAL MODELING OF SIGNALING PATHWAYS MEDIATING CELL CYCLE AND APOPTOTIC RESPONSES TO IONIZING RADIATION MEDIATED DNA DAMAGE

    Science.gov (United States)

    Demonstrated of the use of a computational systems biology approach to model dose response relationships. Also discussed how the biologically motivated dose response models have only limited reference to the underlying molecular level. Discussed the integration of Computational S...

  8. Modeling of biological intelligence for SCM system optimization.

    Science.gov (United States)

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  9. Modeling of Biological Intelligence for SCM System Optimization

    Directory of Open Access Journals (Sweden)

    Shengyong Chen

    2012-01-01

    Full Text Available This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms.

  10. Modeling of Biological Intelligence for SCM System Optimization

    Science.gov (United States)

    Chen, Shengyong; Zheng, Yujun; Cattani, Carlo; Wang, Wanliang

    2012-01-01

    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms. PMID:22162724

  11. An Integrated Bioinformatics and Computational Biology Approach Identifies New BH3-Only Protein Candidates.

    Science.gov (United States)

    Hawley, Robert G; Chen, Yuzhong; Riz, Irene; Zeng, Chen

    2012-05-04

    In this study, we utilized an integrated bioinformatics and computational biology approach in search of new BH3-only proteins belonging to the BCL2 family of apoptotic regulators. The BH3 (BCL2 homology 3) domain mediates specific binding interactions among various BCL2 family members. It is composed of an amphipathic α-helical region of approximately 13 residues that has only a few amino acids that are highly conserved across all members. Using a generalized motif, we performed a genome-wide search for novel BH3-containing proteins in the NCBI Consensus Coding Sequence (CCDS) database. In addition to known pro-apoptotic BH3-only proteins, 197 proteins were recovered that satisfied the search criteria. These were categorized according to α-helical content and predictive binding to BCL-xL (encoded by BCL2L1) and MCL-1, two representative anti-apoptotic BCL2 family members, using position-specific scoring matrix models. Notably, the list is enriched for proteins associated with autophagy as well as a broad spectrum of cellular stress responses such as endoplasmic reticulum stress, oxidative stress, antiviral defense, and the DNA damage response. Several potential novel BH3-containing proteins are highlighted. In particular, the analysis strongly suggests that the apoptosis inhibitor and DNA damage response regulator, AVEN, which was originally isolated as a BCL-xL-interacting protein, is a functional BH3-only protein representing a distinct subclass of BCL2 family members.

  12. An algorithm to detect and communicate the differences in computational models describing biological systems.

    Science.gov (United States)

    Scharm, Martin; Wolkenhauer, Olaf; Waltemath, Dagmar

    2016-02-15

    Repositories support the reuse of models and ensure transparency about results in publications linked to those models. With thousands of models available in repositories, such as the BioModels database or the Physiome Model Repository, a framework to track the differences between models and their versions is essential to compare and combine models. Difference detection not only allows users to study the history of models but also helps in the detection of errors and inconsistencies. Existing repositories lack algorithms to track a model's development over time. Focusing on SBML and CellML, we present an algorithm to accurately detect and describe differences between coexisting versions of a model with respect to (i) the models' encoding, (ii) the structure of biological networks and (iii) mathematical expressions. This algorithm is implemented in a comprehensive and open source library called BiVeS. BiVeS helps to identify and characterize changes in computational models and thereby contributes to the documentation of a model's history. Our work facilitates the reuse and extension of existing models and supports collaborative modelling. Finally, it contributes to better reproducibility of modelling results and to the challenge of model provenance. The workflow described in this article is implemented in BiVeS. BiVeS is freely available as source code and binary from sems.uni-rostock.de. The web interface BudHat demonstrates the capabilities of BiVeS at budhat.sems.uni-rostock.de. © The Author 2015. Published by Oxford University Press.

  13. Biological Dynamics Markup Language (BDML): an open format for representing quantitative biological dynamics data.

    Science.gov (United States)

    Kyoda, Koji; Tohsato, Yukako; Ho, Kenneth H L; Onami, Shuichi

    2015-04-01

    Recent progress in live-cell imaging and modeling techniques has resulted in generation of a large amount of quantitative data (from experimental measurements and computer simulations) on spatiotemporal dynamics of biological objects such as molecules, cells and organisms. Although many research groups have independently dedicated their efforts to developing software tools for visualizing and analyzing these data, these tools are often not compatible with each other because of different data formats. We developed an open unified format, Biological Dynamics Markup Language (BDML; current version: 0.2), which provides a basic framework for representing quantitative biological dynamics data for objects ranging from molecules to cells to organisms. BDML is based on Extensible Markup Language (XML). Its advantages are machine and human readability and extensibility. BDML will improve the efficiency of development and evaluation of software tools for data visualization and analysis. A specification and a schema file for BDML are freely available online at http://ssbd.qbic.riken.jp/bdml/. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  14. Recent Advances in Computational Methods for Nuclear Magnetic Resonance Data Processing

    KAUST Repository

    Gao, Xin

    2013-01-01

    research attention from specialists in bioinformatics and computational biology. In this paper, we review recent advances in computational methods for NMR protein structure determination. We summarize the advantages of and bottlenecks in the existing

  15. Computer simulation of heating of biological tissue during laser radiation

    International Nuclear Information System (INIS)

    Bojanic, S.; Sreckovic, M.

    1995-01-01

    Computer model is based on an implicit finite difference scheme to solve the diffusion equation for light distribution and the bio-heat equation. A practical application of the model is to calculate the temperature distributions during thermal coagulation of prostate by radiative heating. (author)

  16. Probabilistic biological network alignment.

    Science.gov (United States)

    Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2013-01-01

    Interactions between molecules are probabilistic events. An interaction may or may not happen with some probability, depending on a variety of factors such as the size, abundance, or proximity of the interacting molecules. In this paper, we consider the problem of aligning two biological networks. Unlike existing methods, we allow one of the two networks to contain probabilistic interactions. Allowing interaction probabilities makes the alignment more biologically relevant at the expense of explosive growth in the number of alternative topologies that may arise from different subsets of interactions that take place. We develop a novel method that efficiently and precisely characterizes this massive search space. We represent the topological similarity between pairs of aligned molecules (i.e., proteins) with the help of random variables and compute their expected values. We validate our method showing that, without sacrificing the running time performance, it can produce novel alignments. Our results also demonstrate that our method identifies biologically meaningful mappings under a comprehensive set of criteria used in the literature as well as the statistical coherence measure that we developed to analyze the statistical significance of the similarity of the functions of the aligned protein pairs.

  17. A computational systems biology software platform for multiscale modeling and simulation: Integrating whole-body physiology, disease biology, and molecular reaction networks

    Directory of Open Access Journals (Sweden)

    Thomas eEissing

    2011-02-01

    Full Text Available Today, in silico studies and trial simulations already complement experimental approaches in pharmaceutical R&D and have become indispensable tools for decision making and communication with regulatory agencies. While biology is multi-scale by nature, project work and software tools usually focus on isolated aspects of drug action, such as pharmacokinetics at the organism scale or pharmacodynamic interaction on the molecular level. We present a modeling and simulation software platform consisting of PK-Sim® and MoBi® capable of building and simulating models that integrate across biological scales. A prototypical multiscale model for the progression of a pancreatic tumor and its response to pharmacotherapy is constructed and virtual patients are treated with a prodrug activated by hepatic metabolization. Tumor growth is driven by signal transduction leading to cell cycle transition and proliferation. Free tumor concentrations of the active metabolite inhibit Raf kinase in the signaling cascade and thereby cell cycle progression. In a virtual clinical study, the individual therapeutic outcome of the chemotherapeutic intervention is simulated for a large population with heterogeneous genomic background. Thereby, the platform allows efficient model building and integration of biological knowledge and prior data from all biological scales. Experimental in vitro model systems can be linked with observations in animal experiments and clinical trials. The interplay between patients, diseases, and drugs and topics with high clinical relevance such as the role of pharmacogenomics, drug-drug or drug-metabolite interactions can be addressed using this mechanistic, insight driven multiscale modeling approach.

  18. Mathematical manipulative models: in defense of "beanbag biology".

    Science.gov (United States)

    Jungck, John R; Gaff, Holly; Weisstein, Anton E

    2010-01-01

    Mathematical manipulative models have had a long history of influence in biological research and in secondary school education, but they are frequently neglected in undergraduate biology education. By linking mathematical manipulative models in a four-step process-1) use of physical manipulatives, 2) interactive exploration of computer simulations, 3) derivation of mathematical relationships from core principles, and 4) analysis of real data sets-we demonstrate a process that we have shared in biological faculty development workshops led by staff from the BioQUEST Curriculum Consortium over the past 24 yr. We built this approach based upon a broad survey of literature in mathematical educational research that has convincingly demonstrated the utility of multiple models that involve physical, kinesthetic learning to actual data and interactive simulations. Two projects that use this approach are introduced: The Biological Excel Simulations and Tools in Exploratory, Experiential Mathematics (ESTEEM) Project (http://bioquest.org/esteem) and Numerical Undergraduate Mathematical Biology Education (NUMB3R5 COUNT; http://bioquest.org/numberscount). Examples here emphasize genetics, ecology, population biology, photosynthesis, cancer, and epidemiology. Mathematical manipulative models help learners break through prior fears to develop an appreciation for how mathematical reasoning informs problem solving, inference, and precise communication in biology and enhance the diversity of quantitative biology education.

  19. Probes & Drugs portal: an interactive, open data resource for chemical biology

    Czech Academy of Sciences Publication Activity Database

    Škuta, Ctibor; Popr, M.; Muller, Tomáš; Jindřich, Jindřich; Kahle, Michal; Sedlák, David; Svozil, Daniel; Bartůněk, Petr

    2017-01-01

    Roč. 14, č. 8 (2017), s. 758-759 ISSN 1548-7091 R&D Projects: GA MŠk LO1220 Institutional support: RVO:68378050 Keywords : bioactive compound, ,, * chemical probe * chemical biology * portal Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 25.062, year: 2016

  20. Computer-Based Support of Decision Making Processes during Biological Incidents

    Directory of Open Access Journals (Sweden)

    Karel Antos

    2010-04-01

    Full Text Available The paper describes contextual analysis of a general system that should provide a computerized support of decision making processes related to response operations in case of a biological incident. This analysis is focused on information systems and information resources perspective and their integration using appropriate tools and technology. In the contextual design the basic modules of BioDSS system are suggested and further elaborated. The modules deal with incident description, scenarios development and recommendation of appropriate countermeasures. Proposals for further research are also included.

  1. Tracing organizing principles: Learning from the history of systems biology

    DEFF Research Database (Denmark)

    Green, Sara; Wolkenhauer, Olaf

    2014-01-01

    on this historical background in order to increase the understanding of the motivation behind the search for general principles and to clarify different epistemic aims within systems biology. We pinpoint key aspects of earlier approaches that also underlie the current practice. These are i) the focus on relational......With the emergence of systems biology, the identification of organizing principles is being highlighted as a key research aim. Researchers attempt to “reverse engineer” the functional organization of biological systems using methodologies from mathematics, engineering and computer science while...... taking advantage of data produced by new experimental techniques. While systems biology is a relatively new approach, the quest for general principles of biological organization dates back to systems theoretic approaches in early and mid-twentieth century. The aim of this paper is to draw...

  2. Synthetic biology advances for pharmaceutical production

    Science.gov (United States)

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems. PMID:25744872

  3. A Project-Based Biologically-Inspired Robotics Module

    Science.gov (United States)

    Crowder, R. M.; Zauner, K.-P.

    2013-01-01

    The design of any robotic system requires input from engineers from a variety of technical fields. This paper describes a project-based module, "Biologically-Inspired Robotics," that is offered to Electronics and Computer Science students at the University of Southampton, U.K. The overall objective of the module is for student groups to…

  4. Biology and hemodynamics of aneurismal vasculopathies

    International Nuclear Information System (INIS)

    Pereira, Vitor Mendes; Brina, Olivier; Gonzalez, Ana Marcos; Narata, Ana Paula; Ouared, Rafik; Karl-Olof, Lovblad

    2013-01-01

    Aneurysm vasculopathies represents a group of vascular disorders that share a common morphological diagnosis: a vascular dilation, the aneurysm. They can have a same etiology and a different clinical presentation or morphology, or have different etiology and very similar anatomical geometry. The biology of the aneurysm formation is a complex process that will be a result of an endogenous predisposition and epigenetic factors later on including the intracranial hemodynamics. We describe the biology of saccular aneurysms, its growth and rupture, as well as, current concepts of hemodynamics derived from application of computational flow dynamics on patient specific vascular models. Furthermore, we describe different aneurysm phenotypes and its extremely variability on morphological and etiological presentation

  5. Systems biology and biomarker discovery

    Energy Technology Data Exchange (ETDEWEB)

    Rodland, Karin D.

    2010-12-01

    Medical practitioners have always relied on surrogate markers of inaccessible biological processes to make their diagnosis, whether it was the pallor of shock, the flush of inflammation, or the jaundice of liver failure. Obviously, the current implementation of biomarkers for disease is far more sophisticated, relying on highly reproducible, quantitative measurements of molecules that are often mechanistically associated with the disease in question, as in glycated hemoglobin for the diagnosis of diabetes [1] or the presence of cardiac troponins in the blood for confirmation of myocardial infarcts [2]. In cancer, where the initial symptoms are often subtle and the consequences of delayed diagnosis often drastic for disease management, the impetus to discover readily accessible, reliable, and accurate biomarkers for early detection is compelling. Yet despite years of intense activity, the stable of clinically validated, cost-effective biomarkers for early detection of cancer is pathetically small and still dominated by a handful of markers (CA-125, CEA, PSA) first discovered decades ago. It is time, one could argue, for a fresh approach to the discovery and validation of disease biomarkers, one that takes full advantage of the revolution in genomic technologies and in the development of computational tools for the analysis of large complex datasets. This issue of Disease Markers is dedicated to one such new approach, loosely termed the 'Systems Biology of Biomarkers'. What sets the Systems Biology approach apart from other, more traditional approaches, is both the types of data used, and the tools used for data analysis - and both reflect the revolution in high throughput analytical methods and high throughput computing that has characterized the start of the twenty first century.

  6. Collaborative Systems Biology Projects for the Military Medical Community.

    Science.gov (United States)

    Zalatoris, Jeffrey J; Scheerer, Julia B; Lebeda, Frank J

    2017-09-01

    This pilot study was conducted to examine, for the first time, the ongoing systems biology research and development projects within the laboratories and centers of the U.S. Army Medical Research and Materiel Command (USAMRMC). The analysis has provided an understanding of the breadth of systems biology activities, resources, and collaborations across all USAMRMC subordinate laboratories. The Systems Biology Collaboration Center at USAMRMC issued a survey regarding systems biology research projects to the eight U.S.-based USAMRMC laboratories and centers in August 2016. This survey included a data call worksheet to gather self-identified project and programmatic information. The general topics focused on the investigators and their projects, on the project's research areas, on omics and other large data types being collected and stored, on the analytical or computational tools being used, and on identifying intramural (i.e., USAMRMC) and extramural collaborations. Among seven of the eight laboratories, 62 unique systems biology studies were funded and active during the final quarter of fiscal year 2016. Of 29 preselected medical Research Task Areas, 20 were associated with these studies, some of which were applicable to two or more Research Task Areas. Overall, studies were categorized among six general types of objectives: biological mechanisms of disease, risk of/susceptibility to injury or disease, innate mechanisms of healing, diagnostic and prognostic biomarkers, and host/patient responses to vaccines, and therapeutic strategies including host responses to therapies. We identified eight types of omics studies and four types of study subjects. Studies were categorized on a scale of increasing complexity from single study subject/single omics technology studies (23/62) to studies integrating results across two study subject types and two or more omics technologies (13/62). Investigators at seven USAMRMC laboratories had collaborations with systems biology experts

  7. A Proposed Computed Tomography Contrast Agent Using Carboxybetaine Zwitterionic Tantalum Oxide Nanoparticles: Imaging, Biological, and Physicochemical Performance.

    Science.gov (United States)

    FitzGerald, Paul F; Butts, Matthew D; Roberts, Jeannette C; Colborn, Robert E; Torres, Andrew S; Lee, Brian D; Yeh, Benjamin M; Bonitatibus, Peter J

    2016-12-01

    The aim of this study was to produce and evaluate a proposed computed tomography (CT) contrast agent based on carboxybetaine zwitterionic (CZ)-coated soluble tantalum oxide (TaO) nanoparticles (NPs). We chose tantalum to provide superior imaging performance compared with current iodine-based clinical CT contrast agents. We developed the CZ coating to provide biological and physical performance similar to that of current iodinated contrast agents. In addition, the aim of this study was to evaluate the imaging, biological, and physicochemical performance of this proposed contrast agent compared with clinically used iodinated agents. We evaluated CT imaging performance of our CZ-TaO NPs compared with that of an iodinated agent in live rats, imaged centrally located within a tissue-equivalent plastic phantom that simulated a large patient. To evaluate vascular contrast enhancement, we scanned the rats' great vessels at high temporal resolution during and after contrast agent injection. We performed several in vivo CZ-TaO NP studies in healthy rats to evaluate tolerability. These studies included injecting the agent at the anticipated clinical dose (ACD) and at 3 times and 6 times the ACD, followed by longitudinal hematology to assess impact to blood cells and organ function (from 4 hours to 1 week). Kidney histological analysis was performed 48 hours after injection at 3 times the ACD. We measured the elimination half-life of CZ-TaO NPs from blood, and we monitored acute kidney injury biomarkers with a kidney injury assay using urine collected from 4 hours to 1 week. We measured tantalum retention in individual organs and in the whole carcass 48 hours after injection at ACD. Carboxybetaine zwitterionic TaO NPs were synthesized and analyzed in detail. We used multidimensional nuclear magnetic resonance to determine surface functionality of the NPs. We measured NP size and solution properties (osmolality and viscosity) of the agent over a range of tantalum concentrations

  8. Mechanics of Biological Tissues and Biomaterials: Current Trends

    Directory of Open Access Journals (Sweden)

    Amir A. Zadpoor

    2015-07-01

    Full Text Available Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address various topics within the general theme of “mechanics of biomaterials”. This editorial aims to present the context within which the studies of this Special Issue could be better understood. I, therefore, try to identify some of the most important research trends in the study of the mechanical behavior of biological tissues and biomaterials.

  9. BioBlocks: Programming Protocols in Biology Made Easier.

    Science.gov (United States)

    Gupta, Vishal; Irimia, Jesús; Pau, Iván; Rodríguez-Patón, Alfonso

    2017-07-21

    The methods to execute biological experiments are evolving. Affordable fluid handling robots and on-demand biology enterprises are making automating entire experiments a reality. Automation offers the benefit of high-throughput experimentation, rapid prototyping, and improved reproducibility of results. However, learning to automate and codify experiments is a difficult task as it requires programming expertise. Here, we present a web-based visual development environment called BioBlocks for describing experimental protocols in biology. It is based on Google's Blockly and Scratch, and requires little or no experience in computer programming to automate the execution of experiments. The experiments can be specified, saved, modified, and shared between multiple users in an easy manner. BioBlocks is open-source and can be customized to execute protocols on local robotic platforms or remotely, that is, in the cloud. It aims to serve as a de facto open standard for programming protocols in Biology.

  10. Applied computing in medicine and health

    CERN Document Server

    Al-Jumeily, Dhiya; Mallucci, Conor; Oliver, Carol

    2015-01-01

    Applied Computing in Medicine and Health is a comprehensive presentation of on-going investigations into current applied computing challenges and advances, with a focus on a particular class of applications, primarily artificial intelligence methods and techniques in medicine and health. Applied computing is the use of practical computer science knowledge to enable use of the latest technology and techniques in a variety of different fields ranging from business to scientific research. One of the most important and relevant areas in applied computing is the use of artificial intelligence (AI) in health and medicine. Artificial intelligence in health and medicine (AIHM) is assuming the challenge of creating and distributing tools that can support medical doctors and specialists in new endeavors. The material included covers a wide variety of interdisciplinary perspectives concerning the theory and practice of applied computing in medicine, human biology, and health care. Particular attention is given to AI-bas...

  11. Characterizing Topology of Probabilistic Biological Networks.

    Science.gov (United States)

    Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2013-09-06

    Biological interactions are often uncertain events, that may or may not take place with some probability. Existing studies analyze the degree distribution of biological networks by assuming that all the given interactions take place under all circumstances. This strong and often incorrect assumption can lead to misleading results. Here, we address this problem and develop a sound mathematical basis to characterize networks in the presence of uncertain interactions. We develop a method that accurately describes the degree distribution of such networks. We also extend our method to accurately compute the joint degree distributions of node pairs connected by edges. The number of possible network topologies grows exponentially with the number of uncertain interactions. However, the mathematical model we develop allows us to compute these degree distributions in polynomial time in the number of interactions. It also helps us find an adequate mathematical model using maximum likelihood estimation. Our results demonstrate that power law and log-normal models best describe degree distributions for probabilistic networks. The inverse correlation of degrees of neighboring nodes shows that, in probabilistic networks, nodes with large number of interactions prefer to interact with those with small number of interactions more frequently than expected.

  12. Fiji: an open-source platform for biological-image analysis.

    Science.gov (United States)

    Schindelin, Johannes; Arganda-Carreras, Ignacio; Frise, Erwin; Kaynig, Verena; Longair, Mark; Pietzsch, Tobias; Preibisch, Stephan; Rueden, Curtis; Saalfeld, Stephan; Schmid, Benjamin; Tinevez, Jean-Yves; White, Daniel James; Hartenstein, Volker; Eliceiri, Kevin; Tomancak, Pavel; Cardona, Albert

    2012-06-28

    Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.

  13. Characterizing the topology of probabilistic biological networks.

    Science.gov (United States)

    Todor, Andrei; Dobra, Alin; Kahveci, Tamer

    2013-01-01

    Biological interactions are often uncertain events, that may or may not take place with some probability. This uncertainty leads to a massive number of alternative interaction topologies for each such network. The existing studies analyze the degree distribution of biological networks by assuming that all the given interactions take place under all circumstances. This strong and often incorrect assumption can lead to misleading results. In this paper, we address this problem and develop a sound mathematical basis to characterize networks in the presence of uncertain interactions. Using our mathematical representation, we develop a method that can accurately describe the degree distribution of such networks. We also take one more step and extend our method to accurately compute the joint-degree distributions of node pairs connected by edges. The number of possible network topologies grows exponentially with the number of uncertain interactions. However, the mathematical model we develop allows us to compute these degree distributions in polynomial time in the number of interactions. Our method works quickly even for entire protein-protein interaction (PPI) networks. It also helps us find an adequate mathematical model using MLE. We perform a comparative study of node-degree and joint-degree distributions in two types of biological networks: the classical deterministic networks and the more flexible probabilistic networks. Our results confirm that power-law and log-normal models best describe degree distributions for both probabilistic and deterministic networks. Moreover, the inverse correlation of degrees of neighboring nodes shows that, in probabilistic networks, nodes with large number of interactions prefer to interact with those with small number of interactions more frequently than expected. We also show that probabilistic networks are more robust for node-degree distribution computation than the deterministic ones. all the data sets used, the software

  14. THE CENTER FOR DATA INTENSIVE COMPUTING

    Energy Technology Data Exchange (ETDEWEB)

    GLIMM,J.

    2002-11-01

    CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook.

  15. THE CENTER FOR DATA INTENSIVE COMPUTING

    Energy Technology Data Exchange (ETDEWEB)

    GLIMM,J.

    2001-11-01

    CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook.

  16. THE CENTER FOR DATA INTENSIVE COMPUTING

    International Nuclear Information System (INIS)

    GLIMM, J.

    2001-01-01

    CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook

  17. THE CENTER FOR DATA INTENSIVE COMPUTING

    Energy Technology Data Exchange (ETDEWEB)

    GLIMM,J.

    2003-11-01

    CDIC will provide state-of-the-art computational and computer science for the Laboratory and for the broader DOE and scientific community. We achieve this goal by performing advanced scientific computing research in the Laboratory's mission areas of High Energy and Nuclear Physics, Biological and Environmental Research, and Basic Energy Sciences. We also assist other groups at the Laboratory to reach new levels of achievement in computing. We are ''data intensive'' because the production and manipulation of large quantities of data are hallmarks of scientific research in the 21st century and are intrinsic features of major programs at Brookhaven. An integral part of our activity to accomplish this mission will be a close collaboration with the University at Stony Brook.

  18. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    Directory of Open Access Journals (Sweden)

    Daniel eLewis

    2014-12-01

    Full Text Available As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo systems, with only a few examples of prominent work done on predicting the dynamics of cell-free systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  19. Soft Computing Techniques for the Protein Folding Problem on High Performance Computing Architectures.

    Science.gov (United States)

    Llanes, Antonio; Muñoz, Andrés; Bueno-Crespo, Andrés; García-Valverde, Teresa; Sánchez, Antonia; Arcas-Túnez, Francisco; Pérez-Sánchez, Horacio; Cecilia, José M

    2016-01-01

    The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences. However, the computational complexity of this problem makes mandatory the search for new models, novel algorithmic strategies and hardware platforms that provide solutions in a reasonable time frame. We present in this revision work the past and last tendencies regarding protein folding simulations from both perspectives; hardware and software. Of particular interest to us are both the use of inexact solutions to this computationally hard problem as well as which hardware platforms have been used for running this kind of Soft Computing techniques.

  20. A counterpoint between computer simulations and biological experiments to train new members of a laboratory of physiological sciences.

    Science.gov (United States)

    Ozu, Marcelo; Dorr, Ricardo A; Gutiérrez, Facundo; Politi, M Teresa; Toriano, Roxana

    2012-12-01

    When new members join a working group dedicated to scientific research, several changes occur in the group's dynamics. From a teaching point of view, a subsequent challenge is to develop innovative strategies to train new staff members in creative thinking, which is the most complex and abstract skill in the cognitive domain according to Bloom's revised taxonomy. In this sense, current technological and digital advances offer new possibilities in the field of education. Computer simulation and biological experiments can be used together as a combined tool for teaching and learning sometimes complex physiological and biophysical concepts. Moreover, creativity can be thought of as a social process that relies on interactions among staff members. In this regard, the acquisition of cognitive abilities coexists with the attainment of other skills from psychomotor and affective domains. Such dynamism in teaching and learning stimulates teamwork and encourages the integration of members of the working group. A practical example, based on the teaching of biophysical subjects such as osmosis, solute transport, and membrane permeability, which are crucial in understanding the physiological concept of homeostasis, is presented.

  1. A Qualitative Study of Students' Computational Thinking Skills in a Data-Driven Computing Class

    Science.gov (United States)

    Yuen, Timothy T.; Robbins, Kay A.

    2014-01-01

    Critical thinking, problem solving, the use of tools, and the ability to consume and analyze information are important skills for the 21st century workforce. This article presents a qualitative case study that follows five undergraduate biology majors in a computer science course (CS0). This CS0 course teaches programming within a data-driven…

  2. Optimisation of biological reactors using the 'biological resonance' phenomenon; Ansatz zur Optimierung biologischer Reinigungsstufen durch das Phaenomen der ''Biologischen Resonanz''

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, A.

    2003-07-01

    The microbial catabolic activity of biological reactors can be increased by up to 75% through external stimulation with intermittent stress loads at intervals of several minutes. Under these process conditions, the ''biological resonance'' phenomenon determines the system and leads to an increased synthesis of enzymes. In addition to computer simulations, experiments with activated sludge were carried out in a 10-litre bioreactor. By modulating the stress intervals, a permanent increase in catabolic activity of about 60% was achieved during these experiments. By relying on the ''biological resonance'' phenomenon, the required reaction volume of biological treatment units can probably be reduced by up to 40%. (orig.)

  3. Computational neuroscience

    CERN Document Server

    Blackwell, Kim L

    2014-01-01

    Progress in Molecular Biology and Translational Science provides a forum for discussion of new discoveries, approaches, and ideas in molecular biology. It contains contributions from leaders in their fields and abundant references. This volume brings together different aspects of, and approaches to, molecular and multi-scale modeling, with applications to a diverse range of neurological diseases. Mathematical and computational modeling offers a powerful approach for examining the interaction between molecular pathways and ionic channels in producing neuron electrical activity. It is well accepted that non-linear interactions among diverse ionic channels can produce unexpected neuron behavior and hinder a deep understanding of how ion channel mutations bring about abnormal behavior and disease. Interactions with the diverse signaling pathways activated by G protein coupled receptors or calcium influx adds an additional level of complexity. Modeling is an approach to integrate myriad data sources into a cohesiv...

  4. Bringing Advanced Computational Techniques to Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  5. Multilevel functional genomics data integration as a tool for understanding physiology: a network biology perspective.

    Science.gov (United States)

    Davidsen, Peter K; Turan, Nil; Egginton, Stuart; Falciani, Francesco

    2016-02-01

    The overall aim of physiological research is to understand how living systems function in an integrative manner. Consequently, the discipline of physiology has since its infancy attempted to link multiple levels of biological organization. Increasingly this has involved mathematical and computational approaches, typically to model a small number of components spanning several levels of biological organization. With the advent of "omics" technologies, which can characterize the molecular state of a cell or tissue (intended as the level of expression and/or activity of its molecular components), the number of molecular components we can quantify has increased exponentially. Paradoxically, the unprecedented amount of experimental data has made it more difficult to derive conceptual models underlying essential mechanisms regulating mammalian physiology. We present an overview of state-of-the-art methods currently used to identifying biological networks underlying genomewide responses. These are based on a data-driven approach that relies on advanced computational methods designed to "learn" biology from observational data. In this review, we illustrate an application of these computational methodologies using a case study integrating an in vivo model representing the transcriptional state of hypoxic skeletal muscle with a clinical study representing muscle wasting in chronic obstructive pulmonary disease patients. The broader application of these approaches to modeling multiple levels of biological data in the context of modern physiology is discussed. Copyright © 2016 the American Physiological Society.

  6. Specifications of Standards in Systems and Synthetic Biology.

    Science.gov (United States)

    Schreiber, Falk; Bader, Gary D; Golebiewski, Martin; Hucka, Michael; Kormeier, Benjamin; Le Novère, Nicolas; Myers, Chris; Nickerson, David; Sommer, Björn; Waltemath, Dagmar; Weise, Stephan

    2015-09-04

    Standards shape our everyday life. From nuts and bolts to electronic devices and technological processes, standardised products and processes are all around us. Standards have technological and economic benefits, such as making information exchange, production, and services more efficient. However, novel, innovative areas often either lack proper standards, or documents about standards in these areas are not available from a centralised platform or formal body (such as the International Standardisation Organisation). Systems and synthetic biology is a relatively novel area, and it is only in the last decade that the standardisation of data, information, and models related to systems and synthetic biology has become a community-wide effort. Several open standards have been established and are under continuous development as a community initiative. COMBINE, the ‘COmputational Modeling in BIology’ NEtwork has been established as an umbrella initiative to coordinate and promote the development of the various community standards and formats for computational models. There are yearly two meeting, HARMONY (Hackathons on Resources for Modeling in Biology), Hackathon-type meetings with a focus on development of the support for standards, and COMBINE forums, workshop-style events with oral presentations, discussion, poster, and breakout sessions for further developing the standards. For more information see http://co.mbine.org/. So far the different standards were published and made accessible through the standards’ web- pages or preprint services. The aim of this special issue is to provide a single, easily accessible and citable platform for the publication of standards in systems and synthetic biology. This special issue is intended to serve as a central access point to standards and related initiatives in systems and synthetic biology, it will be published annually to provide an opportunity for standard development groups to communicate updated specifications.

  7. A molecular computer to classify cells

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    If only we had a small molecular computer to leverage this disparity, programmable to optimally recognize different classes of cells and, once inside a target cell, to execute an action. Like what a student team researched for this year's synthetic biology iGEM competition.

  8. Excel 2016 for biological and life sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical biological and life science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in biological and life sciences courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Biological and Life Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand biological and life science problems. Practice problems are provided...

  9. Remarks on the Foundations of Biology

    Directory of Open Access Journals (Sweden)

    Seán Ó Nualláin

    2008-10-01

    Full Text Available p class="MsoNormal"span style="font-size: 12pt"This paper attempts, inevitably briefly, aspannbsp; /spanre-categorization and partial resolution of some foundational issues in biology.spannbsp; /spanAn initialspannbsp; /spanground-clearing exercise extends the notion of causality in biology from merely the efficient cause to include also final and formal causality./span/p p class="MsoNormal"span style="font-size: 12pt"The HGPspannbsp; /spancan be looked on as an attempt to ground explanation of the phenotype in terms of an efficient cause rooted in a gene.spannbsp; /spanThis notion gives rise to the first section discussing the computational metaphor and epigenesis and suggesting ways to extend this metaphor. The extended notion of causality alluded to above is necessary, but not sufficient, to demarcate a specific explanatory realm for the biological.spannbsp; /spanWhile the universe can ultimately, perhaps,be explainedspannbsp; /spanby quantum fluctuations being computed through the laws of nature, the origin of life remains a mystery.spannbsp;nbsp; /spanThe ground-clearing exercise refers to coincidences that motivate the cosmological anthropic /span/p p class="MsoNormal"span style="font-size: 12pt"principle, before raising an alert about the possibility of similar thermodynamic laws facilitating the emergence of life./span/p p class="MsoNormal"span style="font-size: 12pt"nbsp;/span/p p class="MsoNormal"span style="font-size: 12pt"Life itself seems to involve symbolic operations that can be described by the grammatical rules within tightly -defined limits of complexity.spannbsp;nbsp; /spanThe nascent field of biosemiotics has extended this argument, often in a Peircean direction.spannbsp; /spanYet, even here, the task involved needs to be specified. Is the organism creating proteins to launch an immune counter-attack ?spannbsp;nbsp; /spanAlternatively, is a pluripotent stem cell generating an entire organism?spannbsp; /spanWe consider what

  10. Multiscale computer modeling in biomechanics and biomedical engineering

    CERN Document Server

    2013-01-01

    This book reviews the state-of-the-art in multiscale computer modeling, in terms of both accomplishments and challenges. The information in the book is particularly useful for biomedical engineers, medical physicists and researchers in systems biology, mathematical biology, micro-biomechanics and biomaterials who are interested in how to bridge between traditional biomedical engineering work at the organ and tissue scales, and the newer arenas of cellular and molecular bioengineering.

  11. The use of computer in the biological dosimetry of radiation injury with lymphocyte micronucleus

    International Nuclear Information System (INIS)

    Jiang Benrong; Yao Buo

    1994-01-01

    A new approach for determining by computer the radiation dosage in early diagnosis of radiation injury was presented, with a purpose to widen its practical application. A set of programs designed in Clanguage for computing and drawing was compiled. The technical details discussed here can be used for compiling other kinds of practical programs. It is a valuable attempt in improving the efficiency of the computer-aid clinical diagnosis

  12. Membrane computing: brief introduction, recent results and applications.

    Science.gov (United States)

    Păun, Gheorghe; Pérez-Jiménez, Mario J

    2006-07-01

    The internal organization and functioning of living cells, as well as their cooperation in tissues and higher order structures, can be a rich source of inspiration for computer science, not fully exploited at the present date. Membrane computing is an answer to this challenge, well developed at the theoretical (mathematical and computability theory) level, already having several applications (via usual computers), but without having yet a bio-lab implementation. After briefly discussing some general issues related to natural computing, this paper provides an informal introduction to membrane computing, focused on the main ideas, the main classes of results and of applications. Then, three recent achievements, of three different types, are briefly presented, with emphasis on the usefulness of membrane computing as a framework for devising models of interest for biological and medical research.

  13. Toward exascale computing through neuromorphic approaches.

    Energy Technology Data Exchange (ETDEWEB)

    James, Conrad D.

    2010-09-01

    While individual neurons function at relatively low firing rates, naturally-occurring nervous systems not only surpass manmade systems in computing power, but accomplish this feat using relatively little energy. It is asserted that the next major breakthrough in computing power will be achieved through application of neuromorphic approaches that mimic the mechanisms by which neural systems integrate and store massive quantities of data for real-time decision making. The proposed LDRD provides a conceptual foundation for SNL to make unique advances toward exascale computing. First, a team consisting of experts from the HPC, MESA, cognitive and biological sciences and nanotechnology domains will be coordinated to conduct an exercise with the outcome being a concept for applying neuromorphic computing to achieve exascale computing. It is anticipated that this concept will involve innovative extension and integration of SNL capabilities in MicroFab, material sciences, high-performance computing, and modeling and simulation of neural processes/systems.

  14. Large-scale computing techniques for complex system simulations

    CERN Document Server

    Dubitzky, Werner; Schott, Bernard

    2012-01-01

    Complex systems modeling and simulation approaches are being adopted in a growing number of sectors, including finance, economics, biology, astronomy, and many more. Technologies ranging from distributed computing to specialized hardware are explored and developed to address the computational requirements arising in complex systems simulations. The aim of this book is to present a representative overview of contemporary large-scale computing technologies in the context of complex systems simulations applications. The intention is to identify new research directions in this field and

  15. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  16. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  17. Biology Needs Evolutionary Software Tools: Let’s Build Them Right

    Science.gov (United States)

    Team, Galaxy; Goecks, Jeremy; Taylor, James

    2018-01-01

    Abstract Research in population genetics and evolutionary biology has always provided a computational backbone for life sciences as a whole. Today evolutionary and population biology reasoning are essential for interpretation of large complex datasets that are characteristic of all domains of today’s life sciences ranging from cancer biology to microbial ecology. This situation makes algorithms and software tools developed by our community more important than ever before. This means that we, developers of software tool for molecular evolutionary analyses, now have a shared responsibility to make these tools accessible using modern technological developments as well as provide adequate documentation and training. PMID:29688462

  18. 3S - Systematic, systemic, and systems biology and toxicology.

    Science.gov (United States)

    Smirnova, Lena; Kleinstreuer, Nicole; Corvi, Raffaella; Levchenko, Andre; Fitzpatrick, Suzanne C; Hartung, Thomas

    2018-01-01

    A biological system is more than the sum of its parts - it accomplishes many functions via synergy. Deconstructing the system down to the molecular mechanism level necessitates the complement of reconstructing functions on all levels, i.e., in our conceptualization of biology and its perturbations, our experimental models and computer modelling. Toxicology contains the somewhat arbitrary subclass "systemic toxicities"; however, there is no relevant toxic insult or general disease that is not systemic. At least inflammation and repair are involved that require coordinated signaling mechanisms across the organism. However, the more body components involved, the greater the challenge to reca-pitulate such toxicities using non-animal models. Here, the shortcomings of current systemic testing and the development of alternative approaches are summarized. We argue that we need a systematic approach to integrating existing knowledge as exemplified by systematic reviews and other evidence-based approaches. Such knowledge can guide us in modelling these systems using bioengineering and virtual computer models, i.e., via systems biology or systems toxicology approaches. Experimental multi-organ-on-chip and microphysiological systems (MPS) provide a more physiological view of the organism, facilitating more comprehensive coverage of systemic toxicities, i.e., the perturbation on organism level, without using substitute organisms (animals). The next challenge is to establish disease models, i.e., micropathophysiological systems (MPPS), to expand their utility to encompass biomedicine. Combining computational and experimental systems approaches and the chal-lenges of validating them are discussed. The suggested 3S approach promises to leverage 21st century technology and systematic thinking to achieve a paradigm change in studying systemic effects.

  19. Frontiers of massively parallel scientific computation

    International Nuclear Information System (INIS)

    Fischer, J.R.

    1987-07-01

    Practical applications using massively parallel computer hardware first appeared during the 1980s. Their development was motivated by the need for computing power orders of magnitude beyond that available today for tasks such as numerical simulation of complex physical and biological processes, generation of interactive visual displays, satellite image analysis, and knowledge based systems. Representative of the first generation of this new class of computers is the Massively Parallel Processor (MPP). A team of scientists was provided the opportunity to test and implement their algorithms on the MPP. The first results are presented. The research spans a broad variety of applications including Earth sciences, physics, signal and image processing, computer science, and graphics. The performance of the MPP was very good. Results obtained using the Connection Machine and the Distributed Array Processor (DAP) are presented

  20. Computational Complexity and Human Decision-Making.

    Science.gov (United States)

    Bossaerts, Peter; Murawski, Carsten

    2017-12-01

    The rationality principle postulates that decision-makers always choose the best action available to them. It underlies most modern theories of decision-making. The principle does not take into account the difficulty of finding the best option. Here, we propose that computational complexity theory (CCT) provides a framework for defining and quantifying the difficulty of decisions. We review evidence showing that human decision-making is affected by computational complexity. Building on this evidence, we argue that most models of decision-making, and metacognition, are intractable from a computational perspective. To be plausible, future theories of decision-making will need to take into account both the resources required for implementing the computations implied by the theory, and the resource constraints imposed on the decision-maker by biology. Copyright © 2017 Elsevier Ltd. All rights reserved.