WorldWideScience

Sample records for compton suppression epithermal

  1. Determination of silicon in biological and botanical reference materials by epithermal INAA and Compton suppression

    International Nuclear Information System (INIS)

    Landsberger, S.; Peshev, S.; Becker, D.A.

    1994-01-01

    Silicon determination in sixteen botanical and biological standard reference materials is described using the 29 Si(n, p) 29 Al reaction through instrumental epithermal neutron activation analysis and Compton suppression gamma-ray spectroscopy. By simultaneous utilization of both cadmium and boron epithermal filters along with anticoincidence gamma-counting, detection limits as low as 12 ppm were obtained for certain matrices, much lower than previously reported values for this type of analysis. The method is applicable to many botanical and biological matrices and is attractive with its interference free, purely instrumental nature, compared with methods using the 28 Si(n, p) 28 Al reaction or chemical separation techniques. ((orig.))

  2. Compton suppression method and epithermal NAA in the determination of nutrients and heavy metals in Nigerian food and beverages

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Y.A., E-mail: yaahmed1@gmail.co [Reactor Engineering Section, Centre for Energy Research and Training, Ahmadu Bello University, Zaria (Nigeria); Nuclear Engineering Teaching Laboratory, University of Texas at Austin, Austin, TX 78758 (United States); Landsberger, S.; O' Kelly, D.J.; Braisted, J. [Nuclear Engineering Teaching Laboratory, University of Texas at Austin, Austin, TX 78758 (United States); Gabdo, H. [Physics Department, Federal College of Education, Yola (Nigeria); Ewa, I.O.B.; Umar, I.M.; Funtua, I.I. [Reactor Engineering Section, Centre for Energy Research and Training, Ahmadu Bello University, Zaria (Nigeria)

    2010-10-15

    We used in this study Compton suppression method and epithermal neutron activation analysis to determine the concentration of nutrients and heavy metals in Nigerian food and beverages. The work was performed at the University of Texas TRIGA Reactor by short, medium, and long irradiation protocols, using thermal flux of 1.4x10{sup 12} n cm{sup -2} s{sup -1} and epithermal flux of 1.4x10{sup 11} n cm{sup -2} s{sup -1}. Application of Compton suppression method has reduced interferences from Compton scattered photons thereby allowing easy evaluation of Na, Cl, Ca, Cu, Mn, Mg, Co, Cr, Rb, Fe, and Se. The epithermal NAA method has enabled determination of Cd, As, Ba, Sr, Br, I, and V with little turn-around time. Quality Control and Quality Assurance of the method was tested by analyzing four Standard Reference Materials (non-fat powdered milk, apple leaves, citrus leaves, and peach leaves) obtained from National Institute for Standards and Technology. Our results show that sorghum, millet, and maize have high values of Zn, Mn, Fe, low values of Cd, As, and Se. Powdered milks, rice, beans, and soybeans were found to have moderate amounts of all the elements. Tobacco recorded high content of Cd, Mn, and As, whereas tea, tsobo leaves, Baobab leaves, and okro seed have more As values than others. However, biscuits, macaroni, spaghetti, and noodles show lower concentrations of all the elements. The distribution of these nutrients and heavy metals in these food and beverages shows the need to fortify biscuits and pastas with micro and macro-nutrients and reduce the use of tobacco, tea, tsobo leaves, Baobab leaves, and Okro seed to avoid intake of heavy elements.

  3. Compton suppression method and epithermal NAA in the determination of nutrients and heavy metals in Nigerian food and beverages.

    Science.gov (United States)

    Ahmed, Y A; Landsberger, S; O'Kelly, D J; Braisted, J; Gabdo, H; Ewa, I O B; Umar, I M; Funtua, I I

    2010-10-01

    We used in this study Compton suppression method and epithermal neutron activation analysis to determine the concentration of nutrients and heavy metals in Nigerian food and beverages. The work was performed at the University of Texas TRIGA Reactor by short, medium, and long irradiation protocols, using thermal flux of 1.4x10(12)n cm(-2)s(-1) and epithermal flux of 1.4x10(11)n cm(-2)s(-1). Application of Compton suppression method has reduced interferences from Compton scattered photons thereby allowing easy evaluation of Na, Cl, Ca, Cu, Mn, Mg, Co, Cr, Rb, Fe, and Se. The epithermal NAA method has enabled determination of Cd, As, Ba, Sr, Br, I, and V with little turn-around time. Quality Control and Quality Assurance of the method was tested by analyzing four Standard Reference Materials (non-fat powdered milk, apple leaves, citrus leaves, and peach leaves) obtained from National Institute for Standards and Technology. Our results show that sorghum, millet, and maize have high values of Zn, Mn, Fe, low values of Cd, As, and Se. Powdered milks, rice, beans, and soybeans were found to have moderate amounts of all the elements. Tobacco recorded high content of Cd, Mn, and As, whereas tea, tsobo leaves, Baobab leaves, and okro seed have more As values than others. However, biscuits, macaroni, spaghetti, and noodles show lower concentrations of all the elements. The distribution of these nutrients and heavy metals in these food and beverages shows the need to fortify biscuits and pastas with micro and macro-nutrients and reduce the use of tobacco, tea, tsobo leaves, Baobab leaves, and Okro seed to avoid intake of heavy elements. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Compton suppression method and epithermal NAA in the determination of nutrients and heavy metals in Nigerian food and beverages

    International Nuclear Information System (INIS)

    Ahmed, Y.A.; Landsberger, S.; O'Kelly, D.J.; Braisted, J.; Gabdo, H.; Ewa, I.O.B.; Umar, I.M.; Funtua, I.I.

    2010-01-01

    We used in this study Compton suppression method and epithermal neutron activation analysis to determine the concentration of nutrients and heavy metals in Nigerian food and beverages. The work was performed at the University of Texas TRIGA Reactor by short, medium, and long irradiation protocols, using thermal flux of 1.4x10 12 n cm -2 s -1 and epithermal flux of 1.4x10 11 n cm -2 s -1 . Application of Compton suppression method has reduced interferences from Compton scattered photons thereby allowing easy evaluation of Na, Cl, Ca, Cu, Mn, Mg, Co, Cr, Rb, Fe, and Se. The epithermal NAA method has enabled determination of Cd, As, Ba, Sr, Br, I, and V with little turn-around time. Quality Control and Quality Assurance of the method was tested by analyzing four Standard Reference Materials (non-fat powdered milk, apple leaves, citrus leaves, and peach leaves) obtained from National Institute for Standards and Technology. Our results show that sorghum, millet, and maize have high values of Zn, Mn, Fe, low values of Cd, As, and Se. Powdered milks, rice, beans, and soybeans were found to have moderate amounts of all the elements. Tobacco recorded high content of Cd, Mn, and As, whereas tea, tsobo leaves, Baobab leaves, and okro seed have more As values than others. However, biscuits, macaroni, spaghetti, and noodles show lower concentrations of all the elements. The distribution of these nutrients and heavy metals in these food and beverages shows the need to fortify biscuits and pastas with micro and macro-nutrients and reduce the use of tobacco, tea, tsobo leaves, Baobab leaves, and Okro seed to avoid intake of heavy elements.

  5. Determination of elemental concentrations in airborne particulate matter in the City of Santiago de Chile, through neutron activation analysis using epithermal neutrons and Compton suppression system

    International Nuclear Information System (INIS)

    Rojas S, Ximena

    1995-01-01

    In order to optimize the Neutron-Activation Analysis (NAA) technique currently carried out in our country, the present work was carried out in the United States where irradiations with epithermal neutrons and a Compton suppression system were used, which allowed the characterization of aerosols of the city of Santiago de Chile. With this purpose, 54 filters of polycarbonate membranes were analysed with aerosols collected in an area of the capital during Spring 1993 and Winter of 1994. As a result, an improvement in the detection limits was observed, specially in elements such as Ni and Zn, which are not easily detectable through NAA. The application of both systems also permits the usage of this technique in geological and biological samples, where the presence of Na, Al and Cl obstruct the determination of some elements. The determined elements in both fractions were Mn, V, Cu, As, Sb, Co, Br, Cl, Ni, Zn, Ca, Al, Na and Fe. (author). 8 refs., 7 figs., 9 tabs

  6. Compton suppression gamma ray spectrometry

    International Nuclear Information System (INIS)

    Landsberger, S.; Iskander, F.Y.; Niset, M.; Heydorn, K.

    2002-01-01

    In the past decade there have been many studies to use Compton suppression methods in routine neutron activation analysis as well as in the traditional role of low level gamma ray counting of environmental samples. On a separate path there have been many new PC based software packages that have been developed to enhance photopeak fitting. Although the newer PC based algorithms have had significant improvements, they still suffer from being effectively used in weak gamma ray lines in natural samples or in neutron activated samples that have very high Compton backgrounds. We have completed a series of experiments to show the usefulness of Compton suppression. As well we have shown the pitfalls when using Compton suppression methods for high counting deadtimes as in the case of neutron activated samples. We have also investigated if counting statistics are the same both suppressed and normal modes. Results are presented in four separate experiments. (author)

  7. Compton suppression through rise-time analysis

    International Nuclear Information System (INIS)

    Selvi, S.; Celiktas, C.

    2007-01-01

    We studied Compton suppression for 60 Co and 137 Cs radioisotopes using a signal selection criterion based on contrasting the fall time of the signals composing the photo peak with those composing the Compton continuum. The fall time criterion is employed by using the pulse shape analysis observing the change in the fall times of the gamma-ray pulses. This change is determined by measuring the changes in the rise times related to the fall time of the scintillator and the timing signals related to the fall time of the input signals. We showed that Compton continuum suppression is achieved best via the precise timing adjustment of an analog rise-time analyzer connected to a NaI(Tl) scintillation spectrometer

  8. Halogen determination in Arctic aerosols by neutron activation analysis with Compton suppression methods

    International Nuclear Information System (INIS)

    Landsberger, S.; Basunia, M.S.; Iskander, F.

    2001-01-01

    The study of halogens particularly bromine and chlorine in Arctic aerosols has received a great deal of attention in the past decade in ozone depletion during polar sunrise studies. Iodine has also been studied as part of geochemical cycling. It was shown that all three of the above elements can be determined simultaneously with very low detection limits using epithermal NAA in conjunction with Compton suppression methods. Besides lowering the background considerably, Compton suppression can eliminate or minimize the overlapping peak of the 620 keV photopeak arising form the 1642 keV double escape peak of 38 Cl interfering with the 616.9 keV photopeak of 79 Br(n,γ) 80 Br reaction. Iodine is ideally determined by epithermal NAA because of its very good resonance integral cross-section. Although chlorine is usually determined using thermal neutrons via the 37 Cl(n,γ) 38 Cl reactions, epithermal NAA is still feasible for the Arctic aerosol, since it has a major sea-salt component. (author)

  9. A dual purpose Compton suppression spectrometer

    CERN Document Server

    Parus, J; Raab, W; Donohue, D

    2003-01-01

    A gamma-ray spectrometer with a passive and an active shield is described. It consists of a HPGe coaxial detector of 42% efficiency and 4 NaI(Tl) detectors. The energy output pulses of the Ge detector are delivered into the 3 spectrometry chains giving the normal, anti- and coincidence spectra. From the spectra of a number of sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co sources a Compton suppression factor, SF and a Compton reduction factor, RF, as the parameters characterizing the system performance, were calculated as a function of energy and source activity and compared with those given in literature. The natural background is reduced about 8 times in the anticoincidence mode of operation, compared to the normal spectrum which results in decreasing the detection limits for non-coincident gamma-rays up to a factor of 3. In the presence of other gamma-ray activities, in the range from 5 to 11 kBq, non- and coincident, the detection limits can be decreased for some nuclides by a factor of 3 to 5.7.

  10. Compton suppression naa in the analysis of food and beverages

    International Nuclear Information System (INIS)

    Ahmed, Y.A.; Ewa, I.O.B.; Umar, I.M.; Funtua, I.I.; Lanberger, S.; O'kelly, D.J.; Braisted, J.D.

    2009-01-01

    Applicability and performance of Compton suppression method in the analysis of food and beverages was re-established in this study. Using ''1''3''7Cs and ''6''0Co point sources Compton Suppression Factors (SF), Compton Reduction Factors (RF), Peak-to-Compton ratio (P/C), Compton Plateau (C p l), and Compton Edge (C e ) were determined for each of the two sources. The natural background reduction factors in the anticoincidence mode compared to the normal mode were evaluated. The reported R.F. values of the various Compton spectrometers for ''6''0Co source at energy 50-210 keV (backscattering region), 600 keV (Compton edge corresponding to 1173.2 keV gamma-ray) and 1110 keV (Compton edge corresponding to 1332.5 keV gamma-ray) were compared with that of the present work. Similarly the S.F. values of the spectrometers for ''1''3''7Cs source were compared at the backscattered energy region (S.F. b = 191-210 keV), Compton Plateau (S.F. p l = 350-370 keV), and Compton Edge (S.F. e = 471-470 keV) and all were found to follow a similar trend. We also compared peak reduction ratios for the two cobalt energies (1173.2 and 1332.5) with the ones reported in literature and two results agree well. Applicability of the method to food and beverages was put to test for twenty one major, minor, and trace elements (Ba, Sr, I, Br, Cu, V, Mg, Na, Cl, Mn, Ca, Sn,K, Cd, Zn, As, Sb, Ni, Cs, Fe, and Co) commonly found in food, milk, tea and tobacco. The elements were assayed using five National Institute for Standards and Technology (NIST) certified reference materials (Non-fat powdered milk, Apple leaves, Tomato leaves, and Citrus leaves). The results obtained shows good agreement with NIST certified values, indicating that the method is suitable for simultaneous determination of micro-nutrients, macro-nutrients and heavy elements in food and beverages without undue interference problems

  11. Gamma-spectrometry with Compton suppressed detectors arrays

    International Nuclear Information System (INIS)

    Schueck, C.; Hannachi, F.; Chapman, R.

    1985-01-01

    Recent results of experiments performed with two different Compton-suppressed detectors arrays in Daresbury and Berkeley (/sup 163,164/Yb and 154 Er, respectively), are presented together with a brief description of the national French array presently under construction in Strasbourg. 25 refs., 15 figs

  12. Environmental radioactivity measurements Using a compton suppression spectrometer

    International Nuclear Information System (INIS)

    Sharshar, T.; Elnimr, T.

    1998-01-01

    The natural and artificial radioactivities of some environmental samples such as soil and vegetables have been studied through gamma-ray spectroscopy with a new constructed compton suppression spectrometer (CSS). The spectrometer consists of a 10% p-type HPGe detector as a main detector, an annular NE-102 A plastic scintillator as a guard detector, and a fast-slow coincidence system employing standard electronic modules for anti-compton operation. This study shows that CSS is a powerful tool for measuring the low level activities of environmental samples

  13. Simplified slow anti-coincidence circuit for Compton suppression systems

    International Nuclear Information System (INIS)

    Al-Azmi, Darwish

    2008-01-01

    Slow coincidence circuits for the anti-coincidence measurements have been considered for use in Compton suppression technique. The simplified version of the slow circuit has been found to be fast enough, satisfactory and allows an easy system setup, particularly with the advantage of the automatic threshold setting of the low-level discrimination. A well-type NaI detector as the main detector surrounded by plastic guard detector has been arranged to investigate the performance of the Compton suppression spectrometer using the simplified slow circuit. The system has been tested to observe the improvement in the energy spectra for medium to high-energy gamma-ray photons from terrestrial and environmental samples

  14. Quantitative Compton suppression spectrometry at elevated counting rates

    International Nuclear Information System (INIS)

    Westphal, G.P.; Joestl, K.; Schroeder, P.; Lauster, R.; Hausch, E.

    1999-01-01

    For quantitative Compton suppression spectrometry the decrease of coincidence efficiency with counting rate should be made negligible to avoid a virtual increase of relative peak areas of coincident isomeric transitions with counting rate. To that aim, a separate amplifier and discriminator has been used for each of the eight segments of the active shield of a new well-type Compton suppression spectrometer, together with an optimized, minimum dead-time design of the anticoincidence logic circuitry. Chance coincidence losses in the Compton suppression spectrometer are corrected instrumentally by comparing the chance coincidence rate to the counting rate of the germanium detector in a pulse-counting Busy circuit (G.P. Westphal, J. Rad. Chem. 179 (1994) 55) which is combined with the spectrometer's LFC counting loss correction system. The normally not observable chance coincidence rate is reconstructed from the rates of germanium detector and scintillation detector in an auxiliary coincidence unit, after the destruction of true coincidence by delaying one of the coincidence partners. Quantitative system response has been tested in two-source measurements with a fixed reference source of 60 Co of 14 kc/s, and various samples of 137 Cs, up to aggregate counting rates of 180 kc/s for the well-type detector, and more than 1400 kc/s for the BGO shield. In these measurements, the net peak areas of the 1173.3 keV line of 60 Co remained constant at typical values of 37 000 with and 95 000 without Compton suppression, with maximum deviations from the average of less than 1.5%

  15. Characterization of a Compton suppression system and the applicability of Poisson statistics

    International Nuclear Information System (INIS)

    Nicholson, G.; Landsberger, S.; Welch, L.

    2008-01-01

    The Compton suppression system (CSS) has been thoroughly characterized at the University of Texas' Nuclear Engineering Teaching Laboratory (NETL). Effects of dead-time, sample displacement from primary detector, and primary energy detector position relative to the active shield detector have been measured and analyzed. Also, the applicability of Poisson counting statistics to Compton suppression spectroscopy has been evaluated. (author)

  16. Nanogram determination of arsenic in biological reference materials by non-destructive Compton suppression neutron activation analysis

    International Nuclear Information System (INIS)

    Petra, M.; Landsberger, S.; Swift, G.

    1990-01-01

    Non-destructive epithermal neutron activation analysis in conjunction with Compton suppression has been applied to determine arsenic in seven biological standard reference materials from the National Institute of Standards and Technology. The accuracy is in excellent agreement with all the certified values and compilation results. For four of the materials detection limits between 1-4 ng/g were easily achieved while for three others they ranged from 18-50 ng/g. Overall analytical precision typically varied between 2-4% for five of the reference materials while for two other it was between 12-16%. These methods clearly demonstrate that through a judicious approach of anti-coincidence techniques, nanogram quantities of arsenic can be reliably determined without the need for labor intensive chemical separations. (orig.)

  17. Compton suppression gamma-counting: The effect of count rate

    Science.gov (United States)

    Millard, H.T.

    1984-01-01

    Past research has shown that anti-coincidence shielded Ge(Li) spectrometers enhanced the signal-to-background ratios for gamma-photopeaks, which are situated on high Compton backgrounds. Ordinarily, an anti- or non-coincidence spectrum (A) and a coincidence spectrum (C) are collected simultaneously with these systems. To be useful in neutron activation analysis (NAA), the fractions of the photopeak counts routed to the two spectra must be constant from sample to sample to variations must be corrected quantitatively. Most Compton suppression counting has been done at low count rate, but in NAA applications, count rates may be much higher. To operate over the wider dynamic range, the effect of count rate on the ratio of the photopeak counts in the two spectra (A/C) was studied. It was found that as the count rate increases, A/C decreases for gammas not coincident with other gammas from the same decay. For gammas coincident with other gammas, A/C increases to a maximum and then decreases. These results suggest that calibration curves are required to correct photopeak areas so quantitative data can be obtained at higher count rates. ?? 1984.

  18. Optimization of Compton-suppression and summing schemes for the TIGRESS HPGe detector array

    Science.gov (United States)

    Schumaker, M. A.; Svensson, C. E.; Andreoiu, C.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Boston, A. J.; Chakrawarthy, R. S.; Churchman, R.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hyland, B.; Jones, B.; Maharaj, R.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Sarazin, F.; Scraggs, H. C.; Smith, M. B.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.

    2007-04-01

    Methods of optimizing the performance of an array of Compton-suppressed, segmented HPGe clover detectors have been developed which rely on the physical position sensitivity of both the HPGe crystals and the Compton-suppression shields. These relatively simple analysis procedures promise to improve the precision of experiments with the TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS). Suppression schemes will improve the efficiency and peak-to-total ratio of TIGRESS for high γ-ray multiplicity events by taking advantage of the 20-fold segmentation of the Compton-suppression shields, while the use of different summing schemes will improve results for a wide range of experimental conditions. The benefits of these methods are compared for many γ-ray energies and multiplicities using a GEANT4 simulation, and the optimal physical configuration of the TIGRESS array under each set of conditions is determined.

  19. Study and development of a spectrometer with Compton suppression and gamma coincidence counting

    International Nuclear Information System (INIS)

    Masse, D.

    1990-10-01

    This paper presents the characteristics of a spectrometer consisting of a Ge detector surrounded by a NaI(T1) detector that can operate in Compton-suppression and gamma-gamma coincidence modes. The criteria that led to this measurement configuration are discussed and the spectrometer performances are shown for 60 Co and 137 Cs gamma-ray sources. The results for the measurement of 189 Ir (Compton suppression) and for the measurement of 101 Rh (gamma-gamma coincidence) in the presence of other radioisotopes are given. 83 Rb and 105 Ag isotopes are also measured with this spectrometer [fr

  20. Compton suppression tests on Ge and BGO prototype detectors for GAMMASPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, A M [Australian National Univ., Canberra, ACT (Australia); Khoo, T L; Bleich, M E; Carpenter, M P; Ahmad, I; Janssens, R V.F.; Moore, E F [Argonne National Lab., IL (United States); Bearden, I G [Purdue Univ., Lafayette, IN (United States); Beene, J R; Lee, I Y [Oak Ridge National Lab., TN (United States)

    1992-08-01

    In this paper, we report on measurements of the Compton suppression and overall P/T ratio of two Ge detectors in a BGO shield of the honeycomb pattern. These were the first prototype CSG detector assemblies for GAMMASPHERE. A more detailed description of these results will be published later. (author). 4 refs., 3 figs.

  1. Optimization of a Compton-suppression system by escape-peak ratio

    International Nuclear Information System (INIS)

    Niu, H.; Chao, J.H.; Wu, S.-C.

    1996-01-01

    A Compton-suppression system consisting of an HPGe central detector surrounded by eight BGO scintillators in an annular geometry was assembled. This system is dedicated to in-beam γ-ray measurements. The ratios of full-energy to single-escape peak and full-energy of double-escape peak, at γ-rays of 2754, 4443 and 6130 keV, were used to derive associated suppression factors in order to optimize detection conditions of the system. The suppression factors derived both from the escape peak ratios and the corresponding peak-to-Compton ratios of the γ-ray spectra are compared and discussed. This optimization technique may be of great significance for analyzing complicated spectra, where high-energy γ-rays are considered for analytical use. (Author)

  2. Quality Control Of Compton Suppression System As An Environmental Sample Counting System

    International Nuclear Information System (INIS)

    Siswohartoyo, Sudarti; Soepardi, Dewita

    1996-01-01

    Quality control on Compton Suppression System has been done, i.e : 1) testing of HPGe as the main detector (FWHM, P/C d c level /n oise ) , 2) the Nal(Tl) detector shielding characteristic, 3) timing spectrum (FWHM), and 4) suppression factor. From the collected data, the characteristic of HPGe were found to be in the same range as shown in the manual. From the Nal(Tl) testing, it was found that the resolution was about 9%. From the time spectrum testing, the resolution was about 12-13 ns, while the suppression factor measurement was found to be about 4 - 4.6

  3. A Compton suppressed detector multiplicity trigger based digital DAQ for gamma-ray spectroscopy

    Science.gov (United States)

    Das, S.; Samanta, S.; Banik, R.; Bhattacharjee, R.; Basu, K.; Raut, R.; Ghugre, S. S.; Sinha, A. K.; Bhattacharya, S.; Imran, S.; Mukherjee, G.; Bhattacharyya, S.; Goswami, A.; Palit, R.; Tan, H.

    2018-06-01

    The development of a digitizer based pulse processing and data acquisition system for γ-ray spectroscopy with large detector arrays is presented. The system is based on 250 MHz 12-bit digitizers, and is triggered by a user chosen multiplicity of Compton suppressed detectors. The logic for trigger generation is similar to the one practised for analog (NIM/CAMAC) pulse processing electronics, while retaining the fast processing merits of the digitizer system. Codes for reduction of data acquired from the system have also been developed. The system has been tested with offline studies using radioactive sources as well as in the in-beam experiments with an array of Compton suppressed Clover detectors. The results obtained therefrom validate its use in spectroscopic efforts for nuclear structure investigations.

  4. A Compton-suppressed spectrometer for studies of chaos in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Shriner, J.F. Jr. [Tennessee Technological Univ., Cookeville (United States); Bilpuch, E.G. [Duke University Press, Durham, NC (United States); Bybee, C.R. [Triangle Universities Nuclear Lab., Durham, NC (United States); Mitchell, G.E. [Triangle Universities Nuclear Lab., Durham, NC (United States); Moore, E.F. [Triangle Universities Nuclear Lab., Durham, NC (United States); Shriner, J.D. [Triangle Universities Nuclear Lab., Durham, NC (United States); Westerfeldt, C.R. [Duke University Press, Durham, NC (United States)

    1995-05-01

    One approach to studying chaos in quantum systems utilizes the statistical behavior of eigenvalues. Such analyses require data of very high quality, since both completeness and purity are essential. The design of a Compton-suppressed {gamma}-ray spectrometer for the purpose of establishing a nearly complete level scheme in {sup 30}P via the {sup 29}Si(p, {gamma}) reaction is described. Design criteria and implementation are discussed, and early results from the system are presented. (orig.).

  5. Compton suppression system at Penn State Radiation Science and Engineering Center

    International Nuclear Information System (INIS)

    Cetiner, N.Oe.; Uenlue, K.; Brenizer, J.S.

    2008-01-01

    A Compton suppression system is used to reduce the contribution of scattered gamma-rays that originate within the HPGe detector to the gamma ray spectrum. The HPGe detector is surrounded by an assembly of guard detectors, usually NaI(Tl). The HPGe and NaI(Tl) detectors are operated in anti-coincidence mode. The NaI(Tl) guard detector detects the photons that Compton scatter within, and subsequently escape from the HPGe detector. Since these photons are correlated with the partial energy deposition within the detector, much of the resulting Compton continuum can be subtracted from the spectrum reducing the unwanted background in gamma-ray spectra. A commercially available Compton suppression spectrometer (CSS) was purchased from Canberra Industries and tested at the Radiation Science and Engineering Center at Penn State University. The PSU-CSS includes a reverse bias HPGe detector, four annulus NaI(Tl) detectors, a NaI(Tl) plug detector, detector shields, data acquisition electronics, and a data processing computer. The HPGe detector is n-type with 54% relative efficiency. The guard detectors form an annulus with 9-inch diameter and 9-inch height, and have a plug detector that goes into/out of the annulus with the help of a special lift apparatus to raise/lower. The detector assembly is placed in a shielding cave. State-of-the-art electronics and software are used. The system was tested using standard sources, neutron activated NIST SRM sample and Dendrochronologically Dated Tree Ring samples. The PSU-CSS dramatically improved the peak-to-Compton ratio, up to 1000 : 1 for the 137 Cs source. (author)

  6. Design of a Compton-suppression spectrometer and its application to the study of high-spin yrast states

    International Nuclear Information System (INIS)

    Aarts, H.J.M.

    1981-01-01

    Detailed γ-ray spectroscopy of high-spin states is hampered by transitions with low intensity on a high γ-ray background. An approach to enhance weak peaks in a spectrum in the reduction of the Compton background by means of a Compton-suppression spectrometer (CSS). Optimization of a CSS by means of Monte Carlo calculations is described. The investigation of high-spin states in the sd-shell nucleus 38 Ar with a Compton-suppression spectrometer is reported. With previously described techniques, in combination with p-γ coincidence measurements to establish an unambiguous level scheme, states up to Jsup(π) = 11 - could be identified and investigated. A gamma-gamma coincidence experiment on the nuclei 167 168 Hf is described with two Compton-suppression spectrometers. Yrast bands are followed, beyond the region of the first backbending, up to spin J = 37/2 and J = 28 for 167 Hf and 168 Hf, respectively. (Auth.)

  7. Application of Compton suppression spectrometry in the improvement of nuclear analytical techniques for biological samples

    International Nuclear Information System (INIS)

    Ahmed, Y. A.; Ewa, I.O.B.; Funtua, I.I.; Jonah, S.A.; Landsberger, S.

    2007-01-01

    Compton Suppression Factors (SF) and Compton Reduction Factors (RF) of the UT Austin's Compton suppression spectrometer being parameters characterizing the system performance were measured using ''1''3''7Cs and ''6''0Co point sources. The system performance was evaluated as a function of energy and geometry. The (P/C), A(P/C), (P/T), Cp, and Ce were obtained for each of the parameters. The natural background reduction factor in the anticoincidence mode and that of normal mode was calculated and its effect on the detection limit of biological samples evaluated. Applicability of the spectrometer and the method for biological samples was tested in the measurement of twenty-four elements (Ba, Sr, I, Br, Cu, V, Mg, Na, Cl, Mn, Ca, Sn, In, K, Mo, Cd, Zn, As, Sb, Ni, Rb, Cs, Fe, and Co) commonly found in food, milk, tea and tobacco items. They were determined from seven National Institute for Standard and Technology (NIST) certified reference materials (rice flour, oyster tissue, non-fat powdered milk, peach leaves, tomato leaves, apple leaves, and citrus leaves). Our results shows good agreement with the NIST certified values, indicating that the method developed in the present study is suitable for the determination of aforementioned elements in biological samples without undue interference problems

  8. Performance evaluation of Compton suppression gamma spectrometer for low level environmental measurements

    International Nuclear Information System (INIS)

    Baburajan, A.; Sudheendran, V.; Rao, D.D.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Environmental Survey Laboratory (ESL), Tarapur has started its environmental monitoring programme way back in 1964. Over the last four decades there was considerable improvement in the monitoring methodology and nuclear instrumentation techniques used in the laboratory. When the discharges from the nuclear facilities have reduced considerably; and global fall out level have became negligibly low, there is a need to upgrade our instrumental technique, to detect incremental changes in the environmental radioactivity however small it may be. As part of fulfilling this objective a Compton Suppression Gamma spectrometry system has been commissioned and the salient features and performance evaluation are discussed in this paper

  9. Development of a Compton suppression whole body counting for small animals

    International Nuclear Information System (INIS)

    Martini, Elaine

    1995-01-01

    The basic operation, design and construction of the plastic scintillator detector is described. In order to increase the sensitivity of this detector, two blocks of plastic scintillator have been assembled to act as a anticompton system. The detectors were produced by polymerisation of styrene monomer with PPO (2,5 diphenyl-oxazole) and POPOP (1,4 bis (-5 phenyl-2- oxazoly)benzene) in proportions of 0.5 and 0.05 respectively. The transparency of this detector was evaluated by excitation of the 241 Am source located directly in the back surface plastic coupled to a photomultiplier. The light attenuation according to the detector thickness has fitted to a two-exponential function: relative height pulse = 0,519 e -0.0016 + 0.481 e -0.02112.x . Four radioactive sources 2 2 Na, 54 Mn, 137 Cs and 131 I were used to evaluate the performance of this system. The Compton reduction factor, determined by the ratio of the energy peak values of suppressed and unsuppressed spectra was 1.16. The Compton suppression factor determined by the ratio of the net photopeak area to the area of an equal spectra width in the Compton continuum, was approximately 1.208 ± 0.109. The sensitivity of the system, defined as the least amount of a radioactivity that can be quantified in the photopeak region, was 9.44 cps. First, the detector was assembled to be applied in biological studies of whole body counter measurements of small animals. Using a phantom, (small animal simulator) and a punctual 137 Cs source, located in the central region of the well counter the geometrical efficiency detector was about 5%. (author)

  10. Compton suppression instrumental neutron activation analysis performance in determining trace- and minor-element contents in foodstuff

    International Nuclear Information System (INIS)

    Freitas, M.C.; Dionisio, I.; Pacheco, A.M.G.; Bacchi, M.A.; Fernandes, E.A.N.; Landsberger, S.; Braisted, J.

    2008-01-01

    In 2003-2004, several food items were purchased from large commercial outlets in Coimbra, Portugal. Such items included meats (chicken, pork, beef), eggs, rice, beans and vegetables (tomato, carrot, potato, cabbage, broccoli, lettuce). Elemental analysis was carried out through INAA at the Technological and Nuclear Institute (ITN, Portugal), the Nuclear Energy Centre for Agriculture (CENA, Brazil), and the Nuclear Engineering Teaching Lab of the University of Texas at Austin (NETL, USA). At the latter two, INAA was also associated to Compton suppression. It can be concluded that by applying Compton suppression (1) the detection limits for arsenic, copper and potassium improved; (2) the counting-statistics error for molybdenum diminished; and (3) the long-lived zinc had its 1115-keV photopeak better defined. In general, the improvement sought by introducing Compton suppression in foodstuff analysis was not significant. Lettuce, cabbage and chicken (liver, stomach, heart) are the richest diets in terms of human nutrients. (author)

  11. Measured and simulated performance of Compton-suppressed TIGRESS HPGe clover detectors

    Science.gov (United States)

    Schumaker, M. A.; Hackman, G.; Pearson, C. J.; Svensson, C. E.; Andreoiu, C.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Boston, A. J.; Chakrawarthy, R. S.; Churchman, R.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Jones, B.; Maharaj, R.; Morton, A. C.; Phillips, A. A.; Sarazin, F.; Scraggs, H. C.; Smith, M. B.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.

    2007-01-01

    Tests of the performance of a 32-fold segmented HPGe clover detector coupled to a 20-fold segmented Compton-suppression shield, which form a prototype element of the TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS), have been made. Peak-to-total ratios and relative efficiencies have been measured for a variety of γ-ray energies. These measurements were used to validate a GEANT4 simulation of the TIGRESS detectors, which was then used to create a simulation of the full 12-detector array. Predictions of the expected performance of TIGRESS are presented. These predictions indicate that TIGRESS will be capable, for single 1 MeV γ rays, of absolute detection efficiencies of 17% and 9.4%, and peak-to-total ratios of 54% and 61% for the "high-efficiency" and "optimized peak-to-total" configurations of the array, respectively.

  12. Compton suppression spectrometry for analysis of short-lived neutron activation products in foods

    International Nuclear Information System (INIS)

    Anderson, D.L.; Cunningham, W.C.

    2008-01-01

    Compton suppression spectrometry was used to analyze foods for elements with short-lived neutron activation products (half-lives of about 2 minutes to 1.5 days). Analysis conditions were optimized to provide quality assurance analyses for iodine in FDA's Total Diet Study. Iodine mass fractions (0.075 to 2.03 mg/kg) were measured in 19 of 42 foods analyzed, with limits of detection (LODs) ranging from 0.03 to 1.4 mg/kg, mostly depending on NaCl content. LODs were lowered by up to a factor of 2 for 16 elements. Suppression factors ranged from about 2 to 8 over the energy range 400 to 3200 keV. (author)

  13. Test and performance of a BGO Compton-suppression shield for GAMMASPHERE

    International Nuclear Information System (INIS)

    Carpenter, M.P.; Khoo, T.L.; Ahmad, I.

    1994-01-01

    Bismuth germanate (BGO) compton-suppression shields have been constructed to surround the Ge detectors of the GAMMASPHERE array. A shield consists of six hexagonal tapered BGO elements, each coupled to two 1-inch x 1-inch photomultiplier tubes. In addition, a cylindrical BGO detector is placed behind the Ge detector to intercept the forward scattered gamma rays. One hundred ten such shields are planned for the GAMMASPHERE array. Procedures for measuring the performance of these shields have been developed. Large (70 %) Ge detectors when used with these shields give a peak-to-total ratio of better tan 0.60. To date more than 85 shield have been tested and approved for use in GAMMASPHERE

  14. Design of A HPGe-Plastic Scintillator Compton Suppression Spectrometer for Neutron Activation Analysis and Radio environmental Studies

    International Nuclear Information System (INIS)

    Sharshar, T.; Badran, H.; Elnimr, T.

    1998-01-01

    The design of a compton suppression spectrometer consisting of a 10% p-type HPGe detector and an annular anti-Compton shield made of N E-102 A plastic scintillator is described. The height of the guard plastic- scintillation detector was optimized experimentally using a NaI(Ti) ring, consisting of five NaI(Ti) detectors. The annular guard detector is divided to four optically isolated quarters to enhance the light collection. Each quarter of the guard detector was tested and satisfying results are obtained

  15. Development of a Compton suppression whole body counting for small animals; Desenvolvimento de um detetor de corpo inteiro com supressao Compton para pequenos animais

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Elaine

    1996-12-31

    The basic operation, design and construction of the plastic scintillator detector is described. In order to increase the sensitivity of this detector, two blocks of plastic scintillator have been assembled to act as a anticompton system. The detectors were produced by polymerisation of styrene monomer with PPO (2,5 diphenyl-oxazole) and POPOP (1,4 bis (-5 phenyl-2- oxazoly)benzene) in proportions of 0.5 and 0.05 respectively. The transparency of this detector was evaluated by excitation of the {sup 241} Am source located directly in the back surface plastic coupled to a photomultiplier. The light attenuation according to the detector thickness has fitted to a two-exponential function: relative height pulse = 0,519 e{sup -0.0016} + 0.481 e{sup -0.02112.x}. Four radioactive sources{sup {sup 2}2} Na, {sup 54} Mn, {sup 137} Cs and {sup 131} I were used to evaluate the performance of this system. The Compton reduction factor, determined by the ratio of the energy peak values of suppressed and unsuppressed spectra was 1.16. The Compton suppression factor determined by the ratio of the net photopeak area to the area of an equal spectra width in the Compton continuum, was approximately 1.208 {+-} 0.109. The sensitivity of the system, defined as the least amount of a radioactivity that can be quantified in the photopeak region, was 9.44 cps. First, the detector was assembled to be applied in biological studies of whole body counter measurements of small animals. Using a phantom, (small animal simulator) and a punctual {sup 137} Cs source, located in the central region of the well counter the geometrical efficiency detector was about 5%. (author) 40 refs., 28 fifs., 2 tabs.

  16. Development of a Compton suppression whole body counting for small animals; Desenvolvimento de um detetor de corpo inteiro com supressao Compton para pequenos animais

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Elaine

    1995-12-31

    The basic operation, design and construction of the plastic scintillator detector is described. In order to increase the sensitivity of this detector, two blocks of plastic scintillator have been assembled to act as a anticompton system. The detectors were produced by polymerisation of styrene monomer with PPO (2,5 diphenyl-oxazole) and POPOP (1,4 bis (-5 phenyl-2- oxazoly)benzene) in proportions of 0.5 and 0.05 respectively. The transparency of this detector was evaluated by excitation of the {sup 241} Am source located directly in the back surface plastic coupled to a photomultiplier. The light attenuation according to the detector thickness has fitted to a two-exponential function: relative height pulse = 0,519 e{sup -0.0016} + 0.481 e{sup -0.02112.x}. Four radioactive sources{sup {sup 2}2} Na, {sup 54} Mn, {sup 137} Cs and {sup 131} I were used to evaluate the performance of this system. The Compton reduction factor, determined by the ratio of the energy peak values of suppressed and unsuppressed spectra was 1.16. The Compton suppression factor determined by the ratio of the net photopeak area to the area of an equal spectra width in the Compton continuum, was approximately 1.208 {+-} 0.109. The sensitivity of the system, defined as the least amount of a radioactivity that can be quantified in the photopeak region, was 9.44 cps. First, the detector was assembled to be applied in biological studies of whole body counter measurements of small animals. Using a phantom, (small animal simulator) and a punctual {sup 137} Cs source, located in the central region of the well counter the geometrical efficiency detector was about 5%. (author) 40 refs., 28 fifs., 2 tabs.

  17. Characterization of Compton-suppressed TIGRESS detectors for high energy gamma-rays

    International Nuclear Information System (INIS)

    Kshetri, R.; Andreoiu, C.; Cross, D.S.; Galinski, N.; Ball, G.C.; Djongolov, M.; Garnsworthy, A.B.; Hackman, G.; Orce, J.N.; Pearson, C.; Triambak, S.; Williams, S.J.; Drake, T.; Smalley, D.; Svensson, C.E.

    2009-01-01

    The TRIUMF-ISAC Gamma-Ray Escape- Suppressed Spectrometer (TIGRESS) will consist of 12 large-volume, 32-fold segmented HPGe clover detectors. Each detector is shielded by a 20-fold segmented Compton suppression shield. For performing discrete gamma-ray spectroscopy of light mass nuclei with TIGRESS, we need information about full energy peak efficiency, resolution and lineshape of full energy peaks for high energy gamma-rays. However, suitable radioactive sources having decay gamma-rays of energies greater than ∼ 3.5 MeV are not easily available. So the characteristics of gamma spectrometers at energies higher than 3.5 MeV are usually determined from simulation data. Predictions from GEANT4 simulations (experimentally validated from 0.3 to 3 MeV) indicate that TIGRESS will be capable for single 10 MeV gamma-rays of absolute detection efficiency of 1.5% for backward configuration of the array. It has been observed experimentally that simulation results work well up to certain energies and might deviate at higher energies. So, it is essential to check the validity of simulation results for energies above 3.3 MeV. We have investigated the high energy performance of seven TIGRESS detectors up to 8 MeV

  18. An in-beam Compton-suppressed Ge spectrometer for nondestructive neutron activation analysis

    International Nuclear Information System (INIS)

    Zaghloul, R.; Abd El-Haleam, A.; Mostafa, M.; Gantner, E.; Ache, H.J.

    1993-04-01

    A high-efficiency compton background suppressed gamma-ray spectrometer by anti-coincidence counting with a NaI(Tl)-shield around a central HPGe-detector for in-beam prompt gamma-ray neutron activation analysis (AC-PGNAA) using a Cf-252 neutron source has been designed and built to provide simultaneous anti-coincidence spectrometry of natural, industrial and environmental samples. The spectrometer consists of a high-purity germanium detector as the main detector and a large volume cylindrical NaI(Tl) detector as a guard detector. The assembly has the ability to measure instantaneously, simultaneously and nondestructively bulk samples up to about 50 cm 3 . Major constituent elements in several rocks and minerals such as H, B, N, Na, Mg, Al, Si, Cl, K, Ca, P, S, Ti, Fe, Sm, Nd, Mn and Gd can be determined, while oxygen cannot be measured due to its small capture cross section (0.27 mb). Several important minor and trace elements such as B, Cd and Hg beside the low residual activity, rare earths and short-lived isotopes could be detected. The sensitivity of the AC-PGNAA technique is limited by the available neutron flux at the target matrix and the neutron absorption cross section of the elements of interest. PGNAA has the advantage to estimate the constituent elements which are difficult to be measured through the delayed gamm-ray measurements such as B, Bi, C, H, P, Tl, Be, Cl and S in industrial and reference materials and those elements which are transformed into other stable isotopes when undergoing neutron capture. The design of the spectrometer assembly, its properties and performance are described

  19. A Ge(Li)-NaI(Tl) Compton-suppression spectrometer for in-beam γ-ray spectroscopy, ch. 2

    International Nuclear Information System (INIS)

    Driel, M.A. van; Hoogenboom, A.M.

    1976-01-01

    A Compton-suppression spectrometer has been constructed for in-beam γ-ray work. It consists of a closed-end Ge(Li) detector with an efficiency of 21% and a resolution of 2.0 keV for 1.33 MeV γ-rays surrounded by a NaI(Tl) shield (dia. 230 mm, length 280 mm). The overall Compton-suppression factor for a 60 Co spectrum is 10. Details of the construction are discussed and experimental properties are compared with design calculations

  20. A Compton Suppressed Gamma Ray Counter For Radio Assay of Materials

    Science.gov (United States)

    Godfrey, Benjamin

    2016-03-01

    Rare event searches, such as direct dark matter experiments, require materials with ultra-low levels of natural radioactivity. We present a neutron activation analysis (NAA) technique for assaying metals, specifically titanium used for cryostat construction. Earlier attempts at NAA encountered limitations due to bulk activation via (n, p) reactions, which contributed to large continuum backgrounds due to Compton tails. Our method involves a heavy water shielded exposure to minimize (n,p) reactions and a sodium iodide shielded high purity germanium counter for the gamma ray assay. Preliminary results on assays for U/Th/K contamination in titaniumwill be presented.

  1. An anti-Compton suppression Ge-telescope detection system for quality control of nuclear waste packages

    International Nuclear Information System (INIS)

    Agosteo, S.; Para, A. Foglio; Chabalier, B.; Huot, N.; Graf, U.; Ravazzani, A.; Schillebeeckx, P.; Kekki, T.; Tanner, V.; Tiitta, A.

    2001-01-01

    An anti-Compton suppression system is studied for the quality control of radioactive waste packages by nondestructive assay. The main objective is the reduction of the detection limit of actinides in the packages. The optimization of a final device is based on Monte Carlo simulations (MCNP and FLUKA) validated by experiments using a prototype consisting of a Ge-telescope detector surrounded by a NaI detector. The validation reveals that most of the discrepancies between experimental and simulated data are due to an incomplete description of the experimental conditions. After fine-tuning of the input file the uncertainties on the simulated full-energy peak efficiency are reduced to less than 5%. Also the total detector response for mono-energetic photons and real waste, including the photon interactions within the drum, can be simulated satisfactorily

  2. Investigation of trace elements in ancient pottery from Jenini, Brong Ahafo region, Ghana by INAA and Compton suppression spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nyarko, B.J.B. [SLOWPOKE-2 Facility, Trace Analysis Research Centre, Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3 (Canada); National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon-Accra (Ghana)], E-mail: bjbnyarko@yahoo.co.uk; Bredwa-Mensah, Y. [Department of Archaeology, University of Ghana, Legon-Accra (Ghana); Serfor-Armah, Y. [SLOWPOKE-2 Facility, Trace Analysis Research Centre, Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3 (Canada); National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon-Accra (Ghana); Dampare, S.B. [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon-Accra (Ghana); Department of Earth Sciences, Okayama University, 3-1-1 Tsushima, Okayama 700-8530 (Japan); Akaho, E.H.K.; Osae, S. [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon-Accra (Ghana); Perbi, A. [Department of Archaeology, University of Ghana, Legon-Accra (Ghana); Chatt, A. [SLOWPOKE-2 Facility, Trace Analysis Research Centre, Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3 (Canada)

    2007-10-15

    Concentrations of trace elements in ancient pottery excavated from Jenini in the Brong Ahafo region of Ghana were determined using instrumental neutron activation analysis (INAA) in conjunction with both conventional and Compton suppression counting. Jenini was a slave Camp of Samory Toure during the indigenous slavery and the Trans-Atlantic slave trade. Pottery fragments found during the excavation of the grave tombs of the slaves who died in the slave camps were analysed. In all, 26 trace elements were determined in 40 pottery fragments. These elemental concentrations were processed using multivariate statistical methods, cluster, factor and discriminant analyses in order to determine similarities and correlation between the various samples. The suitability of the two counting systems for determination of trace elements in pottery objects has been evaluated.

  3. Investigation of trace elements in ancient pottery from Jenini, Brong Ahafo region, Ghana by INAA and Compton suppression spectrometry

    International Nuclear Information System (INIS)

    Nyarko, B.J.B.; Bredwa-Mensah, Y.; Serfor-Armah, Y.; Dampare, S.B.; Akaho, E.H.K.; Osae, S.; Perbi, A.; Chatt, A.

    2007-01-01

    Concentrations of trace elements in ancient pottery excavated from Jenini in the Brong Ahafo region of Ghana were determined using instrumental neutron activation analysis (INAA) in conjunction with both conventional and Compton suppression counting. Jenini was a slave Camp of Samory Toure during the indigenous slavery and the Trans-Atlantic slave trade. Pottery fragments found during the excavation of the grave tombs of the slaves who died in the slave camps were analysed. In all, 26 trace elements were determined in 40 pottery fragments. These elemental concentrations were processed using multivariate statistical methods, cluster, factor and discriminant analyses in order to determine similarities and correlation between the various samples. The suitability of the two counting systems for determination of trace elements in pottery objects has been evaluated

  4. New levels in 168Er: Use of a Compton-suppressed Ge array with the (n,γ) reaction

    International Nuclear Information System (INIS)

    Gill, R.L.; Casten, R.F.; Phillips, W.R.; Varley, B.J.; Lister, C.J.; Durell, J.L.; Shannon, J.A.; Warner, D.D.

    1996-01-01

    For the first time an (n,γ) reaction has been extensively studied using a large array of Compton-suppressed Ge detectors (the TESSA array). The nucleus 168 Er was studied and the data show substantial improvement, in both quantity and quality, over previous coincidence data. Even though 168 Er is perhaps the best studied deformed nucleus, over 250 new coincidence relations and a number of new levels in 168 Er were disclosed, demonstrating the usefulness of this approach. Nuclear physics applications relate to the extension of nearly complete spectroscopy to higher excitation energies and to the study of statistical and chaotic features of the decay of low spin compound nuclear levels. copyright 1996 The American Physical Society

  5. Simultaneous determination of short-to-medium lived nuclides in Ghanaian food items using INAA and Compton suppression counting

    International Nuclear Information System (INIS)

    Nyarko, B.J.B.; Fletcher, J.J.; Zwicker, B.; Chatt, A.

    2006-01-01

    An instrumental neutron activation analysis (INAA) method was developed for the simultaneous determination of 19 elements in 10 individual food items from Ghana. The samples were irradiated for 1 minutes in a neutron flux of 2.5 x 10 11 n x cm -2 x s -1 at the Dalhousie University Slowpoke-2 reactor (DUSR) facility. After a 2-minute decay the samples were counted using a Compton suppression gamma-ray spectrometry system for 10 minutes to quantify Ba, Br, Ca, Cl, Co, Cu, Dy, K, Mg, Mn, Na, Rb, S, Sr, Th, Ti, U, V and Zn. The analytical procedure namely, irradiation, decay and counting times were optimized for quick turn-around time for simultaneous determination of the nineteen elements. White-seeded beans (Phaseolus coccineus), one of the most commonly consumed foodstuff in Ghana, were found to contain the highest level of the 19 elements determined, viz. K (1.4%) and Sorghum spp. the lowest level viz. Dy (2.2 ng x g -1 ). Two NIST SRMs were used for internal quality control. The concentrations of most of the elements were found to be within ±6% of the certified or information values. The precisions were calculated from six replicate measurements and were found to be within 10%. (author)

  6. Characterisation of a compton suppressed clover detector for high energy gamma rays (5 MeV ≤ E ≤ 11 MeV)

    International Nuclear Information System (INIS)

    Saha Sarkar, M.; Kshetri, Ritesh; Raut, Rajarshi; Mukherjee, A.; Goswami, A.; Ray, S.; Basu, P.; Majumder, H.; Bhattacharya, S.; Dasmahapatra, B.; Sinha, Mandira; Ray, Maitreyee

    2004-01-01

    The Clover detectors in their add back mode have been seen to be excellent tools for detecting high energy gamma rays (≥ 2 MeV). Recently studies were carried out on the characteristics of a Compton suppressed Clover germanium detector up to 5 MeV using a radioactive 66 Ga (T 1/2 =9.41 h) source for the first time

  7. Developments in gamma-ray spectrometry: systems, software, and methods-II. 3. Low-Energy Gamma-Ray Spectrometry Using a Compton-Suppressed Telescope Detector

    International Nuclear Information System (INIS)

    Sigg, R.A.; DiPrete, D.P.

    2001-01-01

    The Savannah River Technology Center (SRTC) utilizes gamma-ray spectrometry in studying numerous areas of applied interest to the Savannah River Site (SRS). For example, analyses of long-lived gamma-ray-emitting fission products and actinides are required to meet waste characterization, process holdup, environmental restoration, and decontamination and decommissioning efforts. A significant portion of the overall effort centers on measurements of gamma rays having energies below several hundred kilo-electron-volts. To assist these efforts, the SRTC recently acquired a spectrometer system that provides lower natural and Compton scattered background levels while achieving relatively high counting efficiencies for low-energy gamma rays. The combination of high efficiency and low background provides factor-of- 2-to-4 improvements in minimum detectable activities and allows meeting programmatic objectives with shorter measurement times. Numerous Compton-suppression spectrometers have been reported since the concept was first advanced. The spectrometer consists of two high-purity germanium detectors in a telescope configuration surrounded by a background /Compton-suppression sodium iodide detector. The front germanium detector is a 20-mm-thick x 60-mm-diam broad energy spectrometer, and the rear detector is a 40% efficient 61- mm-diam x 60-cm-thick closed-end coaxial spectrometer. The cryostat housing the germanium detectors (a) includes a carbon composite window for transmitting low-energy gamma rays, (b) is in a J-type configuration to mask the germanium detectors from natural activities in the cryo-pumping media, and (c) is fabricated from materials selected for low background. The telescope detector is in the 8.6-cm-inside-diameter annulus of a 22.9- x 22.9-cm sodium iodide detector encased in a 10-cm-thick lead shield. The counting system is located in a basement counting room having ∼60-cm-thick concrete walls. Initial tests show that the low-energy segment of

  8. Evaluation of Position Resolution for a Prototype Whole-Body PET Detector Based on Suppressing Backgrounds by Compton Scattering

    Science.gov (United States)

    Fujihara, Kento; Emoto, Yusaku; Ito, Hiroshi; Kaneko, Naomi; Kaneko, Hideyuki; Kawai, Hideyuki; Kobayashi, Atsushi; Mizuno, Takahiro

    2018-01-01

    Existing PET (Positron Emission Tomography) systems make clear images in demonstration (measuring small PET reagent in pure water), however images in real diagnosis become unclear. The authors suspected that this problem was caused by Compton scattering in a detector. When PET systems observe plural photomultiplier tube outputs, an original emission point is regarded as centroid of the outputs. However, even if plural emission in Compton scattering occur, these systems calculate original point in the same way as single emission. Therefore, the authors considered that rejecting Compton scattering events makes PET systems much better, and made prototype counter. Main components of the prototype counter are plate-like high-growth-rate (HGR) La-GPS scintillators and wavelength shifting fibers (WLSF). HGR crystals grow 10 times as fast as a mono-crystal (a normal mono-crystal grows at 2 - 3 mm an hour). Thus, it includes microbubble and its transparency get worth. Consequently, HGR crystals usually are not used in radiation measuring instruments. However, this time they are used on the purpose. Because of their low transparency, scintillation lights come out right above and right under of emission position. Therefore, Compton scattering events is rejected easily. The prototype detector has an effective area of 300 by 300 square mm. The detector consists of 24 layers. One layer consists of HGR La-GPS scintillator of 1 mm thickness. Top and bottom surface of scintillator were covered by dual sheets of WLSF with a diameter of 0.2 mm. Sheets of WLSF on top and bottom of the scintillator make a right angle with each other, and measure X- and Y-components. Z-component is measured by difference of WLSF outputs between top and bottom. If plural layers output signals, this counter regards the event as Compton scattering event, and reject the event. Even if only a layer output signals, the event is rejected when number output signals from WLSF is more than 1.5 times of single

  9. Arthur H. Compton and Compton Scattering

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Arthur H. Compton and Compton Scattering Resources with Additional Information * Compton Honored * Compton Scattering Arthur H. Compton Courtesy of Lawrence Berkeley , 1923 Establishing Site X: Letter, Arthur H. Compton to Enrico Fermi, September 14, 1942, DOE Technical

  10. Directional epithermal neutron detector

    International Nuclear Information System (INIS)

    Givens, W.W.; Mills, W.R. Jr.

    1986-01-01

    A borehole tool for epithermal neutron die-away logging of subterranean formations surrounding a borehole is described which consists of: (a) a pulsed source of fast neutrons for irradiating the formations surrounding a borehole, (b) at least one neutron counter for counting epithermal neutrons returning to the borehole from the irradiated formations, (c) a neutron moderating material, (d) an outer thermal neutron shield providing a housing for the counter and the moderating material, (e) an inner thermal neutron shield dividing the housing so as to provide a first compartment bounded by the inner thermal neutron shield and a first portion of the outer thermal neutron shield and a second compartment bounded by the inner thermal neutron shield and a second portion of the outer thermal neutron shield, the counter being positioned within the first compartment and the moderating material being positioned within the second compartment, and (f) means for positioning the borehole tool against one side of the borehole wall and azimuthally orienting the borehole tool such that the first chamber is in juxtaposition with the borehole wall, the formation epithermal neutrons penetrating into the first chamber through the first portion of the outer thermal neutron shield are detected by the neutron counter for die-away measurement, thereby maximizing the directional sensitivty of the neutron counter to formation epithermal neutrons, the borehole fluid epithermal neutrons penetrating into the second chamber through the second chamber through the second portion of the outer thermal neutron shield are largely slowed down and lowered in energy by the moderating material and absorbed by the inner thermal neutron shield before penetrating into the first chamber, thereby minimizing the directional sensitivity of the neutron counter to borehole fluid epithermal neutrons

  11. Compton scattering

    International Nuclear Information System (INIS)

    Botto, D.J.; Pratt, R.H.

    1979-05-01

    The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A -2 based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required

  12. Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Botto, D.J.; Pratt, R.H.

    1979-05-01

    The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A/sup -2/ based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required.

  13. Selenium content of Argentinean infant formulae and baby foods by pseudo-cyclic instrumental neutron activation analysis coupled to Compton suppression

    International Nuclear Information System (INIS)

    Hevia, S.; Chatt, A.

    2013-01-01

    The selenium levels of Argentinean infant formulae and baby food were measured using the 162-keV gamma-ray of 77m Se (t ½ = 17.4 s) by a pseudo-cyclic instrumental neutron activation analysis (PC-INAA) method in conjunction with Compton suppression spectrometry (CSS). For comparison purposes, 5 selected infant formulae were also analyzed for selenium by a radiochemical neutron activation analysis (RNAA) method. The selenium levels for three samples agreed between ±2.8 and 6.5 % while the other two differed by 12 and 17 % which could perhaps be attributed to sample inhomogeneity. The selenium content of cow milk-based infant formulae varied from 42-146 μg kg -1 compared to 52-63 μg kg -1 for soy-based milk formulae. In the case of baby foods, the selenium levels varied from 34 to 74 μg kg -1 . The detection limits for selenium by PC-INAA-CSS for all the samples analyzed in this work were between 8.5 and 65 μg kg -1 depending on the major elements present in the samples, while it was 20 μg kg -1 for the RNAA method. The expanded uncertainty (κ = 2) of the PC-INAA-CSS method was 7.0 % at the end of cycle 4 for a sample containing 73.7 μg kg -1 selenium compared to the RNAA value of 24.2 % for a sample of 67.0 μg kg -1 selenium content. (author)

  14. Epithermal neutron instrumentation at ISIS

    International Nuclear Information System (INIS)

    Gorini, G; Festa, G; Andreani, C

    2014-01-01

    The advent of pulsed neutron sources makes available high epithermal neutron fluxes (in the energy range between 500 meV and 100 eV). New dedicated instrumentation, such as Resonance Detectors, was developed at ISIS spallation neutron source in the last years to apply the specific properties of this kind of neutron beam to the study of condensed matter. New detection strategies like Filter Difference method and Foil Cycling Technique were also developed in parallel to the detector improvement at the VESUVIO beamline. Recently, epithermal neutron beams were also used at the INES beamline to study elemental and isotopic composition of materials, with special application to cultural heritage studies. In this paper we review a series of epithermal neutron instrumentation developed at ISIS, their evolution over time and main results obtained

  15. Design and testing of a unique active Compton-suppressed LaBr3(Ce) detector system for improved sensitivity assays of TRU in remote-handled TRU wastes

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Hartwell; M. E. McIlwain; J. A. Kulisek

    2007-10-01

    The US Department of Energy’s transuranic (TRU) waste inventory includes about 4,500 m3 of remote-handled TRU (RH-TRU) wastes composed of a variety of containerized waste forms having a contact surface dose rate that exceeds 2 mSv/hr (200 mrem/hr) containing waste materials with a total TRU concentration greater than 3700 Bq/g (100 nCi/g). As part of a research project to investigate the use of active Compton-suppressed room-temperature gamma-ray detectors for direct non-destructive quantification of the TRU content of these RH-TRU wastes, we have designed and purchased a unique detector system using a LaBr3(Ce) primary detector and a NaI(Tl) suppression mantle. The LaBr3(Ce) primary detector is a cylindrical unit ~25 mm in diameter by 76 mm long viewed by a 38 mm diameter photomultiplier. The NaI(Tl) suppression mantle (secondary detector) is 175 mm by 175 mm with a center well that accommodates the primary detector. An important feature of this arrangement is the lack of any “can” between the primary and secondary detectors. These primary and secondary detectors are optically isolated by a thin layer (.003") of aluminized kapton, but the hermetic seal and thus the aluminum can surrounds the outer boundary of the detector system envelope. The hermetic seal at the primary detector PMT is at the PMT wall. This arrangement virtually eliminates the “dead” material between the primary and secondary detectors, a feature that preliminary modeling indicated would substantially improve the Compton suppression capability of this device. This paper presents both the expected performance of this unit determined from modeling with MCNPX, and the performance measured in our laboratory with radioactive sources.

  16. Compton radiography, 2

    International Nuclear Information System (INIS)

    Okuyama, Shinichi; Sera, Koichiro; Fukuda, Hiroshi; Shishido, Fumio; Mishina, Hitoshi.

    1977-01-01

    Compton radiography, a tomographic technic with Compton-scattered rays of a monochromatic gamma ray beam, was feasible of tomographing a chest phantom. The result suggested that the technic could be extended to imaging of the lung and the surrounding structures of the chest wall, mediastinum and liver in Compton tomographic mode. (auth.)

  17. Temperature imaging using epithermal neutrons

    International Nuclear Information System (INIS)

    Fowler, P.H.; Taylor, A.D.

    1987-08-01

    The paper concerns the temperature measurement of suitable targets, both remotely and non-invasively, using epithermal neutrons. The text was presented at the Neutron Resonance Radiography Workshop, Los Alamos, U.S.A., 1987. The technique is demonstrated for tantalum foils at different temperatures, using a pulsed beam of epithermal neutrons, at both Los Alamos and ISIS (United Kingdom). Results on the measured time-of-flight spectra and the tantalum resonances are presented. Beam properties and fluxes at ISIS are discussed. Features of the proposed detectors suitable for the temperature technique are outlined, along with the data analysis, the moving targets, the cyclic temperature variations and transients, and the usefulness of the technique. (U.K.)

  18. Epithermal interrogation of fissile waste

    International Nuclear Information System (INIS)

    Coop, K.L.; Hollas, C.L.

    1996-01-01

    Self-shielding of interrogating thermal neutrons in lumps of fissile material can be a major source of error in transuranic waste assay using the widely employed differential dieaway technique. We are developing a new instrument, the combined thermal/epithermal neutron (CTEN) interrogation instrument to detect the occurrence of self- shielding and mitigate its effects. Neutrons are moderated in the graphite walls of the CTEN instrument to provide an interrogating flux of epithermal and thermal neutrons. The induced prompt fission neutrons are detected in proportional counters. We report the results of measurements made with the CTEN instrument, using minimal and highly self-shielding plutonium and uranium sources in 55 gallon drums containing a variety of mock waste matrices. Fissile isotopes and waste forms for which the method is most applicable, and limitations associated with the hydrogen content of the waste package/matrix are described

  19. Compton radiography, 4. Magnification compton radiography

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, S; Sera, K; Shishido, F; Fukuda, H [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis and Cancer; Mishina, H

    1978-03-01

    Compton radiography permits an acquisition of direct magnification Compton radiograms by use of a pinhole collimator, rendering it feasible to overcome the resolution of the scinticamera being employed. An improvement of resolution was attained from 7 mm to 1 mm separation. Usefulness of its clinical application can be seen in orientation of puncture and biopsy in deep structures and detection of various foreign bodies penetrated by blasts and so on under the ''magnification Compton fluoroscopy'' which can be developed on this principle in the near future.

  20. Compton tomography system

    Science.gov (United States)

    Grubsky, Victor; Romanoov, Volodymyr; Shoemaker, Keith; Patton, Edward Matthew; Jannson, Tomasz

    2016-02-02

    A Compton tomography system comprises an x-ray source configured to produce a planar x-ray beam. The beam irradiates a slice of an object to be imaged, producing Compton-scattered x-rays. The Compton-scattered x-rays are imaged by an x-ray camera. Translation of the object with respect to the source and camera or vice versa allows three-dimensional object imaging.

  1. Polarized epithermal neutron spectrometer at KENS

    International Nuclear Information System (INIS)

    Kohgi, M.

    1983-01-01

    A spectrometer employing a white, epithermal, polarized neutron beam is under construction at KENS. The neutron polarization is achieved by passage through a dynamically polarized proton filter (DPPF). The results of the test experiments show that the DPPF method is promising in obtaining polarized epithermal neutron beam. The basic design of the spectrometer is described

  2. Compton current detector

    International Nuclear Information System (INIS)

    Carvalho Campos, J.S. de.

    1984-01-01

    The project and construction of a Compton current detector, with cylindrical geometry using teflon as dielectric material; for electromagnetic radiation in range energy between 10 KeV and 2 MeV are described. The measurements of Compton current in teflon were obtained using an electrometer. The Compton current was promoted by photon flux proceeding from X ray sources (MG 150 Muller device) and gamma rays of 60 Co. The theory elaborated to explain the experimental results is shown. The calibration curves for accumulated charge and current in detector in function of exposition rates were obtained. (M.C.K.) [pt

  3. Estimation of total as well as bioaccessible levels and average daily dietary intake of iodine from Japanese edible seaweeds by epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Fukushima, M.; Chatt, A.

    2012-01-01

    An epi-thermal instrumental neutron activation analysis (EINAA) method in conjunction with Compton suppression spectrometry (EINAA-CSS) was used for the determination of total iodine in eight different species of edible seaweeds from Japan. This method gave an absolute detection limit of about 2 μg. The accuracy of the method was evaluated using various reference materials and found to be generally in agreement within ±6% of the certified values. The longitudinal distributions of iodine at different growing stages in Japanese sea mustard and tangle seaweeds were investigated. For a 150-cm-high tangle, the highest concentration (5,360 mg/kg) of iodine was found at the root, then decreased slowly to 780 mg/kg in the middle portion (60-75 cm), and increased to 2,300 mg/kg at the apex. On the other hand, for a 190-cm-high sea mustard the highest levels of iodine were found both at the roots (164 mg/kg) and apex (152 mg/kg) with lower values (98 mg/kg) in the middle section. In order to estimate the bioaccessible fraction of iodine, seaweeds were digested by an in vitro enzymolysis method, dietary fibre separated from residue, and both fractions analyzed by EINAA-CSS. The average daily dietary intakes of total (0.14 mg) as well as bioaccessible fraction (0.12 mg) of iodine from the consumption of sea mustards were estimated. (author)

  4. Uranium in coral skeletons determined by epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Ohde, S.; Hossain, M.M.M.; Ozaki, H.; Masuzawa, T.

    2003-01-01

    A simple and non-destructive method has been proposed for the routine determination of uranium by epithermal neutron activation analysis in coral skeletons. Using a cadmium capsule, about 0.1-0.2 g samples were irradiated for 6 hours in the Triga Mark II Reactor. Measurements of γ-ray ( 239 Np via 239 U) were performed with each sample and standard after cooling for about three days. Compared with a non-destructive thermal NAA, the present method was found to improve the sensitivity because it reduced the intense Compton background induced by 24 Na. Uranium in coral standards was determined within 2% of analytical precision. The data obtained for the carbonate standards are mostly consistent with reported values. The present method could be usefully applied to determine uranium contents in fossil corals from the Funafuti Atoll in the Pacific. The distribution of uranium between seawater and coral skeletons is also discussed in order to understand the environmental media in which the coral grew. (author)

  5. The Compton generator revisited

    Science.gov (United States)

    Siboni, S.

    2014-09-01

    The Compton generator, introduced in 1913 by the US physicist A H Compton as a relatively simple device to detect the Earth's rotation with respect to the distant stars, is analyzed and discussed in a general perspective. The paper introduces a generalized definition of the generator, emphasizing the special features of the original apparatus, and provides a suggestive interpretation of the way the device works. To this end, an intriguing electromagnetic analogy is developed, which turns out to be particularly useful in simplifying the calculations. Besides the more extensive description of the Compton generator in itself, the combined use of concepts and methods coming from different fields of physics, such as particle dynamics in moving references frames, continuum mechanics and electromagnetism, may be of interest to both teachers and graduate students.

  6. Nuclear Compton scattering

    International Nuclear Information System (INIS)

    Christillin, P.

    1986-01-01

    The theory of nuclear Compton scattering is reformulated with explicit consideration of both virtual and real pionic degrees of freedom. The effects due to low-lying nuclear states, to seagull terms, to pion condensation and to the Δ dynamics in the nucleus and their interplay in the different energy regions are examined. It is shown that all corrections to the one-body terms, of diffractive behaviour determined by the nuclear form factor, have an effective two-body character. The possibility of using Compton scattering as a complementary source of information about nuclear dynamics is restressed. (author)

  7. Epithermal neutron beam interference with cardiac pacemakers

    International Nuclear Information System (INIS)

    Koivunoro, H.; Serén, T.; Hyvönen, H.; Kotiluoto, P.; Iivonen, P.; Auterinen, I.; Seppälä, T.; Kankaanranta, L.; Pakarinen, S.; Tenhunen, M.; Savolainen, S.

    2011-01-01

    In this paper, a phantom study was performed to evaluate the effect of an epithermal neutron beam irradiation on the cardiac pacemaker function. Severe malfunction occurred in the pacemakers after substantially lower dose from epithermal neutron irradiation than reported in the fast neutron or photon beams at the same dose rate level. In addition the pacemakers got activated, resulting in nuclides with half-lives from 25 min to 115 d. We suggest that BNCT should be administrated only after removal of the pacemaker from the vicinity of the tumor.

  8. Epithermal neutron beam interference with cardiac pacemakers

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, H., E-mail: hanna.koivunoro@helsinki.fi [Department of Physics, P.O.B. 64, FI-00014 University of Helsinki (Finland)] [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, FIN-00029 HUS (Finland)] [Boneca Corporation, Finland, Filnland (Finland); Seren, T. [VTT Technical Research Centre of Finland (Finland); Hyvoenen, H. [Boneca Corporation, Finland, Filnland (Finland); Kotiluoto, P. [VTT Technical Research Centre of Finland (Finland); Iivonen, P. [St. Jude Medical (Finland); Auterinen, I. [VTT Technical Research Centre of Finland (Finland); Seppaelae, T.; Kankaanranta, L. [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, FIN-00029 HUS (Finland); Pakarinen, S. [Department of Cardiology, Helsinki University Central Hospital (Finland); Tenhunen, M. [Department of Oncology, Helsinki University Central Hospital, P.O.B. 180, FIN-00029 HUS (Finland); Savolainen, S. [HUS Helsinki Medical Imaging Center, Helsinki University Central Hospital (Finland)

    2011-12-15

    In this paper, a phantom study was performed to evaluate the effect of an epithermal neutron beam irradiation on the cardiac pacemaker function. Severe malfunction occurred in the pacemakers after substantially lower dose from epithermal neutron irradiation than reported in the fast neutron or photon beams at the same dose rate level. In addition the pacemakers got activated, resulting in nuclides with half-lives from 25 min to 115 d. We suggest that BNCT should be administrated only after removal of the pacemaker from the vicinity of the tumor.

  9. Voltmeter with Compton electrons

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, N R; Gorbics, S G; Weidenheimer, D M [Berkeley Research Associates, Springfield, VA (United States)

    1997-12-31

    A technique to measure the electron end point energy of bremsstrahlung in the MV regime using only two detectors is described. One of the detector measures the total radiation, the other filters out all except the hardest photons by looking only at their Compton electrons, whose average energy is determined with a magnetic field. (author). 4 figs., 2 refs.

  10. Compton scattering revisited

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, R.H., E-mail: rpratt@pitt.ed [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); LaJohn, L.A., E-mail: lal18@pitt.ed [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Florescu, V., E-mail: flor@barutu.fizica.unibuc.r [Centre for Advanced Quantum Physics, University of Bucharest, MG-11 Bucharest-Magurele, 077125 Magurele (Romania); Suric, T., E-mail: suric@irb.h [R. Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Chatterjee, B.K., E-mail: barun_k_chatterjee@yahoo.co [Department of Physics, Bose Institute, Kolkata 700009 (India); Roy, S.C., E-mail: suprakash.roy@gmail.co [Department of Physics, Bose Institute, Kolkata 700009 (India)

    2010-02-15

    We review the standard theory of Compton scattering from bound electrons, and we describe recent findings that require modification of the usual understanding, noting the nature of consequences for experiment. The subject began with Compton and scattering from free electrons. Experiment actually involved bound electrons, and this was accommodated with the use of impulse approximation (IA), which described inelastic scattering from bound electrons in terms of scattering from free electrons. This was good for the Compton peak but failed for soft final photons. The standard theory was formalized by Eisenberger and Platzman (EP) [1970. Phys. Rev. A 2, 415], whose work also suggested why impulse approximation was better than one would expect, for doubly differential cross sections (DDCS), but not for triply differential cross sections (TDCS). A relativistic version of IA (RIA) was worked out by Ribberfors [1975. Phys. Rev. B 12, 2067]. And Suric et al. [1991. Phys. Rev. Lett. 67, 189] and Bergstrom et al. [1993. Phys. Rev. A 48, 1134] developed a full relativistic second order S-matrix treatment, not making impulse approximation, but within independent particle approximation (IPA). Newer developments in the theory of Compton scattering include: (1) Demonstration that the EP estimates of the validity of IA are incorrect, although the qualitative conclusion remains unchanged; IA is not to be understood as the first term in a standard series expansion. (2) The greater validity of IA for DDCS than for the TDCS, which when integrated give DDCS, is related to the existence of a sum rule, only valid for DDCS. (3) The so-called 'asymmetry' of a Compton profile is primarily to be understood as simply the shift of the peak position in the profile; symmetric and anti-symmetric deviations from a shifted Compton profile are very small, except for high Z inner shells where further p{sup -}>.A{sup -}> effects come into play. (4) Most relativistic effects, except at low

  11. Compton scattering revisited

    International Nuclear Information System (INIS)

    Pratt, R.H.; LaJohn, L.A.; Florescu, V.; Suric, T.; Chatterjee, B.K.; Roy, S.C.

    2010-01-01

    We review the standard theory of Compton scattering from bound electrons, and we describe recent findings that require modification of the usual understanding, noting the nature of consequences for experiment. The subject began with Compton and scattering from free electrons. Experiment actually involved bound electrons, and this was accommodated with the use of impulse approximation (IA), which described inelastic scattering from bound electrons in terms of scattering from free electrons. This was good for the Compton peak but failed for soft final photons. The standard theory was formalized by Eisenberger and Platzman (EP) [1970. Phys. Rev. A 2, 415], whose work also suggested why impulse approximation was better than one would expect, for doubly differential cross sections (DDCS), but not for triply differential cross sections (TDCS). A relativistic version of IA (RIA) was worked out by Ribberfors [1975. Phys. Rev. B 12, 2067]. And Suric et al. [1991. Phys. Rev. Lett. 67, 189] and Bergstrom et al. [1993. Phys. Rev. A 48, 1134] developed a full relativistic second order S-matrix treatment, not making impulse approximation, but within independent particle approximation (IPA). Newer developments in the theory of Compton scattering include: (1) Demonstration that the EP estimates of the validity of IA are incorrect, although the qualitative conclusion remains unchanged; IA is not to be understood as the first term in a standard series expansion. (2) The greater validity of IA for DDCS than for the TDCS, which when integrated give DDCS, is related to the existence of a sum rule, only valid for DDCS. (3) The so-called 'asymmetry' of a Compton profile is primarily to be understood as simply the shift of the peak position in the profile; symmetric and anti-symmetric deviations from a shifted Compton profile are very small, except for high Z inner shells where further p → .A → effects come into play. (4) Most relativistic effects, except at low energies, are to be

  12. Compton Polarimetry at ELSA

    International Nuclear Information System (INIS)

    Hillert, Wolfgang; Aurand, Bastian; Wittschen, Juergen

    2009-01-01

    Part of the future polarization program performed at the Bonn accelerator facility ELSA will rely on precision Compton polarimetry of the stored transversely polarized electron beam. Precise and fast polarimetry poses high demands on the light source and the detector which were studied in detail performing numerical simulations of the Compton scattering process. In order to experimentally verify these calculations, first measurements were carried out using an argon ion laser as light source and a prototype version of a counting silicon microstrip detector. Calculated and measured intensity profiles of backscattered photons are presented and compared, showing excellent agreement. Background originating from beam gas radiation turned out to be the major limitation of the polarimeter performance. In order to improve the situation, a new polarimeter was constructed and is currently being set up. Design and expected performance of this polarimeter upgrade are presented.

  13. Compton radiography, 1

    International Nuclear Information System (INIS)

    Okuyama, Shinichi; Sera, Koichiro; Fukuda, Hiroshi; Shishido, Fumio; Matsuzawa, Taiju

    1977-01-01

    Tomographic images of an object are obtainable by irradiating it with a collimated beam of monochromatic gamma rays and recording the resultant Compton rays scattered upward at right angles. This is the scattered-ray principle of the formation of a radiation image that differs from the traditional ''silhouette principle'' of radiography, and that bears prospects of stereopsis as well as cross-section tomography. (Evans, J.)

  14. Crystal Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Braverman, Joshua B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hornback, Donald Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fabris, Lorenzo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Newby, Jason [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-09-26

    Stand-off detection is one of the most important radiation detection capabilities for arms control and the control of illicit nuclear materials. For long range passive detection one requires a large detector and a means of “seeing through” the naturally occurring and varying background radiation, i.e. imaging. Arguably, Compton imaging is the best approach over much of the emission band suitable for long range detection. It provides not only imaging, but more information about the direction of incidence of each detected gamma-ray than the alternate approach of coded-aperture imaging. The directional information allows one to reduce the background and hence improve the sensitivity of a measurement. However, to make an efficient Compton imager requires localizing and measuring the simultaneous energy depositions when gamma-rays Compton scatter and are subsequently captured within a single, large detector volume. This concept has been demonstrated in semi-conductor detectors (HPGe, CZT, Si) but at ~ $1k/cm3 these materials are too expensive to build the large systems needed for standoff detection. Scintillator detectors, such as NaI(Tl), are two orders of magnitude less expensive and possess the energy resolution required to make such an imager. However, they do not currently have the ability to localize closely spaced, simultaneous energy depositions in a single large crystal. In this project we are applying a new technique that should, for the first time ever, allow cubic-millimeter event localization in a bulk scintillator crystal.

  15. Compton Operator in Quantum Electrodynamics

    International Nuclear Information System (INIS)

    Garcia, Hector Luna; Garcia, Luz Maria

    2015-01-01

    In the frame in the quantum electrodynamics exist four basic operators; the electron self-energy, vacuum polarization, vertex correction, and the Compton operator. The first three operators are very important by its relation with renormalized and Ward identity. However, the Compton operator has equal importance, but without divergence, and little attention has been given it. We have calculated the Compton operator and obtained the closed expression for it in the frame of dimensionally continuous integration and hypergeometric functions

  16. Characterisation of the TAPIRO BNCT epithermal facility

    Energy Technology Data Exchange (ETDEWEB)

    Burn, K. W. [FIS-NUC, ENEA, Via Martiri di Montesole 4, Bologna (Italy); Colli, V. [Dept. of Physics of Univ., INFN, Via Celoria 16, I-20133 Milano (Italy); Curzio, G.; D' Errico, F. [DIMNP, Univ. of Pisa, Via Diotisalvi 2, I-56126 Pisa (Italy); Gambarini, G. [Dept. of Physics of Univ., INFN, Via Celoria 16, I-20133 Milano (Italy); Rosi, G. [FIS-ION, ENEA, Casaccia, Via Anguillarese 301, I-00060 Santa Maria di Galeria, Roma (Italy); Scolari, L. [Dept. of Physics of Univ., INFN, Via Celoria 16, I-20133 Milano (Italy)

    2004-07-01

    A collimated epithermal beam for boron neutron capture therapy (BNCT) research has been designed and built at the TAPIRO fast research reactor. A complete experimental characterisation of the radiation field in the irradiation chamber has been performed, to verify agreement with IAEA requirements. Slow neutron fluxes have been measured by means of an activation technique and with thermoluminescent detectors (TLDs). The fast neutron dose has been determined with gel dosemeters, while the fast neutron spectrum has been acquired by means of a neutron spectrometer based on superheated drop detectors. The gamma-dose has been measured with gel dosemeters and TLDs. For an independent verification of the experimental results, fluxes, doses and neutron spectra have been calculated with Monte Carlo simulations using the codes MCNP4B and MCNPX 2.1.5 with the direct statistical approach (DSA). The results obtained confirm that the epithermal beams achievable at TAPIRO are of suitable quality for BNCT purposes. (authors)

  17. Polarized Epithermal Neutron Studies of Magnetic Domains

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Chernikov, A.N.; Lason, L.; Mareev, Yu. D.; Novitsky, V.V.; Pikelner, L.B.; Skoy, V.R.; Tsulaya, M.I.; Gould, C.R.; Haase, D.G.; Roberson, N.R.

    1997-01-01

    The average size and shape of magnetic domains in a material can be determined from the precession of polarized neutrons traversing the material. Epithermal neutrons (0.5eV< En<100eV), which process more slowly than thermals, effectively probe the internal structure of samples that are thick or have large domains or large internal fields. Such epithermal neutron measurements require a neutron polarizer and analyzer based on cryogenically polarized spin filters. We discuss the measurements at JINR, Dubna, of magnetic domains in a 2.0 cm. diam. crystal of holmium using 1.7 to 59eV neutrons polarized by a dynamically polarized proton target and analyzed with a statically polarized dysprosium target

  18. Polarized epithermal neutron studies of magnetic domains

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Chernikov, A.N.; Lason, L.; Mareev, Y.D.; Novitsky, V.V.; Pikelner, L.B.; Skoy, V.R.; Tsulaya, M.I.; Gould, C.R.; Haase, D.G.; the Triangle Universities Nuclear Laboratory, Durham, North Carolina; Roberson, N.R.; the Triangle Universities Nuclear Laboratory, Durham, North Carolina

    1997-01-01

    The average size and shape of magnetic domains in a material can be determined from the precession of polarized neutrons traversing the material. Epithermal neutrons (0.5eV n <100eV), which precess more slowly than thermals, effectively probe the internal structure of samples that are thick or have large domains or large internal fields. Such epithermal neutron measurements require a neutron polarizer and analyzer based on cryogenically polarized spin filters. We discuss the measurement at JINR, Dubna, of magnetic domains in a 2.0 cm. diam. crystal of holmium using 1.7 to 59 eV neutrons polarized by a dynamically polarized proton target and analyzed with a statically polarized dysprosium target. copyright 1997 American Institute of Physics

  19. Pulsed neutron sources for epithermal neutrons

    International Nuclear Information System (INIS)

    Windsor, C.G.

    1978-01-01

    It is shown how accelerator based neutron sources, giving a fast neutron pulse of short duration compared to the neutron moderation time, promise to open up a new field of epithermal neutron scattering. The three principal methods of fast neutron production: electrons, protons and fission boosters will be compared. Pulsed reactors are less suitable for epithermal neutrons and will only be briefly mentioned. The design principle of the target producing fast neutrons, the moderator and reflector to slow them down to epithermal energies, and the cell with its beam tubes and shielding will all be described with examples taken from the new Harwell electron linac to be commissioned in 1978. A general comparison of pulsed neutron performance with reactors is fraught with difficulties but has been attempted. Calculation of the new pulsed source fluxes and pulse widths is now being performed but we have taken the practical course of basing all comparisons on extrapolations from measurements on the old 1958 Harwell electron linac. Comparisons for time-of-flight and crystal monochromator experiments show reactors to be at their best at long wavelengths, at coarse resolution, and for experiments needing a specific incident wavelength. Even existing pulsed sources are shown to compete with the high flux reactors in experiments where the hot neutron flux and the time-of-flight methods can be best exploited. The sources under construction can open a new field of inelastic neutron scattering based on energy transfer up to an electron volt and beyond

  20. Epithermal neutron activation analysis of food

    International Nuclear Information System (INIS)

    Zikovsky, L.; Soliman, K.

    1999-01-01

    Food samples were irradiated with thermal and epithermal neutrons. The average ratios of thermal to epithermal activity were determined for 80 Br, 49 Ca, 38 Cl, 60m Co, 42 K, 27 Mg, 56 Mn, 24 Na, and 86m Rb. They were equal to 2.1, 26, 24, 6.6, 19, 16, 11, 23 and 1.9, respectively. Then, 57 food samples were analyzed by epithermal neutron activation analysis for Br and Rb. The concentrations (in ppm) of Br and Rb were in asparagus (2) 2.3, 11.5; beets (3) 0.5, 0.8; beef (3) 1.7, 3.6; cabbage (5) 0.5, 10.8; carrot (3) 0.2, 3.7; chicken (3) 0.6, 4.4; chocolate (7) 11.1, 18.7; egg (3) 0.9, 1.9; french bean (3) 0.3, 1.0; goose (2) 1.3, 9.3; lettuce (2) 0.9, 1.7; pork (1) 1.5, 4.4; potato (7) 1.0, 1.2; sausage (3) 4.8, 3.5; spinach (3) 3.6, 4.0; strawberry jam (3) 0.4, 1.4; tomato (1) 13.5, 14.6; turkey (3) 1.2, 4.9. respectively. The number of samples and analyzed is indicated in parentheses. (author)

  1. Design considerations for epithermal pulse reactors

    International Nuclear Information System (INIS)

    Ostensen, R.W.

    1978-01-01

    Simplified design criteria were developed for scoping analyses of epithermal pulse reactors for use in LMFBR safety testing. By using these criteria, materials and designs were investigated to determine performance limits of moderately sized reactor cores. Several designs are suggested for further study. These are a gas-cooled core fueled with a heterogeneous mixture of Fe-UO 2 cermet and BeO-UO 2 ceramic fuels, and a heavy-water-cooled core fueled with an Fe-UO 2 cermet

  2. From hot atom chemistry to epithermal chemistry

    International Nuclear Information System (INIS)

    Roessler, K.

    2004-01-01

    The rise and fall of hot atom chemistry (HAC) over the years from 1934 to 2004 is reviewed. Several applications are discussed, in particular to astrophysics and the interaction of energetic ions and atoms in space. Epithermal chemistry (ETC) is proposed to substitute the old name, since it better fits the energy range as well as the non-thermal and non-equilibrium character of the reactions. ETC also avoids the strong connexion of HAC to nuclear chemistry and stands for the opening of the field to physical chemistry and astrophysics. (orig.)

  3. Characteristic analysis on moderating material for obtaining epithermal neutron beam

    International Nuclear Information System (INIS)

    Jiang Xinbiao; Chen Da; Zhang Ying

    2000-01-01

    The one dimension discrete coordinates transport code ANISN was used to calculate three-group constants of 11 elements which could be used to consist moderating epithermal neutron material of beam. Moderating character of simple substances, compounds and mixtures consisted of the optimized elements analyzed three kinds of moderating materials were optimized for epithermal neutron beam

  4. Magnetic, radiometric and gravity signatures of localities of epithermal gold deposits in Fiji

    International Nuclear Information System (INIS)

    Gunn, Peter J.; Mackey, Tim; Meixner, Tony J.

    1998-01-01

    Fiji contains several epithermal gold deposits and by studying the geophysical responses in the vicinity of these deposits it is possible to identify a set of geophysical characteristics which indicate localities where such deposits may be located. Epithermal gold deposits are formed above intrusive stocks resulting from subduction processes. The source intrusions for the deposits are normally covered by lavas and pyroclastic rocks and the irregular magnetic effects of these units obscure the magnetic effects of the intrusions. In Fiji however the source intrusions can be recognized as causing gravity highs and magnetic highs in upward continued magnetic data in which the magnetic effects of volcanic rocks are suppressed. Vents associated with the intrusions can be recognized as magnetic lows which sometimes contain a central high. Some vents and calderas can be recognized in digital elevation data. Increased potassium concentrations ca be interpreted to indicate potassium alteration associated with mineralizing processes. Fractures that may localize epithermal deposits can be recognized in the magnetic data and enhancements of the data such as produced by derivative operations. (author)

  5. Compton scattering at high intensities

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas, E-mail: thomas.heinzl@plymouth.ac.u [University of Plymouth, School of Mathematics and Statistics, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-12-01

    High-intensity Compton scattering takes place when an electron beam is brought into collision with a high power laser. We briefly review the main intensity signatures using the formalism of strong-field quantum electrodynamics.

  6. Weak Deeply Virtual Compton Scattering

    International Nuclear Information System (INIS)

    Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin

    2006-01-01

    We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities

  7. Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT).

    Science.gov (United States)

    Seki, Ryoichi; Wakisaka, Yushi; Morimoto, Nami; Takashina, Masaaki; Koizumi, Masahiko; Toki, Hiroshi; Fukuda, Mitsuhiro

    2017-12-01

    The physics of epi-thermal neutrons in the human body is discussed in the effort to clarify the nature of the unique radiologic properties of boron neutron capture therapy (BNCT). This discussion leads to the computational method of Monte Carlo simulation in BNCT. The method is discussed through two examples based on model phantoms. The physics is kept at an introductory level in the discussion in this tutorial review.

  8. Epithermal gold occurrences in the lakes district of the Main ...

    African Journals Online (AJOL)

    MER). Epithermal gold occurrences related to Quaternary volcanics are at present being closely studied for their precious metal potential. Low sulphidation (Adularia-sericite-type) occurrences have been found. Analyses of 579 core and cutting ...

  9. Critical review of Compton imaging

    International Nuclear Information System (INIS)

    Guzzardi, R.; Licitra, G.

    1987-01-01

    This paper reviews the basic aspects, problems, and applications of Compton imaging including those related to nonmedical applications. The physics and technology at the base of this specific methodology are analyzed and the relative differences and merits with respect to other imaging techniques, using ionizing radiations, are reviewed. The basic Compton imaging approaches, i.e., point-by-point, line-by-line, and plane-by-plane, are analyzed. Specifically, physical design and technological aspects are reviewed and discussed. Furthermore, the most important clinical applications of the different methods are presented and discussed. Finally, possibilities and applications of the Compton imaging method to other nonmedical fields, as in the case of the important area of object defects recognition, are analyzed and reviewed. 56 references

  10. Inverse comptonization vs. thermal synchrotron

    International Nuclear Information System (INIS)

    Fenimore, E.E.; Klebesadel, R.W.; Laros, J.G.

    1983-01-01

    There are currently two radiation mechanisms being considered for gamma-ray bursts: thermal synchrotron and inverse comptonization. They are mutually exclusive since thermal synchrotron requires a magnetic field of approx. 10 12 Gauss whereas inverse comptonization cannot produce a monotonic spectrum if the field is larger than 10 11 and is too inefficient relative to thermal synchrotron unless the field is less than 10 9 Gauss. Neither mechanism can explain completely the observed characteristics of gamma-ray bursts. However, we conclude that thermal synchrotron is more consistent with the observations if the sources are approx. 40 kpc away whereas inverse comptonization is more consistent if they are approx. 300 pc away. Unfortunately, the source distance is still not known and, thus, the radiation mechanism is still uncertain

  11. Epithermal neutron activation analysis in applied microbiology

    International Nuclear Information System (INIS)

    Marina Frontasyeva

    2012-01-01

    Some results from applying epithermal neutron activation analysis at FLNP JINR, Dubna, Russia, in medical biotechnology, environmental biotechnology and industrial biotechnology are reviewed. In the biomedical experiments biomass from the blue-green alga Spirulina platensis (S. platensis) has been used as a matrix for the development of pharmaceutical substances containing such essential trace elements as selenium, chromium and iodine. The feasibility of target-oriented introduction of these elements into S. platensis biocomplexes retaining its protein composition and natural beneficial properties was shown. The absorption of mercury on growth dynamics of S. platensis and other bacterial strains was observed. Detoxification of Cr and Hg by Arthrobacter globiformis 151B was demonstrated. Microbial synthesis of technologically important silver nanoparticles by the novel actinomycete strain Streptomyces glaucus 71 MD and blue-green alga S. platensis were characterized by a combined use of transmission electron microscopy, scanning electron microscopy and energy-dispersive analysis of X-rays. It was established that the tested actinomycete S. glaucus 71 MD produces silver nanoparticles extracellularly when acted upon by the silver nitrate solution, which offers a great advantage over an intracellular process of synthesis from the point of view of applications. The synthesis of silver nanoparticles by S. platensis proceeded differently under the short-term and long-term silver action. (author)

  12. Boron thermal/epithermal neutron capture therapy

    International Nuclear Information System (INIS)

    Fairchild, R.G.

    1982-01-01

    The development of various particle beams for radiotherapy represents an attempt to improve dose distribution, and to provide high LET radiations which are less sensitive to ambient physical and radiobiological factors such as oxygen tension, cell cycle, and dose rate. In general, a compromise is necessary as effective RBE is reduced in order to spread the dose distribution over the anticipated tumor volume. The approach of delivering stable non-toxic isotopes to tumor, and then activating these atoms subsequently via an external radiation beam has mator advantages; problems associated with high uptake of these isotopes in competing cell pools are obviated, and the general tumor volume can be included in the treatment field of the activating beam. As long as the normal tissues supporting tumor show a low uptake of the isotope to be activated, and as long as the range of the reaction products is short, dose will be restricted to tumor, with a consequent high therapeutic ratio. Neutron Capture Therapy (NCT) is generally carried out by activating boron-10 with low energy neutrons. The range of the high LET, low OER particles from the 10 B(n, α) 7 Li reaction is approx. 10μ, or one cell diameter, a situation that is optimal for cell killing. Significant advantages may be gained by using the NCT procedure in conjunction with improved tissue penetration provided with epithermal or filtered beams, and new compounds showing physiological binding to tumor

  13. Inverse Compton gamma-rays from pulsars

    International Nuclear Information System (INIS)

    Morini, M.

    1983-01-01

    A model is proposed for pulsar optical and gamma-ray emission where relativistic electrons beams: (i) scatter the blackbody photons from the polar cap surface giving inverse Compton gamma-rays and (ii) produce synchrotron optical photons in the light cylinder region which are then inverse Compton scattered giving other gamma-rays. The model is applied to the Vela pulsar, explaining the first gamma-ray pulse by inverse Compton scattering of synchrotron photons near the light cylinder and the second gamma-ray pulse partly by inverse Compton scattering of synchrotron photons and partly by inverse Compton scattering of the thermal blackbody photons near the star surface. (author)

  14. Maximum Likelihood Compton Polarimetry with the Compton Spectrometer and Imager

    Energy Technology Data Exchange (ETDEWEB)

    Lowell, A. W.; Boggs, S. E; Chiu, C. L.; Kierans, C. A.; Sleator, C.; Tomsick, J. A.; Zoglauer, A. C. [Space Sciences Laboratory, University of California, Berkeley (United States); Chang, H.-K.; Tseng, C.-H.; Yang, C.-Y. [Institute of Astronomy, National Tsing Hua University, Taiwan (China); Jean, P.; Ballmoos, P. von [IRAP Toulouse (France); Lin, C.-H. [Institute of Physics, Academia Sinica, Taiwan (China); Amman, M. [Lawrence Berkeley National Laboratory (United States)

    2017-10-20

    Astrophysical polarization measurements in the soft gamma-ray band are becoming more feasible as detectors with high position and energy resolution are deployed. Previous work has shown that the minimum detectable polarization (MDP) of an ideal Compton polarimeter can be improved by ∼21% when an unbinned, maximum likelihood method (MLM) is used instead of the standard approach of fitting a sinusoid to a histogram of azimuthal scattering angles. Here we outline a procedure for implementing this maximum likelihood approach for real, nonideal polarimeters. As an example, we use the recent observation of GRB 160530A with the Compton Spectrometer and Imager. We find that the MDP for this observation is reduced by 20% when the MLM is used instead of the standard method.

  15. Method and apparatus for epithermal neutron porosity well logging

    International Nuclear Information System (INIS)

    Hertzog, R.C.; Loomis, W.A.; Wraight, P.

    1991-01-01

    This patent describes a method for investigating the porosity of a subsurface earth formation surrounding a borehole. It comprises repetitively irradiating the borehole and earth formation with discrete bursts of high energy neutrons from a neutron source, which neutrons interact with nuclei of the materials in the borehole and the formation to produce therein populations of epithermal neutrons; detecting the populations of epithermal neutrons at near and far locations in the borehole spaced apart longitudinally by different distances from the neutron source; generating count signals indicative of the magnitudes of the detected epithermal neutron populations at the respective near and far locations; detecting the decay of the epithermal neutron populations following the neutron bursts at least at one location in the borehole and generating signals representative thereof; deriving from the decay signals a signal indicative of the slowing down time of epithermal neutrons in the formation of the at least one location; and deriving from the near and far count signals and the slowing down time signal a measurement signal representative of the porosity of the formation surrounding the borehole inherently compensated for the effects of tool standoff on the responses of the logging tool

  16. The Compton polarimeter at ELSA

    International Nuclear Information System (INIS)

    Doll, D.

    1998-06-01

    In order to measure the degree of transverse polarization of the stored electron beam in the Electron Stretcher Accelerator ELSA a compton polarimeter is built up. The measurement is based on the polarization dependent cross section for the compton scattering of circular polarized photons off polarized electrons. Using a high power laser beam and detecting the scattered photons a measuring time of two minutes with a statistical error of 5% is expected from numerical simulations. The design and the results of a computer controlled feedback system to enhance the laser beam stability at the interaction point in ELSA are presented. The detection of the scattered photons is based on a lead converter and a silicon-microstrip detector. The design and test results of the detector module including readout electronic and computer control are discussed. (orig.)

  17. Epithermal neutron activation analysis using a boron carbide irradiation filter

    International Nuclear Information System (INIS)

    Ehmann, W.D.; Brueckner, J.

    1980-01-01

    The use of boron carbide as a thermal neutron filter in epithermal neutron activation (ENAA) analysis has been investigated. As compared to the use of a cadmium filter, boron provides a greater reduction of activities from elements relatively abundant in terrestrial rocks and fossil fuels, such as Na, La, Sc and Fe. These elements have excitation functions which follow the 1/v law in the 1 to 10 eV lower epithermal region. This enhances the sensitivity of ENAA for elements such as U, Th, Ba and etc. which have strong resonances in the higher epithermal region above 10 eV. In addition, a boron carbide filter has the advantages over cadmium of acquiring a relatively low level of induced activity which poses minimal radiation safety problems, when used for ENAA. (author)

  18. Determination of silver using cyclic epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Pun, T.H.; Landsberger, S.

    2012-01-01

    A fast pneumatic transfer facility was installed in Nuclear Engineering Teaching Laboratory (NETL) of the University of Texas at Austin for the purpose of cyclic thermal and epithermal neutron activation analysis. In this study efforts were focused on the evaluation of cyclic epithermal neutron activation analysis (CENAA). Various NIST and CANMET certified materials were analyzed by the system. Experiment results showed 110 Ag with its 25 s half-life as one of the isotopes favored by the system. Thus, the system was put into practical application in identifying silver in metallic ores. Comparison of sliver concentrations as determined by CENAA in CANMET certified reference materials gave very good results. (author)

  19. Compton radiography, 2. Clinical significance of Compton radiography of a chest phantom

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, S; Sera, K; Fukuda, H; Shishido, F [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer; Mishina, H

    1977-09-01

    Compton radiography, a tomographic technic with Compton-scattered rays of a monochromatic gamma ray beam, was feasible of tomographing a chest phantom. The result suggested that the technic could be extended to imaging of the lung and the surrounding structures of the chest wall, mediastinum and liver in Compton tomographic mode.

  20. Design of filtered epithermal neutron beams for BNC

    International Nuclear Information System (INIS)

    Greenwood, R.C.

    1986-01-01

    The design principles of filters (installed in nuclear reactors) to provide epithermal neutron beams suitable for use in 10 B Neutron Capture Therapy (BNCT) are reviewed. The goal of such filters is to provide epithermal neutron beams within an energy range of 1 keV to 30 keV with fluxes in excess of 5 x 10 8 neutrons/cm 2 .s, and having acceptably low contaminant fast neutron (> 30 keV) and gamma components. Filters considered for this application include 238 U, Sc, Fe/Al and Al/S. It is shown that in order to achieve a goal epithermal neutron flux of > 5 x 10 8 neutrons/cm 2 .s, such filters must be located in radial beam channels which view essentially the complete reactor core. Based on considerations of estimated epithermal fluxes, cost and availability of materials, and transmitted neutron energy spectrum, it is suggested that a filter consisting of elements of Al, S, Ti and V might prove to be an optimum design for BNCT applications. 13 references, 3 figures, 8 tables

  1. Collimator optimization studies for the new MIT epithermal neutron beam

    International Nuclear Information System (INIS)

    Riley, K.J.; Ali, S.J.; Harling, O.K.

    2000-01-01

    A patient collimator has been designed for the epithermal neutron facility now being commissioned at MIT. Collimator performance both in and out of field was evaluated using the Monte Carlo code MCNP. A two piece design that can accommodate different circular field sizes will be manufactured using a composite lead, epoxy, boron and lithium mixture. (author)

  2. Mechanical design of epithermal neutron diagnostic for TFTR

    International Nuclear Information System (INIS)

    Groo, R.C.

    1981-01-01

    The mechanical design of the Epithermal Neutron Diagnostic for TFTR is described. This fission detector system measures the time resolution of the neutron flux for folding into the Neutron Activation system and also provides continuous, wide range coverage of all expected fusion reaction rates

  3. Measurement of epithermal neutrons by a coherent demodulation technique

    CERN Document Server

    Horiuchi, N; Takahashi, H; Kobayashi, H; Harasawa, S

    2000-01-01

    Epithermal neutrons have been measured using a neutron dosimeter via a coherent demodulation technique. This dosimeter consists of CsI(Tl)-photodiode scintillation detectors, four of which are coupled to neutron-gamma converting foils of various sizes. Neutron-gamma converting foils of In, Au and Co materials were used, each of which has a large capture cross section which peaks in the epithermal neutron energy region. The type of foil was selected according to the material properties that best correspond to the energy of the epithermal neutrons to be measured. In addition, the proposed technique was applied using Au-foils in order to measure the Cd ratio. The validity of the proposed technique was examined using an sup 2 sup 4 sup 1 Am-Be source placed in a testing stack of polyethylene blocks, and the results were compared with the theoretical values calculated by the Monte Carlo calculation. Finally, the dosimeter was applied for measuring epithermal neutrons and the Cd ratio in an experimental beam-tube o...

  4. Compton scattering on 208Pb

    International Nuclear Information System (INIS)

    Alberico, W.M.; Molinari, A.

    1982-01-01

    In this paper we briefly review the formalism of the nuclear Compton scattering in the frame of the low-energy theorems (LET). We treat the resonant terms of the amplitude, having collective intermediate nuclear states, as a superposition of Lorentz lines with energy, width and strength fixed by the photo-absorption experiments. The gauge terms are evaluated starting from a simple, but realistic, nuclear Hamiltonian. Dynamical nucleon-nucleon correlations are consistently taken into account, beyond those imposed by the Pauli principle. The comparison of the theoretical predictions with the data of elastic diffusion of photons from 208 Pb shows that LET are insufficient to account for the experiment. (orig.)

  5. Resonant Inverse Compton Scattering Spectra from Highly Magnetized Neutron Stars

    Science.gov (United States)

    Wadiasingh, Zorawar; Baring, Matthew G.; Gonthier, Peter L.; Harding, Alice K.

    2018-02-01

    Hard, nonthermal, persistent pulsed X-ray emission extending between 10 and ∼150 keV has been observed in nearly 10 magnetars. For inner-magnetospheric models of such emission, resonant inverse Compton scattering of soft thermal photons by ultrarelativistic charges is the most efficient production mechanism. We present angle-dependent upscattering spectra and pulsed intensity maps for uncooled, relativistic electrons injected in inner regions of magnetar magnetospheres, calculated using collisional integrals over field loops. Our computations employ a new formulation of the QED Compton scattering cross section in strong magnetic fields that is physically correct for treating important spin-dependent effects in the cyclotron resonance, thereby producing correct photon spectra. The spectral cutoff energies are sensitive to the choices of observer viewing geometry, electron Lorentz factor, and scattering kinematics. We find that electrons with energies ≲15 MeV will emit most of their radiation below 250 keV, consistent with inferred turnovers for magnetar hard X-ray tails. More energetic electrons still emit mostly below 1 MeV, except for viewing perspectives sampling field-line tangents. Pulse profiles may be singly or doubly peaked dependent on viewing geometry, emission locale, and observed energy band. Magnetic pair production and photon splitting will attenuate spectra to hard X-ray energies, suppressing signals in the Fermi-LAT band. The resonant Compton spectra are strongly polarized, suggesting that hard X-ray polarimetry instruments such as X-Calibur, or a future Compton telescope, can prove central to constraining model geometry and physics.

  6. X-ray Compton line scan tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kupsch, Andreas; Lange, Axel; Jaenisch, Gerd-Ruediger [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachgruppe 8.5 - Mikro-ZfP; Hentschel, Manfred P. [Technische Univ. Berlin (Germany); Kardjilov, Nikolay; Markoetter, Henning; Hilger, Andre; Manke, Ingo [Helmholtz-Zentrum Berlin (HZB) (Germany); Toetzke, Christian [Potsdam Univ. (Germany)

    2015-07-01

    The potentials of incoherent X-ray scattering (Compton) computed tomography (CT) are investigated. The imaging of materials of very different atomic number or density at once is generally a perpetual challenge for X-ray tomography or radiography. In a basic laboratory set-up for simultaneous perpendicular Compton scattering and direct beam attenuation tomography are conducted by single channel photon counting line scans. This results in asymmetric distortions of the projection profiles of the scattering CT data set. In a first approach, corrections of Compton scattering data by taking advantage of rotational symmetry yield tomograms without major geometric artefacts. A cylindrical sample composed of PE, PA, PVC, glass and wood demonstrates similar Compton contrast for all the substances, while the conventional absorption tomogram only reveals the two high order materials. Comparison to neutron tomography reveals astonishing similarities except for the glass component (without hydrogen). Therefore, Compton CT offers the potential to replace neutron tomography, which requires much more efforts.

  7. Compton Gamma-Ray Observatory

    Science.gov (United States)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  8. Fundamental symmetry studies at Los Alamos using epithermal neutrons

    International Nuclear Information System (INIS)

    Bowman, C.D.; Bowman, J.D.; Yuan, V.W.

    1988-01-01

    Fundamental symmetry studies using intense polarized beams of epithermal neutrons are underway at the LANSCE facility of the Los Alamos National Laboratory. Three classes of symmetry experiments can be explored: parity violation, and time reversal invariance violation for both parity-violating and parity-conserved observables. The experimental apparatus is described and performance illustrated with examples of recent measurements. Possible improvements in the facilities and prospective experiments are discussed. 15 refs., 10 figs

  9. VLAD for epithermal neutron scattering experiments at large energy transfers

    International Nuclear Information System (INIS)

    Tardocchi, M; Gorini, G; Perelli-Cippo, E; Andreani, C; Imberti, S; Pietropaolo, A; Senesi, R; Rhodes, N R; Schooneveld, E M

    2006-01-01

    The Very Low Angle Detector (VLAD) bank will extend the kinematical region covered by today's epithermal neutron scattering experiments to low momentum transfer ( -1 ) together with large energy transfer 0 -4 0 . In this paper the design of VLAD is presented together with Montecarlo simulations of the detector performances. The results of tests made with prototype VLAD detectors are also presented, confirming the usefulness of the Resonance Detector for measurements at very low scattering angles

  10. Determination of epithermal flux correction factor (α) for irradiation ...

    African Journals Online (AJOL)

    Due to resonance that occur in the epithermal energy region of a reactor, the flux spectra in that region deviates strongly from the ideal I/E law to a I/E1+α with alpha as the correction factor. The factor has to be determined if zirconium as monitor pairs to determine the correction factor for inner irradiation channel 5 and outer ...

  11. A simple scanner for Compton tomography

    CERN Document Server

    Cesareo, R; Brunetti, A; Golosio, B; Castellano, A

    2002-01-01

    A first generation CT-scanner was designed and constructed to carry out Compton images. This CT-scanner is composed of a 80 kV, 5 mA X-ray tube and a NaI(Tl) X-ray detector; the tube is strongly collimated, generating a X-ray beam of 2 mm diameter, whilst the detector is not collimated to collect Compton photons from the whole irradiated cylinder. The performances of the equipment were tested contemporaneous transmission and Compton images.

  12. Deeply virtual Compton scattering. Results and future

    International Nuclear Information System (INIS)

    Nowak, W.D.

    2005-03-01

    Access to generalised parton distributions (GPDs) through deeply virtual Compton scattering (DVCS) is briefly described. Presently available experimental results on DVCS are summarized in conjunction with plans for future measurements. (orig.)

  13. Computer control in a compton scattering spectrometer

    International Nuclear Information System (INIS)

    Cui Ningzhuo; Chen Tao; Gong Zhufang; Yang Baozhong; Mo Haiding; Hua Wei; Bian Zuhe

    1995-01-01

    The authors introduced the hardware and software of computer autocontrol of calibration and data acquisition in a Compton Scattering spectrometer which consists of a HPGe detector, Amplifiers and a MCA

  14. Neutron Compton scattering from selectively deuterated acetanilide

    Science.gov (United States)

    Wanderlingh, U. N.; Fielding, A. L.; Middendorf, H. D.

    With the aim of developing the application of neutron Compton scattering (NCS) to molecular systems of biophysical interest, we are using the Compton spectrometer EVS at ISIS to characterize the momentum distribution of protons in peptide groups. In this contribution we present NCS measurements of the recoil peak (Compton profile) due to the amide proton in otherwise fully deuterated acetanilide (ACN), a widely studied model system for H-bonding and energy transfer in biomolecules. We obtain values for the average width of the potential well of the amide proton and its mean kinetic energy. Deviations from the Gaussian form of the Compton profile, analyzed on the basis of an expansion due to Sears, provide data relating to the Laplacian of the proton potential.

  15. Testing special relativity theory using Compton scattering

    International Nuclear Information System (INIS)

    Contreras S, H.; Hernandez A, L.; Baltazar R, A.; Escareno J, E.; Mares E, C. A.; Hernandez V, C.; Vega C, H. R.

    2010-10-01

    The validity of the special relativity theory has been tested using the Compton scattering. Since 1905 several experiments has been carried out to show that time, mass, and length change with the velocity, in this work the Compton scattering has been utilized as a simple way to show the validity to relativity. The work was carried out through Monte Carlo calculations and experiments with different gamma-ray sources and a gamma-ray spectrometer with a 3 x 3 NaI (Tl) detector. The pulse-height spectra were collected and the Compton edge was observed. This information was utilized to determine the relationship between the electron's mass and energy using the Compton -knee- position, the obtained results were contrasted with two collision models between photon and electron, one model was built using the classical physics and another using the special relativity theory. It was found that calculations and experiments results fit to collision model made using the special relativity. (Author)

  16. Colour coherence in deep inelastic Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, A.I.; Vazdik, J.A. (Lebedev Physical Inst., Academy of Sciences, Moscow (USSR))

    1992-01-01

    MC simulation of Deep Inelastic Compton on proton - both QED and QCD - was performed on the basis of LUCIFER program for HERA energies. Charged hadron flow was calculated for string and independent fragmentation with different cuts on p{sub t} and x. It is shown that interjet colour coherence leads in the case of QCD Compton to the drag effects diminishing the hadron flow in the direction between quark jet and proton remnant jet. (orig.).

  17. Colour coherence in deep inelastic Compton scattering

    International Nuclear Information System (INIS)

    Lebedev, A.I.; Vazdik, J.A.

    1992-01-01

    MC simulation of Deep Inelastic Compton on proton - both QED and QCD - was performed on the basis of LUCIFER program for HERA energies. Charged hadron flow was calculated for string and independent fragmentation with different cuts on p t and x. It is shown that interjet colour coherence leads in the case of QCD Compton to the drag effects diminishing the hadron flow in the direction between quark jet and proton remnant jet. (orig.)

  18. Coincidence corrected efficiency calibration of Compton-suppressed HPGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Aucott, Timothy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brand, Alexander [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); DiPrete, David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-20

    The authors present a reliable method to calibrate the full-energy efficiency and the coincidence correction factors using a commonly-available mixed source gamma standard. This is accomplished by measuring the peak areas from both summing and non-summing decay schemes and simultaneously fitting both the full-energy efficiency, as well as the total efficiency, as functions of energy. By using known decay schemes, these functions can then be used to provide correction factors for other nuclides not included in the calibration standard.

  19. Using Compton scattering for random coincidence rejection

    International Nuclear Information System (INIS)

    Kolstein, M.; Chmeissani, M.

    2016-01-01

    The Voxel Imaging PET (VIP) project presents a new approach for the design of nuclear medicine imaging devices by using highly segmented pixel CdTe sensors. CdTe detectors can achieve an energy resolution of ≈ 1% FWHM at 511 keV and can be easily segmented into submillimeter sized voxels for optimal spatial resolution. These features help in rejecting a large part of the scattered events from the PET coincidence sample in order to obtain high quality images. Another contribution to the background are random events, i.e., hits caused by two independent gammas without a common origin. Given that 60% of 511 keV photons undergo Compton scattering in CdTe (i.e. 84% of all coincidence events have at least one Compton scattering gamma), we present a simulation study on the possibility to use the Compton scattering information of at least one of the coincident gammas within the detector to reject random coincidences. The idea uses the fact that if a gamma undergoes Compton scattering in the detector, it will cause two hits in the pixel detectors. The first hit corresponds to the Compton scattering process. The second hit shall correspond to the photoelectric absorption of the remaining energy of the gamma. With the energy deposition of the first hit, one can calculate the Compton scattering angle. By measuring the hit location of the coincident gamma, we can construct the geometric angle, under the assumption that both gammas come from the same origin. Using the difference between the Compton scattering angle and the geometric angle, random events can be rejected.

  20. Critical elements in Carlin, epithermal, and orogenic gold deposits

    Science.gov (United States)

    Goldfarb, Richard J.; Hofstra, Albert H.; Simmons, Stuart F.

    2016-01-01

    Carlin, epithermal, and orogenic gold deposits, today mined almost exclusively for their gold content, have similar suites of anomalous trace elements that reflect similar low-salinity ore fluids and thermal conditions of metal transport and deposition. Many of these trace elements are commonly referred to as critical or near-critical elements or metals and have been locally recovered, although typically in small amounts, by historic mining activities. These elements include As, Bi, Hg, In, Sb, Se, Te, Tl, and W. Most of these elements are now solely recovered as by-products from the milling of large-tonnage, base metal-rich ore deposits, such as porphyry and volcanogenic massive sulfide deposits.A combination of dominance of the world market by a single country for a single commodity and a growing demand for many of the critical to near-critical elements could lead to future recovery of such elements from select epithermal, orogenic, or Carlin-type gold deposits. Antimony continues to be recovered from some orogenic gold deposits and tellurium could potentially be a primary commodity from some such deposits. Tellurium and indium in sphalerite-rich ores have been recovered in the past and could be future commodities recovered from epithermal ores. Carlin-type gold deposits in Nevada are enriched in and may be a future source for As, Hg, Sb, and/or Tl. Some of the Devonian carbonaceous host rocks in the Carlin districts are sufficiently enriched in many trace elements, including Hg, Se, and V, such that they also could become resources. Thallium may be locally enriched to economic levels in Carlin-type deposits and it has been produced from Carlin-like deposits elsewhere in the world (e.g., Alsar, southern Macedonia; Lanmuchang, Guizhou province, China). Mercury continues to be recovered from shallow-level epithermal deposits, as well as a by-product of many Carlin-type deposits where refractory ore is roasted to oxidize carbon and pyrite, and mercury is then

  1. Upgrade for the epithermal neutron beam at NRI Rez

    International Nuclear Information System (INIS)

    Marek, M.; Flibor, S.; Viererbl, L.; Burian, J.; Rejchrt, J.; Klupak, V.; Gambarini, G.; Vanossi, E.

    2006-01-01

    The epithermal neutron beam facility designed for pre-clinical neutron capture therapy research has been operated at LVR-15 reactor for more than ten years. The construction of the beam filter has been recently modified especially for the shielding quality of the beam shutter to be improved. The parameters of the upgraded beam were calculated with the MCNP code and a new source term for the NCTPLAN treatment planning software was evaluated. The calculated source term was consequently scaled according to the results of measurements in the free beam and in the 50x50x25 cm 3 water phantom. (author)

  2. Conversion ratio in epithermal PWR, in thorium and uranium cycle

    International Nuclear Information System (INIS)

    Barroso, D.E.G.

    1982-01-01

    Results obtained for the conversion ratio in PWR reactors with close lattices, operating in thorium and uranium cycles, are presented. The study of those reactors is done in an unitary fuel cell of the lattices with several ratios V sub(M)/V sub(F), considering only the equilibrium cycles and adopting a non-spatial depletion calculation model, aiming to simulate mass flux of reactor heavy elements in the reactor. The neutronic analysis and the cross sections generation are done with Hammer computer code, with one critical apreciation about the application of this code in epithermal systems and with modifications introduced in the library of basic data. (E.G.) [pt

  3. Fast and epithermal neutron radiography using neutron irradiator

    International Nuclear Information System (INIS)

    Oliveira, Karol A.M. de; Crispim, Verginia R.; Ferreira, Francisco J.O.

    2013-01-01

    The neutron radiography technique (NR) with neutrons in the energy range fast to epithermal is a powerful tool used in no-destructive inspection of bulky objects of diverse materials, including those rich in hydrogen, oxygen, nitrogen ad carbon. Thus, it can be used to identify, inclusions, voids and thickness differences in materials such as explosive artifacts and narcotics. Aiming at using NR with fast and epithermal neutrons, an Irradiator was constructed by: a 241 Am-Be source, with 5 Ci activity, a collimator with adjustable collimation rate, L/D; and a shield device composed by plates of borated paraffin and iron. The test specimens chosen were a Beam Purity Indicator (BPI) and an Indicator of Visual Resolution (IVR). The neutron radiography images obtained had a resolution of 444.4 μm and 363.6 μm respectively when registered in: 1) the sheet of the nuclear track solid detector, CR-39 type, through X (n,p) Y nuclear reaction; and 2) Kodak Industrex M radiographic film plate in close contact with a boron converter screen, both stored in a Kodak radiographic cassette. (author)

  4. Nucleon structure study by virtual compton scattering

    International Nuclear Information System (INIS)

    Berthot, J.; Bertin, P.Y.; Breton, V.; Fonvielle, H.; Hyde-Wright, C.; Quemener, G.; Ravel, O.; Braghieri, A.; Pedroni, P.; Boeglin, W.U.; Boehm, R.; Distler, M.; Edelhoff, R.; Friedrich, J.; Geiges, R.; Jennewein, P.; Kahrau, M.; Korn, M.; Kramer, H.; Krygier, K.W.; Kunde, V.; Liesenfeld, A.; Merle, K.; Neuhausen, R.; Offermann, E.A.J.M.; Pospischil, T.; Rosner, G.; Sauer, P.; Schmieden, H.; Schardt, S.; Tamas, G.; Wagner, A.; Walcher, T.; Wolf, S.

    1995-01-01

    We propose to study nucleon structure by Virtual Compton Scattering using the reaction p(e,e'p)γ with the MAMI facility. We will detect the scattered electron and the recoil proton in coincidence in the high resolution spectrometers of the hall A1. Compton events will be separated from the other channels (principally π 0 production) by missing-mass reconstruction. We plan to investigate this reaction near threshold. Our goal is to measure new electromagnetic observables which generalize the usual magnetic and electric polarizabilities. (authors). 9 refs., 18 figs., 7 tabs

  5. Determination of the thermal and epithermal neutron sensitivities of an LBO chamber

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Satoru; Kotani, Kei; Kajimoto, Tsuyoshi; Tanaka, Kenichi [Hiroshima University, Quantum Energy Applications, Graduate School of Engineering, Higashi-Hiroshima (Japan); Sato, Hitoshi; Nakajima, Erika [Ibaraki Prefectural University of Health Science, Radiological Sciences, Ibaraki (Japan); Shimazaki, Takuto [Hiroshima University, Quantum Energy Applications, Graduate School of Engineering, Higashi-Hiroshima (Japan); Delta Kogyo Co., Ltd., Hiroshima (Japan); Suda, Mitsuru; Hamano, Tsuyoshi [National Institute of Radiological Sciences, Chiba-Shi, Chiba (Japan); Hoshi, Masaharu [Hiroshima University, Institute for Peace Science, Hiroshima (Japan)

    2017-08-15

    An LBO (Li{sub 2}B{sub 4}O{sub 7}) walled ionization chamber was designed to monitor the epithermal neutron fluence in boron neutron capture therapy clinical irradiation. The thermal and epithermal neutron sensitivities of the device were evaluated using accelerator neutrons from the {sup 9}Be(d, n) reaction at a deuteron energy of 4 MeV (4 MeV d-Be neutrons). The response of the chamber in terms of the electric charge induced in the LBO chamber was compared with the thermal and epithermal neutron fluences measured using the gold-foil activation method. The thermal and epithermal neutron sensitivities obtained were expressed in units of pC cm{sup 2}, i.e., from the chamber response divided by neutron fluence (cm{sup -2}). The measured LBO chamber sensitivities were 2.23 x 10{sup -7} ± 0.34 x 10{sup -7} (pC cm{sup 2}) for thermal neutrons and 2.00 x 10{sup -5} ± 0.12 x 10{sup -5} (pC cm{sup 2}) for epithermal neutrons. This shows that the LBO chamber is sufficiently sensitive to epithermal neutrons to be useful for epithermal neutron monitoring in BNCT irradiation. (orig.)

  6. Theorems of low energy in Compton scattering

    International Nuclear Information System (INIS)

    Chahine, J.

    1984-01-01

    We have obtained the low energy theorems in Compton scattering to third and fouth order in the frequency of the incident photon. Next we calculated the polarized cross section to third order and the unpolarized to fourth order in terms of partial amplitudes not covered by the low energy theorems, what will permit the experimental determination of these partial amplitudes. (Author) [pt

  7. Compton scattering collision module for OSIRIS

    Science.gov (United States)

    Del Gaudio, Fabrizio; Grismayer, Thomas; Fonseca, Ricardo; Silva, Luís

    2017-10-01

    Compton scattering plays a fundamental role in a variety of different astrophysical environments, such as at the gaps of pulsars and the stagnation surface of black holes. In these scenarios, Compton scattering is coupled with self-consistent mechanisms such as pair cascades. We present the implementation of a novel module, embedded in the self-consistent framework of the PIC code OSIRIS 4.0, capable of simulating Compton scattering from first principles and that is fully integrated with the self-consistent plasma dynamics. The algorithm accounts for the stochastic nature of Compton scattering reproducing without approximations the exchange of energy between photons and unbound charged species. We present benchmarks of the code against the analytical results of Blumenthal et al. and the numerical solution of the linear Kompaneets equation and good agreement is found between the simulations and the theoretical models. This work is supported by the European Research Council Grant (ERC- 2015-AdG 695088) and the Fundao para a Céncia e Tecnologia (Bolsa de Investigao PD/BD/114323/2016).

  8. On the Compton Twist-3 Asymmetries

    International Nuclear Information System (INIS)

    Korotkiyan, V.M.; Teryaev, O.V.

    1994-01-01

    The 'fermionic poles' contribution to the twist-3 single asymmetry in the gluon Compton process is calculated. The 'gluonic poles' existence seems to contradict the density matrix positivity. Qualitative predictions for the direct photon and jets asymmetries are presented. 13 refs., 2 figs

  9. Compton's Kinematics and Einstein - Ehrenfest's radiation theory

    International Nuclear Information System (INIS)

    Barranco, A.V.; Franca, H.M.

    1988-09-01

    The Compton Kinematic relations are obtained from entirely classical arguments, that is, without the corpuscular concept of the photon. The calculations are nonrelativistic and result from Einstein and Ehrenfest's radiation theory modified in order to introduce the effects of the classical zero-point fileds characteristic of Stochastic Electrodynamics. (author) [pt

  10. Constraints on low energy Compton scattering amplitudes

    International Nuclear Information System (INIS)

    Raszillier, I.

    1979-04-01

    We derive the constraints and correlations of fairly general type for Compton scattering amplitudes at energies below photoproduction threshold and fixed momentum transfer, following from (an upper bound on) the corresponding differential cross section above photoproduction threshold. The derivation involves the solution of an extremal problem in a certain space of vector - valued analytic functions. (author)

  11. Spherical Harmonics Treatment of Epithermal Neutron Spectra in Reactor lattices

    International Nuclear Information System (INIS)

    Matausek, M.V.

    1972-04-01

    A procedure has been developed to solve the slowing down transport equation for neutrons in a cylindrized reactor lattice cell. Treating the anisotropy of the epithermal neutron flux by the spherical harmonics formalism, which reduces the space-angle-lethargy-dependent transport equation to the matrix integrodifferential equation in space and lethargy, and replacing the lethargy transfer integrals by finite-difference forms, a set of matrix ordinary differential equations, with lethargy and space dependent coefficients, is obtained. In the resonance region this set takes a lower block triangular form and can be directly solved by forward block substitution; in the lethargy range, where the fast fission effects have to be considered, the iterative procedure is introduced. A simple and efficient approximation is then proposed, making possible the analytical solution for the spatial dependence of the spherical harmonics flux moments. The proposed procedure has been numerically examined and approved. Some typical results are presented and discussed. (author)

  12. Final design and construction issues of the TAPIRO epithermal column

    International Nuclear Information System (INIS)

    Burn, K.W.; Casalini, L.; Nava, E.; Tinti, R.; Martini, S.; Mondini, D.; Rosi, G.

    2006-01-01

    The construction of the epithermal column for clinical trials at the 5 kW fast reactor TAPIRO (ENEA, Casaccia, Italy) has been completed, the experimental bunker in the reactor hall has been designed and the beam characterisation will shortly be underway. As has been reviewed at the last two ICNCT conferences, the low power of the neuron source and the relatively distant patient position outside the reactor shield led to a column design with certain characteristics. One consequence is the employment of a collimator containing lead of high purity with the resultant problems of mechanical construction. Another is the substantial neutron leakage from the column outside the aperture into the experimental bunker. Furthermore the absence of a gamma shield has led to an electron dose to the skin. This is resolved with an electron shield of aluminium. Here the construction and final design issues are discussed and the state of the project is presented. (author)

  13. An experimental method for the optimization of anti-Compton spectrometer

    CERN Document Server

    Badran, H M

    1999-01-01

    The reduction of the Compton continuum can be achieved using a Compton suppression shield. For the first time, an experimental method is purposed for estimating the optimum dimensions of such a shield. The method can also provide information on the effect of the air gap, source geometry, gamma-ray energy, etc., on the optimum dimension of the active shield. The method employs the measurements of the Compton suppression efficiency in two dimensions using small size scintillation detectors. Two types of scintillation materials; NaI(Tl) and NE-102A plastic scintillators, were examined. The effect of gamma-ray energy and source geometry were also investigated using sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co sources with three geometries; point, cylindrical, and Marinelli shapes. The results indicate the importance of both NaI(Tl) and NE-102A guard detectors in surrounding the main detector rather than the distance above it. The ratio between the part of the guard detector above the surface of the main detector to th...

  14. The epithermal neutron-flux distribution in the reactor RA - Vinca

    International Nuclear Information System (INIS)

    Marinkov, V.; Bikit, I.; Martinc, R.; Veskovic, M.; Slivka, J.; Vaderna, S.

    1987-01-01

    The distribution of the epithermal neutron flux in the reactor RA - Vinca has been measured by means of Zr - activation detectors. In the channel VK-8 non-homogeneous flux distribution was observed (author) [sr

  15. MCNP study for epithermal neutron irradiation of an isolated liver at the Finnish BNCT facility.

    Science.gov (United States)

    Kotiluoto, P; Auterinen, I

    2004-11-01

    A successful boron neutron capture treatment (BNCT) of a patient with multiple liver metastases has been first given in Italy, by placing the removed organ into the thermal neutron column of the Triga research reactor of the University of Pavia. In Finland, FiR 1 Triga reactor with an epithermal neutron beam well suited for BNCT has been extensively used to irradiate patients with brain tumors such as glioblastoma and recently also head and neck tumors. In this work we have studied by MCNP Monte Carlo simulations, whether it would be beneficial to treat an isolated liver with epithermal neutrons instead of thermal ones. The results show, that the epithermal field penetrates deeper into the liver and creates a build-up distribution of the boron dose. Our results strongly encourage further studying of irradiation arrangement of an isolated liver with epithermal neutron fields.

  16. Deeply virtual compton scattering at 6 GeV

    International Nuclear Information System (INIS)

    Berthot, J.; Chen, J.P.; Chudakov, E.

    2000-01-01

    We propose a measurement of the Deep Virtual Compton Scattering process (DVCS) ep → epγ in Hall A at Jefferson Lab with a 6 GeV beam. We are able to explore the onset of Q 2 scaling, by measuring a beam helicity asymmetry for Q 2 ranging from 1.5 to 2.5 GeV 2 at x B ∼0.35. At this kinematics, the asymmetry is dominated by the DVCS - Bethe-Heitler (BH) interference, which is proportional to the imaginary part of the DVCS amplitude amplified by the full magnitude of the BH amplitude. The imaginary part of the DVCS amplitude is expected to scale early. Indeed, the imaginary part of the forward Compton amplitude measured in deep inelastic scattering (via the optical theorem) scales at Q 2 as low as 1 GeV 2 . If the scaling regime is reached, we will make an 8% measurement of the skewed parton distributions (SPD) contributing to the DVCS amplitude. Also, this experiment allows us to separately estimate the size of the higher-twist effects, since they are only suppressed by an additional factor 1/Q compared to the leading-twist term, and have a different angular dependence. We use a polarized electron beam and detect the scattered electron in the HRSe, the real photon in an electromagnetic calorimeter (under construction) and the recoil proton in a shielded scintillator array (to be constructed). This allows as to determine the difference in cross-sections for electrons of opposite helicities. This observable is directly linked to the SPD's. We estimate that 25 days of beam (600 hours) are needed to achieve this goal. (authors)

  17. Deeply virtual compton scattering at 6 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Berthot, J. [Universite Blaise Pascal, Clermont-Ferrand II, Lab. de Physique Corpusculaire (CNRS), 63 - Aubiere (France); Chen, J.P.; Chudakov, E. [National Accelerator Facility, Newport News, Virginia (United States)] [and others

    2000-07-01

    We propose a measurement of the Deep Virtual Compton Scattering process (DVCS) ep {yields} ep{gamma} in Hall A at Jefferson Lab with a 6 GeV beam. We are able to explore the onset of Q{sup 2} scaling, by measuring a beam helicity asymmetry for Q{sup 2} ranging from 1.5 to 2.5 GeV{sup 2} at x{sub B}{approx}0.35. At this kinematics, the asymmetry is dominated by the DVCS - Bethe-Heitler (BH) interference, which is proportional to the imaginary part of the DVCS amplitude amplified by the full magnitude of the BH amplitude. The imaginary part of the DVCS amplitude is expected to scale early. Indeed, the imaginary part of the forward Compton amplitude measured in deep inelastic scattering (via the optical theorem) scales at Q{sup 2} as low as 1 GeV{sup 2}. If the scaling regime is reached, we will make an 8% measurement of the skewed parton distributions (SPD) contributing to the DVCS amplitude. Also, this experiment allows us to separately estimate the size of the higher-twist effects, since they are only suppressed by an additional factor 1/Q compared to the leading-twist term, and have a different angular dependence. We use a polarized electron beam and detect the scattered electron in the HRSe, the real photon in an electromagnetic calorimeter (under construction) and the recoil proton in a shielded scintillator array (to be constructed). This allows as to determine the difference in cross-sections for electrons of opposite helicities. This observable is directly linked to the SPD's. We estimate that 25 days of beam (600 hours) are needed to achieve this goal. (authors)

  18. Upgrades of the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hungyuan B.; Brugger, R.M.; Rorer, D.C.

    1994-12-31

    The first epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR) was installed in 1988 and produced a neutron beam that was satisfactory for the development of NCT with epithermal neutrons. This beam was used routinely until 1992 when the beam was upgraded by rearranging fuel elements in the reactor core to achieve a 50% increase in usable flux. Next, after computer modeling studies, it was proposed that the Al and Al{sub 2}O{sub 3} moderator material in the shutter that produced the epithermal neutrons could be rearranged to enhance the beam further. However, this modification was not started because a better option appeared, namely to use fission plates to move the source of fission neutrons closer to the moderator and the patient irradiation position to achieve more efficient moderation and production of epithermal neutrons. A fission plate converter (FPC) source has been designed recently and, to test the concept, implementation of this upgrade has started. The predicted beam parameters will be 12 x 10{sup 9} n{sub epi}/cm{sup 2}sec accompanying with doses from fast neutrons and gamma rays per epithermal neutron of 2.8 x 10{sup -11} and < 1 x 10{sup -11} cGycm{sup 2}/n, respectively, and a current-to-flux ratio of epithermal neutrons of 0.78. This conversion could be completed by late 1996.

  19. Angle-averaged Compton cross sections

    International Nuclear Information System (INIS)

    Nickel, G.H.

    1983-01-01

    The scattering of a photon by an individual free electron is characterized by six quantities: α = initial photon energy in units of m 0 c 2 ; α/sub s/ = scattered photon energy in units of m 0 c 2 ; β = initial electron velocity in units of c; phi = angle between photon direction and electron direction in the laboratory frame (LF); theta = polar angle change due to Compton scattering, measured in the electron rest frame (ERF); and tau = azimuthal angle change in the ERF. We present an analytic expression for the average of the Compton cross section over phi, theta, and tau. The lowest order approximation to this equation is reasonably accurate for photons and electrons with energies of many keV

  20. Stochastic Electrodynamics and the Compton effect

    International Nuclear Information System (INIS)

    Franca, H.M.; Barranco, A.V.

    1987-12-01

    Some of the main qualitative features of the Compton effect are tried to be described within the realm of Classical Stochastic Electrodynamics (SED). It is found indications that the combined action of the incident wave (frequency ω), the radiation reaction force and the zero point fluctuating electromagnetic fields of SED, are able to given a high average recoil velocity v/c=α/(1+α) to the charged particle. The estimate of the parameter α gives α ∼ ℎω/mc 2 where 2Πℎ is the constant and mc 2 is the rest energy of the particle. It is verified that this recoil is just that necessary to explain the frequency shift, observed in the scattered radiation as due to a classical double Doppler shift. The differential cross section for the radiation scattered by the recoiling charge using classical electromagnetism also calculated. The same expression as obtained by Compton in his fundamental work of 1923 is found. (author) [pt

  1. Angle-averaged Compton cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, G.H.

    1983-01-01

    The scattering of a photon by an individual free electron is characterized by six quantities: ..cap alpha.. = initial photon energy in units of m/sub 0/c/sup 2/; ..cap alpha../sub s/ = scattered photon energy in units of m/sub 0/c/sup 2/; ..beta.. = initial electron velocity in units of c; phi = angle between photon direction and electron direction in the laboratory frame (LF); theta = polar angle change due to Compton scattering, measured in the electron rest frame (ERF); and tau = azimuthal angle change in the ERF. We present an analytic expression for the average of the Compton cross section over phi, theta, and tau. The lowest order approximation to this equation is reasonably accurate for photons and electrons with energies of many keV.

  2. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  3. Laser Compton polarimetry of proton beams

    International Nuclear Information System (INIS)

    Stillman, A.

    1995-01-01

    A need exists for non-destructive polarization measurements of the polarized proton beams in the AGS and, in the future, in RHIC. One way to make such measurements is to scatter photons from the polarized beams. Until now, such measurements were impossible because of the extremely low Compton scattering cross section from protons. Modern lasers now can provide enough photons per laser pulse not only to scatter from proton beams but also, at least in RHIC, to analyze their polarization

  4. Future measurements of deeply virtual Compton scattering

    International Nuclear Information System (INIS)

    Korotkov, V.A.; Nowak, W.D.

    2001-09-01

    Prospects for future measurements of Deeply Virtual Compton Scattering are studied using different simple models for parameterizations of generalized parton distributions (GPDs). Measurements of the lepton charge and lepton beam helicity asymmetry will yield important input for theoretical models towards the future extraction of GPDs. The kinematics of the HERMES experiment, complemented with a recoil detector, was adopted to arrive at realistic projected statistical uncertainties. (orig.)

  5. Signature of inverse Compton emission from blazars

    Science.gov (United States)

    Gaur, Haritma; Mohan, Prashanth; Wierzcholska, Alicja; Gu, Minfeng

    2018-01-01

    Blazars are classified into high-, intermediate- and low-energy-peaked sources based on the location of their synchrotron peak. This lies in infra-red/optical to ultra-violet bands for low- and intermediate-peaked blazars. The transition from synchrotron to inverse Compton emission falls in the X-ray bands for such sources. We present the spectral and timing analysis of 14 low- and intermediate-energy-peaked blazars observed with XMM-Newton spanning 31 epochs. Parametric fits to X-ray spectra help constrain the possible location of transition from the high-energy end of the synchrotron to the low-energy end of the inverse Compton emission. In seven sources in our sample, we infer such a transition and constrain the break energy in the range 0.6-10 keV. The Lomb-Scargle periodogram is used to estimate the power spectral density (PSD) shape. It is well described by a power law in a majority of light curves, the index being flatter compared to general expectation from active galactic nuclei, ranging here between 0.01 and 1.12, possibly due to short observation durations resulting in an absence of long-term trends. A toy model involving synchrotron self-Compton and external Compton (EC; disc, broad line region, torus) mechanisms are used to estimate magnetic field strength ≤0.03-0.88 G in sources displaying the energy break and infer a prominent EC contribution. The time-scale for variability being shorter than synchrotron cooling implies steeper PSD slopes which are inferred in these sources.

  6. Colour dipoles and virtual Compton scattering

    International Nuclear Information System (INIS)

    McDermott, M.

    2002-01-01

    An analysis of Deeply Virtual Compton Scattering (DVCS) is made within the colour dipole model. We compare and contrast two models for the dipole cross-section which have been successful in describing structure function data. Both models agree with the available cross section data on DVCS from HERA. We give predictions for various azimuthal angle asymmetries in HERA kinematics and for the DVCS cross section in the THERA region. (orig.)

  7. Proceedings of the Fourth Compton Symposium. Proceedings

    International Nuclear Information System (INIS)

    Dermer, C.D.; Strickman, M.S.; Kurfess, J.D.

    1997-01-01

    These proceedings represent the papers presented at the Fourth Compton Symposium held in Williamsburg, Virginia in April, 1997. This symposium gives the latest development in gamma ray astronomy and summarizes the results obtained by the Compton Gamma Ray Observatory. One of the missions of the Observatory has been the study of physical processes taking place in the most dynamic sites in the Universe, including supernovae, novae, pulsars, black holes, active galaxies, and gamma-ray bursts. The energies covered range from hard X-ray to gamma-ray regions from 15 KeV to 30 GeV. The Burst and Transient Experiment (BASTE) measures brightness variations in gamma-ray bursts and solar flares. The Oriented Scintillation Spectroscopy Experiment (OSSE), measures spectral output of astrophysical sources in the 0.05 to 10 MeV range. The Imaging Compton Telescope (COMPTEL) detects gamma-rays and performs sky survey in the energy range 1 to 30 MeV. The Energetic Gamma Ray Experiment Telescope (EGRET) covers the broadest energy range from 20 MeV to 30 GeV. The papers presented result from all of the above. There were 249 papers presented and out of these, 6 have been abstracted for the Energy, Science and Technology database

  8. Helium Compton Form Factor Measurements at CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Voutier, Eric J.-M. [Laboratoire de Physique Subatomique et Cosmologie

    2013-07-01

    The distribution of the parton content of nuclei, as encoded via the generalized parton distributions (GPDs), can be accessed via the deeply virtual Compton scattering (DVCS) process contributing to the cross section for leptoproduction of real photons. Similarly to the scattering of light by a material, DVCS provides information about the dynamics and the spatial structure of hadrons. The sensitivity of this process to the lepton beam polarization allows to single-out the DVCS amplitude in terms of Compton form factors that contain GPDs information. The beam spin asymmetry of the $^4$He($\\vec {\\mathrm e}$,e$' \\gamma ^4$He) process was measured in the experimental Hall B of the Jefferson Laboratory to extract the real and imaginary parts of the twist-2 Compton form factor of the $^4$He nucleus. The experimental results reported here demonstrate the relevance of this method for such a goal, and suggest the dominance of the Bethe-Heitler amplitude to the unpolarized process in the kinematic range explored by the experiment.

  9. The first demonstration of the concept of “narrow-FOV Si/CdTe semiconductor Compton camera”

    Energy Technology Data Exchange (ETDEWEB)

    Ichinohe, Yuto, E-mail: ichinohe@astro.isas.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Uchida, Yuusuke; Watanabe, Shin [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Edahiro, Ikumi [Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Hayashi, Katsuhiro [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Kawano, Takafumi; Ohno, Masanori [Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Ohta, Masayuki [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Takeda, Shin' ichiro [Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495 (Japan); Fukazawa, Yasushi [Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Katsuragawa, Miho [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Nakazawa, Kazuhiro [University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Odaka, Hirokazu [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Tajima, Hiroyasu [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601 (Japan); Takahashi, Hiromitsu [Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); and others

    2016-01-11

    The Soft Gamma-ray Detector (SGD), to be deployed on board the ASTRO-H satellite, has been developed to provide the highest sensitivity observations of celestial sources in the energy band of 60–600 keV by employing a detector concept which uses a Compton camera whose field-of-view is restricted by a BGO shield to a few degree (narrow-FOV Compton camera). In this concept, the background from outside the FOV can be heavily suppressed by constraining the incident direction of the gamma ray reconstructed by the Compton camera to be consistent with the narrow FOV. We, for the first time, demonstrate the validity of the concept using background data taken during the thermal vacuum test and the low-temperature environment test of the flight model of SGD on ground. We show that the measured background level is suppressed to less than 10% by combining the event rejection using the anti-coincidence trigger of the active BGO shield and by using Compton event reconstruction techniques. More than 75% of the signals from the field-of-view are retained against the background rejection, which clearly demonstrates the improvement of signal-to-noise ratio. The estimated effective area of 22.8 cm{sup 2} meets the mission requirement even though not all of the operational parameters of the instrument have been fully optimized yet.

  10. Compton radiography, 3. Compton scinti-tomography of the chest diseases

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, S; Sera, K; Shishido, F; Fukuda, H [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer; Mishina, H

    1977-10-01

    The compton radiography aims at collection of depth information by recording with a scinticamera those Compton rays that have resulted from scattering of a monoenergetic gamma beam by a volume of interest. Appreciably clear clinical scinti-tomograms were obtained of the chest wall, and intrathoracic structures such as the lungs, intrapulmonary pathologies, and mediastinum. This was achieved without any computer assistance for image reconstruction such as those in the case of XCT. Apparently, suitable corrections of the attenuations of the primary monoenergetic gamma rays and secondary Compton rays would greatly improve the image quality, and imaging time and radiation exposure as well. This technic is simple in principle, relatively cheap, and yet prospective of development of stereoptic fluoroscopy that would be extremely helpful in guiding such procedures as visceral biopsies.

  11. Epithermal neutron activation analysis for studying the environment

    International Nuclear Information System (INIS)

    Frontas'eva, M.V.; Steinnes, E.

    1997-01-01

    Epithermal neutron activation analysis (ENAA) has certain advantages over the conventional instrumental analysis (INAA) in terms of improvement in precision and lowering of detection limits, reduction of high matrix activity and fission interferences if any. The current status and the applications of ENAA to environmental samples are reviewed. Experience in the use of ENAA in the monitoring of atmospheric depositions by means of moss-biomonitors at pulsed fast reactor IBR-2 in Dubna is summarized. INAA has shown to be useful for a number of sample types of interest in environmental studies, and should find more extensive use in this area. Analysis of airborne particulate matter is a case where ENAA should be particularly useful. A similar case where ENAA has shown strong performance is in the analysis of mosses used as biomonitors of atmospheric deposition, where 45 elements were determined. In this and other cases, however, induction-coupled plasma mass spectrometry is a very strong competitor, offering data for even more elements. A comparison of ENAA and ICP-MS for moss analysis is presented, and cases where ENAA is unique are discussed

  12. The resonant detector and its application to epithermal neutron spectroscopy

    International Nuclear Information System (INIS)

    Gorini, G.; Perelli-Cippo, E.; Tardocchi, M.; Andreani, C.; D'Angelo, A.; Pietropaolo, A.; Senesi, R.; Imberti, S.; Bracco, A.; Previtali, E.; Pessina, G.; Rhodes, N.J.; Schooneveld, E.M.

    2004-01-01

    New perspectives for epithermal neutron spectroscopy are being opened by the development of the resonant detector (RD) and its use on inverse geometry time of flight spectrometers at spallation sources. The RD was first proposed in the 1980s and was recently brought to a performance level exceeding conventional neutron-sensitive Li-glass scintillator detectors. It features a photon counter coupled to a neutron analyzer foil. Resonant neutron absorption in the foil results in the emission of prompt gamma rays that are detected in the photon counter. The dimensions of the RD set the spatial resolution that can be achieved, ranging from a fraction of a cm to several cm. It can thus be tailored to the construction of detector arrays of different geometry. The main results of the research on this kind of detector are reported leading to the present optimized RD design based on a combination of YAP scintillation photon counter and uranium or gold analyzer foils. This detector has already been selected for application in the upgrade of the VESUVIO spectrometer on ISIS. A special application is the Very Low Angle Detector (VLAD) bank, which will extend the kinematical region for neutron scattering to low momentum transfer ( -1 ) whilst still keeping energy transfer >1 eV, thus allowing new experimental studies in condensed matter systems. The first results of tests made with prototype VLAD detectors are presented, confirming the usefulness of the RD for measurements at scattering angles as low as 2-5 deg

  13. Method and apparatus for epithermal neutron decay logging

    International Nuclear Information System (INIS)

    Nelligan, W.B.

    1998-01-01

    The nature of hydrogenous fluids filling the pore spaces in formations surrounding a well bore are determined by irradiating the formations with bursts of high energy neutrons and using the ratio of time-dependent parameters related to the decay of epithermal neutron populations above two different energy levels to provide values indicative of the kind of fluid present, independent of porosity. The measurement above the higher of these energy levels, appr. 0.4eV, indicates the existence of hydrogenous fluid, water and hydrocarbons in the formations. The lower threshold measurement, above appr. 0.15eV, is indicative of the structure of the molecule in which the hydrogen molecule is bound and of the porosity. A pulsed neutron generator in a sonde irradiates the formations with 14meV neutrons and a pair of detectors, one shielded by cadmium, to establish the 0.4eV threshold energy level and the other, shielded by gadolinium, to establish the 0.15eV threshold energy level. Time related parameters of the count rate information, e.g. the decay constants, provided by each detector are derived. The ratio of the respective parameters is used to identify the type of fluid in the information, independent of porosity. The method and apparatus can determine water saturation, i.e. percentage of water in the formation fluid and can identify specific types of hydrocarbons under 100% hydrocarbon saturation conditions. 8 figs

  14. Advanced Source Deconvolution Methods for Compton Telescopes

    Science.gov (United States)

    Zoglauer, Andreas

    The next generation of space telescopes utilizing Compton scattering for astrophysical observations is destined to one day unravel the mysteries behind Galactic nucleosynthesis, to determine the origin of the positron annihilation excess near the Galactic center, and to uncover the hidden emission mechanisms behind gamma-ray bursts. Besides astrophysics, Compton telescopes are establishing themselves in heliophysics, planetary sciences, medical imaging, accelerator physics, and environmental monitoring. Since the COMPTEL days, great advances in the achievable energy and position resolution were possible, creating an extremely vast, but also extremely sparsely sampled data space. Unfortunately, the optimum way to analyze the data from the next generation of Compton telescopes has not yet been found, which can retrieve all source parameters (location, spectrum, polarization, flux) and achieves the best possible resolution and sensitivity at the same time. This is especially important for all sciences objectives looking at the inner Galaxy: the large amount of expected sources, the high background (internal and Galactic diffuse emission), and the limited angular resolution, make it the most taxing case for data analysis. In general, two key challenges exist: First, what are the best data space representations to answer the specific science questions? Second, what is the best way to deconvolve the data to fully retrieve the source parameters? For modern Compton telescopes, the existing data space representations can either correctly reconstruct the absolute flux (binned mode) or achieve the best possible resolution (list-mode), both together were not possible up to now. Here we propose to develop a two-stage hybrid reconstruction method which combines the best aspects of both. Using a proof-of-concept implementation we can for the first time show that it is possible to alternate during each deconvolution step between a binned-mode approach to get the flux right and a

  15. Laser Compton polarimetry at JLab and MAMI. A status report

    International Nuclear Information System (INIS)

    Diefenbach, J.; Imai, Y.; Han Lee, J.; Maas, F.; Taylor, S.

    2007-01-01

    For modern parity violation experiments it is crucial to measure and monitor the electron beam polarization continuously. In the recent years different high-luminosity concepts, for precision Compton backscattering polarimetry, have been developed, to be used at modern CW electron beam accelerator facilities. As Compton backscattering polarimetry is free of intrinsic systematic uncertainties, it can be a superior alternative to other polarimetry techniques such as Moeller and Mott scattering. State-of-the-art high-luminosity Compton backscattering designs currently in use and under development at JLab and Mainz are compared to each other. The latest results from the Mainz A4 Compton polarimeter are presented. (orig.)

  16. Induced Compton scattering effects in radiation transport approximations

    International Nuclear Information System (INIS)

    Gibson, D.R. Jr.

    1982-01-01

    In this thesis the method of characteristics is used to solve radiation transport problems with induced Compton scattering effects included. The methods used to date have only addressed problems in which either induced Compton scattering is ignored, or problems in which linear scattering is ignored. Also, problems which include both induced Compton scattering and spatial effects have not been considered previously. The introduction of induced scattering into the radiation transport equation results in a quadratic nonlinearity. Methods are developed to solve problems in which both linear and nonlinear Compton scattering are important. Solutions to scattering problems are found for a variety of initial photon energy distributions

  17. Induced Compton-scattering effects in radiation-transport approximations

    International Nuclear Information System (INIS)

    Gibson, D.R. Jr.

    1982-02-01

    The method of characteristics is used to solve radiation transport problems with induced Compton scattering effects included. The methods used to date have only addressed problems in which either induced Compton scattering is ignored, or problems in which linear scattering is ignored. Also, problems which include both induced Compton scattering and spatial effects have not been considered previously. The introduction of induced scattering into the radiation transport equation results in a quadratic nonlinearity. Methods are developed to solve problems in which both linear and nonlinear Compton scattering are important. Solutions to scattering problems are found for a variety of initial photon energy distributions

  18. The effect of Compton scattering on quantitative SPECT imaging

    International Nuclear Information System (INIS)

    Beck, J.W.; Jaszczak, R.J.; Starmer, C.F.

    1982-01-01

    A Monte Carlo code has been developed to simulate the response of a SPECT system. The accuracy of the code has been verified and has been used in this research to study and illustrate the effects of Compton scatter on quantitative SPECT measurements. The effects of Compton scattered radiation on gamma camera response have been discussed by several authors, and will be extended to rotating gamma camera SPECT systems. The unique feature of this research includes the pictorial illustration of the Compton scattered and the unscattered components of the photopeak data on SPECT imaging by simulating phantom studies with and without Compton scatter

  19. Virtual Compton scattering off protons at moderately large momentum transfer

    International Nuclear Information System (INIS)

    Kroll, P.

    1996-01-01

    The amplitudes for virtual Compton scattering off protons are calculated within the framework of the diquark model in which protons are viewed as being built up by quarks and diquarks. The latter objects are treated as quasi-elementary constituents of the proton. Virtual Compton scattering, electroproduction off protons and the Bethe-Heitler contamination are photon discussed for various kinematical situations. We particularly emphasize the role of the electron asymmetry for measuring the relative phases between the virtual Compton and the Bethe-Heitler amplitudes. It is also shown that the model is able to describe very well the experimental data for real Compton scattering off protons. (orig.)

  20. Beam dynamics in Compton ring gamma sources

    Directory of Open Access Journals (Sweden)

    Eugene Bulyak

    2006-09-01

    Full Text Available Electron storage rings of GeV energy with laser pulse stacking cavities are promising intense sources of polarized hard photons which, via pair production, can be used to generate polarized positron beams. In this paper, the dynamics of electron bunches circulating in a storage ring and interacting with high-power laser pulses is studied both analytically and by simulation. Both the common features and the differences in the behavior of bunches interacting with an extremely high power laser pulse and with a moderate pulse are discussed. Also considerations on particular lattice designs for Compton gamma rings are presented.

  1. Experimental confirmation of neoclassical Compton scattering theory

    Energy Technology Data Exchange (ETDEWEB)

    Aristov, V. V., E-mail: aristov@iptm.ru [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation); Yakunin, S. N. [National Research Centre “Kurchatov Institute” (Russian Federation); Despotuli, A. A. [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation)

    2013-12-15

    Incoherent X-ray scattering spectra of diamond and silicon crystals recorded on the BESSY-2 electron storage ring have been analyzed. All spectral features are described well in terms of the neoclassical scattering theory without consideration for the hypotheses accepted in quantum electrodynamics. It is noted that the accepted tabular data on the intensity ratio between the Compton and Rayleigh spectral components may significantly differ from the experimental values. It is concluded that the development of the general theory (considering coherent scattering, incoherent scattering, and Bragg diffraction) must be continued.

  2. The development of a Compton lung densitometer

    Energy Technology Data Exchange (ETDEWEB)

    Loo, B.W.; Goulding, F.S.; Madden, N.W.; Simon, D.S.

    1988-11-01

    A field instrument is being developed for the non-invasive determination of absolute lung density using unique Compton backscattering techniques. A system consisting of a monoenergetic gamma-ray beam and a shielded high resolution high-purity-germanium (HPGe) detector in a close-coupled geometry is designed to minimize errors due to multiple scattering and uncontrollable attenuation in the chestwall. Results of studies on system performance with phantoms, the optimization of detectors, and the fabrication of a practical gamma-ray source are presented. 3 refs., 6 figs., 2 tabs.

  3. The development of a Compton lung densitometer

    International Nuclear Information System (INIS)

    Loo, B.W.; Goulding, F.S.; Madden, N.W.; Simon, D.S.

    1988-11-01

    A field instrument is being developed for the non-invasive determination of absolute lung density using unique Compton backscattering techniques. A system consisting of a monoenergetic gamma-ray beam and a shielded high resolution high-purity-germanium (HPGe) detector in a close-coupled geometry is designed to minimize errors due to multiple scattering and uncontrollable attenuation in the chestwall. Results of studies on system performance with phantoms, the optimization of detectors, and the fabrication of a practical gamma-ray source are presented. 3 refs., 6 figs., 2 tabs

  4. A Compton polarimeter for CEBAF Hall A

    Energy Technology Data Exchange (ETDEWEB)

    Bardin, G; Cavata, C; Frois, B; Juillard, M; Kerhoas, S; Languillat, J C; Legoff, J M; Mangeot, P; Martino, J; Platchkov, S; Rebourgeard, P; Vernin, P; Veyssiere, C; CEBAF Hall A Collaboration

    1994-09-01

    The physic program at CEBAF Hall A includes several experiments using 4 GeV polarized electron beam: parity violation in electron elastic scattering from proton and {sup 4}He, electric form factor of the proton by recoil polarization, neutron spin structure function at low Q{sup 2}. Some of these experiments will need beam polarization measurement and monitoring with an accuracy close to 4%, for beam currents ranging from 100 nA to 100 microA. A project of a Compton Polarimeter that will meet these requirements is presented. It will comprise four dipoles and a symmetric cavity consisting of two identical mirrors. 1 fig., 10 refs.

  5. Cork quality estimation by using Compton tomography

    International Nuclear Information System (INIS)

    Brunetti, Antonio; Cesareo, Roberto; Golosio, Bruno; Luciano, Pietro; Ruggero, Alessandro

    2002-01-01

    The quality control of cork stoppers is mandatory in order to guarantee the perfect conservation of the wine. Several techniques have been developed but until now the quality control was essentially related to the status of the external surface. Thus possible cracks or holes inside the stopper will be hidden. In this paper a new technique based on X-ray Compton tomography is described. It is a non-destructive technique that allows one to reconstruct and visualize the cross-section of the cork stopper analyzed, and so to put in evidence the presence of internal imperfections. Some results are reported and compared with visual classification

  6. Transverse tomography by Compton scattering scintigraphy

    International Nuclear Information System (INIS)

    Askienazy, S.; Lumbroso, J.; Lacaille, J.M.; Fredy, D.; Constans, J.P.; Barritault, L.

    The technique of tomography by Compton-scattering was applied to the exploration of the brain. Studies were carried out on phantoms and on patients and the first results are considered highly encouraging. On a phantom skull, holes at a depth of 7 cm are visible even on analogue documents and whatever their position with regard to the bone. On patients the ventricle cavities were revealed and comparisons with gas encephalograpy showed good agreement between the two techniques. The studies on phantoms also testified to the very low dose received by the patient: about 300 mRem for 2 million counts per section [fr

  7. Cork quality estimation by using Compton tomography

    CERN Document Server

    Brunetti, A; Golosio, B; Luciano, P; Ruggero, A

    2002-01-01

    The quality control of cork stoppers is mandatory in order to guarantee the perfect conservation of the wine. Several techniques have been developed but until now the quality control was essentially related to the status of the external surface. Thus possible cracks or holes inside the stopper will be hidden. In this paper a new technique based on X-ray Compton tomography is described. It is a non-destructive technique that allows one to reconstruct and visualize the cross-section of the cork stopper analyzed, and so to put in evidence the presence of internal imperfections. Some results are reported and compared with visual classification.

  8. Epithermal Neutron Activation Analysis of the Asian Herbal Plants

    International Nuclear Information System (INIS)

    Baljinnyam, N.; Frontasyeva, M. V.; Ostrovnaya, T. M.; Pavlov, S. S.; Jugder, B.; Norov, N.

    2011-01-01

    Asian medicinal herbs Chrysanthemum (Spiraea aquilegifolia Pall.) and Red Sandalwood (Pterocarpus Santalinus) are widely used in folk and Ayurvedic medicine for healing and preventing some diseases. The modern medical science has proved that the Chrysanthemum (Spiraea aquilegifolia Pall.) possesses the following functions: reducing blood press, dispelling cancer cell, coronary artery's expanding and bacteriostating and Red Sandalwood (Pterocarpus Santalinus) is recommended against headache, toothache, skin diseases, vomiting and sometimes it is taken for treatment of diabetes. Species of Chrysanthemums were collected in the north-eastern and central Mongolia, and the Red Sandalwood powder was imported from India. Samples of Chrysanthemums (branches, flowers and leaves)(0.5 g) and red sandalwood powder (0.5 g) were subjected to the multi-element instrumental neutron activation analysis using epithermal neutrons (ENAA) at the IBR-2 reactor, Frank Laboratory of Neutron Physics (FLNP) JINR, Dubna. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Sr, Zr, Mo, Cd, Cs, Ba, La, Hf, Ta, W, Sb, Au, Hg, Ce, Nd, Sm, Eu, Tb, Dy, Yb, Th, U, Lu) were determined. For the first time such a large group of elements was determined in the herbal plants used in Mongolia. The quality control of the analytical results was provided by using certified reference material Bowen Cabbage. The results obtained are compared to the ''Reference plant? data (B. Markert, 1992) and interpreted in terms of excess of such elements as Se, Cr, Ca, Fe, Ni, Mo, and rare earth elements.

  9. Experiences of reconstruction of the epithermal neutron beam at THOR

    International Nuclear Information System (INIS)

    Liu Hongming; Hsu Pinchieh; Liu Chaochin; Jiang Shianghuei; Liu Yenwan Hsueh; Kai Jijung

    2006-01-01

    Tsing Hua Open-pool Reactor (THOR) had completed the renovation for an epithermal neutron beam in August 2004. The major tasks for this renovation were moderator/filter design and assembling, and concrete cutting for a better beam quality and larger irradiation room. Besides moderator/filter design, the associated works involved radiation monitoring, structure analysis, and shielding design. The radiation monitoring was performed to predict the probable accumulated dose for the workers involved in this reconstruction project. Special shielding design and construction processes were adopted to lower the radiation level and the probable accumulated dose for the workers. Before concrete cutting, structure analysis based on SAP-2000 code was performed to assure the structure is safe from the earthquake in Taiwan. A wall saw was then used for concrete cutting to enlarge the space of the irradiation room. Moderator/filter components were assembled on a trolley outside the beam exit prior to installation, which can effectively reduce the duration of a worker staying inside the reconstruction area and thereby reduce the accumulated dose. The shielding for the irradiation room was designed based on MCNP simulation using a pre-calculated source plane at the beam exit. The thickness of the concrete (density=3 g/cm 3 ) of the walls and ceiling of the irradiation room were designed to be 100cm. On-going tasks include beam parameters measurement and in vitro/ in vivo study and calibration of treatment planning system, with the hope that the team can be ready for clinical trials in 2-3 years. (author)

  10. Study of Compton scattering influence in cardiac SPECT images

    International Nuclear Information System (INIS)

    Munhoz, A.C.L.; Abe, R.; Zanardo, E.L.; Robilotta, C.C.

    1992-01-01

    The reduction effect from Compton fraction in the quality of and image is evaluated, with two ways of acquisition data: one, with the window of energetic analyser dislocated over the photopeak and the other, with two windows, one over the Compton contribution and the other, placed in the center over the photopeak. (C.G.C.)

  11. Constraint on Parameters of Inverse Compton Scattering Model for ...

    Indian Academy of Sciences (India)

    B2319+60, two parameters of inverse Compton scattering model, the initial Lorentz factor and the factor of energy loss of relativistic particles are constrained. Key words. Pulsar—inverse Compton scattering—emission mechanism. 1. Introduction. Among various kinds of models for pulsar radio emission, the inverse ...

  12. Compton scattering of photons from electrons bound in light elements

    International Nuclear Information System (INIS)

    Bergstrom, P.M. Jr.

    1994-01-01

    A brief introduction to the topic of Compton scattering from bound electrons is presented. The fundamental nature of this process in understanding quantum phenomena is reviewed. Methods for accurate theoretical evaluation of the Compton scattering cross section are presented. Examples are presented for scattering of several keV photons from helium

  13. Time-independent inverse compton spectrum for photons from a ...

    African Journals Online (AJOL)

    The general theoretical aspects of inverse Compton scattering was investigated and an equation for the timeindependent inverse Compton spectrum for photons from a plasma cloud of finite extent was derived. This was done by convolving the Kompaneets equation used for describing the evolution of the photon spectrum ...

  14. Epithermal neutron beam adoption for lung and pancreatic cancer treatment by boron neutron capture therapy

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo; Fukushima, Yuji

    2001-01-01

    The depth-dose distributions were evaluated for possible treatment of both lung and pancreatic cancers using an epithermal neutron beam. The Monte Carlo Neutron Photon (MCNP) calculations showed that physical dose in tumors were 6 and 7 Gy/h, respectively, for lung and pancreas, attaining an epithermal neutron flux of 5 x 10 8 ncm -2 s -1 . The boron concentrations were assumed at 100 ppm and 30 ppm, respectively, for lung and pancreas tumors and normal tissues contains 1/10 tumor concentrations. The dose ratios of tumor to normal tissue were 2.5 and 2.4, respectively, for lung and pancreas. The dose evaluation suggests that BNCT using an epithermal neutron beam could be applied for both lung and pancreatic cancer treatment. (author)

  15. Earth formation pulsed neutron porosity logging system utilizing epithermal neutron and inelastic scattering gamma ray detectors

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1978-01-01

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector and an inelastic scattering gamma ray detector is moved through a borehole. The detection of inelastic gamma rays provides a measure of the fast neutron population in the vicinity of the detector. repetitive bursts of neutrons irradiate the earth formation and, during the busts, inelastic gamma rays representative of the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. the fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  16. TRANSHEX, 2-D Thermal Neutron Flux Distribution from Epithermal Flux in Hexagonal Geometry

    International Nuclear Information System (INIS)

    Patrakka, E.

    1994-01-01

    1 - Description of program or function: TRANSHEX is a multigroup integral transport program that determines the thermal scalar flux distribution arising from a known epithermal flux in two- dimensional hexagonal geometry. 2 - Method of solution: The program solves the isotropic collision probability equations for a region-averaged scalar flux by an iterative method. Either a successive over-relaxation or an inner-outer iteration technique is applied. Flat flux collision probabilities between trigonal space regions with white boundary condition are utilized. The effect of epithermal flux is taken into consideration as a slowing-down source that is calculated for a given spatial distribution and 1/E energy dependence of the epithermal flux

  17. Experimental demonstration of a compact epithermal neutron source based on a high power laser

    Science.gov (United States)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Raspino, D.; Ansell, S.; Wilson, L. A.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Kelleher, J.; Murphy, C. D.; Notley, M.; Rusby, D. R.; Schooneveld, E.; Borghesi, M.; McKenna, P.; Rhodes, N. J.; Neely, D.; Brenner, C. M.; Kar, S.

    2017-07-01

    Epithermal neutrons from pulsed-spallation sources have revolutionised neutron science allowing scientists to acquire new insight into the structure and properties of matter. Here, we demonstrate that laser driven fast (˜MeV) neutrons can be efficiently moderated to epithermal energies with intrinsically short burst durations. In a proof-of-principle experiment using a 100 TW laser, a significant epithermal neutron flux of the order of 105 n/sr/pulse in the energy range of 0.5-300 eV was measured, produced by a compact moderator deployed downstream of the laser-driven fast neutron source. The moderator used in the campaign was specifically designed, by the help of MCNPX simulations, for an efficient and directional moderation of the fast neutron spectrum produced by a laser driven source.

  18. Geochemical and modal data for igneous rocks associated with epithermal mineral deposits

    Science.gov (United States)

    du Bray, Edward A.

    2014-01-01

    The purposes of this report are to (1) present available geochemical and modal data for igneous rocks associated with epithermal mineral deposits and (2) to make those data widely and readily available for subsequent, more in-depth consideration and interpretation. Epithermal precious and base-metal deposits are commonly associated with subduction-related calc-alkaline to alkaline arc magmatism as well as back-arc continental rift magmatism. These deposits form in association with compositionally diverse extrusive and intrusive igneous rocks. Temperature and depth regimes prevailing during deposit formation are highly variable. The deposits form from hydrothermal fluids that range from acidic to near-neutral pH, and they occur in a variety of structural settings. The disparate temperature, pressure, fluid chemistry, and structural controls have resulted in deposits with wide ranging characteristics. Economic geologists have employed these characteristics to develop classification schemes for epithermal deposits and to constrain the important genetic processes responsible for their formation.

  19. Proton compton scattering in the resonance region

    International Nuclear Information System (INIS)

    Ishii, Takanobu.

    1979-12-01

    Differential cross sections of the proton Compton scattering have been measured in the energy range between 400 and 1150 MeV at CMS angles of 130 0 , 100 0 and 70 0 . The recoil proton was detected with a magnetic spectrometer using multi-wire proportional chambers and wire spark chambers. In coincidence with the proton, the scattered photon was detected with a lead glass Cerenkov counter of the total absorption type with a lead plate converter, and horizontal and vertical scintillation counter hodoscopes. The background due to the neutral pion photoproduction, was subtracted by using the kinematic relations between the scattered photon and the recoil proton. Theoretical calculations based on an isobar model with two components, that is, the resonance plus background, were done, and the photon couplings of the second resonance region were determined firstly from the proton Compton data. The results are that the helicity 1/2 photon couplings of P 11 (1470) and S 11 (1535), and the helicity 3/2 photon coupling of D 13 (1520) are consistent with those determined from the single pion photoproduction data, but the helicity 1/2 photon coupling of D 13 (1520) has a somewhat larger value than that from the single pion photoproduction data. (author)

  20. Compton backscattered collmated X-ray source

    Science.gov (United States)

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  1. Compton backscattered collimated x-ray source

    Science.gov (United States)

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  2. Virtual compton scattering at low energy

    International Nuclear Information System (INIS)

    Lhuillier, D.

    1997-09-01

    The work described in this PhD is a study of the Virtual Compton scattering (VCS) off the proton at low energy, below pion production threshold. Our experiment has been carried out at MAMI in the collaboration with the help of two high resolution spectrometers. Experimentally, the VCS process is the electroproduction of photons off a liquid hydrogen target. First results of data analysis including radiative corrections are presented and compared with low energy theorem prediction. VCS is an extension of the Real Compton Scattering. The virtuality of the incoming photon allows us to access new observables of the nucleon internal structure which are complementarity to the elastic form factors: the generalized polarizabilities (GP). They are function of the squared invariant mass of the virtual photo. The mass limit of these observables restore the usual electric and magnetic polarizabilities. Our experiment is the first measurement of the VCS process at a virtual photon mass equals 0.33 Ge V square. The experimental development presents the analysis method. The high precision needed in the absolute cross-section measurement required an accurate estimate of radiative corrections to the VCS. This new calculation, which has been performed in the dimensional regulation scheme, composes the theoretical part of this thesis. At low q', preliminary results agree with low energy theorem prediction. At higher q', substraction of low energy theorem contribution to extract GP is discussed. (author)

  3. Recent results from the Compton Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Michelson, P.F.; Hansen, W.W. [Stanford Univ., CA (United States)

    1994-12-01

    The Compton Observatory is an orbiting astronomical observatory for gamma-ray astronomy that covers the energy range from about 30 keV to 30 GeV. The Energetic Gamma Ray Experiment Telescope (EGRET), one of four instruments on-board, is capable of detecting and imaging gamma radiation from cosmic sources in the energy range from approximately 20 MeV to 30 GeV. After about one month of tests and calibration following the April 1991 launch, a 15-month all sky survey was begun. This survey is now complete and the Compton Observatory is well into Phase II of its observing program which includes guest investigator observations. Among the highlights from the all-sky survey discussed in this presentation are the following: detection of five pulsars with emission above 100 MeV; detection of more than 24 active galaxies, the most distant at redshift greater than two; detection of many high latitude, unidentified gamma-ray sources, some showing significant time variability; detection of at least two high energy gamma-ray bursts, with emission in one case extending to at least 1 GeV. EGRET has also detected gamma-ray emission from solar flares up to energies of at least 2 GeV and has observed gamma-rays from the Large Magellanic Cloud.

  4. Deeply virtual Compton scattering at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Biselli, Angela S. [Fairfield University - Department of Physics 1073 North Benson Road, Fairfield, CT 06430, USA; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-08-01

    The generalized parton distributions (GPDs) have emerged as a universal tool to describe hadrons in terms of their elementary constituents, the quarks and the gluons. Deeply virtual Compton scattering (DVCS) on a proton or neutron ($N$), $e N \\rightarrow e' N' \\gamma$, is the process more directly interpretable in terms of GPDs. The amplitudes of DVCS and Bethe-Heitler, the process where a photon is emitted by either the incident or scattered electron, can be accessed via cross-section measurements or exploiting their interference which gives rise to spin asymmetries. Spin asymmetries, cross sections and cross-section differences can be connected to different combinations of the four leading-twist GPDs (${H}$, ${E}$, ${\\tilde{H}}$, ${\\tilde{E}}$) for each quark flavors, depending on the observable and on the type of target. This paper gives an overview of recent experimental results obtained for DVCS at Jefferson Laboratory in the halls A and B. Several experiments have been done extracting DVCS observables over large kinematics regions. Multiple measurements with overlapping kinematic regions allow to perform a quasi-model independent extraction of the Compton form factors, which are GPDs integrals, revealing a 3D image of the nucleon.

  5. Compton scattering and γ-quanta monochromatization

    International Nuclear Information System (INIS)

    Goryachev, B.I.; Shevchenko, V.G.

    1979-01-01

    The γ-quanta monochromatization method is proposed for sdudying high-excited states and mechanisms of nuclei photodisintegration. The method is based on the properties of photon Compton scattering. It permits to obtain high energy resolution without accurate analysis of the particle energies taking part in the scattering process. A possible design of the compton γ- monochromator is presented. The γ-quanta scatterer of the elements with a small nucleus charge (e.g. LiH) is placed inside the β-spectrometer of low resolution. The monochromator is expected to operate in the γ-beam of the high-current synchrotron, and it provides for a rather good energy resolution rho(W) while studying the high-excited nucleus states (rho(W) approximately 2% in the range of the giant dipole resonance). With the γ-quanta energy growth rho(W) increases as Wsup(0.6). The monochromator permits to obtain high statistical accuracy for a smaller period of time (at a considerably better energy resolution) than while working with a bremsstrahlung spectrum. The yield of quasimonochromatic photons related to the ΔW(ΔW = rho(W)W) range of energy resolution increases as Wsup(0.6). This fact makes it promjssing to use monochromator in the energy range considerably exceeding the characteristic energy of the gigantic dipole resonance

  6. Relativistic wave equations and compton scattering

    International Nuclear Information System (INIS)

    Sutanto, S.H.; Robson, B.A.

    1998-01-01

    Full text: Recently an eight-component relativistic wave equation for spin-1/2 particles was proposed.This equation was obtained from a four-component spin-1/2 wave equation (the KG1/2 equation), which contains second-order derivatives in both space and time, by a procedure involving a linearisation of the time derivative analogous to that introduced by Feshbach and Villars for the Klein-Gordon equation. This new eight-component equation gives the same bound-state energy eigenvalue spectra for hydrogenic atoms as the Dirac equation but has been shown to predict different radiative transition probabilities for the fine structure of both the Balmer and Lyman a-lines. Since it has been shown that the new theory does not always give the same results as the Dirac theory, it is important to consider the validity of the new equation in the case of other physical problems. One of the early crucial tests of the Dirac theory was its application to the scattering of a photon by a free electron: the so-called Compton scattering problem. In this paper we apply the new theory to the calculation of Compton scattering to order e 2 . It will be shown that in spite of the considerable difference in the structure of the new theory and that of Dirac the cross section is given by the Klein-Nishina formula

  7. Thermal Comptonization in standard accretion disks

    International Nuclear Information System (INIS)

    Maraschi, L.; Molendi, S.

    1990-01-01

    The standard model of an accretion disk is considered. The temperature in the inner region is computed assuming that the radiated power derives from Comptonized photons, produced in a homogeneous single-temperature plasma, supported by radiation pressure. The photon production mechanisms are purely thermal, including ion-electron bremsstrahlung, bound-free and bound-bound processes, and e-e bremsstrahlung. Pair production is not included, which limits the validity of the treatment to kT less than 60 keV. Three different approximations for the effects of Comptonization on the energy loss are used, yielding temperatures which agree within 50 percent. The maximum temperature is very sensitive to the accretion rate and viscosity parameters, ranging, for a 10 to the 8th solar mass black hole, between 0.1 and 50 keV for m between 0.1 and 1 and alpha between 0.1 and 1 and, for a 10-solar-mass black hole, between 0.6 and 60 keV for m between 0.1 and 0.9 and alpha between 0.1 and 0.5. For high viscosity and accretion rates, the emission spectra show a flat component following a peak corresponding to the temperature of the innermost optically thick annulus. 28 refs

  8. Compton effect thermally activated depolarization dosimeter

    Science.gov (United States)

    Moran, Paul R.

    1978-01-01

    A dosimetry technique for high-energy gamma radiation or X-radiation employs the Compton effect in conjunction with radiation-induced thermally activated depolarization phenomena. A dielectric material is disposed between two electrodes which are electrically short circuited to produce a dosimeter which is then exposed to the gamma or X radiation. The gamma or X-radiation impinging on the dosimeter interacts with the dielectric material directly or with the metal composing the electrode to produce Compton electrons which are emitted preferentially in the direction in which the radiation was traveling. A portion of these electrons becomes trapped in the dielectric material, consequently inducing a stable electrical polarization in the dielectric material. Subsequent heating of the exposed dosimeter to the point of onset of ionic conductivity with the electrodes still shorted through an ammeter causes the dielectric material to depolarize, and the depolarization signal so emitted can be measured and is proportional to the dose of radiation received by the dosimeter.

  9. Description of the double Compton spectrometer at Mayence MPI

    International Nuclear Information System (INIS)

    Borchert, H.; Ziegler, B.; Gimm, H.; Zieger, A.; Hughes, R.J.; Ahrens, J.

    1977-01-01

    The double Compton spectrometer of the Laboratories of the Mayence Linear Accelerator consists in two identical magnetic spectrometers, in which the electron scattered forwards by photons through a Compton process, are detected. The spectrometers have been built to detect 10-350 MeV photons and, as they involve thin Compton targets, their effect on the photon flux is negligible. They are put in cascade inside a well collimated bremsstrahlung beam. A thick absorbing target (max. thickness 2m) can be inserted inside the beam. The facility is outlined, some special properties of the accelerator and the bremsstrahlung beam are given. The properties of a Compton spectrometer involving eleven detectors are given by eleven response functions giving the relations between the photon flux impinging the Compton target and the counting rates of the detectors for a given adjustment of the magnets. A Monte-Carlo method is used for the calculation together with analytical methods neglecting the multiple scattering effects [fr

  10. Compton recoil electron tracking with silicon strip detectors

    International Nuclear Information System (INIS)

    O'Neill, T.J.; Ait-Ouamer, F.; Schwartz, I.; Tumer, O.T.; White, R.S.; Zych, A.D.

    1992-01-01

    The application of silicon strip detectors to Compton gamma ray astronomy telescopes is described in this paper. The Silicon Compton Recoil Telescope (SCRT) tracks Compton recoil electrons in silicon strip converters to provide a unique direction for Compton scattered gamma rays above 1 MeV. With strip detectors of modest positional and energy resolutions of 1 mm FWHM and 3% at 662 keV, respectively, 'true imaging' can be achieved to provide an order of magnitude improvement in sensitivity to 1.6 x 10 - 6 γ/cm 2 -s at 2 MeV. The results of extensive Monte Carlo calculations of recoil electrons traversing multiple layers of 200 micron silicon wafers are presented. Multiple Coulomb scattering of the recoil electron in the silicon wafer of the Compton interaction and the next adjacent wafer is the basic limitation to determining the electron's initial direction

  11. A preliminary investigation on the epithermal flux depression effect due to cadmium box in a multiplying medium

    International Nuclear Information System (INIS)

    Ahmad, A.

    1983-01-01

    Cadmium boxes are widely used as filter in Reactor Neutron Activation Analysis (RNAA) for the irradiation of samples in epithermal neutrons. By virtue of being an absorber the cadmium boxes produce epithermal flux depression in the medium surrounding them. A preliminary study of this effect was carried out (author)

  12. Epithermal beam development at the BMRR [Brookhaven Medical Research Reactor]: Dosimetric evaluation

    International Nuclear Information System (INIS)

    Saraf, S.K.; Fairchild, R.G.; Kalef-Ezra, J.; Laster, B.H.; Fiarman, S.; Ramsey, E.; Ioannina Univ.; Brookhaven National Lab., Upton, NY; State Univ. of New York, Stony Brook, NY

    1989-01-01

    The utilization of an epithermal neutron beam for neutron capture therapy (NCT) is desirable because of the increased tissue penetration relative to a thermal neutron beam. Over the past few years, modifications have been and continue to be made at the Brookhaven Medical Research Reactor (BMRR) by changing its filter components to produce an optimal epithermal beam. An optimal epithermal beam should contain a low fast neutron contamination and no thermal neutrons in the incident beam. Recently a new moderator for the epithermal beam has been installed at the epithermal port of the BMRR and has accomplished this task. This new moderator is a combination of alumina (Al 2 O 3 ) bricks and aluminum (Al) plates. A 0.51 mm thick cadmium (Cd) sheet has reduced the thermal neutron intensity drastically. Furthermore, an 11.5 cm thick bismuth (Bi) plate installed at the port surface has reduced the gamma dose component to negligible levels. Foil activation techniques have been employed by using bare gold and cadmium-covered gold foil to determine thermal as well as epithermal neutron fluence. Fast neutron fluence has been determined by indium foil counting. Fast neutron and gamma dose in soft tissue, free in air, is being determined by the paired ionization chamber technique, using tissue equivalent (TE) and graphite chambers. Thermoluminescent dosimeters (TLD-700) have also been used to determine the gamma dose independently. This paper describes the methods involved in the measurements of the above mentioned parameters. Formulations have been developed and the various corrections involved have been detailed. 12 refs

  13. A new position-sensitive transmission detector for epithermal neutron imaging

    International Nuclear Information System (INIS)

    Schooneveld, E M; Kockelmann, W; Rhodes, N; Tardocchi, M; Gorini, G; Perelli Cippo, E; Nakamura, T; Postma, H; Schillebeeckx, P

    2009-01-01

    A new neutron resonant transmission (NRT) detector for epithermal neutron imaging has been designed and built for the ANCIENT CHARM project, which is developing a set of complementary neutron imaging methods for analysis of cultural heritage objects. One of the techniques being exploited is NRT with the aim of performing bulk elemental analysis. The 16-pixel prototype NRT detector consists of independent crystals of 2 x 2 mm pixel size, which allow for 2D position-sensitive transmission measurements with epithermal neutrons. First results obtained at the ISIS pulsed spallation neutron source are presented. (fast track communication)

  14. Extraction of Generalized Parton Distributions from combined Deeply Virtual Compton Scattering and Timelike Compton scattering fits

    Science.gov (United States)

    Boer, Marie

    2017-09-01

    Generalized Parton Distributions (GPDs) contain the correlation between the parton's longitudinal momentum and their transverse distribution. They are accessed through hard exclusive processes, such as Deeply Virtual Compton Scattering (DVCS). DVCS has already been measured in several experiments and several models allow for extracting GPDs from these measurements. Timelike Compton Scattering (TCS) is, at leading order, the time-reversal equivalent process to DVCS and accesses GPDs at the same kinematics. Comparing GPDs extracted from DVCS and TCS is a unique way for proving GPD universality. Combining fits from the two processes will also allow for better constraining the GPDs. We will present our method for extracting GPDs from DVCS and TCS pseudo-data. We will compare fit results from the two processes in similar conditions and present what can be expected in term of contraints on GPDs from combined fits.

  15. Light Higgs production at the Compton Collider

    International Nuclear Information System (INIS)

    Jikia, G.; Soeldner-Rembold, S.

    2000-01-01

    We have studied the production of a light Higgs boson with a mass of 120 GeV in photon-photon collisions at a Compton collider. The event generator for the backgrounds to a Higgs signal due to b-barb and c-barc heavy quark pair production in polarized γγ collisions is based on a complete next-to-leading order (NLO) perturbative QCD calculation. For J z = 0 the large double-logarithmic corrections up to four loops are also included. It is shown that the two-photon width of the Higgs boson can be measured with high statistical accuracy of about 2% for integrated γγ luminosity in the hard part of the spectrum of 40 fb -1 . As a result the total Higgs boson width can be calculated in a model independent way to an accuracy of about 14%

  16. Deuteron Compton scattering below pion photoproduction threshold

    Science.gov (United States)

    Levchuk, M. I.; L'vov, A. I.

    2000-07-01

    Deuteron Compton scattering below pion photoproduction threshold is considered in the framework of the nonrelativistic diagrammatic approach with the Bonn OBE potential. A complete gauge-invariant set of diagrams is taken into account which includes resonance diagrams without and with NN-rescattering and diagrams with one- and two-body seagulls. The seagull operators are analyzed in detail, and their relations with free- and bound-nucleon polarizabilities are discussed. It is found that both dipole and higher-order polarizabilities of the nucleon are required for a quantitative description of recent experimental data. An estimate of the isospin-averaged dipole electromagnetic polarizabilities of the nucleon and the polarizabilities of the neutron is obtained from the data.

  17. Deuteron Compton scattering below pion photoproduction threshold

    International Nuclear Information System (INIS)

    Levchuk, M.I.; L'vov, A.I.

    2000-01-01

    Deuteron Compton scattering below pion photoproduction threshold is considered in the framework of the nonrelativistic diagrammatic approach with the Bonn OBE potential. A complete gauge-invariant set of diagrams is taken into account which includes resonance diagrams without and with NN-rescattering and diagrams with one- and two-body seagulls. The seagull operators are analyzed in detail, and their relations with free- and bound-nucleon polarizabilities are discussed. It is found that both dipole and higher-order polarizabilities of the nucleon are required for a quantitative description of recent experimental data. An estimate of the isospin-averaged dipole electromagnetic polarizabilities of the nucleon and the polarizabilities of the neutron is obtained from the data

  18. Deuteron Compton scattering below pion photoproduction threshold

    Energy Technology Data Exchange (ETDEWEB)

    Levchuk, M.I. E-mail: levchuk@dragon.bas-net.by; L' vov, A.I. E-mail: lvov@x4u.lebedev.ru

    2000-07-17

    Deuteron Compton scattering below pion photoproduction threshold is considered in the framework of the nonrelativistic diagrammatic approach with the Bonn OBE potential. A complete gauge-invariant set of diagrams is taken into account which includes resonance diagrams without and with NN-rescattering and diagrams with one- and two-body seagulls. The seagull operators are analyzed in detail, and their relations with free- and bound-nucleon polarizabilities are discussed. It is found that both dipole and higher-order polarizabilities of the nucleon are required for a quantitative description of recent experimental data. An estimate of the isospin-averaged dipole electromagnetic polarizabilities of the nucleon and the polarizabilities of the neutron is obtained from the data.

  19. Exclusive compton scattering on the proton

    International Nuclear Information System (INIS)

    Chen, J.P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M.

    1999-01-01

    An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range, and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together, these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same non-forward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged Bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer, currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supersedes E97 - 108 which was approved by PAC13. (author)

  20. Exclusive compton scattering on the proton

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)] [and others

    1999-07-01

    An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range, and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together, these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same non-forward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged Bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer, currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supersedes E97 - 108 which was approved by PAC13. (author)

  1. Exclusive Compton Scattering on the Proton

    International Nuclear Information System (INIS)

    Chen, J. P.; Chudakov, E.; DeJager, C.; Degtyarenko, P.; Ent, R.; Gomez, J.; Hansen, O.; Keppel, C.; Klein, F.; Kuss, M.; LeRose, J.; Liang, M.; Michaels, R.; Mitchell, J.; Liyanage, N.; Rutt, P.; Saha, A.; Wojtsekhowski, B.; Bouwhuis, M.; Chang, T.H.; Holt, R. J.; Nathan, A. M.; Roedelbronn, M.; Wijesooriya, K.; Williamson, S. E.; Dodge, G.; Hyde-Wright, C.; Radyushkin, A.; Sabatie, F.; Weinstein, L. B.; Ulmer, P.; Bosted, P.; Finn, J. M.; Jones, M.; Churchwell, S.; Howell, C.; Gilman, R.; Glashausser, C.; Jiang, X.; Ransome, R.; Strauch, S.; Berthot, J.; Bertin, P.; Fonvielle, H.; Roblin, Y.; Bertozzi, W.; Gilad, S.; Rowntree, D.; Zu, Z.; Brown, D.; Chang, G.; Afanasev, A.; Egiyan, K.; Hoohauneysan, E.; Ketikyan, A.; Mailyan, S.; Petrosyan, A.; Shahinyan, A.; Voskanyan, H.; Boeglin, W.; Markowitz, P.; Hines, J.; Strobel, G.; Templon, J.; Feldman, G.; Morris, C. L.; Gladyshev, V.; Lindgren, R. A.; Calarco, J.; Hersman, W.; Leuschner, M.; Gasparian, A.

    1999-01-01

    An experiment is proposed to measure the cross sections for Real Compton Scattering from the proton in the energy range 3-6 GeV and over a wide angular range; and to measure the longitudinal and transverse components of the polarization transfer to the recoil proton at a single kinematic point. Together; these measurements will test models of the reaction mechanism and determine new structure functions of the proton that are related to the same nonforward parton densities that determine the elastic electron scattering form factors and the parton densities. The experiment utilizes an untagged bremsstrahlung photon beam and the standard Hall A cryogenic targets. The scattered photon is detected in a photon spectrometer; currently under construction. The coincident recoil proton is detected in one of the Hall A magnetic spectrometers and its polarization components are measured in the existing Focal Plane Polarimeter. This proposal extends and supercedes E97-108 which was approved by PAC13

  2. Monte Carlo simulation of muon-induced background of an anti-Compton gamma-ray spectrometer placed in a surface and underground laboratory

    CERN Document Server

    Vojtyla, P

    2005-01-01

    Simulations of cosmic ray muon induced background of an HPGe detector placed inside an anti-Compton shield on the surface and in shallow underground is described. Investigation of several model set-ups revealed some trends useful for design of low-level gamma-ray spectrometers. It has been found that background spectrum of an HPGe detector can be scaled down with the shielding depth. No important difference is observed when the same set-up of the anti-Compton spectrometer is positioned horizontally or vertically. A cosmic-muon rejection factor of at least 40 (at around 1 MeV) can be reached when the anti-Compton suppression is operational. The cosmicmuon background can be reduced to such a level that other background components prevail, like those from the residual contamination of the detector and shield materials and/or from radon, especially for the underground facilities.

  3. A filtered backprojection reconstruction algorithm for Compton camera

    Energy Technology Data Exchange (ETDEWEB)

    Lojacono, Xavier; Maxim, Voichita; Peyrin, Francoise; Prost, Remy [Lyon Univ., Villeurbanne (France). CNRS, Inserm, INSA-Lyon, CREATIS, UMR5220; Zoglauer, Andreas [California Univ., Berkeley, CA (United States). Space Sciences Lab.

    2011-07-01

    In this paper we present a filtered backprojection reconstruction algorithm for Compton Camera detectors of particles. Compared to iterative methods, widely used for the reconstruction of images from Compton camera data, analytical methods are fast, easy to implement and avoid convergence issues. The method we propose is exact for an idealized Compton camera composed of two parallel plates of infinite dimension. We show that it copes well with low number of detected photons simulated from a realistic device. Images reconstructed from both synthetic data and realistic ones obtained with Monte Carlo simulations demonstrate the efficiency of the algorithm. (orig.)

  4. High-pressure system for Compton scattering experiments

    International Nuclear Information System (INIS)

    Oomi, G.; Honda, F.; Kagayama, T.; Itoh, F.; Sakurai, H.; Kawata, H.; Shimomura, O.

    1998-01-01

    High-pressure apparatus for Compton scattering experiments has been developed to study the momentum distribution of conduction electrons in metals and alloys at high pressure. This apparatus was applied to observe the Compton profile of metallic Li under pressure. It was found that the Compton profile at high pressure could be obtained within several hours by using this apparatus and synchrotron radiation. The result on the pressure dependence of the Fermi momentum of Li obtained here is in good agreement with that predicted from the free-electron model

  5. Procedure and code for calculating black control rods taking into account epithermal absorption, code CAS-1

    International Nuclear Information System (INIS)

    Martinc, R.; Trivunac, N.; Zivkovic, Z.

    1964-12-01

    This report describes the computer code CAS-1, calculation method and procedure applied for calculating the black control rods taking into account the epithermal neutron absorption. Results obtained for supercell method applied for regular lattice reflected in the multiplication medium is part of this report in addition to the computer code manual

  6. Compton scatter imaging: A tool for historical exploration

    International Nuclear Information System (INIS)

    Harding, G.; Harding, E.

    2010-01-01

    This review discusses the principles and technological realisation of a technique, termed Compton scatter imaging (CSI), which is based on spatially resolved detection of Compton scattered X-rays. The applicational focus of this review is to objects of historical interest. Following a historical survey of CSI, a description is given of the major characteristics of Compton X-ray scatter. In particular back-scattered X-rays allow massive objects to be imaged, which would otherwise be too absorbing for the conventional transmission X-ray technique. The ComScan (an acronym for Compton scatter scanner) is a commercially available backscatter imaging system, which is discussed here in some detail. ComScan images from some artefacts of historical interest, namely a fresco, an Egyptian mummy and a mediaeval clasp are presented and their use in historical analysis is indicated. The utility of scientific and technical advance for not only exploring history, but also restoring it, is briefly discussed.

  7. Applicability of compton imaging in nuclear decommissioning activities

    International Nuclear Information System (INIS)

    Ljubenov, V.Lj.; Marinkovic, P.M.

    2002-01-01

    During the decommissioning of nuclear facilities significant part of the activities is related to the radiological characterization, waste classification and management. For these purposes a relatively new imaging technique, based on information from the gamma radiation that undergoes Compton scattering, is applicable. Compton imaging systems have a number of advantages for nuclear waste characterization, such as identifying hot spots in mixed waste in order to reduce the volume of high-level waste requiring extensive treatment or long-term storage, imaging large contaminated areas and objects etc. Compton imaging also has potential applications for monitoring of production, transport and storage of nuclear materials and components. This paper discusses some system design requirements and performance specifications for these applications. The advantages of Compton imaging are compared to competing imaging techniques. (author)

  8. Fast sampling algorithm for the simulation of photon Compton scattering

    International Nuclear Information System (INIS)

    Brusa, D.; Salvat, F.

    1996-01-01

    A simple algorithm for the simulation of Compton interactions of unpolarized photons is described. The energy and direction of the scattered photon, as well as the active atomic electron shell, are sampled from the double-differential cross section obtained by Ribberfors from the relativistic impulse approximation. The algorithm consistently accounts for Doppler broadening and electron binding effects. Simplifications of Ribberfors' formula, required for efficient random sampling, are discussed. The algorithm involves a combination of inverse transform, composition and rejection methods. A parameterization of the Compton profile is proposed from which the simulation of Compton events can be performed analytically in terms of a few parameters that characterize the target atom, namely shell ionization energies, occupation numbers and maximum values of the one-electron Compton profiles. (orig.)

  9. Virtual compton scattering off protons at moderately large momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, P; Schuermann, M [Wuppertal Univ. (Gesamthochschule) (Germany); Guichon, P A.M. [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d` Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l` Instrumentation Associee

    1995-06-28

    The amplitudes for virtual Compton scattering off protons are calculated within the framework of the diquark model in which protons are viewed as being built up by quarks and diquarks. The latter objects are treated as quasi-elementary constituents of the proton. Virtual Compton scattering, electroproduction of photons and the Bethe-Heitler contamination are discussed for various kinematical situations. We particularly emphasize the role of the electron asymmetry for measuring the relative phases between the virtual Compton and the Bethe-Heitler amplitudes. It is also shown that the model is able to describe very well the experimental data for real Compton scattering off protons. (authors). 35 refs., 8 figs., 1 tab.

  10. Electronic structure of hafnium: A Compton profile study

    Indian Academy of Sciences (India)

    To extract the true Compton profile from the raw data, the raw data were cor- rected for ... For the present sample and experimental conditions, the contribution of .... are in better agreement with the simple renormalized free atom calculations for.

  11. Virtual compton scattering off protons at moderately large momentum transfer

    International Nuclear Information System (INIS)

    Kroll, P.; Schuermann, M.; Guichon, P.A.M.

    1995-01-01

    The amplitudes for virtual Compton scattering off protons are calculated within the framework of the diquark model in which protons are viewed as being built up by quarks and diquarks. The latter objects are treated as quasi-elementary constituents of the proton. Virtual Compton scattering, electroproduction of photons and the Bethe-Heitler contamination are discussed for various kinematical situations. We particularly emphasize the role of the electron asymmetry for measuring the relative phases between the virtual Compton and the Bethe-Heitler amplitudes. It is also shown that the model is able to describe very well the experimental data for real Compton scattering off protons. (authors). 35 refs., 8 figs., 1 tab

  12. Deconvolution of shift-variant broadening for Compton scatter imaging

    International Nuclear Information System (INIS)

    Evans, Brian L.; Martin, Jeffrey B.; Roggemann, Michael C.

    1999-01-01

    A technique is presented for deconvolving shift-variant Doppler broadening of singly Compton scattered gamma rays from their recorded energy distribution. Doppler broadening is important in Compton scatter imaging techniques employing gamma rays with energies below roughly 100 keV. The deconvolution unfolds an approximation to the angular distribution of scattered photons from their recorded energy distribution in the presence of statistical noise and background counts. Two unfolding methods are presented, one based on a least-squares algorithm and one based on a maximum likelihood algorithm. Angular distributions unfolded from measurements made on small scattering targets show less evidence of Compton broadening. This deconvolution is shown to improve the quality of filtered backprojection images in multiplexed Compton scatter tomography. Improved sharpness and contrast are evident in the images constructed from unfolded signals

  13. Bin mode estimation methods for Compton camera imaging

    International Nuclear Information System (INIS)

    Ikeda, S.; Odaka, H.; Uemura, M.; Takahashi, T.; Watanabe, S.; Takeda, S.

    2014-01-01

    We study the image reconstruction problem of a Compton camera which consists of semiconductor detectors. The image reconstruction is formulated as a statistical estimation problem. We employ a bin-mode estimation (BME) and extend an existing framework to a Compton camera with multiple scatterers and absorbers. Two estimation algorithms are proposed: an accelerated EM algorithm for the maximum likelihood estimation (MLE) and a modified EM algorithm for the maximum a posteriori (MAP) estimation. Numerical simulations demonstrate the potential of the proposed methods

  14. Deeply virtual Compton scattering off "4He

    International Nuclear Information System (INIS)

    Hattawy, M.

    2015-01-01

    The "4He nucleus is of particular interest to study nuclear GPDs (Generalized Parton Distributions) as its partonic structure is described by only one chirally-even GPD. It is also a simple few-body system and has a high density that makes it the ideal target to investigate nuclear effects on partons. The experiment described in this thesis is JLab-E08-24, which was carried out in 2009 by the CLAS collaboration during the 'EG6' run. In this experiment, a 6 GeV longitudinally-polarized electron beam was scattered onto a 6 atm "4He gaseous target. During this experiment, in addition to the CLAS detector, a Radial Time Projection Chamber (RTPC), to detect low-energy nuclear recoils, and an Inner Calorimeter (IC), to improve the detection of photons at very forward angles, were used. We carried out a full analysis on our 6 GeV dataset, showing the feasibility of measuring exclusive nuclear Deeply Virtual Compton Scattering (DVCS) reactions. The analysis included: the identification of the final-state particles, the DVCS event selection, the π"0 background subtraction. The beam-spin asymmetry was then extracted for both DVCS channels and compared to the ones of the free-proton DVCS reaction, and to theoretical predictions from two models. Finally, the real and the imaginary parts of the "4He CFF (Compton Form Factor) HA have been extracted. Different levels of agreement were found between our measurements and the theoretical calculations. This thesis is organized as follows: In chapter 1, the available theoretical tools to study hadronic structure are presented, with an emphasis on the nuclear effects and GPDs. In chapter 2, the characteristics of the CLAS spectrometer are reviewed. In chapter 3, the working principle and the calibration aspects of the RTPC are discussed. In chapter 4, the identification of the final-state particles and the Monte-Carlo simulation are presented. In chapter 5, the selection of the DVCS events, the background subtraction, and uncertainty

  15. INJECTION EFFICIENCY IN COMPTON RING NESTOR

    Directory of Open Access Journals (Sweden)

    P. I. Gladkikh

    2017-12-01

    Full Text Available NESTOR is the hard X-ray source that is under commissioning at NSC KIPT. NESTOR based on the Compton scattering of laser photons on relativistic electrons. The structure of the facility can be represented as the following components: a linear accelerator, a transport channel, a storage ring, and a laser-optical system. Electrons are stored in the storage ring for energy of 40-200 MeV. Inevitable alignment errors of magnetic elements are strongly effect on the beam dynamics in the storage ring. These errors lead to a shift of the equilibrium orbit relative to the ideal one. Significant shift of the equilibrium orbit could lead to loss of the beam on physical apertures. Transverse sizes of electron and laser beams are only few tens of microns at the interaction point. The shift of electron beam at the interaction point could greatly complicate the operation adjustment of storage ring without sufficient beam position diagnostic system. This article presents the simulation results of the efficiency of electron beam accumulation in the NESTOR storage ring. Also, this article is devoted to electron beam dynamics due to alignment errors of magnetic element in the ring.

  16. New Compton densitometer for measuring pulmonary edema

    Energy Technology Data Exchange (ETDEWEB)

    Loo, B.W.; Goulding, F.S.; Simon, D.S.

    1985-10-01

    Pulmonary edema is the pathological increase of extravascular lung water found most often in patients with congestive heart failure and other critically ill patients who suffer from intravenous fluid overload. A non-invasive lung density monitor that is accurate, easily portable, safe and inexpensive is needed for clinical evaluation of pulmonary edema. Other researchers who have employed Compton scattering techniques generally used systems of extended size and detectors with poor energy resolution. This has resulted in significant systematic biases from multiply-scattered photons and larger errors in counting statistics at a given radiation dose to the patient. We are proposing a patented approach in which only backscattered photons are measured with a high-resolution HPGe detector in a compact system geometry. By proper design and a unique data extraction scheme, effects of the variable chest wall on lung density measurements are minimized. Preliminary test results indicate that with a radioactive source of under 30 GBq, it should be possible to make an accurate lung density measurement in one minute, with a risk of radiation exposure to the patient a thousand times smaller than that from a typical chest x-ray. The ability to make safe, frequent lung density measurements could be very helpful for monitoring the course of P.E. at the hospital bedside or outpatient clinics, and for evaluating the efficacy of therapy in clinical research. 6 refs., 5 figs.

  17. Compton Composites Late in the Early Universe

    Directory of Open Access Journals (Sweden)

    Frederick Mayer

    2014-07-01

    Full Text Available Beginning roughly two hundred years after the big-bang, a tresino phase transition generated Compton-scale composite particles and converted most of the ordinary plasma baryons into new forms of dark matter. Our model consists of ordinary electrons and protons that have been bound into mostly undetectable forms. This picture provides an explanation of the composition and history of ordinary to dark matter conversion starting with, and maintaining, a critical density Universe. The tresino phase transition started the conversion of ordinary matter plasma into tresino-proton pairs prior to the the recombination era. We derive the appropriate Saha–Boltzmann equilibrium to determine the plasma composition throughout the phase transition and later. The baryon population is shown to be quickly modified from ordinary matter plasma prior to the transition to a small amount of ordinary matter and a much larger amount of dark matter after the transition. We describe the tresino phase transition and the origin, quantity and evolution of the dark matter as it takes place from late in the early Universe until the present.

  18. Scaling limit of deeply virtual Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    A. Radyushkin

    2000-07-01

    The author outlines a perturbative QCD approach to the analysis of the deeply virtual Compton scattering process {gamma}{sup *}p {r_arrow} {gamma}p{prime} in the limit of vanishing momentum transfer t=(p{prime}{minus}p){sup 2}. The DVCS amplitude in this limit exhibits a scaling behavior described by a two-argument distributions F(x,y) which specify the fractions of the initial momentum p and the momentum transfer r {equivalent_to} p{prime}{minus}p carried by the constituents of the nucleon. The kernel R(x,y;{xi},{eta}) governing the evolution of the non-forward distributions F(x,y) has a remarkable property: it produces the GLAPD evolution kernel P(x/{xi}) when integrated over y and reduces to the Brodsky-Lepage evolution kernel V(y,{eta}) after the x-integration. This property is used to construct the solution of the one-loop evolution equation for the flavor non-singlet part of the non-forward quark distribution.

  19. New Compton densitometer for measuring pulmonary edema

    International Nuclear Information System (INIS)

    Loo, B.W.; Goulding, F.S.; Simon, D.S.

    1985-10-01

    Pulmonary edema is the pathological increase of extravascular lung water found most often in patients with congestive heart failure and other critically ill patients who suffer from intravenous fluid overload. A non-invasive lung density monitor that is accurate, easily portable, safe and inexpensive is needed for clinical evaluation of pulmonary edema. Other researchers who have employed Compton scattering techniques generally used systems of extended size and detectors with poor energy resolution. This has resulted in significant systematic biases from multiply-scattered photons and larger errors in counting statistics at a given radiation dose to the patient. We are proposing a patented approach in which only backscattered photons are measured with a high-resolution HPGe detector in a compact system geometry. By proper design and a unique data extraction scheme, effects of the variable chest wall on lung density measurements are minimized. Preliminary test results indicate that with a radioactive source of under 30 GBq, it should be possible to make an accurate lung density measurement in one minute, with a risk of radiation exposure to the patient a thousand times smaller than that from a typical chest x-ray. The ability to make safe, frequent lung density measurements could be very helpful for monitoring the course of P.E. at the hospital bedside or outpatient clinics, and for evaluating the efficacy of therapy in clinical research. 6 refs., 5 figs

  20. Measurement of thermal, epithermal and fast neutrons fluxes by the activation foil method at IEA-R1 reactor

    International Nuclear Information System (INIS)

    Dias, M.S.; Koskinas, M.F.; Berretta, J.R.; Fratin, L.; Botelho, S.

    1990-01-01

    The thermal, epithermal and fast neutron fluxes have been determined experimentally by the activation foil method at position GI, located near the IEA-R1 reactor core. The reactions used were 197 Au (n,gamma) 198 Au, for thermal and epithermal neutrons and 27 Na (n,alpha) 24 Na, for fast neutrons. The activities were measured by the 4π(PC)β-γ coincidence method. (author)

  1. Virtual compton scattering at low energy; Diffusion compton virtuelle a basse energie

    Energy Technology Data Exchange (ETDEWEB)

    Lhuillier, D

    1997-09-01

    The work described in this PhD is a study of the Virtual Compton scattering (VCS) off the proton at low energy, below pion production threshold. Our experiment has been carried out at MAMI in the collaboration with the help of two high resolution spectrometers. Experimentally, the VCS process is the electroproduction of photons off a liquid hydrogen target. First results of data analysis including radiative corrections are presented and compared with low energy theorem prediction. VCS is an extension of the Real Compton Scattering. The virtuality of the incoming photon allows us to access new observables of the nucleon internal structure which are complementarity to the elastic form factors: the generalized polarizabilities (GP). They are function of the squared invariant mass of the virtual photo. The mass limit of these observables restore the usual electric and magnetic polarizabilities. Our experiment is the first measurement of the VCS process at a virtual photon mass equals 0.33 Ge V square. The experimental development presents the analysis method. The high precision needed in the absolute cross-section measurement required an accurate estimate of radiative corrections to the VCS. This new calculation, which has been performed in the dimensional regulation scheme, composes the theoretical part of this thesis. At low q', preliminary results agree with low energy theorem prediction. At higher q', substraction of low energy theorem contribution to extract GP is discussed. (author)

  2. Virtual compton scattering at low energy; Diffusion compton virtuelle a basse energie

    Energy Technology Data Exchange (ETDEWEB)

    Lhuillier, D

    1997-09-01

    The work described in this PhD is a study of the Virtual Compton scattering (VCS) off the proton at low energy, below pion production threshold. Our experiment has been carried out at MAMI in the collaboration with the help of two high resolution spectrometers. Experimentally, the VCS process is the electroproduction of photons off a liquid hydrogen target. First results of data analysis including radiative corrections are presented and compared with low energy theorem prediction. VCS is an extension of the Real Compton Scattering. The virtuality of the incoming photon allows us to access new observables of the nucleon internal structure which are complementarity to the elastic form factors: the generalized polarizabilities (GP). They are function of the squared invariant mass of the virtual photo. The mass limit of these observables restore the usual electric and magnetic polarizabilities. Our experiment is the first measurement of the VCS process at a virtual photon mass equals 0.33 Ge V square. The experimental development presents the analysis method. The high precision needed in the absolute cross-section measurement required an accurate estimate of radiative corrections to the VCS. This new calculation, which has been performed in the dimensional regulation scheme, composes the theoretical part of this thesis. At low q', preliminary results agree with low energy theorem prediction. At higher q', substraction of low energy theorem contribution to extract GP is discussed. (author)

  3. Compton spectra of atoms at high x-ray intensity

    Science.gov (United States)

    Son, Sang-Kil; Geffert, Otfried; Santra, Robin

    2017-03-01

    Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  4. Thermal, epithermal and thermalized neutron attenuation properties of ilmenite-serpentine heat resistant concrete shield

    International Nuclear Information System (INIS)

    Kany, A.M.I.; El-Gohary, M.I.; Kamal, S.M.

    1994-01-01

    Experimental measurements were carried out to study the attenuation properties of low-energy neutrons transmitted through unheated and preheated barriers of heavy-weight, highly hydrated and heat-resistant concrete shields. The concrete shields under investigation have been prepared from naturally occurring ilmenite and serpentine Egyptian ores. A collimated beam obtained from an Am-Be source was used as a source of neutrons, while the measurements of total thermal, epithermal, and thermalized neutron fluxes were performed using a BF-3 detector, multichannel analyzer and Cd filter. Results show that the ilmenite-serpentine concrete proved to be a better thermal, epithermal and thermalized neutron attenuator than the ordinary concrete especially at a high temperature of concrete exposure. (Author)

  5. Development of resonant detectors for epithermal neutron spectroscopy at pulsed neutron sources

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Senesi, R.; Andreani, C.; Gorini, G.

    2004-01-01

    New perspectives for epithermal neutron spectroscopy are opened by the development of new detectors for inverse geometry time of flight spectrometers at pulsed neutron sources. One example is the Very Low Angle Detector (VLAD) bank planned to be delivered, within the next 4 years, within the eVERDI project, on the neutron spectrometer VESUVIO, at the ISIS pulsed neutron source (UK). VLAD will extend the (q,ω) kinematical region for neutron scattering to low wavefactor transfer (q -1 ) still keeping energy transfer >1 eV, thus allowing the investigations of new experimental studies in condensed matter systems. The technique being developed for detection of epithermal neutrons, within this low q and high-energy transfer region, is the Resonance Detection Technique. In this work, the state of the detector development will be presented with special focus on the results obtained with some prototype detectors, namely YAP scintillators and cadmium-zinc-telluride semiconductors

  6. Theoretical and experimental study of collectrons for epithermal neutron flux in reactors

    International Nuclear Information System (INIS)

    Agu, M.N.

    1986-01-01

    A theoretical study of nuclear reactions and electric charge displacements arising in sensitivity to thermal and epithermal neutrons in collectrons allowed a computer code conception. Collectrons in Rhodium, Silver, Cobalt, Hafnium, Erbium, Gadolinium and Holmium have been tested in different radiation fields given by neutron or gamma filters irradiated in different places of Melusine and Siloe reactors. Some emitters were covered with different steel, nickel or zircaloy thicknesses. Theoretical and experimental results are consistent; that validate the computer code and show possibilities and necessity of covering collectron emitters to reduce or cancel the gamma sensitivity and to improve response instantaneity. A selective measurement of epithermal neutron flux can by this way, made by associating two types of collectrons [fr

  7. Detector for imaging and dosimetry of laser-driven epithermal neutrons by alpha conversion

    Science.gov (United States)

    Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Wilson, L. A.; Ansell, S.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Notley, M.; Raspino, D.; Rusby, D. R.; Borghesi, M.; Rhodes, N. J.; McKenna, P.; Neely, D.; Brenner, C. M.; Kar, S.

    2016-10-01

    An epithermal neutron imager based on detecting alpha particles created via boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons in the thermal and epithermal ranges, the fast neutrons register insignificantly on the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications.

  8. Inverse Compton gamma-rays from galactic dark matter annihilation. Anisotropy signatures

    International Nuclear Information System (INIS)

    Zhang, Le; Sigl, Guenter; Miniati, Francesco

    2010-08-01

    High energy electrons and positrons from annihilating dark matter can imprint unique angular anisotropies on the diffuse gamma-ray flux by inverse Compton scattering off the interstellar radiation field. We develop a numerical tool to compute gamma-ray emission from such electrons and positrons diffusing in the smooth host halo and in substructure halos with masses down to 10 -6 M s un. We show that, unlike the total gamma-ray angular power spectrum observed by Fermi-LAT, the angular power spectrum from inverse Compton scattering is exponentially suppressed below an angular scale determined by the diffusion length of electrons and positrons. For TeV scale dark matter with a canonical thermal freeze-out cross section 3 x 10 -26 cm 3 /s, this feature may be detectable by Fermi-LAT in the energy range 100-300 GeV after more sophisticated foreground subtraction. We also find that the total flux and the shape of the angular power spectrum depends sensitively on the spatial distribution of subhalos in the Milky Way. Finally, the contribution from the smooth host halo component to the gamma-ray mean intensity is negligibly small compared to subhalos. (orig.)

  9. Inverse Compton gamma-rays from galactic dark matter annihilation. Anisotropy signatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Le; Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Miniati, Francesco [ETH Zuerich (Switzerland). Physics Dept.

    2010-08-15

    High energy electrons and positrons from annihilating dark matter can imprint unique angular anisotropies on the diffuse gamma-ray flux by inverse Compton scattering off the interstellar radiation field. We develop a numerical tool to compute gamma-ray emission from such electrons and positrons diffusing in the smooth host halo and in substructure halos with masses down to 10{sup -6}M{sub s}un. We show that, unlike the total gamma-ray angular power spectrum observed by Fermi-LAT, the angular power spectrum from inverse Compton scattering is exponentially suppressed below an angular scale determined by the diffusion length of electrons and positrons. For TeV scale dark matter with a canonical thermal freeze-out cross section 3 x 10{sup -26} cm{sup 3}/s, this feature may be detectable by Fermi-LAT in the energy range 100-300 GeV after more sophisticated foreground subtraction. We also find that the total flux and the shape of the angular power spectrum depends sensitively on the spatial distribution of subhalos in the Milky Way. Finally, the contribution from the smooth host halo component to the gamma-ray mean intensity is negligibly small compared to subhalos. (orig.)

  10. A new position-sensitive detector for thermal and epithermal neutrons

    International Nuclear Information System (INIS)

    Jeavons, A.P.; Ford, N.L.; Lindberg, B.; Sachot, R.

    1977-01-01

    A new two-dimensional position-sensitive neutron detector is described. It is based on (n,γ) neutron resonance capture in a foil with subsequent detection of internal conversion electrons with a high-density proportional chamber. Large-area detectors with a 1 mm spatial resolution are feasible. A detection efficiency of 50% is possible for thermal neutrons using gadolinium-157 foil and for epithermal neutrons using hafnium-177. (Auth.)

  11. Optimization in Activation Analysis by Means of Epithermal Neutrons. Determination of Molybdenum in Steel

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D; Jirlow, J

    1963-12-15

    Optimization in activation analysis by means of selective activation with epithermal neutrons is discussed. This method was applied to the determination of molybdenum in a steel alloy without recourse to radiochemical separations. The sensitivity for this determination is estimated to be 10 ppm. With the common form of activation by means of thermal neutrons, the sensitivity would be about one-tenth of this. The sensitivity estimations are based on evaluation of the photo peak ratios of Mo-99/Fe-59.

  12. Advances on detectors for low-angle scattering of epithermal neutrons

    International Nuclear Information System (INIS)

    Perelli Cippo, E; Gorini, G; Tardocchi, M; Andreani, C; Pietropaolo, A; Senesi, R; Rhodes, N J; Schoonveld, E M

    2008-01-01

    The Very Low Angle Detector (VLAD) installed at the ISIS spallation neutron source is a novel instrument for epithermal neutron scattering with a range of applications in solid state physics. VLAD extends the kinematical space of the VESUVIO spectrometer to low momentum transfers at neutron energies above 1 eV. Measurements at scattering angles as low as 1° have been made with limitations due to the achievable signal/background ratio. (technical design note)

  13. Compton scatter correction for planner scintigraphic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vaan Steelandt, E; Dobbeleir, A; Vanregemorter, J [Algemeen Ziekenhuis Middelheim, Antwerp (Belgium). Dept. of Nuclear Medicine and Radiotherapy

    1995-12-01

    A major problem in nuclear medicine is the image degradation due to Compton scatter in the patient. Photons emitted by the radioactive tracer scatter in collision with electrons of the surrounding tissue. Due to the resulting loss of energy and change in direction, the scattered photons induce an object dependant background on the images. This results in a degradation of the contrast of warm and cold lesions. Although theoretically interesting, most of the techniques proposed in literature like the use of symmetrical photopeaks can not be implemented on the commonly used gamma camera due to the energy/linearity/sensitivity corrections applied in the detector. A method for a single energy isotope based on existing methods with adjustments towards daily practice and clinical situations is proposed. It is assumed that the scatter image, recorded from photons collected within a scatter window adjacent to the photo peak, is a reasonable close approximation of the true scatter component of the image reconstructed from the photo peak window. A fraction `k` of the image using the scatter window is subtracted from the image recorded in the photo peak window to produce the compensated image. The principal matter of the method is the right value for the factor `k`, which is determined in a mathematical way and confirmed by experiments. To determine `k`, different kinds of scatter media are used and are positioned in different ways in order to simulate a clinical situation. For a secondary energy window from 100 to 124 keV below a photo peak window from 126 to 154 keV, a value of 0.7 is found. This value has been verified using both an antropomorph thyroid phantom and the Rollo contrast phantom.

  14. Polarization observables in Virtual Compton Scattering

    International Nuclear Information System (INIS)

    Doria, Luca

    2007-10-01

    Virtual Compton Scattering (VCS) is an important reaction for understanding nucleon structure at low energies. By studying this process, the generalized polarizabilities of the nucleon can be measured. These observables are a generalization of the already known polarizabilities and will permit theoretical models to be challenged on a new level. More specifically, there exist six generalized polarizabilities and in order to disentangle them all, a double polarization experiment must be performed. Within this work, the VCS reaction p(e,e'p)γ was measured at MAMI using the A1 Collaboration three spectrometer setup with Q 2 =0.33 (GeV/c) 2 . Using the highly polarized MAMI beam and a recoil proton polarimeter, it was possible to measure both the VCS cross section and the double polarization observables. Already in 2000, the unpolarized VCS cross section was measured at MAMI. In this new experiment, we could confirm the old data and furthermore the double polarization observables were measured for the first time. The data were taken in five periods between 2005 and 2006. In this work, the data were analyzed to extract the cross section and the proton polarization. For the analysis, a maximum likelihood algorithm was developed together with the full simulation of all the analysis steps. The experiment is limited by the low statistics due mainly to the focal plane proton polarimeter efficiency. To overcome this problem, a new determination and parameterization of the carbon analyzing power was performed. The main result of the experiment is the extraction of a new combination of the generalized polarizabilities using the double polarization observables. (orig.)

  15. Polarization observables in Virtual Compton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Doria, Luca

    2007-10-15

    Virtual Compton Scattering (VCS) is an important reaction for understanding nucleon structure at low energies. By studying this process, the generalized polarizabilities of the nucleon can be measured. These observables are a generalization of the already known polarizabilities and will permit theoretical models to be challenged on a new level. More specifically, there exist six generalized polarizabilities and in order to disentangle them all, a double polarization experiment must be performed. Within this work, the VCS reaction p(e,e'p){gamma} was measured at MAMI using the A1 Collaboration three spectrometer setup with Q{sup 2}=0.33 (GeV/c){sup 2}. Using the highly polarized MAMI beam and a recoil proton polarimeter, it was possible to measure both the VCS cross section and the double polarization observables. Already in 2000, the unpolarized VCS cross section was measured at MAMI. In this new experiment, we could confirm the old data and furthermore the double polarization observables were measured for the first time. The data were taken in five periods between 2005 and 2006. In this work, the data were analyzed to extract the cross section and the proton polarization. For the analysis, a maximum likelihood algorithm was developed together with the full simulation of all the analysis steps. The experiment is limited by the low statistics due mainly to the focal plane proton polarimeter efficiency. To overcome this problem, a new determination and parameterization of the carbon analyzing power was performed. The main result of the experiment is the extraction of a new combination of the generalized polarizabilities using the double polarization observables. (orig.)

  16. Installation and testing of an optimized epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR)

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Kalef-Ezra, J.; Saraf, S.K.; Fiarman, S.; Ramsey, E.; Wielopolski, L.; Laster, B.; Wheeler, F. (Brookhaven National Lab., Upton, NY (USA); Ioannina Univ. (Greece); Brookhaven National Lab., Upton, NY (USA); State Univ. of New York, Stony Brook, NY (USA). Health Science Center; Brookhaven National Lab., Upton, NY (USA); EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1989-01-01

    Various calculations indicate that an optimized epithermal neutron beam can be produced by moderating fission neutrons either with a combination of Al and D{sub 2}O, or with Al{sub 2}O{sub 3}. We have designed, installed and tested an Al{sub 2}O{sub 3} moderated epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR). The epithermal neutron fluence rate of 1.8 {times} 10{sup 9} n/cm{sup 2}-sec produces a peak thermal neutron fluence rate of 1.9 to 2.8 {times} 10{sup 9} n/cm{sup 2}-sec in a tissue equivalent (TE) phantom head, depending on the configuration. Thus a single therapy treatment of 5 {times} 10{sup 12} n/cm{sup 2} can be delivered in 30--45 minutes. All irradiation times are given for a BMRR power of 3 MW, which is the highest power which can be delivered continuously. 18 refs., 8 figs., 4 tabs.

  17. Utilization of epithermal neutrons for the determination of molybdenum in the presence of uranium

    International Nuclear Information System (INIS)

    Oliveira Melo, M.A.M. de.

    1984-05-01

    Activation analysis by means of selective activation with epithermal neutrons is proposed for the determination of molybdenum in samples when uranium is present. Instrumental activation analysis with epithermal neutrons is advantageous for the determination of elements with large resonance integral, as compared to its thermal neutron activation cross section. The main reason for using this method is the serious interference caused by 99 Mo produced by fission of 235 U. This effect is strongly reduced by using the epicadmium irradiation technique. The filter efficiency has been investigated by irradiation experiments with bare and cadmium-covered samples. A solvent extraction process for uranium, before irradiation, is proposed to reduce sample background. The determination of Mo in leach samples is proposed in order to support the analytical needs of Figueira and Pocos de Caldas Mineral Prospection Programme of Departamento de Tecnologia Mineral from CDTN/NUCLEBRAS (MG,Brazil). The introduction of activation analysis with epithermal neutrons as a routine analytical tool in CDTN is our main goal. This method represents one more opportunity for exploring the analytical facilities available at TRIGA MARK I IPR-R1 nuclear reactor. (Author) [pt

  18. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Hannah E. [Georgia Inst. of Technology, Atlanta, GA (United States)

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies.

  19. Geology of epithermal silver-gold bulk-mining targets, bodie district, Mono County, California

    Science.gov (United States)

    Hollister, V.F.; Silberman, M.L.

    1995-01-01

    The Bodie mining district in Mono County, California, is zoned with a core polymetallic-quartz vein system and silver- and gold-bearing quartz-adularia veins north and south of the core. The veins formed as a result of repeated normal faulting during doming shortly after extrusion of felsic flows and tuffs, and the magmatic-hydrothermal event seems to span at least 2 Ma. Epithermal mineralization accompanied repeated movement of the normal faults, resulting in vein development in the planes of the faults. The veins occur in a very large area of argillic alteration. Individual mineralized structures commonly formed new fracture planes during separate fault movements, with resulting broad zones of veinlets growing in the walls of the major vein-faults. The veinlet swarms have been found to constitute a target estimated at 75,000,000 tons, averaging 0.037 ounce gold per ton. The target is amenable to bulkmining exploitation. The epithermal mineralogy is simple, with electrum being the most important precious metal mineral. The host veins are typical low-sulfide banded epithermal quartz and adularia structures that filled voids created by the faulting. Historical data show that beneficiation of the simple vein mineralogy is very efficient. ?? 1995 Oxford University Press.

  20. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10 7 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF 3 composite and a stacked Al/Teflon design) at various incident electron energies

  1. Importance of Doppler broadening in Compton scatter imaging techniques

    Science.gov (United States)

    Rao, Donepudi V.; Takeda, Tohoru; Itai, Yuji; Seltzer, S. M.; Hubbell, John H.; Zeniya, Tsutomu; Akatsuka, Takao; Cesareo, Roberto; Brunetti, Antonio; Gigante, Giovanni E.

    2001-12-01

    Compton scattering is a potential tool for the determination of bone mineral content or tissue density for dose planning purposes, and requires knowledge of the energy distribution of the X-rays through biological materials of medical interest in the X-ray and (gamma) -ray region. The energy distribution is utilized in a number of ways in diagnostic radiology, for example, in determining primary photon spectra, electron densities in separate volumes, and in tomography and imaging. The choice of the X-ray energy is more related to X-ray absorption, where as that of the scattering angle is more related to geometry. The evaluation of all the contributions are mandatory in Compton profile measurements and is important in X-ray imaging systems in order to achieve good results. In view of this, Compton profile cross-sections for few biological materials are estimated at nineteen K(alpha) X-ray energies and 60 keV (Am-241) photons. Energy broadening, geometrical broadening from 1 to 180 degree(s), FWHM of J(Pz) and FWHM of Compton energy broadening has been evaluated at various incident photon energies. These values are estimated around the centroid of the Compton profile with an energy interval of 0.1 keV and 1.0 keV for 60 keV photons. The interaction cross sections for the above materials are estimated using fractions-by-weight of the constituent elements. Input data for these tables are purely theoretical.

  2. Dispersion relations in real and virtual Compton scattering

    International Nuclear Information System (INIS)

    Drechsel, D.; Pasquini, B.; Vanderhaeghen, M.

    2003-01-01

    A unified presentation is given on the use of dispersion relations in the real and virtual Compton scattering processes off the nucleon. The way in which dispersion relations for Compton scattering amplitudes establish connections between low energy nucleon structure quantities, such as polarizabilities or anomalous magnetic moments, and the nucleon excitation spectrum is reviewed. We discuss various sum rules for forward real and virtual Compton scattering, such as the Gerasimov-Drell-Hearn sum rule and its generalizations, the Burkhardt-Cottingham sum rule, as well as sum rules for forward nucleon polarizabilities, and review their experimental status. Subsequently, we address the general case of real Compton scattering (RCS). Various types of dispersion relations for RCS are presented as tools for extracting nucleon polarizabilities from the RCS data. The information on nucleon polarizabilities gained in this way is reviewed and the nucleon structure information encoded in these quantities is discussed. The dispersion relation formalism is then extended to virtual Compton scattering (VCS). The information on generalized nucleon polarizabilities extracted from recent VCS experiments is described, along with its interpretation in nucleon structure models. As a summary, the physics content of the existing data is discussed and some perspectives for future theoretical and experimental activities in this field are presented

  3. Compton-thick AGN at high and low redshift

    Science.gov (United States)

    Akylas, A.; Georgantopoulos, I.; Corral, A.; Ranalli, P.; Lanzuisi, G.

    2017-10-01

    The most obscured sources detected in X-ray surveys, the Compton-thick AGN present great interest both because they represent the hidden side of accretion but also because they may signal the AGN birth. We analyse the NUSTAR observations from the serendipitous observations in order to study the Compton-thick AGN at the deepest possible ultra-hard band (>10 keV). We compare our results with our SWIFT/BAT findings in the local Universe, as well as with our results in the CDFS and COSMOS fields. We discuss the comparison with X-ray background synthesis models finding that a low fraction of Compton-thick sources (about 15 per cent of the obscured population) is compatible with both the 2-10keV band results and those at harder energies.

  4. Pulsar high energy emission due to inverse Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lyutikov, Maxim

    2013-06-15

    We discuss growing evidence that pulsar high energy is emission is generated via Inverse Compton mechanism. We reproduce the broadband spectrum of Crab pulsar, from UV to very high energy gamma-rays - nearly ten decades in energy, within the framework of the cyclotron-self-Compton model. Emission is produced by two counter-streaming beams within the outer gaps, at distances above ∼ 20 NS radii. The outward moving beam produces UV-X-ray photons via Doppler-booster cyclotron emission, and GeV photons by Compton scattering the cyclotron photons produced by the inward going beam. The scattering occurs in the deep Klein-Nishina regime, whereby the IC component provides a direct measurement of particle distribution within the magnetosphere. The required plasma multiplicity is high, ∼10{sup 6} – 10{sup 7}, but is consistent with the average particle flux injected into the pulsar wind nebula.

  5. Inverse compton emission of gamma rays near the pulsar surface

    International Nuclear Information System (INIS)

    Morini, M.

    1981-01-01

    The physical conditions near pulsar surface that might give rise to gamma ray emission from Crab and Vela pulsars are not yet well understood. Here I suggest that, in the context of the vacuum discharge mechanism proposed by Ruderman and Sutherland (1975), gamma rays are produced by inverse Compton scattering of secondary electrons with the thermal radiation of the star surface as well as for curvature and synchotron radiation. It is found that inverse Compton scattering is relevant if the neutron star surface temperature is greater than 10 6 K or of the polar cap temperature is of the order of 5 x 10 6 K. Inverse Compton scattering in anisotropic photon fields and Klein-Nishina regime is here carefully considered. (orig.)

  6. The hydrogen anomaly problem in neutron Compton scattering

    Science.gov (United States)

    Karlsson, Erik B.

    2018-03-01

    Neutron Compton scattering (also called ‘deep inelastic scattering of neutrons’, DINS) is a method used to study momentum distributions of light atoms in solids and liquids. It has been employed extensively since the start-up of intense pulsed neutron sources about 25 years ago. The information lies primarily in the width and shape of the Compton profile and not in the absolute intensity of the Compton peaks. It was therefore not immediately recognized that the relative intensities of Compton peaks arising from scattering on different isotopes did not always agree with values expected from standard neutron cross-section tables. The discrepancies were particularly large for scattering on protons, a phenomenon that became known as ‘the hydrogen anomaly problem’. The present paper is a review of the discovery, experimental tests to prove or disprove the existence of the hydrogen anomaly and discussions concerning its origin. It covers a twenty-year-long history of experimentation, theoretical treatments and discussions. The problem is of fundamental interest, since it involves quantum phenomena on the subfemtosecond time scale, which are not visible in conventional thermal neutron scattering but are important in Compton scattering where neutrons have two orders of magnitude times higher energy. Different H-containing systems show different cross-section deficiencies and when the scattering processes are followed on the femtosecond time scale the cross-section losses disappear on different characteristic time scales for each H-environment. The last section of this review reproduces results from published papers based on quantum interference in scattering on identical particles (proton or deuteron pairs or clusters), which have given a quantitative theoretical explanation both regarding the H-cross-section reduction and its time dependence. Some new explanations are added and the concluding chapter summarizes the conditions for observing the specific quantum

  7. A counting silicon microstrip detector for precision compton polarimetry

    CERN Document Server

    Doll, D W; Hillert, W; Krüger, H; Stammschroer, K; Wermes, N

    2002-01-01

    A detector for the detection of laser photons backscattered off an incident high-energy electron beam for precision Compton polarimetry in the 3.5 GeV electron stretcher ring ELSA at Bonn University has been developed using individual photon counting. The photon counting detector is based on a silicon microstrip detector system using dedicated ASIC chips. The produced hits by the pair converted Compton photons are accumulated rather than individually read out. A transverse profile displacement can be measured with mu m accuracy rendering a polarization measurement of the order of 1% on the time scale of 10-15 min possible.

  8. Geometrical effects determinant of the Compton profile shape

    International Nuclear Information System (INIS)

    Sartori, Renzo; Mainardi, R.T.

    1987-01-01

    The main purpose of this work is to evaluate the influence of the experimental set up on the shape of the Compton line. In any scattering experiment, the scattering angle is not well defined due to the collimators aperture and thus, a distribution of angles is found for each set up. This, in turn, produces the energies' distribution of the scattered photons around a mean value. This contribution has been evaluated and found it to be significant for several cases. In order to do this evaluation, a response function, that is numerically generated for each experimental set up and convoluted with the Compton profile, was defined. (Author) [es

  9. High-repetition intra-cavity source of Compton radiation

    International Nuclear Information System (INIS)

    Pogorelsky, I; Polyanskiy, M; Agustsson, R; Campese, T; Murokh, A; Ovodenko, A; Shaftan, T

    2014-01-01

    We report our progress in developing a high-power Compton source for a diversity of applications ranging from university-scale compact x-ray light sources and metrology tools for EUV lithography, to high-brilliance gamma-sources for nuclear analysis. Our conceptual approach lies in multiplying the source’s repetition rate and increasing its average brightness by placing the Compton interaction point inside the optical cavity of an active laser. We discuss considerations in its design, our simulations, and tests of the laser’s cavity that confirm the feasibility of the proposed concept. (paper)

  10. Final-photon angular distributions in Compton double-ionization

    International Nuclear Information System (INIS)

    Kornberg, M.A.

    1999-01-01

    Angular distributions of the scattered-photon in two-electron ionization of helium by Compton scattering are reported. Our calculations are performed as a direct integration over Compton profiles. We show that backward scattering is adequately described using an uncorrelated final-state approximation, as compared with impulse approximation (IA) results. The relation dσ c 2+ /dΩ = R c dσ c + /dΩ is fulfilled within IA at high-photon energies, with R c the asymptotic shake-off ratio. (orig.)

  11. Reconstructed Image Spatial Resolution of Multiple Coincidences Compton Imager

    Science.gov (United States)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2010-02-01

    We study the multiple coincidences Compton imager (MCCI) which is based on a simultaneous acquisition of several photons emitted in cascade from a single nuclear decay. Theoretically, this technique should provide a major improvement in localization of a single radioactive source as compared to a standard Compton camera. In this work, we investigated the performance and limitations of MCCI using Monte Carlo computer simulations. Spatial resolutions of the reconstructed point source have been studied as a function of the MCCI parameters, including geometrical dimensions and detector characteristics such as materials, energy and spatial resolutions.

  12. Experimental and theoretical Compton profiles of Be, C and Al

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Julio C., E-mail: jaguiar@arn.gob.a [Autoridad Regulatoria Nuclear, Av. Del Libertador 8250, C1429BNP, Buenos Aires (Argentina); Instituto de Fisica ' Arroyo Seco' , Facultad de Ciencias Exactas, U.N.C.P.B.A., Pinto 399, 7000 Tandil (Argentina); Di Rocco, Hector O. [Instituto de Fisica ' Arroyo Seco' , Facultad de Ciencias Exactas, U.N.C.P.B.A., Pinto 399, 7000 Tandil (Argentina); Arazi, Andres [Laboratorio TANDAR, Comision Nacional de Energia Atomica, Av. General Paz 1499, 1650 San Martin, Buenos Aires (Argentina)

    2011-02-01

    The results of Compton profile measurements, Fermi momentum determinations, and theoretical values obtained from a linear combination of Slater-type orbital (STO) for core electrons in beryllium; carbon and aluminium are presented. In addition, a Thomas-Fermi model is used to estimate the contribution of valence electrons to the Compton profile. Measurements were performed using monoenergetic photons of 59.54 keV provided by a low-intensity Am-241 {gamma}-ray source. Scattered photons were detected at 90{sup o} from the beam direction using a p-type coaxial high-purity germanium detector (HPGe). The experimental results are in good agreement with theoretical calculations.

  13. The scanning Compton polarimeter for the SLD experiment

    International Nuclear Information System (INIS)

    Woods, M.

    1996-10-01

    For the 1994/95 run of the SLD experiment at SLAC, a Compton polarimeter measured the luminosity-weighted electron beam polarization to be (77.2 ± 0.5)%. This excellent accuracy is achieved by measuring the rate asymmetry of Compton-scattered electrons near the kinematic endpoint. The polarimeter takes data continuously while the electron and positron beams are in collision and achieves a statistical precision of better than 1% in a three minute run. To calibrate the polarimeter and demonstrate its accuracy, many scans are frequently done. These include scans of the laser polarization, the detector position with respect to the kinematic edge, and the laser power

  14. A compact X-ray source based on Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bulyak, E.; Gladkikh, P.; Grigor' ev, Yu.; Guk, I.; Karnaukhov, I.; Khodyachikh, A.; Kononenko, S.; Mocheshnikov, N.; Mytsykov, A.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Tarasenko, A.; Telegin, Yu.; Zelinsky, A

    2001-07-21

    The main parameters of Kharkov electron storage ring N-100 with a beam energy range from 70 to 150 MeV are presented. The main results that were obtained in experimental researches are briefly described. The future of the N-100 upgrade to the development of the X-ray generator based on Compton back-scattering are presented. The electron beam energy range will be extended up to 250 MeV and the circumference of the storage ring will be 13.72 m. The lattice, parameters of the electron beam and the Compton back-scattering photons flux are described.

  15. Beam dynamics simulation in the X-ray Compton source

    Energy Technology Data Exchange (ETDEWEB)

    Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A

    2002-05-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.

  16. Beam dynamics simulation in the X-ray Compton source

    International Nuclear Information System (INIS)

    Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.

    2002-01-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center

  17. A compact X-ray source based on Compton scattering

    International Nuclear Information System (INIS)

    Bulyak, E.; Gladkikh, P.; Grigor'ev, Yu.; Guk, I.; Karnaukhov, I.; Khodyachikh, A.; Kononenko, S.; Mocheshnikov, N.; Mytsykov, A.; Shcherbakov, A.; Tarasenko, A.; Telegin, Yu.; Zelinsky, A.

    2001-01-01

    The main parameters of Kharkov electron storage ring N-100 with a beam energy range from 70 to 150 MeV are presented. The main results that were obtained in experimental researches are briefly described. The future of the N-100 upgrade to the development of the X-ray generator based on Compton back-scattering are presented. The electron beam energy range will be extended up to 250 MeV and the circumference of the storage ring will be 13.72 m. The lattice, parameters of the electron beam and the Compton back-scattering photons flux are described

  18. Beam dynamics simulation in the X-ray Compton source

    CERN Document Server

    Gladkikh, P; Telegin, Yu P; Shcherbakov, A; Zelinsky, A

    2002-01-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.

  19. Analysis of materials in ducts by Compton scattering

    International Nuclear Information System (INIS)

    Gouveia, M.A.G.; Lopes, R.T.; Jesus, E.F.O. de; Camerini, C.S.

    2000-01-01

    This work presents the use of the Compton Scattering Technique as essay, for materials characterization in petroleum ducts. The essay have been accomplished in laboratory ambit, so that the presented results should be analyzed so that the system can come to be used in the field. The inspection was performed using Compton Scattering techniques, with two detectors aligned, in an angle of 90 degrees with a source of Cs-137 with energy of 662 keV. The results demonstrated the good capacity of the system to detect materials deposited in petroleum ducts during petroleum transportation. (author)

  20. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    International Nuclear Information System (INIS)

    Burns, T.D. Jr.

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 x 10 8 n/cm 2 · s. The fast neutron and gamma radiation KERMA factors are 10 x 10 -11 cGy·cm 2 /n epi and 20 x 10 -11 cGy·cm 2 /n epi , respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power

  1. Study of Compton broadening due to electron-photon scattering

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao M.

    2010-01-01

    Full Text Available We have investigated the effects of Compton broadening due to electron-photon scattering in hot stellar atmospheres. A purely electron-photon scattering media is assumed to have plane parallel geometry with an input radia­tion field localized on one side of the slab. The method is based on the discrete space theory of radiative transfer for the intensity of emitted radiation. The solution is developed to study the importance of scattering of radiation by free electrons in high temperature stellar atmospheres which produces a brodening and shift in spectral lines because of the Compton effect and the Doppler effect arising from mass and thermal motions of scattering electrons. It is noticed that the Comptonized spectrum depends on three parameters: the optical depth of the medium, the temperature of the thermal electrons and the viewing angle. We also showed that the Compton effect produces red shift and asymmetry in the line. These two effects increase as the optical depth increases. It is also noticed that the emergent specific intensities become completely asymmetric for higher optical depths.

  2. Study of Compton Broadening Due to Electron-Photon Scattering

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao, M.

    2010-06-01

    Full Text Available We have investigated the effects of Compton broadening due to electron-photon scattering in hot stellar atmospheres. A purely electron-photon scattering media is assumed to have plane parallel geometry with an input radiation field localized on one side of the slab. The method is based on the discrete space theory of radiative transfer for the intensity of emitted radiation.The solution is developed to study the importance of scattering of radiation by free electrons in high temperature stellar atmospheres which produces a brodening and shift in spectral lines because of the Compton effect and the Doppler effect arising from mass and thermal motions of scattering electrons.It is noticed that the Comptonized spectrum depends on three parameters: the optical depth of the medium, the temperature of the thermal electrons and the viewing angle.We also showed that the Compton effect produces red shift and asymmetry in the line. These two effects increase as the optical depth increases. It is also noticed that the emergent specific intensities become completely asymmetric for higher optical depths.

  3. Comprehensive study of observables in Compton scattering on the nucleon

    Science.gov (United States)

    Grießhammer, Harald W.; McGovern, Judith A.; Phillips, Daniel R.

    2018-03-01

    We present an analysis of 13 observables in Compton scattering on the proton. Cross sections, asymmetries with polarised beam and/or targets, and polarisation-transfer observables are investigated for energies up to the Δ(1232) resonance to determine their sensitivity to the proton's dipole scalar and spin polarisabilities. The Chiral Effective Field Theory Compton amplitude we use is complete at N4LO, O(e2δ4), for photon energies ω˜ m_{π}, and so has an accuracy of a few per cent there. At photon energies in the resonance region, it is complete at NLO, O(e2δ0), and so its accuracy there is about 20%. We find that for energies from pion-production threshold to about 250 MeV, multiple asymmetries have significant sensitivity to presently ill-determined combinations of proton spin polarisabilities. We also argue that the broad outcomes of this analysis will be replicated in complementary theoretical approaches, e.g., dispersion relations. Finally, we show that below the pion-production threshold, 6 observables suffice to reconstruct the Compton amplitude, and above it 11 are required. Although not necessary for polarisability extractions, this opens the possibility to perform "complete" Compton-scattering experiments. An interactive Mathematica notebook, including results for the neutron, is available from judith.mcgovern@manchester.ac.uk.

  4. A Compton Imaging Prototype for Range Verification in Particle Therapy

    International Nuclear Information System (INIS)

    Golnik, C.; Hueso Gonzalez, F.; Kormoll, T.; Pausch, G.; Rohling, H.; Fiedler, F.; Heidel, K.; Schoene, S.; Sobiella, M.; Wagner, A.; Enghardt, W.

    2013-06-01

    During the 2012 AAPM Annual Meeting 33 percent of the delegates considered the range uncertainty in proton therapy as the main obstacle of becoming a mainstream treatment modality. Utilizing prompt gamma emission, a side product of particle tissue interaction, opens the possibility of in-beam dose verification, due to the direct correlation between prompt gamma emission and particle dose deposition. Compton imaging has proven to be a technique to measure three dimensional gamma emission profiles and opens the possibility of adaptive dose monitoring and treatment correction. We successfully built a Compton Imaging prototype, characterized the detectors and showed the imaging capability of the complete device. The major advantage of CZT detectors is the high energy resolution and the high spatial resolution, which are key parameters for Compton Imaging. However, our measurements at the proton beam accelerator facility KVI in Groningen (Netherlands) disclosed a spectrum of prompt gamma rays under proton irradiation up to 4.4 MeV. As CZT detectors of 5 mm thickness do not efficiently absorb photons in such energy ranges, another absorption, based on a Siemens LSO block detector is added behind CZT1. This setup provides a higher absorption probability of high energy photons. With a size of 5.2 cm x 5.2 cm x 2.0 cm, this scintillation detector further increases the angular acceptance of Compton scattered photons due to geometric size. (authors)

  5. Infrared phenomena in quantum electrodynamics : II. Bremsstrahlung and compton scattering

    NARCIS (Netherlands)

    Haeringen, W. van

    The infrared aspects of quantum electrodynamics are discussed by treating two examples of scattering processes, bremsstrahlung and Compton scattering. As in the previous paper one uses a non-covariant diagram technique which gives very clear insight in the cancelling of infrared divergences between

  6. On a low intensity 241 Am Compton spectrometer for measurement ...

    Indian Academy of Sciences (India)

    In this paper, a new design and construction of a low intensity (100 mCi) 241Am -ray Compton spectrometer is presented. The planar spectrometer is based on a small disc source with the shortest geometry. Measurement of the momentum density of polycrystalline Al is used to evaluate the performance of the new design.

  7. Electronic properties and Compton profiles of silver iodide

    Indian Academy of Sciences (India)

    We have carried out an extensive study of electronic properties of silver iodide in - and -phases. The theoretical Compton profiles, energy bands, density of states and anisotropies in momentum densities are computed using density functional theories. We have also employed full-potential linearized augmented ...

  8. X-ray generator based on Compton scattering

    NARCIS (Netherlands)

    Androsov, V.P.; Agafonov, A.V.; Botman, J.I.M.; Bulyak, E.V.; Drebot, I.; Gladkikh, P.I.; Grevtsev, V.; Ivashchenko, V.; Karnaukhov, I.M.; Lapshin, V.I.

    2005-01-01

    Nowadays, the sources of the X-rays based on a storage ring with low beam energy and Compton scattering of intense laser beam are under development in several laboratories. In the paper the state-of-art in development and construction of cooperative project of a Kharkov advanced X-ray source NESTOR

  9. Einstein-Ehrenfest's radiation theory and Compton-Debye's kinetics

    International Nuclear Information System (INIS)

    Barranco, A.V.; Franca, H.M.

    1990-01-01

    Einstein and Ehrenfest's radiation theory is modified in order to introduce the efeects of random zero-point fields, characteristics of classical stochastic electrodynamics. As a result, the Compton and Debye's kinematic relations are obtained within the realm of a completely undulatory theory, that is, without having to consider the corpuscular character of the photon. (A.C.A.S.) [pt

  10. A New Comptonization Model for Weakly Magnetized Accreting NS LMXBs

    Science.gov (United States)

    Paizis, A.; Farinelli, R.; Titarchuk, L.; Frontera, F.; Cocchi, M.; Ferrigno, C.

    2009-05-01

    We have developed a new Comptonization model to propose, for the first time, a self consistent physical interpretation of the complex spectral evolution seen in NS LMXBs. The model and its application to LMXBs are presented and compared to the Simbol-X expected capabilities.

  11. Attenuation studies near K-absorption edges using Compton ...

    Indian Academy of Sciences (India)

    The results are consistent with theoretical values derived from the XCOM package. Keywords. Photon interaction; 241Am; gamma ray attenuation; Compton scattering; absorption edge; rare earth elements. PACS Nos 32.80.-t; 32.90.+a. 1. Introduction. Photon interaction studies at energies around the absorption edge have ...

  12. Strong anisotropy in the low temperature Compton profiles of ...

    Indian Academy of Sciences (India)

    Compton profiles of momentum distribution of conduction electrons in the orthorhombic phase of -Ga metal at low temperature are calculated in the band model for the three crystallographic directions (100), (010), and (001). Unlike the results at room temperature, previously reported by Lengeler, Lasser and Mair, the ...

  13. Accurate Compton scattering measurements for N{sub 2} molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kohjiro [Advanced Technology Research Center, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Itou, Masayoshi; Tsuji, Naruki; Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hosoya, Tetsuo; Sakurai, Hiroshi, E-mail: sakuraih@gunma-u.ac.jp [Department of Production Science and Technology, Gunma University, 29-1 Hon-cho, Ota, Gunma 373-0057 (Japan)

    2011-06-14

    The accurate Compton profiles of N{sub 2} gas were measured using 121.7 keV synchrotron x-rays. The present accurate measurement proves the better agreement of the CI (configuration interaction) calculation than the Hartree-Fock calculation and suggests the importance of multi-excitation in the CI calculations for the accuracy of wavefunctions in ground states.

  14. Conceptual design of 30 MeV magnet system used for BNCT epithermal neutron source

    International Nuclear Information System (INIS)

    Slamet Santosa; Taufik

    2015-01-01

    Conceptual design of 30 MeV Magnet System Used for BNCT Epithermal Neutron Source has been done based on methods of empirical model of basic equation, experiences of 13 MeV cyclotron magnet design and personal communications. In the field of health, cyclotron can be used as an epithermal neutron source for Boron Neutron Capture Therapy (BNCT). The development of cyclotron producing epithermal neutrons for BNCT has been performed at Kyoto University, of which it produces a proton beam current of 1.1 mA with energy of 30 MeV. With some experiences on 13 MeV cyclotron magnet design, to support BNCT research and development we performed the design studies of 30 MeV cyclotron magnet system, which is one of the main components of the cyclotron for deflecting proton beam into circular trajectory and serves as beam focusing. Results of this study are expected to define the parameters of particular cyclotron magnet. The scope of this study includes the study of the parameters component of the 30 MeV cyclotron and magnet initial parameters. The empirical method of basic equation model is then corroborated by a simulation using Superfish software. Based on the results, a 30 MeV cyclotron magnet for BNCT neutron source enables to be realized with the parameters of B 0 = 1.06 T, frequency RF = 64.733938 ≈ 65 MHz, the external radius of 0.73 m, the radius of the polar = 0.85 m, BH = 1.95 T and a gap hill of 4 cm. Because proton beam current that be needed for BNCT application is very large, then in the calculation it is chosen a great focusing axial νz = 0.630361 which can generate B V = 0.44 T. (author)

  15. Dose planning with comparison to in vivo dosimetry for epithermal neutron irradiation of the dog brain

    International Nuclear Information System (INIS)

    Seppaelae, Tiina; Auterinen, Iiro; Aschan, Carita; Seren, Tom; Benczik, Judit; Snellman, Marjatta; Huiskamp, Rene; Ramadan, Usama Abo; Kankaanranta, Leena; Joensuu, Heikki; Savolainen, Sauli

    2002-01-01

    Boron neutron capture therapy (BNCT) is an experimental type of radiotherapy, presently being used to treat glioblastoma and melanoma. To improve patient safety and to determine the radiobiological characteristics of the epithermal neutron beam of Finnish BNCT facility (FiR 1) dose-response studies were carried on the brain of dogs before starting the clinical trials. A dose planning procedure was developed and uncertainties of the epithermal neutron-induced doses were estimated. The accuracy of the method of computing physical doses was assessed by comparing with in vivo dosimetry. Individual radiation dose plans were computed using magnetic resonance images of the heads of 15 Beagle dogs and the computational model of the FiR 1 epithermal neutron beam. For in vivo dosimetry, the thermal neutron fluences were measured using Mn activation foils and the gamma-ray doses with MCP-7s type thermoluminescent detectors placed both on the skin surface of the head and in the oral cavity. The degree of uncertainty of the reference doses at the thermal neutron maximum was estimated using a dose-planning program. The estimated uncertainty (±1 standard deviation) in the total physical reference dose was ±8.9%. The calculated and the measured dose values agreed within the uncertainties at the point of beam entry. The conclusion is that the dose delivery to the tissue can be verified in a practical and reliable fashion by placing an activation dosimeter and a TL detector at the beam entry point on the skin surface with homogeneous tissues below. However, the point doses cannot be calculated correctly in the inhomogeneous area near air cavities of the head model with this type of dose-planning program. This calls for attention in dose planning in human clinical trials in the corresponding areas

  16. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    Energy Technology Data Exchange (ETDEWEB)

    Gozani, Tsahi, E-mail: tgmaven@gmail.com [1050 Harriet St., Palo Alto, CA 94301 (United States); King, Michael J. [Rapiscan Laboratories Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States)

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time (“E–T” correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple “one-group” models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E–T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  17. Epithermal neutron beam for BNCT research at the Washington State University TRIGA research reactor

    International Nuclear Information System (INIS)

    Nigg, D.W.; Venhuizen, J.R.; Wheeler, F.J.; Wemple, C.A.; Tripard, G.E.; Gavin, P.R.

    2000-01-01

    A new epithermal-neutron beam facility for BNCT (Boron Neutron Capture Therapy) research and boronated agent screening in animal models is in the final stages of construction at Washington State University (WSU). A key distinguishing feature of the design is the incorporation of a new, high-efficiency, neutron moderating and filtering material, Fluental, developed by the Technical Research Centre of Finland. An additional key feature is the provision for adjustable filter-moderator thickness to systematically explore the radiobiological consequences of increasing the fast-neutron contamination above the nominal value associated with the baseline system. (author)

  18. The determination of self-powered neutron detector sensitivity on thermal and epithermal neutron flux densities

    International Nuclear Information System (INIS)

    Erben, O.

    1980-01-01

    The coefficients of thermal and epithermal neutron flux density depression and self-shielding for the SPN detectors with vanadium, rhodium, silver and cobalt emitters are presented, (for cobalt SPN detectors the functions describing the absorbtion of neutrons along the emitter cross-section are also shown). Using these coefficients and previously published beta particle escape efficiencies, sensitivities are determined for the principal types of detectors produced by Les Cables de Lyon and SODERN companies. The experiments and their results verifying the validity of the theoretical work are described. (author)

  19. Characterization of the γ background in epithermal neutron scattering measurements at pulsed neutron sources

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Tardocchi, M.; Schooneveld, E.M.; Senesi, R.

    2006-01-01

    This paper reports the characterization of the different components of the γ background in epithermal neutron scattering experiments at pulsed neutron sources. The measurements were performed on the VESUVIO spectrometer at ISIS spallation neutron source. These measurements, carried out with a high purity germanium detector, aim to provide detailed information for the investigation of the effect of the γ energy discrimination on the signal-to-background ratio. It is shown that the γ background is produced by different sources that can be identified with their relative time structure and relative weight

  20. Evidence for rapid epithermal mineralization and coeval bimodal volcanism, Bruner Au-Ag property, NV USA

    Science.gov (United States)

    Baldwin, Dylan

    The character of Au-Ag mineralization and volcanic/hydrothermal relationships at the underexplored Miocene-age Bruner low-sulfidation epithermal Au-Ag deposit are elucidated using field and laboratory studies. Bruner is located in central Nevada within the Great Basin extensional province, near several major volcanic trends (Western Andesite, Northern Nevada Rift) associated with world-class Miocene-age epithermal Au-Ag provinces. Despite its proximity to several >1 Moz Au deposits, and newly discovered high-grade drill intercepts (to 117 ppm Au/1.5m), there is no published research on the deposit, the style of mineralization has not been systematically characterized, and vectors to mineralization remain elusive. By investigating the nature of mineralization and time-space relationships between volcanic/hydrothermal activity, the deposit has been integrated into a regional framework, and exploration targeting improved. Mineralization occurs within narrow quartz + adularia +/- pyrite veins that manifest as sheeted/stockwork zones, vein swarms, and rare 0.3-2 m wide veins hosted by two generations of Miocene high-K, high-silica rhyolite flow dome complexes overlying an andesite flow unit. The most prominent structural controls on veining are N­striking faults and syn-mineral basalt/rhyolite dikes. Productive veins have robust boiling indicators (high adularia content, bladed quartz after calcite, recrystallized colloform quartz bands), lack rhythmic banding, and contain only 1-2 stages; these veins overprint, or occur separately from another population of barren to weakly mineralized rhythmically banded quartz-only veins. Ore minerals consist of coarse Au0.5Ag 0.5 electrum, fine Au0.7Ag0.3 electrum, acanthite, uytenbogaardtite (Ag3AuS2) and minor embolite Ag(Br,Cl). Now deeply oxidized, veins typically contain Bruner appears to belong to a small subset of mid-Miocene epithermal deposits in Nevada with low base metal contents and low to no Se, related to calc

  1. Metrology and quality of radiation therapy dosimetry of electron, photon and epithermal neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kosunen, A

    1999-08-01

    In radiation therapy using electron and photon beams the dosimetry chain consists of several sequential phases starting by the realisation of the dose quantity in the Primary Standard Dosimetry Laboratory and ending to the calculation of the dose to a patient. A similar procedure can be described for the dosimetry of epithermal neutron beams in boron neutron capture therapy (BNCT). To achieve the required accuracy of the dose delivered to a patient the quality of all steps in the dosimetry procedure has to be considered. This work is focused on two items in the dosimetry chains: the determination of the dose in the reference conditions and the evaluation of the accuracy of dose calculation methods. The issues investigated and discussed in detail are: a)the calibration methods of plane parallel ionisation chambers used in electron beam dosimetry, (b) the specification of the critical dosimetric parameter i.e. the ratio of stopping powers for water to air, (S I ?){sup water} {sub air}, in photon beams, (c) the feasibility of the twin ionization chamber technique for dosimetry in epithermal neutron beams applied to BNCT and (d) the determination accuracy of the calculated dose distributions in phantoms in electron, photon, and epithermal neutron beams. The results demonstrate that up to a 3% improvement in the consistency of dose determinations in electron beams is achieved by the calibration of plane parallel ionisation chambers in high energy electron beams instead of calibrations in {sup 60}Co gamma beams. In photon beam dosimetry (S I ?){sup water} {sub air} can be determined with an accuracy of 0.2% using the percentage dose at the 10 cm depth, %dd(10), as a beam specifier. The use of %odd(10) requires the elimination of the electron contamination in the photon beam. By a twin ionisation chamber technique the gamma dose can be determined with uncertainty of 6% (1 standard deviation) and the total neutron dose with an uncertainty of 15 to 20% (1 standard deviation

  2. Metrology and quality of radiation therapy dosimetry of electron, photon and epithermal neutron beams

    International Nuclear Information System (INIS)

    Kosunen, A.

    1999-08-01

    In radiation therapy using electron and photon beams the dosimetry chain consists of several sequential phases starting by the realisation of the dose quantity in the Primary Standard Dosimetry Laboratory and ending to the calculation of the dose to a patient. A similar procedure can be described for the dosimetry of epithermal neutron beams in boron neutron capture therapy (BNCT). To achieve the required accuracy of the dose delivered to a patient the quality of all steps in the dosimetry procedure has to be considered. This work is focused on two items in the dosimetry chains: the determination of the dose in the reference conditions and the evaluation of the accuracy of dose calculation methods. The issues investigated and discussed in detail are: a)the calibration methods of plane parallel ionisation chambers used in electron beam dosimetry, (b) the specification of the critical dosimetric parameter i.e. the ratio of stopping powers for water to air, (S I ?) water air , in photon beams, (c) the feasibility of the twin ionization chamber technique for dosimetry in epithermal neutron beams applied to BNCT and (d) the determination accuracy of the calculated dose distributions in phantoms in electron, photon, and epithermal neutron beams. The results demonstrate that up to a 3% improvement in the consistency of dose determinations in electron beams is achieved by the calibration of plane parallel ionisation chambers in high energy electron beams instead of calibrations in 60 Co gamma beams. In photon beam dosimetry (S I ?) water air can be determined with an accuracy of 0.2% using the percentage dose at the 10 cm depth, %dd(10), as a beam specifier. The use of %odd(10) requires the elimination of the electron contamination in the photon beam. By a twin ionisation chamber technique the gamma dose can be determined with uncertainty of 6% (1 standard deviation) and the total neutron dose with an uncertainty of 15 to 20% (1 standard deviation). To improve the accuracy

  3. Epithermal neutron flux distribution and its impact on (n, γ) activation analysis result

    International Nuclear Information System (INIS)

    Jovanovich, S.; Pukotich, P.; Zejnilovich, R.; Corte, F. de; Moens, L.; Hoste, J.; Simonitis, A.

    1985-01-01

    The differences are discussed between the simplified model, introduced to derive the generally accepted ideal 1/E - law, and the conditions existing in an actual reactor. For absolute and comparator types of (n, γ) activation analysis (NAA), the semiempirical 1/Esup(1+α) form is a better approximation - necessary to introduce, but sufficient for practical purposes. Parameter α, being a measure of the epithermal nonideality, is a characteristics of the reactor site. The impact of this nonideality on NAA result is outlined, together with the method for appropriate correction

  4. Determination of selenium in Ni + Co concentrates applying epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Capote Rodriguez, G.; Perez Sayaz, G.; Hernandez Rivero, A.; Moreno Bermudez, J.; Ribeiro Guevara, S.; Arribere, M.A.; Molina Insfran, J.

    1996-01-01

    Concentration of Se in Ni + Co concentrates obtained in nickel industry has to be determined as that is a quality control requirement for its commercialization. At present, analysis of Se, specially at a minor and trace levels is relatively complicated and destructive procedures are frequently required. In this work determination of Se by epithermal neutron activation analysis (ENAA) in 17 samples of nickel industry was investigated. Application of ENAA allowed nondestructive determination of Se concentration down to ppm level in spite of presence of high Co, Fe, Ni, and Cr contents in the samples

  5. Fission reactor based epithermal neutron irradiation facilities for routine clinical application in BNCT-Hatanaka memorial lecture

    International Nuclear Information System (INIS)

    Harling, Otto K.

    2009-01-01

    Based on experience gained in the recent clinical studies at MIT/Harvard, the desirable characteristics of epithermal neutron irradiation facilities for eventual routine clinical BNCT are suggested. A discussion of two approaches to using fission reactors for epithermal neutron BNCT is provided. This is followed by specific suggestions for the performance and features needed for high throughput clinical BNCT. An example of a current state-of-the-art, reactor based facility, suited for routine clinical use is discussed. Some comments are provided on the current status of reactor versus accelerator based epithermal neutron sources for BNCT. This paper concludes with a summary and a few personal observations on BNCT by the author.

  6. Determination of 30 elements in coal and fly ash by thermal and epithermal neutron-activation analysis

    International Nuclear Information System (INIS)

    Rowe, J.J.; Steinnes, E.

    1977-01-01

    Thirty elements are determined in coal and fly ash by instrumental neutron-activation analysis using both thermal and epithermal irradiation. Gamma-ray spectra were recorded 7 and 20 days after the irradiations. The procedure is applicable to the routine analysis of coals and fly ash. Epithermal irradiation was found preferable for the determination of Ni, Zn, As, Se, Br, Rb, Sr, Mo, Sb, Cs, Ba, Sm, Tb, Hf, Ta, W, Th and U, whereas thermal irradiation was best for Sc, Cr, Fe, Co, La, Ce, Nd, Eu, Yb and Lu. Results for SRM 1632 (coal) and SRM 1633 (fly ash) agree with those of other investigators. (author)

  7. Qualitative dose response of the normal canine head to epithermal neutron irradiation with and without boron capture

    International Nuclear Information System (INIS)

    DeHaan, C.E.; Gavin, P.R.; Kraft, S.L.; Wheeler, F.J.; Atkinson, C.A.

    1992-01-01

    Boron Neutron Capture Therapy is being re-evaluated for the treatment of intracranial tumors. Prior to human clinical trials, determination of normal tissue tolerance is critical. Dogs were chosen as a large animal model for the following reasons. Dogs can be evaluated with advanced imaging, diagnostic and therapeutic modalities. Dogs are amenable to detailed neurologic examination and subtle behavioral changes are easily detected. Specifically, Labrador retrievers were chosen for their large body and head size. The dogs received varying doses of epithermal neutron irradiation and boron neutron capture irradiation using an epithermal neutron source. The dogs were closely monitored for up to one year post irradiation

  8. Epithermal neutron flux characterization of the TRIGA Mark III reactor, Salazar, Mexico, for use in Internal Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Diaz Rizo, O.; Herrera Peraza, E.

    1996-01-01

    The non ideality of the epithermal neutron flux distribution at a reactor site parameter (made, using Chloramine-T method. Radiochemical purity and stability of the labelled product were determined by radiochromatography. The labelled Melagenine-II showed two radioactive fractions thermal-to-epithermal neutron ratio (f) were determined in the 3 typical irradiations positions of the TRIGA Mark III reactor of the National Nuclear Research Institute, Salazar, Mexico, using the Cd-ratio for multi monitor and bare bi-isotopic monitor methods respectively. This characterization is of use in the K o - method of neutron activation analysis, recently introduced at the Institute

  9. Suppressed Belief

    Directory of Open Access Journals (Sweden)

    Komarine Romdenh-Romluc

    2009-12-01

    Full Text Available Moran’s revised conception of conscious belief requires us to reconceptualise suppressed belief. The work of Merleau-Ponty offers a way to do this. His account of motor-skills allows us to understand suppressed beliefs as pre-reflective ways of dealing with the world.

  10. Concept and realization of the A4 Compton backscattering polarimeter at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Han

    2008-12-15

    The main concern of the A4 parity violation experiment at the Mainzer Microtron accelerator facility is to study the electric and magnetic contributions of strange quarks to the charge and magnetism of the nucleons at the low momentum transfer region. More precisely, the A4 collaboration investigates the strange quarks' contribution to the electric and magnetic vector form factors of the nucleons. Thus, it is important that the A4 experiment uses an adequate and precise non-destructive online monitoring tool for the electron beam polarization when measuring single spin asymmetries in elastic scattering of polarized electrons from unpolarized nucleons. As a consequence, the A4 Compton backscattering polarimeter was designed and installed such that we can take the absolute measurement of the electron beam polarization without interruption to the parity violation experiment. The present study shows the development of an electron beam line that is called the chicane for the A4 Compton backscattering polarimeter. The chicane is an electron beam transport line and provides an interaction region where the electron beam and the laser beam overlap. After studying the properties of beam line components carefully, we developed an electron beam control system that makes a beam overlap between the electron beam and the laser beam. Using the system, we can easily achieve the beam overlap in a short time. The electron control system, of which the performance is outstanding, is being used in production beam times. And the study presents the development of a scintillating fiber electron detector that reduces the statistical error in the electron polarization measurement. We totally redesigned the scintillating fiber detector. The data that were taken during a 2008 beam time shows a huge background suppression, approximately 80 percent, while leaving the Compton spectra almost unchanged when a coincidence between the fiber detector and the photon detector is used. Thus, the

  11. Radiobiology studies for the evaluation of epithermal neutron beams used for BNCT

    International Nuclear Information System (INIS)

    Green, S.; Jones, B.; Mill, A.J.

    2006-01-01

    This paper outlines our plans for a study to establish the radiobiological effectiveness of the various mixes of radiation components present in an epithermal neutron beam designed for BNCT and to incorporate these data into clinical protocols for the treatment of malignant glioma. This is a description of work which is funded and just now beginning in Birmingham so no results can be presented. Our project will involve a combination of experimental measurements carried out in Birmingham and in Boston and mathematical modelling carried out in Birmingham. Despite all the extant in-vitro and in-vivo work, there is no widely accepted method to determine biological effect by accounting for variations in beam component mix, dose rate and treatment fractionation for disparate from the various BNCT centres. The objectives of this study are: To develop a cell-based radiobiology protocol to provide essential data on safety and efficacy of beams for Boron Neutron Capture Therapy (BNCT) in advance of clinical trials. To exploit the facilities at Massachusetts Institute of Technology for variable dose-rate epithermal irradiations to validate the above protocol. To develop mathematical models of this radiobiological system that can be used to inform decisions on dose selection, fractionation schedules, BNCT use as supplementary boosts or for re-treatment of recurrent cancers. To provide fundamental data relevant to the understanding of the radiobiology of simultaneous mixed high-and low-LET radiations over a clinically relevant dose-range. (author)

  12. Method and apparatus for dual-spaced fast/epithermal neutron porosity measurements

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.

    1986-01-01

    A method is described for determining the porosity of earth formations in the vicinity of a well borehole, comprising: (a) irradiating the earth formations in the vicinity of the well borehole with a continuous chemical type source of fast neutrons, (b) detecting the fast neutron population at a first shorter spaced distance from the neutron source in the borehole and generating signals representative thereof, (c) detecting the epithermal neutron population at a second space distance from the neutron source in the borehole and generating signals representative thereof, the second spaced distance being greater than the first spaced distance from the neutron source, (d) forming a ratio of the signals representing the fast and epithermal neutron populations to derive a measurement signal functionally related to the porosity of the earth formations in the vicinity of the borehole, and (e) calibrating the measurement signal according to a predetermined functional relationship to derive a porosity signal quantitatively representative of the porosity of the earth formations in the vicinity of the borehole

  13. Observation of distorted Maxwell-Boltzmann distribution of epithermal ions in LHD

    Science.gov (United States)

    Ida, K.; Kobayashi, T.; Yoshinuma, M.; Akiyama, T.; Tokuzawa, T.; Tsuchiya, H.; Itoh, K.; LHD Experiment Group

    2017-12-01

    A distorted Maxwell-Boltzmann distribution of epithermal ions is observed associated with the collapse of energetic ions triggered by the tongue shaped deformation. The tongue shaped deformation is characterized by the plasma displacement localized in the toroidal, poloidal, and radial directions at the non-rational magnetic flux surface in toroidal plasma. Moment analysis of the ion velocity distribution measured with charge exchange spectroscopy is studied in order to investigate the impact of tongue event on ion distribution. A clear non-zero skewness (3rd moment) and kurtosis (4th moment -3) of ion velocity distribution in the epithermal region (within three times of thermal velocity) is observed after the tongue event. This observation indicates the clear evidence of the distortion of ion velocity distribution from Maxwell-Boltzmann distribution. This distortion from Maxwell-Boltzmann distribution is observed in one-third of plasma minor radius region near the plasma edge and disappears in the ion-ion collision time scale.

  14. Reactor beam calculations to determine optimum delivery of epithermal neutrons for treatment of brain tumors

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Nigg, D.W.; Capala, J.

    1997-01-01

    Studies were performed to assess theoretical tumor control probability (TCP) for brain-tumor treatment with boron neutron capture therapy (BNCT) using epithermal neutron sources from reactors. The existing epithermal-neutron beams at the Brookhaven Medical Research Reactor Facility (BMRR), the Petten High Flux Reactor Facility (HWR) and the Finnish Research Reactor 1 (FIR1) have been analyzed and characterized using common analytical and measurement methods allowing for this inter-comparison. Each of these three facilities is unique and each offers an advantage in some aspect of BNCT, but none of these existing facilities excel in all neutron-beam attributes as related to BNCT. A comparison is therefore also shown for a near-optimum reactor beam which does not currently exist but which would be feasible with existing technology. This hypothetical beam is designated BNCT-1 and has a spectrum similar to the FIR-1, the mono-directionality of the HFR and the intensity of the BMRR. A beam very similar to the BNCT-1 could perhaps be achieved with modification of the BMRR, HFR, or FIR, and could certainly be realized in a new facility with today's technology

  15. An in-situ check of the epithermal neutron log calibration

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1993-01-01

    The epithermal neutron log is used to measure the water content of the formation. The large hole epithermal neutron sonde (ENS) utilized at the Nevada Test Site (NTS) has been calibrated in the Hydrogen Content Test Facility (HCTF). These calibrations are used to correct the measured neutron count rate for the effects of tool stand-off and density. For some time, the suspicion has existed that the water contents that are calculated from the ENS data are too large. Hole U2gj represented a unique opportunity to check the validity of the ENS calibration under realistic logging conditions; a portion of the hole had been cemented and redrilled and then logged. The cements have a known water content and can be used as an in-situ calibration check. The author found that the water contents from the log data after processing with the existing calibrations are consistent with these known cement water contents. In addition, the study indicates that the raw neutron data might be more appropriately smoothed by using a median smoother rather than the currently utilized mean smoother

  16. An in-situ check of the epithermal neutron log calibration

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1993-09-01

    The epithermal neutron log is used to measure the water content of the formation. The large hole epithermal neutron sonde (ENS) that we utilize at the Nevada Test Site (NTS) has been calibrated in the Hydrogen Content Test Facility (HCTF). These calibrations are used to correct the measured neutron count rate for the effects of tool stand-off and density. For sometime, the suspicion has existed that the water contents that are calculated from the ENS data are too large. Hole U2gj represented a unique opportunity to check the validity of the ENS calibration under realistic logging conditions; a portion of the hole had been cemented and re drilled and then logged. The cements have a known water content and can be used as an in situ calibration check. I found that the water contents from the log data after processing with the existing calibrations are consistent with these known cement water contents. In addition, the study indicates that the raw neutron data might be more appropriately smoothed by using a median smoother rather than the currently utilized mean smoother

  17. The Chahnaly low sulfidation epithermal gold deposit, western Makran volcanic arc, southeastern Iran

    Science.gov (United States)

    Sholeh, Ali; Rastad, Ebrahim; Huston, David L.; Gemmell, J. Bruce; Taylor, Ryan D.

    2016-01-01

    The Chahnaly low-sulfidation epithermal Au deposit and nearby Au prospects are located northwest of the intermittently active Bazman stratovolcano on the western end of the Makran volcanic arc, which formed as the result of subduction of the remnant Neo-Tethyan oceanic crust beneath the Lut block. The arc hosts the Siah Jangal epithermal and Kharestan porphyry prospects, near Taftan volcano, as well as the Saindak Cu-Au porphyry deposit and world-class Reko Diq Cu-Au porphyry deposit, near Koh-i-Sultan volcano to the east-northeast in Pakistan. The host rocks for the Chahnaly deposit include early Miocene andesite and andesitic volcaniclastic rocks that are intruded by younger dacitic domes. Unaltered late Miocene dacitic ignimbrites overlie these rocks. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb zircon geochronology data yield ages between 21.8 and 9.9 Ma for the acidic-intermediate regional volcanism. The most recent volcanic activity of the Bazman stratovolcano involved extrusion of an olivine basalt during Pliocene to Quaternary times. Interpretation of geochemical data indicate that the volcanic rocks are synsubduction and calc-alkaline to subalkaline. The lack of a significant negative Eu anomaly, a listric-shaped rare earth element pattern, and moderate La/Yb ratios of host suites indicate a high water content of the source magma.

  18. Power Burst Reactor Facility as an epithermal neutron source for brain cancer therapy

    International Nuclear Information System (INIS)

    Wheeler, F.J.

    1986-01-01

    The Power Burst Facility (PBF) reactor is considered for modification to provide an intense, clean source of intermediate-energy (epithermal) neutrons desirable for clinical studies of neutron capture therapy (NCT) for malignant tumors. The modifications include partial replacement of the reflector, installation of a neutron-moderating, shifting region, additional shielding, and penetration of the present concrete shield with a collimating (and optionally) filtering region. The studies have indicated that the reactor, after these modifications, will be safely operable at full power (28 MW) within the acceptable limits of the plant protection systems. The neutron beam exiting from the collimator port is predicted to be of sufficient intensity (approx.10 10 neutrons/cm 2 -s) to provide therapeutic doses in very short irradiation times. The beam would be relatively free of undesirable fast neutrons, thermal neutrons and gamma rays. The calculated neutron energy spectrum and associated gamma rays in the beam were provided as input in simulation studies that used a computer model of a patient with a brain tumor to determine predicted dose rates to the tumor and healthy tissue. The results of this conceptual study indicate an intense, clean beam of epithermal neutrons for NCT clinical trials is attainable in the PBF facility with properly engineered design modifications. 9 refs., 11 figs., 3 tabs

  19. Oxygen isotope zonation at the Golden Cross low-sulfidation epithermal gold deposit, New Zealand

    International Nuclear Information System (INIS)

    Mauk, J.L.; Simpson, M.P.

    2001-01-01

    Forty-one whole rock samples from the Gold Cross low-sulfidation epithermal Au-Ag deposit have δ 18 O values that range from 4.4 to 9.3 per mil, with an average value of 7.0 per mil. Unaltered and weakly altered rocks have δ 18 O values greater than 8 per mil, and the orebody is surrounded by samples that are depleted in 18 O. A strongly silicified sample adjacent to the Empire Vein System has a δ 18 O value of 9.0 per mil, similar to previously reported analyses of vein quartz (7.0 to 11.7 per mil, average 9.4 per mil). This suggests that, in detail, Golden Cross may have a zone of 18 O-enriched wall rocks in the core of the deposit, adjacent to the main underground veins. Although some workers have suggested that stable isotope geochemistry may provide useful information for epithermal mineral deposit exploration, at Golden Cross this is not the case. Alteration minerals, major elements and trace elements all define larger, less ambiguous halos than the zone of 18 O-depleted wall rocks. (author). 21 refs., 3 figs., 1 tab

  20. The Compton-thick Growth of Supermassive Black Holes constrained

    Science.gov (United States)

    Buchner, J.; Georgakakis, A.; Nandra, K.

    2017-10-01

    A heavily obscured growth phase of supermassive black holes (SMBH) is thought to be important in the co-evolution with galaxies. X-rays provide a clean and efficient selection of unobscured and obscured AGN. Recent work with deeper observations and improved analysis methodology allowed us to extend constraints to Compton-thick number densities. We present the first luminosity function of Compton-thick AGN at z=0.5-4 and constrain the overall mass density locked into black holes over cosmic time, a fundamental constraint for cosmological simulations. Recent studies including ours find that the obscuration is redshift and luminosity-dependent in a complex way, which rules out entire sets of obscurer models. A new paradigm, the radiation-lifted torus model, is proposed, in which the obscurer is Eddington-rate dependent and accretion creates and displaces torus clouds. We place observational limits on the behaviour of this mechanism.

  1. Laser Compton Scattering Gamma Ray Induced Photo-Trasmutation

    CERN Document Server

    Li, Dazhi

    2004-01-01

    High brightness beams of gamma rays produced with laser Compton scattering have the potential to realize photo-transmutation through (γ,n) reaction, implying an efficient method to dispose long-lived fission products. Preliminary investigations have been carried out in understanding the feasibility of development of a transmutation facility to repose nuclear waste. A laser Compton scattering experimental setup based on a storage ring started to generate gamma-ray beams for studying the coupling of gamma photons and nuclear giant resonance. This paper demonstrates the dependency of nuclear transmutation efficiency on target dimensions and gamma ray features. 197Au sample was adopted in our experiment, and experimental results correspond to the theoretical estimations.

  2. Deeply virtual compton scattering on a virtual pion target

    International Nuclear Information System (INIS)

    Amrath, D.; Diehl, M.; Lansberg, J.P.; Heidelberg Univ.

    2008-07-01

    We study deeply virtual Compton scattering on a virtual pion that is emitted by a proton. Using a range of models for the generalized parton distributions of the pion, we evaluate the cross section, as well as the beam spin and beam charge asymmetries in the leading-twist approximation. Studying Compton scattering on the pion in suitable kinematics puts high demands on both beam energy and luminosity, and we find that the corresponding requirements will first be met after the energy upgrade at Jefferson Laboratory. As a by-product of our study, we construct a parameterization of pion generalized parton distributions that has a non-trivial interplay between the x and t dependence and is in good agreement with form factor data and lattice calculations. (orig.)

  3. Electronic properties of Be and Al by Compton scattering technique

    International Nuclear Information System (INIS)

    Aguiar, J.C.; Di Rocco, H.O.

    2011-01-01

    In this work, electronic properties of beryllium and aluminum are examined by using Compton scattering technique. The method is based on the irradiation of samples using a beam narrow of mono- energetic photons of 59.54 keV product of radioactive decay of Am -241 . Scattered radiation is collected by a high resolution semiconductor detector positioned at an angle of 90°. The measured spectrum is commonly called Compton profile and contains useful information about the electronic structure of the material. The experimental results are compared with theoretical calculations such as density functional theory showing a good agreement. However, these results show some discrepancies with many libraries used in codes such as Monte Carlo simulation. Since these libraries are based on the values tabulated by Biggs, Mendelsohn and Mann 1975 thus overestimating the scattered radiation on the material. (authors) [es

  4. The Mathematical Foundations of 3D Compton Scatter Emission Imaging

    Directory of Open Access Journals (Sweden)

    T. T. Truong

    2007-01-01

    Full Text Available The mathematical principles of tomographic imaging using detected (unscattered X- or gamma-rays are based on the two-dimensional Radon transform and many of its variants. In this paper, we show that two new generalizations, called conical Radon transforms, are related to three-dimensional imaging processes based on detected Compton scattered radiation. The first class of conical Radon transform has been introduced recently to support imaging principles of collimated detector systems. The second class is new and is closely related to the Compton camera imaging principles and invertible under special conditions. As they are poised to play a major role in future designs of biomedical imaging systems, we present an account of their most important properties which may be relevant for active researchers in the field.

  5. Model independent dispersion approach to proton Compton scattering

    International Nuclear Information System (INIS)

    Caprini, I.; Radescu, E.E.

    1980-12-01

    The proton Compton scattering at low and intermediate energies is studied by means of a dispersion framework which exploits in an optimal way the (fixed momentum transfer) analyticity properties of the amplitudes in conjunction with the consequences of the (s-channel) unitarity. The mathematical background of the work consists of methods specific to boundary value problems for analytic vector-valued functions and interpolation theory. In comparison with previous related work, the external problems to be solved now are much more difficult because of the inclusion of the photoproduction input and also lead to additional computational complications. The lower bounds on the differential cross-section, obtained without any reference to subtractions and annihilation channel contributions, appear sufficiently restrictive to evidentiate rigorously some inconsistencies between results of single pion photoproduction multipole extractions and proton Compton scattering data. (author)

  6. Complete $O(\\alpha)$ QED corrections to polarized Compton scattering

    CERN Document Server

    Denner, Ansgar

    1999-01-01

    The complete QED corrections of O(alpha) to polarized Compton scattering are calculated for finite electron mass and including the real corrections induced by the processes e^- gamma -> e^- gamma gamma and e^- gamma -> e^- e^- e^+. All relevant formulas are listed in a form that is well suited for a direct implementation in computer codes. We present a detailed numerical discussion of the O(alpha)-corrected cross section and the left-right asymmetry in the energy range of present and future Compton polarimeters, which are used to determine the beam polarization of high-energetic e^+- beams. For photons with energies of a few eV and electrons with SLC energies or smaller, the corrections are of the order of a few per mille. In the energy range of future e^+e^- colliders, however, they reach 1-2% and cannot be neglected in a precision polarization measurement.

  7. The Compton-Schwarzschild correspondence from extended de Broglie relations

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Matthew J. [The Institute for Fundamental Study, “The Tah Poe Academia Institute' ,Naresuan University, Phitsanulok 65000 (Thailand); Thailand Center of Excellence in Physics, Ministry of Education,Bangkok 10400 (Thailand); Carr, Bernard [School of Physics and Astronomy, Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom)

    2015-11-17

    The Compton wavelength gives the minimum radius within which the mass of a particle may be localized due to quantum effects, while the Schwarzschild radius gives the maximum radius within which the mass of a black hole may be localized due to classial gravity. In a mass-radius diagram, the two lines intersect near the Planck point (l{sub P},m{sub P}), where quantum gravity effects become significant. Since canonical (non-gravitational) quantum mechanics is based on the concept of wave-particle duality, encapsulated in the de Broglie relations, these relations should break down near (l{sub P},m{sub P}). It is unclear what physical interpretation can be given to quantum particles with energy E≫m{sub P}c{sup 2}, since they correspond to wavelengths λ≪l{sub P} or time periods τ≪t{sub P} in the standard theory. We therefore propose a correction to the standard de Broglie relations, which gives rise to a modified Schrödinger equation and a modified expression for the Compton wavelength, which may be extended into the region E≫m{sub P}c{sup 2}. For the proposed modification, we recover the expression for the Schwarzschild radius for E≫m{sub P}c{sup 2} and the usual Compton formula for E≪m{sub P}c{sup 2}. The sign of the inequality obtained from the uncertainty principle reverses at m≈m{sub P}, so that the Compton wavelength and event horizon size may be interpreted as minimum and maximum radii, respectively. We interpret the additional terms in the modified de Broglie relations as representing the self-gravitation of the wave packet.

  8. Research of synchrotron radiation by virtual photon and compton scattering

    International Nuclear Information System (INIS)

    Meng Xianzhu

    2005-01-01

    This paper presents a new theory to explain the synchrotron radiation. When charged particle does circular motion in the accelerator, the magnetic field of the accelerator can be taken as periodic, and equivalent to virtual photon. By Compton scattering of virtual photon and charged particle, the virtual photon can be transformed into photon to radiate out. According to this theory, the formula of photon wavelength in synchrotron radiation is found out, and the calculation results of wavelength is consonant with experimental data. (author)

  9. Nucleon Compton Scattering with Two Space-Like Photons

    International Nuclear Information System (INIS)

    Andrei Afanasev; I. Akushevich; N.P. Merenkov

    2002-01-01

    We calculate two-photon exchange effects for elastic electron-proton scattering at high momentum transfers. The corresponding nucleon Compton amplitude is defined by two space-like virtual photons that appear to have significant virtualities. We make predictions for (a) a single-spin beam asymmetry, and (b) a single-spin target asymmetry or recoil proton polarization caused by an unpolarized electron beam

  10. Dyson Orbitals, Quasi-Particle effects and Compton scattering

    OpenAIRE

    Barbiellini, B.; Bansil, A.

    2004-01-01

    Dyson orbitals play an important role in understanding quasi-particle effects in the correlated ground state of a many-particle system and are relevant for describing the Compton scattering cross section beyond the frameworks of the impulse approximation (IA) and the independent particle model (IPM). Here we discuss corrections to the Kohn-Sham energies due to quasi-particle effects in terms of Dyson orbitals and obtain a relatively simple local form of the exchange-correlation energy. Illust...

  11. Compton scattering at finite temperature: thermal field dynamics approach

    International Nuclear Information System (INIS)

    Juraev, F.I.

    2006-01-01

    Full text: Compton scattering is a classical problem of quantum electrodynamics and has been studied in its early beginnings. Perturbation theory and Feynman diagram technique enables comprehensive analysis of this problem on the basis of which famous Klein-Nishina formula is obtained [1, 2]. In this work this problem is extended to the case of finite temperature. Finite-temperature effects in Compton scattering is of practical importance for various processes in relativistic thermal plasmas in astrophysics. Recently Compton effect have been explored using closed-time path formalism with temperature corrections estimated [3]. It was found that the thermal cross section can be larger than that for zero-temperature by several orders of magnitude for the high temperature realistic in astrophysics [3]. In our work we use a main tool to account finite-temperature effects, a real-time finite-temperature quantum field theory, so-called thermofield dynamics [4, 5]. Thermofield dynamics is a canonical formalism to explore field-theoretical processes at finite temperature. It consists of two steps, doubling of Fock space and Bogolyubov transformations. Doubling leads to appearing additional degrees of freedom, called tilded operators which together with usual field operators create so-called thermal doublet. Bogolyubov transformations make field operators temperature-dependent. Using this formalism we treat Compton scattering at finite temperature via replacing in transition amplitude zero-temperature propagators by finite-temperature ones. As a result finite-temperature extension of the Klein-Nishina formula is obtained in which differential cross section is represented as a sum of zero-temperature cross section and finite-temperature correction. The obtained result could be useful in quantum electrodynamics of lasers and for relativistic thermal plasma processes in astrophysics where correct account of finite-temperature effects is important. (author)

  12. Detection of detachments and inhomogeneities in frescos by Compton scattering

    International Nuclear Information System (INIS)

    Castellano, A.; Cesareo, R.; Buccolieri, G.; Donativi, M.; Palama, F.; Quarta, S.; De Nunzio, G.; Brunetti, A.; Marabelli, M.; Santamaria, U.

    2005-01-01

    A mobile instrument has been developed for the detection and mapping of detachments in frescos by using Compton back scattered photons. The instrument is mainly composed of a high energy X-ray tube, an X-ray detection system and a translation table. The instrument was first applied to samples simulating various detachment situations, and then transferred to the Vatican Museum to detect detachments and inhomogeneities in the stanza di Eliodoro, one of the 'Raphael's stanze'

  13. Detection of detachments and inhomogeneities in frescos by Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, A. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Cesareo, R. [Istituto di Matematica e Fisica, Universita di Sassari, 07100 Sassari (Italy) and INFN, Sezione di Cagliari, Cittadella Universitaria di Monserrato, 09042 Cagliari (Italy)]. E-mail: cesareo@uniss.it; Buccolieri, G. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Donativi, M. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); Palama, F. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Quarta, S. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); De Nunzio, G. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Brunetti, A. [Istituto di Matematica e Fisica, Universita di Sassari, 07100 Sassari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria di Monserrato, 09042 Cagliari (Italy); Marabelli, M. [Istituto Centrale del Restauro, P.zza S. Francesco di Paola, 00184 Rome (Italy); Santamaria, U. [Laboratori dei Musei Vaticani, Citta del Vaticano, Rome (Italy)

    2005-07-01

    A mobile instrument has been developed for the detection and mapping of detachments in frescos by using Compton back scattered photons. The instrument is mainly composed of a high energy X-ray tube, an X-ray detection system and a translation table. The instrument was first applied to samples simulating various detachment situations, and then transferred to the Vatican Museum to detect detachments and inhomogeneities in the stanza di Eliodoro, one of the 'Raphael's stanze'.

  14. Formal analogy between Compton scattering and Doppler effect

    DEFF Research Database (Denmark)

    Nielsen, A.; Olsen, Jørgen Seir

    1966-01-01

    Viewed from the scatterer, the energy of the incoming photon or particle is equal to that of the outgoing, and the angle of incidence is equal to the angle of reflection, when the direction of the velocity of the scatterer after the collision is taken as reference. This paper sets out to prove...... this statement in a more simple and direct way. The authors only consider the Compton scatting process as it is quite analogous to the particle case....

  15. Deeply virtual Compton scattering: How to test handbag dominance?

    International Nuclear Information System (INIS)

    Gousset, T.; Gousset, T.; Diehl, M.; Pire, B.; Diehl, M.; Ralston, J.P.

    1998-01-01

    We propose detailed tests of the handbag approximation in exclusive deeply virtual Compton scattering. Those tests make no use of any prejudice about parton correlations in the proton which are basically unknown objects and beyond the scope of perturbative QCD. Since important information on the proton substructure can be gained in the regime of light cone dominance we consider that such a class of tests is of special relevance. copyright 1998 American Institute of Physics

  16. Directional Unfolded Source Term (DUST) for Compton Cameras.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean J.; Mitchell, Dean J.; Horne, Steven M.; O' Brien, Sean; Thoreson, Gregory G

    2018-03-01

    A Directional Unfolded Source Term (DUST) algorithm was developed to enable improved spectral analysis capabilities using data collected by Compton cameras. Achieving this objective required modification of the detector response function in the Gamma Detector Response and Analysis Software (GADRAS). Experimental data that were collected in support of this work include measurements of calibration sources at a range of separation distances and cylindrical depleted uranium castings.

  17. Timelike Compton scattering off the neutron and generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Boer, M.; Guidal, M. [CNRS-IN2P3, Universite Paris-Sud, Institut de Physique Nucleaire d' Orsay, Orsay (France); Vanderhaeghen, M. [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2016-02-15

    We study the exclusive photoproduction of an electron-positron pair on a neutron target in the Jefferson Lab energy domain. The reaction consists of two processes: the Bethe-Heitler and the Timelike Compton Scattering. The latter process provides potentially access to the Generalized Parton Distributions (GPDs) of the nucleon. We calculate all the unpolarized, single- and double-spin observables of the reaction and study their sensitivities to GPDs. (orig.)

  18. ILC beam energy measurement by means of laser Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Muchnoi, N. [Budker Inst. for Nuclear Physics, Novosibirsk (Russian Federation); Schreiber, H.J.; Viti, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-10-15

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered {gamma}-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10{sup -4} or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  19. Compton profile with synchrotron light - application to Y-123 superconductivity

    International Nuclear Information System (INIS)

    De, Udayan

    2005-01-01

    Electron beam accelerated to 6 GeV in the European Synchrotron Radiation Facility (ESRF) at Grenoble, France, can deliver highly mono-energetic, intense (10 12 photons/sec at sample at 100 mA ring current) and fine photon beam reaching x-ray and γ energies. So photons of 57 keV from this synchrotron has been used for Compton Profile or CP experiment (at different temperatures down to 70 K) on our YBa 2 Cu 3 O 7 or Y-123 single crystals with T c = 91 K. Photons, Compton scattered even at a definite angle, θ, show a distribution (called Compton Profile) of energy and hence of momentum reflecting the EMD or electron momentum distribution in the solid. The temperature variation of S-parameter, defined as the fraction of low momentum electrons, has been found from preliminary CP data. It confirmed the surprising double minimum found from Doppler broadening of positron annihilation radiation lineshape (DBPARL). The CP set-up at the synchrotron including the detectors and cryogenics as well as the new results are outlined. (author)

  20. Electronic structure of the palladium hydride studied by compton scattering

    CERN Document Server

    Mizusaki, S; Yamaguchi, M; Hiraoka, N; Itou, M; Sakurai, Y

    2003-01-01

    The hydrogen-induced changes in the electronic structure of Pd have been investigated by Compton scattering experiments associated with theoretical calculations. Compton profiles (CPs) of single crystal of Pd and beta phase hydride PdH sub x (x=0.62-0.74) have been measured along the [100], [110] and [111] directions with a momentum resolution of 0.14-0.17 atomic units using 115 keV x-rays. The theoretical Compton profiles have been calculated from the wavefunctions obtained utilizing the full potential linearized augmented plane wave method within the local density approximation for Pd and stoichiometric PdH. The experimental and the theoretical results agreed well with respect to the difference in the CPs between PdH sub x and Pd, and the anisotropy in the CPs of Pd or PdH sub x. This study provides lines of evidence that upon hydride formation the lowest valance band of Pd is largely modified due to hybridization with H 1s-orbitals and the Fermi energy is raised into the sp-band. (author)

  1. ILC beam energy measurement by means of laser Compton backscattering

    International Nuclear Information System (INIS)

    Muchnoi, N.; Schreiber, H.J.; Viti, M.

    2008-10-01

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered γ-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10 -4 or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  2. Laser-electron Compton interaction in plasma channels

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.; Ben-Zvi, I.; Hirose, T.

    1998-10-01

    A concept of high intensity femtosecond laser synchrotron source (LSS) is based on Compton backscattering of focused electron and laser beams. The short Rayleigh length of the focused laser beam limits the length of interaction to a few picoseconds. However, the technology of the high repetition rate high-average power picosecond lasers required for high put through LSS applications is not developed yet. Another problem associated with the picosecond laser pulses is undesirable nonlinear effects occurring when the laser photons are concentrated in a short time interval. To avoid the nonlinear Compton scattering, the laser beam has to be split, and the required hard radiation flux is accumulated over a number of consecutive interactions that complicates the LSS design. In order to relieve the technological constraints and achieve a practically feasible high-power laser synchrotron source, the authors propose to confine the laser-electron interaction region in the extended plasma channel. This approach permits to use nanosecond laser pulses instead of the picosecond pulses. That helps to avoid the nonlinear Compton scattering regime and allows to utilize already existing technology of the high-repetition rate TEA CO 2 lasers operating at the atmospheric pressure. They demonstrate the advantages of the channeled LSS approach by the example of the prospective polarized positron source for Japan Linear Collider

  3. Epithermal neutron beam design for neutron capture therapy at the Power Burst Facility and the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Parsons, D.K.; Rushton, B.L.; Nigg, D.W.

    1990-01-01

    Nuclear design studies have been performed for two reactor-based epithermal neutron beams for cancer treatment by neutron capture therapy (NCT). An intermediate-intensity epithermal beam has been designed and implemented at the Brookhaven Medical Research Reactor (BMRR). Measurements show that the BMRR design predictions for the principal characteristics of this beam are accurate. A canine program for research into the biological effects of NCT is now under way at BMRR. The design for a high-intensity epithermal beam with minimal contamination from undesirable radiation components has been finalized for the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory. This design will be implemented when it is determined that human NCT trials are advisable. The PBF beam will exhibit approximately an order of magnitude improvement in absolute epithermal flux intensity over that available in the BMRR, and its angular distribution and spectral characteristics will be more advantageous for NCT. The combined effects of beam intensity, angular distribution, spectrum, and contaminant level allow the desired tumor radiation dose to be delivered in much shorter times than are possible with the currently available BMRR beam, with a significant reduction (factor of 3 to 5) in collateral dose due to beam contaminants

  4. 8-group relative delayed neutron yields for epithermal neutron induced fission of 235U and 239Pu

    International Nuclear Information System (INIS)

    Piksaikin, V.M.; Kazakov, L.E.; Isaev, S.G.; Korolev, G.G.; Roshchenko, V.A.; Tertychnyj, R.G

    2002-01-01

    An 8-group representation of relative delayed neutron yields was obtained for epithermal neutron induced fission of 235 U and 239 Pu. These data were compared with ENDF/B-VI data in terms of the average half- life of the delayed neutron precursors and on the basis of the dependence of reactivity on the asymptotic period. (author)

  5. Telescoped porphyry-style and epithermal veins and alteration at the central Maratoto valley prospect, Hauraki Goldfield, New Zealand

    International Nuclear Information System (INIS)

    Simpson, M.P.; Mauk, J.L.; Kendrick, R.G.

    2004-01-01

    At the central Maratoto valley prospect, southern Coromandel Peninsula, New Zealand, andesite flows and dacite breccias host rare porphyry-style quartz veins that are telescoped by widespread epithermal veins and alteration. Early porphyry-style quartz veins, which lack selvages of porphyry-style alteration, host hypersaline fluid inclusions that contain several translucent daughter crystals, including halite and sylvite. Overprinting epithermal veins and alteration are divided into two stages. Main-stage epithermal alteration and veins are characterised by the successive deposition of pyrite, quartz, and ankerite-dolomite veinlets coupled with intense alteration of the wall rock to quartz, illite, interlayer illite-smectite (≤ 10% smectite), chlorite, pyrite, ankerite, and dolomite. Late-stage epithermal veins and alteration are characterised by the formation of calcite and siderite veinlets, coupled with overprinting of the wall rocks by both these minerals. Multiphase fluid inclusions in a porphyry-style quartz vein formed at temperatures >400 degrees C and trapped hypersaline magmatic fluid. Lower temperature secondary liquid-rich inclusions in the porphyry-style quartz vein homogenise between 283 and 329 degrees C and trapped a dilute fluid with 18 O (VSMOW) values of 13.5-18.1 permille, whereas late-stage epithermal calcite has δ 18 O (VSMOW) values of 3.1-5.1 permille. Calculated isotopic compositions for the fluid in equilibrium with ankerite-dolomite and calcite at 260 degrees C, averages 6 and -3 permille, respectively. The enriched value for main-stage ankerite-dolomite suggests formation from waters that underwent significant water-rock exchange, whereas isotopically lighter water that formed late-stage calcite underwent little water-rock interaction. We propose a three-stage model to explain telescoped veins and alteration styles at the central Maratoto valley prospect area. Porphyry-style quartz veins were the first to form from hot hypersaline

  6. TIGRESS: TRIUMF-ISAC gamma-ray escape-suppressed spectrometer

    Science.gov (United States)

    Svensson, C. E.; Amaudruz, P.; Andreoiu, C.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Boston, A. J.; Chakrawarthy, R. S.; Chen, A. A.; Churchman, R.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hyland, B.; Jones, B.; Kanungo, R.; Maharaj, R.; Martin, J. P.; Morris, D.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Ressler, J. J.; Roy, R.; Sarazin, F.; Schumaker, M. A.; Scraggs, H. C.; Smith, M. B.; Starinsky, N.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.

    2005-10-01

    The TRIUMF-ISAC gamma-ray escape-suppressed spectrometer (TIGRESS) is a new γ-ray detector array being developed for use at TRIUMF's Isotope Separator and Accelerator (ISAC) radioactive ion beam facility. TIGRESS will comprise 12 32-fold segmented clover-type HPGe detectors coupled with 20-fold segmented modular Compton suppression shields and custom digital signal processing electronics. This paper provides an overview of the TIGRESS project and progress in its development to date.

  7. 'PET -Compton' system. Comparative evaluation with PET system using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Diaz Garcia, Angelina; Arista Romeu, Eduardo; Abreu Alfonso, Yamiel; Leyva Fabelo, Antonio; Pinnera Hernandez, Ibrahin; Bolannos Perez, Lourdes; Rubio Rodriguez, Juan A; Perez Morales, Jose M.; Arce Dubois, Pedro; Vela Morales, Oscar; Willmott Zappacosta, Carlos

    2011-01-01

    Positron Emission Tomography (PET) in small animals has actually achieved spatial resolution round about 1 mm and currently there are under study different approaches to improve this spatial resolution. One of them combines PET technology with Compton Cameras. This paper presents the idea of the so called 'PET-Compton' systems and includes comparative evaluation of spatial resolution and global efficiency in both PET and PET-Compton system by means of Monte Carlo simulations using Geant4 code. Simulation is done on a PET-Compton system consisting of LYSO-LuYAP scintillating detectors of particular small animal PET scanner named 'Clear-PET' and for Compton detectors based on CdZnTe semiconductor. A group of radionuclides that emits a positron (e + ) and γ quantum almost simultaneously and fulfills some selection criteria for their possible use in PET-Compton systems for medical and biological applications were studied under simulation conditions. (Author)

  8. CsI Calorimeter for a Compton-Pair Telescope

    Science.gov (United States)

    Grove, Eric J.

    We propose to build and test a hodoscopic CsI(Tl) scintillating-crystal calorimeter for a medium-energy γ-ray Compton and pair telescope. The design and technical approach for this calorimeter relies deeply on heritage from the Fermi LAT CsI Calorimeter, but it dramatically improves the low-energy performance of that design by reading out the scintillation light with silicon photomultipliers (SiPMs), making the technology developed for Fermi applicable in the Compton regime. While such a hodoscopic calorimeter is useful for an entire class of medium-energy γ-ray telescope designs, we propose to build it explicitly to support beam tests and balloon flight of the Proto-ComPair telescope, the development and construction of which was funded in a four-year APRA program beginning in 2015 ("ComPair: Steps to a Medium Energy γ-ray Mission" with PI J. McEnery of GSFC). That award did not include funding for its CsI calorimeter subsystem, and this proposal is intended to cover that gap. ComPair is a MIDEX-class instrument concept to perform a high-sensitivity survey of the γ-ray sky from 0.5 MeV to 500 MeV. ComPair is designed to provide a dramatic increase in sensitivity relative to previous instruments in this energy range (predominantly INTEGRAL/SPI and Compton COMPTEL), with the same transformative sensitivity increase - and corresponding scientific return- that the Fermi Large Area Telescope provided relative to Compton EGRET. To enable transformative science over a broad range of MeV energies and with a wide field of view, ComPair is a combined Compton telescope and pair telescope employing a silicon-strip tracker (for Compton scattering and pair conversion and tracking) and a solid-state CdZnTe calorimeter (for Compton absorption) and CsI calorimeter (for pair calorimetry), surrounded by a plastic scintillator anti-coincidence detector. Under the current proposal, we will complete the detailed design, assembly, and test of the CsI calorimeter for the risk

  9. Characterisation of a Compton suppressed Clover detector for high energy gamma rays (=<11MeV)

    International Nuclear Information System (INIS)

    Saha Sarkar, M.; Kshetri, Ritesh; Raut, Rajarshi; Mukherjee, A.; Sinha, Mandira; Ray, Maitreyi; Goswami, A.; Roy, Subinit; Basu, P.; Majumder, H.; Bhattacharya, S.; Dasmahapatra, B.

    2006-01-01

    Gamma ray spectra of two (p,γ) resonances have been utilised for the characterisation of the Clover detector at energies beyond 5MeV. Apart from the efficiency and the resolution of the detector, the shapes of the full energy peaks as well as the nature of the escape peaks which are also very crucial at higher energies have been analysed with special attention. Proper gain matching in software have checked deterioration in the energy resolution and distortion in the peak shape due to addback. The addback factors show sharp increasing trend even at energies around 11MeV

  10. Characterisation of a Compton suppressed Clover detector for high energy gamma rays (=<11MeV)

    Energy Technology Data Exchange (ETDEWEB)

    Saha Sarkar, M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India)]. E-mail: maitrayee.sahasarkar@saha.ac.in; Kshetri, Ritesh [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Raut, Rajarshi [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Mukherjee, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Sinha, Mandira [Gurudas College, Narkeldanga, Kolkata-700054 (India); Ray, Maitreyi [Behala College, Parnashree, Kolkata-700060 (India); Goswami, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Roy, Subinit [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Basu, P. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Majumder, H. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Bhattacharya, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Dasmahapatra, B. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India)

    2006-01-01

    Gamma ray spectra of two (p,{gamma}) resonances have been utilised for the characterisation of the Clover detector at energies beyond 5MeV. Apart from the efficiency and the resolution of the detector, the shapes of the full energy peaks as well as the nature of the escape peaks which are also very crucial at higher energies have been analysed with special attention. Proper gain matching in software have checked deterioration in the energy resolution and distortion in the peak shape due to addback. The addback factors show sharp increasing trend even at energies around 11MeV.

  11. Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam

    Science.gov (United States)

    Hueso-González, F.; Golnik, C.; Berthel, M.; Dreyer, A.; Enghardt, W.; Fiedler, F.; Heidel, K.; Kormoll, T.; Rohling, H.; Schöne, S.; Schwengner, R.; Wagner, A.; Pausch, G.

    2014-05-01

    In the context of ion beam therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density map, which is correlated with the dose distribution. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a Compton camera setup is being developed consisting of two scatter planes: two CdZnTe (CZT) cross strip detectors, and an absorber consisting of one Lu2SiO5 (LSO) block detector. The data acquisition is based on VME electronics and handled by software developed on the ROOT framework. The setup has been tested at the linear electron accelerator ELBE at HZDR, which is used in this experiment to produce bunched bremsstrahlung photons with up to 12.5 MeV energy and a repetition rate of 13 MHz. Their spectrum has similarities with the shape expected from prompt gamma rays in the clinical environment, and the flux is also bunched with the accelerator frequency. The charge sharing effect of the CZT detector is studied qualitatively for different energy ranges. The LSO detector pixel discrimination resolution is analyzed and it shows a trend to improve for high energy depositions. The time correlation between the pulsed prompt photons and the measured detector signals, to be used for background suppression, exhibits a time resolution of 3 ns FWHM for the CZT detector and of 2 ns for the LSO detector. A time walk correction and pixel-wise calibration is applied for the LSO detector, whose resolution improves up to 630 ps. In conclusion, the detector setup is suitable for time-resolved background suppression in pulsed clinical particle accelerators. Ongoing tasks are the quantitative comparison with simulations and the test of imaging algorithms. Experiments at proton

  12. Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam

    International Nuclear Information System (INIS)

    Hueso-González, F; Golnik, C; Berthel, M; Dreyer, A; Enghardt, W; Kormoll, T; Rohling, H; Pausch, G; Fiedler, F; Heidel, K; Schöne, S; Schwengner, R; Wagner, A

    2014-01-01

    In the context of ion beam therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density map, which is correlated with the dose distribution. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a Compton camera setup is being developed consisting of two scatter planes: two CdZnTe (CZT) cross strip detectors, and an absorber consisting of one Lu 2 SiO 5 (LSO) block detector. The data acquisition is based on VME electronics and handled by software developed on the ROOT framework. The setup has been tested at the linear electron accelerator ELBE at HZDR, which is used in this experiment to produce bunched bremsstrahlung photons with up to 12.5 MeV energy and a repetition rate of 13 MHz. Their spectrum has similarities with the shape expected from prompt gamma rays in the clinical environment, and the flux is also bunched with the accelerator frequency. The charge sharing effect of the CZT detector is studied qualitatively for different energy ranges. The LSO detector pixel discrimination resolution is analyzed and it shows a trend to improve for high energy depositions. The time correlation between the pulsed prompt photons and the measured detector signals, to be used for background suppression, exhibits a time resolution of 3 ns FWHM for the CZT detector and of 2 ns for the LSO detector. A time walk correction and pixel-wise calibration is applied for the LSO detector, whose resolution improves up to 630 ps. In conclusion, the detector setup is suitable for time-resolved background suppression in pulsed clinical particle accelerators. Ongoing tasks are the quantitative comparison with simulations and the test of imaging algorithms. Experiments at proton

  13. A spin-transport system for a longitudinally polarized epithermal neutron beam

    International Nuclear Information System (INIS)

    Crawford, B.E.; Bowman, J.D.; Penttilae, S.I.; Roberson, N.R.

    2001-01-01

    The TRIPLE (Time Reversal and Parity at Low Energies) collaboration uses a polarized epithermal neutron beam and a capture γ-ray detector to study parity violation in neutron-nucleus reactions. In order to preserve the spin polarization of the neutrons as they travel the 60-m path to the target, the beam pipes are wrapped with wire to produce a solenoidal magnetic field of about 10 G along the beam direction. The flanges and bellows between sections of the beam pipe cause gaps in the windings which in turn produce radial fields that can depolarize the neutron spins. A computer code has been developed that numerically evaluates the effect of these gaps on the polarization. A measurement of the neutron depolarization for neutrons in the actual spin-transport system agrees with a calculation of the neutron depolarization for the TRIPLE system. Features that will aid in designing similar spin-transport systems are discussed

  14. Distribution of 35 Elements in Peat Cores from Ombrotrophic Bogs Studied by Epithermal Neutron Activation Analysis

    CERN Document Server

    Frontasyeva, M V

    2004-01-01

    In ombrotrophic bogs the surface peat layer is supplied with chemical substances only from the atmosphere. Peat cores from these bogs therefore can be used to study temporal trends in atmospheric deposition of pollutants. In this work epithermal neutron activation analysis was applied for the first time to study the distribution of 35 elements in peat profiles from ombrotrophic bogs. The selected examples were from Finnmark county in northern Norway: one pristine site far from any local pollution source, and another strongly affected by long-term operation of Russian copper-nickel smelters located close to the border. The elements are classified with respect to their behavior in the uppermost 40 cm of the peat, and similarities and differences between the two profiles are discussed. As compared with other more commonly used analytical techniques based on acid decomposition of the sample ENAA has the advantage of providing the total concentrations of the elements.

  15. Measurement of the epithermal neutron flux of the Argonauta reactor by the Sandwich method

    International Nuclear Information System (INIS)

    Nascimento, H.M.

    1973-01-01

    A common method of obtaining information about the neutron spectrum in the energy range of 1 eV to a few keV is by using resonance sandwich detectors. A sandwich detector is usually made up of three foils placed one on top of the other, each having the same thickness and being made of the same material which has a pronounced absorption resonance. To make an adequate evaluation, the sandwich method was compared with one using an isolated detector. The results obtained from approximate theoretical calculations were checked experimentally, using In, Au and Mn foils, in an isotropic 1/E flux in the Argonaut Reactor at I.E.N. As practical application of this method, the deviation from a 1/E spectrum of the epithermal neutron flux in the core and external graphite reflector of the Argonaut Reactor has been measured with the sandwich foils previously calibrated in a 1/E spectrum. (author)

  16. Combination of epithermal and inelastic neutron scattering methods to locate coal and oil-shale zones

    International Nuclear Information System (INIS)

    Schultz, W.E.

    1976-01-01

    A pulsed neutron generator of the deuterium-tritium reaction type irradiates earth formations in the vicinity of a borehole with 14 MeV neutrons. Gamma rays produced by the inelastic scattering of the fast neutrons are observed in four energy regions of the gamma ray energy spectrum corresponding to the inelastic scattering of neutrons by carbon, oxygen, silicon, and calcium. The carbon/oxygen, calcium/silicon, and carbon plus oxygen gamma rays are found and combined with a separately derived hydrogen index log to determine the quality of coal-bearing formations or oil-shale regions. The hydrogen index curve is found preferably by a dual-spaced detector epithermal neutron porosity logging technique or from a conventional thermal neutron gamma ray log

  17. Filtered epithermal quasi-monoenergetic neutron beams at research reactor facilities

    International Nuclear Information System (INIS)

    Mansy, M.S.; Bashter, I.I.; El-Mesiry, M.S.; Habib, N.; Adib, M.

    2015-01-01

    Filtered neutron techniques were applied to produce quasi-monoenergetic neutron beams in the energy range of 1.5–133 keV at research reactors. A simulation study was performed to characterize the filter components and transmitted beam lines. The filtered beams were characterized in terms of the optimal thickness of the main and additive components. The filtered neutron beams had high purity and intensity, with low contamination from the accompanying thermal emission, fast neutrons and γ-rays. A computer code named “QMNB” was developed in the “MATLAB” programming language to perform the required calculations. - Highlights: • Quasi-monoenergetic neutron beams in energy range from (1.5–133) keV. • Interference between the resonance and potential scattering amplitudes. • Epithermal neutron beams used in BNCT

  18. Study on iodine levels in thyroids of iodine-supplemented rats by epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Wang Xuefei; Zhang Fang; Xu Qing; Liu Nianqing; Chai Zhifang; Zhao Xueqin; Zuo Aijun

    2003-01-01

    The second generation female Wistar rats that have been treated with iodine-deficient food, after their delivery, are divided into three groups i.e. excessive-iodine (EI), adequate-iodine (AI) and iodine-deficient (ID) according to the KIO 3 concentration in the drinking water (3.0, 0.4, 0 mg/L). In addition, the normal rats with low iodine food and 0.4 mg/L KIO 3 water are used as the control group (C). The iodine content in thyroid and the serum thyroid hormone levels of the third generation rats are measured by means of epithermal neutron activation analysis (ENAA), and the method of enzyme-linked immunosorbent assay (ELISA), respectively. The results indicate that the total thyroxine (TT 4 ) and the free thyroxine (FT 4 ) of the EI, compared with those of the controls, are significantly decreased (p 3 ) evidently increased (p 4 , FT 4 and goiter

  19. Bromine and iodine in Chinese medical herbs determined via epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Chien-Yi Chen; Yuan-Yaw Wei; Sheng-Pin ChangLai; Lung-Kwang Pan

    2003-01-01

    Nineteen natural herbs and two prescriptions prepared from mixed herbs were analyzed via epithermal neutron activation analysis (ENAA) to evaluate their bromine and iodine concentration. Traditional medical doctors prescribed the samples presented in this work to most Taiwanese children for strengthening their immune systems. Empirical results indicated a wide diversity of bromine in the samples. Yet, the iodine concentration was only around one to tenth or twentieth of the bromine. The maximum daily intake (MDI) for various medical herbs was also widely diversified from one to tenfold on the basis of various criteria. The minimum detectable concentration (MDC) of bromine and iodine found was 0.42±0.14 ppm and 0.067±0.016 ppm, respectively. Compared to that from conventional thermal neutron activation analysis (NAA) for a similar evaluation, the extremely low MDC obtained here was attributed to the large amount of thermal neutron absorption during sample irradiation. (author)

  20. Study on the determination of uranium by activation analysis with epithermal neutrons

    International Nuclear Information System (INIS)

    Atalla, L.T.

    1977-01-01

    A method is described that is applied to the determination of uranium in different types of materials, either by an entirely instrumental method or with the chemical separation of uranium-239, when the presence of interferences does not allow the instrumental analysis. The advantages and disadvantages in the use of epithermal neutrons in the activation of samples for a more selective activation of uranium-238 also presented. The instrumental method is tested through standart materials, accepted internationally. The possibility of uranium extraction with di-etil-hexilphosphoric acid is also presented and the choice of the former technique is justified. The sensitibility of the method is discussed as well as precision and accuracy through results obtained in the analysis of the standards and the calibration curve of uranium [pt

  1. Elimination of eight interfering radioisotopes in the determination of uranium by activation analysis with epithermic neutrons

    International Nuclear Information System (INIS)

    Requejo, C.S.

    1977-01-01

    The total or parcial elimination interfering radioisotopes in activation analysis of uranium by epithermic neutrons, has been made. It was possible to determine uranium, after chemical separation, from samples of organic and mineral matrixes, which had mercury, selenium, bromine, antimony, gold, barium, molybden and tungsten. Mineral samples were analysed giving results between 0.2 to 5.0 ppm of uranium. The same mineral were ground in agate mortar and in tungsten carbide mill. In the first sample is has been found 0.2277 +- -+ 0.0474 ppm U. The second which had tungsten, at level of 150 ppm, after radiochemical separation, it has been found 0.2465+- -+0.0326 ppm U. These results are considered statistically the same [pt

  2. Characterisation of the epithermal neutron irradiation facility at the Portuguese research reactor using MCNP.

    Science.gov (United States)

    Beasley, D G; Fernandes, A C; Santos, J P; Ramos, A R; Marques, J G; King, A

    2015-05-01

    The radiation field at the epithermal beamline and irradiation chamber installed at the Portuguese Research Reactor (RPI) at the Campus Tecnológico e Nuclear of Instituto Superior Técnico was characterised in the context of Prompt Gamma Neutron Activation Analysis (PGNAA) applications. Radiographic films, activation foils and thermoluminescence dosimeters were used to measure the neutron fluence and photon dose rates in the irradiation chamber. A fixed-source MCNPX model of the beamline and chamber was developed and compared to measurements in the first step towards planning a new irradiation chamber. The high photon background from the reactor results in the saturation of the detector and the current facility configuration yields an intrinsic insensitivity to various elements of interest for PGNAA. These will be addressed in future developments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Physical parameters and biological effects of the LVR-15 epithermal neutron beam

    International Nuclear Information System (INIS)

    Burian, J.; Marek, M.; Rejchrt, J.; Viererbl, L.; Gambarini, G.; Mares, V.; Vanossi, E.; Judas, L.

    2006-01-01

    Monitoring of the physical and biological properties of the epithermal neutron beam constructed at the multipurpose LVR-15 nuclear reactor for NCT therapy of brain tumors showed that its physical and biological properties are stable in time and independent on an ad hoc reconfiguration of the reactor core before its therapeutic use. Physical parameters were monitored by measurement of the neutron spectrum, neutron profile, fast neutron kerma rate in tissue and photon absorbed dose, the gel dosimetry was used with the group of standard measurement methods. The RBE of the beam, as evaluated by 3 different biological models, including mouse intestine crypt regeneration assay, germinative zones of the immature rat brain and C6 glioma cells in culture, ranged from 1.70 to 1.99. (author)

  4. Manual for the Epithermal Neutron Multiplicity Detector (ENMC) for Measurement of Impure MOX and Plutonium Samples

    International Nuclear Information System (INIS)

    Menlove, H. O.; Rael, C. D.; Kroncke, K. E.; DeAguero, K. J.

    2004-01-01

    We have designed a high-efficiency neutron detector for passive neutron coincidence and multiplicity counting of dirty scrap and bulk samples of plutonium. The counter will be used for the measurement of impure plutonium samples at the JNC MOX fabrication facility in Japan. The counter can also be used to create working standards from bulk process MOX. The detector uses advanced design "3He tubes to increase the efficiency and to shorten the neutron die-away time. The efficiency is 64% and the die-away time is 19.1 ?s. The Epithermal Neutron Multiplicity Counter (ENMC) is designed for high-precision measurements of bulk plutonium samples with diameters of less than 200 mm. The average neutron energy from the sample can be measured using the ratio of the inner ring of He-3 tubes to the outer ring. This report describes the hardware, performance, and calibration for the ENMC.

  5. Photon detectors for epithermal neutron scattering at high-ω and low-q

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Senesi, R.; Tardocchi, M.; Andreani, C.; Gorini, G.

    2004-01-01

    Inelastic epithermal neutron scattering at high energy (ℎω≥1 eV) and low wave vector (q≤10 A -1 ) transfers is the unique technique for the investigation of high-energy excitations in a variety of systems, ranging from magnetic materials to semiconductors. The key issue in order to make these measurements feasible on inverse geometry spectrometers, is to develop suitable detection systems for neutrons in the energy range 1-100 eV. The Resonance Detector Spectrometer configuration has to be considered as the most promising approach for electron Volt neutron spectroscopy. This configuration will be employed in the new low angle detector bank, VLAD, planned for VESUVIO spectrometer operating at ISIS source

  6. Examination of Greek neolithic ceramic shards by epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Ochsenkuehn, K.M.; Zouridakis, N.; Inst. of Physical Chemistry, Athens; Ochsenkuehn-Petropulu, M.

    1999-01-01

    At the reactor of the NCSR 'Demokritos' epithermal irradiation was used in connection with a loss-free counting technique to investigate rare Neolithic ceramic shards, about 4000 years old, from the Alepotrypa Cave of Diros, Greece. The application of an irradiation time of 30 minutes, the measurements of the samples after less then 24 hours and a counting time of 20 minutes in connection with a loss-free counting unit allowed the determination of 12 elements per sample. The comparison of these rare fine ceramic shards with those of primitive shape showed that both were produced from the same raw materials. Small differences could be explained by a raw material pretreatment. The Neolithic potters were obviously aware of separation techniques in order to obtain fine clay fractions to produce those rare ceramics. (author)

  7. Effective dose evaluation for BNCT treatment in the epithermal neutron beam at THOR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.N. [Department of Engineering and System Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China)] [Division of Health Physics, Institute of Nuclear Energy Research, No. 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China); Huang, C.K. [Institute of Nuclear Engineering and Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China); Tsai, W.C. [Department of Engineering and System Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China); Liu, Y.H. [Nuclear Science and Technol. Develop. Center, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China); Jiang, S.H., E-mail: shjiang@mx.nthu.edu.tw [Department of Engineering and System Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China)] [Institute of Nuclear Engineering and Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China)

    2011-12-15

    This paper aims to evaluate the effective dose as well as equivalent doses of several organs of an adult hermaphrodite mathematical phantom according to the definition of ICRP Publication 60 for BNCT treatments of brain tumors in the epithermal neutron beam at THOR. The MCNP5 Monte Carlo code was used for the calculation of the average absorbed dose of each organ. The effective doses for a typical brain tumor treatment with a tumor treatment dose of 20 Gy-eq were evaluated to be 0.59 and 0.35 Sv for the LLAT and TOP irradiation geometries, respectively. In addition to the stochastic effect, it was found that it is also likely to produce deterministic effects, such as cataracts and depression of haematopoiesis.

  8. Determination of trace cadmium and other elements in bone by epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Dowlati, R.; Jervis, R.E.

    1991-01-01

    Epithermal neutron activation analysis (ENAA) was applied to measure quantitatively Cd and other elements in bone samples from control and Cd-fed rats. This method was found to be non-destructive to the bone samples, with no sign of 'radiolytic charring' and was sensitive enough to detect and quantify Cd in bone samples at normal levels for mammals (viz. 0.5-1.0μg/g) and higher. Two different thermal neutron shield materials were utilized, namely cadmium and boron. The boron shield resulted in a 27% improvement in the detection limit of Cd in bone. The accuracy of ENAA for Cd was assessed by intercomparison with electrothermal atomic absorption spectrophotometry (ETAAS), and the results were in fair agreement (±23%) with those from ENAA. (author) 24 refs.; 5 tabs

  9. Measurement of trace cadmium and elements in bone by epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Dowlati, R.; Jervis, R.E.

    1991-01-01

    Epithermal neutron activation analysis (ENAA) was applied to measure quantitatively Cd and other elements in bone samples from control and Cd-fed rats. This method was found to be non-destructive to the bone samples, with no sign of 'radiolytic charring' and was sensitive enough to detect and quantify Cd in bone samples at normal levels for mammals (viz. 0.5-1.0 μg/g) and higher. Two different thermal neutron shield materials were utilized, namely cadmium and boron. The boron shield resulted in a 27% improvement in the detection limit of Cd in bone. The accuracy of ENAA for Cd was assessed by intercomparison with electrothermal atomic absorption spectrophotometry (ETAAS), and the results in fair agreement (±23%) with those from ENAA

  10. From neutron Compton profiles to momentum distribution: Assessment of direct numerical determination

    International Nuclear Information System (INIS)

    Senesi, R.; Flammini, D.; Romanelli, G.; Andreani, C.

    2013-01-01

    Inelastic neutron scattering at high momentum transfers, in the neutron Compton scattering regime, provides an access to the neutron Compton profiles, the analogous of Compton profiles in X-ray scattering. The line shape analysis of the neutron Compton profiles is usually carried out making use of multiparametric nonlinear fitting, garnering detailed information about the momentum distribution of the target atoms. This paper presents the proposal to directly determine numerically the momentum distribution from the profiles, thus eliminating the possible instabilities present in multiparametric fitting. A comparison with Monte Carlo simulations and with previous measurements on polycrystalline ice provides quantitative assessments of the proposed method

  11. Treatment planning figures of merit in thermal and epithermal boron capture therapy of brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, S.A.; Mathur, J.N. (Wollongong Univ., NSW (Australia)); Allen, B.J. (Ansto PMB 1 Menai, NSW (Australia). Biomedicine and Health)

    1994-05-01

    The boron neutron capture therapy (BNCT) figures of merit of advantage depth, therapeutic depth, modified advantage depth and maximum therapeutic depth have been studied as functions of [sup 10]B tumour to blood ratios and absolute levels. These relationships were examined using the Monte Carlo neutron photon transport code, MCNP, with an ideal 18.4 cm diameter neutron beam incident laterally upon an ellipsoidal neutron photon brain-equivalent model. Mono-energetic beams of 0.025 eV (thermal) and 35 eV (epithermal) were simulated. Increasing the tumour to blood [sup 10]B ratio predictably increases all figures of merit. [sup 10]B concentration was also shown to have a strong bearing on the figures of merit when low levels were present in the system. This is the result of a non-[sup 10]B dependent background dose. At higher levels however, the concentration of [sup 10]B has a diminishing influence. For boron sulphydryl (BSH), little advantage is gained by extending the blood [sup 10]B level beyond 30 ppm, whilst for D, L,-p-boronophenylalanine (BPA) this limit is 10 ppm. Applying the epithermal beam under identical conditions, the therapeutic depth reaches the brain mid-line with a tumour to blood [sup 10]B ratio of only 5.7 for BPA. For BSH, the maximum therapeutic depth reaches the brain mid-line with a tumour to blood ratio of only 1.9 with 30 ppm in the blood. Human data for these compounds are very close to these requirements. (author).

  12. Geochemistry and statistical analyses of porphyry system and epithermal veins at Hizehjan in northwestern Iran

    Directory of Open Access Journals (Sweden)

    Radmard Kaikhosrov

    2017-12-01

    Full Text Available Situated about 130 km northeast of Tabriz (northwest Iran, the Mazra’eh Shadi deposit is in the Arasbaran metallogenic belt (AAB. Intrusion of subvolcanic rocks, such as quartz monzodiorite-diorite porphyry, into Eocene volcanic and volcano-sedimentary units led to mineralisation and alteration. Mineralisation can be subdivided into a porphyry system and Au-bearing quartz veins within andesite and trachyandesite which is controlled by fault distribution. Rock samples from quartz veins show maximum values of Au (17100 ppb, Pb (21100 ppm, Ag (9.43ppm, Cu (611ppm and Zn (333 ppm. Au is strongly correlated with Ag, Zn and Pb. In the Au-bearing quartz veins, factor group 1 indicates a strong correlation between Au, Pb, Ag, Zn and W. Factor group 2 indicates a correlation between Cu, Te, Sb and Zn, while factor group 3 comprises Mo and As. Based on Spearman correlation coefficients, Sb and Te can be very good indicator minerals for Au, Ag and Pb epithermal mineralisation in the study area. The zoning pattern shows clearly that base metals, such as Cu, Pb, Zn and Mo, occur at the deepest levels, whereas Au and Ag are found at higher elevations than base metals in boreholes in northern Mazra’eh Shadi. This observation contrasts with the typical zoning pattern caused by boiling in epithermal veins. At Mazra’eh Shadi, quartz veins containing co-existing liquid-rich and vapour-rich inclusions, as strong evidence of boiling during hydrothermal evolution, have relatively high Au grades (up to 813 ppb. In the quartz veins, Au is strongly correlated with Ag, and these elements are in the same group with Fe and S. Mineralisation of Au and Ag is a result of pyrite precipitation, boiling of hydrothermal fluids and a pH decrease.

  13. Doppler broadening and its contribution to Compton energy-absorption cross sections: An analysis of the Compton component in terms of mass-energy absorption coefficient

    International Nuclear Information System (INIS)

    Rao, D.V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Cesareo, R.; Brunetti, A.; Gigante, G.E.

    2002-01-01

    Compton energy absorption cross sections are calculated using the formulas based on a relativistic impulse approximation to assess the contribution of Doppler broadening and to examine the Compton profile literature and explore what, if any, effect our knowledge of this line broadening has on the Compton component in terms of mass-energy absorption coefficient. Compton energy-absorption cross sections are evaluated for all elements, Z=1-100, and for photon energies 1 keV-100 MeV. Using these cross sections, the Compton component of the mass-energy absorption coefficient is derived in the energy region from 1 keV to 1 MeV for all the elements Z=1-100. The electron momentum prior to the scattering event should cause a Doppler broadening of the Compton line. The momentum resolution function is evaluated in terms of incident and scattered photon energy and scattering angle. The overall momentum resolution of each contribution is estimated for x-ray and γ-ray energies of experimental interest in the angular region 1 deg. -180 deg. . Also estimated is the Compton broadening using nonrelativistic formula in the angular region 1 deg. -180 deg., for 17.44, 22.1, 58.83, and 60 keV photons for a few elements (H, C, N, O, P, S, K, and Ca) of biological importance

  14. Doppler Broadening and its Contribution to Compton Energy-Absorption Cross Sections: An Analysis of the Compton Component in Terms of Mass-Energy Absorption Coefficient

    Science.gov (United States)

    Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Cesareo, R.; Brunetti, A.; Gigante, G. E.

    2002-09-01

    Compton energy absorption cross sections are calculated using the formulas based on a relativistic impulse approximation to assess the contribution of Doppler broadening and to examine the Compton profile literature and explore what, if any, effect our knowledge of this line broadening has on the Compton component in terms of mass-energy absorption coefficient. Compton energy-absorption cross sections are evaluated for all elements, Z=1-100, and for photon energies 1 keV-100 MeV. Using these cross sections, the Compton component of the mass-energy absorption coefficient is derived in the energy region from 1 keV to 1 MeV for all the elements Z=1-100. The electron momentum prior to the scattering event should cause a Doppler broadening of the Compton line. The momentum resolution function is evaluated in terms of incident and scattered photon energy and scattering angle. The overall momentum resolution of each contribution is estimated for x-ray and γ-ray energies of experimental interest in the angular region 1°-180°. Also estimated is the Compton broadening using nonrelativistic formula in the angular region 1°-180°, for 17.44, 22.1, 58.83, and 60 keV photons for a few elements (H, C, N, O, P, S, K, and Ca) of biological importance.

  15. Very low background gamma spectrometer mounted in anti-Compton with NaI(Tl) for the study of glaciers and sediment samples; Spectrometrie gamma a tres bas niveau avec anti-Compton NaI(Tl), pour l`etude des glaciers et des sediments

    Energy Technology Data Exchange (ETDEWEB)

    Pinglot, J.F.; Pourchet, M. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France). Lab. de Glaciologie

    1994-05-01

    The determination of natural and artificial radioactivities of snow (glaciers, polar ice-caps) or sediment samples (lakes, oceans), takes great benefit with the use of the superior resolution of high purity germanium detector, N type, in a broad energy range( 10 keV up to 1.6 MeV). This detector (relative efficiency: 20%), very low background specified, is mounted in anti-Compton with a 9`x 8` NaI(Tl) scintillator, also with low background. International standards, used with a quantitative software allows the determination of the efficiency curve and the isotopes identification and specific activity. The anti-Compton suppressed spectrometer exhibits a decrease of the background by a factor of ten, without any change in efficiencies. Applications of this spectrometer deal with samples from lake Titicaca and a glacier from Spitsbergen. (authors). 6 figs., 7 refs.

  16. Interocular suppression

    Science.gov (United States)

    Tuna, Ana Rita; Almeida Neves Carrega, Filipa; Nunes, Amélia Fernandes

    2017-08-01

    The objective of this work is to quantify the suppressive imbalance, based on the manipulation of ocular luminance, between a group of subjects with normal binocular vision and a group of subjects with amblyopia. The result reveals that there are statistically significant differences in interocular dominance between two groups, evidencing a greater suppressive imbalance in amblyopic subjects. The technique used, proved to be a simple, easy to apply and economic method, for quantified ocular dominance. It is presented as a technique with the potential to accompany subjects with a marked dominance in one of the eyes that makes fusion difficult.

  17. Experimental study of angular dependence in double photon Compton scattering

    International Nuclear Information System (INIS)

    Sandhu, B.S.; Dewan, R.; Saddi, M.B.; Singh, B.; Ghumman, B.S.

    2000-01-01

    The collision differential cross-section and energy of one of the final photons for double photon Compton scattering have been measured as a function of scattering angle θ 1 . The incident photon energy is 0.662 MeV and thin aluminium foils are used as a scatterer. The two simultaneously emitted photons in this higher order process are detected in coincidence using two NaI(Tl) scintillation spectrometers and 30 ns timing electronics. The measured values for energy and collision differential cross-section agree with theory within experimental estimated error. The present data provide information of angular dependence in this higher order process

  18. Meson-induced correlations of nucleons in nuclear Compton scattering

    International Nuclear Information System (INIS)

    Huett, M.; Milstein, A.I.

    1998-01-01

    The nonresonant (seagull) contribution to the nuclear Compton amplitude at low energies is strongly influenced by nucleon correlations arising from meson exchange. We study this problem in a modified Fermi gas model, where nuclear correlation functions are obtained with the help of perturbation theory. The dependence of the mesonic seagull amplitude on the nuclear radius is investigated and the influence of a realistic nuclear density on this amplitude is discussed. We found that different form factors appear for the static part (proportional to the enhancement constant κ) of the mesonic seagull amplitude and for the parts, which contain the contribution from electromagnetic polarizabilities. copyright 1998 The American Physical Society

  19. Compton scattering by mesons in nuclei: Experiment on 208Pb

    International Nuclear Information System (INIS)

    Fuhrberg, K.; Martin, G.; Haeger, D.; Ludwig, M.; Schumacher, M.; Andersson, B.E.; Blomqvist, K.I.; Ruijter, H.; Sandell, A.; Schroeder, B.; Hayward, E.; Nilsson, L.; Zorro, R.

    1992-01-01

    Using 58 and 73 MeV tagged photons and scattering angles from 60deg to 150deg, it is shown that is possible to observe Compton scattering by 'mesons in nuclei ' through an incomplete cancellation of the mesonic (exchange- current) seagull amplitude by parts of the nuclear resonance amplitude related to the giant-dipole resonance of 208 Pb. This phenomenon is a property of an extended nucleus and , therefore, cannot be dtudied on the deuteron. Predictions of the exchange form factor which determines the angular distribution of the exchange seagull amplitude are compared with experimental data. (orig.)

  20. Compton profiles by inelastic ion-electron scattering

    International Nuclear Information System (INIS)

    Boeckl, H.; Bell, F.

    1983-01-01

    It is shown that Compton profiles (CP) can be measured by inelastic ion-electron scattering. Within the impulse approximation the binary-encounter peak (BEP) reflects the CP of the target atom whereas the electron-loss peak (ELP) is given by projectile CP's. Evaluation of experimental data reveals that inelastic ion-electron scattering might be a promising method to supply inelastic electron or photon scattering for the determination of target CP's. The measurement of projectile CP's is unique to ion scattering since one gains knowledge about wave-function effects because of the high excitation degree of fast heavy-ion projectiles

  1. Compton profiles of some 4d transition-metals

    International Nuclear Information System (INIS)

    Sharma, B.K.; Tomak, M.

    1982-08-01

    We have computed Compton profiles for 4d transition-metals using the Renormalized Free Atom (RFA) model for two different electron configurations, namely 4dsup(n-1)5s 1 and 4dsup(n-2)5s 2 . The results for niobium and molybdenum are presented and compared with those obtained for these metals within free atom model. For low values of momenta the RFA profiles are broader than the latter ones. The constancy of J(0) values reported for 3d-metals is shown to be present also in case of 4d-metals. (author)

  2. Measurement of Deeply Virtual Compton Scattering at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Arkadov, V.; Astvatsatourov, A.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Berndt, T.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cao, Jun; Caron, S.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solovev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Straumann, U.; Swart, M.; Tasevsky, M.; Chernyshov, V.; Chetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vassilev, S.; Vazdik, Y.; Vichnevski, A.; Wacker, K.; Wallny, R.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Werner, C.; Werner, M.; Werner, N.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    2001-01-01

    A measurement is presented of elastic Deeply Virtual Compton Scattering e^+ + p -> e^+ + photon + p at HERA using data taken with the H1 detector. The cross section is measured as a function of the photon virtuality, Q^2, and the invariant mass, W, of the gamma p system, in the kinematic range 2 < Q^2 < 20 GeV^2, 30 < W < 120 GeV and |t| < 1 GeV^2, where t is the squared momentum transfer to the proton. The measurement is compared to QCD based calculations.

  3. Kharkov X-ray Generator Based On Compton Scattering

    International Nuclear Information System (INIS)

    Shcherbakov, A.; Zelinsky, A.; Mytsykov, A.; Gladkikh, P.; Karnaukhov, I.; Lapshin, V.; Telegin, Y.; Androsov, V.; Bulyak, E.; Botman, J.I.M.; Tatchyn, R.; Lebedev, A.

    2004-01-01

    Nowadays X-ray sources based on storage rings with low beam energy and Compton scattering of intense laser beams are under development in several laboratories. An international cooperative project of an advanced X-ray source of this type at the Kharkov Institute of Physics and Technology (KIPT) is described. The status of the project is reviewed. The design lattice of the storage ring and calculated X-ray beam parameters are presented. The results of numerical simulation carried out for proposed facility show a peak spectral X-ray intensity of about 1014 can be produced

  4. Sources of the X-rays Based on Compton Scattering

    International Nuclear Information System (INIS)

    Androsov, V.; Bulyak, E.; Gladkikh, P.; Karnaukhov, I.; Mytsykov, A.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.

    2007-01-01

    The principles of the intense X-rays generation by laser beam scattering on a relativistic electron beam are described and description of facilities assigned to produce the X-rays based on Compton scattering is presented. The possibilities of various types of such facilities are estimated and discussed. The source of the X-rays based on a storage ring with low beam energy is described in details and advantages of the sources of such type are discussed.The results of calculation and numerical simulation carried out for laser electron storage ring NESTOR that is under development in NSC KIPT show wide prospects of the accelerator facility of such type

  5. MICROBUNCH TEMPORAL DIAGNOSTIC BY COMPTON SCATTERING IN INTERFERING LASER BEAMS

    International Nuclear Information System (INIS)

    AMATUNI, A.TS.; POGORELSKY, I.V.

    1998-01-01

    The exact solution of the classical nonlinear equation of motion for a relativistic electron in the field of two electromagnetic (EM) waves is obtained. For the particular case of the linearly polarized standing EM wave in the planar optical cavity, the intensity of the nonlinear Compton scattering, the time of flight, and the momentum variation after the relativistic electron passes along the cavity axis are calculated in weak and strong field limits. The extent of these effects depends on the initial phase of the EM wave when the electron enters the cavity. This can be used for the production, diagnosis, and acceleration of relativistic electron (positron) microbunches

  6. Comparison of different methods for activation analysis of geological and pedological samples: Reactor and epithermal neutron activation, relative and monostandard method

    International Nuclear Information System (INIS)

    Alian, A.; Sansoni, B.

    1980-04-01

    Using purely instrumental methods, a comparative study is presented on neutron activation analysis of rock and soil samples by whole reactor neutron spectrum and epithermal neutrons with both relative and monostandard procedures. The latter procedure used with epithermal neutron activation analysis of soil samples necessitated the use of the 'effective resonance integrals' which were determined experimentally. The incorporation of the #betta# factor, representing deviation of reactor epithermal neutron flux from 1/E law, is developed in the present work. The main criteria for the choice of one or more of the procedures studied for a given purpose are also indicated. Analysis of 15 trace elements, Ca and Fe in the standard Japanese granite JG-1 using monostandard epithermal neutron activation gave results in good agreement with the average literature values. (orig./RB) [de

  7. The electron beam dynamics simulation in the laser-electron storage ring involving compton and intrabeam scattering

    International Nuclear Information System (INIS)

    Gladkikh, P.I.; Telegin, Yu.N.; Karnaukhov, I.M.

    2002-01-01

    The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented

  8. The electron beam dynamics simulation in the laser-electron storage ring involving compton and intrabeam scattering

    CERN Document Server

    Gladkikh, P I; Karnaukhov, I M

    2002-01-01

    The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented.

  9. Recognizing Axionic Dark Matter by Compton and de Broglie Scale Modulation of Pulsar Timing.

    Science.gov (United States)

    De Martino, Ivan; Broadhurst, Tom; Tye, S-H Henry; Chiueh, Tzihong; Schive, Hsi-Yu; Lazkoz, Ruth

    2017-12-01

    Light axionic dark matter, motivated by string theory, is increasingly favored for the "no weakly interacting massive particle era". Galaxy formation is suppressed below a Jeans scale of ≃10^{8}  M_{⊙} by setting the axion mass to m_{B}∼10^{-22}  eV, and the large dark cores of dwarf galaxies are explained as solitons on the de Broglie scale. This is persuasive, but detection of the inherent scalar field oscillation at the Compton frequency ω_{B}=(2.5  months)^{-1}(m_{B}/10^{-22}  eV) would be definitive. By evolving the coupled Schrödinger-Poisson equation for a Bose-Einstein condensate, we predict the dark matter is fully modulated by de Broglie interference, with a dense soliton core of size ≃150  pc, at the Galactic center. The oscillating field pressure induces general relativistic time dilation in proportion to the local dark matter density and pulsars within this dense core have detectably large timing residuals of ≃400  nsec/(m_{B}/10^{-22}  eV). This is encouraging as many new pulsars should be discovered near the Galactic center with planned radio surveys. More generally, over the whole Galaxy, differences in dark matter density between pairs of pulsars imprints a pairwise Galactocentric signature that can be distinguished from an isotropic gravitational wave background.

  10. The Compton Camera - medical imaging with higher sensitivity Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    The Compton Camera reconstructs the origin of Compton-scattered X-rays using electronic collimation with Silicon pad detectors instead of the heavy conventional lead collimators in Anger cameras - reaching up to 200 times better sensitivity and a factor two improvement in resolution. Possible applications are in cancer diagnosis, neurology neurobiology, and cardiology.

  11. PET-COMPTON System. Comparative evaluation with PET System using Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Diaz Garcia, Angelina; Arista Romeu, Eduardo; Abreu Alfonso, Yamiel; Leyva Fabelo, Antonio; Pinnera HernAndez, Ibrahin; Bolannos Perez, Lourdes; Rubio Rodriguez, Juan A.; Perez Morales, Jose M.; Arce Dubois, Pedro; Vela Morales, Oscar; Willmott Zappacosta, Carlos

    2012-01-01

    Positron Emission Tomography (PET) in small animals has actually achieved spatial resolution round about 1 mm and currently there are under study different approaches to improve this spatial resolution. One of them combines PET technology with Compton Cameras. This paper presents the idea of the so called PET-Compton systems and has included comparative evaluation of spatial resolution and global efficiency in both PET and PET-Compton system by means of Monte Carlo simulations using Geant4 code. Simulation was done on a PET-Compton system made-up of LYSO-LuYAP scintillating detectors of particular small animal PET scanner named Clear-PET and for Compton detectors based on CdZnTe semiconductor. A group of radionuclides that emits a positron (e+) and quantum almost simultaneously and fulfills some selection criteria for their possible use in PET-Compton systems for medical and biological applications were studied under simulation conditions. By means of analytical reconstruction using SSRB (Single Slide Rebinning) method were obtained superior spatial resolution in PET-Compton system for all tested radionuclides (reaching sub-millimeter values of for 22Na source). However this analysis done by simulation have shown limited global efficiency values in PET-Compton system (in the order of 10 -5 -10 -6 %) instead of values around 5*10 -1 % that have been achieved in PET system. (author)

  12. Depth-dose evaluation for lung and pancreas cancer treatment by BNCT using an epithermal neutron beam

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo; Fukushima, Yuji

    2000-01-01

    The depth-dose distributions were evaluated for possible treatment of both lung and pancreas cancers using an epithermal neutron beam. The MCNP calculations showed that physical dose in tumors were 6 and 7 Gy/h, respectively, for lung and pancreas, attaining an epithermal neutron flux of 5x10 8 ncm -2 s -1 . The boron concentrations were assumed at 100 ppm and 30 ppm, respectively, for lung and pancreas tumors and normal tissues contains 1/10 tumor concentrations. The dose ratios of tumor to normal tissue were 2.5 and 2.4, respectively, for lung and pancreas. The dose evaluation suggests that BNCT could be applied for both lung and pancreas cancer treatment. (author)

  13. Design of a permanent Cd-shielded epithermal neutron irradiation site in the Syrian Miniature Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Haddad, Kh.; Haj-Hassan, H.

    2008-01-01

    A Cd-shield (cylindrical shell 1 mm in thickness, 34 mm in diameter and 180 mm in length) was used to design a permanent epithermal neutron irradiation site for epithermal neutron activation analysis (ENAA) in the Syrian Miniature Neutron Source Reactor (MNSR). This site was achieved by shielding the surface of the aluminum tube of one of the outer irradiation sites. The calculated depression ratio of thermal neutron flux was 1/10. Homogeneity of the neutron flux in the first outer irradiation site has been found numerically using the WIMSD4 and CITATION codes and experimentally by irradiating five short copper wires using the outer irradiation capsule. Good agreement was obtained between the calculated and the measured results of the neutron flux distributions. (author)

  14. Design of a permanent Cd-shielded epithermal neutron irradiation site in the Syrian Miniature Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Haddad, Kh.; Haj-Hassan, H.

    2009-01-01

    A Cd-shield (cylindrical shell 1 mm in thickness, 34 mm in diameter and 180 mm in length) was used to design a permanent epithermal neutron irradiation site for epithermal neutron activation analysis (ENAA) in the Syrian Miniature Neutron Source Reactor (MNSR). This site was achieved by shielding the surface of the aluminum tube of one of the outer irradiation sites. The calculated depression ratio of thermal neutron flux was 1/10. Homogeneity of the neutron flux in the first outer irradiation site has been found numerically using the WIMSD4 and CITATION codes and experimentally by irradiating five short copper wires using the outer irradiation capsule. Good agreement was obtained between the calculated and the measured results of the neutron flux distributions. (author)

  15. Compton camera imaging and the cone transform: a brief overview

    Science.gov (United States)

    Terzioglu, Fatma; Kuchment, Peter; Kunyansky, Leonid

    2018-05-01

    While most of Radon transform applications to imaging involve integrations over smooth sub-manifolds of the ambient space, lately important situations have appeared where the integration surfaces are conical. Three of such applications are single scatter optical tomography, Compton camera medical imaging, and homeland security. In spite of the similar surfaces of integration, the data and the inverse problems associated with these modalities differ significantly. In this article, we present a brief overview of the mathematics arising in Compton camera imaging. In particular, the emphasis is made on the overdetermined data and flexible geometry of the detectors. For the detailed results, as well as other approaches (e.g. smaller-dimensional data or restricted geometry of detectors) the reader is directed to the relevant publications. Only a brief description and some references are provided for the single scatter optical tomography. This work was supported in part by NSF DMS grants 1211463 (the first two authors), 1211521 and 141877 (the third author), as well as a College of Science of Texas A&M University grant.

  16. Comptonization effects in spherical accretion onto black holes

    International Nuclear Information System (INIS)

    Ipser, J.R.; Price, R.H.

    1983-01-01

    For spherical accretion of gas onto a black hole, dissipative heating (from magnetic reconnection), dissipation of turbulence, etc.) leads at high accretion rates to densities and temperatures at which Comptonization unavoidably plays an important role, both in determining gas temperature and in forming the emergent spectrum. A careful and reliable treatment of the interaction of the gas with the radiation field is greatly complicated by the necessity of dealing with the essentially nonlocal nature of Comptonization. We limit ourselves here to finding approximate descriptions of some observational features of such astrophysical objects with a simple, yet justifiable, Ansatz that evades the complexities of nonlocality. The results for accretion spectra are of interest, e.g., in connection with galactic halo objects (1--10 5 M/sub sun/). High mass (10 7 --10 10 M/sub sun/) cases are of interest as models for active galactic nuclei. In particular, a very natural connection between the ratio of luminosity to Eddington luminosity and the hardness of X-ray spectra emerges, suggesting that the observed X-ray hardness ratios of luminous sources are a consequence of those sources being more or less Eddington limited

  17. Compton Scattering of Quasi-Real Virtual Photons at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Jin, B.N.; Jindal, P.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, Stefan; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, H.J.; Yeh, S.C.; Zalite, An.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2005-01-01

    Compton scattering of quasi-real virtual photons, gamma e+- -> gamma e+-, is studied with 0.6fb-1 of data collected by the L3 detector at the LEP e+e- collider at centre-of-mass energies root(s')=189-209GeV. About 4500 events produced by the interaction of virtual photons emitted by e+- of one beam with e-+ of the opposite beam are collected for effective centre-of-mass energies of the photon-electron and photon-positron systems in the range from root(s')= 35GeV up to root(s')=175GeV, the highest energy at which Compton scattering was ever probed. The cross sections of the gamma e+- -> gamma e+- process as a function of root(s') and of the rest-frame scattering angle are measured, combined with previous L3 measurements down to root(s')~20GeV, and found to agree with the QED expectations.

  18. Induced Compton scattering of a laser in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Liu, C.S.; Tripathi, V. K.

    2003-01-01

    A laser propagating through a high temperature low density plasma undergoes induced Compton backscattering involving the coupling of the laser pump and the scattered electromagnetic wave via the resonant electrons or the resistive quasimode. The region of nonlinear interaction is localized due to plasma inhomogeneity. At short density scale lengths when the interaction region is strongly localized and resonant electrons quickly move out of it, the electron distribution function remains Maxwellian and Compton reflectivity is significant at laser intensity >10 16 W/cm 2 . In gentle density gradients the resonant electrons are trapped in the ponderomotive and self-consistent potential well of the quasimode as they enter the interaction region. The ones with velocity v z p (v p being the phase velocity of the ponderomotive wave propagating along z direction) are accelerated to v p while those with v z >v p are retarded to v p . Since the number of the former is more than that of the latter there is a net momentum transfer to electrons. Momentum and action conservation lead to a reflectivity, R, that initially goes as the square of pump intensity, then rises gradually at higher intensity. R decreases rapidly with v th /v p , where v th is the thermal velocity of electrons

  19. Development of Compton gamma-ray sources at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F.; Anderson, S. G.; Ebbers, C. A.; Gibson, D. J.; Hartemann, F. V.; Marsh, R. A.; Messerly, M. J.; Prantil, M. A.; Wu, S.; Barty, C. P. J. [Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East avenue, Livermore, CA 94550 (United States)

    2012-12-21

    Compact Compton scattering gamma-ray sources offer the potential of studying nuclear photonics with new tools. The optimization of such sources depends on the final application, but generally requires maximizing the spectral density (photons/eV) of the gamma-ray beam while simultaneously reducing the overall bandwidth on target to minimize noise. We have developed an advanced design for one such system, comprising the RF drive, photoinjector, accelerator, and electron-generating and electron-scattering laser systems. This system uses a 120 Hz, 250 pC, 2 ps, 0.35 mm mrad electron beam with 250 MeV maximum energy in an X-band accelerator scattering off a 150 mJ, 10 ps, 532 nm laser to generate 5 Multiplication-Sign 10{sup 10} photons/eV/s/Sr at 0.5 MeV with an overall bandwidth of less than 1%. The source will be able to produce photons up to energies of 2.5 MeV. We also discuss Compton scattering gamma-ray source predictions given by numerical codes.

  20. Compton Reflection in AGN with Simbol-X

    Science.gov (United States)

    Beckmann, V.; Courvoisier, T. J.-L.; Gehrels, N.; Lubiński, P.; Malzac, J.; Petrucci, P. O.; Shrader, C. R.; Soldi, S.

    2009-05-01

    AGN exhibit complex hard X-ray spectra. Our current understanding is that the emission is dominated by inverse Compton processes which take place in the corona above the accretion disk, and that absorption and reflection in a distant absorber play a major role. These processes can be directly observed through the shape of the continuum, the Compton reflection hump around 30 keV, and the iron fluorescence line at 6.4 keV. We demonstrate the capabilities of Simbol-X to constrain complex models for cases like MCG-05-23-016, NGC 4151, NGC 2110, and NGC 4051 in short (10 ksec) observations. We compare the simulations with recent observations on these sources by INTEGRAL, Swift and Suzaku. Constraining reflection models for AGN with Simbol-X will help us to get a clear view of the processes and geometry near to the central engine in AGN, and will give insight to which sources are responsible for the Cosmic X-ray background at energies >20 keV.

  1. Design Study for Direction Variable Compton Scattering Gamma Ray

    Science.gov (United States)

    Kii, T.; Omer, M.; Negm, H.; Choi, Y. W.; Kinjo, R.; Yoshida, K.; Konstantin, T.; Kimura, N.; Ishida, K.; Imon, H.; Shibata, M.; Shimahashi, K.; Komai, T.; Okumura, K.; Zen, H.; Masuda, K.; Hori, T.; Ohgaki, H.

    2013-03-01

    A monochromatic gamma ray beam is attractive for isotope-specific material/medical imaging or non-destructive inspection. A laser Compton scattering (LCS) gamma ray source which is based on the backward Compton scattering of laser light on high-energy electrons can generate energy variable quasi-monochromatic gamma ray. Due to the principle of the LCS gamma ray, the direction of the gamma beam is limited to the direction of the high-energy electrons. Then the target object is placed on the beam axis, and is usually moved if spatial scanning is required. In this work, we proposed an electron beam transport system consisting of four bending magnets which can stick the collision point and control the electron beam direction, and a laser system consisting of a spheroidal mirror and a parabolic mirror which can also stick the collision point. Then the collision point can be placed on one focus of the spheroid. Thus gamma ray direction and collision angle between the electron beam and the laser beam can be easily controlled. As the results, travelling direction of the LCS gamma ray can be controlled under the limitation of the beam transport system, energy of the gamma ray can be controlled by controlling incident angle of the colliding beams, and energy spread can be controlled by changing the divergence of the laser beam.

  2. Detection of inverse Compton scattering in plasma wakefield experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bohlen, Simon

    2016-12-15

    Inverse Compton scattering (ICS) is the process of scattering of photons and electrons, where the photons gain a part of the electrons energy. In combination with plasma wakefield acceleration (PWA), ICS offers a compact MeV γ-ray source. A numerical study of ICS radiation produced in PWA experiments at FLASHForward was performed, using an ICS simulation code and the results from particle-in-cell modelling. The possibility of determining electron beam properties from measurements of the γ-ray source was explored for a wide range of experimental conditions. It was found that information about the electron divergence, the electron spectrum and longitudinal information can be obtained from measurements of the ICS beams for some cases. For the measurement of the ICS profile at FLASHForward, a CsI(Tl) scintillator array was chosen, similar to scintillators used in other ICS experiments. To find a suitable detector for spectrum measurements, an experimental test of a Compton spectrometer at the RAL was conducted. This test showed that a similar spectrometer could also be used at FLASHForward. However, changes to the spectrometer could be needed in order to use the pair production effect. In addition, further studies using Geant4 could lead to a better reconstruction of the obtained data. The studies presented here show that ICS is a promising method to analyse electron parameters from PWA experiments in further detail.

  3. Asymmetry and the shift of the Compton profile

    International Nuclear Information System (INIS)

    Chatterjee, B.K.; Roy, S.C.; Suric, T.; LaJohn, L.A.; Pratt, R.H.

    2007-01-01

    We show that the conventionally defined asymmetry of the Compton profile (CP) is, to a large extent, simply a shift of CP. Compton scattering is widely used in studying the electron momentum distribution (EMD) of complex systems. Extraction of information about the EMD is based on an impulse approximation (IA) description of the process. In IA the scattering from bound electrons is described as scattering from the EMD of free electrons. Most often the angular and energy distributions of scattered photons (doubly differential cross sections (DDCS)) is measured and presented in terms of CP, which is just the DDCS normalized by a kinematical factor. The deviations of measured CP from the IA results are conventionally described as an asymmetry of CP about the IA peak position. IA predicts CP to be symmetric. We have examined the discrepancy between IA predictions (and the corresponding relativistic version of IA, RIA) and more rigorous approaches (A 2 and S-matrix), using independent particle approximations for the description of the bound state of electrons. In the nonrelativistic region (in which many measurements of CP are performed) we find that the conventional asymmetry can largely be understood as the shift of the peak position. The true asymmetry with respect to the shifted peak position is in fact much smaller. RIA has similar properties to IA, except that for atoms with high nuclear charge the p → .A → interaction may modify the shift and limit the utility of description as a shift

  4. SPLET - A program for calculating the space-lethargy distribution of epithermal neutrons in a reactor lattice cell

    International Nuclear Information System (INIS)

    Matausek, M.V.; Zmijatevic, I.

    1981-01-01

    A procedure to solve the space-single-lethargy dependent transport equation for epithermal neutrons in a cylindricised multi-region reactor lattice cell has been developed and proposed in the earlier papers. Here, the computational algorithm is comprised and the computing program SPLET, which calculates the space-lethargy distribution of the spherical harmonics neutron flux moments, as well as the related integral quantities as reaction rates and resonance integrals, is described. (author)

  5. Hubungan Kondisi Geologi terhadap Alterasi dan Mineralisasi Endapan Epithermal Daerah Sualan, Kecamatan Talegong, Kabupaten Garut, Provinsi Jawa Barat

    OpenAIRE

    Kumala Sari, Paramitha Eka

    2013-01-01

    In exploration process of epithermal deposit, it is important to understand alteration and mineralization. The presence of alteration and mineralization zones help development of ore mineral exploration. Hydrothermal alteration is change of the chemistry, physics, mineralogy and origin textures of rocks as it interacts with the hydrothermal fluid. Alteration and mineralization zones has characteristics and certain minerals in each area.The research purposes are to determine the geological ...

  6. Elemental Mass Balance of the Hydrothermal Alteration Associated with the Baturappe Epithermal Silver-Base Metal Prospect, South Sulawesi, Indonesia

    OpenAIRE

    Nur, Irzal; Idrus, Arifudin; Pramumijoyo, Subagyo; Harijoko, Agung; Watanabe, Koichiro; Imai, Akira; Jaya, Asri; Irfan, Ulva Ria; Sufriadin

    2012-01-01

    Abstract The Baturappe prospect situated in southernmost part of Sulawesi island, Indonesia, is a hydrothermal mineralization district which is characterized by occurrences of epithermal silver-base metal mineralizations. The mineralizations hosted in basaltic-andesitic volcanic rocks of the late Middle-Miocene Baturappe Volcanics. This paper discusses a recent study of relationships between alteration mineralogy and whole-rock geochemistry, which focused on elemental mass balance calculat...

  7. Application of enzyme leach soil analysis for epithermal gold exploration in the Andes of Ecuador

    Energy Technology Data Exchange (ETDEWEB)

    Williams, T.M.; Gunn, A.G. [British Geological Survey, Nottingham (United Kingdom)

    2002-07-01

    Enzyme Leach (EL) soil surveys were undertaken over known epithermal Au mineralisation at El Mozo and Llano Largo, Azuay, Ecuador to assess the utility of the technique for identifying such deposits in the Ecuadorian Andes. The results indicate the development of both apical- and oxidation-type EL anomalies over auriferous structures at the two sites, the former systematically incorporating Au, and the latter Cl and Br. The spectrum of elements responsive to mineralisation at El Mozo (Cl, Br, I, La, Ce, Nd, Cu, Pb, Au, As, Sb, Ag, Zr, Sr) was found to be considerably greater than at Llano Largo (Cl, Br, Au, As, Sb, Ag, Zn), probably reflecting the contrasting high- and low-sulphidation assemblages of the two prospects. Ratios of EL versus aqua-regia extractable trace element concentrations ranged from 1: < 100 for Mn to 1: >400 for chalcophile elements such as Pb, Sb, As, Bi and Ag. Strong correlations between the concentrations of several analytes (including Mn, Sr, Cu, Co, As) extracted by the two procedures indicate, however, that EL datasets are extensively influenced by bulk matrix composition. Spatial variations of EL extractable Mn were found to exert no major influence on apical or oxidation suite anomaly patterns at El Mozo. However, Mn-normalisation of halogen data for Llano Largo elucidated otherwise obscure oxidation features, potentially related to Au mineralisation. Ratios between elements subject to apical enrichment and those of the oxidation suite (e.g. Cl/Au and Bi/Br) were found to highlight known Au targets with improved clarity. The formation mechanism of the recorded Au anomalies is uncertain, but may involve physical enrichment of Au in the soil during pedogenesis with subsequent in-situ formation of (EL soluble) Au halide complexes. The strength of such apical features is, in part, probably a function of the minimal depths to mineralisation which characterise El Mozo and Llano Largo. Oxidation halos formed by volatile non-metallic elements

  8. The alanine detector in BNCT dosimetry: dose response in thermal and epithermal neutron fields.

    Science.gov (United States)

    Schmitz, T; Bassler, N; Blaickner, M; Ziegner, M; Hsiao, M C; Liu, Y H; Koivunoro, H; Auterinen, I; Serén, T; Kotiluoto, P; Palmans, H; Sharpe, P; Langguth, P; Hampel, G

    2015-01-01

    The response of alanine solid state dosimeters to ionizing radiation strongly depends on particle type and energy. Due to nuclear interactions, neutron fields usually also consist of secondary particles such as photons and protons of diverse energies. Various experiments have been carried out in three different neutron beams to explore the alanine dose response behavior and to validate model predictions. Additionally, application in medical neutron fields for boron neutron capture therapy is discussed. Alanine detectors have been irradiated in the thermal neutron field of the research reactor TRIGA Mainz, Germany, in five experimental conditions, generating different secondary particle spectra. Further irradiations have been made in the epithermal neutron beams at the research reactors FiR 1 in Helsinki, Finland, and Tsing Hua open pool reactor in HsinChu, Taiwan ROC. Readout has been performed with electron spin resonance spectrometry with reference to an absorbed dose standard in a (60)Co gamma ray beam. Absorbed doses and dose components have been calculated using the Monte Carlo codes fluka and mcnp. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using the Hansen & Olsen alanine response model. The measured dose response of the alanine detector in the different experiments has been evaluated and compared to model predictions. Therefore, a relative effectiveness has been calculated for each dose component, accounting for its dependence on particle type and energy. Agreement within 5% between model and measurement has been achieved for most irradiated detectors. Significant differences have been observed in response behavior between thermal and epithermal neutron fields, especially regarding dose composition and depth dose curves. The calculated dose components could be verified with the experimental results in the different primary and secondary particle fields. The alanine detector can be used without

  9. Recording {gamma} spectrometer with elimination of compton background; Spectrographe {gamma} enregistreur avec elimination du bruit de fond compton

    Energy Technology Data Exchange (ETDEWEB)

    Julliot, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    This instrument, derived from the recording {gamma} spectrograph, gives better definition of photoelectric peaks by elimination of pulses caused by {gamma} photons incompletely absorbed in the scintillator (Compton effect). This system uses an original method devised by Peirson: the spectrum, devoid of photoelectric peak, supplied by a detector equipped with an anthracene scintillator, is cut off from the spectrum provided by a conventional detector equipped with a Nal (T1) scintillator. The regulation of the mechanical system, detector support and source allows the detection yields to be adjusted. The electronic system is identical in presentation with that of the recording spectrograph. (author) [French] Cet appareil derive du spectrographe {gamma} enregistreur permet d'obtenir une meilleure definition des pics photoelectriques, par elimination des impulsions provenant des photons {gamma} incompletement absorbes dans le scintillateur (effet Compton). Cet ensemble met en oeuvre une methode originale due a Peirson: le spectre, depourvu de pic photoelectrique, fourni par un detecteur, equipe avec un scintillateur d'anthracene, est retranche du spectre donne par un detecteur classique, equipe avec un scintillateur de NaI (T1). Le reglage de l'ensemble mecanique, support des detecteurs et de la source, permet d'ajuster les rendements de detection. L'ensemble electronique se presente sous un aspect identique a celui du spectrographe enregistreur. (auteur)

  10. Fluid Inclusion Study of The Tumpangpitu High Sulfidation Epithermal Gold Deposit in Banyuwangi District, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Yu Yu Myaing

    2018-03-01

    Full Text Available The Tumpangpitu high sulfidation (HS epithermal gold deposit is located in the south coast of East Java, Banyuwangi District, East Java Province, Indonesia. This area lies within the central portion of the Cenozoic Sunda‐Banda magmatic arc which trends southeast from northern Sumatra to west Java then eastward through east Java, Bali, Lombok, Sumbawa and terminating at Banda sea. The geology of the Tumpangpitu is predominantly occupied by Late Oligocene to Middle Miocene low-K calc-alkaline to alkaline andesitic volcanic rocks and interbedded with volcaniclastic rock sequences, which are associated with low-K intermediate intrusions. The mineralization style at the Tumpangpitu area is composed of a high‐sulfidation (HS epithermal gold-copper system which is typically associated with concealed gold-rich porphyry copper system. The HS epithermal mineralization is hosted by volcanic and volcaniclastic rocks in this research area. The mineralization domains are divided into Zone A, Zone B and Zone C which are situated along NW-SE-trending silica ledges zones. The HS epithermal mineralization is texturally occurs as vuggy replacements mineralization as well as stockworks, disseminated forms, fractures and veins. Fluid inclusion study was conducted for 6 quartz vein samples which petrographically entrapped fluid inclusions. Homogenization temperature (Th and melting temperature (Tm can microthermometrically be determined by fluid inclusion analysis. The average homogenization temperature (Th of the fluid inclusions gives 180˚C to 342˚C and melting temperature are from -0.1 ˚C to -1.4˚C. Tm corresponds to the salinities ranging from 0.1 to 4.5 wt% NaCl equivalent. The paleodepth of ore formation can be estimated from the salinity of fluid. Since the deposit was not formed at boiling condition, the minimum paleodepth of ore (quartz samples taken from both shallow level (53.35 m and deep level (135.15 m is determined at 650m and 1,220 m

  11. Epithermal neutron activation analysis of CR(VI)-reducer basalt-inhabiting bacteria

    International Nuclear Information System (INIS)

    Tsibakhashvili, N.Ya.; Kalabegishvili, T.L.; Murusidze, I.G.; Mosulishvili, L.M.; Frontas'eva, M.V.; Kirkesali, E.I.; Aksenova, N.G.; Holman, H.Y.

    2005-01-01

    Epithermal neutron activation analysis (ENAA) has been applied to studying elemental composition of Cr(VI)-reducer bacteria isolated from polluted basalts from the Republic of Georgia. Cr(VI)-reducing ability of the bacteria was examined by electron spin resonance (ESR) demonstrating that the bacteria differ in the rates of Cr(VI) reduction. A well-pronounced correlation between the ability of the bacteria to accumulate Cr(VI) and their ability to reduce Cr(V) to Cr(III) observed in our experiments is discussed. Elemental analysis of these bacteria also revealed that basalt-inhabiting bacteria are distinguished by relative contents of essential elements such as K, Na, Mg, Fe, Mn, Zn, and Co. A high rate of Cr(III) formation correlates with a high concentration of Co in the bacterium. ENAA detected some similarity in the elemental composition of the bacteria. The relatively high contents of Fe detected in the bacteria (140-340 μg/g of dry weight) indicate bacterial adaptation to the environmental conditions typical of the basalts. The concentrations of at least 12-19 different elements ranging from major- to ultratrace ones were determined in each type of bacteria simultaneously. The range of concentrations spans over 8 orders of magnitude

  12. Geochemical evaluation of mining wastes (tailings or tails) of epithermal ore mineralization, Hidalgo, Mexico

    International Nuclear Information System (INIS)

    Moreno, Raul; Monroy, Marcos G.; Castaneda, E. Pedro

    2009-01-01

    The mining district Pachuca-Real del Monte is located to the center-east of Mexico, between the geographical coordinates 20 degrees celsius 07 minutes 30 seconds north latitude and 98 degrees celsius 44 minutes 00 seconds of length west. The residues are derived from an epithermal mineralization. Concentrations of Pb and the Mn are significant. The mineralization is consisted of pyrite, limonite-goethite-hematite, sphalerite, galena, and chalcopyrite associated with quartz, calcite and silicates. X-rays diffraction patterns have determined quartz as the mayor mineral phase, with minor gypsum, calcite, alunite, and pyrite. The statistical analysis has presented the frequent association of Zn-Cd. The microanalysis with the scanning electronic microscope and electronic microprobe have showed the neoformation of the pyrite and the oxidation and precipitate of sulfides. The tests NOM-053 and EPA-1312 have showed that the Cd, Ni, Ag, Pb Mn, Zn, and As do not exceed the LMP. Only the Pb has been superior to the LMP in the first test. These residues might be classified as dangerous with regard to the Pb. (author) [es

  13. Adaptability of Brayton cycle conversion systems to fast, epithermal and thermal spectrum space nuclear reactors

    International Nuclear Information System (INIS)

    Tilliette, Z.P.

    1988-01-01

    The two French Government Agencies C.N.E.S. (Centre National d'Etudes Spatiales) and C.E.A. (Commissariat a l'Energie Atomique) are carrying out joint preliminary studies on space nuclear power systems for future ARIANE 5 launch vehicle applications. The Brayton cycle is the reference conversion system, whether the heat source is a liquid metal-cooled (NaK, Na or Li) reactor or a gas-cooled direct cycle concept. The search for an adequate utilization of this energy conversion means has prompted additional evaluations featuring the definition of satisfactory cycle conditions for these various kinds of reactor concepts. In addition to firstly studied fast and epithermal spectrum ones, thermal spectrum reactors can offer an opportunity of bringing out some distinctive features of the Brayton cycle, in particular for the temperature conditioning of the efficient metal hydrides (ZrH, Li/sub 7/H) moderators. One of the purposes of the paper is to confirm the potential of long lifetime ZrH moderated reactors associated with a gas cycle and to assess the thermodynamical consequences for both Nak(Na)-cooled or gas-cooled nuclear heat sources. This investigation is complemented by the definition of appropriate reactor arrangements which could be presented on a further occasion

  14. Determination of Uranium and Thorium in Brazilian coals by epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Bernedo, L.F.B.

    1981-08-01

    An experimental technique for the determination of uranium and thorium in coal by epithermal neutron activation was developed and systemized. Seventeen different coal samples, six copper monitors for neutron flux corrections and three NBS standard coal samples were irradiated together in a cadmium cylinder. Uranium and thorium were determined by measuring the 239 N sub(p) and 233 P sub(a) activities respectively, being both produced in (n,γ) reactions and subsequent β - decay. The 239 N sub(p) was measured by counting the 106.4 KeV γ-ray in a LEPS detector and the 233 P sub(a) by counting the 311.8 KeV γ-ray, but in a Ge(Li) detector. A 4096 multichannel analizer and a PDP-11 computer complemented the basic measuring equipment. An average precision of 3% was obtained in the analysis of seventeen coal samples coming from different strata and heights of Charqueadas and Morungava mines in Rio Grande do Sul State. The sensitivity of the method is around 100 ppb. This technique will allow determinations of up to twenty elements, besides uranium and thorium, and it can be applied in routine analysis. (Author) [pt

  15. Determination of uranium in tree bark samples by epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Lima, Nicole Pereira de; Saiki, Mitiko

    2017-01-01

    In this study uranium (U) concentrations were determined in certified reference materials (CRMs) and in tree bark samples collected in 'Cidade Universitaria Armando de Salles Oliveira' (CUASO) USP, Sao Paulo, SP, Brazil). The barks were collected from different species namely Poincianella pluviosa and Tipuana tipu. These bark samples were cleaned, dried, grated and milled for the analyses by epithermal neutron activation analysis method (ENAA). This method consists on irradiating samples and U standard in IEAR1 nuclear reactor with thermal neutron flux of 1:9 x 10 12 n cm -2 s -1 during 40 to 60 seconds depending on the samples matrices. The samples and standard were measured by gamma ray spectroscopy. U was identified by the peak of 74.66 keV of 239 U with half life of 23.47 minutes. Concentration of U was calculated by comparative method. For analytical quality control of U results, certified reference materials were analysed. Results obtained for CRMs presented good precision and accuracy, with |Z score| <= 0.39. Uranium concentrations in tree barks varied from 83.1 to 627.6 ng g - 1 and the relative standard deviations of these results ranged from 1.8 to 10%. (author)

  16. Investigations on the comparator technique used in epithermal neutron activation analysis

    International Nuclear Information System (INIS)

    Bereznai, T.; Bodizs, D.; Keoemley, G.

    1977-01-01

    The possible extension of the comparator technique of reactor neutron activation analysis into the field of epithermal neutron activation has been investigated. Ruthenium was used for multi-isotopic comparator. Experiments show that conversion of the so-called reference k-factors - determined by irradiation with reactor neutrons - into ksup(epi)-factors usable at activation under cadmium filter, can be evaluated with fair accuracy. Sources and extent of errors and their contribution to the final error of analysis are discussed. For equal irradiation and counting times advantage of ENAA for several elements is obvious: the much lower background activity permitted the sample to be measured closer to the detector, under better geometry conditions, consequently, permitting several elements to be determined quantitatively. The number of elements determined and the sensitivity of the method are much dependent on the experimental conditions, especially on the composition of the sample, on the PHIsub(e) value, the irradiation time and the efficiency of the Ge(Li) detector. (T.G.)

  17. YAP scintillators for resonant detection of epithermal neutrons at pulsed neutron sources

    International Nuclear Information System (INIS)

    Tardocchi, M.; Gorini, G.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N.; Schooneveld, E. M.

    2004-01-01

    Recent studies indicate the resonance detector (RD) technique as an interesting approach for neutron spectroscopy in the electron volt energy region. This work summarizes the results of a series of experiments where RD consisting of YAlO 3 (YAP) scintillators were used to detect scattered neutrons with energy in the range 1-200 eV. The response of YAP scintillators to radiative capture γ emission from a 238 U analyzer foil was characterized in a series of experiments performed on the VESUVIO spectrometer at the ISIS pulsed neutron source. In these experiments a biparametric data acquisition allowed the simultaneous measurements of both neutron time-of-flight and γ pulse height (energy) spectra. The analysis of the γ pulse height and neutron time of flight spectra permitted to identify and distinguish the signal and background components. These measurements showed that a significant improvement in the signal-to-background ratio can be achieved by setting a lower level discrimination on the pulse height at about 600 keV equivalent photon energy. Present results strongly indicate YAP scintillators as the ideal candidate for neutron scattering studies with epithermal neutrons at both very low (<5 deg.) and intermediate scattering angles

  18. Determination of uranium in tree bark samples by epithermal neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Nicole Pereira de; Saiki, Mitiko, E-mail: mitiko@ipen.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    In this study uranium (U) concentrations were determined in certified reference materials (CRMs) and in tree bark samples collected in 'Cidade Universitaria Armando de Salles Oliveira' (CUASO) USP, Sao Paulo, SP, Brazil). The barks were collected from different species namely Poincianella pluviosa and Tipuana tipu. These bark samples were cleaned, dried, grated and milled for the analyses by epithermal neutron activation analysis method (ENAA). This method consists on irradiating samples and U standard in IEAR1 nuclear reactor with thermal neutron flux of 1:9 x 10{sup 12} n cm{sup -2} s{sup -1} during 40 to 60 seconds depending on the samples matrices. The samples and standard were measured by gamma ray spectroscopy. U was identified by the peak of 74.66 keV of {sup 239}U with half life of 23.47 minutes. Concentration of U was calculated by comparative method. For analytical quality control of U results, certified reference materials were analysed. Results obtained for CRMs presented good precision and accuracy, with |Z score| <= 0.39. Uranium concentrations in tree barks varied from 83.1 to 627.6 ng g{sup -} {sup 1} and the relative standard deviations of these results ranged from 1.8 to 10%. (author)

  19. Marine Gradients of Halogens in Moss Studied by Epithermal Neutron Activation Analysis

    CERN Document Server

    Frontasyeva, M V

    2002-01-01

    Epithermal neutron activation analysis is known to be a powerful technique for the simultaneous study of chlorine, bromine and iodine in environmental samples. In this paper it is shown to be useful to elucidate marine gradients of these elements. Examples are from a transect study in northern Norway where samples of the feather moss Hylocomium splendens were collected at distances 0-300 km from the coastline. All three elements decreased exponentially as a function of distance from the ocean in the moss samples, strongly indicating that atmospheric supply from the marine environment is the predominant source of these elements to the terrestrial ecosystem. These results are compared with similar data for surface soils along the same gradients. Comparison is also made with previous data for halogens in moss in Norway obtained by conventional NAA and covering similar transects in other geographical regions. The Cl/Br and Br/I ratios in moss showed a regular change distance from the ocean in all transects, and h...

  20. Epithermal Neutron Activation Analysis (ENAA) of Cr(VI)-reducer Basalt-inhabiting Bacteria

    CERN Document Server

    Tsibakhashvili, N Ya; Kirkesali, E I; Aksenova, N G; Kalabegishvili, T L; Murusidze, I G; Mosulishvili, L M; Holman, H Y N

    2005-01-01

    Epithermal neutron activation analysis (ENAA) has been applied to studying elemental composition of Cr(VI)-reducer bacteria isolated from polluted basalts from the Republic of Georgia. Cr(VI)-reducing ability of the bacteria was examined by electron spin resonance (ESR) demonstrating that the bacteria differ in the rates of Cr(VI) reduction. A well-pronounced correlation between the ability of the bacteria to accumulate Cr(V) and their ability to reduce Cr(V) to Cr(III) observed in our experiments is discussed. Elemental analysis of these bacteria also revealed that basalt-inhabiting bacteria are distinguished by relative contents of essential elements such as K, Na, Mg, Fe, Mn, Zn, and Co. A high rate of Cr(III) formation correlates with a high concentration of Co in the bacterium. ENAA detected some similarity in the elemental composition of the bacteria. The relatively high contents of Fe detected in the bacteria (140-340 $\\mu $g/g of dry weight) indicate bacterial adaptation to the environmental condition...

  1. An epithermal neutron source for BNCT based on an ESQ-accelerator

    International Nuclear Information System (INIS)

    Ludewigt, B.A.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Phillips, T.L.; Reginato, L.L.; Wells, R.P.

    1997-07-01

    An accelerator-based BNCT facility is under development at the Lawrence Berkeley National Laboratory. Neutrons will be produced via the 7 Li(p,n) reaction at proton energies of about 2.5 MeV with subsequent moderation and filtering for shaping epithermal neutron beams for BNCT. Moderator, filter, and shielding assemblies have been modeled using MCNP. Head-phantom dose distributions have been calculated using the treatment planning software BNCT RTPE. The simulation studies have shown that a proton beam current of ∼ 20 mA is required to deliver high quality brain treatments in about 40 minutes. The results also indicate that significantly higher doses can be delivered to deep-seated tumors in comparison to the Brookhaven Medical Research Reactor beam. An electrostatic quadrupole (ESQ) accelerator is ideally suited to provide the high beam currents desired. A novel power supply utilizing the air-coupled transformer concept is under development. It will enable the ESQ-accelerator to deliver proton beam currents exceeding 50 mA. A lithium target has been designed which consists of a thin layer of lithium on an aluminum backing. Closely spaced, narrow coolant passages cut into the aluminum allow the removal of a 50kW heat-load by convective water cooling. The system under development is suitable for hospital installation and has the potential for providing neutron beams superior to reactor sources

  2. Benchmarking of epithermal methods in the lattice-physics code EPRI-CELL

    International Nuclear Information System (INIS)

    Williams, M.L.; Wright, R.Q.; Barhen, J.; Rothenstein, W.; Toney, B.

    1982-01-01

    The epithermal cross section shielding methods used in the lattice physics code EPRI-CELL (E-C) have been extensively studied to determine its major approximations and to examine the sensitivity of computed results to these approximations. The study has resulted in several improvements in the original methodology. These include: treatment of the external moderator source with intermediate resonance (IR) theory, development of a new Dancoff factor expression to account for clad interactions, development of a new method for treating resonance interference, and application of a generalized least squares method to compute best-estimate values for the Bell factor and group-dependent IR parameters. The modified E-C code with its new ENDF/B-V cross section library is tested for several numerical benchmark problems. Integral parameters computed by EC are compared with those obtained with point-cross section Monte Carlo calculations, and E-C fine group cross sections are benchmarked against point-cross section descrete ordinates calculations. It is found that the code modifications improve agreement between E-C and the more sophisticated methods. E-C shows excellent agreement on the integral parameters and usually agrees within a few percent on fine-group, shielded cross sections

  3. A Compton camera application for the GAMOS GEANT4-based framework

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, L.J., E-mail: ljh@ns.ph.liv.ac.uk [Oliver Lodge Laboratory, The University of Liverpool, Liverpool L69 7ZE (United Kingdom); Arce, P. [Department of Basic Research, CIEMAT, Madrid (Spain); Judson, D.S.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Dormand, J.; Jones, M.; Nolan, P.J.; Sampson, J.A.; Scraggs, D.P.; Sweeney, A. [Oliver Lodge Laboratory, The University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom)

    2012-04-11

    Compton camera systems can be used to image sources of gamma radiation in a variety of applications such as nuclear medicine, homeland security and nuclear decommissioning. To locate gamma-ray sources, a Compton camera employs electronic collimation, utilising Compton kinematics to reconstruct the paths of gamma rays which interact within the detectors. The main benefit of this technique is the ability to accurately identify and locate sources of gamma radiation within a wide field of view, vastly improving the efficiency and specificity over existing devices. Potential advantages of this imaging technique, along with advances in detector technology, have brought about a rapidly expanding area of research into the optimisation of Compton camera systems, which relies on significant input from Monte-Carlo simulations. In this paper, the functionality of a Compton camera application that has been integrated into GAMOS, the GEANT4-based Architecture for Medicine-Oriented Simulations, is described. The application simplifies the use of GEANT4 for Monte-Carlo investigations by employing a script based language and plug-in technology. To demonstrate the use of the Compton camera application, simulated data have been generated using the GAMOS application and acquired through experiment for a preliminary validation, using a Compton camera configured with double sided high purity germanium strip detectors. Energy spectra and reconstructed images for the data sets are presented.

  4. Science Flight Program of the Nuclear Compton Telescope

    Science.gov (United States)

    Boggs, Steven

    This is the lead proposal for this program. We are proposing a 5-year program to perform the scientific flight program of the Nuclear Compton Telescope (NCT), consisting of a series of three (3) scientific balloon flights. NCT is a balloon-borne, wide-field telescope designed to survey the gamma-ray sky (0.2-5 MeV), performing high-resolution spectroscopy, wide-field imaging, and polarization measurements. NCT has been rebuilt as a ULDB payload under the current 2-year APRA grant. (In that proposal we stated our goal was to return at this point to propose the scientific flight program.) The NCT rebuild/upgrade is on budget and schedule to achieve flight-ready status in Fall 2013. Science: NCT will map the Galactic positron annihilation emission, shedding more light on the mysterious concentration of this emission uncovered by INTEGRAL. NCT will survey Galactic nucleosynthesis and the role of supernova and other stellar populations in the creation and evolution of the elements. NCT will map 26-Al and positron annihilation with unprecedented sensitivity and uniform exposure, perform the first mapping of 60-Fe, search for young, hidden supernova remnants through 44-Ti emission, and enable a host of other nuclear astrophysics studies. NCT will also study compact objects (in our Galaxy and AGN) and GRBs, providing novel measurements of polarization as well as detailed spectra and light curves. Design: NCT is an array of germanium gamma-ray detectors configured in a compact, wide-field Compton telescope configuration. The array is shielded on the sides and bottom by an active anticoincidence shield but is open to the 25% of the sky above for imaging, spectroscopy, and polarization measurements. The instrument is mounted on a zenith-pointed gondola, sweeping out ~50% of the sky each day. This instrument builds off the Compton telescope technique pioneered by COMPTEL on the Compton Gamma Ray Observatory. However, by utilizing modern germanium semiconductor strip detectors

  5. Fast cooling of bunches in compton storage rings*

    CERN Document Server

    Bulyak, E; Zimmermann, F

    2011-01-01

    We propose an enhancement of laser radiative cooling by utilizing laser pulses of small spatial and temporal dimensions, which interact only with a fraction of an electron bunch circulating in a storage ring. We studied the dynamics of such electron bunch when laser photons scatter off the electrons at a collision point placed in a section with nonzero dispersion. In this case of ‘asymmetric cooling’, the stationary energy spread is much smaller than under conditions of regular scattering where the laser spot size is larger than the electron beam; and the synchrotron oscillations are damped faster. Coherent oscillations of large amplitude may be damped within one synchrotron period, so that this method can support the rapid successive injection of many bunches in longitudinal phase space for stacking purposes. Results of extensive simulations are presented for the performance optimization of Compton gamma-ray sources and damping rings.

  6. Laser propagation and compton scattering in parabolic plasma channel

    CERN Document Server

    Dongguo, L; Yokoya, K; Hirose, T

    2003-01-01

    A Gaussian laser beam propagating in a parabolic plasma channel is discussed in this paper. For a weak laser, plasma density perturbation induced by interaction between the laser field and plasma is very small, the refractive index can be assumed to be constant with respect to time variable. For a parabolic plasma channel, through the static propagation equation, we obtain an analytical solution of the profile function of the Gaussian laser beam for an unmatched case and give the general condition for the matched case. As the laser intensity increases, an effect due to strong laser fields is included. We discuss how to design and select the distribution of plasma density for a certain experiment in which a plasma channel is utilized to guide a laser beam. The number of scattered photons (X-rays) generated through Compton backscattering in a plasma channel is discussed. (author)

  7. Second LaBr3 Compton Telescope Prototype

    International Nuclear Information System (INIS)

    Llosa, Gabriela; Cabello, Jorge; Gillam, John-E.; Lacasta, Carlos; Oliver, Josep F.; Rafecas, Magdalena; Solaz, Carles; Solevi, Paola; Stankova, Vera; Torres-Espallardo, Irene; Trovato, Marco

    2013-06-01

    A Compton telescope for dose delivery monitoring in hadron therapy is under development at IFIC Valencia within the European project ENVISION. The telescope will consist of three detector planes, each one composed of a LaBr 3 continuous scintillator crystal coupled to four silicon photomultiplier (SiPM) arrays. After the development of a first prototype which served to assess the principle, a second prototype with larger crystals has been assembled and is being tested. The current version of the prototype consists of two detector layers, each one composed of a 32.5 x 35 mm 2 crystal coupled to four SiPM arrays. The VATA64HDR16 ASIC has been employed as front-end electronics. The readout system consists of a custom made data acquisition board. Tests with point-like sources have been carried out in the laboratory, assessing the correct functioning of the device. The system optimization is ongoing. (authors)

  8. Compton scattering from nuclei and photo-absorption sum rules

    International Nuclear Information System (INIS)

    Gorchtein, Mikhail; Hobbs, Timothy; Londergan, J. Timothy; Szczepaniak, Adam P.

    2011-01-01

    We revisit the photo-absorption sum rule for real Compton scattering from the proton and from nuclear targets. In analogy with the Thomas-Reiche-Kuhn sum rule appropriate at low energies, we propose a new 'constituent quark model' sum rule that relates the integrated strength of hadronic resonances to the scattering amplitude on constituent quarks. We study the constituent quark model sum rule for several nuclear targets. In addition, we extract the α=0 pole contribution for both proton and nuclei. Using the modern high-energy proton data, we find that the α=0 pole contribution differs significantly from the Thomson term, in contrast with the original findings by Damashek and Gilman.

  9. Laser-Compton Scattering as a Potential Electron Beam Monitor

    International Nuclear Information System (INIS)

    Chouffani, K.; Wells, D.; Harmon, F.; Lancaster, G.; Jones, J.

    2002-01-01

    LCS experiments were carried out at the Idaho Accelerator Center (IAC); sharp monochromatic x-ray lines were observed. These are produced using the so-called inverse Compton effect, whereby optical laser photons are collided with a relativistic electron beam. The back-scattered photons are then kinematically boosted to keV x-ray energies. We have first demonstrated these beams using a 20 MeV electron beam collided with a 100 MW, 7 ns Nd; YAG laser. We observed narrow LCS x-ray spectral peaks resulting from the interaction of the electron beam with the Nd; YAG laser second harmonic (532 nm). The LCS x-ray energy lines and energy deviations were measured as a function of the electron beam energy and energy-spread respectively. The results showed good agreement with the predicted valves. LCS could provide an excellent probe of electron beam energy, energy spread, transverse and longitudinal distribution and direction

  10. Deeply Virtual Compton Scattering Studies at Jefferson Lab

    International Nuclear Information System (INIS)

    Sabatie, F.

    2010-11-01

    This document describes the early experimental effort at Jefferson Lab to unravel the Generalized Parton Distributions (GPD), using the Deeply Virtual Compton Scattering (DVCS) process. The GPDs contain the usual form factors and parton distribution functions, but in addition, they include correlations between states of different longitudinal and transverse momenta. They therefore give access to a three-dimensional picture of the nucleon. DVCS is the cleanest process allowing to extract GPDs, and as early as 2000, a number of experiments were proposed for this purpose. The results of the first exploratory experiments are presented as well as the first measurements of linear combinations of GPDs. In addition, a thorough discussion on the insights gained from these early experiments is proposed, linked with the theoretical tools used to extract GPDs from DVCS data. Finally, improvements on what was done for this first experimental phase are proposed and discussed, and new proposals and measurements are described. (author)

  11. Compton imaging with the PorGamRays spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Judson, D.S., E-mail: dsj@ns.ph.liv.ac.uk [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Boston, A.J. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Coleman-Smith, P.J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Cullen, D.M. [Schuster Laboratory, University of Manchester, Manchester M13 9PL (United Kingdom); Hardie, A. [STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Harkness, L.J. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Jones, L.L. [STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Jones, M. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Lazarus, I. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Nolan, P.J. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Pucknell, V. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Rigby, S.V. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Seller, P. [STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Scraggs, D.P. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Slee, M.; Sweeney, A. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom)

    2011-10-01

    The PorGamRays project aims to develop a portable gamma-ray detection system with both spectroscopic and imaging capabilities. The system is designed around a stack of thin Cadmium Zinc Telluride (CZT) detectors. The imaging capability utilises the Compton camera principle. Each detector is segmented into 100 pixels which are read out through custom designed Application Specific Integrated Circuits (ASICs). This device has potential applications in the security, decommissioning and medical fields. This work focuses on the near-field imaging performance of a lab-based demonstrator consisting of two pixelated CZT detectors, each of which is bonded to a NUCAM II ASIC. Measurements have been made with point {sup 133}Ba and {sup 57}Co sources located {approx}35mm from the surface of the scattering detector. Position resolution of {approx}20mm FWHM in the x and y planes is demonstrated.

  12. Virtual compton scattering on the proton below pion threshold

    International Nuclear Information System (INIS)

    Bertin, P.Y.

    1995-01-01

    This paper presents the preliminary results of an electron-proton interaction experiment carried out with the accelerator of MAMI at Mainz (Germany) for the recording of virtual compton scattering events. More than 2 10 4 events were recorded in a two days run with a liquid hydrogen target. The main limitation for the counting rate comes from the limitation of the acquisition rate (100 Hz) and the single rates (10 5 ) in the drift chambers. The aim of this experiment is the understanding of both the low energy expansion and the generalized polarizabilities in order to compare, confirm or exclude the models of Quantum Chromodynamics used for the understanding of the nucleon. (J.S.). 3 refs., 5 figs

  13. Virtual compton scattering on the proton below pion threshold

    Energy Technology Data Exchange (ETDEWEB)

    Bertin, P.Y.; VCS Collaboration

    1995-12-31

    This paper presents the preliminary results of an electron-proton interaction experiment carried out with the accelerator of MAMI at Mainz (Germany) for the recording of virtual compton scattering events. More than 2 10{sup 4} events were recorded in a two days run with a liquid hydrogen target. The main limitation for the counting rate comes from the limitation of the acquisition rate (100 Hz) and the single rates (10{sup 5}) in the drift chambers. The aim of this experiment is the understanding of both the low energy expansion and the generalized polarizabilities in order to compare, confirm or exclude the models of Quantum Chromodynamics used for the understanding of the nucleon. (J.S.). 3 refs., 5 figs.

  14. Lorentz violation and black-hole thermodynamics: Compton scattering process

    International Nuclear Information System (INIS)

    Kant, E.; Klinkhamer, F.R.; Schreck, M.

    2009-01-01

    A Lorentz-noninvariant modification of quantum electrodynamics (QED) is considered, which has photons described by the nonbirefringent sector of modified Maxwell theory and electrons described by the standard Dirac theory. These photons and electrons are taken to propagate and interact in a Schwarzschild spacetime background. For appropriate Lorentz-violating parameters, the photons have an effective horizon lying outside the Schwarzschild horizon. A particular type of Compton scattering event, taking place between these two horizons (in the photonic ergoregion) and ultimately decreasing the mass of the black hole, is found to have a nonzero probability. These events perhaps allow for a violation of the generalized second law of thermodynamics in the Lorentz-noninvariant theory considered.

  15. Anomalous neutron Compton scattering cross section in zirconium hydride

    International Nuclear Information System (INIS)

    Abdul-Redah, T.; Krzystyniak, M.; Mayers, J.; Chatzidimitriou-Dreismann, C.A.

    2005-01-01

    In the last few years we observed a shortfall of intensity of neutrons scattered from protons in various materials including metal hydrogen systems using neutron Compton scattering (NCS) on the VESUVIO instrument (ISIS, UK). This anomaly has been attributed to the existence of short-lived quantum entangled states of protons in these materials. Here we report on results of very recent NCS measurements on ZrH 2 at room temperature. Also here an anomalous shortfall of scattering intensity due to protons is observed. In contrast to previous experiments on NbH 0.8 , the anomalies found in ZrH 2 are independent of the scattering angle (or momentum transfer). These different results are discussed in the light of recent criticisms and experimental tests related to the data analysis procedure on VESUVIO

  16. Generation of laser Compton gamma-rays using Compact ERL

    International Nuclear Information System (INIS)

    Shizuma, Toshiyuki; Hajima, Ryoichi; Nagai, Ryoji; Hayakawa, Takehito; Mori, Michiaki; Seya, Michio

    2015-01-01

    Nondestructive isotope-specific assay system using nuclear resonance fluorescence has been developed at JAEA. In this system, intense, mono-energetic laser Compton scattering (LCS) gamma-rays are generated by combining an energy recovery linac (ERL) and laser enhancement cavity. As technical development for such an intense gamma-ray source, we demonstrated generation of LCS gamma-rays using Compact ERL (supported by the Ministry of Education, Culture, Sports, Science and Technology) developed in collaboration with KEK. We also measured X-ray fluorescence for elements near iron region by using mono-energetic LCS gamma-rays. In this presentation, we will show results of the experiment and future plan. (author)

  17. A Compton camera prototype for prompt gamma medical imaging

    Directory of Open Access Journals (Sweden)

    Thirolf P.G.

    2016-01-01

    Full Text Available Compton camera prototype for a position-sensitive detection of prompt γ rays from proton-induced nuclear reactions is being developed in Garching. The detector system allows to track the Comptonscattered electrons. The camera consists of a monolithic LaBr3:Ce scintillation absorber crystal, read out by a multi-anode PMT, preceded by a stacked array of 6 double-sided silicon strip detectors acting as scatterers. The LaBr3:Ce crystal has been characterized with radioactive sources. Online commissioning measurements were performed with a pulsed deuteron beam at the Garching Tandem accelerator and with a clinical proton beam at the OncoRay facility in Dresden. The determination of the interaction point of the photons in the monolithic crystal was investigated.

  18. Deeply virtual compton scattering in color dipole formalism

    International Nuclear Information System (INIS)

    Machado, Magno V.T.

    2007-01-01

    In this contribution we summarize recent investigations on the Deeply Virtual Compton Scattering (DVCS) within the color dipole approach. The color dipole cross section is implemented through the phenomenological saturation model. The role played by its QCD evolution and skewedness effects in the DVCS cross section are discussed. The results are compared with the recent H1 and ZEUS Collaborations data. The skewing factor, defined as the ratio of the imaginary parts of the amplitudes Im A(γ* p → γ* p)/ Im A(γ* p → γ p) can be extracted from the data using recent DVCS and the inclusive inelastic cross section measurements at DESY-HERA. We report on this experimental extraction and compare the results to the theoretical predictions for NLO QCD and the color dipole approach. (author)

  19. Hybrid coded aperture and Compton imaging using an active mask

    International Nuclear Information System (INIS)

    Schultz, L.J.; Wallace, M.S.; Galassi, M.C.; Hoover, A.S.; Mocko, M.; Palmer, D.M.; Tornga, S.R.; Kippen, R.M.; Hynes, M.V.; Toolin, M.J.; Harris, B.; McElroy, J.E.; Wakeford, D.; Lanza, R.C.; Horn, B.K.P.; Wehe, D.K.

    2009-01-01

    The trimodal imager (TMI) images gamma-ray sources from a mobile platform using both coded aperture (CA) and Compton imaging (CI) modalities. In this paper we will discuss development and performance of image reconstruction algorithms for the TMI. In order to develop algorithms in parallel with detector hardware we are using a GEANT4 [J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G. Daquino, et al., IEEE Trans. Nucl. Sci. NS-53 (1) (2006) 270] based simulation package to produce realistic data sets for code development. The simulation code incorporates detailed detector modeling, contributions from natural background radiation, and validation of simulation results against measured data. Maximum likelihood algorithms for both imaging methods are discussed, as well as a hybrid imaging algorithm wherein CA and CI information is fused to generate a higher fidelity reconstruction.

  20. Longitudinal Target-Spin Asymmetries for Deeply Virtual Compton Scattering

    Science.gov (United States)

    Seder, E.; Biselli, A.; Pisano, S.; Niccolai, S.; Smith, G. D.; Joo, K.; Adhikari, K.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Battaglieri, M.; Bedlinskiy, I.; Bono, J.; Boiarinov, S.; Bosted, P.; Briscoe, W.; Brock, J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Carlin, C.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crabb, D.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hirlinger Saylor, N.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joosten, S.; Keith, C. D.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L. L.; Park, K.; Park, S.; Pasyuk, E.; Peng, P.; Phelps, W.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Senderovich, I.; Simonyan, A.; Skorodumina, I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tian, Y.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2015-01-01

    A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6 GeV electron beam, a longitudinally polarized proton target, and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for e p →e'p'γ events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q2 , xB, t , and ϕ , for 166 four-dimensional bins. In the framework of generalized parton distributions, at leading twist the t dependence of these asymmetries provides insight into the spatial distribution of the axial charge of the proton, which appears to be concentrated in its center. These results also bring important and necessary constraints for the existing parametrizations of chiral-even generalized parton distributions.

  1. Deeply virtual Compton scattering from gauge/gravity duality

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Miguel S.; Djuric, Marko [University of Porto (Portugal)

    2013-04-15

    We use gauge/gravity duality to study deeply virtual Compton scattering (DVCS) in the limit of high center of mass energy at fixed momentum transfer, corresponding to the limit of low Bjorken x, where the process is dominated by the exchange of the pomeron. At strong coupling, the pomeron is described as the graviton Regge trajectory in AdS space, with a hard wall to mimic confinement effects. This model agrees with HERA data in a large kinematical range. The behavior of the DVCS cross section for very high energies, inside saturation, can be explained by a simple AdS black disk model. In a restricted kinematical window, this model agrees with HERA data as well.

  2. Deeply virtual Compton scattering from gauge/gravity duality

    International Nuclear Information System (INIS)

    Costa, Miguel S.; Djurić, Marko

    2013-01-01

    We use gauge/gravity duality to study deeply virtual Compton scattering (DVCS) in the limit of high center of mass energy at fixed momentum transfer, corresponding to the limit of low Bjorken x, where the process is dominated by the exchange of the pomeron. At strong coupling, the pomeron is described as the graviton Regge trajectory in AdS space, with a hard wall to mimic confinement effects. This model agrees with HERA data in a large kinematical range. The behavior of the DVCS cross section for very high energies, inside saturation, can be explained by a simple AdS black disk model. In a restricted kinematical window, this model agrees with HERA data as well.

  3. Nuclear photon science with inverse compton photon beam

    International Nuclear Information System (INIS)

    Fujiwara, Mamoru

    2007-01-01

    Recent developments of the synchrotron radiation facilities and intense lasers are now guiding us to a new research frontier with probes of a high energy GeV photon beam and an intense and short pulse MeV γ-ray beam. New directions of the science developments with photo-nuclear reactions are discussed. The inverse Compton γ-ray has two good advantages for searching for a microscopic quantum world; they are 1) good emittance and 2) high linear and circular polarizations. With these advantages, photon beams in the energy range from MeV to GeV are used for studying hadron structure, nuclear structure, astrophysics, materials science, as well as for applying medical science. (author)

  4. Measurement of Deeply Virtual Compton Scattering at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Haller, J.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, H.; Kapichine, M.; Katzy, J.; Keller, N.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Koutouev, R.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kuckens, J.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leiner, B.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxeld, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.-C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Van Remortel, N.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Vujicic, B.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2005-01-01

    A measurement is presented of elastic deeply virtual Compton scattering \\gamma* p \\to \\gamma p made using e^+ p collision data corresponding to a luminosity of 46.5 pb^{-1}, taken with the H1 detector at HERA. The cross section is measured as a function of the photon virtuality, Q^2, the invariant mass of the \\gamma* p system, W, and for the first time, differentially in the squared momentum transfer at the proton vertex, t, in the kinematic range 2 < Q^2 < 80 GeV^2, 30 < W < 140 GeV and |t| < 1 GeV^2. QCD based calculations at next-to-leading order using generalized parton distributions can describe the data, as can colour dipole model predictions.

  5. Virtual Compton Scattering off a Spinless Target in the AdS/QCD correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France); Marquet, Cyrille [IPhT - Institut de Physique Theorique, Orme des Merisiers bat. 774, PC 136, CEA/DSM/IPhT, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Roiesnel, Claude [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France)

    2010-07-01

    We study the doubly virtual Compton scattering off a spinless target {gamma}* P {yields} {gamma}* P' within the Anti-de Sitter(AdS)/QCD formalism. We find that the general structure allowed by the Lorentz invariance and gauge invariance of the Compton amplitude is not easily reproduced with the standard recipes of the AdS/QCD correspondence. In the soft-photon regime, where the semi-classical approximation is supposed to apply best, we show that the measurements of the electric and magnetic polarizabilities of a target like the charged pion in real Compton scattering, can already serve as stringent tests. (author)

  6. Use of implicit Monte Carlo radiation transport with hydrodynamics and compton scattering

    International Nuclear Information System (INIS)

    Fleck, J.A. Jr.

    1971-03-01

    It is shown that the combination of implicit radiation transport and hydrodynamics, Compton scattering, and any other energy transport can be simply carried out by a ''splitting'' procedure. Contributions to material energy exchange can be reckoned separately for hydrodynamics, radiation transport without scattering, Compton scattering, plus any other possible energy exchange mechanism. The radiation transport phase of the calculation would be implicit, but the hydrodynamics and Compton portions would not, leading to possible time step controls. The time step restrictions which occur on radiation transfer due to large Planck mean absorption cross-sections would not occur

  7. Measurement of the neutron flux distributions, epithermal index, Westcott thermal neutron flux in the irradiation capsules of hydraulic conveyer (Hyd) and pneumatic tubes (Pn) facilities of the KUR

    International Nuclear Information System (INIS)

    Chatani, Hiroshi

    2001-05-01

    The reactions of Au(n, γ) 198 Au and Ti(n, p) 47 or 48 Sc were used for the measurements of the thermal and epithermal (thermal + epithermal) and the fast neutron flux distributions, respectively. In the case of Hyd (Hydraulic conveyer), the thermal + epithermal and fast neutron flux distributions in the horizontal direction in the capsule are especially flat; the distortion of the fluxes are 0.6% and 5.4%, respectively. However, these neutron fluxes in the vertical direction are low at the top and high at the bottom of the capsule. These differences between the top and bottom are 14% for both distributions. On the other hand, in polyethylene capsules of Pn-1, 2, 3 (Pneumatic tubes Nos. 1, 2, 3), in contrast with Hyd, these neutron flux distributions in the horizontal direction have gradients of 8 - 18% per 2.5 cm diameter, and those on the vertical axis have a distortion of approximately 5%. The strength of the epithermal dE/E component relative to the neutron density including both thermal and epithermal neutrons, i.e., the epithermal index, for the hydraulic conveyer (Hyd) and pneumatic tube No.2 (Pn-2), in which the irradiation experiments can be achieved, are determined by the multiple foil activation method using the reactions of Au(n, γ) 198 Au and Co(n, γ) 60(m+g) Co. The epithermal index observed in an aluminum capsule of Hyd is 0.034-0.04, and the Westcott thermal neutron flux is 1.2x10 14 cm -2 sec -1 at approximately 1 cm above the bottom. The epithermal index in a Pn-2 polyethylene capsule was measured by not only the multiple foil activation method but also the Cd-ratio method in which the Au(n, γ) 198 Au reaction in a cadmium cover is also used. The epithermal index is 0.045 - 0.055, and the thermal neutron flux is 1.8x10 13 cm -2 sec -1 . (J.P.N.)

  8. ESR-dosimetry in thermal and epithermal neutron fields for application in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Tobias

    2016-01-22

    Dosimetry is essential for every form of radiotherapy. In Boron Neutron Capture Therapy (BNCT) mixed neutron and gamma fields have to be considered. Dose is deposited in different neutron interactions with elements in the penetrated tissue and by gamma particles, which are always part of a neutron field. The therapeutic dose in BNCT is deposited by densely ionising particles, originating from the fragmentation of the isotope boron-10 after capture of a thermal neutron. Despite being investigated for decades, dosimetry in neutron beams or fields for BNCT remains complex, due to the variety in type and energy of the secondary particles. Today usually ionisation chambers combined with metal foils are used. The applied techniques require extensive effort and are time consuming, while the resulting uncertainties remain high. Consequently, the investigation of more effective techniques or alternative dosimeters is an important field of research. In this work the possibilities of ESR-dosimeters in those fields have been investigated. Certain materials, such as alanine, generate stable radicals upon irradiation. Using Electron Spin Resonance (ESR) spectrometry the amount of radicals, which is proportional to absorbed dose, can be quantified. Different ESR detector materials have been irradiated in the thermal neutron field of the research reactor TRIGA research reactor in Mainz, Germany, with five setups, generating different secondary particle spectra. Further irradiations have been conducted in two epithermal neutron beams. The detector response, however, strongly depends on the dose depositing particle type and energy. It is hence necessary to accompany measurements by computational modelling and simulation. In this work the Monte Carlo code FLUKA was used to calculate absorbed doses and dose components. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using amorphous track models. For the simulation, detailed models of

  9. Improved Dose Targeting for a Clinical Epithermal Neutron Capture Beam Using Optional 6Li Filtration

    International Nuclear Information System (INIS)

    Binns, Peter J.; Riley, Kent J.; Ostrovsky, Yakov; Gao Wei; Albritton, J. Raymond; Kiger, W.S.; Harling, Otto K.

    2007-01-01

    Purpose: The aim of this study was to construct a 6 Li filter and to improve penetration of thermal neutrons produced by the fission converter-based epithermal neutron beam (FCB) for brain irradiation during boron neutron capture therapy (BNCT). Methods and Materials: Design of the 6 Li filter was evaluated using Monte Carlo simulations of the existing beam line and radiation transport through an ellipsoidal water phantom. Changes in beam performance were determined using three figures of merit: (1) advantage depth (AD), the depth at which the total biologically weighted dose to tumor equals the maximum weighted dose to normal tissue; (2) advantage ratio (AR), the ratio of the integral tumor dose to that of normal tissue averaged from the surface to the AD; and (3) advantage depth dose rate (ADDR), the therapeutic dose rate at the AD. Dosimetry performed with the new filter installed provided calibration data for treatment planning. Past treatment plans were recalculated to illustrate the clinical potential of the filter. Results: The 8-mm-thick Li filter is more effective for smaller field sizes, increasing the AD from 9.3 to 9.9 cm, leaving the AR unchanged at 5.7 but decreasing the ADDR from 114 to 55 cGy min -1 for the 12 cm diameter aperture. Using the filter increases the minimum deliverable dose to deep seated tumors by up to 9% for the same maximum dose to normal tissue. Conclusions: Optional 6 Li filtration provides an incremental improvement in clinical beam performance of the FCB that could help to establish a therapeutic window in the future treatment of deep-seated tumors

  10. Precious metal-bearing epithermal deposits in western Patagonia (NE Lago Fontana region), Argentina

    Science.gov (United States)

    Lanfranchini, Mabel Elena; Etcheverry, Ricardo Oscar; de Barrio, Raúl Ernesto; Recio Hernández, Clemente

    2013-04-01

    Precious metal-bearing quartz veins occur at the northeastern sector of the Lago Fontana region in southwestern Argentina, within the context of the Andean continental magmatic arc environment. The deposits and their associated alteration zones are spatially related to a Cretaceous calc-alkaline magmatism represented by silicic dikes and hypabyssal intrusions, and hosted by a Late Jurassic to Cretaceous volcano-sedimentary sequence. The veins and related veinlets crop out discontinuously, in general terms in a NW-SE belt. The primary vein mineral assemblage is composed mostly of pyrite ± galena ± chalcopyrite > hematite ± arsenopyrite in silica gangue minerals. Chemical analyses of grab samples from selected quartz veins show as much as 5.7 ppm Au and 224 ppm Ag, as well as elevated Pb, Cu, and Zn. Hydrothermal fluids caused an innermost silicification and adularia-sericite alteration assemblage, and an external propylitic halo. Sulfur isotope values measured for sulfides (δSS from -1.90 to +1.56‰), and oxygen and hydrogen isotopes measured on quartz crystals and extracted primary fluid inclusion waters (δOO = -2.85 to +5.40‰; δDO = -106.0 to -103.4‰) indicate that mineralization probably formed from magmatic fluids, which were mixed with meteoric waters. Also, fluid inclusion data from quartz veins point out that these fluids had low salinity (1.7-4.2 wt% NaCl equiv.), and temperatures of homogenization between 180 and 325 °C. Mineralogical, petrographic and geochemical features for mineralized surface exposures indicate a typical adularia-sericite, low sulfidation epithermal system in the Lago Fontana area that represents a promising target for further exploration programs.

  11. Development of new instrumentation for epithermal neutron scattering at very low angles

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Gorini, G.; Perelli-Cippo, E.; Rhodes, N.J.; Schooneveld, E.M.; Senesi, R.

    2004-01-01

    New perspectives for epithermal neutron spectroscopy are opened up by the recent developments of Resonance Detectors (RD) for inverse geometry time-of-flight spectrometers at pulsed neutron sources. The RD is based on the combination of an analyser foil used as neutron-to-gamma converter and a suitable photon detector. Here, we report on the state of the RD which is based on a YAP scintillator viewing a natural uranium analyser foil. The response of the YAP detector to the radiative capture γ emission from the uranium analyser foil has been characterized with a bi-parametric measurement of a reference Pb sample, which allowed simultaneous measurements of both neutron time-of-flight and γ pulse height (energy) spectra. The analysis of the γ pulse height and neutron time-of-flight spectra permitted to identify the signal and background components. These measurements showed that a significant improvement in the signal-to-background ratio can be achieved by setting a lower level discrimination on the photon energy at about 600keV. The first application of RD is the Very Low Angle Detector Bank (VLAD) which is planned to be installed in the next three years as an upgrade of the VESUVIO spectrometer, at the ISIS pulsed neutron source. VLAD will extend the (q,ω) kinematical to low wave vector transfers (q10A-1) coupled to high-energy transfers (-bar ω>1eV), which is still unexplored by neutron scattering experiments. The first measurements obtained on an ice sample with a VLAD prototype consisting of four RD units are presented here

  12. The mineral products of boiling in the Golden Cross epithermal deposit

    International Nuclear Information System (INIS)

    Simmons, S.F.; Mauk, J.L.; Simpson, M.P.

    2000-01-01

    The Golden Cross low sulfidation epithermal deposit shows a number of features that are directly or indirectly related to boiling hydroythermal fluids. Occurrences of lattice calcite and their quartz pseudomorph equivalents in veins, and occurrences of adularia in veins and in the surrounding altered rocks in the vicinity of ore, are direct evidence of deposition in the presence of boiling hydrothermal fluids. Loss of carbon dioxide causes calcite deposition (platy variety) near the level of first boiling, while adularia deposits due to the attendant pH increase and cooling. Indirect evidence of boiling includes crustiform-colloform quartz banding, late massive calcite veins, and clay-carbonate alteration in the shallow and peripheral parts of the ore zone. The colloform quartz banding strongly resembles the banding in amorophous silica deposits found in geothermal pipes. This implies that fluids ascending the Empire vein structure were saturated in amorphous silica. If so, then they must have undergone phase separation, which initiated at considerable depth (e.g. > or =1000 m) and very hot temperatures (e.g. > or =300 degrees C). On the basis of stable isotope data, late massive veins appear to have deposited from CO 2 -rich steam-heated waters. Calcite deposited along heating paths as these waters descended into the upflow zone during late stage collapse of the hydrothermal plume. In active systems, such steam heated waters form by deep boiling. The high CO 2 contents of these waters promote hydrolytic alteration and the formation of clay-carbonate alteration. (author). 37 refs., 4 figs

  13. First evidence of epithermal gold occurrences in the SE Afar Rift, Republic of Djibouti

    Science.gov (United States)

    Moussa, N.; Fouquet, Y.; Le Gall, B.; Caminiti, A. M.; Rolet, J.; Bohn, M.; Etoubleau, J.; Delacourt, C.; Jalludin, M.

    2012-06-01

    The geology of the Republic of Djibouti, in the SE Afar Triangle, is characterized by intense tectonic and bimodal volcanic activity that began as early as 25-30 Ma. Each magmatic event was accompanied by hydrothermal activity. Mineralization generally occurs as gold-silver bearing chalcedony veins and is associated with felsic volcanism. Eighty samples from mineralized hydrothermal chalcedony, quartz ± carbonate veins and breccias were studied from ten sites representing four major volcanic events that range in age from early Miocene to the present. The most recent veins are controlled by fractures at the edges of grabens established during the last 4 Myr. Gold in excess of 200 ppb is present in 30% of the samples, with values up to 16 ppm. Mineralogical compositions allowed us to identify different types of mineralization corresponding to different depths in the hydrothermal system: (1) surface and subsurface mineralization characterized by carbonate chimneys, gypsum, silica cap and quartz ± carbonate veins that are depleted in metals and Au; (2) shallow banded chalcedony ± adularia veins related to boiling that contain up to 16 ppm Au, occurring as native gold and electrum with pyrite, and tetradymite; (3) quartz veins with sulfides, and (4) epidote alteration in the deepest hydrothermal zones. Samples in which pyrite is enriched in As tend to have a high Au content. The association with bimodal volcanism, the occurrence of adularia and the native Au and electrum in banded chalcedony veins are typical of epithermal systems and confirm that this type of mineralization can occur in a young intracontinental rift system.

  14. Development of new instrumentation for epithermal neutron scattering at very low angles

    Energy Technology Data Exchange (ETDEWEB)

    Tardocchi, M. [INFM, UdR Milano-Bicocca and Dipartimento di Fisica ' G.Occhialini' , Universita degli Studi di Milano-Bicocca, Pizza Della Scienza 3, Milan 20126 (Italy)]. E-mail: marco.tardocchi@mib.infn.it; Pietropaolo, A. [Dipartimento di Fisica, Universita degli Studi di Roma Tor Vergata and INFM, UdR Roma Tor Vergata, Rome (Italy); Andreani, C. [Dipartimento di Fisica, Universita degli Studi di Roma Tor Vergata and INFM, UdR Roma Tor Vergata, Rome (Italy); Gorini, G. [INFM, UdR Milano-Bicocca and Dipartimento di Fisica ' G.Occhialini' , Universita degli Studi di Milano-Bicocca, Pizza Della Scienza 3, Milan 20126 (Italy); Perelli-Cippo, E. [INFM, UdR Milano-Bicocca and Dipartimento di Fisica ' G.Occhialini' , Universita degli Studi di Milano-Bicocca, Pizza Della Scienza 3, Milan 20126 (Italy); Rhodes, N.J. [Isis Facility, Rutherford Appleton Laboratory, Chilton, Didcot (United Kingdom); Schooneveld, E.M. [Isis Facility, Rutherford Appleton Laboratory, Chilton, Didcot (United Kingdom); Senesi, R. [Dipartimento di Fisica, Universita degli Studi di Roma Tor Vergata and INFM, UdR Roma Tor Vergata, Rome (Italy)

    2004-12-11

    New perspectives for epithermal neutron spectroscopy are opened up by the recent developments of Resonance Detectors (RD) for inverse geometry time-of-flight spectrometers at pulsed neutron sources. The RD is based on the combination of an analyser foil used as neutron-to-gamma converter and a suitable photon detector. Here, we report on the state of the RD which is based on a YAP scintillator viewing a natural uranium analyser foil. The response of the YAP detector to the radiative capture {gamma} emission from the uranium analyser foil has been characterized with a bi-parametric measurement of a reference Pb sample, which allowed simultaneous measurements of both neutron time-of-flight and {gamma} pulse height (energy) spectra. The analysis of the {gamma} pulse height and neutron time-of-flight spectra permitted to identify the signal and background components. These measurements showed that a significant improvement in the signal-to-background ratio can be achieved by setting a lower level discrimination on the photon energy at about 600keV. The first application of RD is the Very Low Angle Detector Bank (VLAD) which is planned to be installed in the next three years as an upgrade of the VESUVIO spectrometer, at the ISIS pulsed neutron source. VLAD will extend the (q,{omega}) kinematical to low wave vector transfers (q10A-1) coupled to high-energy transfers (-bar {omega}>1eV), which is still unexplored by neutron scattering experiments. The first measurements obtained on an ice sample with a VLAD prototype consisting of four RD units are presented here.

  15. Multipurpose epithermal neutron beam on new research station at MARIA research reactor in Swierk-Poland

    Energy Technology Data Exchange (ETDEWEB)

    Gryzinski, M.A.; Maciak, M. [National Centre for Nuclear Research, Andrzeja Soltana 7, 05-400 Otwock-Swierk (Poland)

    2015-07-01

    MARIA reactor is an open-pool research reactor what gives the chance to install uranium fission converter on the periphery of the core. It could be installed far enough not to induce reactivity of the core but close enough to produce high flux of fast neutrons. Special design of the converter is now under construction. It is planned to set the research stand based on such uranium converter in the near future: in 2015 MARIA reactor infrastructure should be ready (preparation started in 2013), in 2016 the neutron beam starts and in 2017 opening the stand for material and biological research or for medical training concerning BNCT. Unused for many years, horizontal channel number H2 at MARIA research rector in Poland, is going to be prepared as a part of unique stand. The characteristics of the neutron beam will be significant advantage of the facility. High flux of neutrons at the level of 2x10{sup 9} cm{sup -2}s{sup -1} will be obtainable by uranium neutron converter located 90 cm far from the reactor core fuel elements (still inside reactor core basket between so called core reflectors). Due to reaction of core neutrons with converter U{sub 3}Si{sub 2} material it will produce high flux of fast neutrons. After conversion neutrons will be collimated and moderated in the channel by special set of filters and moderators. At the end of H2 channel i.e. at the entrance to the research room neutron energy will be in the epithermal energy range with neutron intensity at least at the level required for BNCT (2x10{sup 9} cm{sup -2}s{sup -1}). For other purposes density of the neutron flux could be smaller. The possibility to change type and amount of installed filters/moderators which enables getting different properties of the beam (neutron energy spectrum, neutron-gamma ratio and beam profile and shape) is taken into account. H2 channel is located in separate room which is adjacent to two other empty rooms under the preparation for research laboratories (200 m2). It is

  16. Describing Compton scattering and two-quanta positron annihilation based on Compton profiles: Two models suited for the Monte Carlo method

    CERN Document Server

    Bohlen, TT; Patera, V; Sala, P R

    2012-01-01

    An accurate description of the basic physics processes of Compton scattering and positron annihilation in matter requires the consideration of atomic shell structure effects and, in specific, the momentum distributions of the atomic electrons. Two algorithms which model Compton scattering and two-quanta positron annihilation at rest accounting for shell structure effects are proposed. Two-quanta positron annihilation is a physics process which is of particular importance for applications such as positron emission tomography (PET). Both models use a detailed description of the processes which incorporate consistently Doppler broadening and binding effects. This together with the relatively low level of complexity of the models makes them particularly suited to be employed by fast sampling methods for Monte Carlo particle transport. Momentum distributions of shell electrons are obtained from parametrized one-electron Compton profiles. For conduction electrons, momentum distributions are derived in the framework...

  17. Development of TOF-PET using Compton scattering by plastic scintillators

    International Nuclear Information System (INIS)

    Kuramoto, M.; Nakamori, T.; Kimura, S.; Gunji, S.; Takakura, M.; Kataoka, J.

    2017-01-01

    We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.

  18. Development of TOF-PET using Compton scattering by plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, M., E-mail: kuramoto@maxwell.kj.yamagata-u.ac.jp [Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560 (Japan); Nakamori, T., E-mail: nakamori@maxwell.kj.yamagata-u.ac.jp [Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560 (Japan); Kimura, S.; Gunji, S.; Takakura, M. [Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560 (Japan); Kataoka, J. [Waseda University, Okubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan)

    2017-02-11

    We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.

  19. Development of TOF-PET using Compton scattering by plastic scintillators

    Science.gov (United States)

    Kuramoto, M.; Nakamori, T.; Kimura, S.; Gunji, S.; Takakura, M.; Kataoka, J.

    2017-02-01

    We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.

  20. Spin and orbital magnetisation densities determined by Compton scattering of photons

    International Nuclear Information System (INIS)

    Collins, S.P.; Laundy, D.; Cooper, M.J.; Lovesey, S.W.; Uppsala Univ.

    1990-03-01

    Compton scattering of a circularly polarized photon beam is shown to provide direct information on orbital and spin magnetisation densities. Experiments are reported which demonstrate the feasibility of the method by correctly predicting the ratio of spin and orbital magnetisation components in iron and cobalt. A partially polarised beam of 45 keV photons from the Daresbury Synchrotron Radiation Source produces charge-magnetic interference scattering which is measured by a field-difference method. Theory shows that the interference cross section contains the Compton profile of polarised electrons modulated by a structure factor which is a weighted sum of spin and orbital magnetisations. In particular, the scattering geometry for which the structure factor vanishes yields a unique value for the ratio of the magnetisation densities. Compton scattering, being an incoherent process, provides data on total unit cell magnetisations which can be directly compared with bulk data. In this respect, Compton scattering complements magnetic neutron and photon Bragg diffraction. (author)

  1. A possible role for silicon microstrip detectors in nuclear medicine Compton imaging of positron emitters

    CERN Document Server

    Scannavini, M G; Royle, G J; Cullum, I; Raymond, M; Hall, G; Iles, G

    2002-01-01

    Collimation of gamma-rays based on Compton scatter could provide in principle high resolution and high sensitivity, thus becoming an advantageous method for the imaging of radioisotopes of clinical interest. A small laboratory prototype of a Compton camera is being constructed in order to initiate studies aimed at assessing the feasibility of Compton imaging of positron emitters. The design of the camera is based on the use of a silicon collimator consisting of a stack of double-sided, AC-coupled microstrip detectors (area 6x6 cm sup 2 , 500 mu m thickness, 128 channels/side). Two APV6 chips are employed for signal readout on opposite planes of each detector. This work presents the first results on the noise performance of the silicon strip detectors. Measurements of the electrical characteristics of the detector are also reported. On the basis of the measured noise, an angular resolution of approximately 5 deg. is predicted for the Compton collimator.

  2. Utilization of boron irradiation filters in reactor neutron activation via epithermal (n,γ) and fast neutron reactions

    International Nuclear Information System (INIS)

    Chisela, F.

    1986-01-01

    The technique of instrumental neutron activation analysis based on irradiation with reactor epithermal and fast neutrons has been described and evaluated. Important characteristics of boron neutron absorbers used to remove thermal neutrons from the reactor neutron spectrum have been examined and compared with those of cadmium. Three boron compound shields, have been designed and constructed at the BER II 5MW reactor for use in epithermal neutron activation analysis of biological materials. The major advantages offered by these filters in this application include the flexibility of varying the filter thickness, the low radioactivity induced in the filters during irradiation, ease of fabrication and the relatively low cost of the filter materials. The radiation heating due to the 10 B(n,α) 7 Li-reaction has been experimentally investigated for the filters used and the results obtained confirm the necessity for efficient cooling of these filters during irradiation. Three irradiation facilities have been characterized with respect to the neutron flux density and the flux spatial distribution. An experiment has been designed and carried out to compensate the flux inhomogeneity in two irradiation positions of the DBV facility caused by the reactor geometry. Several biological samples including well characterized reference materials have been analysed after epithermal activation and the results compared with those obtained with the classical thermal neutron activation method. Improved sensitivity of determination has been found for elements with high resonance integral to thermal neutron cross section ratios (RI/σ 0 ). The range of elements that can be determined instrumentally is extended and the time scale of analysis is considerably reduced. (orig.) [de

  3. Increase in compton scattering of gamma rays passing along metal surface

    International Nuclear Information System (INIS)

    Grigor'ev, A.N.; Bilyk, Z.V.; Sakun, A.V.; Marushchenko, V.V.; Chernyavskij, O.Yu.; Litvinov, Yu.V.

    2014-01-01

    The paper considers experimental study of changes in energy of 137 Cs gamma source as gamma rays pass along metal surface. Decrease in gamma energy was examined by reducing the number of gamma rays in the complete absorption peak to the Compton length level and increasing the Compton effect. The number of gamma rays in the complete absorption peak decreases by 3.5 times in the angle range under study

  4. Electron momentum density measurements by means of positron annihilation and Compton spectroscopy

    International Nuclear Information System (INIS)

    Gerber, W.; Dlubek, G.; Marx, U.; Bruemmer, O.; Prautzsch, J.

    1982-01-01

    The electron momentum density is measured applying positron annihilation and Compton spectroscopy in order to get information about electron wave functions. Compton spectroscopic measurements of Pd-Ag and Cu-Zn alloy systems are carried out taking into account crystal structure, mixability, and order state. Three-dimensional momentum densities of silicon are determined in order to get better information about its electronic structure. The momentum density and the spin density of ferromagnetic nickel are investigated using angular correlation curves

  5. Comparative Compton scattering studies in Cu2O and Ag2O

    International Nuclear Information System (INIS)

    Bandyopadhyay, S.; Chatterjee, A.K.; Saha, S.K.; Chatterjee, A.

    1994-01-01

    Compton scattering studies in polycrystalline Cu 2 O and Ag 2 O with 59.54 keV γ radiation are reported. A comparison has been made between the valance Compton profiles of these two components scaled to lattice momentum by normalizing them to equal electron density for outer valence electrons, and this comparison shows some differences between the bonding characters of Cu 2 O and Ag 2 O. (author)

  6. On the timing properties of germanium detectors: The centroid diagrams of prompt photopeaks and Compton events

    International Nuclear Information System (INIS)

    Penev, I.; Andrejtscheff, W.; Protochristov, Ch.; Zhelev, Zh.

    1987-01-01

    In the applications of the generalized centroid shift method with germanium detectors, the energy dependence of the time centroids of prompt photopeaks (zero-time line) and of Compton background events reveal a peculiar behavior crossing each other at about 100 keV. The effect is plausibly explained as associated with the ratio of γ-quanta causing the photoeffect and Compton scattering, respectively, at the boundaries of the detector. (orig.)

  7. Epithermal neutron activation analysis of Spirulina platensis biomass, of the C-phycocianin and of DNA extracted from it

    International Nuclear Information System (INIS)

    Mosulishvili, L.M.; Belokobyl'skij, A.I.; Kirkesali, E.I.; Khizanishvili, A.I.; Frontas'eva, M.V.; Pomyakushina, E.V.

    2002-01-01

    The epithermal neutron activation analysis (ENAA) was used for study of the biomass of Spirulina platensis. The background levels of concentration of 27 macro-, micro- and trace elements ranging from 10 -3 up to 10 4 ppm were determined. It was found that the biomass of Spirulina does not contain toxic elements above the tolerance levels and can be utilized as a matrix of pharmaceuticals based on it. The concentrations of basic elements in C-phycocianin and DNA extracted from Spirulina platensis were determined by ENAA. A comparison of the element content of a whole Spirulina biomass with that of a refined C-phycocianin preparation was made

  8. Application of Epithermal Neutron Activation Analysis to Investigate Accumulation and Adsorption of Mercury by Spirulina platensis Biomass

    CERN Document Server

    Mosulishvili, L M; Khizanishvili, A I; Frontasyeva, M V; Kirkesali, E I; Aksenova, N G

    2004-01-01

    Epithermal neutron activation analysis was used to study interaction of blue-green alga Spirulina platensis with toxic metal mercury. Various concentrations of Hg(II) were added to cell cultures in a nutrient medium. The dynamics of accumulation of Hg was investigated over several days in relation to Spirulina biomass growth. The process of Hg adsorption by Spirulina biomass was studied in short-time experiments. The isotherm of adsorption was carried out in Freindlich coordinates. Natural Spirulina biomass has potential to be used in the remediation of sewage waters at Hg concentrations \\sim 100 {\\mu}g/l.

  9. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    International Nuclear Information System (INIS)

    Capala, J.; Diaz, A.Z.; Chadha, M.

    1997-01-01

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains

  10. Application of epithermal neutron activation analysis to investigate accumulation and adsorption of mercury by Spirulina platensis biomass

    International Nuclear Information System (INIS)

    Mosulishvili, L.M.; Belokobyl'skij, A.I.; Khizanishvili, A.I.; Frontas'eva, M.V.; Kirkesali, E.I.; Aksenova, N.G.

    2004-01-01

    Epithermal neutron activation analysis was used to study interaction of blue-green alga Spirulina platensis with toxic metal mercury. Various concentrations of Hg(II) were added to cell cultures in a nutrient medium. The dynamics of accumulation of Hg was investigated over several days in relation to Spirulina biomass growth. The process of Hg adsorption by Spirulina biomass was studied in short-time experiments. The isotherm of adsorption was carried out in Freindlich coordinates. Natural Spirulina biomass has potential to be used in the remediation of sewage waters at Hg concentrations ∼100 μg/1

  11. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J. [Brookhaven National Lab., Upton, NY (United States); Diaz, A.Z.; Chadha, M. [Univ. Hospital, State Univ. of New York, NY (United States)] [and others

    1997-12-31

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains.

  12. Study on the dose distribution of the mixed field with thermal and epi-thermal neutrons for neutron capture therapy

    International Nuclear Information System (INIS)

    Kobayashi, Tooru; Sakurai, Yoshinori; Kanda, Keiji

    1994-01-01

    Simulation calculations using DOT 3.5 were carried out in order to confirm the characteristics of depth-dependent dose distribution in water phantom dependent on incident neutron energy. The epithermal neutrons mixed to thermal neutron field is effective improving the thermal neutron depth-dose distribution for neutron capture therapy. A feasibility study on the neutron energy spectrum shifter was performed using ANISN-JR for the KUR Heavy Water Facility. The design of the neutron spectrum shifter is feasible, without reducing the performance as a thermal neutron irradiation field. (author)

  13. Epithermal Neutron Activation Analysis of Spirulina platensis Biomass, of the C-Phycocianin and of DNA Extracted from It

    CERN Document Server

    Mosulishvili, L M; Belokobylsky, A I; Kirkesali, E I; Khizanishvili, A I; Pomyakushina, E V

    2002-01-01

    The epithermal neutron activation analysis (ENAA) was used for study of the biomass of Spirulina platensis. The background levels of concentration 27 macro-, micro- and trace elements ranging from 10^{-3} up to 10^{4} ppm were determined. It was found that the biomass of spirulina does not contain toxic elements above the tolerance levels and can be utilized as a matrix of pharmaceuticals based on it. The concentrations of basic elements in C-phycocianin and DNA extracted from Spirulina platensis were determined by ENAA. A comparison of the element content of a whole spirulina biomass with that of a refined C-phycocianin preparation was made.

  14. Measurement of thermal, epithermal and fast neutron flux in the IEA-R1 reactor by the foil activation method

    International Nuclear Information System (INIS)

    Koskinas, M.F.

    1979-01-01

    Experimental and theoretical details of the foil activation method applied to neutrons flux measurements at the IEA-R1 reactor are presented. The thermal - and epithermal - neutron flux were determined form activation measurements of gold, cobalt and manganese foils; and for the fast neutron flux determination, aluminum, iron and nickel foils were used. The measurements of the activity induced in the metal foils were performed using a Ge-Li gamma spectrometry system. In each energy range of the reactor neutron spectrum, the agreement among the experimental flux values obtained using the three kind of materials, indicates the consistency of the theoretical approach and of the nuclear parameters selected. (Author) [pt

  15. Recent results from a Si/CdTe semiconductor Compton telescope

    International Nuclear Information System (INIS)

    Tanaka, Takaaki; Watanabe, Shin; Takeda, Shin'ichiro; Oonuki, Kousuke; Mitani, Takefumi; Nakazawa, Kazuhiro; Takashima, Takeshi; Takahashi, Tadayuki; Tajima, Hiroyasu; Sawamoto, Naoyuki; Fukazawa, Yasushi; Nomachi, Masaharu

    2006-01-01

    We are developing a Compton telescope based on high-resolution Si and CdTe detectors for astrophysical observations in sub-MeV/MeV gamma-ray region. Recently, we constructed a prototype Compton telescope which consists of six layers of double-sided Si strip detectors (DSSDs) and CdTe pixel detectors to demonstrate the basic performance of this new technology. By irradiating the detector with gamma rays from radio isotope sources, we have succeeded in Compton reconstruction of images and spectra. The obtained angular resolution is 3.9 o (FWHM) at 511keV, and the energy resolution is 14keV (FWHM) at the same energy. In addition to the conventional Compton reconstruction, i.e., drawing cones in the sky, we also demonstrated a full reconstruction by tracking Compton recoil electrons using the signals detected in successive Si layers. By irradiating 137 Cs source, we successfully obtained an image and a spectrum of 662keV line emission with this method. As a next step, development of larger DSSDs with a size of 4cmx4cm is under way to improve the effective area of the Compton telescope. We are also developing a new low-noise analog ASIC to handle the increasing number of channels. Initial results from these two new technologies are presented in this paper as well

  16. Analysis of the factors that affect photon counts in Compton scattering

    International Nuclear Information System (INIS)

    Luo, Guang; Xiao, Guangyu

    2015-01-01

    Compton scattering has been applied in a variety of fields. The factors that affect Compton scattering have been studied extensively in the literature. However, the factors that affect the measured photon counts in Compton scattering are rarely considered. In this paper, we make a detailed discussion on those factors. First, Compton scattering experiments of some alloy series and powder mixture series are explored. Second, the electron density is researched in terms of atom and lattice constants. Third, the factor of attenuation coefficient is discussed. And then, the active degree of electrons is discussed based on the DFT theory. Lastly, the conclusions are made, that the factors affecting Compton scattering photon counts include mainly electron number density, attenuation coefficient and active degree of electrons. - Highlights: • Compton scattering experiments of some alloy series and powder mixture series are explored. • The influence of electron density is researched in terms of atom and lattice constants. • The influence of attenuation coefficient is discussed. • The active degree of electrons is discussed detailedly based on DFT theory

  17. Deeply virtual Compton scattering off longitudinally polarised protons at HERMES

    International Nuclear Information System (INIS)

    Mahon, David Francis

    2010-03-01

    This thesis details the simultaneous extraction of three polarisation-dependent asymmetries in the distribution of real photons from the ep→epγ interaction and its indistinguishable deeply virtual Compton scattering and Bethe-Heitler processes at the HERMES fixed-target experiment at Desy. The data analysed were taken using a longitudinally polarised 27.57 GeV positron beam incident on a longitudinally polarised hydrogen gas target. The extracted asymmetries include two single-spin asymmetries A UL and A LU which depend on the polarisation of the target and beam respectively, averaged over all other polarisation states. The double-spin asymmetry A LL dependent on the product of the beam and target polarisations is extracted for the first time. The asymmetry amplitudes extracted relate to combinations of Generalised Parton Distributions (GPDs), predominantly H and H. The extracted amplitudes are presented across the HERMES kinematic range alongside theoretical predictions from a GPD model based on double distributions. Large sin φ and cos(0φ) amplitudes are observed for A UL and A LL respectively, with an unexpectedly large sin(2φ) amplitude for A UL . The results for the A UL and A LL asymmetries are broadly compatible with theory predictions, and the extracted A LU amplitudes are compatible with HERMES results extracted from a significantly larger data set. It is foreseen that these results will form input to future global data-based GPD models which aim to provide a better understanding of GPDs. (orig.)

  18. Deeply virtual Compton scattering off unpolarised deuterium at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Gordon D.

    2008-10-15

    The HERMES experiment was a forward angle spectrometer on the HERA storage ring at DESY, Hamburg, Germany. HERMES successfully increased understanding of the ''spin puzzle'', the spin structure of the nucleon, by providing high precision measurements of {delta}{sigma} in the Quark Parton Model, the fraction of the spin carried by the current quarks. Following the link of another piece of the puzzle, the orbital angular momentum of quarks and gluons, to the Generalised Parton Distribution (GPD) theoretical framework, HERMES focused on measurements of the Deeply Virtual Compton Scattering (DVCS) process. These measurements are sensitive to GPDs, allowing further experimental constraints to be made on the components of nucleon spin. In the Winter shutdown period 2005-2006 HERMES was upgraded with a Recoil Detector in the target region. This allowed the experiment to make exclusive measurements of the DVCS process for the rst time, reducing background and increasing the resolution of various kinematic variables. The method for reconstructing particle tracks in the inhomogeneous magnetic eld is investigated here. DVCS o a deuterium target is measured with all available data prior to the installation of the Recoil Detector. A comparison is made to currently available models of spin-(1)/(2) GPDs. This analysis has been approved for publication by the HERMES collaboration. The data is further employed in an investigation of a model dependent constraint of the total angular momentum of up and down quarks in the nucleon. (orig.)

  19. A flexible geometry Compton camera for industrial gamma ray imaging

    International Nuclear Information System (INIS)

    Royle, G.J.; Speller, R.D.

    1996-01-01

    A design for a Compton scatter camera is proposed which is applicable to gamma ray imaging within limited access industrial sites. The camera consists of a number of single element detectors arranged in a small cluster. Coincidence circuitry enables the detectors to act as a scatter camera. Positioning the detector cluster at various locations within the site, and subsequent reconstruction of the recorded data, allows an image to be obtained. The camera design allows flexibility to cater for limited space or access simply by positioning the detectors in the optimum geometric arrangement within the space allowed. The quality of the image will be limited but imaging could still be achieved in regions which are otherwise inaccessible. Computer simulation algorithms have been written to optimize the various parameters involved, such as geometrical arrangement of the detector cluster and the positioning of the cluster within the site, and to estimate the performance of such a device. Both scintillator and semiconductor detectors have been studied. A prototype camera has been constructed which operates three small single element detectors in coincidence. It has been tested in a laboratory simulation of an industrial site. This consisted of a small room (2 m wide x 1 m deep x 2 m high) into which the only access points were two 6 cm diameter holes in a side wall. Simple images of Cs-137 sources have been produced. The work described has been done on behalf of BNFL for applications at their Sellafield reprocessing plant in the UK

  20. Compton Backscattering Concept for the Production of Molybdenum-99

    International Nuclear Information System (INIS)

    Merminga, L.; Krafft, G.A.

    2009-01-01

    The medical isotope Molybdenum-99 is presently used for 80-85% of all nuclear medicine procedures and is produced by irradiating highly enriched uranium U-235 targets in NRU reactors. It was recently proposed that an electron linac be used for the production of 99Mo via photo-fission of a natural uranium target coming from the excitation of the giant dipole resonance around 15 MeV. The photons can be produced using the braking radiation ('bremsstrahlung') spectrum of an electron beam impinged on a high Z material. In this paper we present an alternate concept for the production of 99Mo which is also based on photo-fission of U-238, but where the ∼15 MeV gamma-rays are produced by Compton backscattering of laser photons from relativistic electrons. We assume a laser wavelength of 330 nm, resulting in 485 MeV electron beam energy, and 10 mA of average current. Because the induced energy spread on the electron beam is a few percent, one may recover most of the electron beam energy, which substantially increases the efficiency of the system. The accelerator concept, based on a three-pass recirculation system with energy recovery, is described and efficiency estimates are presented.

  1. Production of X-rays by inverse Compton effect

    International Nuclear Information System (INIS)

    Mainardi, R.T.

    2005-01-01

    X-rays and gamma rays of high energy values can be produced by the scattering of low energy photons with high energy electrons, being this a process controlled by the Compton scattering. If a laser beam is used, the x-ray beam inherits the properties of intensity, monochromaticity and collimation from the laser. In this work we analyze the generation of intense x-ray beams of energies between 10 and 100 KeV to be used in a wide range of applications where a high intensity and high degrees of monochromaticity and polarization are important properties to improve image reduce doses and improve radiation treatments. To this purpose we evaluated, using relativistic kinematics the scattered beam properties in terms of the scattering angle. This arrangement is being considered in several worldwide laboratories as an alternative to synchrotron radiation and is referred to as 'table top synchrotron radiation', since it cost of installation is orders of magnitude smaller than a 'synchrotron radiation source'. The radiation beam might exhibit non-linear properties in its interaction with matter, in a similar way as a laser beam and we will investigate how to calibrate and evaluate TLD dosemeters properties, both in low and high intensity fields either mono or polyenergetic in wide spectral energy ranges. (Author)

  2. Deeply virtual Compton scattering off unpolarised deuterium at HERMES

    International Nuclear Information System (INIS)

    Hill, Gordon D.

    2008-08-01

    The HERMES experiment was a forward angle spectrometer on the HERA storage ring at DESY, Hamburg, Germany. HERMES successfully increased understanding of the ''spin puzzle'', the spin structure of the nucleon, by providing high precision measurements of ΔΣ in the Quark Parton Model, the fraction of the spin carried by the current quarks. Following the link of another piece of the puzzle, the orbital angular momentum of quarks and gluons, to the Generalised Parton Distribution (GPD) theoretical framework, HERMES focused on measurements of the Deeply Virtual Compton Scattering (DVCS) process. These measurements are sensitive to GPDs, allowing further experimental constraints to be made on the components of nucleon spin. In the Winter shutdown period 2005-2006 HERMES was upgraded with a Recoil Detector in the target region. This allowed the experiment to make exclusive measurements of the DVCS process for the rst time, reducing background and increasing the resolution of various kinematic variables. The method for reconstructing particle tracks in the inhomogeneous magnetic eld is investigated here. DVCS o a deuterium target is measured with all available data prior to the installation of the Recoil Detector. A comparison is made to currently available models of spin-(1)/(2) GPDs. This analysis has been approved for publication by the HERMES collaboration. The data is further employed in an investigation of a model dependent constraint of the total angular momentum of up and down quarks in the nucleon. (orig.)

  3. Wide angle Compton scattering within the SCET factorization framework

    International Nuclear Information System (INIS)

    Kivel, N.

    2016-01-01

    Existing data for the electromagnetic proton form factors and for the cross section of the wide angle Compton scattering (WACS) show that the hard two-gluon exchange mechanism (collinear factorization) is still not applicable in the kinematical region where Mandelstam variables s ∼ -t ∼ -u are about a few GeV 2 . On the other hand these observables can be described in phenomenological models where spectator quarks are soft which assumes a large contribution due to the soft-overlap mechanism. It turns out that the simple QCD factorization picture is not complete and must also include the soft-overlap contribution which can be described as a certain matrix element in the soft collinear effective theory (SCET). Then the leading power contribution to WACS amplitude is described as a sum of the hard- and soft-spectator contributions. The existing experimental data allows one to check certain conclusions based on the assumption about dominant role of the soft-spectator mechanism. (author)

  4. Novel design of a parallax free Compton enhanced PET scanner

    International Nuclear Information System (INIS)

    Braem, A.; Chamizo, M.; Chesi, E.; Colonna, N.; Cusanno, F.; De Leo, R.; Garibaldi, F.; Joram, C.; Marrone, S.; Mathot, S.; Nappi, E.; Schoenahl, F.; Seguinot, J.; Weilhammer, P.; Zaidi, H.

    2004-01-01

    Molecular imaging by PET is a powerful tool in modern clinical practice for cancer diagnosis. Nevertheless, improvements are needed with respect to the spatial resolution and sensitivity of the technique for its application to specific human organs (breast, prostate, brain, etc.), and to small animals. Presently, commercial PET scanners do not detect the depth of interaction of photons in scintillators, which results in a not negligible parallax error. We describe here a novel concept of PET scanner design that provides full three-dimensional (3D) gamma reconstruction with high spatial resolution over the total detector volume, free of parallax errors. It uses matrices of long scintillators read at both ends by hybrid photon detectors. This so-called 3D axial concept also enhances the gamma detection efficiency since it allows one to reconstruct a significant fraction of Compton scattered events. In this note, we describe the concept, a possible design and the expected performance of this new PET device. We also report about first characterization measurements of 10 cm long YAP:Ce scintillation crystals

  5. Beam Diagnostics for Laser Undulator Based on Compton Backward Scattering

    CERN Document Server

    Kuroda, R

    2005-01-01

    A compact soft X-ray source is required in various research fields such as material and biological science. The laser undulator based on Compton backward scattering has been developed as a compact soft X-ray source for the biological observation at Waseda University. It is performed in a water window region (250eV - 500 eV) using the interaction between 1047 nm Nd:YLF laser (10ps FWHM) and about 5 MeV high quality electron beam (10ps FWHM) generated from rf gun system. The range of X-ray energy in the water window region has K-shell absorption edges of Oxygen, Carbon and Nitrogen, which mainly constitute of living body. Since the absorption coefficient of water is much smaller than the protein's coefficient in this range, a dehydration of the specimens is not necessary. To generate the soft X-ray pulse stably, the electron beam diagnostics have been developed such as the emittance measurement using double slit scan technique, the bunch length measurement using two frequency analysis technique. In this confere...

  6. Double Compton effect: a new method of detection

    International Nuclear Information System (INIS)

    Cafagne, A.

    1978-01-01

    In this paper, a new method of observation of the double Compton effect is described. The proposed method is based on the use of a sum-coincidence circuit, whose resulting pulse is in a fast coincidence (ζ=1,7x10 -8 sec) with pulses (∼=10- 9 sec) from both scintillation detectors used to measure the energy of the coincident scattered gamma-rays. By means of this procedure, the contribution of the pulses from the sum-coincidence circuit due to random gamma-rays is eliminated. The spectra were registered in an Ortec model 6240 Multi-channel analyser using a further coincidence circuit, eliminate non-coincident pulses. The gate is open by a rectangulasr pulse which lasts for 10n sec and an adjustable delayed pulse generator adjusts its time-position in order to be coincident with the top of the sum-coincidence pulses. The adjustable delayed pulse generator compensates also for the finite time of propagation of the pulses in the circuits. Through this experimental technique it was possible to measure simultaneously the energy of each coincident photon which allowed an excellent comparison due the agreement found between the obtained results and the theory of Mandl and Skyrme. (Author) [pt

  7. Image reconstruction from limited angle Compton camera data

    International Nuclear Information System (INIS)

    Tomitani, T.; Hirasawa, M.

    2002-01-01

    The Compton camera is used for imaging the distributions of γ ray direction in a γ ray telescope for astrophysics and for imaging radioisotope distributions in nuclear medicine without the need for collimators. The integration of γ rays on a cone is measured with the camera, so that some sort of inversion method is needed. Parra found an analytical inversion algorithm based on spherical harmonics expansion of projection data. His algorithm is applicable to the full set of projection data. In this paper, six possible reconstruction algorithms that allow image reconstruction from projections with a finite range of scattering angles are investigated. Four algorithms have instability problems and two others are practical. However, the variance of the reconstructed image diverges in these two cases, so that window functions are introduced with which the variance becomes finite at a cost of spatial resolution. These two algorithms are compared in terms of variance. The algorithm based on the inversion of the summed back-projection is superior to the algorithm based on the inversion of the summed projection. (author)

  8. Compton Scattering from the Deuteron at Low Energies

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, Magnus [Lund Univ. (Sweden). Dept. of Physics

    2002-05-01

    A series of three Compton scattering experiments on deuterium have been performed at the high-resolution tagged-photon facility MAX-lab located in Lund, Sweden. The 50 < E{sub g} < 70 MeV tagged photons were scattered from a liquid deuterium target and detected simultaneously in three (10{sup x}10{sup )} NaI detectors. The average laboratory angles investigated were 45, 125 and 135 deg. The influence of the inelastic contribution was minimized by implementing a narrow elastic fit-region in the missing energy spectra. Absolute cross sections were extracted for average photon energies of 55 and 66 MeV at each angle and for each experiment. The extracted cross sections are in good agreement with those measured at Illinois by Lucas et al. The difference between the electric and magnetic isospin-averaged polarizabilities of the nucleon inside the deuteron, was varied within the calculations of Levchuk and L'vov to best reproduce the data, holding the sum fixed at 14.6 (10{sup -4} fm{sup 3}). The result implies that the electric polarizability of the neutron is the same as that of the proton within the experimental uncertainties. The result also indicates that the magnetic polarizability of the neutron is larger than that of the proton.

  9. Compton Scattering from the Deuteron at Low Energies

    International Nuclear Information System (INIS)

    Lundin, Magnus

    2002-05-01

    A series of three Compton scattering experiments on deuterium have been performed at the high-resolution tagged-photon facility MAX-lab located in Lund, Sweden. The 50 g x 10 ) NaI detectors. The average laboratory angles investigated were 45, 125 and 135 deg. The influence of the inelastic contribution was minimized by implementing a narrow elastic fit-region in the missing energy spectra. Absolute cross sections were extracted for average photon energies of 55 and 66 MeV at each angle and for each experiment. The extracted cross sections are in good agreement with those measured at Illinois by Lucas et al. The difference between the electric and magnetic isospin-averaged polarizabilities of the nucleon inside the deuteron, was varied within the calculations of Levchuk and L'vov to best reproduce the data, holding the sum fixed at 14.6 (10 -4 fm 3 ). The result implies that the electric polarizability of the neutron is the same as that of the proton within the experimental uncertainties. The result also indicates that the magnetic polarizability of the neutron is larger than that of the proton

  10. Deeply virtual Compton scattering off unpolarised deuterium at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Gordon D

    2008-10-15

    The HERMES experiment was a forward angle spectrometer on the HERA storage ring at DESY, Hamburg, Germany. HERMES successfully increased understanding of the ''spin puzzle'', the spin structure of the nucleon, by providing high precision measurements of {delta}{sigma} in the Quark Parton Model, the fraction of the spin carried by the current quarks. Following the link of another piece of the puzzle, the orbital angular momentum of quarks and gluons, to the Generalised Parton Distribution (GPD) theoretical framework, HERMES focused on measurements of the Deeply Virtual Compton Scattering (DVCS) process. These measurements are sensitive to GPDs, allowing further experimental constraints to be made on the components of nucleon spin. In the Winter shutdown period 2005-2006 HERMES was upgraded with a Recoil Detector in the target region. This allowed the experiment to make exclusive measurements of the DVCS process for the rst time, reducing background and increasing the resolution of various kinematic variables. The method for reconstructing particle tracks in the inhomogeneous magnetic eld is investigated here. DVCS o a deuterium target is measured with all available data prior to the installation of the Recoil Detector. A comparison is made to currently available models of spin-(1)/(2) GPDs. This analysis has been approved for publication by the HERMES collaboration. The data is further employed in an investigation of a model dependent constraint of the total angular momentum of up and down quarks in the nucleon. (orig.)

  11. FRONT-END ASIC FOR A SILICON COMPTON TELESCOPE.

    Energy Technology Data Exchange (ETDEWEB)

    DE GERONIMO,G.; FRIED, J.; FROST, E.; PHLIPS, B.; VERNON, E.; WULF, E.A.

    2007-10-27

    We describe a front-end application specific integrated circuit (ASIC) developed for a silicon Compton telescope. Composed of 32 channels, it reads out signals in both polarities from each side of a Silicon strip sensor, 2 mm thick 27 cm long, characterized by a strip capacitance of 30 pF. Each front-end channel provides low-noise charge amplification, shaping with a stabilized baseline, discrimination, and peak detection with an analog memory. The channels can process events simultaneously, and the read out is sparsified. The charge amplifier makes uses a dual-cascode configuration and dual-polarity adaptive reset, The low-hysteresis discriminator and the multi-phase peak detector process signals with a dynamic range in excess of four hundred. An equivalent noise charge (ENC) below 200 electrons was measured at 30 pF, with a slope of about 4.5 electrons/pF at a peaking time of 4 {micro}s. With a total dissipated power of 5 mW the channel covers an energy range up to 3.2 MeV.

  12. Compton scattering study of electron momentum distribution in lithium fluoride using 662 keV gamma radiations

    Science.gov (United States)

    Vijayakumar, R.; Shivaramu; Ramamurthy, N.; Ford, M. J.

    2008-12-01

    Here we report the first ever 137Cs Compton spectroscopy study of lithium fluoride. The spherical average Compton profiles of lithium fluoride are deduced from Compton scattering measurements on poly crystalline sample at gamma ray energy of 662 keV. To compare the experimental data, we have computed the spherical average Compton profiles using self-consistent Hartree-Fock wave functions employed on linear combination of atomic orbital (HF-LCAO) approximation. The directional Compton profiles and their anisotropic effects are also calculated using the same HF-LCAO approximation. The experimental spherical average profiles are found to be in good agreement with the corresponding HF-LCAO calculations and in qualitative agreement with Hartree-Fock free atom values. The present experimental isotropic and calculated directional profiles are also compared with the available experimental isotropic and directional Compton profiles using 59.54 and 159 keV γ-rays.

  13. The Measurement of Epithermal-to-Thermal U-238 Neutron Capture Rate (ρ28) in Aagesta Power Reactor Fuel

    International Nuclear Information System (INIS)

    Bernander, G.

    1967-09-01

    The epithermal-to-thermal neutron capture rate ratio ρ 28 in U-238 in Aagesta fuel has been measured by the chemical separation method. The method involves the isolation of Np-239 from uranium and fission products by reversed phase partition chromatography. Although somewhat elaborate, and in spite of difficulties with residual fission products, the method has yielded reasonably accurate results. Further development work on chemical procedures may lead to some improvement. A comparison with the coincidence method - electronic separation of activities - has not shown any large systematic differences between the two methods. The separation of the epithermal U-235 activation from the total has been achieved by means of the '1/v subtraction technique' using copper foils as the 1/v monitor. The complementary thermal column irradiations required have been performed in the research reactors TRIGA (Helsinki) and R1 (Stockholm). From the measured ρ 28 values the resonance escape probability (p) and the initial conversion ratio (ICR) may be calculated using cross-section data and other lattice parameters. Comparisons with theoretical values of ρ and ICR as calculated with the BURNUP lattice parameter code are favourable

  14. Simulation study of the photon quality correction factors of ionization chambers for FiR 1 epithermal neutron beam

    International Nuclear Information System (INIS)

    Koivunoro, H.; Uusi-Simola, J.; Savolainen, S.; Kotiluoto, P.; Auterinen, I.; Kosunen, A.

    2006-01-01

    At FiR 1 BNCT facility in Finland, neutron-insensitive Mg(Ar) ionization chambers are used for photon dose measurements in an epithermal neutron beam. Previously, photon sensitivity factors for the chamber for the measurements in a water phantom in FiR 1 beam have been determined experimentally from measurements in 60 Co gamma and in a 6 MV clinical accelerator photon beams. However, the response of the ionization chamber in a water phantom depends on energy spectrum and angle of the photons and the secondary electrons created inside the phantom and may differ depending on type of the irradiation source (accelerator vs. an epithermal neutron beam). Also, the experimental sensitivity factor does not take into account the possible perturbations in the photon production in phantom caused by the ionization chamber materials. Therefore, it is necessary to determine the photon quality correction factors (k Qγ ) for the Mg(Ar) chamber at the FiR 1 beam through computer simulations. In this study, the k Qγ factors have been determined for Mg(Ar) chamber from Monte Carlo calculations of absorbed photon dose at two depths in a water phantom using MCNP code. The k qγ factors obtained with this method are compared to the sensitivity factors determined with measurements in an accelerator photon beam and to the k Qγ factors published previously. (author)

  15. Paleostress and fluid-pressure regimes inferred from the orientations of Hishikari low sulfidation epithermal gold veins in southern Japan

    Science.gov (United States)

    Faye, Guillaume D.; Yamaji, Atsushi; Yonezu, Kotaro; Tindell, Thomas; Watanabe, Koichiro

    2018-05-01

    The orientation distribution of dilational fractures is affected by the state of stress around the fractures and by the pressure of the fluid that opened the fractures. Thus, the distribution can be inverted to determine not only the stress but also the pressure condition at the time of vein formation. However, epithermal ore veins that we observe today are the results of a great number of intermittent upwelling of overpressured fluids with different pressures. Here, we define driving pressure index (DPI) as the representative non-dimensionalized fluid pressure for the fluids. We collected the orientations of ∼1000 ore veins in the Hishikari gold mine, which were deposited at around 1 Ma, in southern Kyushu, Japan. It was found that the majority of the veins were deposited under an extensional stress with a NW-SE-trending σ3-axis and a northeasterly-inclined σ1-axis with relatively high stress ratio. The representative driving pressure ratio was ∼0.2. Data sets obtained at different depths in the mine indicated a positive correlation of representative driving pressure ratios with the depths. The correlation suggests repeated formation and break of pressure seals during the mineralization. Our compilation of the Pliocene-Quaternary stress regimes in southern Kyushu, including the result of the present study, suggests that epithermal gold mineralization was associated with distributed extensional deformations in southern Kyushu, and strain localization into an intra-arc rift seems to have terminated the mineralization.

  16. The Measurement of Epithermal-to-Thermal U-238 Neutron Capture Rate in Aagesta Power Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bernander, G

    1967-09-15

    The epithermal-to-thermal neutron capture rate ratio {rho}{sub 28} in U-238 in Aagesta fuel has been measured by the chemical separation method. The method involves the isolation of Np-239 from uranium and fission products by reversed phase partition chromatography. Although somewhat elaborate, and in spite of difficulties with residual fission products, the method has yielded reasonably accurate results. Further development work on chemical procedures may lead to some improvement. A comparison with the coincidence method - electronic separation of activities - has not shown any large systematic differences between the two methods. The separation of the epithermal U-235 activation from the total has been achieved by means of the '1/v subtraction technique' using copper foils as the 1/v monitor. The complementary thermal column irradiations required have been performed in the research reactors TRIGA (Helsinki) and R1 (Stockholm). From the measured {rho}{sub 28} values the resonance escape probability (p) and the initial conversion ratio (ICR) may be calculated using cross-section data and other lattice parameters. Comparisons with theoretical values of {rho} and ICR as calculated with the BURNUP lattice parameter code are favourable.

  17. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT

    International Nuclear Information System (INIS)

    Evans, J.F.; Blue, T.E.

    1996-01-01

    Protecting the facility personnel and the general public from radiation exposure is a primary safety concern of an accelerator-based epithermal neutron irradiation facility. This work makes an attempt at answering the questions open-quotes How much?close quotes and open-quotes What kind?close quotes of shielding will meet the occupational limits of such a facility. Shielding effectiveness is compared for ordinary and barytes concretes in combination with and without borated polyethylene. A calculational model was developed of a treatment room, patient open-quotes scatterer,close quotes and the epithermal neutron beam. The Monte Carlo code, MCNP, was used to compute the total effective dose equivalent rates at specific points of interest outside of the treatment room. A conservative occupational effective dose rate limit of 0.01 mSv h -1 was the guideline for this study. Conservative Monte Carlo calculations show that constructing the treatment room walls with 1.5 m of ordinary concrete, 1.2 m of barytes concrete, 1.0 m of ordinary concrete preceded by 10 cm of 5% boron-polyethylene, or 0.8 m of barytes concrete preceded by 10 cm of 5% boron-polyethylene will adequately protect facility personnel. 20 refs., 8 figs., 2 tabs

  18. Development of the Very Low Angle Detector (VLAD) for detection of epithermal neutrons at low momentum transfers

    International Nuclear Information System (INIS)

    Tardocchi, M.; Andreani, C.; Cremonesi, O.; Gorini, G.; Perelli-Cippo, E.; Pietropaolo, A.; Rhodes, N.; Schooneveld, E.; Senesi, R.

    2006-01-01

    New perspectives for epithermal neutron spectroscopy are opened up by the recent development of new instrumentation for inverse geometry time of flight spectrometers at pulsed neutron sources. One example is the Very Low Angle Detector (VLAD) bank which will be installed as an upgrade of the VESUVIO neutron spectrometer, at the ISIS pulsed neutron source. VLAD is developed for detecting epithermal neutrons in the 1-100 eV energy range at very low scattering angles (l deg. - 5 deg.). VLAD will extend the kinematical region covered by today's neutron scattering experiments to the region of low wave vector transfers ( -1 ) and high energy transfers (>1 eV). Accessing such kinematical region will allow new experimental studies in condensed matter systems. The neutron detection is based on Resonance Detectors (RD), which consist of the combination of a resonance foil used as neutron-to-gamma converter and a photon detector. The results obtained with a prototype VLAD detector confirm the potential of this kind of experiments at scattering angles as low as 2 deg. - 5 deg. GEANT4 simulations are used to address issues, such as detector cross talk, which arise with the construction of compact RD arrays

  19. Comparison of Cadmium-Zinc-Telluride semiconductor and Yttrium-Aluminum-Perovskite scintillator as photon detectors for epithermal neutron spectroscopy

    International Nuclear Information System (INIS)

    Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Gorini, G.; Imberti, S.; Perelli-Cippo, E.; Senesi, R.; Rhodes, N.; Schooneveld, E.M.

    2006-01-01

    The range of applications of epithermal neutron scattering experiments has been recently extended by the development of the Resonance Detector. In a Resonance Detector, resonant neutron absorption in an analyzer foil results in prompt emission of X- and γ-rays which are detected by a photon counter. Several combinations of analyzer foils and photon detectors have been studied and tested over the years and best results have been obtained with the combination of a natural uranium and (i) Cadmium-Zinc-Telluride (CZT) semiconductor (ii) Yttrium-Aluminum-Perovskite (YAP) scintillators. Here we compare the performance of the CZT semiconductor and YAP scintillator as Resonance Detector units. Two Resonance Detector prototypes made of natural uranium foil viewed by CZT and YAP were tested on the VESUVIO spectrometer at the ISIS spallation neutron source. The results show that both YAP and CZT can be used to detect epithermal neutrons in the energy range from 1 up to 66 eV. It was found that the signal-to-background ratio of the measurement can significantly be improved by raising the lower level discrimination threshold on the γ energy to about 600 keV. The advantages/disadvantages of the choice of a Resonance Detector based on YAP or CZT are discussed together with some potential applications

  20. Boron neutron capture therapy (BNCT). Recent aspect, a change from thermal neutron to epithermal neutron beam and a new protocol

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu

    1999-01-01

    Since 1968, One-hundred seventy three patients with glioblastoma (n=81), anaplastic astrocytoma (n=44), low grade astrocytoma (n=16) or other types of tumor (n=32) were treated by boron-neutron capture therapy (BNCT) using a combination of thermal neutron and BSH in 5 reactors (HTR n=13, JRR-3 n=1, MuITR n=98, KUR n=28, JRR-2 n=33). Out of 101 patients with glioma treated by BNCT under the recent protocol, 33 (10 glioblastoma, 14 anaplastic astrocytoma, 9 low grade astrocytoma) patients lived or have lived longer than 3 years. Nine of these 33 lived or have lived longer than 10 years. According to the retrospective analysis, the important factors related to the clinical results were tumor dose radiation dose and maximum radiation dose in thermal brain cortex. The result was not satisfied as it was expected. Then, we decided to introduce mixed beams which contain thermal neutron and epithermal neutron beams. KUR was reconstructed in 1996 and developed to be available to use mixed beams. Following the shutdown of the JRR-2, JRR-4 was renewed for medical use in 1998. Both reactors have capacity to yield thermal neutron beam, epithermal neutron beam and mixed beams. The development of the neutron source lead us to make a new protocol. (author)

  1. The genesis of the slab window-related Arzular low-sulfidation epithermal gold mineralization (eastern Pontides, NE Turkey

    Directory of Open Access Journals (Sweden)

    Enver Akaryalı

    2013-07-01

    Full Text Available The Arzular mineralization is one of the best examples of epithermal gold deposits in the eastern Pontides orogenic belt. The mineralization is hosted by the subduction-related basaltic andesites and is mainly controlled by E–W and NE–SW trending fracture zones. The main ore minerals are galena, sphalerite, pyrite, chalcopyrite, tetrahedrite and gold. Homogenization temperatures of fluid inclusions are between 130 and 295 °C for quartz and between 90 and 133 °C for sphalerite. Sulphur isotope values obtained from pyrite, galena and sphalerite vary between −1.2‰ and 3‰, indicating that sulphur belongs to magmatic origin and was derived from the Lutetian non-adakitic granitic intrusions in the region. Oxygen isotope values are between 15.0‰ and 16.7‰, and hydrogen isotope values are between −87‰ and −91‰. The sulphur isotope thermometer yielded temperatures in the range of 244–291 °C for the ore formation. Our results support the hypothesis that the Arzular mineralization is a low-sulfidation epithermal gold deposit associated with non-adakitic subduction-related granitic magmas that were generated by slab window-related processes in a south-dipping subduction zone during the Lutetian.

  2. Contribution of inner shell Compton ionization to the X-ray fluorescence line intensity

    Science.gov (United States)

    Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio

    2016-10-01

    The Compton effect is a potential ionization mechanism of atoms. It produces vacancies in inner shells that are filled with the same mechanism of atomic relaxation as the one following photo-absorption. This contribution to X-ray fluorescence emission is frequently neglected because the total Compton cross-section is apparently much lower than the photoelectric one at useful X-ray energies. However, a more careful analysis suggests that is necessary to consider single shell cross sections (instead of total cross sections) as a function of energy. In this article these Compton cross sections are computed for the shells K, L1-L3 and M1-M5 in the framework of the impulse approximation. By comparing the Compton and the photoelectric cross-section for each shell it is then possible to determine the extent of the Compton correction to the intensity of the corresponding characteristic lines. It is shown that for the K shell the correction becomes relevant for excitation energies which are too high to be influent in X-ray spectrometry. In contrast, for L and M shells the Compton contribution is relevant for medium-Z elements and medium energies. To illustrate the different grades of relevance of the correction, for each ionized shell, the energies for which the Compton contribution reaches the extent levels of 1, 5, 10, 20, 50 and 100% of the photoelectric one are determined for all the elements with Z = 11-92. For practical applications it is provided a simple formula and fitting coefficients to compute average correction levels for the shells considered.

  3. Compton camera study for high efficiency SPECT and benchmark with Anger system

    Science.gov (United States)

    Fontana, M.; Dauvergne, D.; Létang, J. M.; Ley, J.-L.; Testa, É.

    2017-12-01

    Single photon emission computed tomography (SPECT) is at present one of the major techniques for non-invasive diagnostics in nuclear medicine. The clinical routine is mostly based on collimated cameras, originally proposed by Hal Anger. Due to the presence of mechanical collimation, detection efficiency and energy acceptance are limited and fixed by the system’s geometrical features. In order to overcome these limitations, the application of Compton cameras for SPECT has been investigated for several years. In this study we compare a commercial SPECT-Anger device, the General Electric HealthCare Infinia system with a High Energy General Purpose (HEGP) collimator, and the Compton camera prototype under development by the French collaboration CLaRyS, through Monte Carlo simulations (GATE—GEANT4 Application for Tomographic Emission—version 7.1 and GEANT4 version 9.6, respectively). Given the possible introduction of new radio-emitters at higher energies intrinsically allowed by the Compton camera detection principle, the two detectors are exposed to point-like sources at increasing primary gamma energies, from actual isotopes already suggested for nuclear medicine applications. The Compton camera prototype is first characterized for SPECT application by studying the main parameters affecting its imaging performance: detector energy resolution and random coincidence rate. The two detector performances are then compared in terms of radial event distribution, detection efficiency and final image, obtained by gamma transmission analysis for the Anger system, and with an iterative List Mode-Maximum Likelihood Expectation Maximization (LM-MLEM) algorithm for the Compton reconstruction. The results show for the Compton camera a detection efficiency increased by a factor larger than an order of magnitude with respect to the Anger camera, associated with an enhanced spatial resolution for energies beyond 500 keV. We discuss the advantages of Compton camera application

  4. Production of X-rays by inverse Compton effect; Produccion de rayos X por efecto Compton inverso

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, R.T. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina)

    2005-07-01

    X-rays and gamma rays of high energy values can be produced by the scattering of low energy photons with high energy electrons, being this a process controlled by the Compton scattering. If a laser beam is used, the x-ray beam inherits the properties of intensity, monochromaticity and collimation from the laser. In this work we analyze the generation of intense x-ray beams of energies between 10 and 100 KeV to be used in a wide range of applications where a high intensity and high degrees of monochromaticity and polarization are important properties to improve image reduce doses and improve radiation treatments. To this purpose we evaluated, using relativistic kinematics the scattered beam properties in terms of the scattering angle. This arrangement is being considered in several worldwide laboratories as an alternative to synchrotron radiation and is referred to as 'table top synchrotron radiation', since it cost of installation is orders of magnitude smaller than a 'synchrotron radiation source'. The radiation beam might exhibit non-linear properties in its interaction with matter, in a similar way as a laser beam and we will investigate how to calibrate and evaluate TLD dosemeters properties, both in low and high intensity fields either mono or polyenergetic in wide spectral energy ranges. (Author)

  5. Characterization of CT beams using Compton spectrometry; Caracterização de feixes de TC utilizando Espectrometria Compton

    Energy Technology Data Exchange (ETDEWEB)

    Terini, Ricardo A.; Nerssissian, Denise Y.; Campelo, Maria Carolina S.; Yoshimura, Elisabeth M., E-mail: rterini@if.usp.br [Universidade de São Paulo (LDRFM/USP), SP (Brazil). Lab. de Dosimetria das Radiações e Física Médica

    2017-07-01

    Obtaining the energy spectra of computed tomography (CT) X-ray beams is essential, helping to obtain parameters that characterize beam quality and equipment performance. However, CT photon fluxes are too high to have the spectra measured directly with common photon counting detectors. In this work, a Compton spectrometer was designed, with Al-Pb-Al collimators and shields, as well as a cadmium telluride (CdTe) detector to get the spectrum of CT beams, from the measurement of the spectrum of a beam scattered at 90 deg by a polymethyl-methacrylate (PMMA) rod. A MatLab® computer code was developed, using the Waller-Hartree formalism, to reconstruct the spectrum of the incident beam, from the measured scattered beam spectrum. Tests at IF-USP Laboratory of Radiation Dosimetry and Medical Physics with standard CT beams showed that the reconstructed spectrum is alike the directly measured beam. Shielding influence and scatterer thickness were investigated. The system was tested in measurements on a GE 690 CT scanner, showing practical positioning on the exam table, and alignment with CT lasers refined by scan projection radiography. Spectra obtained with the properly shielded system presented values of half-value layer (HVL) compatible with those measured in QC tests and kVp values with accuracy to evaluate the scanner voltage calibration. (author)

  6. POST-PERIASTRON GAMMA-RAY FLARE FROM PSR B1259-63/LS 2883 AS A RESULT OF COMPTONIZATION OF THE COLD PULSAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Khangulyan, Dmitry [Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Aharonian, Felix A. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Bogovalov, Sergey V. [Department of Molecular Physics, National Research Nuclear University (MEPHI), Kashirskoe shosse 31, Moscow 115409 (Russian Federation); Ribo, Marc, E-mail: khangul@astro.isas.jaxa.jp, E-mail: felix.aharonian@dias.ie, E-mail: svbogovalov@mephi.ru, E-mail: mribo@am.ub.es [Departament d' Astronomia i Meteorologia, Institut de Ciences del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain)

    2012-06-10

    We argue that the bright flare of the binary pulsar PSR B1259-63/LS2883 detected by the Fermi Large Area Telescope is due to the inverse Compton scattering of the unshocked electron-positron pulsar wind with a Lorentz factor {Gamma}{sub 0} Almost-Equal-To 10{sup 4}. The combination of two effects both linked to the circumstellar disk (CD) is a key element in the proposed model. The first effect is related to the impact of the surrounding medium on the termination of the pulsar wind. Inside the disk, the 'early' termination of the wind results in suppression of its gamma-ray luminosity. When the pulsar escapes the disk, the conditions for termination of the wind undergo significant changes. This would lead to a dramatic increase of the pulsar wind zone, and thus to the proportional increase of the gamma-ray flux. On the other hand, if the parts of the CD disturbed by the pulsar can supply infrared photons of density high enough for efficient Comptonization of the wind, almost the entire kinetic energy of the pulsar wind would be converted to radiation, thus the gamma-ray luminosity of the wind could approach the level of the pulsar's spin-down luminosity as reported by the Fermi Collaboration.

  7. A new Compton densitometer for measuring pulmonary edema

    International Nuclear Information System (INIS)

    Loo, B.W.; Goulding, F.S.; Simon, S.

    1986-01-01

    Pulmonary edema (PE) is the pathological increase of extravascular lung water found most often in patients with congestive heart failure and other critically ill patients who suffer from intravenous fluid overload. The chest x-ray, the standard method for validating the presence of PE, is neither quantitative nor sensitive. A non-invasive lung density monitor that is accurate, easily portable, safe and inexpensive is needed for clinical use. To deal with the problem of attenuation along the beam paths, previous gamma-ray techniques require simultaneous measurement of transmitted and scattered beams. Since multiple scattering is a strong function of the density of the scattering medium and the mass distribution within the detection geometry, there will be inherent uncertainties in the system calibration unless it is performed on a body structure closely matched to that of each individual patient. Other researchers who have employed Compton scattering techniques generally used systems of extended size and detectors with poor energy resolution. This has resulted in significant systematic biases from multiply-scattered photons and larger errors in counting statistics at a given radiation dose to the patient. We are proposing a patented approach in which only backscattered photons are measured with a high-resolution HPGe detector in a compact system geometry. By proper design and a unique data extraction scheme, effects of the variable chest wall on lung density measurements are minimized. Preliminary test results indicate that with a radioactive source of under 30 GBq, it should be possible to make an accurate lung density, measurement in one minute, with a risk of radiation exposure to the patient a thousand times smaller than that from a typical chest x-ray

  8. Deeply virtual Compton scattering off longitudinally polarised protons at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Mahon, David Francis

    2010-06-15

    This thesis details the simultaneous extraction of three polarisation-dependent asymmetries in the distribution of real photons from the ep{yields}ep{gamma} interaction and its indistinguishable deeply virtual Compton scattering and Bethe-Heitler processes at the HERMES fixed-target experiment at Desy. The data analysed were taken using a longitudinally polarised 27.57 GeV positron beam incident on a longitudinally polarised hydrogen gas target. The extracted asymmetries include two single-spin asymmetries A{sub UL} and A{sub LU} which depend on the polarisation of the target and beam respectively, averaged over all other polarisation states. The double-spin asymmetry A{sub LL} dependent on the product of the beam and target polarisations is extracted for the first time. The asymmetry amplitudes extracted relate to combinations of Generalised Parton Distributions (GPDs), predominantly H and H. The extracted amplitudes are presented across the HERMES kinematic range alongside theoretical predictions from a GPD model based on double distributions. Large sin {phi} and cos(0{phi}) amplitudes are observed for A{sub UL} and A{sub LL} respectively, with an unexpectedly large sin(2{phi}) amplitude for A{sub UL}. The results for the A{sub UL} and A{sub LL} asymmetries are broadly compatible with theory predictions, and the extracted A{sub LU} amplitudes are compatible with HERMES results extracted from a significantly larger data set. It is foreseen that these results will form input to future global data-based GPD models which aim to provide a better understanding of GPDs. (orig.)

  9. Resolution recovery for Compton camera using origin ensemble algorithm.

    Science.gov (United States)

    Andreyev, A; Celler, A; Ozsahin, I; Sitek, A

    2016-08-01

    Compton cameras (CCs) use electronic collimation to reconstruct the images of activity distribution. Although this approach can greatly improve imaging efficiency, due to complex geometry of the CC principle, image reconstruction with the standard iterative algorithms, such as ordered subset expectation maximization (OSEM), can be very time-consuming, even more so if resolution recovery (RR) is implemented. We have previously shown that the origin ensemble (OE) algorithm can be used for the reconstruction of the CC data. Here we propose a method of extending our OE algorithm to include RR. To validate the proposed algorithm we used Monte Carlo simulations of a CC composed of multiple layers of pixelated CZT detectors and designed for imaging small animals. A series of CC acquisitions of small hot spheres and the Derenzo phantom placed in air were simulated. Images obtained from (a) the exact data, (b) blurred data but reconstructed without resolution recovery, and (c) blurred and reconstructed with resolution recovery were compared. Furthermore, the reconstructed contrast-to-background ratios were investigated using the phantom with nine spheres placed in a hot background. Our simulations demonstrate that the proposed method allows for the recovery of the resolution loss that is due to imperfect accuracy of event detection. Additionally, tests of camera sensitivity corresponding to different detector configurations demonstrate that the proposed CC design has sensitivity comparable to PET. When the same number of events were considered, the computation time per iteration increased only by a factor of 2 when OE reconstruction with the resolution recovery correction was performed relative to the original OE algorithm. We estimate that the addition of resolution recovery to the OSEM would increase reconstruction times by 2-3 orders of magnitude per iteration. The results of our tests demonstrate the improvement of image resolution provided by the OE reconstructions

  10. Fast image reconstruction for Compton camera using stochastic origin ensemble approach.

    Science.gov (United States)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2011-01-01

    Compton camera has been proposed as a potential imaging tool in astronomy, industry, homeland security, and medical diagnostics. Due to the inherent geometrical complexity of Compton camera data, image reconstruction of distributed sources can be ineffective and/or time-consuming when using standard techniques such as filtered backprojection or maximum likelihood-expectation maximization (ML-EM). In this article, the authors demonstrate a fast reconstruction of Compton camera data using a novel stochastic origin ensembles (SOE) approach based on Markov chains. During image reconstruction, the origins of the measured events are randomly assigned to locations on conical surfaces, which are the Compton camera analogs of lines-of-responses in PET. Therefore, the image is defined as an ensemble of origin locations of all possible event origins. During the course of reconstruction, the origins of events are stochastically moved and the acceptance of the new event origin is determined by the predefined acceptance probability, which is proportional to the change in event density. For example, if the event density at the new location is higher than in the previous location, the new position is always accepted. After several iterations, the reconstructed distribution of origins converges to a quasistationary state which can be voxelized and displayed. Comparison with the list-mode ML-EM reveals that the postfiltered SOE algorithm has similar performance in terms of image quality while clearly outperforming ML-EM in relation to reconstruction time. In this study, the authors have implemented and tested a new image reconstruction algorithm for the Compton camera based on the stochastic origin ensembles with Markov chains. The algorithm uses list-mode data, is parallelizable, and can be used for any Compton camera geometry. SOE algorithm clearly outperforms list-mode ML-EM for simple Compton camera geometry in terms of reconstruction time. The difference in computational time

  11. Development of compact Compton camera for 3D image reconstruction of radioactive contamination

    Science.gov (United States)

    Sato, Y.; Terasaka, Y.; Ozawa, S.; Nakamura Miyamura, H.; Kaburagi, M.; Tanifuji, Y.; Kawabata, K.; Torii, T.

    2017-11-01

    The Fukushima Daiichi Nuclear Power Station (FDNPS), operated by Tokyo Electric Power Company Holdings, Inc., went into meltdown after the large tsunami caused by the Great East Japan Earthquake of March 11, 2011. Very large amounts of radionuclides were released from the damaged plant. Radiation distribution measurements inside FDNPS buildings are indispensable to execute decommissioning tasks in the reactor buildings. We have developed a compact Compton camera to measure the distribution of radioactive contamination inside the FDNPS buildings three-dimensionally (3D). The total weight of the Compton camera is lower than 1.0 kg. The gamma-ray sensor of the Compton camera employs Ce-doped GAGG (Gd3Al2Ga3O12) scintillators coupled with a multi-pixel photon counter. Angular correction of the detection efficiency of the Compton camera was conducted. Moreover, we developed a 3D back-projection method using the multi-angle data measured with the Compton camera. We successfully observed 3D radiation images resulting from the two 137Cs radioactive sources, and the image of the 9.2 MBq source appeared stronger than that of the 2.7 MBq source.

  12. On the possibility of using X-ray Compton scattering to study magnetoelectrical properties of crystals

    Energy Technology Data Exchange (ETDEWEB)

    Collins, S. P., E-mail: steve.collins@diamond.ac.uk; Laundy, D.; Connolley, T.; Laan, G. van der; Fabrizi, F. [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE (United Kingdom); Janssen, O. [Department of Physics, New York University, New York, NY 10003 (United States); Cooper, M. J. [Department of Physics, University of Warwick, CV4 7AL (United Kingdom); Ebert, H.; Mankovsky, S. [Universität München, Department Chemie, Haus E2.033, Butenandtstrasse 5-13, D-81377 München (Germany)

    2016-02-16

    The possibility of using X-ray Compton scattering to reveal antisymmetric components of the electron momentum density, as a fingerprint of magnetoelectric sample properties, is investigated experimentally and theoretically by studying the polar ferromagnet GaFeO{sub 3}. This paper discusses the possibility of using Compton scattering – an inelastic X-ray scattering process that yields a projection of the electron momentum density – to probe magnetoelectrical properties. It is shown that an antisymmetric component of the momentum density is a unique fingerprint of such time- and parity-odd physics. It is argued that polar ferromagnets are ideal candidates to demonstrate this phenomenon and the first experimental results are shown, on a single-domain crystal of GaFeO{sub 3}. The measured antisymmetric Compton profile is very small (≃ 10{sup −5} of the symmetric part) and of the same order of magnitude as the statistical errors. Relativistic first-principles simulations of the antisymmetric Compton profile are presented and it is shown that, while the effect is indeed predicted by theory, and scales with the size of the valence spin–orbit interaction, its magnitude is significantly overestimated. The paper outlines some important constraints on the properties of the antisymmetric Compton profile arising from the underlying crystallographic symmetry of the sample.

  13. An energy-subtraction Compton scatter camera design for in vivo medical imaging of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Rohe, R.C.; Valentine, J.D.

    1996-01-01

    A Compton scatter camera (CSC) design is proposed for imaging radioisotopes used as biotracers. A clinical version may increase sensitivity by a factor of over 100, while maintaining or improving spatial resolution, as compared with existing Anger cameras that use lead collimators. This novel approach is based on using energy subtraction (ΔE = E 0 - E SC , where E 0 , ΔE, and E SC are the energy of the emitted gamma ray, the energy deposited by the initial Compton scatter, and the energy of the Compton scattered photon) to determine the amount of energy deposited in the primary system. The energy subtraction approach allows the requirement of high energy resolution to be placed on a secondary detector system instead of the primary detector system. Requiring primary system high energy resolution has significantly limited previous CSC designs for medical imaging applications. Furthermore, this approach is dependent on optimizing the camera design for data acquisition of gamma rays that undergo only one Compton scatter in a low-Z primary detector system followed by a total absorption of the Compton scattered photon in a high-Z secondary detector system. The proposed approach allows for a more compact primary detector system, a more simplified pulse processing interface, and a much less complicated detector cooling scheme as compared with previous CSC designs. Analytical calculations and Monte Carlo simulation results for some specific detector materials and geometries are presented

  14. Optimisation of a dual head semiconductor Compton camera using Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, L.J. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L697ZE (United Kingdom)], E-mail: ljh@ns.ph.liv.ac.uk; Boston, A.J.; Boston, H.C.; Cooper, R.J.; Cresswell, J.R.; Grint, A.N.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L697ZE (United Kingdom); Beveridge, T.; Gillam, J. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia); Lazarus, I. [STFC Daresbury Laboratory, Warrington, Cheshire (United Kingdom)

    2009-06-01

    Conventional medical gamma-ray camera systems utilise mechanical collimation to provide information on the position of an incident gamma-ray photon. Systems that use electronic collimation utilising Compton image reconstruction techniques have the potential to offer huge improvements in sensitivity. Position sensitive high purity germanium (HPGe) detector systems are being evaluated as part of a single photon emission computed tomography (SPECT) Compton camera system. Data have been acquired from the orthogonally segmented planar SmartPET detectors, operated in Compton camera mode. The minimum gamma-ray energy which can be imaged by the current system in Compton camera configuration is 244 keV due to the 20 mm thickness of the first scatter detector which causes large gamma-ray absorption. A simulation package for the optimisation of a new semiconductor Compton camera has been developed using the Geant4 toolkit. This paper will show results of preliminary analysis of the validated Geant4 simulation for gamma-ray energies of SPECT, 141 keV.

  15. Development of a compact scintillator-based high-resolution Compton camera for molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, A., E-mail: daphne3h-aya@ruri.waseda.jp [Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo (Japan); Kataoka, J.; Koide, A.; Sueoka, K.; Iwamoto, Y.; Taya, T. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo (Japan); Ohsuka, S. [Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka (Japan)

    2017-02-11

    The Compton camera, which shows gamma-ray distribution utilizing the kinematics of Compton scattering, is a promising detector capable of imaging across a wide range of energy. In this study, we aim to construct a small-animal molecular imaging system in a wide energy range by using the Compton camera. We developed a compact medical Compton camera based on a Ce-doped Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (Ce:GAGG) scintillator and multi-pixel photon counter (MPPC). A basic performance confirmed that for 662 keV, the typical energy resolution was 7.4 % (FWHM) and the angular resolution was 4.5° (FWHM). We then used the medical Compton camera to conduct imaging experiments based on a 3-D imaging reconstruction algorithm using the multi-angle data acquisition method. The result confirmed that for a {sup 137}Cs point source at a distance of 4 cm, the image had a spatial resolution of 3.1 mm (FWHM). Furthermore, we succeeded in producing 3-D multi-color image of different simultaneous energy sources ({sup 22}Na [511 keV], {sup 137}Cs [662 keV], and {sup 54}Mn [834 keV]).

  16. On the line-shape analysis of Compton profiles and its application to neutron scattering

    International Nuclear Information System (INIS)

    Romanelli, G.; Krzystyniak, M.

    2016-01-01

    Analytical properties of Compton profiles are used in order to simplify the analysis of neutron Compton scattering experiments. In particular, the possibility to fit the difference of Compton profiles is discussed as a way to greatly decrease the level of complexity of the data treatment, making the analysis easier, faster and more robust. In the context of the novel method proposed, two mathematical models describing the shapes of differenced Compton profiles are discussed: the simple Gaussian approximation for harmonic and isotropic local potential, and an analytical Gauss–Hermite expansion for an anharmonic or anisotropic potential. The method is applied to data collected by VESUVIO spectrometer at ISIS neutron and muon pulsed source (UK) on Copper and Aluminium samples at ambient and low temperatures. - Highlights: • A new method to analyse neutron Compton scattering data is presented. • The method allows many corrections on the experimental data to be avoided. • The number of needed fitting parameters is drastically reduced using the new method. • Mass-selective analysis is facilitated with parametric studies benefiting the most. • Observables linked to anisotropic momentum distribution are obtained analytically.

  17. Monitoring of laser-accelerated particle beams for hadron therapy via Compton tracking

    Energy Technology Data Exchange (ETDEWEB)

    Lang, C.; Thirolf, P.G. [LMU, Muenchen (Germany); Habs, D.; Tajima, T. [LMU, Muenchen (Germany); MPQ, Garching (Germany); Zoglauer, A. [SSL, Berkeley (United States); Kanbach, G.; Diehl, R. [MPE, Muenchen (Germany); Schreiber, J. [MPQ, Garching (Germany)

    2011-07-01

    Presently large efforts have been achieved towards the development of hadron cancer therapy based on laser-accelerated ion (p, C) beams, particularly aiming at the treatment of small tumors (few mm size). Thus precise monitoring of the ion track is mandatory. Conventional PET technology suffers from limited signal strength and precision of locating the source position. We envisage to use Compton tracking, i.e. determining energy and momentum of Compton photons and electrons, emitted along the ion track in the irradiated soft tissue. Confining the Compton cone by tracking the scattered electron will allow to significantly improve on the position resolution. Monte Carlo simulations have been performed to characterize the achievable position resolution and efficiency of a Compton camera. We estimate a resolution of 2 mm (1 mm; 5 mm) FWHM at 2 MeV (5 MeV; 0.5 MeV). An efficiency of 1.4*10{sup -3} (4.6*10{sup -6}) at 0.5 MeV (2 MeV) is envisaged. Optimized for an energy range between 0.5 MeV and 5 MeV, we plan for a system of 5 layers of double-sided Si strip detectors (for Compton electron tracking) and an additional LaBr{sub 3}:Ce calorimeter, read out by a segmented photomultiplier tube.

  18. Technical Note: Influence of Compton currents on profile measurements in small-volume ion chambers

    Energy Technology Data Exchange (ETDEWEB)

    Tanny, Sean; Sperling, Nicholas; Parsai, E. Ishmael, E-mail: e.parsai@utoledo.edu [Department of Radiation Oncology, University of Toledo Medical Center, 1325 Conference Drive, Toledo, Ohio 43614 (United States); Holmes, Shannon [Standard Imaging, 3120 Deming Way, Middleton, Wisconsin 53562 (United States)

    2015-10-15

    Purpose: This work is to evaluate the effects of Compton current generation in three small-volume ionization chambers on measured beam characteristics for electron fields. Methods: Beam scans were performed using Exradin A16, A26, and PTW 31014 microchambers. Scans with varying chamber components shielded were performed. Static point measurements, output factors, and cable only irradiations were performed to determine the contribution of Compton currents to various components of the chamber. Monte Carlo simulations were performed to evaluate why one microchamber showed a significant reduction in Compton current generation. Results: Beam profiles demonstrated significant distortion for two of the three chambers when scanned parallel to the chamber axis, produced by electron deposition within the wire. Measurements of ionization produced within the cable identified Compton current generation as the cause of these distortions. The size of the central collecting wire was found to have the greatest influence on the magnitude of Compton current generation. Conclusions: Microchambers can demonstrate significant (>5%) deviations from properties as measured with larger volume chambers (0.125 cm{sup 3} and above). These deviations can be substantially reduced by averaging measurements conducted at opposite polarities.

  19. Previous geological exploration of antimony ore occurrences Krčeva Reka (eastern Serbia in terms of the potentiality of the epithermal gold

    Directory of Open Access Journals (Sweden)

    Vukas Radoslav B.

    2014-01-01

    Full Text Available This paper presents the results of a previous geological exploration of antimony ore occurrences in the area Krčeva river. Data analysis of geological, geophysical, geochemical prospecting and appropriate methods of laboratory testing identified a series of similarities to epithermal gold mineralization Carline type and formed a preliminary model of its creation.

  20. Gold grade of epithermal gold ore at Lamuntet, Brang Rea, West Sumbawa District, West Nusa Tenggara Province, Indonesia

    Science.gov (United States)

    Ernawati, Rika; Idrus, Arifudin; TBMP, Himawan

    2017-06-01

    Lamuntet is one of gold ore mining area carried out by the Artisanal Small scale Gold Mining (ASGM) located in West Sumbawa, Indonesia. Most of the miners at this area are not the local miners but also those from other regions. Mineralization of this area is strong identified as low sulfidation epithermal system. There are two blocks of this mining location, namely, Ngelampar block with an area of 0.164 km2 and Song block with an area of 0.067 km2. This study was focused on Ngelampar block. The characteristic of epithermal system is the existence of quartz vein with comb, vuggy, and sugary texture. The aim of this research was to analyze the gold grade and other metals, such as Cu, Ag, Pb, As, Zn, and Hg. The research methods included literature study from previous researches, field work, laboratory work, and interpretation. The literature study was performed on previous researches with similar study area. The field work comprised of direct observation and sampling. Fieldwork was done for a week to obtain gold ore/vein. Sixteen samples were analyzed to obtain the grade of ore/metal. The Hg laboratory analysis was then performed on the six samples with the highest gold grade. Laboratory works were conducted at Intertek Jakarta by using Fire Assay (FA) for gold grade and Atomic Absorption Spectrophotometry (AAS) for Cu, Ag, Pb, As, Zn, and Hg. Results of the analysis showed the range of Au was grade (0.1 ppm - 27.8 ppm), Cu was 26 ppm -1740 ppm, Pb was 101 ppm- >4000 ppm, Zn of 73 ppm- >10,000 ppm, Ag of 3 ppm -185 ppm, As was 150 ppm-6530 ppm, and Hg of 0.08 ppm - 1.89 ppm. L1 and L15 had high grade for all values (Au, Ag, Zn, Cu, As, and Hg). Gold mineralization was formed as electrum because of Ag content is higher than 20%. Associated minerals of the samples in the study area were galena, sphalerite, arsenopyrite, and chalcopyrite which showed the characteristic of rich base metal of Pb, Zn, and Cu at LS epithermal.