WorldWideScience

Sample records for compton gamma imager

  1. A flexible geometry Compton camera for industrial gamma ray imaging

    International Nuclear Information System (INIS)

    Royle, G.J.; Speller, R.D.

    1996-01-01

    A design for a Compton scatter camera is proposed which is applicable to gamma ray imaging within limited access industrial sites. The camera consists of a number of single element detectors arranged in a small cluster. Coincidence circuitry enables the detectors to act as a scatter camera. Positioning the detector cluster at various locations within the site, and subsequent reconstruction of the recorded data, allows an image to be obtained. The camera design allows flexibility to cater for limited space or access simply by positioning the detectors in the optimum geometric arrangement within the space allowed. The quality of the image will be limited but imaging could still be achieved in regions which are otherwise inaccessible. Computer simulation algorithms have been written to optimize the various parameters involved, such as geometrical arrangement of the detector cluster and the positioning of the cluster within the site, and to estimate the performance of such a device. Both scintillator and semiconductor detectors have been studied. A prototype camera has been constructed which operates three small single element detectors in coincidence. It has been tested in a laboratory simulation of an industrial site. This consisted of a small room (2 m wide x 1 m deep x 2 m high) into which the only access points were two 6 cm diameter holes in a side wall. Simple images of Cs-137 sources have been produced. The work described has been done on behalf of BNFL for applications at their Sellafield reprocessing plant in the UK

  2. An Imaging Camera for Biomedical Application Based on Compton Scattering of Gamma Rays

    OpenAIRE

    Fontana, Cristiano Lino

    2013-01-01

    In this thesis we present the R&D of a Compton Camera (CC) for small object imaging. The CC concept requires two detectors to obtain the incoming direction of the gamma ray. This approach, sometimes named ``Electronic Collimation,'' differs from the usual technique that employs collimators for physically selecting gamma-rays of a given direction. This solution offers the advantage of much greater sensitivity and hence smaller doses. We propose a novel design, which uses two simila...

  3. A Compton Gamma Imager for Criminal and National Security Investigation

    Science.gov (United States)

    2014-05-01

    Services Agency. CSSP is a federally -funded program to strengthen Canada’s ability to anticipate, prevent/mitigate, prepare for, respond to, and...casing housing the NaI(Tl) crystal is seen in the centre. At each end are the PMTs for light collection, and cables for carrying the high voltage...satellites to image galactic and extragalactic sources of gamma radiation [5]. As of the time of submitting the project proposal for CRTI 07-0193RD

  4. Gamma-ray detection and Compton camera image reconstruction with application to hadron therapy

    International Nuclear Information System (INIS)

    Frandes, M.

    2010-09-01

    A novel technique for radiotherapy - hadron therapy - irradiates tumors using a beam of protons or carbon ions. Hadron therapy is an effective technique for cancer treatment, since it enables accurate dose deposition due to the existence of a Bragg peak at the end of particles range. Precise knowledge of the fall-off position of the dose with millimeters accuracy is critical since hadron therapy proved its efficiency in case of tumors which are deep-seated, close to vital organs, or radio-resistant. A major challenge for hadron therapy is the quality assurance of dose delivery during irradiation. Current systems applying positron emission tomography (PET) technologies exploit gamma rays from the annihilation of positrons emitted during the beta decay of radioactive isotopes. However, the generated PET images allow only post-therapy information about the deposed dose. In addition, they are not in direct coincidence with the Bragg peak. A solution is to image the complete spectrum of the emitted gamma rays, including nuclear gamma rays emitted by inelastic interactions of hadrons to generated nuclei. This emission is isotropic, and has a spectrum ranging from 100 keV up to 20 MeV. However, the measurement of these energetic gamma rays from nuclear reactions exceeds the capability of all existing medical imaging systems. An advanced Compton scattering detection method with electron tracking capability is proposed, and modeled to reconstruct the high-energy gamma-ray events. This Compton detection technique was initially developed to observe gamma rays for astrophysical purposes. A device illustrating the method was designed and adapted to Hadron Therapy Imaging (HTI). It consists of two main sub-systems: a tracker where Compton recoiled electrons are measured, and a calorimeter where the scattered gamma rays are absorbed via the photoelectric effect. Considering a hadron therapy scenario, the analysis of generated data was performed, passing trough the complete

  5. A Compton camera prototype for prompt gamma medical imaging

    Directory of Open Access Journals (Sweden)

    Thirolf P.G.

    2016-01-01

    Full Text Available Compton camera prototype for a position-sensitive detection of prompt γ rays from proton-induced nuclear reactions is being developed in Garching. The detector system allows to track the Comptonscattered electrons. The camera consists of a monolithic LaBr3:Ce scintillation absorber crystal, read out by a multi-anode PMT, preceded by a stacked array of 6 double-sided silicon strip detectors acting as scatterers. The LaBr3:Ce crystal has been characterized with radioactive sources. Online commissioning measurements were performed with a pulsed deuteron beam at the Garching Tandem accelerator and with a clinical proton beam at the OncoRay facility in Dresden. The determination of the interaction point of the photons in the monolithic crystal was investigated.

  6. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    Science.gov (United States)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  7. A low-count reconstruction algorithm for Compton-based prompt gamma imaging

    Science.gov (United States)

    Huang, Hsuan-Ming; Liu, Chih-Chieh; Jan, Meei-Ling; Lee, Ming-Wei

    2018-04-01

    The Compton camera is an imaging device which has been proposed to detect prompt gammas (PGs) produced by proton–nuclear interactions within tissue during proton beam irradiation. Compton-based PG imaging has been developed to verify proton ranges because PG rays, particularly characteristic ones, have strong correlations with the distribution of the proton dose. However, accurate image reconstruction from characteristic PGs is challenging because the detector efficiency and resolution are generally low. Our previous study showed that point spread functions can be incorporated into the reconstruction process to improve image resolution. In this study, we proposed a low-count reconstruction algorithm to improve the image quality of a characteristic PG emission by pooling information from other characteristic PG emissions. PGs were simulated from a proton beam irradiated on a water phantom, and a two-stage Compton camera was used for PG detection. The results show that the image quality of the reconstructed characteristic PG emission is improved with our proposed method in contrast to the standard reconstruction method using events from only one characteristic PG emission. For the 4.44 MeV PG rays, both methods can be used to predict the positions of the peak and the distal falloff with a mean accuracy of 2 mm. Moreover, only the proposed method can improve the estimated positions of the peak and the distal falloff of 5.25 MeV PG rays, and a mean accuracy of 2 mm can be reached.

  8. The simulation of an imaging gamma-ray Compton backscattering device using GEANT4

    International Nuclear Information System (INIS)

    Flechas, D.; Cristancho, F.; Sarmiento, L.G.; Fajardo, E.

    2014-01-01

    A gamma-backscattering imaging device dubbed Compton Camera, developed at GSI (Darmstadt, Germany) and modified and studied at the Nuclear Physics Group of the National University of Colombia in Bogota, uses the back-to-back emission of two gamma rays in the positron annihilation to construct a bidimensional image that represents the distribution of matter in the field-of-view of the camera. This imaging capability can be used in a host of different situations, for example, to identify and study deposition and structural defects, and to help locating concealed objects, to name just two cases. In order to increase the understanding of the response of the Compton Camera and, in particular, its image formation process, and to assist in the data analysis, a simulation of the camera was developed using the GEANT4 simulation toolkit. In this work, the images resulting from different experimental conditions are shown. The simulated images and their comparison with the experimental ones already suggest methods to improve the present experimental device. (author)

  9. Development of a Compton camera for prompt-gamma medical imaging

    Science.gov (United States)

    Aldawood, S.; Thirolf, P. G.; Miani, A.; Böhmer, M.; Dedes, G.; Gernhäuser, R.; Lang, C.; Liprandi, S.; Maier, L.; Marinšek, T.; Mayerhofer, M.; Schaart, D. R.; Lozano, I. Valencia; Parodi, K.

    2017-11-01

    A Compton camera-based detector system for photon detection from nuclear reactions induced by proton (or heavier ion) beams is under development at LMU Munich, targeting the online range verification of the particle beam in hadron therapy via prompt-gamma imaging. The detector is designed to be capable to reconstruct the photon source origin not only from the Compton scattering kinematics of the primary photon, but also to allow for tracking of the secondary Compton-scattered electrons, thus enabling a γ-source reconstruction also from incompletely absorbed photon events. The Compton camera consists of a monolithic LaBr3:Ce scintillation crystal, read out by a multi-anode PMT acting as absorber, preceded by a stacked array of 6 double-sided silicon strip detectors as scatterers. The detector components have been characterized both under offline and online conditions. The LaBr3:Ce crystal exhibits an excellent time and energy resolution. Using intense collimated 137Cs and 60Co sources, the monolithic scintillator was scanned on a fine 2D grid to generate a reference library of light amplitude distributions that allows for reconstructing the photon interaction position using a k-Nearest Neighbour (k-NN) algorithm. Systematic studies were performed to investigate the performance of the reconstruction algorithm, revealing an improvement of the spatial resolution with increasing photon energy to an optimum value of 3.7(1)mm at 1.33 MeV, achieved with the Categorical Average Pattern (CAP) modification of the k-NN algorithm.

  10. First demonstration of real-time gamma imaging by using a handheld Compton camera for particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Taya, T., E-mail: taka48138@ruri.waseda.jp [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Kataoka, J.; Kishimoto, A.; Iwamoto, Y.; Koide, A. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Nishio, T. [Graduate School of Biomedical and Health Science, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima-shi, Hiroshima (Japan); Kabuki, S. [School of Medicine, Tokai University, 143 Shimokasuya, Isehara-shi, Kanagawa (Japan); Inaniwa, T. [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba (Japan)

    2016-09-21

    The use of real-time gamma imaging for cancer treatment in particle therapy is expected to improve the accuracy of the treatment beam delivery. In this study, we demonstrated the imaging of gamma rays generated by the nuclear interactions during proton irradiation, using a handheld Compton camera (14 cm×15 cm×16 cm, 2.5 kg) based on scintillation detectors. The angular resolution of this Compton camera is ∼8° at full width at half maximum (FWHM) for a {sup 137}Cs source. We measured the energy spectra of the gamma rays using a LaBr{sub 3}(Ce) scintillator and photomultiplier tube, and using the handheld Compton camera, performed image reconstruction when using a 70 MeV proton beam to irradiate a water, Ca(OH){sub 2}, and polymethyl methacrylate (PMMA) phantom. In the energy spectra of all three phantoms, we found an obvious peak at 511 keV, which was derived from annihilation gamma rays, and in the energy spectrum of the PMMA phantom, we found another peak at 718 keV, which contains some of the prompt gamma rays produced from {sup 10}B. Therefore, we evaluated the peak positions of the projection from the reconstructed images of the PMMA phantom. The differences between the peak positions and the Bragg peak position calculated using simulation are 7 mm±2 mm and 3 mm±8 mm, respectively. Although we could quickly acquire online gamma imaging of both of the energy ranges during proton irradiation, we cannot arrive at a clear conclusion that prompt gamma rays sufficiently trace the Bragg peak from these results because of the uncertainty given by the spatial resolution of the Compton camera. We will develop a high-resolution Compton camera in the near future for further study. - Highlights: • Gamma imaging during proton irradiation by a handheld Compton camera is demonstrated. • We were able to acquire the online gamma-ray images quickly. • We are developing a high resolution Compton camera for range verification.

  11. Progress towards a semiconductor Compton camera for prompt gamma imaging during proton beam therapy for range and dose verification

    Science.gov (United States)

    Gutierrez, A.; Baker, C.; Boston, H.; Chung, S.; Judson, D. S.; Kacperek, A.; Le Crom, B.; Moss, R.; Royle, G.; Speller, R.; Boston, A. J.

    2018-01-01

    The main objective of this work is to test a new semiconductor Compton camera for prompt gamma imaging. Our device is composed of three active layers: a Si(Li) detector as a scatterer and two high purity Germanium detectors as absorbers of high-energy gamma rays. We performed Monte Carlo simulations using the Geant4 toolkit to characterise the expected gamma field during proton beam therapy and have made experimental measurements of the gamma spectrum with a 60 MeV passive scattering beam irradiating a phantom. In this proceeding, we describe the status of the Compton camera and present the first preliminary measurements with radioactive sources and their corresponding reconstructed images.

  12. Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam

    Science.gov (United States)

    Hueso-González, F.; Golnik, C.; Berthel, M.; Dreyer, A.; Enghardt, W.; Fiedler, F.; Heidel, K.; Kormoll, T.; Rohling, H.; Schöne, S.; Schwengner, R.; Wagner, A.; Pausch, G.

    2014-05-01

    In the context of ion beam therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density map, which is correlated with the dose distribution. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a Compton camera setup is being developed consisting of two scatter planes: two CdZnTe (CZT) cross strip detectors, and an absorber consisting of one Lu2SiO5 (LSO) block detector. The data acquisition is based on VME electronics and handled by software developed on the ROOT framework. The setup has been tested at the linear electron accelerator ELBE at HZDR, which is used in this experiment to produce bunched bremsstrahlung photons with up to 12.5 MeV energy and a repetition rate of 13 MHz. Their spectrum has similarities with the shape expected from prompt gamma rays in the clinical environment, and the flux is also bunched with the accelerator frequency. The charge sharing effect of the CZT detector is studied qualitatively for different energy ranges. The LSO detector pixel discrimination resolution is analyzed and it shows a trend to improve for high energy depositions. The time correlation between the pulsed prompt photons and the measured detector signals, to be used for background suppression, exhibits a time resolution of 3 ns FWHM for the CZT detector and of 2 ns for the LSO detector. A time walk correction and pixel-wise calibration is applied for the LSO detector, whose resolution improves up to 630 ps. In conclusion, the detector setup is suitable for time-resolved background suppression in pulsed clinical particle accelerators. Ongoing tasks are the quantitative comparison with simulations and the test of imaging algorithms. Experiments at proton

  13. Test of Compton camera components for prompt gamma imaging at the ELBE bremsstrahlung beam

    International Nuclear Information System (INIS)

    Hueso-González, F; Golnik, C; Berthel, M; Dreyer, A; Enghardt, W; Kormoll, T; Rohling, H; Pausch, G; Fiedler, F; Heidel, K; Schöne, S; Schwengner, R; Wagner, A

    2014-01-01

    In the context of ion beam therapy, particle range verification is a major challenge for the quality assurance of the treatment. One approach is the measurement of the prompt gamma rays resulting from the tissue irradiation. A Compton camera based on several position sensitive gamma ray detectors, together with an imaging algorithm, is expected to reconstruct the prompt gamma ray emission density map, which is correlated with the dose distribution. At OncoRay and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), a Compton camera setup is being developed consisting of two scatter planes: two CdZnTe (CZT) cross strip detectors, and an absorber consisting of one Lu 2 SiO 5 (LSO) block detector. The data acquisition is based on VME electronics and handled by software developed on the ROOT framework. The setup has been tested at the linear electron accelerator ELBE at HZDR, which is used in this experiment to produce bunched bremsstrahlung photons with up to 12.5 MeV energy and a repetition rate of 13 MHz. Their spectrum has similarities with the shape expected from prompt gamma rays in the clinical environment, and the flux is also bunched with the accelerator frequency. The charge sharing effect of the CZT detector is studied qualitatively for different energy ranges. The LSO detector pixel discrimination resolution is analyzed and it shows a trend to improve for high energy depositions. The time correlation between the pulsed prompt photons and the measured detector signals, to be used for background suppression, exhibits a time resolution of 3 ns FWHM for the CZT detector and of 2 ns for the LSO detector. A time walk correction and pixel-wise calibration is applied for the LSO detector, whose resolution improves up to 630 ps. In conclusion, the detector setup is suitable for time-resolved background suppression in pulsed clinical particle accelerators. Ongoing tasks are the quantitative comparison with simulations and the test of imaging algorithms. Experiments at proton

  14. Compton suppression gamma ray spectrometry

    International Nuclear Information System (INIS)

    Landsberger, S.; Iskander, F.Y.; Niset, M.; Heydorn, K.

    2002-01-01

    In the past decade there have been many studies to use Compton suppression methods in routine neutron activation analysis as well as in the traditional role of low level gamma ray counting of environmental samples. On a separate path there have been many new PC based software packages that have been developed to enhance photopeak fitting. Although the newer PC based algorithms have had significant improvements, they still suffer from being effectively used in weak gamma ray lines in natural samples or in neutron activated samples that have very high Compton backgrounds. We have completed a series of experiments to show the usefulness of Compton suppression. As well we have shown the pitfalls when using Compton suppression methods for high counting deadtimes as in the case of neutron activated samples. We have also investigated if counting statistics are the same both suppressed and normal modes. Results are presented in four separate experiments. (author)

  15. Gamma-ray detection and Compton camera image reconstruction with application to hadron therapy; Detection des rayons gamma et reconstruction d'images pour la camera Compton: Application a l'hadrontherapie

    Energy Technology Data Exchange (ETDEWEB)

    Frandes, M.

    2010-09-15

    A novel technique for radiotherapy - hadron therapy - irradiates tumors using a beam of protons or carbon ions. Hadron therapy is an effective technique for cancer treatment, since it enables accurate dose deposition due to the existence of a Bragg peak at the end of particles range. Precise knowledge of the fall-off position of the dose with millimeters accuracy is critical since hadron therapy proved its efficiency in case of tumors which are deep-seated, close to vital organs, or radio-resistant. A major challenge for hadron therapy is the quality assurance of dose delivery during irradiation. Current systems applying positron emission tomography (PET) technologies exploit gamma rays from the annihilation of positrons emitted during the beta decay of radioactive isotopes. However, the generated PET images allow only post-therapy information about the deposed dose. In addition, they are not in direct coincidence with the Bragg peak. A solution is to image the complete spectrum of the emitted gamma rays, including nuclear gamma rays emitted by inelastic interactions of hadrons to generated nuclei. This emission is isotropic, and has a spectrum ranging from 100 keV up to 20 MeV. However, the measurement of these energetic gamma rays from nuclear reactions exceeds the capability of all existing medical imaging systems. An advanced Compton scattering detection method with electron tracking capability is proposed, and modeled to reconstruct the high-energy gamma-ray events. This Compton detection technique was initially developed to observe gamma rays for astrophysical purposes. A device illustrating the method was designed and adapted to Hadron Therapy Imaging (HTI). It consists of two main sub-systems: a tracker where Compton recoiled electrons are measured, and a calorimeter where the scattered gamma rays are absorbed via the photoelectric effect. Considering a hadron therapy scenario, the analysis of generated data was performed, passing trough the complete

  16. Inverse Compton gamma-rays from pulsars

    International Nuclear Information System (INIS)

    Morini, M.

    1983-01-01

    A model is proposed for pulsar optical and gamma-ray emission where relativistic electrons beams: (i) scatter the blackbody photons from the polar cap surface giving inverse Compton gamma-rays and (ii) produce synchrotron optical photons in the light cylinder region which are then inverse Compton scattered giving other gamma-rays. The model is applied to the Vela pulsar, explaining the first gamma-ray pulse by inverse Compton scattering of synchrotron photons near the light cylinder and the second gamma-ray pulse partly by inverse Compton scattering of synchrotron photons and partly by inverse Compton scattering of the thermal blackbody photons near the star surface. (author)

  17. Design of a Compton camera for 3D prompt-{gamma} imaging during ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Roellinghoff, F., E-mail: roelling@ipnl.in2p3.fr [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); INSA-Lyon Laboratory of Nondestructive Testing using Ionizing Radiation (CNDRI), F-69621 Villeurbanne Cedex (France); Richard, M.-H., E-mail: mrichard@ipnl.in2p3.fr [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); INSA-Lyon Laboratory of Nondestructive Testing using Ionizing Radiation (CNDRI), F-69621 Villeurbanne Cedex (France); Chevallier, M.; Constanzo, J.; Dauvergne, D. [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); Freud, N. [INSA-Lyon Laboratory of Nondestructive Testing using Ionizing Radiation (CNDRI), F-69621 Villeurbanne Cedex (France); Henriquet, P.; Le Foulher, F. [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); Letang, J.M. [INSA-Lyon Laboratory of Nondestructive Testing using Ionizing Radiation (CNDRI), F-69621 Villeurbanne Cedex (France); Montarou, G. [LPC, CNRS/IN2P3, Clermont-F. University (France); Ray, C.; Testa, E.; Testa, M. [Universite de Lyon, F-69622 Lyon (France); Universite Lyon 1 and CNRS/IN2P3, UMR 5822, IPNL, F-69622 Villeurbanne (France); Walenta, A.H. [Uni-Siegen, FB Physik, Emmy-Noether Campus, D-57068 Siegen (Germany)

    2011-08-21

    We investigate, by means of Geant4 simulations, a real-time method to control the position of the Bragg peak during ion therapy, based on a Compton camera in combination with a beam tagging device (hodoscope) in order to detect the prompt gamma emitted during nuclear fragmentation. The proposed set-up consists of a stack of 2 mm thick silicon strip detectors and a LYSO absorber detector. The {gamma} emission points are reconstructed analytically by intersecting the ion trajectories given by the beam hodoscope and the Compton cones given by the camera. The camera response to a polychromatic point source in air is analyzed with regard to both spatial resolution and detection efficiency. Various geometrical configurations of the camera have been tested. In the proposed configuration, for a typical polychromatic photon point source, the spatial resolution of the camera is about 8.3 mm FWHM and the detection efficiency 2.5x10{sup -4} (reconstructable photons/emitted photons in 4{pi}). Finally, the clinical applicability of our system is considered and possible starting points for further developments of a prototype are discussed.

  18. Electron-tracking Compton gamma-ray camera for small animal and phantom imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kabuki, Shigeto, E-mail: kabuki@cr.scphys.kyoto-u.ac.j [Department of Physics, Gradulate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Kimura, Hiroyuki; Amano, Hiroo [Department of Patho-functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Nakamoto, Yuji [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Kyoto 606-8507 (Japan); Kubo, Hidetoshi; Miuchi, Kentaro; Kurosawa, Shunsuke; Takahashi, Michiaki [Department of Physics, Gradulate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Kawashima, Hidekazu [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Kyoto 606-8507 (Japan); Ueda, Masashi [Radioisotopes Research Labaoratory, Kyoto University Hospital, Kyoto 606-8507 (Japan); Okada, Tomohisa [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Kyoto 606-8507 (Japan); Kubo, Atsushi; Kunieda, Etuso; Nakahara, Tadaki [Department of Radiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Kohara, Ryota; Miyazaki, Osamu; Nakazawa, Tetsuo; Shirahata, Takashi; Yamamoto, Etsuji [Application Development Office, Hitachi Medical Corporation, Chiba 277-0804 (Japan); Ogawa, Koichi [Department of Electronic Informatics, Faculty of Engineering, Hosei University, Tokyo 184-8584 (Japan)

    2010-11-01

    We have developed an electron-tracking Compton camera (ETCC) for medical use. Our ETCC has a wide energy dynamic range (200-1300 keV) and wide field of view (3 sr), and thus has potential for advanced medical use. To evaluate the ETCC, we imaged the head (brain) and bladder of mice that had been administered with F-18-FDG. We also imaged the head and thyroid gland of mice using double tracers of F-18-FDG and I-131 ions.

  19. Compton Gamma-Ray Observatory

    Science.gov (United States)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  20. Design study of a Compton camera for prompts-gamma imaging during ion beam therapy

    International Nuclear Information System (INIS)

    Richard, Marie-Helene

    2012-01-01

    Ion beam therapy is an innovative radiotherapy technique using mainly carbon ion and proton irradiations. Its aim is to improve the current treatment modalities. Because of the sharpness of the dose distributions, a control of the dose if possible in real time is highly desirable. A possibility is to detect the prompt gamma rays emitted subsequently to the nuclear fragmentations occurring during the treatment of the patient. In a first time two different Compton cameras (double and single scattering) have been optimised by means of Monte Carlo simulations. The response of the camera to a photon point source with a realistic energy spectrum was studied. Then, the response of the camera to the irradiation of a water phantom by a proton beam was simulated. It was first compared with measurement performed with small-size detectors. Then, using the previous measurements, we evaluated the counting rates expected in clinical conditions. In the current set-up of the camera, these counting rates are pretty high. Pile up and random coincidences will be problematic. Finally we demonstrate that the detection system is capable to detect a longitudinal shift in the Bragg peak of ± 5 mm, even with the current reconstruction algorithm. (author)

  1. Landmine Detection: on the Role of Soil Composition in the Imaging Capabilities of Gamma-ray Compton Backscattering

    International Nuclear Information System (INIS)

    Cortes, M.L.; Merchan, E.; Blanco, W.J.; Cristancho, F.; Gerl, J.; Ameil, F.

    2010-01-01

    Two issues related with the use of γ-ray Compton backscattering as an imaging technique are addressed: γ-soil interaction, and image processing. Promising methodologies are described in both topics. (author)

  2. Development of an omnidirectional gamma-ray imaging Compton camera for low-radiation-level environmental monitoring

    Science.gov (United States)

    Watanabe, Takara; Enomoto, Ryoji; Muraishi, Hiroshi; Katagiri, Hideaki; Kagaya, Mika; Fukushi, Masahiro; Kano, Daisuke; Satoh, Wataru; Takeda, Tohoru; Tanaka, Manobu M.; Tanaka, Souichi; Uchida, Tomohisa; Wada, Kiyoto; Wakamatsu, Ryo

    2018-02-01

    We have developed an omnidirectional gamma-ray imaging Compton camera for environmental monitoring at low levels of radiation. The camera consisted of only six CsI(Tl) scintillator cubes of 3.5 cm, each of which was readout by super-bialkali photo-multiplier tubes (PMTs). Our camera enables the visualization of the position of gamma-ray sources in all directions (∼4π sr) over a wide energy range between 300 and 1400 keV. The angular resolution (σ) was found to be ∼11°, which was realized using an image-sharpening technique. A high detection efficiency of 18 cps/(µSv/h) for 511 keV (1.6 cps/MBq at 1 m) was achieved, indicating the capability of this camera to visualize hotspots in areas with low-radiation-level contamination from the order of µSv/h to natural background levels. Our proposed technique can be easily used as a low-radiation-level imaging monitor in radiation control areas, such as medical and accelerator facilities.

  3. Maximum Likelihood Compton Polarimetry with the Compton Spectrometer and Imager

    Energy Technology Data Exchange (ETDEWEB)

    Lowell, A. W.; Boggs, S. E; Chiu, C. L.; Kierans, C. A.; Sleator, C.; Tomsick, J. A.; Zoglauer, A. C. [Space Sciences Laboratory, University of California, Berkeley (United States); Chang, H.-K.; Tseng, C.-H.; Yang, C.-Y. [Institute of Astronomy, National Tsing Hua University, Taiwan (China); Jean, P.; Ballmoos, P. von [IRAP Toulouse (France); Lin, C.-H. [Institute of Physics, Academia Sinica, Taiwan (China); Amman, M. [Lawrence Berkeley National Laboratory (United States)

    2017-10-20

    Astrophysical polarization measurements in the soft gamma-ray band are becoming more feasible as detectors with high position and energy resolution are deployed. Previous work has shown that the minimum detectable polarization (MDP) of an ideal Compton polarimeter can be improved by ∼21% when an unbinned, maximum likelihood method (MLM) is used instead of the standard approach of fitting a sinusoid to a histogram of azimuthal scattering angles. Here we outline a procedure for implementing this maximum likelihood approach for real, nonideal polarimeters. As an example, we use the recent observation of GRB 160530A with the Compton Spectrometer and Imager. We find that the MDP for this observation is reduced by 20% when the MLM is used instead of the standard method.

  4. Polarimetric Analysis of the Long Duration Gamma-Ray Burst GRB 160530A With the Balloon Borne Compton Spectrometer and Imager

    Energy Technology Data Exchange (ETDEWEB)

    Lowell, A. W.; Boggs, S. E; Chiu, C. L.; Kierans, C. A.; Sleator, C.; Tomsick, J. A.; Zoglauer, A. C. [Space Sciences Laboratory, University of California, Berkeley (United States); Chang, H.-K.; Tseng, C.-H.; Yang, C.-Y. [Institute of Astronomy, National Tsing Hua University, Taiwan (China); Jean, P.; Ballmoos, P. von [IRAP Toulouse (France); Lin, C.-H. [Institute of Physics, Academia Sinica, Taiwan (China); Amman, M. [Lawrence Berkeley National Laboratory (United States)

    2017-10-20

    A long duration gamma-ray burst, GRB 160530A, was detected by the Compton Spectrometer and Imager (COSI) during the 2016 COSI Super Pressure Balloon campaign. As a Compton telescope, COSI is inherently sensitive to the polarization of gamma-ray sources in the energy range 0.2–5.0 MeV. We measured the polarization of GRB 160530A using (1) a standard method (SM) based on fitting the distribution of azimuthal scattering angles with a modulation curve and (2) an unbinned, maximum likelihood method (MLM). In both cases, the measured polarization level was below the 99% confidence minimum detectable polarization levels of 72.3% ± 0.8% (SM) and 57.5% ± 0.8% (MLM). Therefore, COSI did not detect polarized gamma-ray emission from this burst. Our most constraining 90% confidence upper limit on the polarization level was 46% (MLM).

  5. Evaluation of list-mode ordered subset expectation maximization image reconstruction for pixelated solid-state compton gamma camera with large number of channels

    Science.gov (United States)

    Kolstein, M.; De Lorenzo, G.; Chmeissani, M.

    2014-04-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated solid-state technology for nuclear medicine applications. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). For Compton camera, especially with a large number of readout channels, image reconstruction presents a big challenge. In this work, results are presented for the List-Mode Ordered Subset Expectation Maximization (LM-OSEM) image reconstruction algorithm on simulated data with the VIP Compton camera design. For the simulation, all realistic contributions to the spatial resolution are taken into account, including the Doppler broadening effect. The results show that even with a straightforward implementation of LM-OSEM, good images can be obtained for the proposed Compton camera design. Results are shown for various phantoms, including extended sources and with a distance between the field of view and the first detector plane equal to 100 mm which corresponds to a realistic nuclear medicine environment.

  6. The effect of Compton scattering on quantitative SPECT imaging

    International Nuclear Information System (INIS)

    Beck, J.W.; Jaszczak, R.J.; Starmer, C.F.

    1982-01-01

    A Monte Carlo code has been developed to simulate the response of a SPECT system. The accuracy of the code has been verified and has been used in this research to study and illustrate the effects of Compton scatter on quantitative SPECT measurements. The effects of Compton scattered radiation on gamma camera response have been discussed by several authors, and will be extended to rotating gamma camera SPECT systems. The unique feature of this research includes the pictorial illustration of the Compton scattered and the unscattered components of the photopeak data on SPECT imaging by simulating phantom studies with and without Compton scatter

  7. Critical review of Compton imaging

    International Nuclear Information System (INIS)

    Guzzardi, R.; Licitra, G.

    1987-01-01

    This paper reviews the basic aspects, problems, and applications of Compton imaging including those related to nonmedical applications. The physics and technology at the base of this specific methodology are analyzed and the relative differences and merits with respect to other imaging techniques, using ionizing radiations, are reviewed. The basic Compton imaging approaches, i.e., point-by-point, line-by-line, and plane-by-plane, are analyzed. Specifically, physical design and technological aspects are reviewed and discussed. Furthermore, the most important clinical applications of the different methods are presented and discussed. Finally, possibilities and applications of the Compton imaging method to other nonmedical fields, as in the case of the important area of object defects recognition, are analyzed and reviewed. 56 references

  8. Mobile, hybrid Compton/coded aperture imaging for detection, identification and localization of gamma-ray sources at stand-off distances

    Science.gov (United States)

    Tornga, Shawn R.

    The Stand-off Radiation Detection System (SORDS) program is an Advanced Technology Demonstration (ATD) project through the Department of Homeland Security's Domestic Nuclear Detection Office (DNDO) with the goal of detection, identification and localization of weak radiological sources in the presence of large dynamic backgrounds. The Raytheon-SORDS Tri-Modal Imager (TMI) is a mobile truck-based, hybrid gamma-ray imaging system able to quickly detect, identify and localize, radiation sources at standoff distances through improved sensitivity while minimizing the false alarm rate. Reconstruction of gamma-ray sources is performed using a combination of two imaging modalities; coded aperture and Compton scatter imaging. The TMI consists of 35 sodium iodide (NaI) crystals 5x5x2 in3 each, arranged in a random coded aperture mask array (CA), followed by 30 position sensitive NaI bars each 24x2.5x3 in3 called the detection array (DA). The CA array acts as both a coded aperture mask and scattering detector for Compton events. The large-area DA array acts as a collection detector for both Compton scattered events and coded aperture events. In this thesis, developed coded aperture, Compton and hybrid imaging algorithms will be described along with their performance. It will be shown that multiple imaging modalities can be fused to improve detection sensitivity over a broader energy range than either alone. Since the TMI is a moving system, peripheral data, such as a Global Positioning System (GPS) and Inertial Navigation System (INS) must also be incorporated. A method of adapting static imaging algorithms to a moving platform has been developed. Also, algorithms were developed in parallel with detector hardware, through the use of extensive simulations performed with the Geometry and Tracking Toolkit v4 (GEANT4). Simulations have been well validated against measured data. Results of image reconstruction algorithms at various speeds and distances will be presented as well as

  9. Design Study for Direction Variable Compton Scattering Gamma Ray

    Science.gov (United States)

    Kii, T.; Omer, M.; Negm, H.; Choi, Y. W.; Kinjo, R.; Yoshida, K.; Konstantin, T.; Kimura, N.; Ishida, K.; Imon, H.; Shibata, M.; Shimahashi, K.; Komai, T.; Okumura, K.; Zen, H.; Masuda, K.; Hori, T.; Ohgaki, H.

    2013-03-01

    A monochromatic gamma ray beam is attractive for isotope-specific material/medical imaging or non-destructive inspection. A laser Compton scattering (LCS) gamma ray source which is based on the backward Compton scattering of laser light on high-energy electrons can generate energy variable quasi-monochromatic gamma ray. Due to the principle of the LCS gamma ray, the direction of the gamma beam is limited to the direction of the high-energy electrons. Then the target object is placed on the beam axis, and is usually moved if spatial scanning is required. In this work, we proposed an electron beam transport system consisting of four bending magnets which can stick the collision point and control the electron beam direction, and a laser system consisting of a spheroidal mirror and a parabolic mirror which can also stick the collision point. Then the collision point can be placed on one focus of the spheroid. Thus gamma ray direction and collision angle between the electron beam and the laser beam can be easily controlled. As the results, travelling direction of the LCS gamma ray can be controlled under the limitation of the beam transport system, energy of the gamma ray can be controlled by controlling incident angle of the colliding beams, and energy spread can be controlled by changing the divergence of the laser beam.

  10. Deconvolution of shift-variant broadening for Compton scatter imaging

    International Nuclear Information System (INIS)

    Evans, Brian L.; Martin, Jeffrey B.; Roggemann, Michael C.

    1999-01-01

    A technique is presented for deconvolving shift-variant Doppler broadening of singly Compton scattered gamma rays from their recorded energy distribution. Doppler broadening is important in Compton scatter imaging techniques employing gamma rays with energies below roughly 100 keV. The deconvolution unfolds an approximation to the angular distribution of scattered photons from their recorded energy distribution in the presence of statistical noise and background counts. Two unfolding methods are presented, one based on a least-squares algorithm and one based on a maximum likelihood algorithm. Angular distributions unfolded from measurements made on small scattering targets show less evidence of Compton broadening. This deconvolution is shown to improve the quality of filtered backprojection images in multiplexed Compton scatter tomography. Improved sharpness and contrast are evident in the images constructed from unfolded signals

  11. Applicability of compton imaging in nuclear decommissioning activities

    International Nuclear Information System (INIS)

    Ljubenov, V.Lj.; Marinkovic, P.M.

    2002-01-01

    During the decommissioning of nuclear facilities significant part of the activities is related to the radiological characterization, waste classification and management. For these purposes a relatively new imaging technique, based on information from the gamma radiation that undergoes Compton scattering, is applicable. Compton imaging systems have a number of advantages for nuclear waste characterization, such as identifying hot spots in mixed waste in order to reduce the volume of high-level waste requiring extensive treatment or long-term storage, imaging large contaminated areas and objects etc. Compton imaging also has potential applications for monitoring of production, transport and storage of nuclear materials and components. This paper discusses some system design requirements and performance specifications for these applications. The advantages of Compton imaging are compared to competing imaging techniques. (author)

  12. Beam dynamics in Compton ring gamma sources

    Directory of Open Access Journals (Sweden)

    Eugene Bulyak

    2006-09-01

    Full Text Available Electron storage rings of GeV energy with laser pulse stacking cavities are promising intense sources of polarized hard photons which, via pair production, can be used to generate polarized positron beams. In this paper, the dynamics of electron bunches circulating in a storage ring and interacting with high-power laser pulses is studied both analytically and by simulation. Both the common features and the differences in the behavior of bunches interacting with an extremely high power laser pulse and with a moderate pulse are discussed. Also considerations on particular lattice designs for Compton gamma rings are presented.

  13. Compton scatter in germanium and its effect on imaging with gamma-ray position-sensitive detectors

    International Nuclear Information System (INIS)

    Sherman, I.S.; Strauss, M.G.; Brenner, R.

    1978-01-01

    The spatial spread due to Compton scatter in Ge was measured to study the reduction in image contrast and signal-to-noise ratio (S/N) resulting from erroneous readout in Ge position-sensitive detectors. The step response revealing this spread was obtained by scanning with a 122 keV γ-ray beam across a boundary of two sectors of a slotted coaxial Ge(Li) detector that is 40 mm diameter by 22 mm long. The derived line-spread function at 140 keV (/sup 99m/Tc) exhibits much shorter but thicker tails than those due to scatter in tissue as observed with a NaI detector through 5.5 cm of scattering material. Convolutions of rectangular profiles of voids with the Ge(Li) line-spread function show marked deterioration in contrast for voids less than 10 mm across, which in turn results in even greater deterioration of the S/N. As a result, the contrast for voids in Ge images is only 20 to 30 percent higher than that in NaI and the S/N is only comparable for equal detector areas. The degradation in image contrast due to scatter in Ge detectors can be greatly reduced by either using thin detectors (approximately 5 mm), where scatter virtually does not exist, or by using thicker detectors and rejecting scatter electronically. To reduce the effects of scatter on the S/N as well as on contrast, the erroneous position readouts must actually be corrected. A more realizable approach to achieving the ultimate potential of Ge detectors may be a scanning array of discrete detectors (not position sensitive) in which readout is not affected by scatter

  14. A Compton Imaging Prototype for Range Verification in Particle Therapy

    International Nuclear Information System (INIS)

    Golnik, C.; Hueso Gonzalez, F.; Kormoll, T.; Pausch, G.; Rohling, H.; Fiedler, F.; Heidel, K.; Schoene, S.; Sobiella, M.; Wagner, A.; Enghardt, W.

    2013-06-01

    During the 2012 AAPM Annual Meeting 33 percent of the delegates considered the range uncertainty in proton therapy as the main obstacle of becoming a mainstream treatment modality. Utilizing prompt gamma emission, a side product of particle tissue interaction, opens the possibility of in-beam dose verification, due to the direct correlation between prompt gamma emission and particle dose deposition. Compton imaging has proven to be a technique to measure three dimensional gamma emission profiles and opens the possibility of adaptive dose monitoring and treatment correction. We successfully built a Compton Imaging prototype, characterized the detectors and showed the imaging capability of the complete device. The major advantage of CZT detectors is the high energy resolution and the high spatial resolution, which are key parameters for Compton Imaging. However, our measurements at the proton beam accelerator facility KVI in Groningen (Netherlands) disclosed a spectrum of prompt gamma rays under proton irradiation up to 4.4 MeV. As CZT detectors of 5 mm thickness do not efficiently absorb photons in such energy ranges, another absorption, based on a Siemens LSO block detector is added behind CZT1. This setup provides a higher absorption probability of high energy photons. With a size of 5.2 cm x 5.2 cm x 2.0 cm, this scintillation detector further increases the angular acceptance of Compton scattered photons due to geometric size. (authors)

  15. Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Komura, S.; Takada, A.; Mizumura, Y.; Miyamoto, S.; Takemura, T.; Kishimoto, T.; Kubo, H.; Matsuoka, Y.; Mizumoto, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Parker, J. D.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K. [Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502 (Japan); Kurosawa, S. [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, 980-8579 (Japan); Miuchi, K. [Department of Physics, Kobe University, Kobe, Hyogo, 658-8501 (Japan); Sawano, T., E-mail: komura@cr.scphys.kyoto-u.ac.jp [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kanazawa, Ishikawa, 920-1192 (Japan)

    2017-04-10

    X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factor over an FoV of up to 2 π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 10{sup 7} s exposure and over 20 GRBs down to a 6 × 10{sup −6} erg cm{sup −2} fluence and 10% polarization during a one-year observation.

  16. Importance of Doppler broadening in Compton scatter imaging techniques

    Science.gov (United States)

    Rao, Donepudi V.; Takeda, Tohoru; Itai, Yuji; Seltzer, S. M.; Hubbell, John H.; Zeniya, Tsutomu; Akatsuka, Takao; Cesareo, Roberto; Brunetti, Antonio; Gigante, Giovanni E.

    2001-12-01

    Compton scattering is a potential tool for the determination of bone mineral content or tissue density for dose planning purposes, and requires knowledge of the energy distribution of the X-rays through biological materials of medical interest in the X-ray and (gamma) -ray region. The energy distribution is utilized in a number of ways in diagnostic radiology, for example, in determining primary photon spectra, electron densities in separate volumes, and in tomography and imaging. The choice of the X-ray energy is more related to X-ray absorption, where as that of the scattering angle is more related to geometry. The evaluation of all the contributions are mandatory in Compton profile measurements and is important in X-ray imaging systems in order to achieve good results. In view of this, Compton profile cross-sections for few biological materials are estimated at nineteen K(alpha) X-ray energies and 60 keV (Am-241) photons. Energy broadening, geometrical broadening from 1 to 180 degree(s), FWHM of J(Pz) and FWHM of Compton energy broadening has been evaluated at various incident photon energies. These values are estimated around the centroid of the Compton profile with an energy interval of 0.1 keV and 1.0 keV for 60 keV photons. The interaction cross sections for the above materials are estimated using fractions-by-weight of the constituent elements. Input data for these tables are purely theoretical.

  17. Compton scatter correction for planner scintigraphic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vaan Steelandt, E; Dobbeleir, A; Vanregemorter, J [Algemeen Ziekenhuis Middelheim, Antwerp (Belgium). Dept. of Nuclear Medicine and Radiotherapy

    1995-12-01

    A major problem in nuclear medicine is the image degradation due to Compton scatter in the patient. Photons emitted by the radioactive tracer scatter in collision with electrons of the surrounding tissue. Due to the resulting loss of energy and change in direction, the scattered photons induce an object dependant background on the images. This results in a degradation of the contrast of warm and cold lesions. Although theoretically interesting, most of the techniques proposed in literature like the use of symmetrical photopeaks can not be implemented on the commonly used gamma camera due to the energy/linearity/sensitivity corrections applied in the detector. A method for a single energy isotope based on existing methods with adjustments towards daily practice and clinical situations is proposed. It is assumed that the scatter image, recorded from photons collected within a scatter window adjacent to the photo peak, is a reasonable close approximation of the true scatter component of the image reconstructed from the photo peak window. A fraction `k` of the image using the scatter window is subtracted from the image recorded in the photo peak window to produce the compensated image. The principal matter of the method is the right value for the factor `k`, which is determined in a mathematical way and confirmed by experiments. To determine `k`, different kinds of scatter media are used and are positioned in different ways in order to simulate a clinical situation. For a secondary energy window from 100 to 124 keV below a photo peak window from 126 to 154 keV, a value of 0.7 is found. This value has been verified using both an antropomorph thyroid phantom and the Rollo contrast phantom.

  18. The Mathematical Foundations of 3D Compton Scatter Emission Imaging

    Directory of Open Access Journals (Sweden)

    T. T. Truong

    2007-01-01

    Full Text Available The mathematical principles of tomographic imaging using detected (unscattered X- or gamma-rays are based on the two-dimensional Radon transform and many of its variants. In this paper, we show that two new generalizations, called conical Radon transforms, are related to three-dimensional imaging processes based on detected Compton scattered radiation. The first class of conical Radon transform has been introduced recently to support imaging principles of collimated detector systems. The second class is new and is closely related to the Compton camera imaging principles and invertible under special conditions. As they are poised to play a major role in future designs of biomedical imaging systems, we present an account of their most important properties which may be relevant for active researchers in the field.

  19. Inverse compton emission of gamma rays near the pulsar surface

    International Nuclear Information System (INIS)

    Morini, M.

    1981-01-01

    The physical conditions near pulsar surface that might give rise to gamma ray emission from Crab and Vela pulsars are not yet well understood. Here I suggest that, in the context of the vacuum discharge mechanism proposed by Ruderman and Sutherland (1975), gamma rays are produced by inverse Compton scattering of secondary electrons with the thermal radiation of the star surface as well as for curvature and synchotron radiation. It is found that inverse Compton scattering is relevant if the neutron star surface temperature is greater than 10 6 K or of the polar cap temperature is of the order of 5 x 10 6 K. Inverse Compton scattering in anisotropic photon fields and Klein-Nishina regime is here carefully considered. (orig.)

  20. Laser Compton Scattering Gamma Ray Induced Photo-Trasmutation

    CERN Document Server

    Li, Dazhi

    2004-01-01

    High brightness beams of gamma rays produced with laser Compton scattering have the potential to realize photo-transmutation through (γ,n) reaction, implying an efficient method to dispose long-lived fission products. Preliminary investigations have been carried out in understanding the feasibility of development of a transmutation facility to repose nuclear waste. A laser Compton scattering experimental setup based on a storage ring started to generate gamma-ray beams for studying the coupling of gamma photons and nuclear giant resonance. This paper demonstrates the dependency of nuclear transmutation efficiency on target dimensions and gamma ray features. 197Au sample was adopted in our experiment, and experimental results correspond to the theoretical estimations.

  1. BOW TIES IN THE SKY. I. THE ANGULAR STRUCTURE OF INVERSE COMPTON GAMMA-RAY HALOS IN THE FERMI SKY

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Avery E.; Shalaby, Mohamad [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada); Tiede, Paul [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada); Pfrommer, Christoph [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Puchwein, Ewald [Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Chang, Philip [Department of Physics, University of Wisconsin-Milwaukee, 1900 E. Kenwood Boulevard, Milwaukee, WI 53211 (United States); Lamberts, Astrid [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-12-01

    Extended inverse Compton halos are generally anticipated around extragalactic sources of gamma rays with energies above 100 GeV. These result from inverse Compton scattered cosmic microwave background photons by a population of high-energy electron/positron pairs produced by the annihilation of the high-energy gamma rays on the infrared background. Despite the observed attenuation of the high-energy gamma rays, the halo emission has yet to be directly detected. Here, we demonstrate that in most cases these halos are expected to be highly anisotropic, distributing the upscattered gamma rays along axes defined either by the radio jets of the sources or oriented perpendicular to a global magnetic field. We present a pedagogical derivation of the angular structure in the inverse Compton halo and provide an analytic formalism that facilitates the generation of mock images. We discuss exploiting this fact for the purpose of detecting gamma-ray halos in a set of companion papers.

  2. Compton radiography, 2

    International Nuclear Information System (INIS)

    Okuyama, Shinichi; Sera, Koichiro; Fukuda, Hiroshi; Shishido, Fumio; Mishina, Hitoshi.

    1977-01-01

    Compton radiography, a tomographic technic with Compton-scattered rays of a monochromatic gamma ray beam, was feasible of tomographing a chest phantom. The result suggested that the technic could be extended to imaging of the lung and the surrounding structures of the chest wall, mediastinum and liver in Compton tomographic mode. (auth.)

  3. Compton suppression gamma-counting: The effect of count rate

    Science.gov (United States)

    Millard, H.T.

    1984-01-01

    Past research has shown that anti-coincidence shielded Ge(Li) spectrometers enhanced the signal-to-background ratios for gamma-photopeaks, which are situated on high Compton backgrounds. Ordinarily, an anti- or non-coincidence spectrum (A) and a coincidence spectrum (C) are collected simultaneously with these systems. To be useful in neutron activation analysis (NAA), the fractions of the photopeak counts routed to the two spectra must be constant from sample to sample to variations must be corrected quantitatively. Most Compton suppression counting has been done at low count rate, but in NAA applications, count rates may be much higher. To operate over the wider dynamic range, the effect of count rate on the ratio of the photopeak counts in the two spectra (A/C) was studied. It was found that as the count rate increases, A/C decreases for gammas not coincident with other gammas from the same decay. For gammas coincident with other gammas, A/C increases to a maximum and then decreases. These results suggest that calibration curves are required to correct photopeak areas so quantitative data can be obtained at higher count rates. ?? 1984.

  4. A didactic experiment showing the Compton scattering by means of a clinical gamma camera.

    Science.gov (United States)

    Amato, Ernesto; Auditore, Lucrezia; Campennì, Alfredo; Minutoli, Fabio; Cucinotta, Mariapaola; Sindoni, Alessandro; Baldari, Sergio

    2017-06-01

    We describe a didactic approach aimed to explain the effect of Compton scattering in nuclear medicine imaging, exploiting the comparison of a didactic experiment with a gamma camera with the outcomes from a Monte Carlo simulation of the same experimental apparatus. We employed a 99m Tc source emitting 140.5keV photons, collimated in the upper direction through two pinholes, shielded by 6mm of lead. An aluminium cylinder was placed on the source at 50mm of distance. The energy of the scattered photons was measured on the spectra acquired by the gamma camera. We observed that the gamma ray energy measured at each step of rotation gradually decreased from the characteristic energy of 140.5keV at 0° to 102.5keV at 120°. A comparison between the obtained data and the expected results from the Compton formula and from the Monte Carlo simulation revealed a full agreement within the experimental error (relative errors between -0.56% and 1.19%), given by the energy resolution of the gamma camera. Also the electron rest mass has been evaluated satisfactorily. The experiment was found useful in explaining nuclear medicine residents the phenomenology of the Compton scattering and its importance in the nuclear medicine imaging, and it can be profitably proposed during the training of medical physics residents as well. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Generation of laser Compton gamma-rays using Compact ERL

    International Nuclear Information System (INIS)

    Shizuma, Toshiyuki; Hajima, Ryoichi; Nagai, Ryoji; Hayakawa, Takehito; Mori, Michiaki; Seya, Michio

    2015-01-01

    Nondestructive isotope-specific assay system using nuclear resonance fluorescence has been developed at JAEA. In this system, intense, mono-energetic laser Compton scattering (LCS) gamma-rays are generated by combining an energy recovery linac (ERL) and laser enhancement cavity. As technical development for such an intense gamma-ray source, we demonstrated generation of LCS gamma-rays using Compact ERL (supported by the Ministry of Education, Culture, Sports, Science and Technology) developed in collaboration with KEK. We also measured X-ray fluorescence for elements near iron region by using mono-energetic LCS gamma-rays. In this presentation, we will show results of the experiment and future plan. (author)

  6. Comptonization of gamma rays by cold electrons

    International Nuclear Information System (INIS)

    Xu, Yueming; Ross, R.R.; Mccray, R.

    1991-01-01

    An analytic method is developed for calculating the emergent spectrum of gamma-rays and X-rays scattered in a homogeneous medium with low-temperature electrons. The Klein-Nishina corrections of the scattering cross section and absorption processes are taken in account. The wavelength relaxation and the spatial diffusion problems are solved separately, and the emergent spectrum is calculated by convolving the evolution function of the spectrum in an infinite medium with the photon luminosity resulting from the spatial diffusion in a finite sphere. The analytic results are compared with that of Monte Carlo calculations and it is concluded that the analytic result is quite accurate. 9 refs

  7. Hybrid coded aperture and Compton imaging using an active mask

    International Nuclear Information System (INIS)

    Schultz, L.J.; Wallace, M.S.; Galassi, M.C.; Hoover, A.S.; Mocko, M.; Palmer, D.M.; Tornga, S.R.; Kippen, R.M.; Hynes, M.V.; Toolin, M.J.; Harris, B.; McElroy, J.E.; Wakeford, D.; Lanza, R.C.; Horn, B.K.P.; Wehe, D.K.

    2009-01-01

    The trimodal imager (TMI) images gamma-ray sources from a mobile platform using both coded aperture (CA) and Compton imaging (CI) modalities. In this paper we will discuss development and performance of image reconstruction algorithms for the TMI. In order to develop algorithms in parallel with detector hardware we are using a GEANT4 [J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, G. Cirrone, G. Cooperman, G. Cosmo, G. Cuttone, G. Daquino, et al., IEEE Trans. Nucl. Sci. NS-53 (1) (2006) 270] based simulation package to produce realistic data sets for code development. The simulation code incorporates detailed detector modeling, contributions from natural background radiation, and validation of simulation results against measured data. Maximum likelihood algorithms for both imaging methods are discussed, as well as a hybrid imaging algorithm wherein CA and CI information is fused to generate a higher fidelity reconstruction.

  8. Recording {gamma} spectrometer with elimination of compton background; Spectrographe {gamma} enregistreur avec elimination du bruit de fond compton

    Energy Technology Data Exchange (ETDEWEB)

    Julliot, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    This instrument, derived from the recording {gamma} spectrograph, gives better definition of photoelectric peaks by elimination of pulses caused by {gamma} photons incompletely absorbed in the scintillator (Compton effect). This system uses an original method devised by Peirson: the spectrum, devoid of photoelectric peak, supplied by a detector equipped with an anthracene scintillator, is cut off from the spectrum provided by a conventional detector equipped with a Nal (T1) scintillator. The regulation of the mechanical system, detector support and source allows the detection yields to be adjusted. The electronic system is identical in presentation with that of the recording spectrograph. (author) [French] Cet appareil derive du spectrographe {gamma} enregistreur permet d'obtenir une meilleure definition des pics photoelectriques, par elimination des impulsions provenant des photons {gamma} incompletement absorbes dans le scintillateur (effet Compton). Cet ensemble met en oeuvre une methode originale due a Peirson: le spectre, depourvu de pic photoelectrique, fourni par un detecteur, equipe avec un scintillateur d'anthracene, est retranche du spectre donne par un detecteur classique, equipe avec un scintillateur de NaI (T1). Le reglage de l'ensemble mecanique, support des detecteurs et de la source, permet d'ajuster les rendements de detection. L'ensemble electronique se presente sous un aspect identique a celui du spectrographe enregistreur. (auteur)

  9. Increase in compton scattering of gamma rays passing along metal surface

    International Nuclear Information System (INIS)

    Grigor'ev, A.N.; Bilyk, Z.V.; Sakun, A.V.; Marushchenko, V.V.; Chernyavskij, O.Yu.; Litvinov, Yu.V.

    2014-01-01

    The paper considers experimental study of changes in energy of 137 Cs gamma source as gamma rays pass along metal surface. Decrease in gamma energy was examined by reducing the number of gamma rays in the complete absorption peak to the Compton length level and increasing the Compton effect. The number of gamma rays in the complete absorption peak decreases by 3.5 times in the angle range under study

  10. Development of Compton gamma-ray sources at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F.; Anderson, S. G.; Ebbers, C. A.; Gibson, D. J.; Hartemann, F. V.; Marsh, R. A.; Messerly, M. J.; Prantil, M. A.; Wu, S.; Barty, C. P. J. [Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East avenue, Livermore, CA 94550 (United States)

    2012-12-21

    Compact Compton scattering gamma-ray sources offer the potential of studying nuclear photonics with new tools. The optimization of such sources depends on the final application, but generally requires maximizing the spectral density (photons/eV) of the gamma-ray beam while simultaneously reducing the overall bandwidth on target to minimize noise. We have developed an advanced design for one such system, comprising the RF drive, photoinjector, accelerator, and electron-generating and electron-scattering laser systems. This system uses a 120 Hz, 250 pC, 2 ps, 0.35 mm mrad electron beam with 250 MeV maximum energy in an X-band accelerator scattering off a 150 mJ, 10 ps, 532 nm laser to generate 5 Multiplication-Sign 10{sup 10} photons/eV/s/Sr at 0.5 MeV with an overall bandwidth of less than 1%. The source will be able to produce photons up to energies of 2.5 MeV. We also discuss Compton scattering gamma-ray source predictions given by numerical codes.

  11. Comment on ‘Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification’

    Science.gov (United States)

    Sitek, Arkadiusz

    2016-12-01

    The origin ensemble (OE) algorithm is a new method used for image reconstruction from nuclear tomographic data. The main advantage of this algorithm is the ease of implementation for complex tomographic models and the sound statistical theory. In this comment, the author provides the basics of the statistical interpretation of OE and gives suggestions for the improvement of the algorithm in the application to prompt gamma imaging as described in Polf et al (2015 Phys. Med. Biol. 60 7085).

  12. Comment on 'Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification'.

    Science.gov (United States)

    Sitek, Arkadiusz

    2016-12-21

    The origin ensemble (OE) algorithm is a new method used for image reconstruction from nuclear tomographic data. The main advantage of this algorithm is the ease of implementation for complex tomographic models and the sound statistical theory. In this comment, the author provides the basics of the statistical interpretation of OE and gives suggestions for the improvement of the algorithm in the application to prompt gamma imaging as described in Polf et al (2015 Phys. Med. Biol. 60 7085).

  13. Compton imaging with the PorGamRays spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Judson, D.S., E-mail: dsj@ns.ph.liv.ac.uk [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Boston, A.J. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Coleman-Smith, P.J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Cullen, D.M. [Schuster Laboratory, University of Manchester, Manchester M13 9PL (United Kingdom); Hardie, A. [STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Harkness, L.J. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Jones, L.L. [STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Jones, M. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Lazarus, I. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Nolan, P.J. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Pucknell, V. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Rigby, S.V. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Seller, P. [STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Scraggs, D.P. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Slee, M.; Sweeney, A. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom)

    2011-10-01

    The PorGamRays project aims to develop a portable gamma-ray detection system with both spectroscopic and imaging capabilities. The system is designed around a stack of thin Cadmium Zinc Telluride (CZT) detectors. The imaging capability utilises the Compton camera principle. Each detector is segmented into 100 pixels which are read out through custom designed Application Specific Integrated Circuits (ASICs). This device has potential applications in the security, decommissioning and medical fields. This work focuses on the near-field imaging performance of a lab-based demonstrator consisting of two pixelated CZT detectors, each of which is bonded to a NUCAM II ASIC. Measurements have been made with point {sup 133}Ba and {sup 57}Co sources located {approx}35mm from the surface of the scattering detector. Position resolution of {approx}20mm FWHM in the x and y planes is demonstrated.

  14. A possible role for silicon microstrip detectors in nuclear medicine Compton imaging of positron emitters

    CERN Document Server

    Scannavini, M G; Royle, G J; Cullum, I; Raymond, M; Hall, G; Iles, G

    2002-01-01

    Collimation of gamma-rays based on Compton scatter could provide in principle high resolution and high sensitivity, thus becoming an advantageous method for the imaging of radioisotopes of clinical interest. A small laboratory prototype of a Compton camera is being constructed in order to initiate studies aimed at assessing the feasibility of Compton imaging of positron emitters. The design of the camera is based on the use of a silicon collimator consisting of a stack of double-sided, AC-coupled microstrip detectors (area 6x6 cm sup 2 , 500 mu m thickness, 128 channels/side). Two APV6 chips are employed for signal readout on opposite planes of each detector. This work presents the first results on the noise performance of the silicon strip detectors. Measurements of the electrical characteristics of the detector are also reported. On the basis of the measured noise, an angular resolution of approximately 5 deg. is predicted for the Compton collimator.

  15. Reconstructed Image Spatial Resolution of Multiple Coincidences Compton Imager

    Science.gov (United States)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2010-02-01

    We study the multiple coincidences Compton imager (MCCI) which is based on a simultaneous acquisition of several photons emitted in cascade from a single nuclear decay. Theoretically, this technique should provide a major improvement in localization of a single radioactive source as compared to a standard Compton camera. In this work, we investigated the performance and limitations of MCCI using Monte Carlo computer simulations. Spatial resolutions of the reconstructed point source have been studied as a function of the MCCI parameters, including geometrical dimensions and detector characteristics such as materials, energy and spatial resolutions.

  16. A simple algorithm for estimation of source-to-detector distance in Compton imaging

    International Nuclear Information System (INIS)

    Rawool-Sullivan, Mohini W.; Sullivan, John P.; Tornga, Shawn R.; Brumby, Steven P.

    2008-01-01

    Compton imaging is used to predict the location of gamma-emitting radiation sources. The X and Y coordinates of the source can be obtained using a back-projected image and a two-dimensional peak-finding algorithm. The emphasis of this work is to estimate the source-to-detector distance (Z). The algorithm presented uses the solid angle subtended by the reconstructed image at various source-to-detector distances. This algorithm was validated using both measured data from the prototype Compton imager (PCI) constructed at the Los Alamos National Laboratory and simulated data of the same imager. Results show this method can be applied successfully to estimate Z, and it provides a way of determining Z without prior knowledge of the source location. This method is faster than the methods that employ maximum likelihood method because it is based on simple back projections of Compton scatter data

  17. Study of Compton scattering influence in cardiac SPECT images

    International Nuclear Information System (INIS)

    Munhoz, A.C.L.; Abe, R.; Zanardo, E.L.; Robilotta, C.C.

    1992-01-01

    The reduction effect from Compton fraction in the quality of and image is evaluated, with two ways of acquisition data: one, with the window of energetic analyser dislocated over the photopeak and the other, with two windows, one over the Compton contribution and the other, placed in the center over the photopeak. (C.G.C.)

  18. Development of a compact scintillator-based high-resolution Compton camera for molecular imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, A., E-mail: daphne3h-aya@ruri.waseda.jp [Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo (Japan); Kataoka, J.; Koide, A.; Sueoka, K.; Iwamoto, Y.; Taya, T. [Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo (Japan); Ohsuka, S. [Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka (Japan)

    2017-02-11

    The Compton camera, which shows gamma-ray distribution utilizing the kinematics of Compton scattering, is a promising detector capable of imaging across a wide range of energy. In this study, we aim to construct a small-animal molecular imaging system in a wide energy range by using the Compton camera. We developed a compact medical Compton camera based on a Ce-doped Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (Ce:GAGG) scintillator and multi-pixel photon counter (MPPC). A basic performance confirmed that for 662 keV, the typical energy resolution was 7.4 % (FWHM) and the angular resolution was 4.5° (FWHM). We then used the medical Compton camera to conduct imaging experiments based on a 3-D imaging reconstruction algorithm using the multi-angle data acquisition method. The result confirmed that for a {sup 137}Cs point source at a distance of 4 cm, the image had a spatial resolution of 3.1 mm (FWHM). Furthermore, we succeeded in producing 3-D multi-color image of different simultaneous energy sources ({sup 22}Na [511 keV], {sup 137}Cs [662 keV], and {sup 54}Mn [834 keV]).

  19. Compton scatter imaging: A tool for historical exploration

    International Nuclear Information System (INIS)

    Harding, G.; Harding, E.

    2010-01-01

    This review discusses the principles and technological realisation of a technique, termed Compton scatter imaging (CSI), which is based on spatially resolved detection of Compton scattered X-rays. The applicational focus of this review is to objects of historical interest. Following a historical survey of CSI, a description is given of the major characteristics of Compton X-ray scatter. In particular back-scattered X-rays allow massive objects to be imaged, which would otherwise be too absorbing for the conventional transmission X-ray technique. The ComScan (an acronym for Compton scatter scanner) is a commercially available backscatter imaging system, which is discussed here in some detail. ComScan images from some artefacts of historical interest, namely a fresco, an Egyptian mummy and a mediaeval clasp are presented and their use in historical analysis is indicated. The utility of scientific and technical advance for not only exploring history, but also restoring it, is briefly discussed.

  20. An energy-subtraction Compton scatter camera design for in vivo medical imaging of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Rohe, R.C.; Valentine, J.D.

    1996-01-01

    A Compton scatter camera (CSC) design is proposed for imaging radioisotopes used as biotracers. A clinical version may increase sensitivity by a factor of over 100, while maintaining or improving spatial resolution, as compared with existing Anger cameras that use lead collimators. This novel approach is based on using energy subtraction (ΔE = E 0 - E SC , where E 0 , ΔE, and E SC are the energy of the emitted gamma ray, the energy deposited by the initial Compton scatter, and the energy of the Compton scattered photon) to determine the amount of energy deposited in the primary system. The energy subtraction approach allows the requirement of high energy resolution to be placed on a secondary detector system instead of the primary detector system. Requiring primary system high energy resolution has significantly limited previous CSC designs for medical imaging applications. Furthermore, this approach is dependent on optimizing the camera design for data acquisition of gamma rays that undergo only one Compton scatter in a low-Z primary detector system followed by a total absorption of the Compton scattered photon in a high-Z secondary detector system. The proposed approach allows for a more compact primary detector system, a more simplified pulse processing interface, and a much less complicated detector cooling scheme as compared with previous CSC designs. Analytical calculations and Monte Carlo simulation results for some specific detector materials and geometries are presented

  1. Bin mode estimation methods for Compton camera imaging

    International Nuclear Information System (INIS)

    Ikeda, S.; Odaka, H.; Uemura, M.; Takahashi, T.; Watanabe, S.; Takeda, S.

    2014-01-01

    We study the image reconstruction problem of a Compton camera which consists of semiconductor detectors. The image reconstruction is formulated as a statistical estimation problem. We employ a bin-mode estimation (BME) and extend an existing framework to a Compton camera with multiple scatterers and absorbers. Two estimation algorithms are proposed: an accelerated EM algorithm for the maximum likelihood estimation (MLE) and a modified EM algorithm for the maximum a posteriori (MAP) estimation. Numerical simulations demonstrate the potential of the proposed methods

  2. Study and development of a spectrometer with Compton suppression and gamma coincidence counting

    International Nuclear Information System (INIS)

    Masse, D.

    1990-10-01

    This paper presents the characteristics of a spectrometer consisting of a Ge detector surrounded by a NaI(T1) detector that can operate in Compton-suppression and gamma-gamma coincidence modes. The criteria that led to this measurement configuration are discussed and the spectrometer performances are shown for 60 Co and 137 Cs gamma-ray sources. The results for the measurement of 189 Ir (Compton suppression) and for the measurement of 101 Rh (gamma-gamma coincidence) in the presence of other radioisotopes are given. 83 Rb and 105 Ag isotopes are also measured with this spectrometer [fr

  3. The applications possibilities of the gamma-ray compton backscattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Flechas, David; Gonzalez, Natalia; Sarmiento, Luis G.; Fajardo, Eduardo; Garzon, Claudia; Munoz, Juansebastian; Cristancho, Fernando [Universidad Nacional de Colombia, Bogota (Colombia). Dept. de Fisica

    2012-07-01

    Full text: X-rays have been for already longer than a century the instrument of choice when producing images of opaque objects. One important characteristic of the use of X-rays as an imaging tool is the geometrical arrangement in which the object under study is placed between the photons source and the imaging material (film or electronic device). This set-up cannot be realized in a multitude of situations of industrial interest. In those cases the source and the imaging device are limited to be at the same side of the object rendering impossible the use of present day's possibilities of X-ray imaging. It is in these cases where the technique discussed exhibits most of its power and advantages. By using the back-to-back emitted gamma-rays of the positron-decay of {sup 22}Na, the Gamma-Ray Compton Backscattering (GRCB) technique is able of building images of an object placed in front of the gamma-rays source. The set-up includes two detectors connected in time coincidence, one of them, a pixelated position- detector in charge of building the image and the other just providing the gating condition. The talk explains the working principle, shows some first images of hidden objects in soil, and discusses some of the prospective areas of application like oil industry and explosive landmines localization. (author)

  4. A method for determination mass absorption coefficient of gamma rays by Compton scattering.

    Science.gov (United States)

    El Abd, A

    2014-12-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Gamma-gamma density and lithology tools simulation based on GEANT4 advanced low energy Compton scattering (GALECS) package

    International Nuclear Information System (INIS)

    Esmaeili-sani, Vahid; Moussavi-zarandi, Ali; Boghrati, Behzad; Afarideh, Hossein

    2012-01-01

    Geophysical bore-hole data represent the physical properties of rocks, such as density and formation lithology, as a function of depth in a well. Properties of rocks are obtained from gamma ray transport logs. Transport of gamma rays, from a 137 Cs point gamma source situated in a bore-hole tool, through rock media to detectors, has been simulated using a GEANT4 radiation transport code. The advanced Compton scattering concepts were used to gain better analyses about well formation. The simulation and understanding of advanced Compton scattering highly depends on how accurately the effects of Doppler broadening and Rayleigh scattering are taken into account. A Monte Carlo package that simulates the gamma-gamma well logging tools based on GEANT4 advanced low energy Compton scattering (GALECS).

  6. Gamma-gamma density and lithology tools simulation based on GEANT4 advanced low energy Compton scattering (GALECS) package

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili-sani, Vahid, E-mail: vaheed_esmaeely80@yahoo.com [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of); Moussavi-zarandi, Ali; Boghrati, Behzad; Afarideh, Hossein [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of)

    2012-02-01

    Geophysical bore-hole data represent the physical properties of rocks, such as density and formation lithology, as a function of depth in a well. Properties of rocks are obtained from gamma ray transport logs. Transport of gamma rays, from a {sup 137}Cs point gamma source situated in a bore-hole tool, through rock media to detectors, has been simulated using a GEANT4 radiation transport code. The advanced Compton scattering concepts were used to gain better analyses about well formation. The simulation and understanding of advanced Compton scattering highly depends on how accurately the effects of Doppler broadening and Rayleigh scattering are taken into account. A Monte Carlo package that simulates the gamma-gamma well logging tools based on GEANT4 advanced low energy Compton scattering (GALECS).

  7. Development of compact Compton camera for 3D image reconstruction of radioactive contamination

    Science.gov (United States)

    Sato, Y.; Terasaka, Y.; Ozawa, S.; Nakamura Miyamura, H.; Kaburagi, M.; Tanifuji, Y.; Kawabata, K.; Torii, T.

    2017-11-01

    The Fukushima Daiichi Nuclear Power Station (FDNPS), operated by Tokyo Electric Power Company Holdings, Inc., went into meltdown after the large tsunami caused by the Great East Japan Earthquake of March 11, 2011. Very large amounts of radionuclides were released from the damaged plant. Radiation distribution measurements inside FDNPS buildings are indispensable to execute decommissioning tasks in the reactor buildings. We have developed a compact Compton camera to measure the distribution of radioactive contamination inside the FDNPS buildings three-dimensionally (3D). The total weight of the Compton camera is lower than 1.0 kg. The gamma-ray sensor of the Compton camera employs Ce-doped GAGG (Gd3Al2Ga3O12) scintillators coupled with a multi-pixel photon counter. Angular correction of the detection efficiency of the Compton camera was conducted. Moreover, we developed a 3D back-projection method using the multi-angle data measured with the Compton camera. We successfully observed 3D radiation images resulting from the two 137Cs radioactive sources, and the image of the 9.2 MBq source appeared stronger than that of the 2.7 MBq source.

  8. Research building gamma Compton scattering measurement system and related exercises for training nuclear human resources

    International Nuclear Information System (INIS)

    Mai Xuan Phong; Nguyen Van Hung; Pham Xuan Hai; Le Van Ngoc; Nguyen Xuan Hai; Dang Lanh; Tran Quoc Duong

    2013-01-01

    In this subject we have designed and manufactured Compton scattering gamma measurement system based on the calculated optimal configuration as well as the conditions of protect radiation by using Monte-Carlo simulation program and fabrication with the optimal conditions were selected. Monte-Carlo simulation calculation of Compton scattering gamma follow different angles on copper, surveying gamma radiation attenuation characteristics of materials: lead, iron, aluminum, and compared with the experimental results performed on the same measurement system has been built and given for evaluation, comments. (author)

  9. Development of Electron Tracking Compton Camera using micro pixel gas chamber for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kabuki, Shigeto; Hattori, Kaori [Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Kohara, Ryota [Hitachi Medical Corporation, Kashiwa, Chiba 277-0804 (Japan); Kunieda, Etsuo; Kubo, Atsushi [Department of Radiography, Keio University, Shinjuku-ku, Tokyo 160-8582 (Japan); Kubo, Hidetoshi; Miuchi, Kentaro [Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Nakahara, Tadaki [Department of Radiography, Keio University, Shinjuku-ku, Tokyo 160-8582 (Japan); Nagayoshi, Tsutomu; Nishimura, Hironobu; Okada, Yoko; Orito, Reiko; Sekiya, Hiroyuki [Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Shirahata, Takashi [Hitachi Medical Corporation, Kashiwa, Chiba 277-0804 (Japan); Takada, Atsushi [Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Tanimori, Toru [Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: tanimori@cr.scphys.kyoto-u.ac.jp; Ueno, Kazuki [Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)

    2007-10-01

    We have developed the Electron Tracking Compton Camera (ETCC) with reconstructing the 3-D tracks of the scattered electron in Compton process for both sub-MeV and MeV gamma rays. By measuring both the directions and energies of not only the recoil gamma ray but also the scattered electron, the direction of the incident gamma ray is determined for each individual photon. Furthermore, a residual measured angle between the recoil electron and scattered gamma ray is quite powerful for the kinematical background rejection. For the 3-D tracking of the electrons, the Micro Time Projection Chamber ({mu}-TPC) was developed using a new type of the micro pattern gas detector. The ETCC consists of this {mu}-TPC (10x10x8 cm{sup 3}) and the 6x6x13 mm{sup 3} GSO crystal pixel arrays with a flat panel photo-multiplier surrounding the {mu}-TPC for detecting recoil gamma rays. The ETCC provided the angular resolution of 6.6 deg. (FWHM) at 364 keV of {sup 131}I. A mobile ETCC for medical imaging, which is fabricated in a 1 m cubic box, has been operated since October 2005. Here, we present the imaging results for the line sources and the phantom of human thyroid gland using 364 keV gamma rays of {sup 131}I.

  10. A novel dual mode neutron-gamma imager

    International Nuclear Information System (INIS)

    Cooper, Robert Lee; Gerling, Mark; Brennan, James S.; Mascarenhas, Nicholas; Mrowka, Stanley; Marleau, Peter

    2010-01-01

    The Neutron Scatter Camera (NSC) can image fission sources and determine their energy spectra at distances of tens of meters and through significant thicknesses of intervening materials in relatively short times (1). We recently completed a 32 element scatter camera and will present recent advances made with this instrument. A novel capability for the scatter camera is dual mode imaging. In normal neutron imaging mode we identify and image neutron events using pulse shape discrimination (PSD) and time of flight in liquid scintillator. Similarly gamma rays are identified from Compton scatter in the front and rear planes for our segmented detector. Rather than reject these events, we show it is possible to construct a gamma-ray image by running the analysis in a 'Compton mode'. Instead of calculating the scattering angle by the kinematics of elastic scatters as is appropriate for neutron events, it can be found by the kinematics of Compton scatters. Our scatter camera has not been optimized as a Compton gamma-ray imager but is found to work reasonably. We studied imaging performance using a Cs137 source. We find that we are able to image the gamma source with reasonable fidelity. We are able to determine gamma energy after some reasonable assumptions. We will detail the various algorithms we have developed for gamma image reconstruction. We will outline areas for improvement, include additional results and compare neutron and gamma mode imaging.

  11. Gamma-spectrometry with Compton suppressed detectors arrays

    International Nuclear Information System (INIS)

    Schueck, C.; Hannachi, F.; Chapman, R.

    1985-01-01

    Recent results of experiments performed with two different Compton-suppressed detectors arrays in Daresbury and Berkeley (/sup 163,164/Yb and 154 Er, respectively), are presented together with a brief description of the national French array presently under construction in Strasbourg. 25 refs., 15 figs

  12. Compact FEL-driven inverse compton scattering gamma-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, M. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Di Mitri, S., E-mail: simone.dimitri@elettra.eu [Elettra - Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste (Italy); Pellegrini, C. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); University of California, Los Angeles, CA 90095 (United States); Penn, G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2017-05-21

    Many research and applications areas require photon sources capable of producing gamma-ray beams in the multi-MeV energy range with reasonably high fluxes and compact footprints. Besides industrial, nuclear physics and security applications, a considerable interest comes from the possibility to assess the state of conservation of cultural assets like statues, columns etc., via visualization and analysis techniques using high energy photon beams. Computed Tomography scans, widely adopted in medicine at lower photon energies, presently provide high quality three-dimensional imaging in industry and museums. We explore the feasibility of a compact source of quasi-monochromatic, multi-MeV gamma-rays based on Inverse Compton Scattering (ICS) from a high intensity ultra-violet (UV) beam generated in a free-electron laser by the electron beam itself. This scheme introduces a stronger relationship between the energy of the scattered photons and that of the electron beam, resulting in a device much more compact than a classic ICS for a given scattered energy. The same electron beam is used to produce gamma-rays in the 10–20 MeV range and UV radiation in the 10–15 eV range, in a ~4×22 m{sup 2} footprint system.

  13. A method for determination mass absorption coefficient of gamma rays by Compton scattering

    International Nuclear Information System (INIS)

    El Abd, A.

    2014-01-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. - Highlights: • Compton scattering of γ−rays was used for determining mass absorption coefficient. • Scattered intensities were determined by the MCSHAPE software. • Mass absorption coefficients were determined for some compounds, mixtures and alloys. • Mass absorption coefficients were calculated by Winxcom software. • Good agreements were found between determined and calculated results

  14. Compton radiography, 2. Clinical significance of Compton radiography of a chest phantom

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, S; Sera, K; Fukuda, H; Shishido, F [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer; Mishina, H

    1977-09-01

    Compton radiography, a tomographic technic with Compton-scattered rays of a monochromatic gamma ray beam, was feasible of tomographing a chest phantom. The result suggested that the technic could be extended to imaging of the lung and the surrounding structures of the chest wall, mediastinum and liver in Compton tomographic mode.

  15. Energy distribution of 0. 279 MeV gamma rays Compton scattered from bound electrons

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B; Singh, P; Singh, G; Ghumman, B S

    1984-11-01

    Energy and intensity distribution of 0.279 MeV gamma rays Compton scattered from K-shell electrons of tantalum is measured at scattering angle of 70deg. The experimental results are compared with the available theoretical data. Spectral distribution is also obtained as a function of scatterer thickness to account for the contribution of false events. 13 refs.

  16. Gamma ray burst source locations with the Ulysses/Compton/PVO Network

    International Nuclear Information System (INIS)

    Cline, T.L.; Hurley, K.C.; Boer, M.; Sommer, M.; Niel, M.; Fishman, G.J.; Kouveliotou, C.; Meegan, C.A.; Paciesas, W.S.; Wilson, R.B.; Laros, J.G.; Klebesadel, R.W.

    1991-01-01

    The new interplanetary gamma-ray burst network will determine source fields with unprecedented accuracy. The baseline of the Ulysses mission and the locations of Pioneer-Venus Orbiter and of Mars Observer will ensure precision to a few tens of arc seconds. Combined with the event phenomenologies of the Burst and Transient Source Experiment on Compton Observatory, the source locations to be achieved with this network may provide a basic new understanding of the puzzle of gamma ray bursts

  17. Development of a liquid xenon Compton telescope dedicated to functional medical imaging

    International Nuclear Information System (INIS)

    Grignon, C.

    2007-12-01

    Functional imaging is a technique used to locate in three dimensions the position of a radiotracer previously injected in a patient. The two main modalities used for a clinical application to detect tumors, the SPECT and the PET, use solid scintillators as a detection medium. The objective of this thesis was to investigate the possibility of using liquid xenon in order to benefit from the intrinsic properties of this medium in functional imaging. The feasibility study of such a device has been performed by taking into account the technical difficulties specific to the liquid xenon. First of all, simulations of a liquid xenon PET has been performed using Monte-Carlo methods. The results obtained with a large liquid xenon volume are promising : we can expect a reduction of the injected activity of radiotracer, an improvement of the spatial resolution of the image and a parallax free camera. The second part of the thesis was focused on the development of a new concept of medical imaging, the three gamma imaging, based on the use of a new emitter: the 44 scandium. Associated to a classical PET camera, the Compton telescope is used to infer the incoming direction of the third gamma ray by triangulation. Therefore, it is possible to reconstruct the position of each emitter in three dimensions. This work convinced the scientific community to support the construction and characterization of a liquid xenon Compton telescope. The first camera dedicated to small animal imaging should then be operational in 2009. (author)

  18. Directional gamma sensing from covariance processing of inter-detector Compton crosstalk energy asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Trainham, R., E-mail: trainhcp@nv.doe.gov; Tinsley, J. [Special Technologies Laboratory of National Security Technologies, LLC, 5520 Ekwill Street, Santa Barbara, California 93111 (United States)

    2014-06-15

    Energy asymmetry of inter-detector crosstalk from Compton scattering can be exploited to infer the direction to a gamma source. A covariance approach extracts the correlated crosstalk from data streams to estimate matched signals from Compton gammas split over two detectors. On a covariance map the signal appears as an asymmetric cross diagonal band with axes intercepts at the full photo-peak energy of the original gamma. The asymmetry of the crosstalk band can be processed to determine the direction to the radiation source. The technique does not require detector shadowing, masking, or coded apertures, thus sensitivity is not sacrificed to obtain the directional information. An angular precision of better than 1° of arc is possible, and processing of data streams can be done in real time with very modest computing hardware.

  19. Experimental development of a liquid xenon Compton telescope for functional medical imaging

    International Nuclear Information System (INIS)

    Oger, Tugdual

    2012-01-01

    imaging is a new nuclear medical imaging technique which has been suggested by Subatech laboratory. This technique involves locating three-dimensional position of the decay of an innovative radioisotope (β + ,γ) emitter, the 44 Sc. The principle consist in the detection of two photons of 511 keV gamma rays from the decay of the positron, provided by a PET ring detector, associated to the detection of the third photon by a Liquid xenon Compton telescope. The energy deposited in the interaction between the photon and xenon and its position are identified by measuring the ionization signal with a Micromegas chamber (Micro-Mesh Gaseous Structure), while the trigger and time measurement of the interaction are provided by the detection of the scintillation signal. The principle of the TPC is thus used to Compton imaging. In order to demonstrate experimentally the feasibility of imaging 3γ, a small prototype, XEMIS (Xenon Medical Imaging System) was developed. This thesis is an important step towards the proof of feasibility. In this work are exposed the characterization of the detector response for a beam of 511 keV gamma rays and the analysis of data derived from it. The measurement of energy and time resolutions will be presented, as well as the purity of the liquid xenon. (author) [fr

  20. Reduction of Compton background from hydrogen in prompt gamma-ray analysis by multiple photon detection

    International Nuclear Information System (INIS)

    Toh, Y.; Oshima, M.; Kimura, A.; Koizumi, M.; Furutaka, K.; Hatsukawa, Y.

    2008-01-01

    Low-energy photons produced by the Compton scattering from hydrogen increase the background in the lower-energy region of the gamma-ray spectrum. This results in an increase in the detection limit for trace elements. In multiple photon detection prompt gamma-ray analysis (MPGA), only those elements that simultaneously emit two or more prompt gamma-rays, which have cascade relation and are emitted within a short interval, can be measured. Therefore, the influence of hydrogen can be reduced. In this study, standard polymer and food samples are measured. The hydrogen background is reduced in MPGA. (author)

  1. A double photomultiplier Compton camera and its readout system for mice imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, Cristiano Lino [Physics Department Galileo Galilei, University of Padua, Via Marzolo 8, Padova 35131 (Italy) and INFN Padova, Via Marzolo 8, Padova 35131 (Italy); Atroshchenko, Kostiantyn [Physics Department Galileo Galilei, University of Padua, Via Marzolo 8, Padova 35131 (Italy) and INFN Legnaro, Viale dell' Universita 2, Legnaro PD 35020 (Italy); Baldazzi, Giuseppe [Physics Department, University of Bologna, Viale Berti Pichat 6/2, Bologna 40127, Italy and INFN Bologna, Viale Berti Pichat 6/2, Bologna 40127 (Italy); Bello, Michele [INFN Legnaro, Viale dell' Universita 2, Legnaro PD 35020 (Italy); Uzunov, Nikolay [Department of Natural Sciences, Shumen University, 115 Universitetska str., Shumen 9712, Bulgaria and INFN Legnaro, Viale dell' Universita 2, Legnaro PD 35020 (Italy); Di Domenico, Giovanni [Physics Department, University of Ferrara, Via Saragat 1, Ferrara 44122 (Italy) and INFN Ferrara, Via Saragat 1, Ferrara 44122 (Italy)

    2013-04-19

    We have designed a Compton Camera (CC) to image the bio-distribution of gamma-emitting radiopharmaceuticals in mice. A CC employs the 'electronic collimation', i.e. a technique that traces the gamma-rays instead of selecting them with physical lead or tungsten collimators. To perform such a task, a CC measures the parameters of the Compton interaction that occurs in the device itself. At least two detectors are required: one (tracker), where the primary gamma undergoes a Compton interaction and a second one (calorimeter), in which the scattered gamma is completely absorbed. Eventually the polar angle and hence a 'cone' of possible incident directions are obtained (event with 'incomplete geometry'). Different solutions for the two detectors are proposed in the literature: our design foresees two similar Position Sensitive Photomultipliers (PMT, Hamamatsu H8500). Each PMT has 64 output channels that are reduced to 4 using a charge multiplexed readout system, i.e. a Series Charge Multiplexing net of resistors. Triggering of the system is provided by the coincidence of fast signals extracted at the last dynode of the PMTs. Assets are the low cost and the simplicity of design and operation, having just one type of device; among drawbacks there is a lower resolution with respect to more sophisticated trackers and full 64 channels Readout. This paper does compare our design of our two-Hamamatsu CC to other solutions and shows how the spatial and energy accuracy is suitable for the inspection of radioactivity in mice.

  2. Compton scattering study of electron momentum distribution in lithium fluoride using 662 keV gamma radiations

    Science.gov (United States)

    Vijayakumar, R.; Shivaramu; Ramamurthy, N.; Ford, M. J.

    2008-12-01

    Here we report the first ever 137Cs Compton spectroscopy study of lithium fluoride. The spherical average Compton profiles of lithium fluoride are deduced from Compton scattering measurements on poly crystalline sample at gamma ray energy of 662 keV. To compare the experimental data, we have computed the spherical average Compton profiles using self-consistent Hartree-Fock wave functions employed on linear combination of atomic orbital (HF-LCAO) approximation. The directional Compton profiles and their anisotropic effects are also calculated using the same HF-LCAO approximation. The experimental spherical average profiles are found to be in good agreement with the corresponding HF-LCAO calculations and in qualitative agreement with Hartree-Fock free atom values. The present experimental isotropic and calculated directional profiles are also compared with the available experimental isotropic and directional Compton profiles using 59.54 and 159 keV γ-rays.

  3. Effect of detector collimator and sample thickness on 0.662 MeV multiply Compton-scattered gamma rays

    International Nuclear Information System (INIS)

    Singh, Manpreet; Singh, Gurvinderjit; Sandhu, B.S.; Singh, Bhajan

    2006-01-01

    The simultaneous effect of detector collimator and sample thickness on 0.662 MeV multiply Compton-scattered gamma photons was studied experimentally. An intense collimated beam, obtained from 6-Ci 137 Cs source, is allowed to impinge on cylindrical aluminium samples of varying diameter and the scattered photons are detected by a 51 mmx51 mm NaI(Tl) scintillation detector placed at 90 o to the incident beam. The full energy peak corresponding to singly scattered events is reconstructed analytically. The thickness at which the multiply scattered events saturate is determined for different detector collimators. The parameters like signal-to-noise ratio and multiply scatter fraction (MSF) have also been deduced and support the work carried out by Shengli et al. [2000. EGS4 simulation of Compton scattering for nondestructive testing. KEK proceedings 200-20, Tsukuba, Japan, pp. 216-223] and Barnea et al. [1995. A study of multiple scattering background in Compton scatter imaging. NDT and E International 28, 155-162] based upon Monte Carlo calculations

  4. First experimental observation of double-photon Compton scattering using single gamma detector

    International Nuclear Information System (INIS)

    Sandhu, B.S.; Saddi, M.B.; Singh, B.; Ghumman, B.S.

    2003-01-01

    Full text: The phenomenon of double-photon Compton scattering has been successfully observed using single gamma detector, a technique avoiding the use of complicated slow-fast coincidence set-up used till now for observing this higher order process. Here doubly differentiated collision cross-section integrated over direction of one of the two final photons, the direction of other one being kept fixed, has been measured experimentally for 0.662 MeV incident gamma photons. The energy spectra of the detected photons are observed as a long tail to the single-photon Compton line on the lower side of the full energy peak in the recorded scattered energy spectrum. The present results are in agreement with theory of this process

  5. Compton scattering of gamma rays in nondestructive testing

    International Nuclear Information System (INIS)

    Anjos, M.J. dos; Lopes, R.T.

    1988-01-01

    A system constituted of a Cesium 137 source with activity of 7,4 x 10 10 Bq, whose gamma rays energy is 662 KeV and a NaI (Tl) of 50 x 50 mm as surface inspection techniques is presented. The physical basic principle is the gamma radiation interaction with matter, where the predominant interaction is the comption scattering. The scattering angle chose is 90 0 . Aluminium blocks, are used as sample with defects in surfaces of several diameters. Defects with measurements higher than 1,6 mm, were detected. (C.M.) [pt

  6. Gamma-ray burst observations with the Compton/Ulysses/Pioneer-Venus network

    International Nuclear Information System (INIS)

    Cline, T.L.; Hurley, K.C.; Sommer, M.; Boer, M.; Niel, M.; Fishman, G.J.; Kouveliotou, C.; Meegan, C.A.; Paciesas, W.S.; Wilson, R.B.; Fenimore, E.E.; Laros, J.G.; Klebesadel, R.W.

    1993-01-01

    The third and latest interplanetary network for the precise directional analysis of gamma ray bursts consists of the Burst and Transient Source Experiment in Compton Gamma Ray Observatory and instruments on Pioneer-Venus Orbiter and the deep-space mission Ulysses. The unsurpassed resolution of the BATSE instrument, the use of refined analysis techniques, and Ulysses' distance of up to 6 AU all contribute to a potential for greater precision than had been achieved with former networks. Also, the departure of Ulysses from the ecliptic plane in 1992 avoids any positional alignment of the three instruments that would lessen the source directional accuracy

  7. Compton camera imaging and the cone transform: a brief overview

    Science.gov (United States)

    Terzioglu, Fatma; Kuchment, Peter; Kunyansky, Leonid

    2018-05-01

    While most of Radon transform applications to imaging involve integrations over smooth sub-manifolds of the ambient space, lately important situations have appeared where the integration surfaces are conical. Three of such applications are single scatter optical tomography, Compton camera medical imaging, and homeland security. In spite of the similar surfaces of integration, the data and the inverse problems associated with these modalities differ significantly. In this article, we present a brief overview of the mathematics arising in Compton camera imaging. In particular, the emphasis is made on the overdetermined data and flexible geometry of the detectors. For the detailed results, as well as other approaches (e.g. smaller-dimensional data or restricted geometry of detectors) the reader is directed to the relevant publications. Only a brief description and some references are provided for the single scatter optical tomography. This work was supported in part by NSF DMS grants 1211463 (the first two authors), 1211521 and 141877 (the third author), as well as a College of Science of Texas A&M University grant.

  8. Inverse Compton gamma-rays from galactic dark matter annihilation. Anisotropy signatures

    International Nuclear Information System (INIS)

    Zhang, Le; Sigl, Guenter; Miniati, Francesco

    2010-08-01

    High energy electrons and positrons from annihilating dark matter can imprint unique angular anisotropies on the diffuse gamma-ray flux by inverse Compton scattering off the interstellar radiation field. We develop a numerical tool to compute gamma-ray emission from such electrons and positrons diffusing in the smooth host halo and in substructure halos with masses down to 10 -6 M s un. We show that, unlike the total gamma-ray angular power spectrum observed by Fermi-LAT, the angular power spectrum from inverse Compton scattering is exponentially suppressed below an angular scale determined by the diffusion length of electrons and positrons. For TeV scale dark matter with a canonical thermal freeze-out cross section 3 x 10 -26 cm 3 /s, this feature may be detectable by Fermi-LAT in the energy range 100-300 GeV after more sophisticated foreground subtraction. We also find that the total flux and the shape of the angular power spectrum depends sensitively on the spatial distribution of subhalos in the Milky Way. Finally, the contribution from the smooth host halo component to the gamma-ray mean intensity is negligibly small compared to subhalos. (orig.)

  9. First measurement of $Z/\\gamma^{*}$ production in Compton scattering of quasi-real photons

    CERN Document Server

    Abbiendi, G.; Alexander, G.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Bartoldus, R.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bird, S.D.; Blobel, V.; Bloodworth, I.J.; Bobinski, M.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; del Pozo, L.A.; De Roeck, A.; Desch, K.; Dienes, B.; Dixit, M.S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Eatough, D.; Estabrooks, P.G.; Etzion, E.; Evans, H.G.; Fabbri, F.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fleck, I.; Folman, R.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Hargrove, C.K.; Hartmann, C.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hobson, P.R.; Hocker, James Andrew; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Lawson, I.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Markopoulos, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nellen, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Polok, J.; Przybycien, M.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schieck, J.; Schmitt, B.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seiler, T.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Tanaka, S.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M.A.; von Torne, E.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.

    1998-01-01

    We report the first observation of Z/gamma* production in Compton scattering of quasi-real photons. This is a subprocess of the reaction e+e- to e+e-Z/gamma*, where one of the final state electrons is undetected. Approximately 55 pb-1 of data collected in the year 1997 at an e+e- centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been analysed. The Z/gamma* from Compton scattering has been detected in the hadronic decay channel. Within well defined kinematic bounds, we measure the product of cross-section and Z/gamma* branching ratio to hadrons to be (0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV, dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60 GeV, dominated by (e)egamma* production, this product is found to be (4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo event generators, grc4f and PYTHIA.

  10. Inverse Compton gamma-rays from galactic dark matter annihilation. Anisotropy signatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Le; Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Miniati, Francesco [ETH Zuerich (Switzerland). Physics Dept.

    2010-08-15

    High energy electrons and positrons from annihilating dark matter can imprint unique angular anisotropies on the diffuse gamma-ray flux by inverse Compton scattering off the interstellar radiation field. We develop a numerical tool to compute gamma-ray emission from such electrons and positrons diffusing in the smooth host halo and in substructure halos with masses down to 10{sup -6}M{sub s}un. We show that, unlike the total gamma-ray angular power spectrum observed by Fermi-LAT, the angular power spectrum from inverse Compton scattering is exponentially suppressed below an angular scale determined by the diffusion length of electrons and positrons. For TeV scale dark matter with a canonical thermal freeze-out cross section 3 x 10{sup -26} cm{sup 3}/s, this feature may be detectable by Fermi-LAT in the energy range 100-300 GeV after more sophisticated foreground subtraction. We also find that the total flux and the shape of the angular power spectrum depends sensitively on the spatial distribution of subhalos in the Milky Way. Finally, the contribution from the smooth host halo component to the gamma-ray mean intensity is negligibly small compared to subhalos. (orig.)

  11. Optimization and verification of image reconstruction for a Compton camera towards application as an on-line monitor for particle therapy

    Science.gov (United States)

    Taya, T.; Kataoka, J.; Kishimoto, A.; Tagawa, L.; Mochizuki, S.; Toshito, T.; Kimura, M.; Nagao, Y.; Kurita, K.; Yamaguchi, M.; Kawachi, N.

    2017-07-01

    Particle therapy is an advanced cancer therapy that uses a feature known as the Bragg peak, in which particle beams suddenly lose their energy near the end of their range. The Bragg peak enables particle beams to damage tumors effectively. To achieve precise therapy, the demand for accurate and quantitative imaging of the beam irradiation region or dosage during therapy has increased. The most common method of particle range verification is imaging of annihilation gamma rays by positron emission tomography. Not only 511-keV gamma rays but also prompt gamma rays are generated during therapy; therefore, the Compton camera is expected to be used as an on-line monitor for particle therapy, as it can image these gamma rays in real time. Proton therapy, one of the most common particle therapies, uses a proton beam of approximately 200 MeV, which has a range of ~ 25 cm in water. As gamma rays are emitted along the path of the proton beam, quantitative evaluation of the reconstructed images of diffuse sources becomes crucial, but it is far from being fully developed for Compton camera imaging at present. In this study, we first quantitatively evaluated reconstructed Compton camera images of uniformly distributed diffuse sources, and then confirmed that our Compton camera obtained 3 %(1 σ) and 5 %(1 σ) uniformity for line and plane sources, respectively. Based on this quantitative study, we demonstrated on-line gamma imaging during proton irradiation. Through these studies, we show that the Compton camera is suitable for future use as an on-line monitor for particle therapy.

  12. Performance evaluation of Compton suppression gamma spectrometer for low level environmental measurements

    International Nuclear Information System (INIS)

    Baburajan, A.; Sudheendran, V.; Rao, D.D.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Environmental Survey Laboratory (ESL), Tarapur has started its environmental monitoring programme way back in 1964. Over the last four decades there was considerable improvement in the monitoring methodology and nuclear instrumentation techniques used in the laboratory. When the discharges from the nuclear facilities have reduced considerably; and global fall out level have became negligibly low, there is a need to upgrade our instrumental technique, to detect incremental changes in the environmental radioactivity however small it may be. As part of fulfilling this objective a Compton Suppression Gamma spectrometry system has been commissioned and the salient features and performance evaluation are discussed in this paper

  13. A Compton Suppressed Gamma Ray Counter For Radio Assay of Materials

    Science.gov (United States)

    Godfrey, Benjamin

    2016-03-01

    Rare event searches, such as direct dark matter experiments, require materials with ultra-low levels of natural radioactivity. We present a neutron activation analysis (NAA) technique for assaying metals, specifically titanium used for cryostat construction. Earlier attempts at NAA encountered limitations due to bulk activation via (n, p) reactions, which contributed to large continuum backgrounds due to Compton tails. Our method involves a heavy water shielded exposure to minimize (n,p) reactions and a sodium iodide shielded high purity germanium counter for the gamma ray assay. Preliminary results on assays for U/Th/K contamination in titaniumwill be presented.

  14. Angular distribution of 662keV multiply-Compton scattered gamma rays in copper

    International Nuclear Information System (INIS)

    Singh, Manpreet; Singh, Gurvinderjit; Sandhu, B.S.; Singh, Bhajan

    2007-01-01

    The angular distribution of multiple Compton scattering of 662keV gamma photons, obtained from six Curie 137 Cs source, incident on copper scatterer of varying thickness is studied experimentally in both the forward and backward hemispheres. The scattered photons are detected by a 51mmx51mm NaI(Tl) scintillation detector. The full-energy peak corresponding to singly scattered events is reconstructed analytically. We observe that the numbers of multiply scattered events, having same energy as in the singly scattered distribution, first increases with increase in target thickness and then saturate. The optimum thickness at which the multiply scattered events saturate is determined at different scattering angles

  15. Characterization of Compton-suppressed TIGRESS detectors for high energy gamma-rays

    International Nuclear Information System (INIS)

    Kshetri, R.; Andreoiu, C.; Cross, D.S.; Galinski, N.; Ball, G.C.; Djongolov, M.; Garnsworthy, A.B.; Hackman, G.; Orce, J.N.; Pearson, C.; Triambak, S.; Williams, S.J.; Drake, T.; Smalley, D.; Svensson, C.E.

    2009-01-01

    The TRIUMF-ISAC Gamma-Ray Escape- Suppressed Spectrometer (TIGRESS) will consist of 12 large-volume, 32-fold segmented HPGe clover detectors. Each detector is shielded by a 20-fold segmented Compton suppression shield. For performing discrete gamma-ray spectroscopy of light mass nuclei with TIGRESS, we need information about full energy peak efficiency, resolution and lineshape of full energy peaks for high energy gamma-rays. However, suitable radioactive sources having decay gamma-rays of energies greater than ∼ 3.5 MeV are not easily available. So the characteristics of gamma spectrometers at energies higher than 3.5 MeV are usually determined from simulation data. Predictions from GEANT4 simulations (experimentally validated from 0.3 to 3 MeV) indicate that TIGRESS will be capable for single 10 MeV gamma-rays of absolute detection efficiency of 1.5% for backward configuration of the array. It has been observed experimentally that simulation results work well up to certain energies and might deviate at higher energies. So, it is essential to check the validity of simulation results for energies above 3.3 MeV. We have investigated the high energy performance of seven TIGRESS detectors up to 8 MeV

  16. Image reconstruction from limited angle Compton camera data

    International Nuclear Information System (INIS)

    Tomitani, T.; Hirasawa, M.

    2002-01-01

    The Compton camera is used for imaging the distributions of γ ray direction in a γ ray telescope for astrophysics and for imaging radioisotope distributions in nuclear medicine without the need for collimators. The integration of γ rays on a cone is measured with the camera, so that some sort of inversion method is needed. Parra found an analytical inversion algorithm based on spherical harmonics expansion of projection data. His algorithm is applicable to the full set of projection data. In this paper, six possible reconstruction algorithms that allow image reconstruction from projections with a finite range of scattering angles are investigated. Four algorithms have instability problems and two others are practical. However, the variance of the reconstructed image diverges in these two cases, so that window functions are introduced with which the variance becomes finite at a cost of spatial resolution. These two algorithms are compared in terms of variance. The algorithm based on the inversion of the summed back-projection is superior to the algorithm based on the inversion of the summed projection. (author)

  17. Attenuation studies near K-absorption edges using Compton scattered 241Am gamma rays

    International Nuclear Information System (INIS)

    Abdullah, K.K.; Ramachandran, N.; Karunakaran Nair, K.; Babu, B.R.S.; Joseph, Antony; Thomas, Rajive; Varier, K.M.

    2008-01-01

    We have carried out photon attenuation measurements at several energies in the range from 49.38 keV to 57.96 keV around the K-absorption edges of the rare earth elements Sm, Eu, Gd, Tb, Dy and Er using 59.54 keV gamma rays from 241 Am source after Compton scattering from an aluminium target. Pellets of oxides of the rare earth elements were chosen as mixture absorbers in these investigations. A narrow beam good geometry set-up was used for the attenuation measurements. The scattered gamma rays were detected by an HPGe detector. The results are consistent with theoretical values derived from the XCOM package. (author)

  18. Compton radiography, 1

    International Nuclear Information System (INIS)

    Okuyama, Shinichi; Sera, Koichiro; Fukuda, Hiroshi; Shishido, Fumio; Matsuzawa, Taiju

    1977-01-01

    Tomographic images of an object are obtainable by irradiating it with a collimated beam of monochromatic gamma rays and recording the resultant Compton rays scattered upward at right angles. This is the scattered-ray principle of the formation of a radiation image that differs from the traditional ''silhouette principle'' of radiography, and that bears prospects of stereopsis as well as cross-section tomography. (Evans, J.)

  19. NRF Based Nondestructive Inspection System for SNM by Using Laser-Compton-Backscattering Gamma-Rays

    Science.gov (United States)

    Ohgaki, H.; Omer, M.; Negm, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Hori, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.

    2015-10-01

    A non-destructive inspection system for special nuclear materials (SNMs) hidden in a sea cargo has been developed. The system consists of a fast screening system using neutron generated by inertial electrostatic confinement (IEC) device and an isotope identification system using nuclear resonance fluorescence (NRF) measurements with laser Compton backscattering (LCS) gamma-rays has been developed. The neutron flux of 108 n/sec has been achieved by the IEC in static mode. We have developed a modified neutron reactor noise analysis method to detect fission neutron in a short time. The LCS gamma-rays has been generated by using a small racetrack microtoron accelerator and an intense sub-nano second laser colliding head-on to the electron beam. The gamma-ray flux has been achieved more than 105 photons/s. The NRF gamma-rays will be measured using LaBr3(Ce) scintillation detector array whose performance has been measured by NRF experiment of U-235 in HIGS facility. The whole inspection system has been designed to satisfy a demand from the sea port.

  20. Temporal Imaging CeBr3 Compton Camera: A New Concept for Nuclear Decommissioning and Nuclear Waste Management

    Science.gov (United States)

    Iltis, A.; Snoussi, H.; Magalhaes, L. Rodrigues de; Hmissi, M. Z.; Zafiarifety, C. Tata; Tadonkeng, G. Zeufack; Morel, C.

    2018-01-01

    During nuclear decommissioning or waste management operations, a camera that could make an image of the contamination field and identify and quantify the contaminants would be a great progress. Compton cameras have been proposed, but their limited efficiency for high energy gamma rays and their cost have severely limited their application. Our objective is to promote a Compton camera for the energy range (200 keV - 2 MeV) that uses fast scintillating crystals and a new concept for locating scintillation event: Temporal Imaging. Temporal Imaging uses monolithic plates of fast scintillators and measures photons time of arrival distribution in order to locate each gamma ray with a high precision in space (X,Y,Z), time (T) and energy (E). This provides a native estimation of the depth of interaction (Z) of every detected gamma ray. This also allows a time correction for the propagation time of scintillation photons inside the crystal, therefore resulting in excellent time resolution. The high temporal resolution of the system makes it possible to veto quite efficiently background by using narrow time coincidence (system is better than 1 nSv/h in a 60 s acquisition with a 22Na source. The project TEMPORAL is funded by the ANDRA/PAI under the grant No. RTSCNADAA160019.

  1. Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics.

    Science.gov (United States)

    Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei

    2017-02-03

    Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that "Electron Tracking Compton Camera" (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics.

  2. Compton scatter imaging: A promising modality for image guidance in lung stereotactic body radiation therapy.

    Science.gov (United States)

    Redler, Gage; Jones, Kevin C; Templeton, Alistair; Bernard, Damian; Turian, Julius; Chu, James C H

    2018-03-01

    Lung stereotactic body radiation therapy (SBRT) requires delivering large radiation doses with millimeter accuracy, making image guidance essential. An approach to forming images of patient anatomy from Compton-scattered photons during lung SBRT is presented. To investigate the potential of scatter imaging, a pinhole collimator and flat-panel detector are used for spatial localization and detection of photons scattered during external beam therapy using lung SBRT treatment conditions (6 MV FFF beam). MCNP Monte Carlo software is used to develop a model to simulate scatter images. This model is validated by comparing experimental and simulated phantom images. Patient scatter images are then simulated from 4DCT data. Experimental lung tumor phantom images have sufficient contrast-to-noise to visualize the tumor with as few as 10 MU (0.5 s temporal resolution). The relative signal intensity from objects of different composition as well as lung tumor contrast for simulated phantom images agree quantitatively with experimental images, thus validating the Monte Carlo model. Scatter images are shown to display high contrast between different materials (lung, water, bone). Simulated patient images show superior (~double) tumor contrast compared to MV transmission images. Compton scatter imaging is a promising modality for directly imaging patient anatomy during treatment without additional radiation, and it has the potential to complement existing technologies and aid tumor tracking and lung SBRT image guidance. © 2018 American Association of Physicists in Medicine.

  3. Brilliant GeV gamma-ray flash from inverse Compton scattering in the QED regime

    Science.gov (United States)

    Gong, Z.; Hu, R. H.; Lu, H. Y.; Yu, J. Q.; Wang, D. H.; Fu, E. G.; Chen, C. E.; He, X. T.; Yan, X. Q.

    2018-04-01

    An all-optical scheme is proposed for studying laser plasma based incoherent photon emission from inverse Compton scattering in the quantum electrodynamic regime. A theoretical model is presented to explain the coupling effects among radiation reaction trapping, the self-generated magnetic field and the spiral attractor in phase space, which guarantees the transfer of energy and angular momentum from electromagnetic fields to particles. Taking advantage of a prospective ˜ 1023 W cm-2 laser facility, 3D particle-in-cell simulations show a gamma-ray flash with unprecedented multi-petawatt power and brightness of 1.7 × 1023 photons s-1 mm-2 mrad-2/0.1% bandwidth (at 1 GeV). These results bode well for new research directions in particle physics and laboratory astrophysics exploring laser plasma interactions.

  4. Gamma rays from relativistic electrons undergoing Compton losses in isotropic photon fields

    International Nuclear Information System (INIS)

    Zdziarski, A.A.

    1989-01-01

    The kinetic equation describing Compton losses of relativistic electrons in an isotropic field of soft background photons is solved exactly including both continuous energy losses in the classical Thomson regime and catastrophic losses in the quantum Klein-Nishina regime. This extends the previous treatments of this problem, which assumed the validity of either one of these regimes alone. The problem is relevant to astrophysical sources containing relativistic electrons. Analytical solutions for the steady state electron and gamma-ray spectra in the case of power-law soft photons and monoenergetic and power-law electron injections are obtained. Numerical solutions are presented for monoenergetic, blackbody, and power-law soft photons. A comparison between the numerical and the available analytic solutions is made. 15 refs

  5. X-band RF Photoinjector for Laser Compton X-ray and Gamma-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R. A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Anderson, G. G. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Anderson, S. G. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Gibson, D. J. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Barty, C. J. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2015-05-06

    Extremely bright narrow bandwidth gamma-ray sources are expanding the application of accelerator technology and light sources in new directions. An X-band test station has been commissioned at LLNL to develop multi-bunch electron beams. This multi-bunch mode will have stringent requirements for the electron bunch properties including low emittance and energy spread, but across multiple bunches. The test station is a unique facility featuring a 200 MV/m 5.59 cell X-band photogun powered by a SLAC XL4 klystron driven by a Scandinova solid-state modulator. This paper focuses on its current status including the generation and initial characterization of first electron beam. Design and installation of the inverse-Compton scattering interaction region and upgrade paths will be discussed along with future applications.

  6. Feasibility of Strong and Quasi-Monochromatic Gamma-Ray Generation by the Laser Compton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiyoung; Rehman, Haseeb ur; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    This is because LCS γ-rays are energy-tunable, quasi-monochromatic, and beam-like. The photon intensity of the mono-chromatic LCS gamma-ray should be high or strong for efficient and high transmutation rate. It was recently reported that a so-called energy-recovery linac system is able to produce a very high-intensity LCS photons in the order of approximately 1013 photons/s economically. It however did not evaluate quality of the LCS photon beam although a quasi-monoenergetic LCS beam is of huge importance in the photo-nuclear transmutation reactions. It is upon this observation that this paper was prepared. Specifically, this work attempts to quantify intensity of the quasi-monochromatic LCS beam from the said linac system. In addition, this paper aims to discuss general characteristics of the LCS photon, and possible approaches to increase its intensity. This paper presents essential characteristics of the laser Compton scattering (LCS) in terms of its photon energy, cross-section and photon intensity. By using different combinations of electron energy, laser energy and scattering angle, we can effectively generate high-intensity and highly-chromatic LCS gamma-rays. Our preliminary analyses indicate that, in view of Compton cross-section, higher-energy photon can be better generated by increasing the electron energy rather than increasing the laser energy. However, in order to maximize the intensity of monochromatic beam, the laser energy should be maximized for a targeted LCS photon energy.

  7. Crystal Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Braverman, Joshua B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hornback, Donald Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fabris, Lorenzo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Newby, Jason [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-09-26

    Stand-off detection is one of the most important radiation detection capabilities for arms control and the control of illicit nuclear materials. For long range passive detection one requires a large detector and a means of “seeing through” the naturally occurring and varying background radiation, i.e. imaging. Arguably, Compton imaging is the best approach over much of the emission band suitable for long range detection. It provides not only imaging, but more information about the direction of incidence of each detected gamma-ray than the alternate approach of coded-aperture imaging. The directional information allows one to reduce the background and hence improve the sensitivity of a measurement. However, to make an efficient Compton imager requires localizing and measuring the simultaneous energy depositions when gamma-rays Compton scatter and are subsequently captured within a single, large detector volume. This concept has been demonstrated in semi-conductor detectors (HPGe, CZT, Si) but at ~ $1k/cm3 these materials are too expensive to build the large systems needed for standoff detection. Scintillator detectors, such as NaI(Tl), are two orders of magnitude less expensive and possess the energy resolution required to make such an imager. However, they do not currently have the ability to localize closely spaced, simultaneous energy depositions in a single large crystal. In this project we are applying a new technique that should, for the first time ever, allow cubic-millimeter event localization in a bulk scintillator crystal.

  8. Gamma-Ray Burst Arrival Time Localizations: Simultaneous Observations by Pioneer Venus Orbiter, Compton Gamma-Ray Observatory, and Ulysses

    International Nuclear Information System (INIS)

    Laros, J.G.; Hurley, K.C.; Fenimore, E.E.; Klebesadel, R.W.; Briggs, M.S.; Kouveliotou, C.; McCollough, M.L.; Fishman, G.J.; Meegan, C.A.; Cline, T.L.; Boer, M.; Niel, M.

    1998-01-01

    Between the Compton Gamma Ray Observatory (CGRO) launch in 1991 April and the Pioneer Venus Orbiter (PVO) demise in 1992 October, concurrent coverage by CGRO, PVO, and Ulysses was obtained for several hundred gamma-ray bursts (GRBs). Although most of these were below the PVO and Ulysses thresholds, 37 were positively detected by all three spacecraft, with data quality adequate for quantitative localization analysis. All were localized independently to ∼2 degree accuracy by the CGRO Burst and Transient Source Experiment (BATSE), and three were also localized by COMPTEL. We computed arrival-time error boxes, whose larger dimensions range from about 2' to several degrees and whose smaller dimensions are in the arcminute range. Twelve have areas less than 10 arcmin 2 , and only four have areas greater than 1 deg 2 . The area of the smallest box is 0.44 arcmin 2 . We find that the overall BATSE localization accuracy for these events is consistent with the most recent stated uncertainties. This work indicates that the ROSAT soft X-ray source found within a preliminary IPN error box for GB920501 (Trig 1576) (Hurley et al.) is less likely to be the GRB counterpart than previously reported. copyright copyright 1998. The American Astronomical Society

  9. Development of a liquid xenon Compton telescope dedicated to functional medical imaging; Etude et developpement d'un telescope compton au xenon liquide dedie a l'imagerie medicale fonctionnelle

    Energy Technology Data Exchange (ETDEWEB)

    Grignon, C

    2007-12-15

    Functional imaging is a technique used to locate in three dimensions the position of a radiotracer previously injected in a patient. The two main modalities used for a clinical application to detect tumors, the SPECT and the PET, use solid scintillators as a detection medium. The objective of this thesis was to investigate the possibility of using liquid xenon in order to benefit from the intrinsic properties of this medium in functional imaging. The feasibility study of such a device has been performed by taking into account the technical difficulties specific to the liquid xenon. First of all, simulations of a liquid xenon PET has been performed using Monte-Carlo methods. The results obtained with a large liquid xenon volume are promising : we can expect a reduction of the injected activity of radiotracer, an improvement of the spatial resolution of the image and a parallax free camera. The second part of the thesis was focused on the development of a new concept of medical imaging, the three gamma imaging, based on the use of a new emitter: the 44 scandium. Associated to a classical PET camera, the Compton telescope is used to infer the incoming direction of the third gamma ray by triangulation. Therefore, it is possible to reconstruct the position of each emitter in three dimensions. This work convinced the scientific community to support the construction and characterization of a liquid xenon Compton telescope. The first camera dedicated to small animal imaging should then be operational in 2009. (author)

  10. Development of a liquid xenon Compton telescope dedicated to functional medical imaging; Etude et developpement d'un telescope compton au xenon liquide dedie a l'imagerie medicale fonctionnelle

    Energy Technology Data Exchange (ETDEWEB)

    Grignon, C

    2007-12-15

    Functional imaging is a technique used to locate in three dimensions the position of a radiotracer previously injected in a patient. The two main modalities used for a clinical application to detect tumors, the SPECT and the PET, use solid scintillators as a detection medium. The objective of this thesis was to investigate the possibility of using liquid xenon in order to benefit from the intrinsic properties of this medium in functional imaging. The feasibility study of such a device has been performed by taking into account the technical difficulties specific to the liquid xenon. First of all, simulations of a liquid xenon PET has been performed using Monte-Carlo methods. The results obtained with a large liquid xenon volume are promising : we can expect a reduction of the injected activity of radiotracer, an improvement of the spatial resolution of the image and a parallax free camera. The second part of the thesis was focused on the development of a new concept of medical imaging, the three gamma imaging, based on the use of a new emitter: the 44 scandium. Associated to a classical PET camera, the Compton telescope is used to infer the incoming direction of the third gamma ray by triangulation. Therefore, it is possible to reconstruct the position of each emitter in three dimensions. This work convinced the scientific community to support the construction and characterization of a liquid xenon Compton telescope. The first camera dedicated to small animal imaging should then be operational in 2009. (author)

  11. Fast image reconstruction for Compton camera using stochastic origin ensemble approach.

    Science.gov (United States)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2011-01-01

    Compton camera has been proposed as a potential imaging tool in astronomy, industry, homeland security, and medical diagnostics. Due to the inherent geometrical complexity of Compton camera data, image reconstruction of distributed sources can be ineffective and/or time-consuming when using standard techniques such as filtered backprojection or maximum likelihood-expectation maximization (ML-EM). In this article, the authors demonstrate a fast reconstruction of Compton camera data using a novel stochastic origin ensembles (SOE) approach based on Markov chains. During image reconstruction, the origins of the measured events are randomly assigned to locations on conical surfaces, which are the Compton camera analogs of lines-of-responses in PET. Therefore, the image is defined as an ensemble of origin locations of all possible event origins. During the course of reconstruction, the origins of events are stochastically moved and the acceptance of the new event origin is determined by the predefined acceptance probability, which is proportional to the change in event density. For example, if the event density at the new location is higher than in the previous location, the new position is always accepted. After several iterations, the reconstructed distribution of origins converges to a quasistationary state which can be voxelized and displayed. Comparison with the list-mode ML-EM reveals that the postfiltered SOE algorithm has similar performance in terms of image quality while clearly outperforming ML-EM in relation to reconstruction time. In this study, the authors have implemented and tested a new image reconstruction algorithm for the Compton camera based on the stochastic origin ensembles with Markov chains. The algorithm uses list-mode data, is parallelizable, and can be used for any Compton camera geometry. SOE algorithm clearly outperforms list-mode ML-EM for simple Compton camera geometry in terms of reconstruction time. The difference in computational time

  12. Gamma radiation compton scattering effect from the Ukrytie Object on the radiation situation at the Chernobyl' NPP territory

    International Nuclear Information System (INIS)

    Alekseeva, E.A.; Volkovich, A.G.; Koba, G.I.; Liksonov, V.I.; Stepanov, V.E.; Tyurin, A.S.; Urutskoev, L.I.; Chesnokov, A.V.

    1989-01-01

    With the aim of determination of the angular distribution of the gamma-radiation (GR) exposure dose rate (EDR) around the Ukrytie Object (UO) are described the measurement results of GR EDR in July 1988 at the territory, adjoining to UO. The conclusion is made that the main contribution into EDR ensures GR, scattered as a result of the Compton effect on air molecules and that the contribution of the NPP territory is small. 10 figs.; 3 tabs

  13. Using Compton scattering for random coincidence rejection

    International Nuclear Information System (INIS)

    Kolstein, M.; Chmeissani, M.

    2016-01-01

    The Voxel Imaging PET (VIP) project presents a new approach for the design of nuclear medicine imaging devices by using highly segmented pixel CdTe sensors. CdTe detectors can achieve an energy resolution of ≈ 1% FWHM at 511 keV and can be easily segmented into submillimeter sized voxels for optimal spatial resolution. These features help in rejecting a large part of the scattered events from the PET coincidence sample in order to obtain high quality images. Another contribution to the background are random events, i.e., hits caused by two independent gammas without a common origin. Given that 60% of 511 keV photons undergo Compton scattering in CdTe (i.e. 84% of all coincidence events have at least one Compton scattering gamma), we present a simulation study on the possibility to use the Compton scattering information of at least one of the coincident gammas within the detector to reject random coincidences. The idea uses the fact that if a gamma undergoes Compton scattering in the detector, it will cause two hits in the pixel detectors. The first hit corresponds to the Compton scattering process. The second hit shall correspond to the photoelectric absorption of the remaining energy of the gamma. With the energy deposition of the first hit, one can calculate the Compton scattering angle. By measuring the hit location of the coincident gamma, we can construct the geometric angle, under the assumption that both gammas come from the same origin. Using the difference between the Compton scattering angle and the geometric angle, random events can be rejected.

  14. Development of a Watt-level gamma-ray source based on high-repetition-rate inverse Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, D.; Murokh, A.; Piot, P.; Ruan, J.

    2017-07-01

    A high-brilliance (~1022 photon s-1 mm-2 mrad-2 /0.1%) gamma-ray source experiment is currently being planned at Fermilab (Eγ≃1.1 MeV). The source implements a high-repetition-rate inverse Compton scattering by colliding electron bunches formed in a ~300-MeV superconducting linac with a high-intensity laser pulse. This paper describes the design rationale along with some of technical challenges associated to producing high-repetition-rate collision. The expected performances of the gamma-ray source are also presented.

  15. Inverse Compton gamma-ray source for nuclear physics and related applications at the Duke FEL

    International Nuclear Information System (INIS)

    O'Shea, P.G.; Litvinenko, V.N.; Madey, J.M.J.

    1995-01-01

    In recent years the development of intense, short-wavelength FEL light sources has opened opportunities for the development new applications of high-energy Compton-backscattered photons. These applications range from medical imaging with X-ray photons to high-energy physics with γγ colliders. In this paper we discuss the possibilities for nuclear physics studies using polarized Compton backscattered γ-rays from the Duke storage-ring-driven UV-FEL. There are currently a number of projects that produce polarized γ-rays for nuclear physics studies. All of these facilities operate by scattering conventional laser-light against electrons circulating in a storage ring. In our scheme, intra-cavity scattering of the UV-FEL light will produce a γ-flux enhancement of approximately 10 3 over existing sources. The Duke ring can operate at energies up to 1.2 GeV and can produce FEL photons up to 12.5 eV. We plan to generate γ-rays up to 200 MeV in energy with an average flux in excess of 10 7 /s/MeV, using a modest scattering beam of 10-mA average stored current. The γ-ray energy may be tuned by varying the FEL wavelength or by adjusting the stored electron beam energy. Because of the intense flux, we can eliminate the need for photon energy tagging by collimating of the γ-ray beam. We will discuss the characteristics of the device and its research opportunities

  16. Image combination enhancement method for X-ray compton back-scattering security inspection body scanner

    International Nuclear Information System (INIS)

    Wang Huaiying; Zhang Yujin; Yang Lirui; Li Dong

    2011-01-01

    As for X-ray Compton Back-Scattering (CBS) body scanner, image clearness is very important for the performance of detecting the contraband hidden on the body. A new image combination enhancement method is provided based on characteristics of CBS body images and points of human vision. After processed by this method, the CBS image will be obviously improved with clear levels, distinct outline and uniform background. (authors)

  17. Development of a time-of-flight Compton camera prototype for online control of ion therapy and medical imaging

    International Nuclear Information System (INIS)

    Ley, Jean-Luc

    2015-01-01

    Hadron-therapy is one of the modalities available for treating cancer. This modality uses light ions (protons, carbon ions) to destroy cancer cells. Such particles have a ballistic accuracy thanks to their quasi-rectilinear trajectory, their path and the finished profile maximum dose in the end. Compared to conventional radiotherapy, this allows to spare the healthy tissue located adjacent downstream and upstream of the tumor. One of this modality's quality assurance challenges is to control the positioning of the dose deposited by ions in the patient. One possibility to perform this control is to detect the prompt gammas emitted during nuclear reactions induced along the ion path in the patient. A Compton camera prototype, theoretically allowing to maximize the detection efficiency of the prompt gammas, is being developed under a regional collaboration. This camera was the main focus of my thesis, and particularly the following points: i) studying, throughout Monte Carlo simulations, the operation of the prototype in construction, particularly with respect to the expected counting rates on the different types of accelerators in hadron-therapy ii) conducting simulation studies on the use of this camera in clinical imaging, iii) characterising the silicon detectors (scatterer) iv) confronting Geant4 simulations on the camera's response with measurements on the beam with the help of a demonstrator. As a result, the Compton camera prototype developed makes a control of the localization of the dose deposition in proton therapy to the scale of a spot possible, provided that the intensity of the clinical proton beam is reduced by a factor 200 (intensity of 10 8 protons/s). An application of the Compton camera in nuclear medicine seems to be attainable with the use of radioisotopes of an energy greater than 300 keV. These initial results must be confirmed by more realistic simulations (homogeneous and heterogeneous PMMA targets). Tests with the progressive

  18. Three-dimensional imaging of flat natural and cultural heritage objects by a Compton scattering modality

    Science.gov (United States)

    Guerrero Prado, Patricio; Nguyen, Mai K.; Dumas, Laurent; Cohen, Serge X.

    2017-01-01

    Characterization and interpretation of flat ancient material objects, such as those found in archaeology, paleoenvironments, paleontology, and cultural heritage, have remained a challenging task to perform by means of conventional x-ray tomography methods due to their anisotropic morphology and flattened geometry. To overcome the limitations of the mentioned methodologies for such samples, an imaging modality based on Compton scattering is proposed in this work. Classical x-ray tomography treats Compton scattering data as noise in the image formation process, while in Compton scattering tomography the conditions are set such that Compton data become the principal image contrasting agent. Under these conditions, we are able, first, to avoid relative rotations between the sample and the imaging setup, and second, to obtain three-dimensional data even when the object is supported by a dense material by exploiting backscattered photons. Mathematically this problem is addressed by means of a conical Radon transform and its inversion. The image formation process and object reconstruction model are presented. The feasibility of this methodology is supported by numerical simulations.

  19. Image restoration techniques using Compton backscatter imaging for the detection of buried land mines

    Science.gov (United States)

    Wehlburg, Joseph C.; Keshavmurthy, Shyam P.; Watanabe, Yoichi; Dugan, Edward T.; Jacobs, Alan M.

    1995-06-01

    Earlier landmine imaging systems used two collimated detectors to image objects. These systems had difficulty in distinguishing between surface features and buried features. Using a combination of collimated and uncollimated detectors in a Compton backscatter imaging (CBI) system, allows the identification of surface and buried features. Images created from the collimated detectors contain information about the surface and the buried features, while the uncollimated detectors respond (approximately 80%) to features on the surface. The analysis of surface features are performed first, then these features can be removed and the buried features can be identified. Separation of the surface and buried features permits the use of a globbing algorithm to define regions of interest that can then be quantified [area, Y dimension, X dimension, and center location (xo, yo)]. Mine composition analysis is also possible because of the properties of the four detector system. Distinguishing between a pothole and a mine, that was previously very difficult, can now be easily accomplished.

  20. A Compton camera for spectroscopic imaging from 100 keV to 1 MeV

    International Nuclear Information System (INIS)

    Earnhart, J.R.D.

    1998-01-01

    A review of spectroscopic imaging issues, applications, and technology is presented. Compton cameras based on solid state semiconductor detectors stands out as the best system for the nondestructive assay of special nuclear materials. A camera for this application has been designed based on an efficient specific purpose Monte Carlo code developed for this project. Preliminary experiments have been performed which demonstrate the validity of the Compton camera concept and the accuracy of the code. Based on these results, a portable prototype system is in development. Proposed future work is addressed

  1. ITEM-QM solutions for EM problems in image reconstruction exemplary for the Compton Camera

    CERN Document Server

    Pauli, Josef; Anton, G

    2002-01-01

    Imaginary time expectation maximation (ITEM), a new algorithm for expectation maximization problems based on the quantum mechanics energy minimalization via imaginary (euclidian) time evolution is presented. Both (the algorithm as well as the implementation (http://www.johannes-pauli.de/item/index.html) are published under the terms of General GNU public License (http://www.gnu.org/copyleft/gpl.html). Due to its generality ITEM is applicable to various image reconstruction problems like CT, PET, SPECT, NMR, Compton Camera, tomosynthesis as well as any other energy minimization problem. The choice of the optimal ITEM Hamiltonian is discussed and numerical results are presented for the Compton Camera.

  2. Estimation of Compton Imager Using Single 3D Position-Sensitive LYSO Scintillator: Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taewoong; Lee, Hyounggun; Kim, Younghak; Lee, Wonho [Korea University, Seoul (Korea, Republic of)

    2017-07-15

    The performance of a Compton imager using a single three-dimensional position-sensitive LYSO scintillator detector was estimated using a Monte Carlo simulation. The Compton imager consisted of a single LYSO scintillator with a pixelized structure. The size of the scintillator and each pixel were 1.3 × 1.3 × 1.3 cm{sup 3} and 0.3 × 0.3 × 0.3 cm{sup 3}, respectively. The order of γ-ray interactions was determined based on the deposited energies in each detector. After the determination of the interaction sequence, various types of reconstruction algorithms such as simple back-projection, filtered back-projection, and list-mode maximum-likelihood expectation maximization (LM-MLEM) were applied and compared with each other in terms of their angular resolution and signal-tonoise ratio (SNR) for several γ-ray energies. The LM-MLEM reconstruction algorithm exhibited the best performance for Compton imaging in maintaining high angular resolution and SNR. The two sources of {sup 137}Cs (662 keV) could be distinguishable if they were more than 17 ◦ apart. The reconstructed Compton images showed the precise position and distribution of various radiation isotopes, which demonstrated the feasibility of the monitoring of nuclear materials in homeland security and radioactive waste management applications.

  3. Nondestructive Inspection System for Special Nuclear Material Using Inertial Electrostatic Confinement Fusion Neutrons and Laser Compton Scattering Gamma-Rays

    Science.gov (United States)

    Ohgaki, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Misawa, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.; Fujimoto, S.

    2017-07-01

    A Neutron/Gamma-ray combined inspection system for hidden special nuclear materials (SNMs) in cargo containers has been developed under a program of Japan Science and Technology Agency in Japan. This inspection system consists of an active neutron-detection system for fast screening and a laser Compton backscattering gamma-ray source in coupling with nuclear resonance fluorescence (NRF) method for precise inspection. The inertial electrostatic confinement fusion device has been adopted as a neutron source and two neutron-detection methods, delayed neutron noise analysis method and high-energy neutron-detection method, have been developed to realize the fast screening system. The prototype system has been constructed and tested in the Reactor Research Institute, Kyoto University. For the generation of the laser Compton backscattering gamma-ray beam, a race track microtron accelerator has been used to reduce the size of the system. For the NRF measurement, an array of LaBr3(Ce) scintillation detectors has been adopted to realize a low-cost detection system. The prototype of the gamma-ray system has been demonstrated in the Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology. By using numerical simulations based on the data taken from these prototype systems and the inspection-flow, the system designed by this program can detect 1 kg of highly enriched 235U (HEU) hidden in an empty 20-ft container within several minutes.

  4. Effective atomic numbers of blue topaz at different gamma-rays energies obtained from Compton scattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Tuschareon, S., E-mail: tuscharoen@hotmail.com; Limkitjaroenporn, P., E-mail: tuscharoen@hotmail.com; Kaewkhao, J., E-mail: tuscharoen@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand and Science Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000 (Thailand)

    2014-03-24

    Topaz occurs in a wide range of colors, including yellow, orange, brown, pink-to-violet and blue. All of these color differences are due to color centers. In order to improve the color of natural colorless topaz, the most commonly used is irradiated with x- or gamma-rays, indicated that attenuation parameters is important to enhancements by irradiation. In this work, the mass attenuation coefficients of blue topaz were measured at the different energy of γ-rays using the Compton scattering technique. The results show that, the experimental values of mass attenuation coefficient are in good agreement with the theoretical values. The mass attenuation coefficients increase with the decrease in gamma rays energies. This may be attributed to the higher photon interaction probability of blue topaz at lower energy. This result is a first report of mass attenuation coefficient of blue topaz at different gamma rays energies.

  5. Compton scatter correction in case of multiple crosstalks in SPECT imaging.

    Science.gov (United States)

    Sychra, J J; Blend, M J; Jobe, T H

    1996-02-01

    A strategy for Compton scatter correction in brain SPECT images was proposed recently. It assumes that two radioisotopes are used and that a significant portion of photons of one radioisotope (for example, Tc99m) spills over into the low energy acquisition window of the other radioisotope (for example, Tl201). We are extending this approach to cases of several radioisotopes with mutual, multiple and significant photon spillover. In the example above, one may correct not only the Tl201 image but also the Tc99m image corrupted by the Compton scatter originating from the small component of high energy Tl201 photons. The proposed extension is applicable to other anatomical domains (cardiac imaging).

  6. Proposal of balloon and satellite observations of MeV gammas using Electron Tracking Compton Camera for reaching a high sensitivity of 1 mCrab

    Science.gov (United States)

    Takada, Atsushi; Tanimori, Toru

    2016-04-01

    ETCC with a gas Time Projection Chamber (TPC) and pixel GSO scintillators, by measuring electron tracks precisely, provides both a strong background rejection by dE/dx of the track and well-defined 2-dimensional Point Spread Function (PDF) with better than several degrees by adding the arc direction of incident gammas (SPD: Scatter Plane Deviation) with the ARM (angular Resolution Measure) direction measured in standard Compton Camera (CC). In 2006 its background rejection was revealed by SMILE-I balloon experiment with 10cm-cubic ETCC using the dE/dx of tracks. In 2013, 30cm-cube-ETCC has been developed to catch gammas from Crab in next SMILE-II balloon with >5sigma detection for 4 hrs. Now its sensitivity has been improved to 10sigma by attaining the angular resolution of the track (SPD angle) to that determined by multiple scattering of the gas. Thus, we show the ability of ETCC to give a better significance by a factor of 10 than that of standard CCs having same detection area by electron tracking?and we have found that SPD is an essential to define the PSF of Compton imaging quantitatively. Such a well-defined PSF is, for the first time, able to provide reliable sensitivity in Compton imaging without assuming the use of optimization algorithm. These studies uncover the uncertainties of CCs from both points of view of the intense background and the difficulty of the definition of the PSF, and overcome the above problems. Based on this technology, SMILE-II with 3atm CF4 gas is expected to provide a 5times better sensitivity than COMPTEL in one month balloon, and 4modules of 50cm-cube ETCCs would exceed over 10^-12 erg/cm^2s^1 (1mCrab) in satellite. Here we summarize the performance of the ETCC and new astrophysics opened in near future by high sensitive observation of MeV gamma-rays.

  7. Scene data fusion: Real-time standoff volumetric gamma-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barnowski, Ross [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720, United States of America (United States); Haefner, Andrew; Mihailescu, Lucian [Lawrence Berkeley National Lab - Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720, United States of America (United States); Vetter, Kai [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720, United States of America (United States); Lawrence Berkeley National Lab - Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720, United States of America (United States)

    2015-11-11

    An approach to gamma-ray imaging has been developed that enables near real-time volumetric (3D) imaging of unknown environments thus improving the utility of gamma-ray imaging for source-search and radiation mapping applications. The approach, herein dubbed scene data fusion (SDF), is based on integrating mobile radiation imagers with real-time tracking and scene reconstruction algorithms to enable a mobile mode of operation and 3D localization of gamma-ray sources. A 3D model of the scene, provided in real-time by a simultaneous localization and mapping (SLAM) algorithm, is incorporated into the image reconstruction reducing the reconstruction time and improving imaging performance. The SDF concept is demonstrated in this work with a Microsoft Kinect RGB-D sensor, a real-time SLAM solver, and a cart-based Compton imaging platform comprised of two 3D position-sensitive high purity germanium (HPGe) detectors. An iterative algorithm based on Compton kinematics is used to reconstruct the gamma-ray source distribution in all three spatial dimensions. SDF advances the real-world applicability of gamma-ray imaging for many search, mapping, and verification scenarios by improving the tractiblity of the gamma-ray image reconstruction and providing context for the 3D localization of gamma-ray sources within the environment in real-time.

  8. Developments in gamma-ray spectrometry: systems, software, and methods-II. 3. Low-Energy Gamma-Ray Spectrometry Using a Compton-Suppressed Telescope Detector

    International Nuclear Information System (INIS)

    Sigg, R.A.; DiPrete, D.P.

    2001-01-01

    The Savannah River Technology Center (SRTC) utilizes gamma-ray spectrometry in studying numerous areas of applied interest to the Savannah River Site (SRS). For example, analyses of long-lived gamma-ray-emitting fission products and actinides are required to meet waste characterization, process holdup, environmental restoration, and decontamination and decommissioning efforts. A significant portion of the overall effort centers on measurements of gamma rays having energies below several hundred kilo-electron-volts. To assist these efforts, the SRTC recently acquired a spectrometer system that provides lower natural and Compton scattered background levels while achieving relatively high counting efficiencies for low-energy gamma rays. The combination of high efficiency and low background provides factor-of- 2-to-4 improvements in minimum detectable activities and allows meeting programmatic objectives with shorter measurement times. Numerous Compton-suppression spectrometers have been reported since the concept was first advanced. The spectrometer consists of two high-purity germanium detectors in a telescope configuration surrounded by a background /Compton-suppression sodium iodide detector. The front germanium detector is a 20-mm-thick x 60-mm-diam broad energy spectrometer, and the rear detector is a 40% efficient 61- mm-diam x 60-cm-thick closed-end coaxial spectrometer. The cryostat housing the germanium detectors (a) includes a carbon composite window for transmitting low-energy gamma rays, (b) is in a J-type configuration to mask the germanium detectors from natural activities in the cryo-pumping media, and (c) is fabricated from materials selected for low background. The telescope detector is in the 8.6-cm-inside-diameter annulus of a 22.9- x 22.9-cm sodium iodide detector encased in a 10-cm-thick lead shield. The counting system is located in a basement counting room having ∼60-cm-thick concrete walls. Initial tests show that the low-energy segment of

  9. Compton recoil electron tracking with silicon strip detectors

    International Nuclear Information System (INIS)

    O'Neill, T.J.; Ait-Ouamer, F.; Schwartz, I.; Tumer, O.T.; White, R.S.; Zych, A.D.

    1992-01-01

    The application of silicon strip detectors to Compton gamma ray astronomy telescopes is described in this paper. The Silicon Compton Recoil Telescope (SCRT) tracks Compton recoil electrons in silicon strip converters to provide a unique direction for Compton scattered gamma rays above 1 MeV. With strip detectors of modest positional and energy resolutions of 1 mm FWHM and 3% at 662 keV, respectively, 'true imaging' can be achieved to provide an order of magnitude improvement in sensitivity to 1.6 x 10 - 6 γ/cm 2 -s at 2 MeV. The results of extensive Monte Carlo calculations of recoil electrons traversing multiple layers of 200 micron silicon wafers are presented. Multiple Coulomb scattering of the recoil electron in the silicon wafer of the Compton interaction and the next adjacent wafer is the basic limitation to determining the electron's initial direction

  10. Collimatorless imaging of gamma rays with help of gamma-ray tracking

    CERN Document Server

    Marel, J V D

    2001-01-01

    In many gamma-ray detector systems that are built for imaging purposes Compton scattered photons are suppressed as much as possible. However, the information from photons that scattered inside a detector system can be used to reconstruct the tracks of the photons with help of gamma-ray tracking. Estimates of the incident directions of the photons can be made and an image can be created. Examples of potential applications for this technique are the use as a gamma-camera in medical imaging (e.g. SPECT) or as a detector for PET. Due to the omission of collimators, much higher detection efficiencies can be achieved, reducing the doses required for an image. A gamma-ray tracking method, called backtracking, has been developed for nuclear spectroscopy. The method tracks gamma-rays originating from a point source in the center of a spherical detector system consisting of position-sensitive germanium detectors. This method can also be used as a tracking technique for imaging of an unknown source distribution. With he...

  11. New readout and data-acquisition system in an electron-tracking Compton camera for MeV gamma-ray astronomy (SMILE-II)

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, T., E-mail: mizumoto@cr.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Matsuoka, Y. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Mizumura, Y. [Unit of Synergetic Studies for Space, Kyoto University, 606-8502 Kyoto (Japan); Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Tanimori, T. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Unit of Synergetic Studies for Space, Kyoto University, 606-8502 Kyoto (Japan); Kubo, H.; Takada, A.; Iwaki, S.; Sawano, T.; Nakamura, K.; Komura, S.; Nakamura, S.; Kishimoto, T.; Oda, M.; Miyamoto, S.; Takemura, T.; Parker, J.D.; Tomono, D.; Sonoda, S. [Department of Physics, Kyoto University, 606-8502 Kyoto (Japan); Miuchi, K. [Department of Physics, Kobe University, 658-8501 Kobe (Japan); Kurosawa, S. [Institute for Materials Research, Tohoku University, 980-8577 Sendai (Japan)

    2015-11-11

    For MeV gamma-ray astronomy, we have developed an electron-tracking Compton camera (ETCC) as a MeV gamma-ray telescope capable of rejecting the radiation background and attaining the high sensitivity of near 1 mCrab in space. Our ETCC comprises a gaseous time-projection chamber (TPC) with a micro pattern gas detector for tracking recoil electrons and a position-sensitive scintillation camera for detecting scattered gamma rays. After the success of a first balloon experiment in 2006 with a small ETCC (using a 10×10×15 cm{sup 3} TPC) for measuring diffuse cosmic and atmospheric sub-MeV gamma rays (Sub-MeV gamma-ray Imaging Loaded-on-balloon Experiment I; SMILE-I), a (30 cm){sup 3} medium-sized ETCC was developed to measure MeV gamma-ray spectra from celestial sources, such as the Crab Nebula, with single-day balloon flights (SMILE-II). To achieve this goal, a 100-times-larger detection area compared with that of SMILE-I is required without changing the weight or power consumption of the detector system. In addition, the event rate is also expected to dramatically increase during observation. Here, we describe both the concept and the performance of the new data-acquisition system with this (30 cm){sup 3} ETCC to manage 100 times more data while satisfying the severe restrictions regarding the weight and power consumption imposed by a balloon-borne observation. In particular, to improve the detection efficiency of the fine tracks in the TPC from ~10% to ~100%, we introduce a new data-handling algorithm in the TPC. Therefore, for efficient management of such large amounts of data, we developed a data-acquisition system with parallel data flow.

  12. Compton tomography system

    Science.gov (United States)

    Grubsky, Victor; Romanoov, Volodymyr; Shoemaker, Keith; Patton, Edward Matthew; Jannson, Tomasz

    2016-02-02

    A Compton tomography system comprises an x-ray source configured to produce a planar x-ray beam. The beam irradiates a slice of an object to be imaged, producing Compton-scattered x-rays. The Compton-scattered x-rays are imaged by an x-ray camera. Translation of the object with respect to the source and camera or vice versa allows three-dimensional object imaging.

  13. Impact of measuring electron tracks in high-resolution scientific charge-coupled devices within Compton imaging systems

    International Nuclear Information System (INIS)

    Chivers, D.H.; Coffer, A.; Plimley, B.; Vetter, K.

    2011-01-01

    We have implemented benchmarked models to determine the gain in sensitivity of electron-tracking based Compton imaging relative to conventional Compton imaging by the use of high-resolution scientific charge-coupled devices (CCD). These models are based on the recently demonstrated ability of electron-tracking based Compton imaging by using fully depleted scientific CCDs. Here we evaluate the gain in sensitivity by employing Monte Carlo simulations in combination with advanced charge transport models to calculate two-dimensional charge distributions corresponding to experimentally obtained tracks. In order to reconstruct the angle of the incident γ-ray, a trajectory determination algorithm was used on each track and integrated into a back-projection routine utilizing a geodesic-vertex ray tracing technique. Analysis was performed for incident γ-ray energies of 662 keV and results show an increase in sensitivity consistent with tracking of the Compton electron to approximately ±30 o .

  14. AXIS: An instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Tommasini, R.; Carpenter, A. C.; Palmer, N. E.; Zacharias, R.; Felker, B.; Holder, J. P.; Allen, F. V.; Bell, P. M.; Bradley, D.; Montesanti, R.; Landen, O. L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

    2014-11-15

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV–200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  15. AXIS: an instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF.

    Science.gov (United States)

    Hall, G N; Izumi, N; Tommasini, R; Carpenter, A C; Palmer, N E; Zacharias, R; Felker, B; Holder, J P; Allen, F V; Bell, P M; Bradley, D; Montesanti, R; Landen, O L

    2014-11-01

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV-200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  16. A Compton suppressed detector multiplicity trigger based digital DAQ for gamma-ray spectroscopy

    Science.gov (United States)

    Das, S.; Samanta, S.; Banik, R.; Bhattacharjee, R.; Basu, K.; Raut, R.; Ghugre, S. S.; Sinha, A. K.; Bhattacharya, S.; Imran, S.; Mukherjee, G.; Bhattacharyya, S.; Goswami, A.; Palit, R.; Tan, H.

    2018-06-01

    The development of a digitizer based pulse processing and data acquisition system for γ-ray spectroscopy with large detector arrays is presented. The system is based on 250 MHz 12-bit digitizers, and is triggered by a user chosen multiplicity of Compton suppressed detectors. The logic for trigger generation is similar to the one practised for analog (NIM/CAMAC) pulse processing electronics, while retaining the fast processing merits of the digitizer system. Codes for reduction of data acquired from the system have also been developed. The system has been tested with offline studies using radioactive sources as well as in the in-beam experiments with an array of Compton suppressed Clover detectors. The results obtained therefrom validate its use in spectroscopic efforts for nuclear structure investigations.

  17. A gamma beam profile imager for ELI-NP Gamma Beam System

    Science.gov (United States)

    Cardarelli, P.; Paternò, G.; Di Domenico, G.; Consoli, E.; Marziani, M.; Andreotti, M.; Evangelisti, F.; Squerzanti, S.; Gambaccini, M.; Albergo, S.; Cappello, G.; Tricomi, A.; Veltri, M.; Adriani, O.; Borgheresi, R.; Graziani, G.; Passaleva, G.; Serban, A.; Starodubtsev, O.; Variola, A.; Palumbo, L.

    2018-06-01

    The Gamma Beam System of ELI-Nuclear Physics is a high brilliance monochromatic gamma source based on the inverse Compton interaction between an intense high power laser and a bright electron beam with tunable energy. The source, currently being assembled in Magurele (Romania), is designed to provide a beam with tunable average energy ranging from 0.2 to 19.5 MeV, rms energy bandwidth down to 0.5% and flux of about 108 photons/s. The system includes a set of detectors for the diagnostic and complete characterization of the gamma beam. To evaluate the spatial distribution of the beam a gamma beam profile imager is required. For this purpose, a detector based on a scintillator target coupled to a CCD camera was designed and a prototype was tested at INFN-Ferrara laboratories. A set of analytical calculations and Monte Carlo simulations were carried out to optimize the imager design and evaluate the performance expected with ELI-NP gamma beam. In this work the design of the imager is described in detail, as well as the simulation tools used and the results obtained. The simulation parameters were tuned and cross-checked with the experimental measurements carried out on the assembled prototype using the beam from an x-ray tube.

  18. Compton radiography, 3. Compton scinti-tomography of the chest diseases

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, S; Sera, K; Shishido, F; Fukuda, H [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer; Mishina, H

    1977-10-01

    The compton radiography aims at collection of depth information by recording with a scinticamera those Compton rays that have resulted from scattering of a monoenergetic gamma beam by a volume of interest. Appreciably clear clinical scinti-tomograms were obtained of the chest wall, and intrathoracic structures such as the lungs, intrapulmonary pathologies, and mediastinum. This was achieved without any computer assistance for image reconstruction such as those in the case of XCT. Apparently, suitable corrections of the attenuations of the primary monoenergetic gamma rays and secondary Compton rays would greatly improve the image quality, and imaging time and radiation exposure as well. This technic is simple in principle, relatively cheap, and yet prospective of development of stereoptic fluoroscopy that would be extremely helpful in guiding such procedures as visceral biopsies.

  19. EXTERNAL COMPTON SCATTERING IN BLAZAR JETS AND THE LOCATION OF THE GAMMA-RAY EMITTING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Finke, Justin D., E-mail: justin.finke@nrl.navy.mil [U.S. Naval Research Laboratory, Code 7653, 4555 Overlook Ave. SW, Washington, DC, 20375-5352 (United States)

    2016-10-20

    I study the location of the γ -ray emission in blazar jets by creating a Compton-scattering approximation that is valid for all anisotropic radiation fields in the Thomson through Klein–Nishina regimes, is highly accurate, and can speed up numerical calculations by up to a factor of ∼10. I apply this approximation to synchrotron self-Compton, external Compton scattering of photons from the accretion disk, broad line region (BLR), and dust torus. I use a stratified BLR model and include detailed Compton-scattering calculations of a spherical and flattened BLR. I create two dust torus models, one where the torus is an annulus and one where it is an extended disk. I present detailed calculations of the photoabsorption optical depth using my detailed BLR and dust torus models, including the full angle dependence. I apply these calculations to the emission from a relativistically moving blob traveling through these radiation fields. The ratio of γ -ray to optical flux produces a predictable pattern that could help locate the γ -ray emission region. I show that the bright flare from 3C 454.3 in 2010 November detected by the Fermi Large Area Telescope is unlikely to originate from a single blob inside the BLR. This is because it moves outside the BLR in a time shorter than the flare duration, although emission by multiple blobs inside the BLR is possible. Also, γ -rays are unlikely to originate from outside of the BLR, due to the scattering of photons from an extended dust torus, since the cooling timescale would be too long to explain the observed short variability.

  20. Principles and applications of gamma-ray imaging for arms control

    Science.gov (United States)

    Ziock, K. P.

    2018-01-01

    The ability of gamma-rays to penetrate matter makes them an excellent signature for the detection of nuclear materials-except that this very ability makes their detection difficult. This is particularly true if one wishes to make images, since general-purpose focusing optics do not exist. Various indirect imaging techniques have been successfully applied to obtain gamma-ray images, including Compton and coded-aperture imaging. This paper reviews the different approaches, and discusses their advantages and disadvantages as illustrated with results obtained from different instruments designed for use in nuclear security applications.

  1. Compton imaging with a highly-segmented, position-sensitive HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T.; Hirsch, R.; Reiter, P.; Birkenbach, B.; Bruyneel, B.; Eberth, J.; Hess, H.; Lewandowski, L. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Gernhaeuser, R.; Maier, L.; Schlarb, M.; Weiler, B.; Winkel, M. [Technische Universitaet Muenchen, Physik Department, Garching (Germany)

    2017-02-15

    A Compton camera based on a highly-segmented high-purity germanium (HPGe) detector and a double-sided silicon-strip detector (DSSD) was developed, tested, and put into operation; the origin of γ radiation was determined successfully. The Compton camera is operated in two different modes. Coincidences from Compton-scattered γ-ray events between DSSD and HPGe detector allow for best angular resolution; while the high-efficiency mode takes advantage of the position sensitivity of the highly-segmented HPGe detector. In this mode the setup is sensitive to the whole 4π solid angle. The interaction-point positions in the 36-fold segmented large-volume HPGe detector are determined by pulse-shape analysis (PSA) of all HPGe detector signals. Imaging algorithms were developed for each mode and successfully implemented. The angular resolution sensitively depends on parameters such as geometry, selected multiplicity and interaction-point distances. Best results were obtained taking into account the crosstalk properties, the time alignment of the signals and the distance metric for the PSA for both operation modes. An angular resolution between 13.8 {sup circle} and 19.1 {sup circle}, depending on the minimal interaction-point distance for the high-efficiency mode at an energy of 1275 keV, was achieved. In the coincidence mode, an increased angular resolution of 4.6 {sup circle} was determined for the same γ-ray energy. (orig.)

  2. Gamma-ray Imaging Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  3. Spatial resolution measurements of the advanced radiographic capability x-ray imaging system at energies relevant to Compton radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Landen, O. L.; Tommasini, R.; Holder, J. P.; Hargrove, D.; Bradley, D. K.; Lumbard, A.; Cruz, J. G.; Piston, K.; Bell, P. M.; Carpenter, A. C.; Palmer, N. E.; Felker, B.; Rekow, V.; Allen, F. V. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Lee, J. J.; Romano, E. [National Security Technologies LLC, 161 S Vasco Rd., Livermore, California 94551 (United States)

    2016-11-15

    Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro-channel plate) to provide gating and high DQE at the 40–200 keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Experiments were performed at energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.

  4. Passive amplification of a fiber laser in a Fabry-Perot cavity: application to gamma-ray production by Compton backscattering

    International Nuclear Information System (INIS)

    Labaye, F.

    2012-01-01

    One of the critical points of the International Linear Collider (ILC) is the polarized positrons source. Without going through further explanation on the physical process of polarized positrons production, we point out that they are produced when circularly polarized gamma rays interact with mater. Thus, the critical point is the circularly polarized gamma-ray source. A technical solution for this source is the Compton backscattering and in the end, this thesis takes place in the framework for the design of a high average power laser systems enslaved to Fabry-Perot cavities for polarized gamma-ray production by Compton backscattering. In the first part, we present this thesis context, the Compton backscattering principle and the choice for an optical architecture based on a fiber laser and a Fabry-Perot cavity. We finish by enumerating several possible applications for Compton backscattering which shows that the work presented here might benefits from technology transfer through others research fields. In the second part, we present the different fiber laser architecture studied as well as the results obtained. In the third part, we remind the operating principle of a Fabry-Perot cavity and present the one used for our experiment as well as its specificities. In the fourth part, we address the Compton backscattering experiment which enables us to present the joint utilization of a fiber laser and a Fabry-Perot cavity in a particles accelerator to generate gamma rays for the first time to our knowledge. This experiment took place in the Accelerator Test Facility (ATF). The experimental apparatus as well as the results obtained are thus presented. In the end, we summarize the results presented in this manuscript and propose different evolution possibilities for the system in a general conclusion. (author)

  5. Monte Carlo simulation of muon-induced background of an anti-Compton gamma-ray spectrometer placed in a surface and underground laboratory

    CERN Document Server

    Vojtyla, P

    2005-01-01

    Simulations of cosmic ray muon induced background of an HPGe detector placed inside an anti-Compton shield on the surface and in shallow underground is described. Investigation of several model set-ups revealed some trends useful for design of low-level gamma-ray spectrometers. It has been found that background spectrum of an HPGe detector can be scaled down with the shielding depth. No important difference is observed when the same set-up of the anti-Compton spectrometer is positioned horizontally or vertically. A cosmic-muon rejection factor of at least 40 (at around 1 MeV) can be reached when the anti-Compton suppression is operational. The cosmicmuon background can be reduced to such a level that other background components prevail, like those from the residual contamination of the detector and shield materials and/or from radon, especially for the underground facilities.

  6. Proceedings of the Fourth Compton Symposium. Proceedings

    International Nuclear Information System (INIS)

    Dermer, C.D.; Strickman, M.S.; Kurfess, J.D.

    1997-01-01

    These proceedings represent the papers presented at the Fourth Compton Symposium held in Williamsburg, Virginia in April, 1997. This symposium gives the latest development in gamma ray astronomy and summarizes the results obtained by the Compton Gamma Ray Observatory. One of the missions of the Observatory has been the study of physical processes taking place in the most dynamic sites in the Universe, including supernovae, novae, pulsars, black holes, active galaxies, and gamma-ray bursts. The energies covered range from hard X-ray to gamma-ray regions from 15 KeV to 30 GeV. The Burst and Transient Experiment (BASTE) measures brightness variations in gamma-ray bursts and solar flares. The Oriented Scintillation Spectroscopy Experiment (OSSE), measures spectral output of astrophysical sources in the 0.05 to 10 MeV range. The Imaging Compton Telescope (COMPTEL) detects gamma-rays and performs sky survey in the energy range 1 to 30 MeV. The Energetic Gamma Ray Experiment Telescope (EGRET) covers the broadest energy range from 20 MeV to 30 GeV. The papers presented result from all of the above. There were 249 papers presented and out of these, 6 have been abstracted for the Energy, Science and Technology database

  7. High-energy gamma-ray beams from Compton-backscattered laser light

    Energy Technology Data Exchange (ETDEWEB)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized ..gamma..-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10/sup 7/ s/sup -1/) of background-free polarized ..gamma.. rays whose energy will be determined to a high accuracy (..delta..E = 2.3 MeV). Initially, 300(420)-MeV ..gamma.. rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the ..gamma..-ray energy up to 700 MeV.

  8. Medical gamma ray imaging

    Science.gov (United States)

    Osborne, Louis S.; Lanza, Richard C.

    1984-01-01

    A method and apparatus for determining the distribution of a position-emitting radioisotope into an object, the apparatus consisting of a wire mesh radiation converter, an ionizable gas for propagating ionization events caused by electrodes released by the converter, a drift field, a spatial position detector and signal processing circuitry for correlating near-simultaneous ionization events and determining their time differences, whereby the position sources of back-to-back collinear radiation can be located and a distribution image constructed.

  9. Estimating the sky map in gamma-ray astronomy with a Compton telescope

    International Nuclear Information System (INIS)

    Herbert, T.J.

    1991-01-01

    Compton telescopes represent an effective design for γ-ray astronomy in the 1-30 MeV range. However, the complexity of the system response to incident γ-rays has restricted the formulation of optimal methods for processing the data. Since data is only acquired at considerable expense and difficulty a significant investment in both algorithm development and computer processing time are warranted. Current methods for processing low level data form the sky map as either the sum or product of the probabilities that each recorded γ-ray originated from within an area of the sky map. Instead, we model the unknown sky map itself as the means of a Poisson process generating the γ-ray recorded by the telescope. In this paper the authors formulate the probability density function of the data conditioned upon the sky map and derive an iterative algorithm for estimating the sky map by the method of maximum likelihood

  10. Compton imaging tomography for nondestructive evaluation of large multilayer aircraft components and structures

    Science.gov (United States)

    Romanov, Volodymyr; Grubsky, Victor; Zahiri, Feraidoon

    2017-02-01

    We present a novel NDT/NDE tool for non-contact, single-sided 3D inspection of aerospace components, based on Compton Imaging Tomography (CIT) technique, which is applicable to large, non-uniform, and/or multilayer structures made of composites or lightweight metals. CIT is based on the registration of Compton-scattered X-rays, and permits the reconstruction of the full 3D (tomographic) image of the inspected objects. Unlike conventional computerized tomography (CT), CIT requires only single-sided access to objects, and therefore can be applied to large structures without their disassembly. The developed tool provides accurate detection, identification, and precise 3D localizations and measurements of any possible internal and surface defects (corrosions, cracks, voids, delaminations, porosity, and inclusions), and also disbonds, core and skin defects, and intrusion of foreign fluids (e.g., fresh and salt water, oil) inside of honeycomb sandwich structures. The NDE capabilities of the system were successfully demonstrated on various aerospace structure samples provided by several major aerospace companies. Such a CIT-based tool can detect and localize individual internal defects with dimensions about 1-2 mm3, and honeycomb disbond defects less than 6 mm by 6 mm area with the variations in the thickness of the adhesive by 100 m. Current maximum scanning speed of aircraft/spacecraft structures is about 5-8 min/ft2 (50-80 min/m2).

  11. Compton current detector

    International Nuclear Information System (INIS)

    Carvalho Campos, J.S. de.

    1984-01-01

    The project and construction of a Compton current detector, with cylindrical geometry using teflon as dielectric material; for electromagnetic radiation in range energy between 10 KeV and 2 MeV are described. The measurements of Compton current in teflon were obtained using an electrometer. The Compton current was promoted by photon flux proceeding from X ray sources (MG 150 Muller device) and gamma rays of 60 Co. The theory elaborated to explain the experimental results is shown. The calibration curves for accumulated charge and current in detector in function of exposition rates were obtained. (M.C.K.) [pt

  12. Effective atomic number and effective electron densities of some inorganic compounds for Compton effect in the gamma energy range 280 keV to 1115 keV

    International Nuclear Information System (INIS)

    Prasannakumar, S.; Umesh, T.K.

    2014-01-01

    The effective atomic number and effective electron densities of some inorganic compounds for Compton effect in the gamma energy range 280 keV to 1115 keV by using Compton scattering cross sections which are determined on a goniometer assembly. An ORTEC model 23210 gamma-x high purity germanium detector (HpGe) has been used to record the data along with a personal computer based MCA in the angular region 50°-110°. The effective atomic numbers so obtained were found to be equal to the total number of electrons present in the sample in accordance with the chemical formula. The results so obtained are of first of their kind at these energies and are expected to be important in a variety of applications of radiation physics and chemistry. (author)

  13. Measurement of doubly differential collision cross-sections for double-photon Compton scattering of 0.662 MeV gamma rays

    International Nuclear Information System (INIS)

    Datta, Gulshan; Saddi, M.B.; Singh, B.; Sandhu, B.S.

    2007-01-01

    The doubly differential collision cross-sections of the double-photon Compton process have been measured experimentally for 0.662 MeV incident gamma photons. The measurements are carried out using a single gamma detector, a technique avoiding the use of the complicated slow-fast coincidence set-up used till now for observing this higher order QED process. The energy spectra of detected photons are observed as a long tail to the single-photon Compton line on the lower side of the full energy peak in the recorded scattered energy spectrum. The measured values of the cross-section for different independent energy levels of one of the two final photons are of the same magnitude but show deviation from the corresponding values obtained from the theory. However, the present measurements are first of its kind and in view of the nature and order of deviations, the agreement of measured values with theory is quite satisfactory

  14. Characterisation of a compton suppressed clover detector for high energy gamma rays (5 MeV ≤ E ≤ 11 MeV)

    International Nuclear Information System (INIS)

    Saha Sarkar, M.; Kshetri, Ritesh; Raut, Rajarshi; Mukherjee, A.; Goswami, A.; Ray, S.; Basu, P.; Majumder, H.; Bhattacharya, S.; Dasmahapatra, B.; Sinha, Mandira; Ray, Maitreyee

    2004-01-01

    The Clover detectors in their add back mode have been seen to be excellent tools for detecting high energy gamma rays (≥ 2 MeV). Recently studies were carried out on the characteristics of a Compton suppressed Clover germanium detector up to 5 MeV using a radioactive 66 Ga (T 1/2 =9.41 h) source for the first time

  15. An Analysis on Some Factors Which Affect the Energy Resolution of a Low-background Anti-compton HPGe Gamma-ray Spectrometer

    International Nuclear Information System (INIS)

    Zhou Chunlin; Dai Junjie; Lei Junniu; Zhang Jiaoyu

    2009-01-01

    This paper describes the basic construction and performing theory of a set of low-background anti-compton high purity germanium gamma-ray spectrometer. On the basis of experiments, some factors which affect the energy resolution of the system are discussed. The optimum parameters configuration for the system is presented and it provides a decision-making ground for purchasing, installation and alignment of analogous system. (authors)

  16. Characterisation of a Compton suppressed Clover detector for high energy gamma rays (=<11MeV)

    Energy Technology Data Exchange (ETDEWEB)

    Saha Sarkar, M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India)]. E-mail: maitrayee.sahasarkar@saha.ac.in; Kshetri, Ritesh [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Raut, Rajarshi [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Mukherjee, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Sinha, Mandira [Gurudas College, Narkeldanga, Kolkata-700054 (India); Ray, Maitreyi [Behala College, Parnashree, Kolkata-700060 (India); Goswami, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Roy, Subinit [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Basu, P. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Majumder, H. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Bhattacharya, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Dasmahapatra, B. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India)

    2006-01-01

    Gamma ray spectra of two (p,{gamma}) resonances have been utilised for the characterisation of the Clover detector at energies beyond 5MeV. Apart from the efficiency and the resolution of the detector, the shapes of the full energy peaks as well as the nature of the escape peaks which are also very crucial at higher energies have been analysed with special attention. Proper gain matching in software have checked deterioration in the energy resolution and distortion in the peak shape due to addback. The addback factors show sharp increasing trend even at energies around 11MeV.

  17. Measurement of collision integral cross-sections of double-photon Compton effect using a single gamma ray detector: A response matrix approach

    International Nuclear Information System (INIS)

    Saddi, M.B.; Singh, Bhajan; Sandhu, B.S.

    2008-01-01

    The collision integral cross-sections of double-photon Compton process are measured experimentally for 662 keV incident gamma photons. The measurements are successfully carried out using a single gamma ray detector, and do not require the complicated slow-fast coincidence technique used till now for observing this higher order quantum electrodynamics (QED) process. The energy spectra of one of the two final photons, originating in this process, in direction of the gamma ray detector are observed as a long tail to the single-photon Compton line on lower side of the full energy peak in the observed spectra. An inverse response matrix converts the observed pulse-height distribution of a NaI(Tl) scintillation detector to a true photon spectrum. This also results in extraction of events originating from double-photon Compton interactions. The present measured values of collision integral cross-section, although of same magnitude, deviate from the corresponding values obtained from the theory. In view of the magnitude of deviations, in addition to small value of probability of occurrence of this process, the agreement of measured values with theory is reasonably acceptable

  18. A Compton camera application for the GAMOS GEANT4-based framework

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, L.J., E-mail: ljh@ns.ph.liv.ac.uk [Oliver Lodge Laboratory, The University of Liverpool, Liverpool L69 7ZE (United Kingdom); Arce, P. [Department of Basic Research, CIEMAT, Madrid (Spain); Judson, D.S.; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Dormand, J.; Jones, M.; Nolan, P.J.; Sampson, J.A.; Scraggs, D.P.; Sweeney, A. [Oliver Lodge Laboratory, The University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom)

    2012-04-11

    Compton camera systems can be used to image sources of gamma radiation in a variety of applications such as nuclear medicine, homeland security and nuclear decommissioning. To locate gamma-ray sources, a Compton camera employs electronic collimation, utilising Compton kinematics to reconstruct the paths of gamma rays which interact within the detectors. The main benefit of this technique is the ability to accurately identify and locate sources of gamma radiation within a wide field of view, vastly improving the efficiency and specificity over existing devices. Potential advantages of this imaging technique, along with advances in detector technology, have brought about a rapidly expanding area of research into the optimisation of Compton camera systems, which relies on significant input from Monte-Carlo simulations. In this paper, the functionality of a Compton camera application that has been integrated into GAMOS, the GEANT4-based Architecture for Medicine-Oriented Simulations, is described. The application simplifies the use of GEANT4 for Monte-Carlo investigations by employing a script based language and plug-in technology. To demonstrate the use of the Compton camera application, simulated data have been generated using the GAMOS application and acquired through experiment for a preliminary validation, using a Compton camera configured with double sided high purity germanium strip detectors. Energy spectra and reconstructed images for the data sets are presented.

  19. Digital electronics for 256 anode Hamamatsu H9500 PSPMT arrays in full-volume Compton imagers

    International Nuclear Information System (INIS)

    Harris, J T; Grudberg, P M; Warburton, W K

    2014-01-01

    Ziock et al.'s [1] recent Monte Carlo study of a proposed ''full-volume'' Compton Imaging Camera concluded that simultaneously locating a Compton scatter event's multiple interaction points within a single large scintillator crystal might be possible at 1 mm spatial resolution using a coded aperture mask sandwiched between two light guides and coupled to a position sensitive photomultiplier (PSPMT) to record the output light pattern. The method promises high efficiency at a relatively low cost. They are currently developing a lower resolution prototype using a large cubic scintillator (25.4 cm/side) whose masked face will be tiled with 25 Hamamatsu H9500 PSPMTs (6,400 outputs). XIA has contracted to develop and produce the readout electronics, which present several significant design challenges, including capturing all 6,400 anode outputs individually, with single photon sensitivity, in a compact format that will fit behind the tiled PSPMTs. 10,000 event/sec operation is desired, as is a cost of less than about $50/channel. In our approach, each PSPMT front end integrates the 256 anode signals and 8-1 multiplexes them to 32 differential outputs that are digitized in a PXI card using 4 octal 50 MHz ADCs. The multiplexers run at 8 MHz, sampling each anode at 1 MHz, which becomes the image frame rate. The ADC signals are demultiplexed and digitally filtered to extract the number of photons in each pixel in the full 2-D image. The design has been completed and built and is undergoing evaluation tests at the single PSPMT level

  20. Experimental evaluation of multiple Compton backscattering of gamma rays in copper

    International Nuclear Information System (INIS)

    Sabharwal, Arvind D.; Singh, Manpreet; Singh, Bhajan; Sandhu, B.S.

    2009-01-01

    The gamma ray photons continue to soften in energy as the number of scatterings increases in thick target, and results in the generation of singly and multiply scattered events. The number of these multiply scattered events increases with an increase in target thickness and saturates beyond a particular target thickness known as saturation depth. The present experiment is undertaken to study the saturation depth for 279 and 320 keV incident gamma ray photons multiply backscattered from copper targets of varying thickness. The backscattered photons are detected by a Nal(Tl) gamma detector whose pulse-height distribution is converted into a photon spectrum with the help of an inverse matrix approach. To extract the contribution of multiply backscattered photons only, the spectrum of singly scattered photon is reconstructed analytically. We observe that the numbers of multiply scattered events increases with an increase in target thickness and then saturate. The saturation depth is found to be decreasing with increase in incident gamma energy. (author)

  1. Gamma-ray imaging probes

    International Nuclear Information System (INIS)

    Wild, W.J.

    1988-01-01

    External nuclear medicine diagnostic imaging of early primary and metastatic lung cancer tumors is difficult due to the poor sensitivity and resolution of existing gamma cameras. Nonimaging counting detectors used for internal tumor detection give ambiguous results because distant background variations are difficult to discriminate from neighboring tumor sites. This suggests that an internal imaging nuclear medicine probe, particularly an esophageal probe, may be advantageously used to detect small tumors because of the ability to discriminate against background variations and the capability to get close to sites neighboring the esophagus. The design, theory of operation, preliminary bench tests, characterization of noise behavior and optimization of such an imaging probe is the central theme of this work

  2. Photo-transmutation of {sup 100}Mo to {sup 99}Mo with Laser-Compton Scattering Gamma-ray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiyoung; Rehman, Haseeb ur; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    This paper presents a photonuclear transmutation method using laser Compton scattering (LCS) gamma-ray beam. Potential production rate (reaction rate) of 99Mo using the photonuclear (γ,n) reaction is evaluated. Rigorous optimization of the LCS spectrum has also been performed to maximize production of the 99Mo. Cyclotron proton accelerators are used worldwide to produce many short-living medical isotopes. However, few are capable of producing Mo-99 and none are suitable for producing more than a small fraction of the required amounts. More than 90% of the world's demand of 99Mo is sourced from five nuclear reactors. Two of these reactors have already been decommissioned and the rest are more than 45 years old. Relatively short half-life of the parent 99Mo requires continuous re-supply to meet the requirements of medical industry. Therefore, there is an urgent need to produce the 99Mo and 99mTc isotopes by alternative ways. One such alternative is giant dipole resonance (GDR) based photonuclear transmutation of 100Mo to 99Mo. For 99Mo production with the LCS photons using GDR-based (γ,n) reaction, the gamma-ray energy should be around 15 MeV. This study indicates that optimization of LCS spectrum by varying the electron and laser energies within practical limits can enhance the transmutation of Mo-100 to M-99 quite significantly. It has been found that irradiation time should be rather short, e.g., less than 6 hours, to maximize the weekly production of Mo-99 in the GDR-based Mo-99 production facility using the LCS photons. The analysis shows that production of 99Mo using a high-performance LCS facility offers a potentially-promising alternative for the production of 99mTc.

  3. Spatial distribution and polarization of {gamma}-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H. E-mail: shpark@nanum.kaeri.re.kr; Litvinenko, V.N.; Tornow, W.; Montgomery, C

    2001-12-21

    Beams of nearly monochromatic {gamma}-rays are produced via intracavity Compton backscattering in the OK-4/Duke storage ring FEL, the high-intensity {gamma}-ray source (HI{gamma}S). Presently, HI{gamma}S generates {gamma}-ray beams with an energy tunable from 2 to 58 MeV and a maximum flux of 5x10{sup 7} {gamma}-rays per second. The {gamma}-rays are linearly polarized with a degree of polarization close to 100% (V.N. Litvinenko, et al., Predictions and expected performance for the VUV OK-5/Duke Storage Ring FEL with variable polarization, Nucl. Instr. and Meth. A, to be published in this proceeding) and they are collimated to pencil-like semi-monoenergetic beams with RMS energy spreads as low as 0.2%. The detailed theoretical and experimental studies of the {gamma}-ray beam quality were conducted during the last two years (S.H. Park, Thesis, Duke University, Durham, NC, USA, 2000). In this paper, we present the theoretical analysis and the experimental results on the spatial distribution and polarization of {gamma}-rays from the HI{gamma}S facility.

  4. Study of a high finesse four mirrors Fabry Perot cavity for X-rays and Gamma rays production by laser-electron Compton scattering

    International Nuclear Information System (INIS)

    Fedala, Y.

    2008-10-01

    The main goal of this thesis is the study and design of a high finesse Fabry Perot cavity to amplify a laser beam in order to achieve power gains ranging from 10 4 to 10 5 . This cavity is dedicated to the production of intense and monochromatic X-ray for medical applications (medical RADIOTHOMX ring) and gamma rays for a Compton based polarized positron source by Compton scattering of a high power laser beam and electron beam. To increase the brightness of the Compton interaction at the collision points, it is essential to have not only a high power laser beam but also very small laser beam radii at the interaction points. To achieve such performances, 2 scenarios are possible: a concentric 2 mirrors cavity which is mechanically unstable or a 4 mirrors cavity more complex but more stable. We tested numerically mechanical stability and stability of Eigen modes polarization of various planar and non-planar geometries of 4 mirrors cavities. Experimentally, we have developed a four mirrors tetrahedral 'bow-tie' cavity; radii of the order of 20 microns were made. The Eigen modes of such a cavity, in both planar and non planar geometries, were measured and compared with the numerical results. A good agreement was observed. In a second time, the impact of Compton interaction on the transverse dynamics, in the case of the polarized positrons source, and the longitudinal dynamic, in the case of the medical ring of the electron beam was studied. Compton scattering causes energy loss and induces an additional dispersion of energy in electron beam. For the polarized positrons source, 10 collision points are planned. The transport line has been determined and the modelling of the Compton interaction effect with a simple matrix calculation was made. For the medical ring, Compton scattering causes bunch lengthening and the increase of energy dispersion which are to influence the produced X-ray flux. A study of the longitudinal dynamics of the electron beam in the ring was

  5. Characterisation of a Compton suppressed Clover detector for high energy gamma rays (=<11MeV)

    International Nuclear Information System (INIS)

    Saha Sarkar, M.; Kshetri, Ritesh; Raut, Rajarshi; Mukherjee, A.; Sinha, Mandira; Ray, Maitreyi; Goswami, A.; Roy, Subinit; Basu, P.; Majumder, H.; Bhattacharya, S.; Dasmahapatra, B.

    2006-01-01

    Gamma ray spectra of two (p,γ) resonances have been utilised for the characterisation of the Clover detector at energies beyond 5MeV. Apart from the efficiency and the resolution of the detector, the shapes of the full energy peaks as well as the nature of the escape peaks which are also very crucial at higher energies have been analysed with special attention. Proper gain matching in software have checked deterioration in the energy resolution and distortion in the peak shape due to addback. The addback factors show sharp increasing trend even at energies around 11MeV

  6. Effect of sample thickness on 511 keV single Compton-scattered gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-H, K. V., E-mail: kvdiazh@unal.edu.co; Cristancho, F. [Departamento de Física. Universidad Nacional de Colombia (Colombia)

    2016-07-07

    Gamma backscattering experiments were performed on metal foils varying some geometric parameters of the assembly. A collimated beam from a {sup 22}Na source impinges on aluminum sheets of dimensions 33.3×20.4×1.0 cm{sup 3} and iron sheets of (33.2×20.4×0.2) cm{sup 3}. The backscattered photons are detected by a 3″×3″ CsI scintillator detector placed at 90° to the incident beam. The experimental results show that thickness of metalic samples can be determined with a very small uncertainty.

  7. Spatial distribution and polarization of gamma-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL

    CERN Document Server

    Park, S H; Tornow, W; Montgomery, C

    2001-01-01

    Beams of nearly monochromatic gamma-rays are produced via intracavity Compton backscattering in the OK-4/Duke storage ring FEL, the high-intensity gamma-ray source (HI gamma S). Presently, HI gamma S generates gamma-ray beams with an energy tunable from 2 to 58 MeV and a maximum flux of 5x10 sup 7 gamma-rays per second. The gamma-rays are linearly polarized with a degree of polarization close to 100% (V.N. Litvinenko, et al., Predictions and expected performance for the VUV OK-5/Duke Storage Ring FEL with variable polarization, Nucl. Instr. and Meth. A, to be published in this proceeding) and they are collimated to pencil-like semi-monoenergetic beams with RMS energy spreads as low as 0.2%. The detailed theoretical and experimental studies of the gamma-ray beam quality were conducted during the last two years (S.H. Park, Thesis, Duke University, Durham, NC, USA, 2000). In this paper, we present the theoretical analysis and the experimental results on the spatial distribution and polarization of gamma-rays fro...

  8. Characterization and Applications of a CdZnTe-Based Gamma-Ray Imager

    Science.gov (United States)

    Galloway, Michelle Lee

    Detection of electromagnetic radiation in the form of gamma rays provides a means to discover the presence of nuclear sources and the occurrence of highly-energetic events that occur in our terrestrial and astrophysical environment. The highly penetrative nature of gamma rays allows for probing into objects and regions that are obscured at other wavelengths. The detection and imaging of gamma rays relies upon an understanding of the ways in which these high-energy photons interact with matter. The applications of gamma-ray detection and imaging are numerous. Astrophysical observation of gamma rays expands our understanding of the Universe in which we live. Terrestrial detection and imaging of gamma rays enable environmental monitoring of radioactivity. This allows for identification and localization of nuclear materials to prevent illicit trafficking and to ultimately protect against harmful acts. This dissertation focusses on the development and characterization of a gamma-ray detection and imaging instrument and explores its capabilities for the aforementioned applications. The High Efficiency Multimode Imager, HEMI, is a prototype instrument that is based on Cadmium Zinc Telluride (CdZnTe) semiconductor detectors. The detectors are arranged in a two-planar configuration to allow for both Compton and coded-aperture imaging. HEMI was initially developed as a prototype instrument to demonstrate its capabilities for nuclear threat detection, spectroscopy, and imaging. The 96-detector instrument was developed and fully characterized within the laboratory environment, yielding a system energy resolution of 2.4% FWHM at 662 keV, an angular resolution of 9.5 deg. FWHM at 662 keV in Compton mode, and a 10.6 deg. angular resolution in coded aperture mode. After event cuts, the effective area for Compton imaging of the 662 keV photopeak is 0.1 cm 22. Imaging of point sources in both Compton and coded aperture modes have been demonstrated. The minimum detectable activity of

  9. The Compton Camera - medical imaging with higher sensitivity Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    The Compton Camera reconstructs the origin of Compton-scattered X-rays using electronic collimation with Silicon pad detectors instead of the heavy conventional lead collimators in Anger cameras - reaching up to 200 times better sensitivity and a factor two improvement in resolution. Possible applications are in cancer diagnosis, neurology neurobiology, and cardiology.

  10. High-energy gamma-ray beams from Compton-backscattered laser light

    International Nuclear Information System (INIS)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized #betta#-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10 7 s - 1 ) of background-free polarized #betta# rays whose energy will be determined to a high accuracy (δE = 2.3 MeV). Initially, 300(420)-MeV #betta# rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the #betta#-ray energy up to 700 MeV

  11. POST-PERIASTRON GAMMA-RAY FLARE FROM PSR B1259-63/LS 2883 AS A RESULT OF COMPTONIZATION OF THE COLD PULSAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Khangulyan, Dmitry [Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Aharonian, Felix A. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Bogovalov, Sergey V. [Department of Molecular Physics, National Research Nuclear University (MEPHI), Kashirskoe shosse 31, Moscow 115409 (Russian Federation); Ribo, Marc, E-mail: khangul@astro.isas.jaxa.jp, E-mail: felix.aharonian@dias.ie, E-mail: svbogovalov@mephi.ru, E-mail: mribo@am.ub.es [Departament d' Astronomia i Meteorologia, Institut de Ciences del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain)

    2012-06-10

    We argue that the bright flare of the binary pulsar PSR B1259-63/LS2883 detected by the Fermi Large Area Telescope is due to the inverse Compton scattering of the unshocked electron-positron pulsar wind with a Lorentz factor {Gamma}{sub 0} Almost-Equal-To 10{sup 4}. The combination of two effects both linked to the circumstellar disk (CD) is a key element in the proposed model. The first effect is related to the impact of the surrounding medium on the termination of the pulsar wind. Inside the disk, the 'early' termination of the wind results in suppression of its gamma-ray luminosity. When the pulsar escapes the disk, the conditions for termination of the wind undergo significant changes. This would lead to a dramatic increase of the pulsar wind zone, and thus to the proportional increase of the gamma-ray flux. On the other hand, if the parts of the CD disturbed by the pulsar can supply infrared photons of density high enough for efficient Comptonization of the wind, almost the entire kinetic energy of the pulsar wind would be converted to radiation, thus the gamma-ray luminosity of the wind could approach the level of the pulsar's spin-down luminosity as reported by the Fermi Collaboration.

  12. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    Energy Technology Data Exchange (ETDEWEB)

    Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom.

  13. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    International Nuclear Information System (INIS)

    Raymond Raylman; Stanislaw Majewski; Randolph Wojcik; Andrew Weisenberger; Brian Kross; Vladimir Popov

    2001-01-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of 18F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom

  14. Gamma-Ray Imaging Probes.

    Science.gov (United States)

    Wild, Walter James

    1988-12-01

    External nuclear medicine diagnostic imaging of early primary and metastatic lung cancer tumors is difficult due to the poor sensitivity and resolution of existing gamma cameras. Nonimaging counting detectors used for internal tumor detection give ambiguous results because distant background variations are difficult to discriminate from neighboring tumor sites. This suggests that an internal imaging nuclear medicine probe, particularly an esophageal probe, may be advantageously used to detect small tumors because of the ability to discriminate against background variations and the capability to get close to sites neighboring the esophagus. The design, theory of operation, preliminary bench tests, characterization of noise behavior and optimization of such an imaging probe is the central theme of this work. The central concept lies in the representation of the aperture shell by a sequence of binary digits. This, coupled with the mode of operation which is data encoding within an axial slice of space, leads to the fundamental imaging equation in which the coding operation is conveniently described by a circulant matrix operator. The coding/decoding process is a classic coded-aperture problem, and various estimators to achieve decoding are discussed. Some estimators require a priori information about the object (or object class) being imaged; the only unbiased estimator that does not impose this requirement is the simple inverse-matrix operator. The effects of noise on the estimate (or reconstruction) is discussed for general noise models and various codes/decoding operators. The choice of an optimal aperture for detector count times of clinical relevance is examined using a statistical class-separability formalism.

  15. Recent results from the Compton Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Michelson, P.F.; Hansen, W.W. [Stanford Univ., CA (United States)

    1994-12-01

    The Compton Observatory is an orbiting astronomical observatory for gamma-ray astronomy that covers the energy range from about 30 keV to 30 GeV. The Energetic Gamma Ray Experiment Telescope (EGRET), one of four instruments on-board, is capable of detecting and imaging gamma radiation from cosmic sources in the energy range from approximately 20 MeV to 30 GeV. After about one month of tests and calibration following the April 1991 launch, a 15-month all sky survey was begun. This survey is now complete and the Compton Observatory is well into Phase II of its observing program which includes guest investigator observations. Among the highlights from the all-sky survey discussed in this presentation are the following: detection of five pulsars with emission above 100 MeV; detection of more than 24 active galaxies, the most distant at redshift greater than two; detection of many high latitude, unidentified gamma-ray sources, some showing significant time variability; detection of at least two high energy gamma-ray bursts, with emission in one case extending to at least 1 GeV. EGRET has also detected gamma-ray emission from solar flares up to energies of at least 2 GeV and has observed gamma-rays from the Large Magellanic Cloud.

  16. Use of a low-background and anti-Compton HpGe gamma-spectrometer in analyses of environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Qiong, Su; Yamin, Gao [Ministry of Public Health, Beijing, BJ (China). Lab. of Industrial Hygiene

    1989-12-01

    The results of application of a HpGe gamma-spectrometer in the analyses of enviromental samples are reported. The spectrometer has very low background and good property of Compton suppression. By comparison between the gamma-spectra with and without anti-coincidence shield for the same samples, the advantage in analysing environmental samples became apparent. In the analyses of carp samples, the ratio of specific activities of {sup 226}Ra in the flesh and bone of the carp was 1 to 35, which is basically in agreement with the ratio of the accumulation factors 1:37, as reported in the literature. Thus the spectrometer would play an important role in the research of the transfer of radionuclides of low activity in the environment. The method of gamma-ray data processing is also described.

  17. Use of a low-background and anti-Compton HpGe gamma-spectrometer in analyses of environmental samples

    International Nuclear Information System (INIS)

    Su Qiong; Gao Yamin

    1989-01-01

    The results of application of a HpGe gamma-spectrometer in the analyses of enviromental samples are reported. The spectrometer has very low background and good property of Compton suppression. By comparison between the gamma-spectra with and without anti-coincidence shield for the same samples, the advantage in analysing environmental samples became apparent. In the analyses of carp samples, the ratio of specific activities of 226 Ra in the flesh and bone of the carp was 1 to 35, which is basically in agreement with the ratio of the accumulation factors 1:37, as reported in the literature. Thus the spectrometer would play an important role in the research of the transfer of radionuclides of low activity in the environment. The method of gamma-ray data processing is also described

  18. An accelerated threshold-based back-projection algorithm for Compton camera image reconstruction

    International Nuclear Information System (INIS)

    Mundy, Daniel W.; Herman, Michael G.

    2011-01-01

    Purpose: Compton camera imaging (CCI) systems are currently under investigation for radiotherapy dose reconstruction and verification. The ability of such a system to provide real-time images during dose delivery will be limited by the computational speed of the image reconstruction algorithm. In this work, the authors present a fast and simple method by which to generate an initial back-projected image from acquired CCI data, suitable for use in a filtered back-projection algorithm or as a starting point for iterative reconstruction algorithms, and compare its performance to the current state of the art. Methods: Each detector event in a CCI system describes a conical surface that includes the true point of origin of the detected photon. Numerical image reconstruction algorithms require, as a first step, the back-projection of each of these conical surfaces into an image space. The algorithm presented here first generates a solution matrix for each slice of the image space by solving the intersection of the conical surface with the image plane. Each element of the solution matrix is proportional to the distance of the corresponding voxel from the true intersection curve. A threshold function was developed to extract those pixels sufficiently close to the true intersection to generate a binary intersection curve. This process is repeated for each image plane for each CCI detector event, resulting in a three-dimensional back-projection image. The performance of this algorithm was tested against a marching algorithm known for speed and accuracy. Results: The threshold-based algorithm was found to be approximately four times faster than the current state of the art with minimal deficit to image quality, arising from the fact that a generically applicable threshold function cannot provide perfect results in all situations. The algorithm fails to extract a complete intersection curve in image slices near the detector surface for detector event cones having axes nearly

  19. GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Greiner, J.; Mannheim, K.; Hudec, René; Mészáros, A.

    2012-01-01

    Roč. 34, č. 2 (2012), s. 551-582 ISSN 0922-6435 Institutional research plan: CEZ:AV0Z10030501 Keywords : compton and pair creation telescope * gamma-ray bursts * nucleosynthesis Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.969, year: 2012

  20. A Programmable Liquid Collimator for Both Coded Aperture Adaptive Imaging and Multiplexed Compton Scatter Tomography

    Science.gov (United States)

    2012-03-01

    develop around rivets on aircraft. Marc Sands used MCST to image a phantom representing a wrist bone [59]. Noninvasive bone density measurements would be...the detection of Gamma-Ray Bursts (GRB). GRBs are the most intense electromagnetic events in the universe. There is still not a full consensus as to...would be actuated by external permanent magnets or electromagnets . However, the attenuation in the plastic rods was calculated as being too great and

  1. Systems for increasing the sensitivity of gamma-ray imagers

    Science.gov (United States)

    Mihailescu, Lucian; Vetter, Kai M.; Chivers, Daniel H.

    2012-12-11

    Systems that increase the position resolution and granularity of double sided segmented semiconductor detectors are provided. These systems increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  2. Arthur H. Compton and Compton Scattering

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Arthur H. Compton and Compton Scattering Resources with Additional Information * Compton Honored * Compton Scattering Arthur H. Compton Courtesy of Lawrence Berkeley , 1923 Establishing Site X: Letter, Arthur H. Compton to Enrico Fermi, September 14, 1942, DOE Technical

  3. Corrections for the effects of accidental coincidences, Compton scatter, and object size in positron emission mammography (PEM) imaging

    Science.gov (United States)

    Raylman, R. R.; Majewski, S.; Wojcik, R.; Weisenberger, A. G.; Kross, B.; Popov, V.

    2001-06-01

    Positron emission mammography (PEM) has begun to show promise as an effective method for the detection of breast lesions. Due to its utilization of tumor-avid radiopharmaceuticals labeled with positron-emitting radionuclides, this technique may be especially useful in imaging of women with radiodense or fibrocystic breasts. While the use of these radiotracers affords PEM unique capabilities, it also introduces some limitations. Specifically, acceptance of accidental and Compton-scattered coincidence events can decrease lesion detectability. The authors studied the effect of accidental coincidence events on PEM images produced by the presence of /sup 18/F-Fluorodeoxyglucose in the organs of a subject using an anthropomorphic phantom. A delayed-coincidence technique was tested as a method for correcting PEM images for the occurrence of accidental events. Also, a Compton scatter correction algorithm designed specifically for PEM was developed and tested using a compressed breast phantom. Finally, the effect of object size on image counts and a correction for this effect were explored. The imager used in this study consisted of two PEM detector heads mounted 20 cm apart on a Lorad biopsy apparatus. The results demonstrated that a majority of the accidental coincidence events (/spl sim/80%) detected by this system were produced by radiotracer uptake in the adipose and muscle tissue of the torso. The presence of accidental coincidence events was shown to reduce lesion detectability. Much of this effect was eliminated by correction of the images utilizing estimates of accidental-coincidence contamination acquired with delayed coincidence circuitry built into the PEM system. The Compton scatter fraction for this system was /spl sim/14%. Utilization of a new scatter correction algorithm reduced the scatter fraction to /spl sim/1.5%. Finally, reduction of count recovery due to object size was measured and a correction to the data applied. Application of correction techniques

  4. Optimisation of a dual head semiconductor Compton camera using Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, L.J. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L697ZE (United Kingdom)], E-mail: ljh@ns.ph.liv.ac.uk; Boston, A.J.; Boston, H.C.; Cooper, R.J.; Cresswell, J.R.; Grint, A.N.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L697ZE (United Kingdom); Beveridge, T.; Gillam, J. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia); Lazarus, I. [STFC Daresbury Laboratory, Warrington, Cheshire (United Kingdom)

    2009-06-01

    Conventional medical gamma-ray camera systems utilise mechanical collimation to provide information on the position of an incident gamma-ray photon. Systems that use electronic collimation utilising Compton image reconstruction techniques have the potential to offer huge improvements in sensitivity. Position sensitive high purity germanium (HPGe) detector systems are being evaluated as part of a single photon emission computed tomography (SPECT) Compton camera system. Data have been acquired from the orthogonally segmented planar SmartPET detectors, operated in Compton camera mode. The minimum gamma-ray energy which can be imaged by the current system in Compton camera configuration is 244 keV due to the 20 mm thickness of the first scatter detector which causes large gamma-ray absorption. A simulation package for the optimisation of a new semiconductor Compton camera has been developed using the Geant4 toolkit. This paper will show results of preliminary analysis of the validated Geant4 simulation for gamma-ray energies of SPECT, 141 keV.

  5. A new gamma-ray diagnostic for energetic ion distributions - The Compton tail on the neutron capture line

    International Nuclear Information System (INIS)

    Vestrand, W.T.

    1990-01-01

    This paper presents a new radiation diagnostic for assaying the energy spectrum and the angular distribution of energetic ions incident on thick hydrogen-rich thermal targets. This diagnostic compares the number of emergent photons in the narrow neutron capture line at 2.223 MeV to the number of Compton scattered photons that form a low-energy tail on the line. It is shown that the relative strength of the tail can be used as a measure of the hardness of the incident ion-energy spectrum. Application of this diagnostic to solar flare conditions is the main thrust of the work presented here. It is examined how the strength of the Compton tail varies with flare viewing angle and the angular distribution of the flare-accelerated particles. Application to compact X-ray binary systems is also briefly discussed. 39 refs

  6. A portable Si/CdTe Compton camera and its applications to the visualization of radioactive substances

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Shin' ichiro, E-mail: takeda@astro.isas.jaxa.jp [Institute of Space and Astronautical Science (ISAS)/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Harayama, Atsushi [Institute of Space and Astronautical Science (ISAS)/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Ichinohe, Yuto [Institute of Space and Astronautical Science (ISAS)/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Odaka, Hirokazu [Institute of Space and Astronautical Science (ISAS)/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Watanabe, Shin; Takahashi, Tadayuki [Institute of Space and Astronautical Science (ISAS)/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Tajima, Hiroyasu [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Genba, Kei; Matsuura, Daisuke; Ikebuchi, Hiroshi; Kuroda, Yoshikatsu [Mitsubishi Heavy Industries, 1200 Higashi-Tanaka, Komaki, Aichi 485-8561 (Japan); Tomonaka, Tetsuya [Mitsubishi Heavy Industry, 2-1-1 Shinhama, Arai-cho, Takasago, Hyogo 676-8686 (Japan)

    2015-07-01

    Gamma-ray imagers with the potential for visualizing the distribution of radioactive materials are required in the fields of astrophysics, medicine, nuclear applications, and homeland security. Based on the technology of the Si/CdTe Compton camera, we have manufactured the first commercial Compton camera for practical use. Through field tests in Fukushima, we demonstrated that the camera is capable of hot spot detection and the evaluation of radioactive decontamination.

  7. A portable Si/CdTe Compton camera and its applications to the visualization of radioactive substances

    International Nuclear Information System (INIS)

    Takeda, Shin'ichiro; Harayama, Atsushi; Ichinohe, Yuto; Odaka, Hirokazu; Watanabe, Shin; Takahashi, Tadayuki; Tajima, Hiroyasu; Genba, Kei; Matsuura, Daisuke; Ikebuchi, Hiroshi; Kuroda, Yoshikatsu; Tomonaka, Tetsuya

    2015-01-01

    Gamma-ray imagers with the potential for visualizing the distribution of radioactive materials are required in the fields of astrophysics, medicine, nuclear applications, and homeland security. Based on the technology of the Si/CdTe Compton camera, we have manufactured the first commercial Compton camera for practical use. Through field tests in Fukushima, we demonstrated that the camera is capable of hot spot detection and the evaluation of radioactive decontamination

  8. Imaging capabilities of germanium gamma cameras

    International Nuclear Information System (INIS)

    Steidley, J.W.

    1977-01-01

    Quantitative methods of analysis based on the use of a computer simulation were developed and used to investigate the imaging capabilities of germanium gamma cameras. The main advantage of the computer simulation is that the inherent unknowns of clinical imaging procedures are removed from the investigation. The effects of patient scattered radiation were incorporated using a mathematical LSF model which was empirically developed and experimentally verified. Image modifying effects of patient motion, spatial distortions, and count rate capabilities were also included in the model. Spatial domain and frequency domain modeling techniques were developed and used in the simulation as required. The imaging capabilities of gamma cameras were assessed using low contrast lesion source distributions. The results showed that an improvement in energy resolution from 10% to 2% offers significant clinical advantages in terms of improved contrast, increased detectability, and reduced patient dose. The improvements are of greatest significance for small lesions at low contrast. The results of the computer simulation were also used to compare a design of a hypothetical germanium gamma camera with a state-of-the-art scintillation camera. The computer model performed a parametric analysis of the interrelated effects of inherent and technological limitations of gamma camera imaging. In particular, the trade-off between collimator resolution and collimator efficiency for detection of a given low contrast lesion was directly addressed. This trade-off is an inherent limitation of both gamma cameras. The image degrading effects of patient motion, camera spatial distortions, and low count rate were shown to modify the improvements due to better energy resolution. Thus, based on this research, the continued development of germanium cameras to the point of clinical demonstration is recommended

  9. Recent results from a Si/CdTe semiconductor Compton telescope

    International Nuclear Information System (INIS)

    Tanaka, Takaaki; Watanabe, Shin; Takeda, Shin'ichiro; Oonuki, Kousuke; Mitani, Takefumi; Nakazawa, Kazuhiro; Takashima, Takeshi; Takahashi, Tadayuki; Tajima, Hiroyasu; Sawamoto, Naoyuki; Fukazawa, Yasushi; Nomachi, Masaharu

    2006-01-01

    We are developing a Compton telescope based on high-resolution Si and CdTe detectors for astrophysical observations in sub-MeV/MeV gamma-ray region. Recently, we constructed a prototype Compton telescope which consists of six layers of double-sided Si strip detectors (DSSDs) and CdTe pixel detectors to demonstrate the basic performance of this new technology. By irradiating the detector with gamma rays from radio isotope sources, we have succeeded in Compton reconstruction of images and spectra. The obtained angular resolution is 3.9 o (FWHM) at 511keV, and the energy resolution is 14keV (FWHM) at the same energy. In addition to the conventional Compton reconstruction, i.e., drawing cones in the sky, we also demonstrated a full reconstruction by tracking Compton recoil electrons using the signals detected in successive Si layers. By irradiating 137 Cs source, we successfully obtained an image and a spectrum of 662keV line emission with this method. As a next step, development of larger DSSDs with a size of 4cmx4cm is under way to improve the effective area of the Compton telescope. We are also developing a new low-noise analog ASIC to handle the increasing number of channels. Initial results from these two new technologies are presented in this paper as well

  10. Developments in mercuric iodide gamma ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E; Beyerle, A G; Dolin, R C; Ortale, C [EG and G Energy Measurements, Inc., Goleta, CA (USA). Santa Barbara Operations

    1989-11-01

    A mercuric iodide (HgI{sub 2}) gamma ray imaging array and camera system previously described have been characterized for spatial and energy resolution. Based on these data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criteria for the new camera will be presented. (orig.).

  11. Gamma Ray Imaging for Environmental Remediation

    Energy Technology Data Exchange (ETDEWEB)

    B.F. Philips; R.A. Kroeger: J.D. Kurfess: W.N. Johnson; E.A. Wulf; E. I. Novikova

    2004-11-12

    This program is the development of germanium strip detectors for environmental remediation. It is a collaboration between the Naval Research Laboratory and Lawrence Berkeley National Lab. The goal is to develop detectors that are simultaneously capable of excellent spectroscopy and imaging of gamma radiation.

  12. A gamma cammera image processing system

    International Nuclear Information System (INIS)

    Chen Weihua; Mei Jufang; Jiang Wenchuan; Guo Zhenxiang

    1987-01-01

    A microcomputer based gamma camera image processing system has been introduced. Comparing with other systems, the feature of this system is that an inexpensive microcomputer has been combined with specially developed hardware, such as, data acquisition controller, data processor and dynamic display controller, ect. Thus the process of picture processing has been speeded up and the function expense ratio of the system raised

  13. Evaluation of the Next Generation Gamma Imager

    International Nuclear Information System (INIS)

    Amgarou, Khalil; Timi, Tebug; Blanc de Lanaute, Nicolas; Patoz, Audrey; Talent, Philippe; Menaa, Nabil; Carrel, Frederick; Schoepff, Vincent; Lemaire, Hermine; Gmar, Mehdi; Abou Khalil, Roger; Dogny, Stephane; Varet, Thierry

    2013-06-01

    Towards the end of their life-cycle, nuclear facilities are generally associated with high levels of radiation exposure. The implementation of the ALARA principle requires limiting the radiation exposure of the operating people during the different tasks of maintenance, decontamination and decommissioning. Canberra's latest involvement in the provision of nuclear measurement solutions has led, in the framework of a partnership agreement with CEA LIST, to the development of a new generation gamma imager. The latter, which is designed for an accurate localization of radioactive hotspots, consists of a pixilated chip hybridized to a 1 mm thick CdTe substrate to record photon pulses and a coded mask aperture allowing for background noise subtraction by means of a technique called mask/anti-mask procedure. This greatly contributes to the reduced size and weight of the gamma imager as gamma shielding around the detector is less required. The spatial radioactivity map is automatically superimposed onto a pre-recorded photographic (visible) image of the scene of interest. In an effort to evaluate the performances of the new gamma imager, several experimental tests have been performed on a industrial prototype to investigate its detection response, including gamma imaging sensitivity and angular resolutions, over a wide energy range (at least from 59 keV to 1330 keV). The impact of the background noise was also evaluated together with some future features like energy discrimination and parallax correction. This paper presents and discusses the main results obtained in the above experimental study. A comparison with Monte Carlo simulations using the MCNP code is provided as well. (authors)

  14. Development of Omnidirectional Gamma-imager with Stacked Scintillators

    International Nuclear Information System (INIS)

    Takahashi, Tone; Kawarabayashi, Jun; Tomita, Hideki; Iguchi, Tetsuo; Takada, Eiji

    2013-06-01

    In the severe accident at nuclear power plant, a rapid measurement of radioactive fallout is required. So we have developed a Compton imager with high efficiency and omni-directional sensitivity. Three dimensional position resolutions were evaluated about several kinds of scintillators. The all-directional imaging was demonstrated by the simulation of detection of 137 Cs point source. Imaging quality with angle resolution of 28 deg. and detection efficiency of 1.1% was estimated. (authors)

  15. Temporal Evolution of the Gamma-ray Burst Afterglow Spectrum for an Observer: GeV–TeV Synchrotron Self-Compton Light Curve

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, Takuma; Fujita, Yutaka [Department of Earth and Space Science, Osaka University, Osaka, 560-0043 (Japan); To, Sho; Asano, Katsuaki, E-mail: fukushima@vega.ess.sci.osaka-u.ac.jp, E-mail: fujita@vega.ess.sci.osaka-u.ac.jp, E-mail: tosho@icrr.u-tokyo.ac.jp, E-mail: asanok@icrr.u-tokyo.ac.jp [Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan)

    2017-08-01

    We numerically simulate the gamma-ray burst (GRB) afterglow emission with a one-zone time-dependent code. The temporal evolutions of the decelerating shocked shell and energy distributions of electrons and photons are consistently calculated. The photon spectrum and light curves for an observer are obtained taking into account the relativistic propagation of the shocked shell and the curvature of the emission surface. We find that the onset time of the afterglow is significantly earlier than the previous analytical estimate. The analytical formulae of the shock propagation and light curve for the radiative case are also different from our results. Our results show that even if the emission mechanism is switching from synchrotron to synchrotron self-Compton, the gamma-ray light curves can be a smooth power law, which agrees with the observed light curve and the late detection of a 32 GeV photon in GRB 130427A. The uncertainty of the model parameters obtained with the analytical formula is discussed, especially in connection with the closure relation between spectral index and decay index.

  16. Handheld real-time volumetric 3-D gamma-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Haefner, Andrew, E-mail: ahaefner@lbl.gov [Lawrence Berkeley National Lab – Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Barnowski, Ross [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720 (United States); Luke, Paul; Amman, Mark [Lawrence Berkeley National Lab – Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Vetter, Kai [Department of Nuclear Engineering, UC Berkeley, 4155 Etcheverry Hall, MC 1730, Berkeley, CA 94720 (United States); Lawrence Berkeley National Lab – Applied Nuclear Physics, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2017-06-11

    This paper presents the concept of real-time fusion of gamma-ray imaging and visual scene data for a hand-held mobile Compton imaging system in 3-D. The ability to obtain and integrate both gamma-ray and scene data from a mobile platform enables improved capabilities in the localization and mapping of radioactive materials. This not only enhances the ability to localize these materials, but it also provides important contextual information of the scene which once acquired can be reviewed and further analyzed subsequently. To demonstrate these concepts, the high-efficiency multimode imager (HEMI) is used in a hand-portable implementation in combination with a Microsoft Kinect sensor. This sensor, in conjunction with open-source software, provides the ability to create a 3-D model of the scene and to track the position and orientation of HEMI in real-time. By combining the gamma-ray data and visual data, accurate 3-D maps of gamma-ray sources are produced in real-time. This approach is extended to map the location of radioactive materials within objects with unknown geometry.

  17. Inverse comptonization vs. thermal synchrotron

    International Nuclear Information System (INIS)

    Fenimore, E.E.; Klebesadel, R.W.; Laros, J.G.

    1983-01-01

    There are currently two radiation mechanisms being considered for gamma-ray bursts: thermal synchrotron and inverse comptonization. They are mutually exclusive since thermal synchrotron requires a magnetic field of approx. 10 12 Gauss whereas inverse comptonization cannot produce a monotonic spectrum if the field is larger than 10 11 and is too inefficient relative to thermal synchrotron unless the field is less than 10 9 Gauss. Neither mechanism can explain completely the observed characteristics of gamma-ray bursts. However, we conclude that thermal synchrotron is more consistent with the observations if the sources are approx. 40 kpc away whereas inverse comptonization is more consistent if they are approx. 300 pc away. Unfortunately, the source distance is still not known and, thus, the radiation mechanism is still uncertain

  18. The Gamma-Ray Imager GRI

    Science.gov (United States)

    Wunderer, Cornelia B.; GRI Collaboration

    2008-03-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. ESA's INTEGRAL observatory currently provides the astronomical community with a unique tool to investigate the sky up to MeV energies and hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes have been discovered. NASA's GLAST mission will similarly take the next step in surveying the high-energy ( GeV) sky, and NuSTAR will pioneer focusing observations at hard X-ray energies (to 80 keV). There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  19. Gamma-ray detectors for breast imaging

    Science.gov (United States)

    Williams, Mark B.; Goode, Allen R.; Majewski, Stan; Steinbach, Daniela; Weisenberger, Andrew G.; Wojcik, Randolph F.; Farzanpay, Farzin

    1997-07-01

    Breast cancer is the most common cancer of American women and is the leading cause of cancer-related death among women aged 15 - 54; however recent years have shown that early detection using x-ray mammography can lead to a high probability of cure. However, because of mammography's low positive predictive value, surgical or core biopsy is typically required for diagnosis. In addition, the low radiographic contrast of many nonpalpable breast masses, particularly among women with radiographically dense breasts, results in an overall rate of 10% to 25% for missed tumors. Nuclear imaging of the breast using single gamma emitters (scintimammography) such as (superscript 99m)Tc, or positron emitters such as F-18- fluorodeoxyglucose (FDG) for positron emission tomography (PET), can provide information on functional or metabolic tumor activity that is complementary to the structural information of x-ray mammography, thereby potentially reducing the number of unnecessary biopsies and missed cancers. This paper summarizes recent data on the efficacy of scintimammography using conventional gamma cameras, and describes the development of dedicated detectors for gamma emission breast imaging. The detectors use new, high density crystal scintillators and large area position sensitive photomultiplier tubes (PSPMTs). Detector design, imaging requirements, and preliminary measured imaging performance are discussed.

  20. An imaging system for a gamma camera

    International Nuclear Information System (INIS)

    Miller, D.W.; Gerber, M.S.

    1980-01-01

    A detailed description is given of a novel gamma camera which is designed to produce superior images than conventional cameras used in nuclear medicine. The detector consists of a solid state detector (e.g. germanium) which is formed to have a plurality of discrete components to enable 2-dimensional position identification. Details of the electronic processing circuits are given and the problems and limitations introduced by noise are discussed in full. (U.K.)

  1. Portable high energy gamma ray imagers

    International Nuclear Information System (INIS)

    Guru, S.V.; Squillante, M.R.

    1996-01-01

    To satisfy the needs of high energy gamma ray imagers for industrial nuclear imaging applications, three high energy gamma cameras are presented. The RMD-Pinhole camera uses a lead pinhole collimator and a segmented BGO detector viewed by a 3 in. square position sensitive photomultiplier tube (PSPMT). This pinhole gamma camera displayed an energy resolution of 25.0% FWHM at the center of the camera at 662 keV and an angular resolution of 6.2 FWHM at 412 keV. The fixed multiple hole collimated camera (FMCC), used a multiple hole collimator and a continuous slab of NaI(Tl) detector viewed by the same PSPMT. The FMCC displayed an energy resolution of 12.4% FWHM at 662 keV at the center of the camera and an angular resolution of 6.0 FWHM at 412 keV. The rotating multiple hole collimated camera (RMCC) used a 180 antisymmetric rotation modulation collimator and CsI(Tl) detectors coupled to PIN silicon photodiodes. The RMCC displayed an energy resolution of 7.1% FWHM at 662 keV and an angular resolution of 4.0 FWHM at 810 keV. The performance of these imagers is discussed in this paper. (orig.)

  2. GammaCam trademark radiation imaging system

    International Nuclear Information System (INIS)

    1998-02-01

    GammaCam trademark, a gamma-ray imaging system manufactured by AIL System, Inc., would benefit a site that needs to locate radiation sources. It is capable of producing a two-dimensional image of a radiation field superimposed on a black and white visual image. Because the system can be positioned outside the radiologically controlled area, the radiation exposure to personnel is significantly reduced and extensive shielding is not required. This report covers the following topics: technology description; performance; technology applicability and alternatives; cost; regulatory and policy issues; and lessons learned. The demonstration of GammaCam trademark in December 1996 was part of the Large-Scale Demonstration Project (LSDP) whose objective is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) Chicago Pile-5 Research Reactor (CP-5). The purpose of the LSDP is to demonstrate that by using innovative and improved decontamination and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies

  3. 3D gamma-ray imaging systems in nuclear medicine and collimator purposes

    International Nuclear Information System (INIS)

    Strocovsky, S.G.; Otero, D.

    2013-01-01

    Single photon gamma-ray imaging systems, currently used in Nuclear Medicine, are fundamentally based on the Gamma Camera (CG) and their associated SPECT technique. The modern CG presents no essential changes in the method used to form the image compared to the camera designed by H. O. Anger (Pat US 3.011.057, 1961).The current CG, as well as the proposed by Anger, uses a collimator for the formation of images. However, this element imposes a severe limit on the maximum attainable spatial resolution and dramatically decreases the sensitivity of the whole system. As a result, CG images are, generally, low quality with high Poisson noise. On the other hand, Strocovsky, S. and D. Otero, have presented the principles of a new technique, called Full Aperture Imaging (FAI) based on a novel coded imaging technique and differential detection. FAI does not use a collimator and outperforms the CG, in sensitivity and spatial resolution. In addition, FAI allows to register 3D information in a single acquisition, while SPECT requires sequential acquisition of images for the same purpose. In this paper, a review of the gamma-ray imaging systems developed to the present is made. Several types of SPECT systems, coded imaging systems, diffractive lenses, Compton camera, multiple no-planar detectors/collimators modules and the new FAI system are included. The role of collimators in the formation of CG images is critically examined and compared to the method used in FAI. Simulated Monte Carlo Images that allow to compare CG versus FAI in identical conditions are shown. We propose a novel use of collimators in FAI, for reduction of the field of view, with 100% collection efficiency. FAI is based on data-intensive computing and in proven conventional planar detectors of CG technology, so FAI surpasses the other described systems in the combination of sensitivity, spatial resolution, 3D information acquisition, and simplicity of design. (author)

  4. Compton scattering

    International Nuclear Information System (INIS)

    Botto, D.J.; Pratt, R.H.

    1979-05-01

    The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A -2 based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required

  5. Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Botto, D.J.; Pratt, R.H.

    1979-05-01

    The current status of Compton scattering, both experimental observations and the theoretical predictions, is examined. Classes of experiments are distinguished and the results obtained are summarized. The validity of the incoherent scattering function approximation and the impulse approximation is discussed. These simple theoretical approaches are compared with predictions of the nonrelativistic dipole formula of Gavrila and with the relativistic results of Whittingham. It is noted that the A/sup -2/ based approximations fail to predict resonances and an infrared divergence, both of which have been observed. It appears that at present the various available theoretical approaches differ significantly in their predictions and that further and more systematic work is required.

  6. Reconstruction from gamma radiography and ultrasonic images

    International Nuclear Information System (INIS)

    Gautier, S.; Lavayssiere, B.; Idier, J.; Mohammad-Djafari, A.

    1998-02-01

    This work deals with the three-dimensional reconstruction from gamma radiographic and ultrasonic images. Such an issue belongs to the field of data fusion since the data provide complementary information. The two sets of data are independently related to two sets of parameters: gamma ray attenuation and ultrasonic reflectivity. The fusion problem is addressed in a Bayesian framework; the kingpin of the task is then to define a joint a priori model for both attenuation and reflectivity. Thus, the developing of this model and the entailed joint estimation constitute the principal contribution of this work. The results of real data treatments demonstrate the validity of this method as compared to a sequential approach of the two sets of data

  7. SU-G-IeP3-10: Molecular Imaging with Clinical X-Ray Sources and Compton Cameras

    International Nuclear Information System (INIS)

    Vernekohl, D; Ahmad, M; Chinn, G; Xing, L

    2016-01-01

    Purpose: The application of Compton cameras (CC) is a novel approach translating XFCT to a practical modality realized with clinical CT systems without the restriction of pencil beams. The dual modality design offers additional information without extra patient dose. The purpose of this work is to investigate the feasibility and efficacy of using CCs for volumetric x-ray fluorescence (XF) imaging by Monte Carlo (MC) simulations and statistical image reconstruction. Methods: The feasibility of a CC for imaging x-ray fluorescence emitted from targeted lesions is examined by MC simulations. 3 mm diameter water spheres with various gold concentrations and detector distances are placed inside the lung of an adult human phantom (MIRD) and are irradiated with both fan and cone-beam geometries. A sandwich design CC composed of Silicon and CdTe is used to image the gold nanoparticle distribution. The detection system comprises four 16×26 cm"2 detector panels placed on the chest of a MIRD phantom. Constraints of energy-, spatial-resolution, clinical geometries and Doppler broadening are taken into account. Image reconstruction is performed with a list-mode MLEM algorithm with cone-projector on a GPU. Results: The comparison of reconstruction of cone- and fan-beam excitation shows that the spatial resolution is improved by 23% for fan-beams with significantly decreased processing time. Cone-beam excitation increases scatter content disturbing quantification of lesions near the body surface. Spatial resolution and detectability limit in the center of the lung is 8.7 mm and 20 fM for 50 nm diameter gold nanoparticles at 20 mGy. Conclusion: The implementation of XFCT with a CC is a feasible method for molecular imaging with high atomic number probes. Given constrains of detector resolutions, Doppler broadening, and limited exposure dose, spatial resolutions comparable with PET and molecular sensitivities in the fM range are realizable with current detector technology.

  8. SU-G-IeP3-10: Molecular Imaging with Clinical X-Ray Sources and Compton Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Vernekohl, D; Ahmad, M; Chinn, G; Xing, L [Stanford University, Stanford, CA (United States)

    2016-06-15

    Purpose: The application of Compton cameras (CC) is a novel approach translating XFCT to a practical modality realized with clinical CT systems without the restriction of pencil beams. The dual modality design offers additional information without extra patient dose. The purpose of this work is to investigate the feasibility and efficacy of using CCs for volumetric x-ray fluorescence (XF) imaging by Monte Carlo (MC) simulations and statistical image reconstruction. Methods: The feasibility of a CC for imaging x-ray fluorescence emitted from targeted lesions is examined by MC simulations. 3 mm diameter water spheres with various gold concentrations and detector distances are placed inside the lung of an adult human phantom (MIRD) and are irradiated with both fan and cone-beam geometries. A sandwich design CC composed of Silicon and CdTe is used to image the gold nanoparticle distribution. The detection system comprises four 16×26 cm{sup 2} detector panels placed on the chest of a MIRD phantom. Constraints of energy-, spatial-resolution, clinical geometries and Doppler broadening are taken into account. Image reconstruction is performed with a list-mode MLEM algorithm with cone-projector on a GPU. Results: The comparison of reconstruction of cone- and fan-beam excitation shows that the spatial resolution is improved by 23% for fan-beams with significantly decreased processing time. Cone-beam excitation increases scatter content disturbing quantification of lesions near the body surface. Spatial resolution and detectability limit in the center of the lung is 8.7 mm and 20 fM for 50 nm diameter gold nanoparticles at 20 mGy. Conclusion: The implementation of XFCT with a CC is a feasible method for molecular imaging with high atomic number probes. Given constrains of detector resolutions, Doppler broadening, and limited exposure dose, spatial resolutions comparable with PET and molecular sensitivities in the fM range are realizable with current detector technology.

  9. Stereoscopic radiographic images with gamma source encoding

    International Nuclear Information System (INIS)

    Strocovsky, S.G.; Otero, D

    2012-01-01

    Conventional radiography with X-ray tube has several drawbacks, as the compromise between the size of the focal spot and the fluence. The finite dimensions of the focal spot impose a limit to the spatial resolution. Gamma radiography uses gamma-ray sources which surpass in size, portability and simplicity to X-ray tubes. However, its low intrinsic fluence forces to use extended sources that also degrade the spatial resolution. In this work, we show the principles of a new radiographic technique that overcomes the limitations associated with the finite dimensions of X-ray sources, and that offers additional benefits to conventional techniques. The new technique called coding source imaging (CSI), is based on the use of extended sources, edge-encoding of radiation and differential detection. The mathematical principles and the method of images reconstruction with the new proposed technique are explained in the present work. Analytical calculations were made to determine the maximum spatial resolution and the variables on which it depends. The CSI technique was tested by means of Monte Carlo simulations with sets of spherical objects. We show that CSI has stereoscopic capabilities and it can resolve objects smaller than the source size. The CSI decoding algorithm reconstructs simultaneously four different projections from the same object, while conventional radiography produces only one projection per acquisition. Projections are located in separate image fields on the detector plane. Our results show it is possible to apply an extremely simple radiographic technique with extended sources, and get 3D information of the attenuation coefficient distribution for simple geometry objects in a single acquisition. The results are promising enough to evaluate the possibility of future research with more complex objects typical of medical diagnostic radiography and industrial gamma radiography (author)

  10. Variable code gamma ray imaging system

    International Nuclear Information System (INIS)

    Macovski, A.; Rosenfeld, D.

    1979-01-01

    A gamma-ray source distribution in the body is imaged onto a detector using an array of apertures. The transmission of each aperture is modulated using a code such that the individual views of the source through each aperture can be decoded and separated. The codes are chosen to maximize the signal to noise ratio for each source distribution. These codes determine the photon collection efficiency of the aperture array. Planar arrays are used for volumetric reconstructions and circular arrays for cross-sectional reconstructions. 14 claims

  11. Compton camera study for high efficiency SPECT and benchmark with Anger system

    Science.gov (United States)

    Fontana, M.; Dauvergne, D.; Létang, J. M.; Ley, J.-L.; Testa, É.

    2017-12-01

    Single photon emission computed tomography (SPECT) is at present one of the major techniques for non-invasive diagnostics in nuclear medicine. The clinical routine is mostly based on collimated cameras, originally proposed by Hal Anger. Due to the presence of mechanical collimation, detection efficiency and energy acceptance are limited and fixed by the system’s geometrical features. In order to overcome these limitations, the application of Compton cameras for SPECT has been investigated for several years. In this study we compare a commercial SPECT-Anger device, the General Electric HealthCare Infinia system with a High Energy General Purpose (HEGP) collimator, and the Compton camera prototype under development by the French collaboration CLaRyS, through Monte Carlo simulations (GATE—GEANT4 Application for Tomographic Emission—version 7.1 and GEANT4 version 9.6, respectively). Given the possible introduction of new radio-emitters at higher energies intrinsically allowed by the Compton camera detection principle, the two detectors are exposed to point-like sources at increasing primary gamma energies, from actual isotopes already suggested for nuclear medicine applications. The Compton camera prototype is first characterized for SPECT application by studying the main parameters affecting its imaging performance: detector energy resolution and random coincidence rate. The two detector performances are then compared in terms of radial event distribution, detection efficiency and final image, obtained by gamma transmission analysis for the Anger system, and with an iterative List Mode-Maximum Likelihood Expectation Maximization (LM-MLEM) algorithm for the Compton reconstruction. The results show for the Compton camera a detection efficiency increased by a factor larger than an order of magnitude with respect to the Anger camera, associated with an enhanced spatial resolution for energies beyond 500 keV. We discuss the advantages of Compton camera application

  12. Impact of image noise on gamma index calculation

    International Nuclear Information System (INIS)

    Chen, M; Mo, X; Parnell, D; Olivera, G; Galmarini, D; Lu, W

    2014-01-01

    Purpose: The Gamma Index defines an asymmetric metric between the evaluated image and the reference image. It provides a quantitative comparison that can be used to indicate sample-wised pass/fail on the agreement of the two images. The Gamma passing/failing rate has become an important clinical evaluation tool. However, the presence of noise in the evaluated and/or reference images may change the Gamma Index, hence the passing/failing rate, and further, clinical decisions. In this work, we systematically studied the impact of the image noise on the Gamma Index calculation. Methods: We used both analytic formulation and numerical calculations in our study. The numerical calculations included simulations and clinical images. Three different noise scenarios were studied in simulations: noise in reference images only, in evaluated images only, and in both. Both white and spatially correlated noises of various magnitudes were simulated. For clinical images of various noise levels, the Gamma Index of measurement against calculation, calculation against measurement, and measurement against measurement, were evaluated. Results: Numerical calculations for both the simulation and clinical data agreed with the analytic formulations, and the clinical data agreed with the simulations. For the Gamma Index of measurement against calculation, its distribution has an increased mean and an increased standard deviation as the noise increases. On the contrary, for the Gamma index of calculation against measurement, its distribution has a decreased mean and stabilized standard deviation as the noise increases. White noise has greater impact on the Gamma Index than spatially correlated noise. Conclusions: The noise has significant impact on the Gamma Index calculation and the impact is asymmetric. The Gamma Index should be reported along with the noise levels in both reference and evaluated images. Reporting of the Gamma Index with switched roles of the images as reference and

  13. Impact of Image Noise on Gamma Index Calculation

    Science.gov (United States)

    Chen, M.; Mo, X.; Parnell, D.; Olivera, G.; Galmarini, D.; Lu, W.

    2014-03-01

    Purpose: The Gamma Index defines an asymmetric metric between the evaluated image and the reference image. It provides a quantitative comparison that can be used to indicate sample-wised pass/fail on the agreement of the two images. The Gamma passing/failing rate has become an important clinical evaluation tool. However, the presence of noise in the evaluated and/or reference images may change the Gamma Index, hence the passing/failing rate, and further, clinical decisions. In this work, we systematically studied the impact of the image noise on the Gamma Index calculation. Methods: We used both analytic formulation and numerical calculations in our study. The numerical calculations included simulations and clinical images. Three different noise scenarios were studied in simulations: noise in reference images only, in evaluated images only, and in both. Both white and spatially correlated noises of various magnitudes were simulated. For clinical images of various noise levels, the Gamma Index of measurement against calculation, calculation against measurement, and measurement against measurement, were evaluated. Results: Numerical calculations for both the simulation and clinical data agreed with the analytic formulations, and the clinical data agreed with the simulations. For the Gamma Index of measurement against calculation, its distribution has an increased mean and an increased standard deviation as the noise increases. On the contrary, for the Gamma index of calculation against measurement, its distribution has a decreased mean and stabilized standard deviation as the noise increases. White noise has greater impact on the Gamma Index than spatially correlated noise. Conclusions: The noise has significant impact on the Gamma Index calculation and the impact is asymmetric. The Gamma Index should be reported along with the noise levels in both reference and evaluated images. Reporting of the Gamma Index with switched roles of the images as reference and

  14. Testing special relativity theory using Compton scattering

    International Nuclear Information System (INIS)

    Contreras S, H.; Hernandez A, L.; Baltazar R, A.; Escareno J, E.; Mares E, C. A.; Hernandez V, C.; Vega C, H. R.

    2010-10-01

    The validity of the special relativity theory has been tested using the Compton scattering. Since 1905 several experiments has been carried out to show that time, mass, and length change with the velocity, in this work the Compton scattering has been utilized as a simple way to show the validity to relativity. The work was carried out through Monte Carlo calculations and experiments with different gamma-ray sources and a gamma-ray spectrometer with a 3 x 3 NaI (Tl) detector. The pulse-height spectra were collected and the Compton edge was observed. This information was utilized to determine the relationship between the electron's mass and energy using the Compton -knee- position, the obtained results were contrasted with two collision models between photon and electron, one model was built using the classical physics and another using the special relativity theory. It was found that calculations and experiments results fit to collision model made using the special relativity. (Author)

  15. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    Science.gov (United States)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  16. First demonstration of aerial gamma-ray imaging using drone for prompt radiation survey in Fukushima

    Science.gov (United States)

    Mochizuki, S.; Kataoka, J.; Tagawa, L.; Iwamoto, Y.; Okochi, H.; Katsumi, N.; Kinno, S.; Arimoto, M.; Maruhashi, T.; Fujieda, K.; Kurihara, T.; Ohsuka, S.

    2017-11-01

    Considerable amounts of radioactive substances (mainly 137Cs and 134Cs) were released into the environment after the Japanese nuclear disaster in 2011. Some restrictions on residence areas were lifted in April 2017, owing to the successive and effective decontamination operations. However, the distribution of radioactive substances in vast areas of mountain, forest and satoyama close to the city is still unknown; thus, decontamination operations in such areas are being hampered. In this paper, we report on the first aerial gamma-ray imaging of a schoolyard in Fukushima using a drone that carries a high sensitivity Compton camera. We show that the distribution of 137Cs in regions with a diameter of several tens to a hundred meters can be imaged with a typical resolution of 2-5 m within a 10-20 min flights duration. The aerial gamma-ray images taken 10 m and 20 m above the ground are qualitatively consistent with a dose map reconstructed from the ground-based measurements using a survey meter. Although further quantification is needed for the distance and air-absorption corrections to derive in situ dose map, such an aerial drone system can reduce measurement time by a factor of ten and is suitable for place where ground-based measurement are difficult.

  17. MCNP simulations of a new time-resolved Compton scattering imaging technique

    International Nuclear Information System (INIS)

    Ilan, Y.

    2004-01-01

    Medical images of human tissue can be produced using Computed Tomography (CT), Positron Emission Tomography (PET), Ultrasound or Magnetic Resonance Imaging (MRI). In all of the above techniques, in order to get a three-dimensional (3D) image, one has to rotate or move the source, the detectors or the scanned target. This procedure is complicated, time consuming and increases the cost and weight of the scanning equipment. Time resolved optical tomography has been suggested as an alternative to the above conventional methods. This technique implies near infrared light (NIR) and fast time-resolved detectors to obtain a 3D image of the scanned target. However, due to the limited penetration of the NIR light in the tissue, the application of this technique is limited to soft tissue like a female breast or a premature infant brain

  18. A Fast Compton Telescope for Detection and Imaging of Gamma-Ray Line Flares Project

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the major goals of high-energy solar physics, and therefore of the Solar and Heliospheric Physics (SHP) Program, is a detailed understanding of the particle...

  19. Advanced Source Deconvolution Methods for Compton Telescopes

    Science.gov (United States)

    Zoglauer, Andreas

    The next generation of space telescopes utilizing Compton scattering for astrophysical observations is destined to one day unravel the mysteries behind Galactic nucleosynthesis, to determine the origin of the positron annihilation excess near the Galactic center, and to uncover the hidden emission mechanisms behind gamma-ray bursts. Besides astrophysics, Compton telescopes are establishing themselves in heliophysics, planetary sciences, medical imaging, accelerator physics, and environmental monitoring. Since the COMPTEL days, great advances in the achievable energy and position resolution were possible, creating an extremely vast, but also extremely sparsely sampled data space. Unfortunately, the optimum way to analyze the data from the next generation of Compton telescopes has not yet been found, which can retrieve all source parameters (location, spectrum, polarization, flux) and achieves the best possible resolution and sensitivity at the same time. This is especially important for all sciences objectives looking at the inner Galaxy: the large amount of expected sources, the high background (internal and Galactic diffuse emission), and the limited angular resolution, make it the most taxing case for data analysis. In general, two key challenges exist: First, what are the best data space representations to answer the specific science questions? Second, what is the best way to deconvolve the data to fully retrieve the source parameters? For modern Compton telescopes, the existing data space representations can either correctly reconstruct the absolute flux (binned mode) or achieve the best possible resolution (list-mode), both together were not possible up to now. Here we propose to develop a two-stage hybrid reconstruction method which combines the best aspects of both. Using a proof-of-concept implementation we can for the first time show that it is possible to alternate during each deconvolution step between a binned-mode approach to get the flux right and a

  20. GammaModeler 3-D gamma-ray imaging technology

    International Nuclear Information System (INIS)

    2000-01-01

    The 3-D GammaModelertrademark system was used to survey a portion of the facility and provide 3-D visual and radiation representation of contaminated equipment located within the facility. The 3-D GammaModelertrademark system software was used to deconvolve extended sources into a series of point sources, locate the positions of these sources in space and calculate the 30 cm. dose rates for each of these sources. Localization of the sources in three dimensions provides information on source locations interior to the visual objects and provides a better estimate of the source intensities. The three dimensional representation of the objects can be made transparent in order to visualize sources located within the objects. Positional knowledge of all the sources can be used to calculate a map of the radiation in the canyon. The use of 3-D visual and gamma ray information supports improved planning decision-making, and aids in communications with regulators and stakeholders

  1. Deeply virtual Compton scattering at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Biselli, Angela S. [Fairfield University - Department of Physics 1073 North Benson Road, Fairfield, CT 06430, USA; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-08-01

    The generalized parton distributions (GPDs) have emerged as a universal tool to describe hadrons in terms of their elementary constituents, the quarks and the gluons. Deeply virtual Compton scattering (DVCS) on a proton or neutron ($N$), $e N \\rightarrow e' N' \\gamma$, is the process more directly interpretable in terms of GPDs. The amplitudes of DVCS and Bethe-Heitler, the process where a photon is emitted by either the incident or scattered electron, can be accessed via cross-section measurements or exploiting their interference which gives rise to spin asymmetries. Spin asymmetries, cross sections and cross-section differences can be connected to different combinations of the four leading-twist GPDs (${H}$, ${E}$, ${\\tilde{H}}$, ${\\tilde{E}}$) for each quark flavors, depending on the observable and on the type of target. This paper gives an overview of recent experimental results obtained for DVCS at Jefferson Laboratory in the halls A and B. Several experiments have been done extracting DVCS observables over large kinematics regions. Multiple measurements with overlapping kinematic regions allow to perform a quasi-model independent extraction of the Compton form factors, which are GPDs integrals, revealing a 3D image of the nucleon.

  2. Compact CdZnTe-Based Gamma Camera For Prostate Cancer Imaging

    International Nuclear Information System (INIS)

    Cui, Y.; Lall, T.; Tsui, B.; Yu, J.; Mahler, G.; Bolotnikov, A.; Vaska, P.; DeGeronimo, G.; O'Connor, P.; Meinken, G.; Joyal, J.; Barrett, J.; Camarda, G.; Hossain, A.; Kim, K.H.; Yang, G.; Pomper, M.; Cho, S.; Weisman, K.; Seo, Y.; Babich, J.; LaFrance, N.; James, R.B.

    2011-01-01

    In this paper, we discuss the design of a compact gamma camera for high-resolution prostate cancer imaging using Cadmium Zinc Telluride (CdZnTe or CZT) radiation detectors. Prostate cancer is a common disease in men. Nowadays, a blood test measuring the level of prostate specific antigen (PSA) is widely used for screening for the disease in males over 50, followed by (ultrasound) imaging-guided biopsy. However, PSA tests have a high false-positive rate and ultrasound-guided biopsy has a high likelihood of missing small cancerous tissues. Commercial methods of nuclear medical imaging, e.g. PET and SPECT, can functionally image the organs, and potentially find cancer tissues at early stages, but their applications in diagnosing prostate cancer has been limited by the smallness of the prostate gland and the long working distance between the organ and the detectors comprising these imaging systems. CZT is a semiconductor material with wide band-gap and relatively high electron mobility, and thus can operate at room temperature without additional cooling. CZT detectors are photon-electron direct-conversion devices, thus offering high energy-resolution in detecting gamma rays, enabling energy-resolved imaging, and reducing the background of Compton-scattering events. In addition, CZT material has high stopping power for gamma rays; for medical imaging, a few-mm-thick CZT material provides adequate detection efficiency for many SPECT radiotracers. Because of these advantages, CZT detectors are becoming popular for several SPECT medical-imaging applications. Most recently, we designed a compact gamma camera using CZT detectors coupled to an application-specific-integrated-circuit (ASIC). This camera functions as a trans-rectal probe to image the prostate gland from a distance of only 1-5 cm, thus offering higher detection efficiency and higher spatial resolution. Hence, it potentially can detect prostate cancers at their early stages. The performance tests of this camera

  3. A simple scanner for Compton tomography

    CERN Document Server

    Cesareo, R; Brunetti, A; Golosio, B; Castellano, A

    2002-01-01

    A first generation CT-scanner was designed and constructed to carry out Compton images. This CT-scanner is composed of a 80 kV, 5 mA X-ray tube and a NaI(Tl) X-ray detector; the tube is strongly collimated, generating a X-ray beam of 2 mm diameter, whilst the detector is not collimated to collect Compton photons from the whole irradiated cylinder. The performances of the equipment were tested contemporaneous transmission and Compton images.

  4. X-ray Compton line scan tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kupsch, Andreas; Lange, Axel; Jaenisch, Gerd-Ruediger [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachgruppe 8.5 - Mikro-ZfP; Hentschel, Manfred P. [Technische Univ. Berlin (Germany); Kardjilov, Nikolay; Markoetter, Henning; Hilger, Andre; Manke, Ingo [Helmholtz-Zentrum Berlin (HZB) (Germany); Toetzke, Christian [Potsdam Univ. (Germany)

    2015-07-01

    The potentials of incoherent X-ray scattering (Compton) computed tomography (CT) are investigated. The imaging of materials of very different atomic number or density at once is generally a perpetual challenge for X-ray tomography or radiography. In a basic laboratory set-up for simultaneous perpendicular Compton scattering and direct beam attenuation tomography are conducted by single channel photon counting line scans. This results in asymmetric distortions of the projection profiles of the scattering CT data set. In a first approach, corrections of Compton scattering data by taking advantage of rotational symmetry yield tomograms without major geometric artefacts. A cylindrical sample composed of PE, PA, PVC, glass and wood demonstrates similar Compton contrast for all the substances, while the conventional absorption tomogram only reveals the two high order materials. Comparison to neutron tomography reveals astonishing similarities except for the glass component (without hydrogen). Therefore, Compton CT offers the potential to replace neutron tomography, which requires much more efforts.

  5. Dynamic imaging with coincidence gamma camera

    International Nuclear Information System (INIS)

    Elhmassi, Ahmed

    2008-01-01

    In this paper we develop a technique to calculate dynamic parameters from data acquired using gamma-camera PET (gc PET). Our method is based on an algorithm development for dynamic SPECT, which processes all decency projection data simultaneously instead of reconstructing a series of static images individually. The algorithm was modified to account for the extra data that is obtained with gc PET (compared with SPEC). The method was tested using simulated projection data for both a SPECT and a gc PET geometry. These studies showed the ability of the code to reconstruct simulated data with a varying range of half-lives. The accuracy of the algorithm was measured in terms of the reconstructed half-life and initial activity for the simulated object. The reconstruction of gc PET data showed improvement in half-life and activity compared to SPECT data of 23% and 20%, respectively (at 50 iterations). The gc PET algorithm was also tested using data from an experimental phantom and finally, applied to a clinical dataset, where the algorithm was further modified to deal with the situation where the activity in certain pixels decreases and then increases during the acquisition. (author)

  6. Remote radiation imaging system using a compact gamma-ray imager mounted on a multicopter drone

    International Nuclear Information System (INIS)

    Sato, Yuki; Terasaka, Yuta; Kaburagi, Masaaki; Tanifuji, Yuta; Kawabata, Kuniaki; Miyamura, Hiroko; Torii, Tatsuo; Ozawa, Shingo; Izumi, Ryo; Suzuki, Toshikazu

    2018-01-01

    A remote radiation imaging system comprising a lightweight Compton camera and a multicopter drone was developed to remotely and quickly measure radioactive contamination inside the buildings of the Fukushima Daiichi Nuclear Power Station (FDNPS). The drone system is used for measuring detailed radiation distributions in narrow areas, which have been difficult to gauge with conventional aircraft monitoring using helicopters. A measurement of radiation distributions in outdoor environments in the coastal areas of Fukushima, Japan, was performed. The drone system with the Compton camera succeeded in remote observations of dense hotspots from the sky over a contaminated area near the FDNPS. The time required for image reconstruction is approximately 550 s in the case of a 9-m flight altitude for the hotspots with a surface dose rate of several tens of μSv/h. This drone system will be used inside the buildings of the FDNPS for remote measurement of radioactive contamination. (author)

  7. Compton radiography, 4. Magnification compton radiography

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, S; Sera, K; Shishido, F; Fukuda, H [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis and Cancer; Mishina, H

    1978-03-01

    Compton radiography permits an acquisition of direct magnification Compton radiograms by use of a pinhole collimator, rendering it feasible to overcome the resolution of the scinticamera being employed. An improvement of resolution was attained from 7 mm to 1 mm separation. Usefulness of its clinical application can be seen in orientation of puncture and biopsy in deep structures and detection of various foreign bodies penetrated by blasts and so on under the ''magnification Compton fluoroscopy'' which can be developed on this principle in the near future.

  8. Estimation and correction of produced light from prompt gamma photons on luminescence imaging of water for proton therapy dosimetry

    Science.gov (United States)

    Yabe, Takuya; Komori, Masataka; Toshito, Toshiyuki; Yamaguchi, Mitsutaka; Kawachi, Naoki; Yamamoto, Seiichi

    2018-02-01

    Although the luminescence images of water during proton-beam irradiation using a cooled charge-coupled device camera showed almost the same ranges of proton beams as those measured by an ionization chamber, the depth profiles showed lower Bragg peak intensities than those measured by an ionization chamber. In addition, a broad optical baseline signal was observed in depths that exceed the depth of the Bragg peak. We hypothesize that this broad baseline signal originates from the interaction of proton-induced prompt gamma photons with water. These prompt gamma photons interact with water to form high-energy Compton electrons, which may cause luminescence or Cherenkov emission from depths exceeding the location of the Bragg peak. To clarify this idea, we measured the luminescence images of water during the irradiations of protons in water with minimized parallax errors, and also simulated the produced light by the interactions of prompt gamma photons with water. We corrected the measured depth profiles of the luminescence images by subtracting the simulated distributions of the produced light by the interactions of prompt gamma photons in water. Corrections were also conducted using the estimated depth profiles of the light of the prompt gamma photons, as obtained from the off-beam areas of the luminescence images of water. With these corrections, we successfully obtained depth profiles that have almost identical distributions as the simulated dose distributions for protons. The percentage relative height of the Bragg peak with corrections to that of the simulation data increased to 94% from 80% without correction. Also, the percentage relative offset heights of the deeper part of the Bragg peak with corrections decreased to 0.2%-0.4% from 4% without correction. These results indicate that the luminescence imaging of water has potential for the dose distribution measurements for proton therapy dosimetry.

  9. Compton radiography, 7

    International Nuclear Information System (INIS)

    Okuyama, Shinichi; Matsuzawa, Taiju; Sera, Koichiro; Mishina, Hitoshi.

    1982-01-01

    Probability of tomographic fluoroscopy was investigated with an appropriately collimated monoenergetic gamma ray source and a gamma camera. Its clinical applications will be found in the orientation of paracenthesis, biopsy, endoscopy and removal of foreign bodies. The property that it gives positive images would enforce its usefulness. It will be useful in planning radiotherapy, too. Further expansion of radiological diagnosis is expectable if the technique is combined with direct magnification and contrast magnification with the Shinozaki color TV system. (author)

  10. The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies

    Science.gov (United States)

    Fegan, Stephen; Buckley, J. H.; Bugaev, S.; Funk, S.; Konopelko, A.; Maier, G.; Vassiliev, V. V.; Simulation Studies Working Group; AGIS Collaboration

    2008-03-01

    The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. We present the results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  11. The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies

    OpenAIRE

    Maier, G.; Collaboration, for the AGIS

    2009-01-01

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation ground-based gamma-ray observatory being planned in the U.S. The anticipated sensitivity of AGIS is about one order of magnitude better than the sensitivity of current observatories, allowing it to measure gammaray emmission from a large number of Galactic and extra-galactic sources. We present here results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance - collect...

  12. Gamma-Ray Imager With High Spatial And Spectral Resolution

    Science.gov (United States)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  13. Prompt gamma-ray imaging for small animals

    Science.gov (United States)

    Xu, Libai

    Small animal imaging is recognized as a powerful discovery tool for small animal modeling of human diseases, which is providing an important clue to complete understanding of disease mechanisms and is helping researchers develop and test new treatments. The current small animal imaging techniques include positron emission tomography (PET), single photon emission tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). A new imaging modality called prompt gamma-ray imaging (PGI) has been identified and investigated primarily by Monte Carlo simulation. Currently it is suggested for use on small animals. This new technique could greatly enhance and extend the present capabilities of PET and SPECT imaging from ingested radioisotopes to the imaging of selected non-radioactive elements, such as Gd, Cd, Hg, and B, and has the great potential to be used in Neutron Cancer Therapy to monitor neutron distribution and neutron-capture agent distribution. This approach consists of irradiating small animals in the thermal neutron beam of a nuclear reactor to produce prompt gamma rays from the elements in the sample by the radiative capture (n, gamma) reaction. These prompt gamma rays are emitted in energies that are characteristic of each element and they are also produced in characteristic coincident chains. After measuring these prompt gamma rays by surrounding spectrometry array, the distribution of each element of interest in the sample is reconstructed from the mapping of each detected signature gamma ray by either electronic collimations or mechanical collimations. In addition, the transmitted neutrons from the beam can be simultaneously used for very sensitive anatomical imaging, which provides the registration for the elemental distributions obtained from PGI. The primary approach is to use Monte Carlo simulation methods either with the specific purpose code CEARCPG, developed at NC State University or with the general purpose

  14. Integrated ultrasound and gamma imaging probe for medical diagnosis

    International Nuclear Information System (INIS)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Polito, C.; Orlandi, C.; Fabbri, A.; Vincentis, G. De

    2016-01-01

    In the last few years, integrated multi-modality systems have been developed, aimed at improving the accuracy of medical diagnosis correlating information from different imaging techniques. In this contest, a novel dual modality probe is proposed, based on an ultrasound detector integrated with a small field of view single photon emission gamma camera. The probe, dedicated to visualize small organs or tissues located at short depths, performs dual modality images and permits to correlate morphological and functional information. The small field of view gamma camera consists of a continuous NaI:Tl scintillation crystal coupled with two multi-anode photomultiplier tubes. Both detectors were characterized in terms of position linearity and spatial resolution performances in order to guarantee the spatial correspondence between the ultrasound and the gamma images. Finally, dual-modality images of custom phantoms are obtained highlighting the good co-registration between ultrasound and gamma images, in terms of geometry and image processing, as a consequence of calibration procedures

  15. Gamma ray polarimetry using a position sensitive germanium detector

    CERN Document Server

    Kroeger, R A; Kurfess, J D; Phlips, B F

    1999-01-01

    Imaging gamma-ray detectors make sensitive polarimeters in the Compton energy regime by measuring the scatter direction of gamma rays. The principle is to capitalize on the angular dependence of the Compton scattering cross section to polarized gamma rays and measure the distribution of scatter directions within the detector. This technique is effective in a double-sided germanium detector between roughly 50 keV and 1 MeV. This paper reviews device characteristics important to the optimization of a Compton polarimeter, and summarizes measurements we have made using a device with a 5x5 cm active area, 1 cm thickness, and strip-electrodes on a 2 mm pitch.

  16. Recent progress in low-level gamma imaging

    International Nuclear Information System (INIS)

    Mahe, C.; Girones, Ph.; Lamadie, F.; Le Goaller, C.

    2007-01-01

    The CEA's Aladin gamma imaging system has been operated successfully for several years in nuclear plants and during decommissioning projects with additional tools such as gamma spectrometry detectors and dose rate probes. The radiological information supplied by these devices is becoming increasingly useful for establishing robust and optimized decommissioning scenarios. Recent technical improvements allow this gamma imaging system to be operated in low-level applications and with shorter acquisition times suitable for decommissioning projects. The compact portable system can be used in places inaccessible to operators. It is quick and easy to implement, notably for onsite component characterization. Feasibility trials and in situ measurements were recently carried out under low-level conditions, mainly on waste packages and glove boxes for decommissioning projects. This paper describes recent low-level in situ applications. These characterization campaigns mainly concerned gamma emitters with γ energy < 700 keV. In many cases, the localization of hot spots by gamma camera was confirmed by additional measurements such as dose rate mapping and gamma spectrometry measurements. These complementary techniques associated with advanced calculation codes (MCNP, Mercure 6.2, Visiplan and Siren) offer a mobile and compact tool for specific assessment of waste packages and glove boxes. (authors)

  17. Compton suppression through rise-time analysis

    International Nuclear Information System (INIS)

    Selvi, S.; Celiktas, C.

    2007-01-01

    We studied Compton suppression for 60 Co and 137 Cs radioisotopes using a signal selection criterion based on contrasting the fall time of the signals composing the photo peak with those composing the Compton continuum. The fall time criterion is employed by using the pulse shape analysis observing the change in the fall times of the gamma-ray pulses. This change is determined by measuring the changes in the rise times related to the fall time of the scintillator and the timing signals related to the fall time of the input signals. We showed that Compton continuum suppression is achieved best via the precise timing adjustment of an analog rise-time analyzer connected to a NaI(Tl) scintillation spectrometer

  18. Gamma-Ray imaging for nuclear security and safety: Towards 3-D gamma-ray vision

    Science.gov (United States)

    Vetter, Kai; Barnowksi, Ross; Haefner, Andrew; Joshi, Tenzing H. Y.; Pavlovsky, Ryan; Quiter, Brian J.

    2018-01-01

    The development of portable gamma-ray imaging instruments in combination with the recent advances in sensor and related computer vision technologies enable unprecedented capabilities in the detection, localization, and mapping of radiological and nuclear materials in complex environments relevant for nuclear security and safety. Though multi-modal imaging has been established in medicine and biomedical imaging for some time, the potential of multi-modal data fusion for radiological localization and mapping problems in complex indoor and outdoor environments remains to be explored in detail. In contrast to the well-defined settings in medical or biological imaging associated with small field-of-view and well-constrained extension of the radiation field, in many radiological search and mapping scenarios, the radiation fields are not constrained and objects and sources are not necessarily known prior to the measurement. The ability to fuse radiological with contextual or scene data in three dimensions, in analog to radiological and functional imaging with anatomical fusion in medicine, provides new capabilities enhancing image clarity, context, quantitative estimates, and visualization of the data products. We have developed new means to register and fuse gamma-ray imaging with contextual data from portable or moving platforms. These developments enhance detection and mapping capabilities as well as provide unprecedented visualization of complex radiation fields, moving us one step closer to the realization of gamma-ray vision in three dimensions.

  19. Studies of coherent/Compton scattering method for bone mineral content measurement

    International Nuclear Information System (INIS)

    Sakurai, Kiyoko; Iwanami, Shigeru; Nakazawa, Keiji; Matsubayashi, Takashi; Imamura, Keiko.

    1980-01-01

    A measurement of bone mineral content by a coherent/Compton scattering method was described. A bone sample was irradiated by a collimated narrow beam of 59.6 keV gamma-rays emitted from a 300 mCi 241 Am source, and the scattered radiations were detected using a collimated pure germanium detector placed at 90 0 to the incident beam. The ratio of coherent to Compton peaks in a spectrum of the scattered radiations depends on the bone mineral content of the bone sample. The advantage of this method is that bone mineral content of a small region in a bone can be accurately measured. Assuming that bone consists of two components, protein and bone mineral, and that the mass absorption coefficient for Compton scattering is independent of material, the coherent to Compton scattering ratio is linearly related to the percentage in weight of bone mineral. A calibration curve was obtained by measuring standard samples which were mixed with Ca 3 (PO 4 ) 2 and H 2 O. The error due to the assumption about the mass absorption coefficient for Compton scattering and to the difference between true bone and standard samples was estimated to be less than 3% within the range from 10 to 60% in weight of bone mineral. The fat in bone affects an estimated value by only 1.5% when it is 20% in weight. For the clinical application of this method, the location to be analyzed should be selected before the measurement with two X-ray images viewed from the source and the detector. These views would be also used to correct the difference in absorption between coherent and Compton scattered radiations whose energies are slightly different from each other. The absorbed dose to the analyzed region was approximately 150 mrad. The time required for one measurement in this study was about 10 minutes. (author)

  20. AGIS -- the Advanced Gamma-ray Imaging System

    Science.gov (United States)

    Krennrich, Frank

    2009-05-01

    The Advanced Gamma-ray Imaging System, AGIS, is envisioned to become the follow-up mission of the current generation of very high energy gamma-ray telescopes, namely, H.E.S.S., MAGIC and VERITAS. These instruments have provided a glimpse of the TeV gamma-ray sky, showing more than 70 sources while their detailed studies constrain a wealth of physics and astrophysics. The particle acceleration, emission and absorption processes in these sources permit the study of extreme physical conditions found in galactic and extragalactic TeV sources. AGIS will dramatically improve the sensitivity and angular resolution of TeV gamma-ray observations and therefore provide unique prospects for particle physics, astrophysics and cosmology. This talk will provide an overview of the science drivers, scientific capabilities and the novel technical approaches that are pursued to maximize the performance of the large array concept of AGIS.

  1. Gamma Anna’: a classroom demonstration for teaching the concepts of gamma imaging

    Science.gov (United States)

    Wolff, Nicola; Griffiths, Jennifer; Yerworth, Rebecca

    2017-01-01

    Gamma imaging is at the interface of medicine and physics and thus its teaching is important in both fields. Pedagogic literature highlights the benefits of interactive demonstrations in teaching: an increase in enjoyment and interest, as well as improvement in academic achievement. However gamma imaging uses radioactive sources, which are potentially dangerous and thus their use is tightly controlled. We have developed a demonstration which uses a localised exothermic reaction within a rag doll as an analogue of radioactivity. This can be safely used in classrooms to demonstrate the principles of gamma imaging. The tool is easy to make, cheap, robust and portable. The supplementary material in this paper gives teacher notes and a description of how to make the rag doll demonstrator. We have tested the tool using six participants, acting as ‘teachers’, who carried out the demonstration and described the doll as easy to use, and the ‘tumour’ clearly identifiable. The teaching tool was separately demonstrated to a group of 12 GCSE physics students and a group of 12 medical students. Feedback showed increased student engagement, enjoyment and understanding of gamma imaging. Previous research has shown that these benefits have an impact on learning and academic outcomes.

  2. Gamma Ray Imaging System (GRIS) GammaCam trademark. Final report, January 3, 1994 - May 31, 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This report describes the activities undertaken during the development of the Gamma Ray Imaging System (GRIS) program now referred to as the GammaCam trademark. The purpose of this program is to develop a 2-dimensional imaging system for gamma-ray energy scenes that may be present in nuclear power plants. The report summarizes the overall accomplishments of the program and the most recent GammaCam measurements made at LANL and Estonia. The GammaCam is currently available for sale from AIL Systems as an off-the-shelf instrument

  3. Simulation of scintillating fiber gamma ray detectors for medical imaging

    International Nuclear Information System (INIS)

    Chaney, R.C.; Fenyves, E.J.; Antich, P.P.

    1990-01-01

    This paper reports on plastic scintillating fibers which have been shown to be effective for high spatial and time resolution of gamma rays. They may be expected to significantly improve the resolution of current medical imaging systems such as PET and SPECT. Monte Carlo simulation of imaging systems using these detectors, provides a means to optimize their performance in this application, as well as demonstrate their resolution and efficiency. Monte Carlo results are presented for PET and SPECT systems constructed using these detectors

  4. Gamma ray imager on the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pace, D. C., E-mail: pacedc@fusion.gat.com; Taussig, D.; Eidietis, N. W.; Van Zeeland, M. A.; Watkins, M. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Cooper, C. M. [Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830 (United States); Hollmann, E. M. [University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Riso, V. [State University of New York-Buffalo, 12 Capen Hall, Buffalo, New York 14260-1660 (United States)

    2016-04-15

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electrons in the energy range of 1–60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.

  5. Effect of scatter media on small gamma camera imaging characteristics

    International Nuclear Information System (INIS)

    Ser, H. K.; Choi, Y.; Yim, K. C.

    2001-01-01

    Effect of scatter media materials and thickness, located between radioactivity and small gamma camera, on imaging characteristics was evaluated. The small gamma camera developed for breast imaging was consisted of collimator, NaI(TI) crystal (60x60x6 mm 3 ). PSPMT (position sensitive photomultiplier tube), NIMs and personal computer. Monte Carlo simulation was performed to evaluate the system sensitivity with different scatter media thickness (0∼8 cm) and materials (air and acrylie) with parallel hole collimator and diverging collimator. The sensitivity and spatial resolution was measured using the small gamma camera with the same condition applied to the simulation. Counts was decreased by 10% (air) and 54% (acrylic) with the parallel hole collimator and by 35% (air) and 63% (acrylic) with the diverging collimator. Spatial resolution was decreased as increasing the thickness of scatter media. This study substantiate the importance of a gamma camera positioning and the minimization of the distance between detector and target lesion in the clinical application of a gamma camera

  6. Separation method of heavy-ion particle image from gamma-ray mixed images using an imaging plate

    CERN Document Server

    Yamadera, A; Ohuchi, H; Nakamura, T; Fukumura, A

    1999-01-01

    We have developed a separation method of alpha-ray and gamma-ray images using the imaging plate (IP). The IP from which the first image was read out by an image reader was annealed at 50 deg. C for 2 h in a drying oven and the second image was read out by the image reader. It was found out that an annealing ratio, k, which is defined as a ratio of the photo-stimulated luminescence (PSL) density at the first measurement to that at the second measurement, was different for alpha rays and gamma rays. By subtracting the second image multiplied by a factor of k from the first image, the alpha-ray image was separated from the alpha and gamma-ray mixed images. This method was applied to identify the images of helium, carbon and neon particles of high energies using the heavy-ion medical accelerator, HIMAC. (author)

  7. Gamma camera image processing and graphical analysis mutual software system

    International Nuclear Information System (INIS)

    Wang Zhiqian; Chen Yongming; Ding Ailian; Ling Zhiye; Jin Yongjie

    1992-01-01

    GCCS gamma camera image processing and graphical analysis system is a special mutual software system. It is mainly used to analyse various patient data acquired from gamma camera. This system is used on IBM PC, PC/XT or PC/AT. It consists of several parts: system management, data management, device management, program package and user programs. The system provides two kinds of user interfaces: command menu and command characters. It is easy to change and enlarge this system because it is best modularized. The user programs include almost all the clinical protocols used now

  8. The Advanced Gamma-Ray Imaging System (AGIS)

    Science.gov (United States)

    Otte, Nepomuk

    The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation of imag-ing atmospheric Cherenkov telescope arrays. It has the goal of providing an order of magnitude increase in sensitivity for Very High Energy Gamma-ray ( 100 GeV to 100 TeV) astronomy compared to currently operating arrays such as CANGAROO, HESS, MAGIC, and VERITAS. After an overview of the science such an array would enable, we discuss the development of the components of the telescope system that are required to achieve the sensitivity goal. AGIS stresses improvements in several areas of IACT technology including component reliability as well as exploring cost reduction possibilities in order to achieve its goal. We discuss alterna-tives for the telescopes and positioners: a novel Schwarzschild-Couder telescope offering a wide field of view with a relatively smaller plate scale, and possibilities for rapid slewing in order to address the search for and/or study of Gamma-ray Bursts in the VHE gamma-ray regime. We also discuss options for a high pixel count camera system providing the necessary finer solid angle per pixel and possibilities for a fast topological trigger that would offer improved realtime background rejection and lower energy thresholds.

  9. Very low background gamma spectrometer mounted in anti-Compton with NaI(Tl) for the study of glaciers and sediment samples; Spectrometrie gamma a tres bas niveau avec anti-Compton NaI(Tl), pour l`etude des glaciers et des sediments

    Energy Technology Data Exchange (ETDEWEB)

    Pinglot, J.F.; Pourchet, M. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France). Lab. de Glaciologie

    1994-05-01

    The determination of natural and artificial radioactivities of snow (glaciers, polar ice-caps) or sediment samples (lakes, oceans), takes great benefit with the use of the superior resolution of high purity germanium detector, N type, in a broad energy range( 10 keV up to 1.6 MeV). This detector (relative efficiency: 20%), very low background specified, is mounted in anti-Compton with a 9`x 8` NaI(Tl) scintillator, also with low background. International standards, used with a quantitative software allows the determination of the efficiency curve and the isotopes identification and specific activity. The anti-Compton suppressed spectrometer exhibits a decrease of the background by a factor of ten, without any change in efficiencies. Applications of this spectrometer deal with samples from lake Titicaca and a glacier from Spitsbergen. (authors). 6 figs., 7 refs.

  10. A compact gamma camera for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, E L; Cella, J; Majewski, S; Popov, V; Qian, Jianguo; Saha, M S; Smith, M F; Weisenberger, A G; Welsh, R E

    2006-02-01

    A compact detector, sized particularly for imaging a mouse, is described. The active area of the detector is approximately 46 mm; spl times/ 96 mm. Two flat-panel Hamamatsu H8500 position-sensitive photomultiplier tubes (PSPMTs) are coupled to a pixellated NaI(Tl) scintillator which views the animal through a copper-beryllium (CuBe) parallel-hole collimator specially designed for {sup 125}I. Although the PSPMTs have insensitive areas at their edges and there is a physical gap, corrections for scintillation light collection at the junction between the two tubes results in a uniform response across the entire rectangular area of the detector. The system described has been developed to optimize both sensitivity and resolution for in-vivo imaging of small animals injected with iodinated compounds. We demonstrate an in-vivo application of this detector, particularly to SPECT, by imaging mice injected with approximately 10-15; spl mu/Ci of {sup 125}I.

  11. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  12. A gamma-ray tracking detector for molecular imaging

    International Nuclear Information System (INIS)

    Hall, C.J.; Lewis, R.A.; Helsby, W.I.; Nolan, P.; Boston, A.

    2003-01-01

    A design for a gamma-ray detector for molecular imaging is presented. The system is based on solid-state strip detector technology. The advantages of position sensitivity coupled with fine spectral resolution are exploited to produce a tracking detector for use with a variety of isotopes in nuclear medicine. Current design concepts employ both silicon and germanium layers to provide an energy range from 60 keV to >1 MeV. This allows a reference X-ray image to be collected simultaneously with the gamma-ray image providing accurate anatomical registration. The tracking ability of the gamma-ray detector allows ambiguities in the data set to be resolved which would otherwise cause events to be rejected in standard non-tracking system. Efficiency improvements that high solid angle coverage and the use of a higher proportion of events make time resolved imaging and multi-isotope work possible. A modular detector system, designed for viewing small animals has been accepted for funding

  13. Study on the Spatial Resolution of Single and Multiple Coincidences Compton Camera

    Science.gov (United States)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2012-10-01

    In this paper we study the image resolution that can be obtained from the Multiple Coincidences Compton Camera (MCCC). The principle of MCCC is based on a simultaneous acquisition of several gamma-rays emitted in cascade from a single nucleus. Contrary to a standard Compton camera, MCCC can theoretically provide the exact location of a radioactive source (based only on the identification of the intersection point of three cones created by a single decay), without complicated tomographic reconstruction. However, practical implementation of the MCCC approach encounters several problems, such as low detection sensitivities result in very low probability of coincident triple gamma-ray detection, which is necessary for the source localization. It is also important to evaluate how the detection uncertainties (finite energy and spatial resolution) influence identification of the intersection of three cones, thus the resulting image quality. In this study we investigate how the spatial resolution of the reconstructed images using the triple-cone reconstruction (TCR) approach compares to images reconstructed from the same data using standard iterative method based on single-cone. Results show, that FWHM for the point source reconstructed with TCR was 20-30% higher than the one obtained from the standard iterative reconstruction based on expectation maximization (EM) algorithm and conventional single-cone Compton imaging. Finite energy and spatial resolutions of the MCCC detectors lead to errors in conical surfaces definitions (“thick” conical surfaces) which only amplify in image reconstruction when intersection of three cones is being sought. Our investigations show that, in spite of being conceptually appealing, the identification of triple cone intersection constitutes yet another restriction of the multiple coincidence approach which limits the image resolution that can be obtained with MCCC and TCR algorithm.

  14. Science Flight Program of the Nuclear Compton Telescope

    Science.gov (United States)

    Boggs, Steven

    This is the lead proposal for this program. We are proposing a 5-year program to perform the scientific flight program of the Nuclear Compton Telescope (NCT), consisting of a series of three (3) scientific balloon flights. NCT is a balloon-borne, wide-field telescope designed to survey the gamma-ray sky (0.2-5 MeV), performing high-resolution spectroscopy, wide-field imaging, and polarization measurements. NCT has been rebuilt as a ULDB payload under the current 2-year APRA grant. (In that proposal we stated our goal was to return at this point to propose the scientific flight program.) The NCT rebuild/upgrade is on budget and schedule to achieve flight-ready status in Fall 2013. Science: NCT will map the Galactic positron annihilation emission, shedding more light on the mysterious concentration of this emission uncovered by INTEGRAL. NCT will survey Galactic nucleosynthesis and the role of supernova and other stellar populations in the creation and evolution of the elements. NCT will map 26-Al and positron annihilation with unprecedented sensitivity and uniform exposure, perform the first mapping of 60-Fe, search for young, hidden supernova remnants through 44-Ti emission, and enable a host of other nuclear astrophysics studies. NCT will also study compact objects (in our Galaxy and AGN) and GRBs, providing novel measurements of polarization as well as detailed spectra and light curves. Design: NCT is an array of germanium gamma-ray detectors configured in a compact, wide-field Compton telescope configuration. The array is shielded on the sides and bottom by an active anticoincidence shield but is open to the 25% of the sky above for imaging, spectroscopy, and polarization measurements. The instrument is mounted on a zenith-pointed gondola, sweeping out ~50% of the sky each day. This instrument builds off the Compton telescope technique pioneered by COMPTEL on the Compton Gamma Ray Observatory. However, by utilizing modern germanium semiconductor strip detectors

  15. TU-FG-BRB-05: A 3 Dimensional Prompt Gamma Imaging System for Range Verification in Proton Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Draeger, E; Chen, H; Polf, J [University of Maryland School of Medicine, Baltimore, MD (United States); Mackin, D; Beddar, S [MD Anderson Cancer Center, Houston, TX (United States); Avery, S [University of Cape Town, Rondebosch (South Africa); Peterson, S

    2016-06-15

    Purpose: To report on the initial developments of a clinical 3-dimensional (3D) prompt gamma (PG) imaging system for proton radiotherapy range verification. Methods: The new imaging system under development consists of a prototype Compton camera to measure PG emission during proton beam irradiation and software to reconstruct, display, and analyze 3D images of the PG emission. For initial test of the system, PGs were measured with a prototype CC during a 200 cGy dose delivery with clinical proton pencil beams (ranging from 100 MeV – 200 MeV) to a water phantom. Measurements were also carried out with the CC placed 15 cm from the phantom for a full range 150 MeV pencil beam and with its range shifted by 2 mm. Reconstructed images of the PG emission were displayed by the clinical PG imaging software and compared to the dose distributions of the proton beams calculated by a commercial treatment planning system. Results: Measurements made with the new PG imaging system showed that a 3D image could be reconstructed from PGs measured during the delivery of 200 cGy of dose, and that shifts in the Bragg peak range of as little as 2 mm could be detected. Conclusion: Initial tests of a new PG imaging system show its potential to provide 3D imaging and range verification for proton radiotherapy. Based on these results, we have begun work to improve the system with the goal that images can be produced from delivery of as little as 20 cGy so that the system could be used for in-vivo proton beam range verification on a daily basis.

  16. Science with the Advanced Gamma Ray Imaging System (AGIS)

    Science.gov (United States)

    Coppi, Paolo

    2009-05-01

    We present the scientific drivers for the Advanced Gamma Ray Imaging System (AGIS), a concept for the next-generation ground- based gamma-ray experiment, comprised of an array of ˜100 imaging atmospheric Cherenkov telescopes. Design requirements for AGIS include achieving a sensitivity an order of magnitude better than the current generation of space or ground-based instruments in the energy range of 40 GeV to ˜100 TeV. We present here an overview of the scientific goals of AGIS, including the prospects for understanding VHE phenomena in the vicinity of accreting black holes, particle acceleration in a variety of astrophysical environments, indirect detection of dark matter, study of cosmological background radiation fields, and particle physics beyond the standard model.

  17. Biomedical image acquisition system using a gamma camera

    International Nuclear Information System (INIS)

    Jara B, A.T.; Sevillano, J.; Del Carpio S, J.A.

    2003-01-01

    A gamma camera images PC acquisition board has been developed. The digital system has been described using VHDL and has been synthesized and implemented in a Altera Max7128S CPLD and two PALs 16L8. The use of programmable-logic technologies has afforded a higher scale integration and a reduction of the digital delays and also has allowed us to modify and bring up to date the entire digital design easily. (orig.)

  18. The development of a Compton lung densitometer

    Energy Technology Data Exchange (ETDEWEB)

    Loo, B.W.; Goulding, F.S.; Madden, N.W.; Simon, D.S.

    1988-11-01

    A field instrument is being developed for the non-invasive determination of absolute lung density using unique Compton backscattering techniques. A system consisting of a monoenergetic gamma-ray beam and a shielded high resolution high-purity-germanium (HPGe) detector in a close-coupled geometry is designed to minimize errors due to multiple scattering and uncontrollable attenuation in the chestwall. Results of studies on system performance with phantoms, the optimization of detectors, and the fabrication of a practical gamma-ray source are presented. 3 refs., 6 figs., 2 tabs.

  19. The development of a Compton lung densitometer

    International Nuclear Information System (INIS)

    Loo, B.W.; Goulding, F.S.; Madden, N.W.; Simon, D.S.

    1988-11-01

    A field instrument is being developed for the non-invasive determination of absolute lung density using unique Compton backscattering techniques. A system consisting of a monoenergetic gamma-ray beam and a shielded high resolution high-purity-germanium (HPGe) detector in a close-coupled geometry is designed to minimize errors due to multiple scattering and uncontrollable attenuation in the chestwall. Results of studies on system performance with phantoms, the optimization of detectors, and the fabrication of a practical gamma-ray source are presented. 3 refs., 6 figs., 2 tabs

  20. Measurement of the cross section for forward Compton scattering by /sup 4//sub 2/ He nuclei at energies E/sub. gamma. / = 1. 8--3. 8 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Aleksanyan, A.S.; Babayan, G.E.; Voskanyan, A.V.; Gasparyan, A.D.; Gevorkyan, S.R.; Karapetyan, S.N.; Ketikyan, A.Z.; Megrabyan, G.K.; Movsisyan, K.A.; Oganesyan, G.A.; and others

    1987-04-01

    The differential cross sections for Compton scattering by nuclei of /sup 4//sub 2/ He have been measured at the momentum transfers 0.02less than or equal tochemically bondtchemically bond<0.14 (GeV/c)/sup 2/ in the energy region E/sub ..gamma../ = 1.8--3.8 GeV. On the basis of the diffraction theory of multiple scattering the values of the differential cross sections at t = 0, of the slope parameters of the diffraction cone, and of the /sup 4//sub 2/ He nucleus radius have been determined. Experimental values are given for the phase of the scattering amplitude by nucleons, ..cap alpha..( f/sup 0//sub i/) = Re f/sup 0//sub i// Im f/sup 0//sub i/. On the basis of the differential cross sections at t = 0 the total photoabsorption cross section and the photon screening coefficient are determined for the /sup 4//sub 2/ He nucleus.

  1. The Compton generator revisited

    Science.gov (United States)

    Siboni, S.

    2014-09-01

    The Compton generator, introduced in 1913 by the US physicist A H Compton as a relatively simple device to detect the Earth's rotation with respect to the distant stars, is analyzed and discussed in a general perspective. The paper introduces a generalized definition of the generator, emphasizing the special features of the original apparatus, and provides a suggestive interpretation of the way the device works. To this end, an intriguing electromagnetic analogy is developed, which turns out to be particularly useful in simplifying the calculations. Besides the more extensive description of the Compton generator in itself, the combined use of concepts and methods coming from different fields of physics, such as particle dynamics in moving references frames, continuum mechanics and electromagnetism, may be of interest to both teachers and graduate students.

  2. Advanced multi-dimensional imaging of gamma-ray radiation

    International Nuclear Information System (INIS)

    Woodring, Mitchell; Beddingfield, David; Souza, David; Entine, Gerald; Squillante, Michael; Christian, James; Kogan, Alex

    2003-01-01

    The tracking of radiation contamination and distribution has become a high-priority US DOE task. To support DOE needs, Radiation Monitoring Devices Inc. has been actively carrying out research and development on a gamma-radiation imager, RadCam 2000 TM . The imager is based upon a position-sensitive PMT coupled to a scintillator near a MURA coded aperture. The modulated gamma flux detected by the PSPMT is mathematically decoded to produce images that are computer displayed in near real time. Additionally, we have developed a data-manipulation scheme which allows a multi-dimensional data array, comprised of x position, y position, and energy, to be used in the imaging process. In the imager software a gate can be set on a specific isotope energy to reveal where in the field of view the gated data lies or, conversely, a gate can be set on an area in the field of view to examine what isotopes are present in that area. This process is complicated by the FFT decoding process used with the coded aperture; however, we have achieved excellent performance and results are presented here

  3. Nuclear Compton scattering

    International Nuclear Information System (INIS)

    Christillin, P.

    1986-01-01

    The theory of nuclear Compton scattering is reformulated with explicit consideration of both virtual and real pionic degrees of freedom. The effects due to low-lying nuclear states, to seagull terms, to pion condensation and to the Δ dynamics in the nucleus and their interplay in the different energy regions are examined. It is shown that all corrections to the one-body terms, of diffractive behaviour determined by the nuclear form factor, have an effective two-body character. The possibility of using Compton scattering as a complementary source of information about nuclear dynamics is restressed. (author)

  4. Sparse image representation for jet neutron and gamma tomography

    Energy Technology Data Exchange (ETDEWEB)

    Craciunescu, T. [EURATOM-MEdC Association, Institute for Laser, Plasma and Radiation Physics, Bucharest (Romania); Kiptily, V. [EURATOM/CCFE Association, Culham Science Centre, Abingdon (United Kingdom); Murari, A. [Consorzio RFX, Associazione EURATOM-ENEA per la Fusione, Padova (Italy); Tiseanu, I.; Zoita, V. [EURATOM-MEdC Association, Institute for Laser, Plasma and Radiation Physics, Bucharest (Romania)

    2013-10-15

    Highlights: •A new tomographic method for the reconstruction of the 2-D neutron and gamma emissivity on JET. •The method is based on the sparse representation of the reconstructed image in an over-complete dictionary. •Several techniques, based on a priori information are used to regularize this highly limited data set tomographic problem. •The proposed method provides good reconstructions in terms of shapes and resolution. -- Abstract: The JET gamma/neutron profile monitor plasma coverage of the emissive region enables tomographic reconstruction. However, due to the availability of only two projection angles and to the coarse sampling, tomography is a highly limited data set problem. A new reconstruction method, based on the sparse representation of the reconstructed image in an over-complete dictionary, has been developed and applied to JET neutron/gamma tomography. The method has been tested on JET experimental data and significant results are presented. The proposed method provides good reconstructions in terms of shapes and resolution.

  5. Photodetectors for the Advanced Gamma-ray Imaging System (AGIS)

    Science.gov (United States)

    Wagner, Robert G.; Advanced Gamma-ray Imaging System AGIS Collaboration

    2010-03-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation very high energy gamma-ray observatory. Design goals include an order of magnitude better sensitivity, better angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. Given the scale of AGIS, the camera must be reliable and cost effective. The Schwarzschild-Couder optical design yields a smaller plate scale than present-day Cherenkov telescopes, enabling the use of more compact, multi-pixel devices, including multianode photomultipliers or Geiger avalanche photodiodes. We present the conceptual design of the focal plane for the camera and results from testing candidate! focal plane sensors.

  6. Neutron and Gamma Imaging for National Security Applications

    Science.gov (United States)

    Hornback, Donald

    2017-09-01

    The Department of Energy, National Nuclear Security Administration (NNSA), Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D/NA-22) possesses, in part, the mission to develop technologies in support of nuclear security efforts in coordination with other U.S. government entities, such as the Department of Defense and the Department of Homeland Security. DNN R&D has long supported research in nuclear detection at national labs, universities, and through the small business innovation research (SBIR) program. Research topics supported include advanced detector materials and electronics, detection algorithm development, and advanced gamma/neutron detection systems. Neutron and gamma imaging, defined as the directional detection of radiation as opposed to radiography, provides advanced detection capabilities for the NNSA mission in areas of emergency response, international safeguards, and nuclear arms control treaty monitoring and verification. A technical and programmatic overview of efforts in this field of research will be summarized.

  7. A filtered backprojection reconstruction algorithm for Compton camera

    Energy Technology Data Exchange (ETDEWEB)

    Lojacono, Xavier; Maxim, Voichita; Peyrin, Francoise; Prost, Remy [Lyon Univ., Villeurbanne (France). CNRS, Inserm, INSA-Lyon, CREATIS, UMR5220; Zoglauer, Andreas [California Univ., Berkeley, CA (United States). Space Sciences Lab.

    2011-07-01

    In this paper we present a filtered backprojection reconstruction algorithm for Compton Camera detectors of particles. Compared to iterative methods, widely used for the reconstruction of images from Compton camera data, analytical methods are fast, easy to implement and avoid convergence issues. The method we propose is exact for an idealized Compton camera composed of two parallel plates of infinite dimension. We show that it copes well with low number of detected photons simulated from a realistic device. Images reconstructed from both synthetic data and realistic ones obtained with Monte Carlo simulations demonstrate the efficiency of the algorithm. (orig.)

  8. Recent advances and future perspectives of gamma imagers for scintimammography

    Energy Technology Data Exchange (ETDEWEB)

    Pani, R. [INFN-Department of Experimental Medicine and Pathology, ' La Sapienza' University, Rome (Italy)]. E-mail: roberto.pani@uniroma1.it; Pellegrini, R. [INFN-Department of Experimental Medicine and Pathology, ' La Sapienza' University, Rome (Italy); Cinti, M.N. [INFN-Department of Experimental Medicine and Pathology, ' La Sapienza' University, Rome (Italy); Bennati, P. [INFN-Department of Experimental Medicine and Pathology, ' La Sapienza' University, Rome (Italy); Betti, M. [INFN-Department of Experimental Medicine and Pathology, ' La Sapienza' University, Rome (Italy); Casali, V. [INFN-Department of Experimental Medicine and Pathology, ' La Sapienza' University, Rome (Italy); Schillaci, O. [Department of Diagnostic Sciences, Second University, Rome (Italy); Mattioli, M. [INFN-Department of Physics, ' La Sapienza' University, Rome (Italy); Orsolini Cencelli, V. [INFN-National Institute of Nuclear Physics, RomeIII (Italy); Navarria, F. [INFN-Department of Physics, University of Bologna (Italy); Bollini, D. [INFN-Department of Physics, University of Bologna (Italy); Moschini, G. [INFN-Department of Physics, University of Padova (Italy); Garibaldi, F. [INFN-Laboratory of Physics ISS, Rome (Italy); Cusanno, F. [INFN-Laboratory of Physics ISS, Rome (Italy); Iurlaro, G. [ENEA-TEC, C. R. Casaccia, Rome (Italy); Montani, L. [ENEA-TEC, C. R. Casaccia, Rome (Italy); Scafe, R. [ENEA-TEC, C. R. Casaccia, Rome (Italy); De Notaristefani, F. [INFN-National Institute of Nuclear Physics, Rome (Italy)

    2006-12-20

    The very low sensitivity of Scintimammography for tumors under 1 cm in diameter, with current nuclear medicine cameras in use, is the major limitation in recommending this test modality for screening purposes. Recently latest generation cameras with superior imaging performances have allowed to foresee a very promising future for scintimammography. Recent technological advances obtained from our research group on the new Lanthanum scintillation crystals are now demonstrating how continuous crystals coupled to Hamamatsu Flat panel tube can overcome a number of limitations in spatial and energy resolution of scintillation arrays, carrying out 6% energy resolution, and submillimeter spatial resolution values at 140 keV. In this paper three basic detection systems have been analysed: a LumaGEM 3200S gamma camera (Gamma Medica, InC., Northridge, USA), based on a cadmium-zinc-telluride (CZT) semiconductor detector with a FoV of 12.5x12.5 cm{sup 2} and with detector elements of 1.6x1.6 mm{sup 2} in size and a detector prototype consisting of a Flat panel PMT coupled to planar LaBr{sub 3}:Ce scintillator. The third one is a first generation large FoV gamma camera chosen for comparison, based on PSPMTs photodetector array coupled to a NaI(Tl) scintillation crystal matrix. LaBr{sub 3}:Ce and CZT cameras showed superior spatial and energy resolution than previous generation one based on NaI(Tl) scintillation array. Both CZT and LaBr gamma cameras showed similar efficiencies for the same energy window though LaBr{sub 3}:Ce continuous crystal showed better imaging performance than pixellated detectors. However large area LaBr{sub 3}:Ce continuous crystals are not available yet.

  9. Voltmeter with Compton electrons

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, N R; Gorbics, S G; Weidenheimer, D M [Berkeley Research Associates, Springfield, VA (United States)

    1997-12-31

    A technique to measure the electron end point energy of bremsstrahlung in the MV regime using only two detectors is described. One of the detector measures the total radiation, the other filters out all except the hardest photons by looking only at their Compton electrons, whose average energy is determined with a magnetic field. (author). 4 figs., 2 refs.

  10. Development of Simultaneous Beta-and-Coincidence-Gamma Imager for Plant Imaging Research

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Yuan-Chuan [Washington Univ., St. Louis, MO (United States). School of Medicine

    2016-09-30

    The goal of this project is to develop a novel imaging system that can simultaneously acquire beta and coincidence gamma images of positron sources in thin objects such as leaves of plants. This hybrid imager can be used to measure carbon assimilation in plants quantitatively and in real-time after C-11 labeled carbon-dioxide is administered. A better understanding of carbon assimilation, particularly under the increasingly elevated atmospheric CO2 level, is extremely critical for plant scientists who study food crop and biofuel production. Phase 1 of this project is focused on the technology development with 3 specific aims: (1) develop a hybrid detector that can detect beta and gamma rays simultaneously; (2) develop an imaging system that can differentiate these two types of radiation and acquire beta and coincidence gamma images in real-time; (3) develop techniques to quantify radiotracer distribution using beta and gamma images. Phase 2 of this project is to apply technologies developed in phase 1 to study plants using positron-emitting radionuclide such as 11C to study carbon assimilation in biofuel plants.

  11. Evaluation of flat panel PMT for gamma ray imaging

    International Nuclear Information System (INIS)

    Pani, R.; Cinti, M.N.; Pellegrini, R.; Trotta, C.; Trotta, G.; Montani, L.; Ridolfi, S.; Garibaldi, F.; Scafe, R.; Belcari, N.; Del Guerra, A.

    2003-01-01

    The first position sensitive PMT, Hamamatsu R2486, developed in 1985, represented a strong technological advance for gamma-ray imaging. Hamamatsu H8500 Flat Panel PMT is the last generation position sensitive PMT: extremely compact with 2 in. active area. Its main features are: minimum peripheral dead zone (1 mm) and height of 12 mm. It was designed to be assembled in array to cover large detection area. It can represent a technical revolution for many applications in the field of gamma-ray imaging as for example nuclear medicine. This tube is based on metal channel dynode for charge multiplication and 8x8 anodes for charge collection and position calculation. In this paper we present a preliminary evaluation of the imaging performances addressed to nuclear medicine application. To this aim we have taken into account two different electronic readouts: resistive chain with Anger Camera principle and multianode readout. Flat panel PMT was coupled to CsI(Tl) and NaI(Tl) scintillation arrays. The results were also compared with the first generation PSPMT

  12. Depth of interaction detection for {gamma}-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, Ch.W. [Instituto de Aplicaciones de las Tecnologias de la Informacion y de las Comunicaciones Avanzadas, (UPV) Camino de Vera s/n, E46022 (Spain)], E-mail: lerche@ific.uv.es; Doering, M. [Institut fuer Kernphysik, Forschungszentrum Juelich GmbH, D52425 Juelich (Germany); Ros, A. [Institute de Fisica Corpuscular (CSIC-UV), 22085, Valencia E46071 (Spain); Herrero, V.; Gadea, R.; Aliaga, R.J.; Colom, R.; Mateo, F.; Monzo, J.M.; Ferrando, N.; Toledo, J.F.; Martinez, J.D.; Sebastia, A. [Instituto de Aplicaciones de las Tecnologias de la Informacion y de las Comunicaciones Avanzadas, (UPV) Camino de Vera s/n, E46022 (Spain); Sanchez, F.; Benlloch, J.M. [Institute de Fisica Corpuscular (CSIC-UV), 22085, Valencia E46071 (Spain)

    2009-03-11

    A novel design for an inexpensive depth of interaction capable detector for {gamma}-ray imaging has been developed. The design takes advantage of the strong correlation between the width of the scintillation light distribution in monolithic crystals and the interaction depth of {gamma}-rays. We present in this work an inexpensive modification of the commonly used charge dividing circuits which enables the instantaneous and simultaneous computation of the second order moment of light distribution. This measure provides a good estimate for the depth of interaction and does not affect the determination of the position centroids and the energy release of {gamma}-ray impact. The method has been tested with a detector consisting of a monolithic LSO block sized 42x42x10mm{sup 3} and a position-sensitive photomultiplier tube H8500 from Hamamatsu. The mean spatial resolution of the detector was found to be 3.4mm for the position centroids and 4.9mm for the DOI. The best spatial resolutions were observed at the center of the detector and yielded 1.4mm for the position centroids and 1.9mm for the DOI.

  13. Imaging of gamma-Irradiated Regions of a Crystal

    Science.gov (United States)

    Dragoi, Danut; McClure, Steven; Johnston, Allan; Chao, Tien-Hsin

    2004-01-01

    A holographic technique has been devised for generating a visible display of the effect of exposure of a photorefractive crystal to gamma rays. The technique exploits the space charge that results from trapping of electrons in defects induced by gamma rays. The technique involves a three-stage process. In the first stage, one writes a holographic pattern in the crystal by use of the apparatus shown in Figure 1. A laser beam of 532-nm wavelength is collimated and split into signal and reference beams by use of a polarizing beam splitter. On its way to the crystal, the reference beam goes through a two-dimensional optical scanner that contains two pairs of lenses (L1y, L2y and L1x,L2x) and mirrors M1 and M2, which can be rotated by use of micrometer drives to make fine adjustments. The signal beam is sent through a spatial light modulator that imposes the holographic pattern, then through two imaging lenses L(sub img) on its way to the crystal. An aperture is placed at the common focus of lenses Limg to suppress high-order diffraction from the spatial light modulator. The hologram is formed by interference between the signal and reference beams. A camera lens focuses an image of the interior of the crystal onto a charge-coupled device (CCD). If the crystal is illuminated by only the reference beam once the hologram has been formed, then an image of the hologram is formed on the CCD: this phenomenon is exploited to make visible the pattern of gamma irradiation of the crystal, as described next. In the second stage of the process, the crystal is removed from the holographic apparatus and irradiated with rays at a dose of about 100 krad. In the third stage of the process, the crystal is remounted in the holographic apparatus in the same position as in the first stage and illuminated with only the reference beam to obtain the image of the hologram as modified by the effect of the rays. The orientations of M1 and M2 can be adjusted slightly, if necessary, to maximize the

  14. Compton scattering revisited

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, R.H., E-mail: rpratt@pitt.ed [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); LaJohn, L.A., E-mail: lal18@pitt.ed [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Florescu, V., E-mail: flor@barutu.fizica.unibuc.r [Centre for Advanced Quantum Physics, University of Bucharest, MG-11 Bucharest-Magurele, 077125 Magurele (Romania); Suric, T., E-mail: suric@irb.h [R. Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Chatterjee, B.K., E-mail: barun_k_chatterjee@yahoo.co [Department of Physics, Bose Institute, Kolkata 700009 (India); Roy, S.C., E-mail: suprakash.roy@gmail.co [Department of Physics, Bose Institute, Kolkata 700009 (India)

    2010-02-15

    We review the standard theory of Compton scattering from bound electrons, and we describe recent findings that require modification of the usual understanding, noting the nature of consequences for experiment. The subject began with Compton and scattering from free electrons. Experiment actually involved bound electrons, and this was accommodated with the use of impulse approximation (IA), which described inelastic scattering from bound electrons in terms of scattering from free electrons. This was good for the Compton peak but failed for soft final photons. The standard theory was formalized by Eisenberger and Platzman (EP) [1970. Phys. Rev. A 2, 415], whose work also suggested why impulse approximation was better than one would expect, for doubly differential cross sections (DDCS), but not for triply differential cross sections (TDCS). A relativistic version of IA (RIA) was worked out by Ribberfors [1975. Phys. Rev. B 12, 2067]. And Suric et al. [1991. Phys. Rev. Lett. 67, 189] and Bergstrom et al. [1993. Phys. Rev. A 48, 1134] developed a full relativistic second order S-matrix treatment, not making impulse approximation, but within independent particle approximation (IPA). Newer developments in the theory of Compton scattering include: (1) Demonstration that the EP estimates of the validity of IA are incorrect, although the qualitative conclusion remains unchanged; IA is not to be understood as the first term in a standard series expansion. (2) The greater validity of IA for DDCS than for the TDCS, which when integrated give DDCS, is related to the existence of a sum rule, only valid for DDCS. (3) The so-called 'asymmetry' of a Compton profile is primarily to be understood as simply the shift of the peak position in the profile; symmetric and anti-symmetric deviations from a shifted Compton profile are very small, except for high Z inner shells where further p{sup -}>.A{sup -}> effects come into play. (4) Most relativistic effects, except at low

  15. Compton scattering revisited

    International Nuclear Information System (INIS)

    Pratt, R.H.; LaJohn, L.A.; Florescu, V.; Suric, T.; Chatterjee, B.K.; Roy, S.C.

    2010-01-01

    We review the standard theory of Compton scattering from bound electrons, and we describe recent findings that require modification of the usual understanding, noting the nature of consequences for experiment. The subject began with Compton and scattering from free electrons. Experiment actually involved bound electrons, and this was accommodated with the use of impulse approximation (IA), which described inelastic scattering from bound electrons in terms of scattering from free electrons. This was good for the Compton peak but failed for soft final photons. The standard theory was formalized by Eisenberger and Platzman (EP) [1970. Phys. Rev. A 2, 415], whose work also suggested why impulse approximation was better than one would expect, for doubly differential cross sections (DDCS), but not for triply differential cross sections (TDCS). A relativistic version of IA (RIA) was worked out by Ribberfors [1975. Phys. Rev. B 12, 2067]. And Suric et al. [1991. Phys. Rev. Lett. 67, 189] and Bergstrom et al. [1993. Phys. Rev. A 48, 1134] developed a full relativistic second order S-matrix treatment, not making impulse approximation, but within independent particle approximation (IPA). Newer developments in the theory of Compton scattering include: (1) Demonstration that the EP estimates of the validity of IA are incorrect, although the qualitative conclusion remains unchanged; IA is not to be understood as the first term in a standard series expansion. (2) The greater validity of IA for DDCS than for the TDCS, which when integrated give DDCS, is related to the existence of a sum rule, only valid for DDCS. (3) The so-called 'asymmetry' of a Compton profile is primarily to be understood as simply the shift of the peak position in the profile; symmetric and anti-symmetric deviations from a shifted Compton profile are very small, except for high Z inner shells where further p → .A → effects come into play. (4) Most relativistic effects, except at low energies, are to be

  16. A high-energy Compton polarimeter for the POET SMEX mission

    Science.gov (United States)

    Bloser, Peter F.; McConnell, Mark L.; Legere, Jason S.; Ertley, Camden D.; Hill, Joanne E.; Kippen, Marc; Ryan, James M.

    2014-07-01

    The primary science goal of the Polarimeters for Energetic Transients (POET) mission is to measure the polarization of gamma-ray bursts over a wide energy range, from X rays to soft gamma rays. The higher-energy portion of this band (50 - 500 keV) will be covered by the High Energy Polarimeter (HEP) instrument, a non-imaging, wide field of view Compton polarimeter. Incident high-energy photons will Compton scatter in low-Z, plastic scintillator detector elements and be subsequently absorbed in high-Z, CsI(Tl) scintillator elements; polarization is detected by measuring an asymmetry in the azimuthal scatter angle distribution. The HEP design is based on our considerable experience with the development and flight of the Gamma-Ray Polarimeter Experiment (GRAPE) balloon payload. We present the design of the POET HEP instrument, which incorporates lessons learned from the GRAPE balloon design and previous work on Explorer proposal efforts, and its expected performance on a two-year SMEX mission.

  17. Compton suppression naa in the analysis of food and beverages

    International Nuclear Information System (INIS)

    Ahmed, Y.A.; Ewa, I.O.B.; Umar, I.M.; Funtua, I.I.; Lanberger, S.; O'kelly, D.J.; Braisted, J.D.

    2009-01-01

    Applicability and performance of Compton suppression method in the analysis of food and beverages was re-established in this study. Using ''1''3''7Cs and ''6''0Co point sources Compton Suppression Factors (SF), Compton Reduction Factors (RF), Peak-to-Compton ratio (P/C), Compton Plateau (C p l), and Compton Edge (C e ) were determined for each of the two sources. The natural background reduction factors in the anticoincidence mode compared to the normal mode were evaluated. The reported R.F. values of the various Compton spectrometers for ''6''0Co source at energy 50-210 keV (backscattering region), 600 keV (Compton edge corresponding to 1173.2 keV gamma-ray) and 1110 keV (Compton edge corresponding to 1332.5 keV gamma-ray) were compared with that of the present work. Similarly the S.F. values of the spectrometers for ''1''3''7Cs source were compared at the backscattered energy region (S.F. b = 191-210 keV), Compton Plateau (S.F. p l = 350-370 keV), and Compton Edge (S.F. e = 471-470 keV) and all were found to follow a similar trend. We also compared peak reduction ratios for the two cobalt energies (1173.2 and 1332.5) with the ones reported in literature and two results agree well. Applicability of the method to food and beverages was put to test for twenty one major, minor, and trace elements (Ba, Sr, I, Br, Cu, V, Mg, Na, Cl, Mn, Ca, Sn,K, Cd, Zn, As, Sb, Ni, Cs, Fe, and Co) commonly found in food, milk, tea and tobacco. The elements were assayed using five National Institute for Standards and Technology (NIST) certified reference materials (Non-fat powdered milk, Apple leaves, Tomato leaves, and Citrus leaves). The results obtained shows good agreement with NIST certified values, indicating that the method is suitable for simultaneous determination of micro-nutrients, macro-nutrients and heavy elements in food and beverages without undue interference problems

  18. Advances in Gamma-Ray Imaging with Intensified Quantum-Imaging Detectors

    Science.gov (United States)

    Han, Ling

    Nuclear medicine, an important branch of modern medical imaging, is an essential tool for both diagnosis and treatment of disease. As the fundamental element of nuclear medicine imaging, the gamma camera is able to detect gamma-ray photons emitted by radiotracers injected into a patient and form an image of the radiotracer distribution, reflecting biological functions of organs or tissues. Recently, an intensified CCD/CMOS-based quantum detector, called iQID, was developed in the Center for Gamma-Ray Imaging. Originally designed as a novel type of gamma camera, iQID demonstrated ultra-high spatial resolution (advancing this conceptually-proven gamma-ray imaging technology to make it ready for both preclinical and clinical applications. To start with, a Monte Carlo simulation of the key light-intensification device, i.e. the image intensifier, was developed, which revealed the dominating factor(s) that limit energy resolution performance of the iQID cameras. For preclinical imaging applications, a previously-developed iQID-based single-photon-emission computed-tomography (SPECT) system, called FastSPECT III, was fully advanced in terms of data acquisition software, system sensitivity and effective FOV by developing and adopting a new photon-counting algorithm, thicker columnar scintillation detectors, and system calibration method. Originally designed for mouse brain imaging, the system is now able to provide full-body mouse imaging with sub-350-micron spatial resolution. To further advance the iQID technology to include clinical imaging applications, a novel large-area iQID gamma camera, called LA-iQID, was developed from concept to prototype. Sub-mm system resolution in an effective FOV of 188 mm x 188 mm has been achieved. The camera architecture, system components, design and integration, data acquisition, camera calibration, and performance evaluation are presented in this work. Mounted on a castered counter-weighted clinical cart, the camera also features

  19. Ectomography - a tomographic method for gamma camera imaging

    International Nuclear Information System (INIS)

    Dale, S.; Edholm, P.E.; Hellstroem, L.G.; Larsson, S.

    1985-01-01

    In computerised gamma camera imaging the projections are readily obtained in digital form, and the number of picture elements may be relatively few. This condition makes emission techniques suitable for ectomography - a tomographic technique for directly visualising arbitrary sections of the human body. The camera rotates around the patient to acquire different projections in a way similar to SPECT. This method differs from SPECT, however, in that the camera is placed at an angle to the rotational axis, and receives two-dimensional, rather than one-dimensional, projections. Images of body sections are reconstructed by digital filtration and combination of the acquired projections. The main advantages of ectomography - a high and uniform resolution, a low and uniform attenuation and a high signal-to-noise ratio - are obtained when imaging sections close and parallel to a body surface. The filtration eliminates signals representing details outside the section and gives the section a certain thickness. Ectomographic transverse images of a line source and of a human brain have been reconstructed. Details within the sections are correctly visualised and details outside are effectively eliminated. For comparison, the same sections have been imaged with SPECT. (author)

  20. Compton Polarimetry at ELSA

    International Nuclear Information System (INIS)

    Hillert, Wolfgang; Aurand, Bastian; Wittschen, Juergen

    2009-01-01

    Part of the future polarization program performed at the Bonn accelerator facility ELSA will rely on precision Compton polarimetry of the stored transversely polarized electron beam. Precise and fast polarimetry poses high demands on the light source and the detector which were studied in detail performing numerical simulations of the Compton scattering process. In order to experimentally verify these calculations, first measurements were carried out using an argon ion laser as light source and a prototype version of a counting silicon microstrip detector. Calculated and measured intensity profiles of backscattered photons are presented and compared, showing excellent agreement. Background originating from beam gas radiation turned out to be the major limitation of the polarimeter performance. In order to improve the situation, a new polarimeter was constructed and is currently being set up. Design and expected performance of this polarimeter upgrade are presented.

  1. Complete $O(\\alpha)$ QED corrections to polarized Compton scattering

    CERN Document Server

    Denner, Ansgar

    1999-01-01

    The complete QED corrections of O(alpha) to polarized Compton scattering are calculated for finite electron mass and including the real corrections induced by the processes e^- gamma -> e^- gamma gamma and e^- gamma -> e^- e^- e^+. All relevant formulas are listed in a form that is well suited for a direct implementation in computer codes. We present a detailed numerical discussion of the O(alpha)-corrected cross section and the left-right asymmetry in the energy range of present and future Compton polarimeters, which are used to determine the beam polarization of high-energetic e^+- beams. For photons with energies of a few eV and electrons with SLC energies or smaller, the corrections are of the order of a few per mille. In the energy range of future e^+e^- colliders, however, they reach 1-2% and cannot be neglected in a precision polarization measurement.

  2. Attenuation studies near K-absorption edges using Compton ...

    Indian Academy of Sciences (India)

    The results are consistent with theoretical values derived from the XCOM package. Keywords. Photon interaction; 241Am; gamma ray attenuation; Compton scattering; absorption edge; rare earth elements. PACS Nos 32.80.-t; 32.90.+a. 1. Introduction. Photon interaction studies at energies around the absorption edge have ...

  3. A dual purpose Compton suppression spectrometer

    CERN Document Server

    Parus, J; Raab, W; Donohue, D

    2003-01-01

    A gamma-ray spectrometer with a passive and an active shield is described. It consists of a HPGe coaxial detector of 42% efficiency and 4 NaI(Tl) detectors. The energy output pulses of the Ge detector are delivered into the 3 spectrometry chains giving the normal, anti- and coincidence spectra. From the spectra of a number of sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co sources a Compton suppression factor, SF and a Compton reduction factor, RF, as the parameters characterizing the system performance, were calculated as a function of energy and source activity and compared with those given in literature. The natural background is reduced about 8 times in the anticoincidence mode of operation, compared to the normal spectrum which results in decreasing the detection limits for non-coincident gamma-rays up to a factor of 3. In the presence of other gamma-ray activities, in the range from 5 to 11 kBq, non- and coincident, the detection limits can be decreased for some nuclides by a factor of 3 to 5.7.

  4. Compton effect thermally activated depolarization dosimeter

    Science.gov (United States)

    Moran, Paul R.

    1978-01-01

    A dosimetry technique for high-energy gamma radiation or X-radiation employs the Compton effect in conjunction with radiation-induced thermally activated depolarization phenomena. A dielectric material is disposed between two electrodes which are electrically short circuited to produce a dosimeter which is then exposed to the gamma or X radiation. The gamma or X-radiation impinging on the dosimeter interacts with the dielectric material directly or with the metal composing the electrode to produce Compton electrons which are emitted preferentially in the direction in which the radiation was traveling. A portion of these electrons becomes trapped in the dielectric material, consequently inducing a stable electrical polarization in the dielectric material. Subsequent heating of the exposed dosimeter to the point of onset of ionic conductivity with the electrodes still shorted through an ammeter causes the dielectric material to depolarize, and the depolarization signal so emitted can be measured and is proportional to the dose of radiation received by the dosimeter.

  5. Virtual Compton Scattering off a Spinless Target in the AdS/QCD correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France); Marquet, Cyrille [IPhT - Institut de Physique Theorique, Orme des Merisiers bat. 774, PC 136, CEA/DSM/IPhT, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Roiesnel, Claude [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France)

    2010-07-01

    We study the doubly virtual Compton scattering off a spinless target {gamma}* P {yields} {gamma}* P' within the Anti-de Sitter(AdS)/QCD formalism. We find that the general structure allowed by the Lorentz invariance and gauge invariance of the Compton amplitude is not easily reproduced with the standard recipes of the AdS/QCD correspondence. In the soft-photon regime, where the semi-classical approximation is supposed to apply best, we show that the measurements of the electric and magnetic polarizabilities of a target like the charged pion in real Compton scattering, can already serve as stringent tests. (author)

  6. Compton Operator in Quantum Electrodynamics

    International Nuclear Information System (INIS)

    Garcia, Hector Luna; Garcia, Luz Maria

    2015-01-01

    In the frame in the quantum electrodynamics exist four basic operators; the electron self-energy, vacuum polarization, vertex correction, and the Compton operator. The first three operators are very important by its relation with renormalized and Ward identity. However, the Compton operator has equal importance, but without divergence, and little attention has been given it. We have calculated the Compton operator and obtained the closed expression for it in the frame of dimensionally continuous integration and hypergeometric functions

  7. Gamma-Ray Imaging Spectrometer (GRIS): a new balloon-borne experiment for gamma-ray line astronomy

    International Nuclear Information System (INIS)

    Teegarden, B.J.; Cline, T.L.; Gehrels, N.; Porreca, G.; Tueller, J.; Leventhal, M.; Huters, A.F.; Maccallum, C.J.; Stang, P.D.; Sandia Labs., Albuquerque, NM)

    1985-01-01

    High resolution gamma-ray spectroscopy is a relatively new field that holds great promise for further understanding of high energy astrophysical processes. When the high resolution gamma-ray spectrometer (GRSE) was removed from the GRO payload, a balloon program was initiated to permit continued development and improvement of instrumentation in this field, as well as continued scientific observations. The Gamma-Ray Imaging Spectrometer (GRIS) is one of the experiments selected as part of this program. The instrument contains a number of new and innovative features that are expected to produce a significant improvement in source location accuracy and sensitivity over previous balloon and satellite experiments

  8. Helium Compton Form Factor Measurements at CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Voutier, Eric J.-M. [Laboratoire de Physique Subatomique et Cosmologie

    2013-07-01

    The distribution of the parton content of nuclei, as encoded via the generalized parton distributions (GPDs), can be accessed via the deeply virtual Compton scattering (DVCS) process contributing to the cross section for leptoproduction of real photons. Similarly to the scattering of light by a material, DVCS provides information about the dynamics and the spatial structure of hadrons. The sensitivity of this process to the lepton beam polarization allows to single-out the DVCS amplitude in terms of Compton form factors that contain GPDs information. The beam spin asymmetry of the $^4$He($\\vec {\\mathrm e}$,e$' \\gamma ^4$He) process was measured in the experimental Hall B of the Jefferson Laboratory to extract the real and imaginary parts of the twist-2 Compton form factor of the $^4$He nucleus. The experimental results reported here demonstrate the relevance of this method for such a goal, and suggest the dominance of the Bethe-Heitler amplitude to the unpolarized process in the kinematic range explored by the experiment.

  9. The Advanced Gamma-ray Imaging System (AGIS): Galactic Astrophysics

    Science.gov (United States)

    Digel, Seth William; Funk, S.; Kaaret, P. E.; Tajima, H.; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a concept for a next-generation atmospheric Cherenkov telescope array, would provide unprecedented sensitivity and resolution in the energy range >50 GeV, allowing great advances in the understanding of the populations and physics of sources of high-energy gamma rays in the Milky Way. Extrapolation based on the known source classes and the performance parameters for AGIS indicates that a survey of the Galactic plane with AGIS will reveal hundreds of TeV sources in exquisite detail, for population studies of a variety of source classes, and detailed studies of individual sources. AGIS will be able to study propagation effects on the cosmic rays produced by Galactic sources by detecting the diffuse glow from their interactions in dense interstellar gas. AGIS will complement and extend results now being obtained in the GeV range with the Fermi mission, by providing superior angular resolution and sensitivity to variability on short time scales, and of course by probing energies that Fermi cannot reach.

  10. The Advanced Gamma-ray Imaging System (AGIS): Extragalactic Science

    Science.gov (United States)

    Coppi, Paolo S.; Extragalactic Science Working Group; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a proposed next-generation array of Cherenkov telescopes, will provide an unprecedented view of the high energy universe. We discuss how AGIS, with its larger effective area, improved angular resolution, lower threshold, and an order of magnitude increase in sensitivity, impacts the extragalactic science possible in the very high energy domain. Likely source classes detectable by AGIS include AGN, GRBs, clusters, star-forming galaxies, and possibly the cascade radiation surrounding powerful cosmic accelerators. AGIS should see many of the sources discovered by Fermi. With its better sensitivity and angular resolution, AGIS then becomes a key instrument for identifying and characterizing Fermi survey sources, the majority of which will have limited Fermi photon statistics and localizations.

  11. Gamma-ray imaging of the Quinby sources

    International Nuclear Information System (INIS)

    Gregor, J.; Hensley, D.C.

    1996-01-01

    The Quinby sources are alumina cylinders 7 inches in diameter and 8 inches high doped with weapons grade plutonium. We describe a computer tomography system for reconstructing three-dimensional images of these sources. Each reconstruction maps the spatial distribution of the internal [sup 241]Am gamma ray activity and is computed using an iterative, expectation-maximization algorithm with detection efficiencies based both on geometric model of the experimental setup and attenuation corrections. Constructed about a decade ago, the Quinby sources were to contain uniformly distributed material. However, for some of the sources we have found regions where the plutonium solution, tends to be concentrated. The ultimate goal of this work is to provide the basis for self-shielding corrections when analyzing differential dieaway neutron measurements

  12. Planar gamma camera imaging and quantitation of Yttrium-90 bremsstrahlung

    International Nuclear Information System (INIS)

    Shen, S.; DeNardo, G.L.; Yuan, A.

    1994-01-01

    Yttrium-90 is a promising radionuclide for radioimmunotherapy of cancer because of its energetic beta emissions. Therapeutic management requires quantitative imaging to assess the pharmacokinetics and radiation dosimetry of the 90 Y-labeled antibody. Conventional gamma photon imaging methods cannot be easily applied to imaging of 90 Y-bremsstrahlung because of its continuous energy spectrum. The sensitivity, resolution and source-to-background signal ratio (S/B) of the detector system for 90 Y-bremsstrahlung were investigated for various collimators and energy windows in order to determine optimum conditions for quantitative imaging. After these conditions were determined, the accuracy of quantitation of 90 Y activity in an Alderson abdominal phantom was examined. When the energy-window width was increased, the benefit of increased sensitivity outweighed degradation in resolution and S/B ratio until the manufacturer's energy specifications for the collimator were exceeded. Using the same energy window, the authors improved resolution and S/B for the medium-energy (ME) collimator when compared to the low-energy, all-purpose (LEAP) collimator, and there was little additional improvement using the high-energy (HE) collimator. Camera sensitivity under tissue equivalent conditions was 4.2 times greater for the LEAP and 1.7 times greater for the ME collimators when compared to the HE collimator. Thus, the best, most practical selections were found to be the ME collimator and an energy window of 55-285 keV. When they used these optimal conditions for image acquisition, the estimation of 90 Y activity in organs and tumors was within 15% of the true activities. The results for this study suggest that reasonable accuracy can be achieved in clinical radioimmunotherapy using 90 Y-bremsstrahlung quantitation. 28 refs., 5 figs., 7 tabs

  13. Stereographic images acquired with gamma rays and thermal neutron radiography

    International Nuclear Information System (INIS)

    Souza, Maria Ines Silvani; Almeida, Gevaldo L. de; Furieri, Rosanne C.; Lopes, Ricardo T.

    2011-01-01

    Full text: The inner structure of an object, which should not be submitted to an invasive assay, can only be perceived by using a suitable technique in order to render it transparent. A widely employed technique for this purpose involves the using of a radiation capable to pass through the object, collecting the transmitted radiation by a proper device, which furnishes a radiographic attenuation map of the object. This map, however, does not display the spatial distribution of the inner components of the object, but a convoluted view for each specific attitude of the object with regard to the set beam-detector. A 3D tomographic approach would show that distribution but it would demand a large number of projections requiring special equipment and software, not always available or affordable. In some circumstances however, a 3D tomography can be replaced by a stereographic view of the object under inspection, as done in this work, where instead of tens of radiographic projections, only two of them taken at suitable object attitudes are employed. Once acquired, these projections are properly processed and observed through a red and green eyeglass. For monochromatic images, this methodology requires the transformation of the black and white radiographs into red and white and green and white ones, which are afterwards merged to yield a single image. All the process is carried out with the software Image J . In this work, the Argonauta reactor at the Instituto de Engenharia Nuclear in Rio de Janeiro has been used as a source of thermal neutrons to acquire the neutron radiographic images, as well as to produce 198 Au sources employed in the acquisition of gamma-ray radiographic ones. X-ray or neutron-sensitive imaging plates have been used as detector, which after exposure were developed by a reader using a 0.5μm-diameter laser beam. (author)

  14. Novel design of a parallax free Compton enhanced PET scanner

    International Nuclear Information System (INIS)

    Braem, A.; Chamizo, M.; Chesi, E.; Colonna, N.; Cusanno, F.; De Leo, R.; Garibaldi, F.; Joram, C.; Marrone, S.; Mathot, S.; Nappi, E.; Schoenahl, F.; Seguinot, J.; Weilhammer, P.; Zaidi, H.

    2004-01-01

    Molecular imaging by PET is a powerful tool in modern clinical practice for cancer diagnosis. Nevertheless, improvements are needed with respect to the spatial resolution and sensitivity of the technique for its application to specific human organs (breast, prostate, brain, etc.), and to small animals. Presently, commercial PET scanners do not detect the depth of interaction of photons in scintillators, which results in a not negligible parallax error. We describe here a novel concept of PET scanner design that provides full three-dimensional (3D) gamma reconstruction with high spatial resolution over the total detector volume, free of parallax errors. It uses matrices of long scintillators read at both ends by hybrid photon detectors. This so-called 3D axial concept also enhances the gamma detection efficiency since it allows one to reconstruct a significant fraction of Compton scattered events. In this note, we describe the concept, a possible design and the expected performance of this new PET device. We also report about first characterization measurements of 10 cm long YAP:Ce scintillation crystals

  15. High-repetition intra-cavity source of Compton radiation

    International Nuclear Information System (INIS)

    Pogorelsky, I; Polyanskiy, M; Agustsson, R; Campese, T; Murokh, A; Ovodenko, A; Shaftan, T

    2014-01-01

    We report our progress in developing a high-power Compton source for a diversity of applications ranging from university-scale compact x-ray light sources and metrology tools for EUV lithography, to high-brilliance gamma-sources for nuclear analysis. Our conceptual approach lies in multiplying the source’s repetition rate and increasing its average brightness by placing the Compton interaction point inside the optical cavity of an active laser. We discuss considerations in its design, our simulations, and tests of the laser’s cavity that confirm the feasibility of the proposed concept. (paper)

  16. Experimental and theoretical Compton profiles of Be, C and Al

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Julio C., E-mail: jaguiar@arn.gob.a [Autoridad Regulatoria Nuclear, Av. Del Libertador 8250, C1429BNP, Buenos Aires (Argentina); Instituto de Fisica ' Arroyo Seco' , Facultad de Ciencias Exactas, U.N.C.P.B.A., Pinto 399, 7000 Tandil (Argentina); Di Rocco, Hector O. [Instituto de Fisica ' Arroyo Seco' , Facultad de Ciencias Exactas, U.N.C.P.B.A., Pinto 399, 7000 Tandil (Argentina); Arazi, Andres [Laboratorio TANDAR, Comision Nacional de Energia Atomica, Av. General Paz 1499, 1650 San Martin, Buenos Aires (Argentina)

    2011-02-01

    The results of Compton profile measurements, Fermi momentum determinations, and theoretical values obtained from a linear combination of Slater-type orbital (STO) for core electrons in beryllium; carbon and aluminium are presented. In addition, a Thomas-Fermi model is used to estimate the contribution of valence electrons to the Compton profile. Measurements were performed using monoenergetic photons of 59.54 keV provided by a low-intensity Am-241 {gamma}-ray source. Scattered photons were detected at 90{sup o} from the beam direction using a p-type coaxial high-purity germanium detector (HPGe). The experimental results are in good agreement with theoretical calculations.

  17. Environmental radioactivity measurements Using a compton suppression spectrometer

    International Nuclear Information System (INIS)

    Sharshar, T.; Elnimr, T.

    1998-01-01

    The natural and artificial radioactivities of some environmental samples such as soil and vegetables have been studied through gamma-ray spectroscopy with a new constructed compton suppression spectrometer (CSS). The spectrometer consists of a 10% p-type HPGe detector as a main detector, an annular NE-102 A plastic scintillator as a guard detector, and a fast-slow coincidence system employing standard electronic modules for anti-compton operation. This study shows that CSS is a powerful tool for measuring the low level activities of environmental samples

  18. Development of gamma-photon/Cerenkov-light hybrid system for simultaneous imaging of I-131 radionuclide

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Suzuki, Mayumi; Kato, Katsuhiko [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine (Japan); Ogata, Yoshimune [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Hatazawa, Jun [Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine (Japan)

    2016-09-11

    Although iodine 131 (I-131) is used for radionuclide therapy, high resolution images are difficult to obtain with conventional gamma cameras because of the high energy of I-131 gamma photons (364 keV). Cerenkov-light imaging is a possible method for beta emitting radionuclides, and I-131 (606 MeV maximum beta energy) is a candidate to obtain high resolution images. We developed a high energy gamma camera system for I-131 radionuclide and combined it with a Cerenkov-light imaging system to form a gamma-photon/Cerenkov-light hybrid imaging system to compare the simultaneously measured images of these two modalities. The high energy gamma imaging detector used 0.85-mm×0.85-mm×10-mm thick GAGG scintillator pixels arranged in a 44×44 matrix with a 0.1-mm thick reflector and optical coupled to a Hamamatsu 2 in. square position sensitive photomultiplier tube (PSPMT: H12700 MOD). The gamma imaging detector was encased in a 2 cm thick tungsten shield, and a pinhole collimator was mounted on its top to form a gamma camera system. The Cerenkov-light imaging system was made of a high sensitivity cooled CCD camera. The Cerenkov-light imaging system was combined with the gamma camera using optical mirrors to image the same area of the subject. With this configuration, we simultaneously imaged the gamma photons and the Cerenkov-light from I-131 in the subjects. The spatial resolution and sensitivity of the gamma camera system for I-131 were respectively ~3 mm FWHM and ~10 cps/MBq for the high sensitivity collimator at 10 cm from the collimator surface. The spatial resolution of the Cerenkov-light imaging system was 0.64 mm FWHM at 10 cm from the system surface. Thyroid phantom and rat images were successfully obtained with the developed gamma-photon/Cerenkov-light hybrid imaging system, allowing direct comparison of these two modalities. Our developed gamma-photon/Cerenkov-light hybrid imaging system will be useful to evaluate the advantages and disadvantages of these two

  19. SPECT quantification: a review of the different correction methods with compton scatter, attenuation and spatial deterioration effects

    International Nuclear Information System (INIS)

    Groiselle, C.; Rocchisani, J.M.; Moretti, J.L.; Dreuille, O. de; Gaillard, J.F.; Bendriem, B.

    1997-01-01

    SPECT quantification: a review of the different correction methods with Compton scatter attenuation and spatial deterioration effects. The improvement of gamma-cameras, acquisition and reconstruction software opens new perspectives in term of image quantification in nuclear medicine. In order to meet the challenge, numerous works have been undertaken in recent years to correct for the different physical phenomena that prevent an exact estimation of the radioactivity distribution. The main phenomena that have to betaken into account are scatter, attenuation and resolution. In this work, authors present the physical basis of each issue, its consequences on quantification and the main methods proposed to correct them. (authors)

  20. Thick silicon microstrip detectors simulation for PACT: Pair and Compton Telescope

    Science.gov (United States)

    Khalil, M.; Laurent, P.; Lebrun, F.; Tatischeff, V.; Dolgorouky, Y.; Bertoli, W.; Breelle, E.

    2016-11-01

    PACT is a space borne Pair and Compton Telescope that aims to make a sensitive survey of the gamma-ray sky between 100 keV and 100 MeV. It is based upon two main components: a silicon-based gamma-ray tracker and a crystal-based calorimeter. In this paper we will explain the imaging technique of PACT as a Multi-layered Compton telescope (0.1-10 MeV) and its major improvements over its predecessor COMPTEL. Then we will present a simulation study to optimize the silicon tracker of PACT. This tracker is formed of thousands of identical silicon double sided strip detectors (DSSDs). We have developed a simulation model (using SILVACO) to simulate the DSSD performance while varying its thickness, impurity concentration of the bulk material, electrode pitch, and electrode width. We will present a comprehensive overview of the impact of each varied parameter on the DSSD performance, in view of the application to PACT. The considered DSSD parameters are its depletion voltage, capacitance, and leakage current. After the selection of the PACT DSSD, we will present a simulation of the performance of the PACT telescope in the 0.1-10 MeV range.

  1. Thick silicon microstrip detectors simulation for PACT: Pair and Compton Telescope

    International Nuclear Information System (INIS)

    Khalil, M.; Laurent, P.; Lebrun, F.; Tatischeff, V.; Dolgorouky, Y.; Bertoli, W.; Breelle, E.

    2016-01-01

    PACT is a space borne Pair and Compton Telescope that aims to make a sensitive survey of the gamma-ray sky between 100 keV and 100 MeV. It is based upon two main components: a silicon-based gamma-ray tracker and a crystal-based calorimeter. In this paper we will explain the imaging technique of PACT as a Multi-layered Compton telescope (0.1–10 MeV) and its major improvements over its predecessor COMPTEL. Then we will present a simulation study to optimize the silicon tracker of PACT. This tracker is formed of thousands of identical silicon double sided strip detectors (DSSDs). We have developed a simulation model (using SILVACO) to simulate the DSSD performance while varying its thickness, impurity concentration of the bulk material, electrode pitch, and electrode width. We will present a comprehensive overview of the impact of each varied parameter on the DSSD performance, in view of the application to PACT. The considered DSSD parameters are its depletion voltage, capacitance, and leakage current. After the selection of the PACT DSSD, we will present a simulation of the performance of the PACT telescope in the 0.1–10 MeV range.

  2. Thick silicon microstrip detectors simulation for PACT: Pair and Compton Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, M., E-mail: khalilmohammad@hotmail.com [APC Laboratory, 10rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France); Laurent, P.; Lebrun, F. [APC Laboratory, 10rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France); CEA, Centre de Saclay, 91191 Gif-Sur-Yvette Cedex (France); Tatischeff, V. [CSNSM, IN2P3/CNRSand Paris-Sud University, 91405 Orsay Campus (France); Dolgorouky, Y.; Bertoli, W.; Breelle, E. [APC Laboratory, 10rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France)

    2016-11-01

    PACT is a space borne Pair and Compton Telescope that aims to make a sensitive survey of the gamma-ray sky between 100 keV and 100 MeV. It is based upon two main components: a silicon-based gamma-ray tracker and a crystal-based calorimeter. In this paper we will explain the imaging technique of PACT as a Multi-layered Compton telescope (0.1–10 MeV) and its major improvements over its predecessor COMPTEL. Then we will present a simulation study to optimize the silicon tracker of PACT. This tracker is formed of thousands of identical silicon double sided strip detectors (DSSDs). We have developed a simulation model (using SILVACO) to simulate the DSSD performance while varying its thickness, impurity concentration of the bulk material, electrode pitch, and electrode width. We will present a comprehensive overview of the impact of each varied parameter on the DSSD performance, in view of the application to PACT. The considered DSSD parameters are its depletion voltage, capacitance, and leakage current. After the selection of the PACT DSSD, we will present a simulation of the performance of the PACT telescope in the 0.1–10 MeV range.

  3. Development and calibration of the tracking Compton/Pair telescope MEGA

    International Nuclear Information System (INIS)

    Kanbach, G.; Andritschke, R.; Zoglauer, A.; Ajello, M.; McConnell, M.L.; Macri, J.R.; Ryan, J.M.; Bloser, P.; Hunter, S.; DiCocco, G.; Kurfess, J.; Reglero, V.

    2005-01-01

    We describe the development and tests of the prototype for a new telescope for Medium Energy Gamma-ray Astronomy (MEGA) in the energy band 0.4-50 MeV. As a successor to COMPTEL and EGRET (at low energies), MEGA aims to improve the sensitivity for astronomical sources by at least an order of magnitude. It could thus fill the severe sensitivity gap between scheduled or operating hard-X-ray and high-energy gamma-ray missions and open the way for a future Advanced Compton Telescope. MEGA records and images γ-rays by completely tracking Compton and Pair creation events in a stack of double-sided Si-strip track detectors surrounded by a pixelated CsI calorimeter. A scaled down prototype has been built and we describe technical details of its design and properties. Results from calibrations using radioactive sources and from measurements with an accelerator generated, fully polarized, γ-ray beam are presented and an outlook to future plans with MEGA is given

  4. Pulsar high energy emission due to inverse Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lyutikov, Maxim

    2013-06-15

    We discuss growing evidence that pulsar high energy is emission is generated via Inverse Compton mechanism. We reproduce the broadband spectrum of Crab pulsar, from UV to very high energy gamma-rays - nearly ten decades in energy, within the framework of the cyclotron-self-Compton model. Emission is produced by two counter-streaming beams within the outer gaps, at distances above ∼ 20 NS radii. The outward moving beam produces UV-X-ray photons via Doppler-booster cyclotron emission, and GeV photons by Compton scattering the cyclotron photons produced by the inward going beam. The scattering occurs in the deep Klein-Nishina regime, whereby the IC component provides a direct measurement of particle distribution within the magnetosphere. The required plasma multiplicity is high, ∼10{sup 6} – 10{sup 7}, but is consistent with the average particle flux injected into the pulsar wind nebula.

  5. Technology Needs for Gamma Ray Astronomy

    Science.gov (United States)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  6. Extra-light gamma-ray imager for safeguards and homeland security

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Oleg P.; Semin, Ilya A.; Potapov, Victor N.; Stepanov, Vyacheslav E. [National Research Centre Kurchatov Institute, Moscow, 123182, (Russian Federation)

    2015-07-01

    Gamma-ray imaging is the most important way to identify unknown gamma-ray emitting objects in decommissioning, security, overcoming accidents. Over the past two decades a system for producing of gamma images in these conditions became more or less portable devices. But in recent years these systems have become the hand-held devices. This is very important, especially in emergency situations, and measurements for safety reasons. We describe the first integrated hand-held instrument for emergency and security applications. The device is based on the coded aperture image formation, position sensitive gamma-ray (X-ray) detector Medipix2 (detectors produces by X-ray Imaging Europe) and tablet computer. The development was aimed at creating a very low weight system with high angular resolution. We present some sample gamma-ray images by camera. Main estimated parameters of the system are the following. The field of view video channel ∼ 490 deg. The field of view gamma channel ∼ 300 deg. The sensitivity of the system with a hexagonal mask for the source of Cs-137 (Eg = 662 keV), is in units of dose D ∼ 100 mR. This option is less then order of magnitude worse than for the heavy, non-hand-held systems (e.g., gamma-camera Cartogam, by Canberra.) The angular resolution of the gamma channel for the sources of Cs-137 (Eg = 662 keV) is about 1.20 deg. (authors)

  7. Gamma-ray imaging. Applications in nuclear non-proliferation and homeland security

    International Nuclear Information System (INIS)

    Vetter, Kai; Mihailescu, Lucian

    2010-01-01

    This paper provides the motivation and describes implementations of gamma-ray imaging for homeland security applications and more general for national and international nuclear security. As in nuclear medicine and astrophysics, the goal of gamma-ray imaging is the detection and localization of nuclear materials, however, here in a terrestrial environment with distances between nuclear medicine and astrophysics, i.e. in the range of 1-100 meters. Due to the recently increased threat of nuclear terrorism, the detection of illicit nuclear materials and the prevention of nuclear proliferation through the development of advanced gamma-ray imaging concepts and technologies has become and active research field. (author)

  8. Recent developments in plant science involving use of gamma-ray imaging technology

    International Nuclear Information System (INIS)

    Kawachi, Naoki

    2014-01-01

    Gamma-ray imaging technologies based on the use of radiotracers enable us to clearly determine the physiological function of an organ not only during pre-clinical and clinical studies but also in the field of plant science. Serial time-course images can be used to indicate the changing spatial distribution of a radiotracer within a living plant system and to describe the dynamics and kinetics of a substance in an intact plant. Gamma-rays almost completely penetrate a plant body, and the image data obtained using them can potentially be used to quantitatively analyze physiological function parameters. This paper briefly reviews recent progress in the field of plant science to explore the use of positron emission tomography, a gamma camera, and the positron-emitting tracer imaging system, which is one of the most advanced gamma-ray imaging systems available for studying plant physiology, for solving problems in the field of environment and agriculture. (author)

  9. Prototype system for proton beam range measurement based on gamma electron vertex imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Rim [Neutron Utilization Technology Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Kim, Sung Hun; Park, Jong Hoon [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of); Jung, Won Gyun [Heavy-ion Clinical Research Division, Korean Institute of Radiological & Medical Sciences, Seoul 01812 (Korea, Republic of); Lim, Hansang [Department of Electronics Convergence Engineering, Kwangwoon University, Seoul 01897 (Korea, Republic of); Kim, Chan Hyeong, E-mail: chkim@hanyang.ac.kr [Department of Nuclear Engineering, Hanyang University, Seongdong-gu, Seoul 04763 (Korea, Republic of)

    2017-06-11

    In proton therapy, for both therapeutic effectiveness and patient safety, it is very important to accurately measure the proton dose distribution, especially the range of the proton beam. For this purpose, recently we proposed a new imaging method named gamma electron vertex imaging (GEVI), in which the prompt gammas emitting from the nuclear reactions of the proton beam in the patient are converted to electrons, and then the converted electrons are tracked to determine the vertices of the prompt gammas, thereby producing a 2D image of the vertices. In the present study, we developed a prototype GEVI system, including dedicated signal processing and data acquisition systems, which consists of a beryllium plate (= electron converter) to convert the prompt gammas to electrons, two double-sided silicon strip detectors (= hodoscopes) to determine the trajectories of those converted electrons, and a plastic scintillation detector (= calorimeter) to measure their kinetic energies. The system uses triple coincidence logic and multiple energy windows to select only the events from prompt gammas. The detectors of the prototype GEVI system were evaluated for electronic noise level, energy resolution, and time resolution. Finally, the imaging capability of the GEVI system was tested by imaging a {sup 90}Sr beta source, a {sup 60}Co gamma source, and a 45-MeV proton beam in a PMMA phantom. The overall results of the present study generally show that the prototype GEVI system can image the vertices of the prompt gammas produced by the proton nuclear interactions.

  10. Gamma-Ray Lenses for Astrophysics-and the Gamma-Ray Imager Mission GRI

    DEFF Research Database (Denmark)

    Wunderer, C. B.; Ballmoos, P. V.; Barriere, N.

    2009-01-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are acc...

  11. Gamma-ray imaging system. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-11-01

    The RadScan 600 gamma-ray imaging system is designed to survey large surface areas for radiological contamination with accuracy and efficiency. The resulting survey data are clear, concise, and precise in describing how much contamination is present at exact locations. Data can be permanently stored electronically and on video tape, making storage and retrieval economical and efficient. This technology can perform accurate measurements in high radiation contamination areas while minimizing worker exposure. The RadScan 600 system is a safe and effective alternative to hand-held radiation detection devices. Performance data of the demonstrated survey area of the RadScan 600 system versus the baseline, which is the hand-held radiation detection devices (RO-2 and RO-7) for a given survey, production rate is 72% of the baseline. It should be noted that the innovative technology provides 100% coverage at a unit cost of $8.64/m 2 versus a static measurement of a unit cost of $1.61/m 2 for the baseline

  12. 131I activity quantification of gamma camera planar images

    Science.gov (United States)

    Barquero, Raquel; Garcia, Hugo P.; Incio, Monica G.; Minguez, Pablo; Cardenas, Alexander; Martínez, Daniel; Lassmann, Michael

    2017-02-01

    A procedure to estimate the activity in target tissues in patients during the therapeutic administration of 131I radiopharmaceutical treatment for thyroid conditions (hyperthyroidism and differentiated thyroid cancer) using a gamma camera (GC) with a high energy (HE) collimator, is proposed. Planar images are acquired for lesions of different sizes r, and at different distances d, in two HE GC systems. Defining a region of interest (ROI) on the image of size r, total counts n g are measured. Sensitivity S (cps MBq-1) in each acquisition is estimated as the product of the geometric G and the intrinsic efficiency η 0. The mean fluence of 364 keV photons arriving at the ROI per disintegration G, is calculated with the MCNPX code, simulating the entire GC and the HE collimator. Intrinsic efficiency η 0 is estimated from a calibration measurement of a plane reference source of 131I in air. Values of G and S for two GC systems—Philips Skylight and Siemens e-cam—are calculated. The total range of possible sensitivity values in thyroidal imaging in the e-cam and skylight GC measure from 7 cps MBq-1 to 35 cps MBq-1, and from 6 cps MBq-1 to 29 cps MBq-1, respectively. These sensitivity values have been verified with the SIMIND code, with good agreement between them. The results have been validated with experimental measurements in air, and in a medium with scatter and attenuation. The counts in the ROI can be produced by direct, scatter and penetration photons. The fluence value for direct photons is constant for any r and d values, but scatter and penetration photons show different values related to specific r and d values, resulting in the large sensitivity differences found. The sensitivity in thyroidal GC planar imaging is strongly dependent on uptake size, and distance from the GC. An individual value for the acquisition sensitivity of each lesion can significantly alleviate the level of uncertainty in the measurement of thyroid uptake activity for each patient.

  13. Investigation Study on Gamma Ray Imaging Technology for Nuclear Power Plant Decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Guk; Jeong, Woo Tae [Machinery and Materials Laboratory, Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2014-10-15

    The gamma ray imaging system provides an estimated dose-rate of the source at 30 cm above. The gamma detector is a terbium activated glass scintillator. The system is capable of producing a color two dimensional image of a radiation field superimposed on a black and white visual image. The system used in US power plants consists of a portable sensor head that contains both gamma ray and visual imaging systems and a portable control computer. The gamma ray imaging system has been successfully used as an ALARA tool for identifying source terms and determining the adequacy of existing shielding. Because the control system can be positioned away from the camera, the radiation exposure to personnel can be reduced without extensive shielding requirements. The gamma ray imaging system has been used to date in the decommissioning of Maine Yankee, Big Rock point,Trojan, San Onofre1, and Millstone 1. The equipment has also been used at normal refueling outages at a number of commercial nuclear power plants and at several Department of Energy Decommissioning sites. This paper is intended to review the applicability of gamma ray imaging system as decommissioning tool. In order to review the actual applicability, we are going to introduce applications for US power plants.

  14. Gamma-ray imaging spectrometer (GRIS): a new balloon-borne experiment for gamma-ray line astronomy

    International Nuclear Information System (INIS)

    Teegarden, B.J.; Cline, T.L.; Gehrels, N.; Porreca, G.; Tueller, J.; Leventhal, M.; Huters, A.F.; MacCallum, C.J.; Stang, P.D.

    1985-01-01

    High resolution gamma-ray spectroscopy is a relatively new field that holds great promise for further understanding of high energy astrophysical processes. Preliminary results such as the annihilation radiation from the galactic center, the 26 Al line from the galactic plane and cyclotron lines from neutron stars may well be just the initial discoveries of a rich and as yet undeveloped field. When the high resolution gamma-ray spectrometer (GRSE) was removed from the GRO payload NASA decided to initiate a balloon program to permit continued development and improvement of instrumentation in this field, as well as continued scientific observations. The Gamma-Ray Imaging Spectrometer (GRIS) is one of the experiments selected as part of this program. The instrument contains a number of new and innovative features that are expected to produce a significant improvement in source location accuracy and sensitivity over previous balloon and satellite experiments. 6 refs., 2 figs

  15. Compton scattering at high intensities

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas, E-mail: thomas.heinzl@plymouth.ac.u [University of Plymouth, School of Mathematics and Statistics, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-12-01

    High-intensity Compton scattering takes place when an electron beam is brought into collision with a high power laser. We briefly review the main intensity signatures using the formalism of strong-field quantum electrodynamics.

  16. Weak Deeply Virtual Compton Scattering

    International Nuclear Information System (INIS)

    Ales Psaker; Wolodymyr Melnitchouk; Anatoly Radyushkin

    2006-01-01

    We extend the analysis of the deeply virtual Compton scattering process to the weak interaction sector in the generalized Bjorken limit. The virtual Compton scattering amplitudes for the weak neutral and charged currents are calculated at the leading twist within the framework of the nonlocal light-cone expansion via coordinate space QCD string operators. Using a simple model, we estimate cross sections for neutrino scattering off the nucleon, relevant for future high intensity neutrino beam facilities

  17. Virtual Compton scattering off the proton at Jefferson Lab (experiment E93050): preliminary results of the cross-sections of the reaction (ep{yields}ep{gamma}) in order to find out the generalized polarizabilities (GPs) of the proton at Q{sup 2} = 1.9 GeV{sup 2}; Diffusion compton virtuelle a jefferson lab (experience E93050): resultat preliminaire des sections efficaces (ep{yields}ep{gamma}) en vue d'extraire les polarisabilites generalisees du proton a Q{sup 2} = 1.9 GEV{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jaminion, St

    2000-12-01

    Virtual Compton Scattering off the proton ({gamma}{sup *}p {yields} {gamma}p) at low energy is accessible via the reaction (ep {yields} ep{gamma}), and contains 6 new observables: Generalized Polarizabilities (GPs). Their extraction needs the measurement of absolute five fold differential cross sections for photon electroproduction off the proton. The determination of GPs will put new constraints on models of nucleon structure in the non-perturbative Quantum Chromodynamics region. Following the Mainz experiment realized at four momentum transfer Q{sup 2} = 0.33 GeV{sup 2}, the E93050 experiment which was performed in the Hall A of Jefferson Lab during march-april 1998, will allow the measurement of combinations of generalized polarizabilities at Q{sup 2}=1 and 1.9 GeV{sup 2}. The final electron and proton were detected in coincidence in the Hall A high resolution spectrometers. The final photon is reconstructed like a missing particle, and all its variables can be determined. We had to optimize optics tensor of each spectrometer in order to have the best reconstruction at vertex point. We created an acceptance function, which is included in the software simulating solid angle. We determined different cuts to substract our background dominating (ep {yields} ep{gamma}) reaction. This work allows to carry out our first photon electro-production cross section measurement at Q{sup 2}=1.9 GeV{sup 2}. The results seem to indicate a measurable effect of generalized polarizabilities, which remains however to be confirmed. (author)

  18. Breast-specific gamma-imaging: molecular imaging of the breast using 99mTc-sestamibi and a small-field-of-view gamma-camera.

    Science.gov (United States)

    Jones, Elizabeth A; Phan, Trinh D; Blanchard, Deborah A; Miley, Abbe

    2009-12-01

    Breast-specific gamma-imaging (BSGI), also known as molecular breast imaging, is breast scintigraphy using a small-field-of-view gamma-camera and (99m)Tc-sestamibi. There are many different types of breast cancer, and many have characteristics making them challenging to detect by mammography and ultrasound. BSGI is a cost-effective, highly sensitive and specific technique that complements other imaging modalities currently being used to identify malignant lesions in the breast. Using the current Society of Nuclear Medicine guidelines for breast scintigraphy, Legacy Good Samaritan Hospital began conducting BSGI, breast scintigraphy with a breast-optimized gamma-camera. In our experience, optimal imaging has been conducted in the Breast Center by a nuclear medicine technologist. In addition, the breast radiologists read the BSGI images in correlation with the mammograms, ultrasounds, and other imaging studies performed. By modifying the current Society of Nuclear Medicine protocol to adapt it to the practice of breast scintigraphy with these new systems and by providing image interpretation in conjunction with the other breast imaging studies, our center has found BSGI to be a valuable adjunctive procedure in the diagnosis of breast cancer. The development of a small-field-of-view gamma-camera, designed to optimize breast imaging, has resulted in improved detection capabilities, particularly for lesions less than 1 cm. Our experience with this procedure has proven to aid in the clinical work-up of many of our breast patients. After reading this article, the reader should understand the history of breast scintigraphy, the pharmaceutical used, patient preparation and positioning, imaging protocol guidelines, clinical indications, and the role of breast scintigraphy in breast cancer diagnosis.

  19. Directional Unfolded Source Term (DUST) for Compton Cameras.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean J.; Mitchell, Dean J.; Horne, Steven M.; O' Brien, Sean; Thoreson, Gregory G

    2018-03-01

    A Directional Unfolded Source Term (DUST) algorithm was developed to enable improved spectral analysis capabilities using data collected by Compton cameras. Achieving this objective required modification of the detector response function in the Gamma Detector Response and Analysis Software (GADRAS). Experimental data that were collected in support of this work include measurements of calibration sources at a range of separation distances and cylindrical depleted uranium castings.

  20. Gamma-Ray Instrument for Polarimetry, Spectroscopy and Imaging (GIPSI)

    National Research Council Canada - National Science Library

    Kroeger, R. A; Johnson, W. N; Kinzer, R. L; Kurfess, J. D; Inderhees, S. E; Phlips, B. F; Graham, B. L

    1996-01-01

    .... Gamma-ray polarimetry in the energy band around 60-300 keV is an interesting area of high energy astrophysics where observations have not been possible with the technologies employed in current and past space missions...

  1. Production of X-rays by inverse Compton effect

    International Nuclear Information System (INIS)

    Mainardi, R.T.

    2005-01-01

    X-rays and gamma rays of high energy values can be produced by the scattering of low energy photons with high energy electrons, being this a process controlled by the Compton scattering. If a laser beam is used, the x-ray beam inherits the properties of intensity, monochromaticity and collimation from the laser. In this work we analyze the generation of intense x-ray beams of energies between 10 and 100 KeV to be used in a wide range of applications where a high intensity and high degrees of monochromaticity and polarization are important properties to improve image reduce doses and improve radiation treatments. To this purpose we evaluated, using relativistic kinematics the scattered beam properties in terms of the scattering angle. This arrangement is being considered in several worldwide laboratories as an alternative to synchrotron radiation and is referred to as 'table top synchrotron radiation', since it cost of installation is orders of magnitude smaller than a 'synchrotron radiation source'. The radiation beam might exhibit non-linear properties in its interaction with matter, in a similar way as a laser beam and we will investigate how to calibrate and evaluate TLD dosemeters properties, both in low and high intensity fields either mono or polyenergetic in wide spectral energy ranges. (Author)

  2. Gamma camera image acquisition, display, and processing with the personal microcomputer

    International Nuclear Information System (INIS)

    Lear, J.L.; Pratt, J.P.; Roberts, D.R.; Johnson, T.; Feyerabend, A.

    1990-01-01

    The authors evaluated the potential of a microcomputer for direct acquisition, display, and processing of gamma camera images. Boards for analog-to-digital conversion and image zooming were designed, constructed, and interfaced to the Macintosh II (Apple Computer, Cupertino, Calif). Software was written for processing of single, gated, and time series images. The system was connected to gamma cameras, and its performance was compared with that of dedicated nuclear medicine computers. Data could be acquired from gamma cameras at rates exceeding 200,000 counts per second, with spatial resolution exceeding intrinsic camera resolution. Clinical analysis could be rapidly performed. This system performed better than most dedicated nuclear medicine computers with respect to speed of data acquisition and spatial resolution of images while maintaining full compatibility with the standard image display, hard-copy, and networking formats. It could replace such dedicated systems in the near future as software is refined

  3. Compton spectra of atoms at high x-ray intensity

    Science.gov (United States)

    Son, Sang-Kil; Geffert, Otfried; Santra, Robin

    2017-03-01

    Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  4. Production of X-rays by inverse Compton effect; Produccion de rayos X por efecto Compton inverso

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, R.T. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina)

    2005-07-01

    X-rays and gamma rays of high energy values can be produced by the scattering of low energy photons with high energy electrons, being this a process controlled by the Compton scattering. If a laser beam is used, the x-ray beam inherits the properties of intensity, monochromaticity and collimation from the laser. In this work we analyze the generation of intense x-ray beams of energies between 10 and 100 KeV to be used in a wide range of applications where a high intensity and high degrees of monochromaticity and polarization are important properties to improve image reduce doses and improve radiation treatments. To this purpose we evaluated, using relativistic kinematics the scattered beam properties in terms of the scattering angle. This arrangement is being considered in several worldwide laboratories as an alternative to synchrotron radiation and is referred to as 'table top synchrotron radiation', since it cost of installation is orders of magnitude smaller than a 'synchrotron radiation source'. The radiation beam might exhibit non-linear properties in its interaction with matter, in a similar way as a laser beam and we will investigate how to calibrate and evaluate TLD dosemeters properties, both in low and high intensity fields either mono or polyenergetic in wide spectral energy ranges. (Author)

  5. Gamma-ray imaging system for real-time measurements in nuclear waste characterisation

    Science.gov (United States)

    Caballero, L.; Albiol Colomer, F.; Corbi Bellot, A.; Domingo-Pardo, C.; Leganés Nieto, J. L.; Agramunt Ros, J.; Contreras, P.; Monserrate, M.; Olleros Rodríguez, P.; Pérez Magán, D. L.

    2018-03-01

    A compact, portable and large field-of-view gamma camera that is able to identify, locate and quantify gamma-ray emitting radioisotopes in real-time has been developed. The device delivers spectroscopic and imaging capabilities that enable its use it in a variety of nuclear waste characterisation scenarios, such as radioactivity monitoring in nuclear power plants and more specifically for the decommissioning of nuclear facilities. The technical development of this apparatus and some examples of its application in field measurements are reported in this article. The performance of the presented gamma-camera is also benchmarked against other conventional techniques.

  6. Simulation based evaluation of the designs of the Advanced Gamma-ray Imageing System (AGIS)

    Science.gov (United States)

    Bugaev, Slava; Buckley, James; Digel, Seth; Funk, Stephen; Konopelko, Alex; Krawczynski, Henric; Lebohec, Steohan; Maier, Gernot; Vassiliev, Vladimir

    2009-05-01

    The AGIS project under design study, is a large array of imaging atmospheric Cherenkov telescopes for gamma-rays astronomy between 40GeV and 100 TeV. In this paper we present the ongoing simulation effort to model the considered design approaches as a function of the main parameters such as array geometry, telescope optics and camera design in such a way the gamma ray observation capabilities can be optimized against the overall project cost.

  7. Application of the image calorimeter in the high energy gamma astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Casolino, M.; Sparvoli, R.; Morselli, A.; Picozza, P. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata`, Rome (Italy); Carlson, P. [Royal Institute of Technology, Stockholm (Sweden); Fuglesang, C. [ESA-EAC, Cologne (Germany); Ozerov, Yu.V.; Zemskov, V.M.; Zverev, V.G.; Galper, A.M. [Moscow Engineering Physics Institute, Moscow (Russian Federation)

    1995-09-01

    The capability of registration of the primary high energy cosmic ray gamma emission by a gamma-telescope made of an image calorimeter is shown in this paper. The problem of triggering and off-line identification of primary particles by the analysis of the electromagnetic showers induced in the calorimeter is under consideration. The estimations of the background flux of delayed secondaries induced by nuclear interactions are presented too.

  8. Monte Carlo simulation of gamma ray tomography for image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, Karlos A.N.; Moura, Alex; Dantas, Carlos; Melo, Silvio; Lima, Emerson, E-mail: karlosguedes@hotmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Meric, Ilker [University of Bergen (Norway)

    2015-07-01

    The Monte Carlo simulations of known density and shape object was validate with Gamma Ray Tomography in static experiments. An aluminum half-moon piece placed inside a steel pipe was the MC simulation test object that was also measured by means of gamma ray transmission. Wall effect of the steel pipe due to irradiation geometry in a single pair source-detector tomography was evaluated by comparison with theoretical data. MCNPX code requires a defined geometry to each photon trajectory which practically prevents this usage for tomography reconstruction simulation. The solution was found by writing a program in Delphi language to create input files automation code. Simulations of tomography data by automated MNCPX code were carried out and validated by experimental data. Working in this sequence the produced data needed a databank to be stored. Experimental setup used a Cesium-137 isotopic radioactive source (7.4 × 109 Bq), and NaI(Tl) scintillation detector of (51 × 51) × 10−3 m crystal size coupled to a multichannel analyzer. A stainless steel tubes of 0,154 m internal diameter, 0.014 m thickness wall. The results show that the MCNPX simulation code adapted to automated input file is useful for generating a matrix data M(θ,t), of a computerized gamma ray tomography for any known density and regular shape object. Experimental validation used RMSE from gamma ray paths and from attenuation coefficient data. (author)

  9. Gamma Imaging-Guided Minimally Invasive Breast Biopsy: Initial Clinical Experience.

    Science.gov (United States)

    Brem, Rachel F; Mehta, Anita K; Rapelyea, Jocelyn A; Akin, Esma A; Bazoberry, Adriana M; Velasco, Christel D

    2018-03-01

    The purpose of this study was to evaluate our initial experience with gamma imaging-guided vacuum-assisted breast biopsy in women with abnormal findings. A retrospective review of patients undergoing breast-specific gamma imaging (BSGI), also known as molecular breast imaging (MBI), between April 2011 and October 2015 found 117 nonpalpable mammographically and sonographically occult lesions for which gamma imaging-guided biopsies were recommended. Biopsy was performed with a 9-gauge vacuum-assisted device with subsequent placement of a titanium biopsy site marker. Medical records and pathologic findings were evaluated. Of the 117 biopsies recommended, 104 were successful and 13 were canceled. Of the 104 performed biopsies, 32 (30.8%) had abnormal pathologic findings. Of those 32 biopsies, nine (28.1%) found invasive cancers, six (18.8%) found ductal carcinoma in situ (DCIS), and 17 (53.1%) found high-risk lesions. Of the 17 high-risk lesions, there were three (17.6%) lobular carcinomas in situ, five (29.4%) atypical ductal hyperplasias, two (11.8%) atypical lobular hyperplasias, one (5.9%) flat epithelial atypia, and six (35.3%) papillomas. Two cases of atypical ductal hyperplasia were upgraded to DCIS at surgery. The overall cancer detection rate for gamma imaging-guided biopsy was 16.3%. In this study, gamma imaging-guided biopsy had a positive predictive value of total successful biopsies of 16.3% for cancer and 30.8% for cancer and high-risk lesions. Gamma imaging-guided biopsy is a viable approach to sampling BSGI-MBI-detected lesions without sonographic or mammographic correlate. Our results compare favorably to those reported for MRI-guided biopsy.

  10. Study on 3D gamma-ray imaging for medical diagnosis with coded aperture

    International Nuclear Information System (INIS)

    Horiki, Kazunari; Shimazoe, Kenji; Ohno, Masashi; Takahashi, Hiroyuki; Kobashi, Keiji; Moro, Eiji

    2014-01-01

    The conventional methods for medical imaging have several disadvantages such as restriction on the energy and detection efficiency. Coded aperture imaging can be used for medical imagings without restriction on the energy, which makes it possible to use multiple tracers in diagnosis. The detection efficiency of Coded aperture imaging is ten times better than that of the pinhole collimator. First, simulations of the coded aperture imaging have been done to confirm M-array's effectiveness. Second, two experiments have been done with low-energy gamma-ray (122 keV( 57 Co)) and with high-energy gamma-ray (662 keV( 137 Cs)). In both cases reconstructed image was successfully acquired. The measured spatial resolution in the experiment using 57 Co is 4.3 mm (FWHM). (author)

  11. From whole-body counting to imaging: The computer aided collimation gamma camera project (CACAO)

    Energy Technology Data Exchange (ETDEWEB)

    Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Ballongue, P

    2000-07-01

    Whole-body counting is the method of choice for in vivo detection of contamination. To extend this well established method, the possible advantages of imaging radiocontaminants are examined. The use of the CACAO project is then studied. A comparison of simulated reconstructed images obtained by the CACAO project and by a conventional gamma camera used in nuclear medicine follows. Imaging a radionuclide contaminant with a geometrical sensitivity of 10{sup -2} seems possible in the near future. (author)

  12. From whole-body counting to imaging: The computer aided collimation gamma camera project (CACAO)

    International Nuclear Information System (INIS)

    Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Ballongue, P.

    2000-01-01

    Whole-body counting is the method of choice for in vivo detection of contamination. To extend this well established method, the possible advantages of imaging radiocontaminants are examined. The use of the CACAO project is then studied. A comparison of simulated reconstructed images obtained by the CACAO project and by a conventional gamma camera used in nuclear medicine follows. Imaging a radionuclide contaminant with a geometrical sensitivity of 10 -2 seems possible in the near future. (author)

  13. Development of a Gamma-Ray Detector for Z-Selective Radiographic Imaging

    International Nuclear Information System (INIS)

    Brandis, Michal

    2013-11-01

    Dual-Discrete Energy Gamma-Radiography (DDEGR) is a method for Special Nuclear Materials (SNM) detection. DDEGR utilizes 15.11 and 4.43 MeV gamma-rays produced in the 11B(d,n)12C reaction, in contrast to the conventional use of continuous Bremsstrahlung radiation. The clean and well separated gamma-rays result in high contrast sensitivity, enabling detection of small quantities of SNM. The most important aspects of a DDEGR system were discussed, simulated, measured and demonstrated. An experimental measurement of gamma-ray yields from the 11B(d,n)12C reaction showed that the yields from deuterons with 3{12 MeV energy are 2{201010 N/sr/mC 4.4 MeV gamma- rays and 2{5109 N/sr/mC 15.1 MeV gamma-rays. The measured neutron yields show that the neutron energies extend to 15-23 MeV for the same deuteron energy range. A simplied inspection system was simulated with GEANT4, showing that the ect of scattering on the signal measured in the detector is acceptable. Considering the reaction gamma yields, 1.8 mA deuteron current is required for separation of high-Z materials from medium- and low-Z materials and a 4.5 mA current is required for the additional capability of separating benign high-Z materials from SNM. The main part of the work was development of a detector suitable for a DDEGR system | Time Resolved Event Counting Optical Radiation (TRECOR) detector. TRECOR detector is a novel spectroscopic imaging detector for gamma-rays within the MeV energy range that uses an event counting image intensier with gamma-rays for the rst time. Neutrons that accompany the gamma radiation enable to implement, in parallel, Fast Neutron Resonance Radiography (FNRR), a method for explosives detection. A second generation detector, TRECOR-II, is capable of detecting gamma-rays and neutrons in parallel, separating them to create particle-specic images and energy-specic images for each particle, thus enabling simultaneous implementation of the two detection methods. A full DDEGR laboratory

  14. Development of TOF-PET using Compton scattering by plastic scintillators

    International Nuclear Information System (INIS)

    Kuramoto, M.; Nakamori, T.; Kimura, S.; Gunji, S.; Takakura, M.; Kataoka, J.

    2017-01-01

    We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.

  15. Development of TOF-PET using Compton scattering by plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, M., E-mail: kuramoto@maxwell.kj.yamagata-u.ac.jp [Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560 (Japan); Nakamori, T., E-mail: nakamori@maxwell.kj.yamagata-u.ac.jp [Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560 (Japan); Kimura, S.; Gunji, S.; Takakura, M. [Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560 (Japan); Kataoka, J. [Waseda University, Okubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan)

    2017-02-11

    We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.

  16. Development of TOF-PET using Compton scattering by plastic scintillators

    Science.gov (United States)

    Kuramoto, M.; Nakamori, T.; Kimura, S.; Gunji, S.; Takakura, M.; Kataoka, J.

    2017-02-01

    We propose a time-of-flight (TOF) technique using plastic scintillators which have fast decay time of a few ns for positron emission tomography (PET). While the photoelectric absorption probability of the plastic for 511 keV gamma rays are extremely low due to its small density and effective atomic number, the cross section of Compton scattering is comparable to that of absorption by conventional inorganic scintillators. We thus propose TOF-PET using Compton scattering with plastic scintillators (Compton-PET), and performed fundamental experiments towards exploration of the Compton-PET capability. We demonstrated that the plastic scintillators achieved the better time resolution in comparison to LYSO(Ce) and GAGG(Ce) scintillators. In addition we evaluated the depth-of-interaction resolving capability with the plastic scintillators.

  17. SU-E-E-06: Teaching About the Gamma Camera and Ultrasound Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, M; Spiro, A [Loyola University Maryland, Baltimore, Maryland (United States); Vogel, R [Iowa Doppler Products, Iowa City, Iowa (United States); Donaldson, N; Gosselin, C [Rockhurst University, Kansas City, MO (United States)

    2015-06-15

    Purpose: Instructional modules on applications of physics in medicine are being developed. The target audience consists of students who have had an introductory undergraduate physics course. This presentation will concentrate on an active learning approach to teach the principles of the gamma camera. There will also be a description of an apparatus to teach ultrasound imaging. Methods: Since a real gamma camera is not feasible in the undergraduate classroom, we have developed two types of optical apparatus that teach the main principles. To understand the collimator, LEDS mimic gamma emitters in the body, and the photons pass through an array of tubes. The distance, spacing, diameter, and length of the tubes can be varied to understand the effect upon the resolution of the image. To determine the positions of the gamma emitters, a second apparatus uses a movable green laser, fluorescent plastic in lieu of the scintillation crystal, acrylic rods that mimic the PMTs, and a photodetector to measure the intensity. The position of the laser is calculated with a centroid algorithm.To teach the principles of ultrasound imaging, we are using the sound head and pulser box of an educational product, variable gain amplifier, rotation table, digital oscilloscope, Matlab software, and phantoms. Results: Gamma camera curriculum materials have been implemented in the classroom at Loyola in 2014 and 2015. Written work shows good knowledge retention and a more complete understanding of the material. Preliminary ultrasound imaging materials were run in 2015. Conclusion: Active learning methods add another dimension to descriptions in textbooks and are effective in keeping the students engaged during class time. The teaching apparatus for the gamma camera and ultrasound imaging can be expanded to include more cases, and could potentially improve students’ understanding of artifacts and distortions in the images.

  18. Imaging phase holdup distribution of three phase flow systems using dual source gamma ray tomography

    International Nuclear Information System (INIS)

    Varma, Rajneesh; Al-Dahhan, Muthanna; O'Sullivan, Joseph

    2008-01-01

    Full text: Multiphase reaction and process systems are used in abundance in the chemical and biochemical industry. Tomography has been successfully employed to visualize the hydrodynamics of multiphase systems. Most of the tomography methods (gamma ray, x-ray and electrical capacitance and resistance) have been successfully implemented for two phase dynamic systems. However, a significant number of chemical and biochemical systems consists of dynamic three phases. Research effort directed towards the development of tomography techniques to image such dynamic system has met with partial successes for specific systems with applicability to limited operating conditions. A dual source tomography scanner has been developed that uses the 661 keV and 1332 keV photo peaks from the 137 Cs and 60 Co for imaging three phase systems. A new approach has been developed and applied that uses the polyenergetic Alternating Minimization (A-M) algorithm, developed by O'Sullivan and Benac (2007), for imaging the holdup distribution in three phases' dynamic systems. The new approach avoids the traditional post image processing approach used to determine the holdup distribution where the attenuation images of the mixed flow obtained from gamma ray photons of two different energies are used to determine the holdup of three phases. In this approach the holdup images are directly reconstructed from the gamma ray transmission data. The dual source gamma ray tomography scanner and the algorithm were validated using a three phase phantom. Based in the validation, three phase holdup studies we carried out in slurry bubble column containing gas liquid and solid phases in a dynamic state using the dual energy gamma ray tomography. The key results of the holdup distribution studies in the slurry bubble column along with the validation of the dual source gamma ray tomography system would be presented and discussed

  19. SU-E-E-06: Teaching About the Gamma Camera and Ultrasound Imaging

    International Nuclear Information System (INIS)

    Lowe, M; Spiro, A; Vogel, R; Donaldson, N; Gosselin, C

    2015-01-01

    Purpose: Instructional modules on applications of physics in medicine are being developed. The target audience consists of students who have had an introductory undergraduate physics course. This presentation will concentrate on an active learning approach to teach the principles of the gamma camera. There will also be a description of an apparatus to teach ultrasound imaging. Methods: Since a real gamma camera is not feasible in the undergraduate classroom, we have developed two types of optical apparatus that teach the main principles. To understand the collimator, LEDS mimic gamma emitters in the body, and the photons pass through an array of tubes. The distance, spacing, diameter, and length of the tubes can be varied to understand the effect upon the resolution of the image. To determine the positions of the gamma emitters, a second apparatus uses a movable green laser, fluorescent plastic in lieu of the scintillation crystal, acrylic rods that mimic the PMTs, and a photodetector to measure the intensity. The position of the laser is calculated with a centroid algorithm.To teach the principles of ultrasound imaging, we are using the sound head and pulser box of an educational product, variable gain amplifier, rotation table, digital oscilloscope, Matlab software, and phantoms. Results: Gamma camera curriculum materials have been implemented in the classroom at Loyola in 2014 and 2015. Written work shows good knowledge retention and a more complete understanding of the material. Preliminary ultrasound imaging materials were run in 2015. Conclusion: Active learning methods add another dimension to descriptions in textbooks and are effective in keeping the students engaged during class time. The teaching apparatus for the gamma camera and ultrasound imaging can be expanded to include more cases, and could potentially improve students’ understanding of artifacts and distortions in the images

  20. Real-time image parameterization in high energy gamma-ray astronomy using transputers

    International Nuclear Information System (INIS)

    Punch, M.; Fegan, D.J.

    1991-01-01

    Recently, significant advances in Very-High-Energy gamma-ray astronomy have been made by parameterization of the Cherenkov images arising from gamma-ray initiated showers in the Earth's atmosphere. A prototype system to evaluate the use of Transputers as a parallel-processing elements for real-time analysis of data from a Cherenkov imaging camera is described in this paper. The operation of and benefits resulting from such a system are described, and the viability of an applicaiton of the prototype system is discussed

  1. ICF ignition capsule neutron, gamma ray, and high energy x-ray images

    Science.gov (United States)

    Bradley, P. A.; Wilson, D. C.; Swenson, F. J.; Morgan, G. L.

    2003-03-01

    Post-processed total neutron, RIF neutron, gamma-ray, and x-ray images from 2D LASNEX calculations of burning ignition capsules are presented. The capsules have yields ranging from tens of kilojoules (failures) to over 16 MJ (ignition), and their implosion symmetry ranges from prolate (flattest at the hohlraum equator) to oblate (flattest towards the laser entrance hole). The simulated total neutron images emphasize regions of high DT density and temperature; the reaction-in-flight neutrons emphasize regions of high DT density; the gamma rays emphasize regions of high shell density; and the high energy x rays (>10 keV) emphasize regions of high temperature.

  2. Investigation of the possibility of gamma-ray diagnostic imaging of target compression at NIF.

    Science.gov (United States)

    Lemieux, Daniel A; Baudet, Camille; Grim, Gary P; Barber, H Bradford; Miller, Brian W; Fasje, David; Furenlid, Lars R

    2011-09-23

    The National Ignition Facility at Lawrence Livermore National Laboratory is the world's leading facility to study the physics of igniting plasmas. Plasmas of hot deuterium and tritium, undergo d(t,n)α reactions that produce a 14.1 MeV neutron and 3.5 MeV a particle, in the center of mass. As these neutrons pass through the materials surrounding the hot core, they may undergo subsequent (n,x) reactions. For example, (12)C(n,n'γ)(12)C reactions occur in remnant debris from the polymer ablator resulting in a significant fluence of 4.44 MeV gamma-rays. Imaging of these gammas will enable the determination of the volumetric size and symmetry of the ablation; large size and high asymmetry is expected to correlate with poor compression and lower fusion yield. Results from a gamma-ray imaging system are expected to be complimentary to a neutron imaging diagnostic system already in place at the NIF. This paper describes initial efforts to design a gamma-ray imaging system for the NIF using the existing neutron imaging system as a baseline for study. Due to the cross-section and expected range of ablator areal densities, the gamma flux should be approximately 10(-3) of the neutron flux. For this reason, care must be taken to maximize the efficiency of the gamma-ray imaging system because it will be gamma starved. As with the neutron imager, use of pinholes and/or coded apertures are anticipated. Along with aperture and detector design, the selection of an appropriate scintillator is discussed. The volume of energy deposition of the interacting 4.44 MeV gamma-rays is a critical parameter limiting the imaging system spatial resolution. The volume of energy deposition is simulated with GEANT4, and plans to measure the volume of energy deposition experimentally are described. Results of tests on a pixellated LYSO scintillator are also presented.

  3. Characteristics of Gamma-Ray Loud Blazars in the VLBA Imaging and Polarimetry Survey

    Science.gov (United States)

    Linford, J. D.; Taylor, G. B.; Romani, R. W.; Healey, S. E.; Helmboldt, J. F.; Readhead, A. C.; Reeves, R.; Richards, J. L.; Cotter, G.

    2010-01-01

    The radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed as part of the VLBA Imaging and Polarimetry Survey. This large, flux-limited sample of active galactic nuclei (AGNs) provides insights into the mechanism that produces strong gamma-ray emission. At lower flux levels, radio flux density does not directly correlate with gamma-ray flux. We find that the LAT-detected BL Lac objects tend to be similar to the non-LAT BL Lac objects, but that the LAT-detected FSRQs are often significantly different from the non-LAT FSRQs. The differences between the gamma-ray loud and quiet FSRQS can be explained by Doppler boosting; these objects appear to require larger Doppler factors than those of the BL Lac objects. It is possible that the gamma-ray loud FSRQs are fundamentally different from the gamma-ray quiet FSRQs. Strong polarization at the base of the jet appears to be a signature for gamma-ray loud AGNs.

  4. Simplified slow anti-coincidence circuit for Compton suppression systems

    International Nuclear Information System (INIS)

    Al-Azmi, Darwish

    2008-01-01

    Slow coincidence circuits for the anti-coincidence measurements have been considered for use in Compton suppression technique. The simplified version of the slow circuit has been found to be fast enough, satisfactory and allows an easy system setup, particularly with the advantage of the automatic threshold setting of the low-level discrimination. A well-type NaI detector as the main detector surrounded by plastic guard detector has been arranged to investigate the performance of the Compton suppression spectrometer using the simplified slow circuit. The system has been tested to observe the improvement in the energy spectra for medium to high-energy gamma-ray photons from terrestrial and environmental samples

  5. Scaling limit of deeply virtual Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    A. Radyushkin

    2000-07-01

    The author outlines a perturbative QCD approach to the analysis of the deeply virtual Compton scattering process {gamma}{sup *}p {r_arrow} {gamma}p{prime} in the limit of vanishing momentum transfer t=(p{prime}{minus}p){sup 2}. The DVCS amplitude in this limit exhibits a scaling behavior described by a two-argument distributions F(x,y) which specify the fractions of the initial momentum p and the momentum transfer r {equivalent_to} p{prime}{minus}p carried by the constituents of the nucleon. The kernel R(x,y;{xi},{eta}) governing the evolution of the non-forward distributions F(x,y) has a remarkable property: it produces the GLAPD evolution kernel P(x/{xi}) when integrated over y and reduces to the Brodsky-Lepage evolution kernel V(y,{eta}) after the x-integration. This property is used to construct the solution of the one-loop evolution equation for the flavor non-singlet part of the non-forward quark distribution.

  6. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    International Nuclear Information System (INIS)

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae; Jo Hong, Key; Sil Lee, Keum

    2015-01-01

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations

  7. Compton Scattering of Quasi-Real Virtual Photons at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duda, M.; Echenard, B.; Eline, A.; El Hage, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Jin, B.N.; Jindal, P.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nisati, A.; Novak, T.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Pal, I.; Palomares, C.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D.; Rahal-Callot, G.; Rahaman, Mohammad Azizur; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosemann, C.; Rosenbleck, C.; Rosier-Lees, S.; Roth, Stefan; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schopper, H.; Schotanus, D.J.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A.A.; Wadhwa, M.; Wang, Q.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, H.J.; Yeh, S.C.; Zalite, An.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2005-01-01

    Compton scattering of quasi-real virtual photons, gamma e+- -> gamma e+-, is studied with 0.6fb-1 of data collected by the L3 detector at the LEP e+e- collider at centre-of-mass energies root(s')=189-209GeV. About 4500 events produced by the interaction of virtual photons emitted by e+- of one beam with e-+ of the opposite beam are collected for effective centre-of-mass energies of the photon-electron and photon-positron systems in the range from root(s')= 35GeV up to root(s')=175GeV, the highest energy at which Compton scattering was ever probed. The cross sections of the gamma e+- -> gamma e+- process as a function of root(s') and of the rest-frame scattering angle are measured, combined with previous L3 measurements down to root(s')~20GeV, and found to agree with the QED expectations.

  8. Gamma-ray burst observations with new generation imaging atmospheric Cerenkov Telescopes in the FERMI era

    International Nuclear Information System (INIS)

    Covino, S.; Campana, S.; Garczarczyk, M.; Galante, N.; Gaug, M.; Antonelli, A.; Bastieri, D.; Longo, F.; Scapin, V.

    2009-01-01

    After the launch and successful beginning of operations of the FERMI satellite, the topics related to high-energy observations of gamma-ray bursts have obtained a considerable attention by the scientific community. Undoubtedly, the diagnostic power of high-energy observations in constraining the emission processes and the physical conditions of gamma-ray burst is relevant. We briefly discuss how gamma-ray burst observations with ground-based imaging array Cerenkov telescopes, in the GeV-TeV range, can compete and cooperate with FERMI observations, in the MeV-GeV range, to allow researchers to obtain a more detailed and complete picture of the prompt and afterglow phases of gamma-ray bursts.

  9. Reactor gamma spectrometry: status

    International Nuclear Information System (INIS)

    Gold, R.; Kaiser, B.J.

    1979-01-01

    Current work is described for Compton Recoil Gamma-Ray Spectrometry including developments in experimental technique as well as recent reactor spectrometry measurements. The current status of the method is described concerning gamma spectromoetry probe design and response characteristics. Emphasis is given to gamma spectrometry work in US LWR and BR programs. Gamma spectrometry in BR environments are outlined by focussing on start-up plans for the Fast Test Reactor (FTR). Gamma spectrometry results are presented for a LWR pressure vessel mockup in the Poolside Critical Assembly (PCA) at Oak Ridge National Laboratory

  10. Gamma camera with an original system of scintigraphic image printing incorporated

    International Nuclear Information System (INIS)

    Roux, G.

    A new gamma camera has been developed, using Anger's Principle to localise the scintillations and incorporating the latest improvements which give a standard of efficiency at present competitive for this kind of apparatus. In the general design of the system special care was devoted to its ease of employment and above all to the production of high-quality scintigraphic images, the recording of images obtained from the gamma camera posing a problem to which a solution is proposed. This consists in storing all the constituent data of an image in a cell matrix of format similar to the scope of the object, the superficial information density of the image being represented by the cell contents. When the examination is finished a special printer supplies a 35x43 cm 2 document in colour on paper, or in black and white on radiological film, at 2:1 or 1:1 magnifications. The laws of contrast representation by the colours or shades of grey are chosen a posteriori according to the organ examined. Documents of the same quality as those so far supplied by a rectilinear scintigraph are then obtained with the gamma camera, which offers its own advantages in addition. The first images acquired in vivo with the whole system, gamma camera plus printer, are presented [fr

  11. Image processing. Volumetric analysis with a digital image processing system. [GAMMA]. Bildverarbeitung. Volumetrie mittels eines digitalen Bildverarbeitungssystems

    Energy Technology Data Exchange (ETDEWEB)

    Kindler, M; Radtke, F; Demel, G

    1986-01-01

    The book is arranged in seven sections, describing various applications of volumetric analysis using image processing systems, and various methods of diagnostic evaluation of images obtained by gamma scintigraphy, cardic catheterisation, and echocardiography. A dynamic ventricular phantom is explained that has been developed for checking and calibration for safe examination of patient, the phantom allowing extensive simulation of volumetric and hemodynamic conditions of the human heart: One section discusses the program development for image processing, referring to a number of different computer systems. The equipment described includes a small non-expensive PC system, as well as a standardized nuclear medical diagnostic system, and a computer system especially suited to image processing.

  12. Tomographic imaging of matter using primary and secondary X-and gamma-radiation

    International Nuclear Information System (INIS)

    Holloway, I.E.

    1991-04-01

    Gamma rays may interact with matter by a variety of processes, many of which give rise to secondary radiations. This thesis examines the possibility of performing tomographic imaging by means of these secondary photons using low-cost apparatus. The techniques are compared with each other and with transmission tomography, which plays such an important role in modern diagnostic imaging. The progress of industrial tomography is reviewed as are techniques of investigation using gamma ray scattering in both industry and medicine. Some new applications of a simple gamma ray computerized tomography (CT) scanner have been performed. A method of determining the spatial distribution of pure beta emitters in matter by performing tomographic imaging using the bremsstrahlung radiation produced by the beta particles has been demonstrated. This technique has been shown to permit imaging at depths in material greatly exceeding the range of beta particles in matter. All the imaging techniques using secondary radiation have displayed two principal limitations: long scanning times and poor quantitative accuracy. The low scanning rate results from the small number of secondary photons that are detected. The major contributing factors to poor accuracy are attenuation and the noise produced by unwanted in-scattering. The possible applications for secondary photon imaging have been briefly outlined and some suggestions for future work are included. Although techniques based upon imaging using secondary radiation will not be able to compete with transmission CT in the vast majority of applications, they may prove valuable in a range of specialised fields. (author)

  13. Virtual Compton Scattering off a Spinless Target in the AdS/QCD correspondence

    CERN Document Server

    Marquet, C.; Wallon, S.

    2010-01-01

    We perform a study of the doubly virtual Compton scattering off a spinless target gamma* P -> gamma* P' within the Anti-de Sitter(AdS)/QCD formalism. We find that the general structure allowed by the Lorentz invariance and gauge invariance of the Compton amplitude is not easily reproduced with the standard recipes of the AdS/QCD correspondence. In the soft-photon regime, where the semi-classical approximation is supposed to apply best, we show that the measurements of the electric and magnetic polarizabilities of a target like the charged pion in real Compton scattering, can already serve as stringent tests, and presumably exclude results based on the AdS/QCD correspondence in its minimal version.

  14. A Compton scattering technique to determine wood density and locating defects in it

    International Nuclear Information System (INIS)

    Tondon, Akash; Sandhu, B. S.; Singh, Bhajan; Singh, Mohinder

    2015-01-01

    A Compton scattering technique is presented to determine density and void location in the given wooden samples. The technique uses a well collimated gamma ray beam from 137 Cs along with the NaI(Tl) scintillation detector. First, a linear relationship is established between Compton scattered intensity and known density of chemical compounds, and then density of the wood is determined from this linear relation. In another experiment, the ability of penetration of gamma rays is explored to detect voids in wooden (low Z) sample. The sudden reduction in the Compton scattered intensities agrees well with the position and size of voids in the wooden sample. It is concluded that wood density and the voids of size ∼ 4 mm and more can be detected easily by this method

  15. Radioisotope imaging using gamma-ray shadow hologram

    International Nuclear Information System (INIS)

    Kojima, Kazuhiko; Itaya, Gensei; Hisada, Kin-ichi.

    1975-01-01

    Use of holography for the imaging of radioisotope distribution, reported by Barrett, H.H. in 1972, has been marked as a new γ-ray imaging. Generally, in optical fields, holography was often used for recording and processing three dimensional images by coherent waves such as laser beams. However, γ-rays are incoherent and are not condensed by optical lenses. So it was necessary that the holograms of incoherent sources were formed without optical lenses. A method which records the shadows of on axis zone plate with a Fresnnel diffraction pattern was used for obtaining an incoherent hologram. This method has the advantages of improved resolution and γ-ray detection efficiency, and also has a constitution of this system which is simple and economical. But, the disadvantage is, that the process consists of two steps, forming holograms and reconstructing images. The fundamental problems of γ-ray holograms and the practicabilities of γ-ray imaging of this method were discussed. In this system medical x-ray films combined with industrial intensifying screens were used as detectors, and γ-ray shadow holograms were obtained for about 3 minutes. From the shadow holograms, images were reconstructed, using a parallel laser beams, (He-Ne laser, single mode, 6328 A, 1mW). The zone plate consisted of coaxial lead rings with 10 open zones. The aperture area of this zone plate collimator was several hundreds times larger than the pinhole, so the detection efficiency, of γ-rays was improved. Using sup(99m)Tc 10 mCi as a γ-ray source, an attempt was made to image points, English characters and thyroid phantoms, and these reconstructed images were shown. An image resolution of 3-5 mm was obtained in the reconstructed image of an object at a distance of 10 cm from the collimator. (auth.)

  16. A Fieldable-Prototype Large-Area Gamma-ray Imager for Orphan Source Search

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [ORNL; Fabris, Lorenzo [ORNL; Carr, Dennis [Lawrence Livermore National Laboratory (LLNL); Collins, Jeff [Lawrence Livermore National Laboratory (LLNL); Cunningham, Mark F [Lawrence Livermore National Laboratory (LLNL); Habte Ghebretatios, Frezghi [ORNL; Karnowski, Thomas Paul [ORNL; Marchant, William [University of California, Berkeley

    2008-01-01

    We have constructed a unique instrument for use in the search for orphan sources. The system uses gamma-ray imaging to "see through" the natural background variations that effectively limit the search range of normal devices to ~10 m. The imager is mounted in a 4.9- m-long trailer and can be towed by a large personal vehicle. Source locations are determined both in range and along the direction of travel as the vehicle moves. A fully inertial platform coupled to a Global Positioning System receiver is used to map the gamma-ray images onto overhead geospatial imagery. The resulting images provide precise source locations, allowing rapid follow-up work. The instrument simultaneously searches both sides of the street to a distance of 50 m (100-m swath) for milliCurieclass sources with near-perfect performance.

  17. Design of a Compton-suppression spectrometer and its application to the study of high-spin yrast states

    International Nuclear Information System (INIS)

    Aarts, H.J.M.

    1981-01-01

    Detailed γ-ray spectroscopy of high-spin states is hampered by transitions with low intensity on a high γ-ray background. An approach to enhance weak peaks in a spectrum in the reduction of the Compton background by means of a Compton-suppression spectrometer (CSS). Optimization of a CSS by means of Monte Carlo calculations is described. The investigation of high-spin states in the sd-shell nucleus 38 Ar with a Compton-suppression spectrometer is reported. With previously described techniques, in combination with p-γ coincidence measurements to establish an unambiguous level scheme, states up to Jsup(π) = 11 - could be identified and investigated. A gamma-gamma coincidence experiment on the nuclei 167 168 Hf is described with two Compton-suppression spectrometers. Yrast bands are followed, beyond the region of the first backbending, up to spin J = 37/2 and J = 28 for 167 Hf and 168 Hf, respectively. (Auth.)

  18. Development of a low-cost-high-sensitivity Compton camera using CsI (Tl) scintillators (γI)

    Energy Technology Data Exchange (ETDEWEB)

    Kagaya, M., E-mail: 13nd401n@vc.ibaraki.ac.jp [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito City, Ibaraki 310-8512 (Japan); Open-It consortium (Japan); Katagiri, H. [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito City, Ibaraki 310-8512 (Japan); Open-It consortium (Japan); Enomoto, R. [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8582 (Japan); Open-It consortium (Japan); Hanafusa, R.; Hosokawa, M.; Itoh, Y. [Fuji Electric, 1 Fujimachi, Hino City, Tokyo 191-8502 (Japan); Muraishi, H. [School of Allied Health Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara City, Kanagawa 252-0373 (Japan); Open-It consortium (Japan); Nakayama, K. [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito City, Ibaraki 310-8512 (Japan); Open-It consortium (Japan); Satoh, K. [Shinsei Corporation, 4-9-1 Nihonbashi-honcho, Chuo-ku, Tokyo 103-0023 (Japan); Takeda, T. [School of Allied Health Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara City, Kanagawa 252-0373 (Japan); Tanaka, M.M.; Uchida, T. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba City, Ibaraki 305-0801 (Japan); Open-It consortium (Japan); Watanabe, T. [School of Allied Health Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara City, Kanagawa 252-0373 (Japan); Open-It consortium (Japan); Yanagita, S.; Yoshida, T.; Umehara, K. [College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito City, Ibaraki 310-8512 (Japan); Open-It consortium (Japan)

    2015-12-21

    We have developed a novel low-cost gamma-ray imaging Compton camera γI that has a high detection efficiency. Our motivation for the development of this detector was to measure the arrival directions of gamma rays produced by radioactive nuclides that were released by the Fukushima Daiichi nuclear power plant accident in 2011. The detector comprises two arrays of inorganic scintillation detectors, which act as a scatterer and an absorber. Each array has eight scintillation detectors, each comprising a large CsI (Tl) scintillator cube of side 3.5 cm, which is inexpensive and has a good energy resolution. Energies deposited by the Compton scattered electrons and subsequent photoelectric absorption, measured by each scintillation counter, are used for image reconstruction. The angular resolution was found to be 3.5° after using an image-sharpening technique. With this angular resolution, we can resolve a 1 m{sup 2} radiation hot spot that is located at a distance of 10 m from the detector with a wide field of view of 1 sr. Moreover, the detection efficiency 0.68 cps/MBq at 1 m for 662 keV (7.6 cps/μSv/h) is sufficient for measuring low-level contamination (i.e., less than 1 μSv/h) corresponding to typical values in large areas of eastern Japan. In addition to the laboratory tests, the imaging capability of our detector was verified in various regions with dose rates less than 1 μSv/h (e.g., Fukushima city).

  19. Applications of multi-pinhole gamma camera collimation to tomography and image enhancement

    Science.gov (United States)

    Simpson, D. R.

    1981-06-01

    Multi-pinhole gamma camera collimation was introduced in the field of emission tomography. This collimation process simultaneously produces several images covering a limited angular range, which may then be recombined to obtain tomographic slices of the object imaged. A possible method for improving the images obtained by this technique by combining two multi-pinhole views taken 90 deg apart was investigated. Collimators were designed and built both for tomography and imaging tablet disintegration, and computer programs were written to reconstruct the images by simple backprojection and by filtered backprojection. The use of multi-pinhole collimators to image the disintegration of tablets in vivo was clearly demonstrated. Phantom tests done in vitro were capable of imaging defects as small as 5 sq mm, while images made with real tablets both in vitro and in vivo readily showed the onset and progress of the tablet disintegration.

  20. Design criteria for a high energy Compton Camera and possible application to targeted cancer therapy

    Science.gov (United States)

    Conka Nurdan, T.; Nurdan, K.; Brill, A. B.; Walenta, A. H.

    2015-07-01

    The proposed research focuses on the design criteria for a Compton Camera with high spatial resolution and sensitivity, operating at high gamma energies and its possible application for molecular imaging. This application is mainly on the detection and visualization of the pharmacokinetics of tumor targeting substances specific for particular cancer sites. Expected high resolution (animals with a human tumor xenograft which is one of the first steps in evaluating the potential utility of a candidate gene. The additional benefit of high sensitivity detection will be improved cancer treatment strategies in patients based on the use of specific molecules binding to cancer sites for early detection of tumors and identifying metastasis, monitoring drug delivery and radionuclide therapy for optimum cell killing at the tumor site. This new technology can provide high resolution, high sensitivity imaging of a wide range of gamma energies and will significantly extend the range of radiotracers that can be investigated and used clinically. The small and compact construction of the proposed camera system allows flexible application which will be particularly useful for monitoring residual tumor around the resection site during surgery. It is also envisaged as able to test the performance of new drug/gene-based therapies in vitro and in vivo for tumor targeting efficacy using automatic large scale screening methods.

  1. The Effect of Gamma and Chroma on the Perception of Color Images

    NARCIS (Netherlands)

    Dijk, J.; Verbeek, P.W.; Walraven, J.; Young, I.T.

    2002-01-01

    We present the results of experiments in which we manipulated color images in the CIELAB space by first applying a scaling factor on chroma (C*). After this we applied a gamma transformation (an exponent relating the input to the output) to the luminance (Y) in XYZ space, while keeping the

  2. Mercuric iodide room-temperature array detectors for gamma-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B. [Xsirius, Inc, Camarillo, CA (United States)

    1994-11-15

    Significant progress has been made recently in the development of mercuric iodide detector arrays for gamma-ray imaging, making real the possibility of constructing high-performance small, light-weight, portable gamma-ray imaging systems. New techniques have been applied in detector fabrication and then low noise electronics which have produced pixel arrays with high-energy resolution, high spatial resolution, high gamma stopping efficiency. Measurements of the energy resolution capability have been made on a 19-element protypical array. Pixel energy resolutions of 2.98% fwhm and 3.88% fwhm were obtained at 59 keV (241-Am) and 140-keV (99m-Tc), respectively. The pixel spectra for a 14-element section of the data is shown together with the composition of the overlapped individual pixel spectra. These techniques are now being applied to fabricate much larger arrays with thousands of pixels. Extension of these principles to imaging scenarios involving gamma-ray energies up to several hundred keV is also possible. This would enable imaging of the 208 keV and 375-414 keV 239-Pu and 240-Pu structures, as well as the 186 keV line of 235-U.

  3. Technology Development for AGIS (Advanced Gamma-ray Imaging System).

    Science.gov (United States)

    Krennrich, Frank

    2008-04-01

    Next-generation arrays of atmospheric Cherenkov telescopes are at the conceptual planning stage and each could consist of on the order of 100 telescopes. The two currently-discussed projects AGIS in the US and CTA in Europe, have the potential to achieve an order of magnitude better sensitivity for Very High Energy (VHE) gamma-ray observations over state-to-the-art observatories. These projects require a substantial increase in scale from existing 4-telescope arrays such as VERITAS and HESS. The optimization of a large array requires exploring cost reduction and research and development for the individual elements while maximizing their performance as an array. In this context, the technology development program for AGIS will be discussed. This includes developing new optical designs, evaluating new types of photodetectors, developing fast trigger systems, integrating fast digitizers into highly-pixilated cameras, and reliability engineering of the individual components.

  4. The Compton polarimeter at ELSA

    International Nuclear Information System (INIS)

    Doll, D.

    1998-06-01

    In order to measure the degree of transverse polarization of the stored electron beam in the Electron Stretcher Accelerator ELSA a compton polarimeter is built up. The measurement is based on the polarization dependent cross section for the compton scattering of circular polarized photons off polarized electrons. Using a high power laser beam and detecting the scattered photons a measuring time of two minutes with a statistical error of 5% is expected from numerical simulations. The design and the results of a computer controlled feedback system to enhance the laser beam stability at the interaction point in ELSA are presented. The detection of the scattered photons is based on a lead converter and a silicon-microstrip detector. The design and test results of the detector module including readout electronic and computer control are discussed. (orig.)

  5. Preliminary Experience with Small Animal SPECT Imaging on Clinical Gamma Cameras

    Directory of Open Access Journals (Sweden)

    P. Aguiar

    2014-01-01

    Full Text Available The traditional lack of techniques suitable for in vivo imaging has induced a great interest in molecular imaging for preclinical research. Nevertheless, its use spreads slowly due to the difficulties in justifying the high cost of the current dedicated preclinical scanners. An alternative for lowering the costs is to repurpose old clinical gamma cameras to be used for preclinical imaging. In this paper we assess the performance of a portable device, that is, working coupled to a single-head clinical gamma camera, and we present our preliminary experience in several small animal applications. Our findings, based on phantom experiments and animal studies, provided an image quality, in terms of contrast-noise trade-off, comparable to dedicated preclinical pinhole-based scanners. We feel that our portable device offers an opportunity for recycling the widespread availability of clinical gamma cameras in nuclear medicine departments to be used in small animal SPECT imaging and we hope that it can contribute to spreading the use of preclinical imaging within institutions on tight budgets.

  6. Measurement of Deeply Virtual Compton Scattering at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Haller, J.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, H.; Kapichine, M.; Katzy, J.; Keller, N.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Koutouev, R.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kuckens, J.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leiner, B.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxeld, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.-C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Van Remortel, N.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Vujicic, B.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2005-01-01

    A measurement is presented of elastic deeply virtual Compton scattering \\gamma* p \\to \\gamma p made using e^+ p collision data corresponding to a luminosity of 46.5 pb^{-1}, taken with the H1 detector at HERA. The cross section is measured as a function of the photon virtuality, Q^2, the invariant mass of the \\gamma* p system, W, and for the first time, differentially in the squared momentum transfer at the proton vertex, t, in the kinematic range 2 < Q^2 < 80 GeV^2, 30 < W < 140 GeV and |t| < 1 GeV^2. QCD based calculations at next-to-leading order using generalized parton distributions can describe the data, as can colour dipole model predictions.

  7. Polarized γ source based on Compton backscattering in a laser cavity

    Directory of Open Access Journals (Sweden)

    V. Yakimenko

    2006-09-01

    Full Text Available We propose a novel gamma source suitable for generating a polarized positron beam for the next generation of electron-positron colliders, such as the International Linear Collider (ILC, and the Compact Linear Collider (CLIC. This 30-MeV polarized gamma source is based on Compton scattering inside a picosecond CO_{2} laser cavity generated from electron bunches produced by a 4-GeV linac. We identified and experimentally verified the optimum conditions for obtaining at least one gamma photon per electron. After multiplication at several consecutive interaction points, the circularly polarized gamma rays are stopped on a target, thereby creating copious numbers of polarized positrons. We address the practicality of having an intracavity Compton-polarized positron source as the injector for these new colliders.

  8. The MeV spectra of gamma-ray bursts measured with COMPTEL

    International Nuclear Information System (INIS)

    Hoover, A.S.; Kippen, R.M.; McConnell, M.L.

    2005-01-01

    The past decade has produced a wealth of observational data on the energy spectra of prompt emission from gamma-ray bursts. Most of the data cover the energy range from a few to several hundred KeV. One set of higher energy observations comes from the Imaging Compton Telescope COMPTEL on the Compton Observatory, which measured in the energy range from 0.75 to 30 MeV. We analyzed the full 9.2 years COMPTEL data to reveal the significant detection of 44 gamma-ray bursts. We present preliminary results obtained in the process of preparing a final catalog of the spectral analysis of these events. In addiction, we compare the COMPTEL spectra to simultaneous BATSE measurements for purposes of cross-calibration

  9. The Advanced Gamma-ray Imaging System (AGIS)-Simulation Studies

    Science.gov (United States)

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Funk, S.; Konopelko, A.; Vassiliev, V. V.

    2008-12-01

    The Advanced Gamma-ray Imaging System (AGIS) is a US-led concept for a next-generation instrument in ground-based very-high-energy gamma-ray astronomy. The most important design requirement for AGIS is a sensitivity of about 10 times greater than current observatories like Veritas, H.E.S.S or MAGIC. We present results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  10. Monte Carlo simulations towards semi-quantitative prompt gamma activation imaging

    International Nuclear Information System (INIS)

    Kis, Zoltan; Belgya, Tamas; Szentmiklosi, Laszlo

    2011-01-01

    Numerous non-destructive techniques utilize neutron attenuation, scattering or capture to gain morphological, structural or elemental information about the material under study. However, few attempts have been made so far to use neutron-induced gamma radiation for 3D element mapping. The first ever facility using direct scanning for element imaging was set up at the Budapest Research Reactor. It was shown that the position-sensitive prompt-gamma detection (PGAI) enables us to determine the spatial distribution of major elements. Iterative Monte Carlo simulation technique has also been developed to provide not only qualitative but also semi-quantitative element distribution of a simple object.

  11. Value of coincidence gamma camera PET for diagnosing head and neck tumors: functional imaging and image coregistration

    International Nuclear Information System (INIS)

    Dresel, S.; Brinkbaeumer, K.; Schmid, R.; Hahn, K.

    2001-01-01

    54 patients suffering from head and neck tumors (30 m, 24 f, age: 32-67 years) were examined using dedicated PET and coincidence gamma camera PET after injection of 185-350 MBq [ 18 F]FDG. Examinations were carried out on the dedicated PET first (Siemens ECAT Exact HR+) followed by a scan on the coincidence gamma camera PET (Picker Prism 2000 XP-PCD, Marconi Axis g-PET 2 AZ). Dedicated PET was acquired in 3D mode, coincidence gamma camera PET was performed in list mode using an axial filter. Reconstruction of data was performed iteratively on both, dedicated PET and coincidence gamma camera PET. All patients received a CT scan in multislice technique (Siemens Somatom Plus 4, Marconi MX 8000). Image coregistration was performed on an Odyssey workstation (Marconi). All findings have been verified by the gold standard histology or in case of negative histology by follow-up. Results: Using dedicated PET the primary or recurrent lesion was correctly diagnosed in 47/48 patients, using coincidence gamma camera PET in 46/48 patients and using CT in 25/48 patients. Metastatic disease in cervical lymph nodes was diagnosed in 17/18 patients with dedicated PET, in 16/18 patients with coincidence gamma camera PET and in 15/18 with CT. False-positive results with regard to lymph node metastasis were seen with one patient for dedicated PET and hybrid PET, respectively, and with 18 patients for CT. In a total of 11 patients unknown metastatic lesions were seen with dedicated PET and with coincidence gamma camera PET elsewhere in the body (lung: n = 7, bone: n = 3, liver: n = 1). Additional malignant disease other than the head and neck tumor was found in 4 patients. (orig.) [de

  12. A Compton-suppressed spectrometer for studies of chaos in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Shriner, J.F. Jr. [Tennessee Technological Univ., Cookeville (United States); Bilpuch, E.G. [Duke University Press, Durham, NC (United States); Bybee, C.R. [Triangle Universities Nuclear Lab., Durham, NC (United States); Mitchell, G.E. [Triangle Universities Nuclear Lab., Durham, NC (United States); Moore, E.F. [Triangle Universities Nuclear Lab., Durham, NC (United States); Shriner, J.D. [Triangle Universities Nuclear Lab., Durham, NC (United States); Westerfeldt, C.R. [Duke University Press, Durham, NC (United States)

    1995-05-01

    One approach to studying chaos in quantum systems utilizes the statistical behavior of eigenvalues. Such analyses require data of very high quality, since both completeness and purity are essential. The design of a Compton-suppressed {gamma}-ray spectrometer for the purpose of establishing a nearly complete level scheme in {sup 30}P via the {sup 29}Si(p, {gamma}) reaction is described. Design criteria and implementation are discussed, and early results from the system are presented. (orig.).

  13. Application of Monte Carlo method in forward simulation of azimuthal gamma imaging while drilling

    International Nuclear Information System (INIS)

    Yuan Chao; Zhou Cancan; Zhang Feng; Chen Zhi

    2014-01-01

    Monte Carlo simulation is one of the most important numerical simulation methods in nuclear logging. Formation models can be conveniently built with MCNP code, which provides a simple and effective approach for fundamental study of nuclear logging. Monte Carlo method is employed to set up formation models under logging while drilling condition, and the characteristic of azimuthal gamma imaging is simulated. The results present that the azimuthal gamma imaging shows a sinusoidal curve features. The imaging can be used to accurately calculate the relative dip angle of borehole and thickness of radioactive formation. The larger relative dip angle of borehole and the thicker radioactive formation lead to the larger height of the sinusoidal curve in the imaging. The borehole size has no affect for the calculation of the relative dip angle, but largely affects the determination of formation thickness. The standoff of logging tool has great influence for the calculation of the relative dip angle and formation thickness. If the gamma ray counts meet the demand of counting statistics in nuclear logging, the effect of borehole fluid on the imaging can be ignored. (authors)

  14. Automation of the method gamma of comparison dosimetry images

    International Nuclear Information System (INIS)

    Moreno Reyes, J. C.; Macias Jaen, J.; Arrans Lara, R.

    2013-01-01

    The objective of this work was the development of JJGAMMA application analysis software, which enables this task systematically, minimizing intervention specialist and therefore the variability due to the observer. Both benefits, allow comparison of images is done in practice with the required frequency and objectivity. (Author)

  15. Measurement of Deeply Virtual Compton Scattering at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Arkadov, V.; Astvatsatourov, A.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Berndt, T.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cao, Jun; Caron, S.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solovev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Straumann, U.; Swart, M.; Tasevsky, M.; Chernyshov, V.; Chetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vassilev, S.; Vazdik, Y.; Vichnevski, A.; Wacker, K.; Wallny, R.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Werner, C.; Werner, M.; Werner, N.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    2001-01-01

    A measurement is presented of elastic Deeply Virtual Compton Scattering e^+ + p -> e^+ + photon + p at HERA using data taken with the H1 detector. The cross section is measured as a function of the photon virtuality, Q^2, and the invariant mass, W, of the gamma p system, in the kinematic range 2 < Q^2 < 20 GeV^2, 30 < W < 120 GeV and |t| < 1 GeV^2, where t is the squared momentum transfer to the proton. The measurement is compared to QCD based calculations.

  16. ILC beam energy measurement by means of laser Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Muchnoi, N. [Budker Inst. for Nuclear Physics, Novosibirsk (Russian Federation); Schreiber, H.J.; Viti, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-10-15

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered {gamma}-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10{sup -4} or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  17. High spatial resolution gamma imaging detector based on a 5 inch diameter R3292 Hamamatsu PSPMT

    International Nuclear Information System (INIS)

    Wojcik, R.; Majewski, S.; Kross, B.; Weisenberger, A.G.; Steinbach, D.

    1998-01-01

    High resolution imaging gamma-ray detectors were developed using Hamamatsu's 5 inch diameter R3292 position sensitive PMT (PSPMT) and a variety of crystal scintillator arrays. Special readout techniques were used to maximize the active imaging area while reducing the number of readout channels. Spatial resolutions approaching 1 mm were obtained in a broad energy range from 20 to 511 keV. Results are also presented of coupling the scintillator arrays to the PMT via imaging light guides consisting of acrylic optical fibers

  18. Primary gamma ray selection in a hybrid timing/imaging Cherenkov array

    Directory of Open Access Journals (Sweden)

    Postnikov E.B.

    2017-01-01

    Full Text Available This work is a methodical study on hybrid reconstruction techniques for hybrid imaging/timing Cherenkov observations. This type of hybrid array is to be realized at the gamma-observatory TAIGA intended for very high energy gamma-ray astronomy (> 30 TeV. It aims at combining the cost-effective timing-array technique with imaging telescopes. Hybrid operation of both of these techniques can lead to a relatively cheap way of development of a large area array. The joint approach of gamma event selection was investigated on both types of simulated data: the image parameters from the telescopes, and the shower parameters reconstructed from the timing array. The optimal set of imaging parameters and shower parameters to be combined is revealed. The cosmic ray background suppression factor depending on distance and energy is calculated. The optimal selection technique leads to cosmic ray background suppression of about 2 orders of magnitude on distances up to 450 m for energies greater than 50 TeV.

  19. The Generalized Gamma-DBN for High-Resolution SAR Image Classification

    Directory of Open Access Journals (Sweden)

    Zhiqiang Zhao

    2018-06-01

    Full Text Available With the increase of resolution, effective characterization of synthetic aperture radar (SAR image becomes one of the most critical problems in many earth observation applications. Inspired by deep learning and probability mixture models, a generalized Gamma deep belief network (g Γ-DBN is proposed for SAR image statistical modeling and land-cover classification in this work. Specifically, a generalized Gamma-Bernoulli restricted Boltzmann machine (gΓB-RBM is proposed to capture high-order statistical characterizes from SAR images after introducing the generalized Gamma distribution. After stacking the g Γ B-RBM and several standard binary RBMs in a hierarchical manner, a gΓ-DBN is constructed to learn high-level representation of different SAR land-covers. Finally, a discriminative neural network is constructed by adding an additional predict layer for different land-covers over the constructed deep structure. Performance of the proposed approach is evaluated via several experiments on some high-resolution SAR image patch sets and two large-scale scenes which are captured by ALOS PALSAR-2 and COSMO-SkyMed satellites respectively.

  20. ORIS: the Oak Ridge Imaging System program listings. [Nuclear medicine imaging with rectilinear scanner and gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Bell, P. R.; Dougherty, J. M.

    1978-04-01

    The Oak Ridge Imaging System (ORIS) is a general purpose access, storage, processing and display system for nuclear medicine imaging with rectilinear scanner and gamma camera. This volume contains listings of the PDP-8/E version of ORIS Version 2. The system is designed to run under the Digital Equipment Corporation's OS/8 monitor in 16K or more words of core. System and image file mass storage is on RK8E disk; longer-time image file storage is provided on DECtape. Another version of this program exists for use with the RF08 disk, and a more limited version is for DECtape only. This latter version is intended for non-medical imaging.

  1. Imaging of heterogeneous materials by prompt gamma-ray neutron activation analysis

    International Nuclear Information System (INIS)

    Staples, Parrish; Prettyman, Tom; Lestone, John

    1999-01-01

    We have used a Tomographic Gamma Scanner (TGS) to produce tomographic Prompt Gamma-Ray Neutron Activation Imaging of heterogeneous matrices [T.H. Prettyman, R.J. Estep, G.A. Sheppard, Trans. Am. Nucl. Soc. 69 (1993) 183-184]. The TGS was modified by the addition of graphite reflectors that contain isotopic neutron sources for sample interrogation. We are in the process of developing the analysis methodology necessary for a quantitative assay of large containers of heterogeneous material. This nondestructive analysis technique can be used for material characterization and the determination of neutron assay correction factors. The most difficult question to be answered is the determination of the source to sample coupling term. To assist in the determination of the coupling term we have obtained images for a range of samples that are very well characterized; such as, homogenous pseudo one-dimensional samples to three-dimensional heterogeneous samples. We then compare the measurements to Monte Carlo N-particle calculations. For an accurate quantitative measurement it is also necessary to determine the sample gamma-ray self attenuation at higher gamma-ray energies, namely pair production should be incorporated into the analysis codes

  2. Imaging of heterogeneous materials by prompt gamma-ray neutron activation analysis

    International Nuclear Information System (INIS)

    Staples, P.; Prettyman, T.; Lestone, J.

    1998-01-01

    The authors have used a tomographic gamma scanner (TGS) to produce tomographic prompt gamma-ray neutron activation analysis imaging (PGNAA) of heterogeneous matrices. The TGS was modified by the addition of graphite reflectors that contain isotopic neutron sources for sample interrogation. The authors are in the process of developing the analysis methodology necessary for a quantitative assay of large containers of heterogeneous material. This nondestructive analysis (NDA) technique can be used for material characterization and the determination of neutron assay correction factors. The most difficult question to be answered is the determination of the source-to-sample coupling term. To assist in the determination of the coupling term, the authors have obtained images for a range of sample that are very well characterized, such as, homogenous pseudo one-dimensional samples to three-dimensional heterogeneous samples. They then compare the measurements to MCNP calculations. For an accurate quantitative measurement, it is also necessary to determine the sample gamma-ray self attenuation at higher gamma-ray energies, namely pair production should be incorporated into the analysis codes

  3. Cryocooler and Thermal Systems for Improved GeD Gamma-ray Imaging and Spectroscopy

    Data.gov (United States)

    National Aeronautics and Space Administration — Place Germanium detectors (GeDs) in a few-MeV γ-ray Compton instrument on a satellite will enable unprecedented insight into nuclear astrophysics, key multimessenger...

  4. Compton scattering on 208Pb

    International Nuclear Information System (INIS)

    Alberico, W.M.; Molinari, A.

    1982-01-01

    In this paper we briefly review the formalism of the nuclear Compton scattering in the frame of the low-energy theorems (LET). We treat the resonant terms of the amplitude, having collective intermediate nuclear states, as a superposition of Lorentz lines with energy, width and strength fixed by the photo-absorption experiments. The gauge terms are evaluated starting from a simple, but realistic, nuclear Hamiltonian. Dynamical nucleon-nucleon correlations are consistently taken into account, beyond those imposed by the Pauli principle. The comparison of the theoretical predictions with the data of elastic diffusion of photons from 208 Pb shows that LET are insufficient to account for the experiment. (orig.)

  5. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    Science.gov (United States)

    Wagner, R. G.; Byrum, K.; Drake, G.; Funk, S.; Otte, N.; Smith, A.; Tajima, H.; Williams, D.

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. It is being designed to achieve a significant improvement in sensitivity compared to current Imaging Air Cherenkov Telescope (IACT) Arrays. One of the main requirements in order that AGIS fulfills this goal will be to achieve higher angular resolution than current IACTs. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, i.e. two to three times smaller than for current IACT cameras. Here we present results from testing of alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs).

  6. The Advanced Gamma-ray Imaging System (AGIS): Focal Plane Detectors

    Science.gov (United States)

    Mukherjee, Reshmi; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Tajima, H.; Wagner, B.; Williams, D.

    2008-04-01

    Report of the Focal Plane Instrumentation Working Group, AGIS collaboration: The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. One of the main requirements for AGIS will be to achieve higher angular resolution than current imaging atmospheric Cherenkov telescopes (IACTs). Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, below that of current IACTs. Reducing the cost per channel and improving reliability and modularity are other important considerations. Here we present several alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs) and summarize results from feasibility testing by various AGIS photodetector group members.

  7. Hybrid collimation for industrial gamma-ray imaging

    International Nuclear Information System (INIS)

    He, Z.; Knoll, G. F.; Smith, L. E.; Wehe, D. K.

    1999-01-01

    Portable photon imaging devices with a broad energy range of sensitivity, adequate angular resolution and high efficiency are useful in applications such as environmental remediation and industrial surveys. The vast majority of past systems built for these applications have relied on mechanical collimation although a few have used electronic collimation. To our knowledge, no devices have been built that exploit the benefits of both mechanical and electronic collimation in the same system. The combination of a mechanically-collimated camera with an electronically-collimated camera offers both the high efficiency and good angular resolution typical in a mechanically-collimated camera for lower energies and the uncoupling of spatial resolution and efficiency provided by an electronically-collimated camera at higher energies

  8. The Advanced Gamma-ray Imageing System (AGIS): Simulation Design Studies

    Science.gov (United States)

    Bugaev, V.; Buckley, J.; Digel, S.; Fegan, S.; Funk, S.; Konopelko, A.; Krawczynski, H.; Lebohec, S.; Maier, G.; Vassiliev, V.

    2008-04-01

    We present design studies for AGIS, a proposed array of ˜100 imaging atmospheric Cherenkov telescopes for gamma-rays astronomy in the 40GeV to 100 TeV energy regime. We describe optimization studies for the array configuration, pixel size and field of view aimed at achieving the best sensitivity over the entire energy range and best angular resolution for a fixed project total cost.

  9. Discrete Event Simulation Model of the Polaris 2.1 Gamma Ray Imaging Radiation Detection Device

    Science.gov (United States)

    2016-06-01

    release; distribution is unlimited DISCRETE EVENT SIMULATION MODEL OF THE POLARIS 2.1 GAMMA RAY IMAGING RADIATION DETECTION DEVICE by Andres T...ONLY (Leave blank) 2. REPORT DATE June 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE DISCRETE EVENT SIMULATION MODEL...modeled. The platform, Simkit, was utilized to create a discrete event simulation (DES) model of the Polaris. After carefully constructing the DES

  10. An alternate way for image documentation in gamma camera processing units

    International Nuclear Information System (INIS)

    Schneider, P.

    1980-01-01

    For documentation of images and curves generated by a gamma camera processing system a film exposure tool from a CT system was linked to the video monitor by use of a resistance bridge. The machine has a stock capacity of 100 plane films. For advantage there is no need for an interface, the complete information on the monitor is transferred to the plane film and compared to software controlled data output on printer or plotter the device is tremendously time saving. (orig.) [de

  11. Dual-modality imaging with a ultrasound-gamma device for oncology

    Science.gov (United States)

    Polito, C.; Pellegrini, R.; Cinti, M. N.; De Vincentis, G.; Lo Meo, S.; Fabbri, A.; Bennati, P.; Cencelli, V. Orsolini; Pani, R.

    2018-06-01

    Recently, dual-modality systems have been developed, aimed to correlate anatomical and functional information, improving disease localization and helping oncological or surgical treatments. Moreover, due to the growing interest in handheld detectors for preclinical trials or small animal imaging, in this work a new dual modality integrated device, based on a Ultrasounds probe and a small Field of View Single Photon Emission gamma camera, is proposed.

  12. Slit-Slat Collimator Equipped Gamma Camera for Whole-Mouse SPECT-CT Imaging

    Science.gov (United States)

    Cao, Liji; Peter, Jörg

    2012-06-01

    A slit-slat collimator is developed for a gamma camera intended for small-animal imaging (mice). The tungsten housing of a roof-shaped collimator forms a slit opening, and the slats are made of lead foils separated by sparse polyurethane material. Alignment of the collimator with the camera's pixelated crystal is performed by adjusting a micrometer screw while monitoring a Co-57 point source for maximum signal intensity. For SPECT, the collimator forms a cylindrical field-of-view enabling whole mouse imaging with transaxial magnification and constant on-axis sensitivity over the entire axial direction. As the gamma camera is part of a multimodal imaging system incorporating also x-ray CT, five parameters corresponding to the geometric displacements of the collimator as well as to the mechanical co-alignment between the gamma camera and the CT subsystem are estimated by means of bimodal calibration sources. To illustrate the performance of the slit-slat collimator and to compare its performance to a single pinhole collimator, a Derenzo phantom study is performed. Transaxial resolution along the entire long axis is comparable to a pinhole collimator of same pinhole diameter. Axial resolution of the slit-slat collimator is comparable to that of a parallel beam collimator. Additionally, data from an in-vivo mouse study are presented.

  13. Effects of use of the lodine contrast medium on gamma camera imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pyo, Sung Jae; Cho, Yun Ho [Dept. of Nuclear Medicine, Inha University hospital, Incheon (Korea, Republic of); Choi, Jae Ho [Dept. of Radiological Technology, Ansan College, Ansan (Korea, Republic of)

    2016-12-15

    Effects of Gamma camera imaging on gamma ray counting rates as a function of use and density of the iodine contrast medium currently in primary use for clinics, and changes in gamma ray counting rates as a function of the contrast medium status upon attenuation correction using a CT absorption coefficientin an SPECT/CT attenuation correction will be considered herein. For experimental materials used 99mTcO4 370 MBq and Pamiray 370 mg, Iomeron 350 mg, Visipaque 320 mg, Bonorex 300 mg of iodine contrast medium. For image acquisition, planar imaging was consecutively filmed for 1, 2, 3, 4, 5 min, respectively, 30 min after administration of 99mTcO4. while 60 views were filmed per frame for 20 min at 55 min for the SPECT/CT imaging. In planar imaging, the gamma ray counting rates as a function of filming time were reduced showing a statistically significant difference when mixed according to the type of contrast medium density rather than when the radioactive isotope 99mTcO4 and the saline solution were mixed. In the tomography for mixing of the radioactive isotope 99mTcO4 and saline solution, the mean counting rate without correction by the CT absorption coefficient is 182±26 counts, while the counting rate with correction by the CT absorption coefficient is 531.3±34 counts. In the tomography for mixing of the radioactive isotope 99mTcO4 and the saline solution with the contrast medium, the mean values before attenuation correction by CT absorption coefficient were 166±29, 158.3±17, 154±36, and 150±33 counts depending on the densities of the contrast medium, while the mean values after attenuation correction were 515±03, 503±10, 496±31, and 488.7±33 counts, showing significant differences in both cases when comparatively evaluated with the imaging for no mixing of the contrast medium. Iodine contrast medium affects the rate of gamma ray. Therefore, You should always be preceded before another test on the day of diagnosis.

  14. Angular resolution study of a combined gamma-neutron coded aperture imager for standoff detection

    International Nuclear Information System (INIS)

    Ayaz-Maierhafer, Birsen; Hayward, Jason P.; Ziock, Klaus P.; Blackston, Matthew A.; Fabris, Lorenzo

    2013-01-01

    Nuclear threat source observables at standoff distances of tens of meters from mCi class sources include both gamma-rays and neutrons. This work uses simulations to investigate the effects of the angular resolution of a mobile gamma-ray and neutron coded aperture imaging system upon orphan source detection significance and specificity. The design requires maintaining high sensitivity and specificity while keeping the system size as compact as possible to reduce weight, footprint, and cost. A mixture of inorganic and organic scintillators was considered in the detector plane for high sensitivity to both gamma-rays and fast neutrons. For gamma-rays (100 to 2500 keV) and fission spectrum neutrons, angular resolutions of 1–9° and radiation angles of incidence appropriate for mobile search were evaluated. Detection significance for gamma-rays considers those events that contribute to the photopeak of the image pixel corresponding the orphan source location. For detection of fission spectrum neutrons, energy depositions above a set pulse shape discrimination threshold were tallied. The results show that the expected detection significance for the system at an angular resolution of 1° is significantly lower compared to its detection significance an angular resolution of ∼3–4°. An angular resolution of ∼3–4° is recommended both for better detection significance and improved false alarm rate, considering that finer angular resolution does not result in improved background rejection when the coded aperture method is used. Instead, over-pixelating the search space may result in an unacceptably high false alarm rate

  15. Regional SAR Image Segmentation Based on Fuzzy Clustering with Gamma Mixture Model

    Science.gov (United States)

    Li, X. L.; Zhao, Q. H.; Li, Y.

    2017-09-01

    Most of stochastic based fuzzy clustering algorithms are pixel-based, which can not effectively overcome the inherent speckle noise in SAR images. In order to deal with the problem, a regional SAR image segmentation algorithm based on fuzzy clustering with Gamma mixture model is proposed in this paper. First, initialize some generating points randomly on the image, the image domain is divided into many sub-regions using Voronoi tessellation technique. Each sub-region is regarded as a homogeneous area in which the pixels share the same cluster label. Then, assume the probability of the pixel to be a Gamma mixture model with the parameters respecting to the cluster which the pixel belongs to. The negative logarithm of the probability represents the dissimilarity measure between the pixel and the cluster. The regional dissimilarity measure of one sub-region is defined as the sum of the measures of pixels in the region. Furthermore, the Markov Random Field (MRF) model is extended from pixels level to Voronoi sub-regions, and then the regional objective function is established under the framework of fuzzy clustering. The optimal segmentation results can be obtained by the solution of model parameters and generating points. Finally, the effectiveness of the proposed algorithm can be proved by the qualitative and quantitative analysis from the segmentation results of the simulated and real SAR images.

  16. X-ray and gamma-ray transmission computed tomographic imaging of archaeological objects

    International Nuclear Information System (INIS)

    Jaafar Abdullah; Susan Maria Sipaun

    2004-01-01

    X-ray or gamma-ray transmission computed tomography (CT) is a powerful non-destructive evaluation (NDE) technique that produces two-dimensional cross-section images of an object without the need to physically section it. CT is also known by the acronym CAT, for computerised axial tomography or computed-aided tomography. The invention of CT techniques revolutionised the field of medical diagnostic imaging because it provided more detailed and useful information than any previous non-invasive imaging techniques. The method is increasingly being used in industry, aerospace, geosciences and archaeology. This paper presents a brief overview of X-ray or gamma-ray transmission tomography. It is not intended to be a technical treatise but is hoped that it would raise awareness and promote opportunities for further collaboration amongst the nuclear research community, including archaeologists and those in the conservation profession. The theoretical aspects of CT scanner, the system configurations and the adopted algorithm for image reconstruction are discussed. In addition, a few examples of CT images for archaeological objects are presented. The examples were purposely chosen to illustrate clearly and precisely the fundamental concepts of this sophisticated field. (Author)

  17. Evaluation of Origin Ensemble algorithm for image reconstruction for pixelated solid-state detectors with large number of channels

    Science.gov (United States)

    Kolstein, M.; De Lorenzo, G.; Mikhaylova, E.; Chmeissani, M.; Ariño, G.; Calderón, Y.; Ozsahin, I.; Uzun, D.

    2013-04-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated solid-state technology for nuclear medicine applications. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). For PET scanners, conventional algorithms like Filtered Back-Projection (FBP) and Ordered Subset Expectation Maximization (OSEM) are straightforward to use and give good results. However, FBP presents difficulties for detectors with limited angular coverage like PEM and Compton gamma cameras, whereas OSEM has an impractically large time and memory consumption for a Compton gamma camera with a large number of channels. In this article, the Origin Ensemble (OE) algorithm is evaluated as an alternative algorithm for image reconstruction. Monte Carlo simulations of the PET design are used to compare the performance of OE, FBP and OSEM in terms of the bias, variance and average mean squared error (MSE) image quality metrics. For the PEM and Compton camera designs, results obtained with OE are presented.

  18. Optimization of Compton-suppression and summing schemes for the TIGRESS HPGe detector array

    Science.gov (United States)

    Schumaker, M. A.; Svensson, C. E.; Andreoiu, C.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Boston, A. J.; Chakrawarthy, R. S.; Churchman, R.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hyland, B.; Jones, B.; Maharaj, R.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Sarazin, F.; Scraggs, H. C.; Smith, M. B.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.

    2007-04-01

    Methods of optimizing the performance of an array of Compton-suppressed, segmented HPGe clover detectors have been developed which rely on the physical position sensitivity of both the HPGe crystals and the Compton-suppression shields. These relatively simple analysis procedures promise to improve the precision of experiments with the TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS). Suppression schemes will improve the efficiency and peak-to-total ratio of TIGRESS for high γ-ray multiplicity events by taking advantage of the 20-fold segmentation of the Compton-suppression shields, while the use of different summing schemes will improve results for a wide range of experimental conditions. The benefits of these methods are compared for many γ-ray energies and multiplicities using a GEANT4 simulation, and the optimal physical configuration of the TIGRESS array under each set of conditions is determined.

  19. The experimental challenge of virtual compton scattering above 8 GeV

    International Nuclear Information System (INIS)

    Pierre Bertin; Yves Roblin; Charles Hyde-Wright

    1999-01-01

    We discuss the experimental issues confronting measurements of the Virtual Compton Scattering (VCS) reaction ep->ep gamma with electron beam energies 6-30 GeV. We specifically address the kinematics of Deeply Virtual Compton Scattering (Deep Inelastic Scattering, with coincident detection of the exclusive real photon nearly parallel to the virtual photon direction) and large transverse momentum VCS (High energy VCS of arbitrary Q 2 , and the recoil proton emitted with high momentum transverse to the virtual photon direction). We discuss the experimental equipment necessary for these measurements. For the DVCS, we emphasize the importance of the Bethe-Heitler-Compton interference terms that can be measured with the electron-positron (beam charge) asymmetry, and the electron beam helicity asymmetry

  20. MeV gamma-ray observation with a well-defined point spread function based on electron tracking

    Science.gov (United States)

    Takada, A.; Tanimori, T.; Kubo, H.; Mizumoto, T.; Mizumura, Y.; Komura, S.; Kishimoto, T.; Takemura, T.; Yoshikawa, K.; Nakamasu, Y.; Matsuoka, Y.; Oda, M.; Miyamoto, S.; Sonoda, S.; Tomono, D.; Miuchi, K.; Kurosawa, S.; Sawano, T.

    2016-07-01

    The field of MeV gamma-ray astronomy has not opened up until recently owing to imaging difficulties. Compton telescopes and coded-aperture imaging cameras are used as conventional MeV gamma-ray telescopes; however their observations are obstructed by huge background, leading to uncertainty of the point spread function (PSF). Conventional MeV gamma-ray telescopes imaging utilize optimizing algorithms such as the ML-EM method, making it difficult to define the correct PSF, which is the uncertainty of a gamma-ray image on the celestial sphere. Recently, we have defined and evaluated the PSF of an electron-tracking Compton camera (ETCC) and a conventional Compton telescope, and thereby obtained an important result: The PSF strongly depends on the precision of the recoil direction of electron (scatter plane deviation, SPD) and is not equal to the angular resolution measure (ARM). Now, we are constructing a 30 cm-cubic ETCC for a second balloon experiment, Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment: SMILE-II. The current ETCC has an effective area of 1 cm2 at 300 keV, a PSF of 10° at FWHM for 662 keV, and a large field of view of 3 sr. We will upgrade this ETCC to have an effective area of several cm2 and a PSF of 5° using a CF4-based gas. Using the upgraded ETCC, our observation plan for SMILE-II is to map of the electron-positron annihilation line and the 1.8 MeV line from 26Al. In this paper, we will report on the current performance of the ETCC and on our observation plan.

  1. Analysis of dark current images of a CMOS camera during gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Náfrádi, Gábor, E-mail: nafradi@reak.bme.hu [INT, BME, EURATOM Association, H-1111 Budapest (Hungary); Czifrus, Szabolcs, E-mail: czifrus@reak.bme.hu [INT, BME, EURATOM Association, H-1111 Budapest (Hungary); Kocsis, Gábor, E-mail: kocsis.gabor@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary); Pór, Gábor, E-mail: por@reak.bme.hu [INT, BME, EURATOM Association, H-1111 Budapest (Hungary); Szepesi, Tamás, E-mail: szepesi.tamas@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary); Zoletnik, Sándor, E-mail: zoletnik.sandor@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary)

    2013-12-15

    Highlights: • Radiation tolerance of a fast framing CMOS camera EDICAM examined. • We estimate the expected gamma dose and spectrum of EDICAM with MCNP. • We irradiate EDICAM by 23.5 Gy in 70 min in a fission rector. • Dose rate normalised average brightness of frames grows linearly with the dose. • Dose normalised average brightness of frames follows the dose rate time evolution. -- Abstract: We report on the behaviour of the dark current images of the Event Detection Intelligent Camera (EDICAM) when placed into an irradiation field of gamma rays. EDICAM is an intelligent fast framing CMOS camera operating in the visible spectral range, which is designed for the video diagnostic system of the Wendelstein 7-X (W7-X) stellarator. Monte Carlo calculations were carried out in order to estimate the expected gamma spectrum and dose for an entire year of operation in W7-X. EDICAM was irradiated in a pure gamma field in the Training Reactor of BME with a dose of approximately 23.5 Gy in 1.16 h. During the irradiation, numerous frame series were taken with the camera with exposure times 20 μs, 50 μs, 100 μs, 1 ms, 10 ms, 100 ms. EDICAM withstood the irradiation, but suffered some dynamic range degradation. The behaviour of the dark current images during irradiation is described in detail. We found that the average brightness of dark current images depends on the total ionising dose that the camera is exposed to and the dose rate as well as on the applied exposure times.

  2. Feature Matching for SAR and Optical Images Based on Gaussian-Gamma-shaped Edge Strength Map

    Directory of Open Access Journals (Sweden)

    CHEN Min

    2016-03-01

    Full Text Available A matching method for SAR and optical images, robust to pixel noise and nonlinear grayscale differences, is presented. Firstly, a rough correction to eliminate rotation and scale change between images is performed. Secondly, features robust to speckle noise of SAR image are detected by improving the original phase congruency based method. Then, feature descriptors are constructed on the Gaussian-Gamma-shaped edge strength map according to the histogram of oriented gradient pattern. Finally, descriptor similarity and geometrical relationship are combined to constrain the matching processing.The experimental results demonstrate that the proposed method provides significant improvement in correct matches number and image registration accuracy compared with other traditional methods.

  3. Relationship between image quality and changes in spatial resolution for the gamma camera

    International Nuclear Information System (INIS)

    Ikeda, Hozumi; Kishimoto, Kenji; Shimonishi, Yoshihiro; Ohmura, Masahiro; Kosakai, Kazuhisa; Hamada, Kunio; Ochi, Hironobu.

    1989-01-01

    The purpose of this study is to examine quantitatively the relationship between visual image quality and degradation in spatial resolution for a gamma camera by the increase in distance from collimator. The relationship between the proportion (p) of images identified the difference of image quality and the difference (δFWHM) in FWHM between paired images was showed in a sigmoid curve. Using Dendy's method, minimum level to be correctly identified the difference of image quality on three out of four occasions (p=0.75) was corresponded to 0.4 mm in δFWHM. Using fuzzy theory, the level to be identified the difference of image quality was examind under various conditions. The truth-value of fuzzy sets-degraded or slightly degraded and not-degraded in image quality between paired images-was gained the peak at 0.5 mm of δFWHM. It was founded that changes of 0.4-0.5 mm in FWHM-corresponding about 2 cm distance from collimator-could be sufficiently identified in the difference of image quality. (author)

  4. Applications of multi-pinhole gamma camera collimation to tomography and image enhancement

    International Nuclear Information System (INIS)

    Simpson, D.R.

    1981-01-01

    Recently, multi-pinhole gamma camera collimation has been introduced in the field of emission tomography. This collimation process simultaneously produces several images covering a limited angular range, which may then be recombined to obtain tomographic slices of the object imaged. This study has investigated a possible method for improving the images obtained by this technique by two multi-pinhole views taken 90 0 apart. During the course of this work, multi-pinhole collimation was also applied to in vivo imaging of the disintegration of tablets. Collimmators were designed and built both for tomography and imaging tablet disintegration, and computer programs were written to reconstruct the images by simple backprojection and by filtered backprojection. The use of multi-pinhole collimators to image the disintegration of tablets in vivo was clearly demonstrated. Phantom tests done in vitro were capable of imaging defects as small as 5 mm 2 , while images made with real tablets both in vitro and in vivo readily showed the onset and progress of the tablet disintegration. Further experiments are planned using this technique to measure gastric emptying times disintegration times of various tablet formulations. Limitations of multi-pinhole technique included problems such as limited ranges of viewing and artifacts introduced due to incomplete sampling

  5. Gamma Camera with Image Amplifier: Application in Nuclear Medicine; Camera Gamma a Amplificateur d'Image: Application en Medecine Nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Kellershohn, C.; Vernejoul, P. de; Desgrez, A. [CEA, Service Hospitalier Frederic Joliot, Orsay (France); Lequais, J.; Roux, G.; Lansiart, A. [CEA, Centre d' Etudes Nucleaires de Saclay, Gif-Sur-Yvette (France)

    1969-05-15

    The camera described has an optical system consisting of a lead grid collimator with 649 cylindrical channels 130 mm long and 5.5 mm in diameter; a detector consisting of a mosaic of 700 NaI(Tl) crystals with an effective diameter of 5.5 mm, length 20 mm, and a distance of 7.5 mm between the axes; and a light amplification device consisting of an initial image amplifier (No. 9463 of the French Thomson-Houston Company), the photocathode of which is in optical contact with the detector and is itself optically coupled to a second, high-gain light amplifier (P 829A, from English Electric Valve). In accordance with a principle first laid down during the preceding Conference on Medical Isotope Scanning organized by the International Atomic Energy Agency, this second amplifier may also be used as an electronic shutter operated by a photomultiplier which selects the light originating in the radio active source under examination. This device very effectively suppresses the background from the first amplifier tube. With reference to applications, the camera is used for two types of operation: firstly for the activation of the electronic shutter device, the rate of whose opening and shutting may reach 10 kHz; the background is almost entirely eliminated and it is possible with trace doses of conventional radionuclides to obtain images of such organs as the thyroid, liver, kidney, etc., in very short exposure times by comparison with customary scanning; secondly, by utilizing radionuclides of very short half-life with very high activities (of the order of several mCi), it is no longer necessary to effect suppression of the background whose repetition frequency is limited to 10 kHz. One can thus obtain ultrashort exposure times, e.g., about 1/20th of a second for an amount of 10 mCi of {sup 99m}Tc; such exposure times make cinematography possible. Various examples are supplied of applications making use of {sup 99m}Tc, {sup 137m}Ba and {sup 133}Xe in the field of vascular and

  6. High-resolution single photon planar and spect imaging of brain and neck employing a system of two co-registered opposed gamma imaging heads

    Science.gov (United States)

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA

    2011-12-06

    A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.

  7. Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification.

    Science.gov (United States)

    Hamel, Michael C; Polack, J Kyle; Ruch, Marc L; Marcath, Matthew J; Clarke, Shaun D; Pozzi, Sara A

    2017-08-11

    The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to a possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.

  8. Collision, scattering and absorption differential cross-sections in double-photon Compton scattering

    International Nuclear Information System (INIS)

    Dewan, R.; Saddi, M.B.; Sandhu, B.S.; Singh, B.; Ghumman, B.S.

    2005-01-01

    The collision, scattering and absorption differential cross-sections of double-photon Compton scattering are measured experimentally for 0.662 MeV incident gamma photons. Two simultaneously emitted gamma quanta are investigated using a slow-fast coincidence technique having 25 ns resolving time. The coincidence spectra for different energy windows of one of the two final photons are recorded using HPGe detector. The experimental data do not suffer from inherent energy resolution of gamma detector and provide more faithful reproduction of the distribution under the full energy peak of recorded coincidence spectra. The present results are in agreement with the currently acceptable theory of this higher order process

  9. Basic study on gamma- and X-ray imaging technology using miniature radiation source

    International Nuclear Information System (INIS)

    Saito, Naoki; Koroki, Kenro; Kurosawa, Kenji

    2000-01-01

    In order to visualize a concealed unlawful matter, visualization using X-ray perspective image is effective, which is actualized. However, it is insufficient by conventional X-ray perspective image to visualize matters and substances of light elements such as narcotics, plastic bombs, and so forth, especially those in a metal container. Then, this study aims at basic research on visualization of perspective image on a weapon such as pistol and so on or a light element substance in a metal container such as car by using gamma-ray with various wave-lengths from a small radiation source. In 1998 fiscal year, a photographing system consisting of an X-ray 2 and a cooled CCD camera was constructed to carry out some simple photographing experiments. By judging through this experimental results only, 57 Co can be said to be more suitable to gamma-ray source for the perspective image photographing than 137 Cs is, which will be a future subject because of supposed dependence of specimen amount, shielding panel thickness or detector. (G.K.)

  10. Monte Carlo modeling of neutron and gamma-ray imaging systems

    International Nuclear Information System (INIS)

    Hall, J.

    1996-04-01

    Detailed numerical prototypes are essential to design of efficient and cost-effective neutron and gamma-ray imaging systems. We have exploited the unique capabilities of an LLNL-developed radiation transport code (COG) to develop code modules capable of simulating the performance of neutron and gamma-ray imaging systems over a wide range of source energies. COG allows us to simulate complex, energy-, angle-, and time-dependent radiation sources, model 3-dimensional system geometries with ''real world'' complexity, specify detailed elemental and isotopic distributions and predict the responses of various types of imaging detectors with full Monte Carlo accuray. COG references detailed, evaluated nuclear interaction databases allowingusers to account for multiple scattering, energy straggling, and secondary particle production phenomena which may significantly effect the performance of an imaging system by may be difficult or even impossible to estimate using simple analytical models. This work presents examples illustrating the use of these routines in the analysis of industrial radiographic systems for thick target inspection, nonintrusive luggage and cargoscanning systems, and international treaty verification

  11. High resolution phoswich gamma-ray imager utilizing monolithic MPPC arrays with submillimeter pixelized crystals

    Science.gov (United States)

    Kato, T.; Kataoka, J.; Nakamori, T.; Kishimoto, A.; Yamamoto, S.; Sato, K.; Ishikawa, Y.; Yamamura, K.; Kawabata, N.; Ikeda, H.; Kamada, K.

    2013-05-01

    We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 105 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.

  12. Camera Concepts for the Advanced Gamma-Ray Imaging System (AGIS)

    Science.gov (United States)

    Nepomuk Otte, Adam

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. The incorporation of trigger electronics and signal digitization into the camera are under study. Given the size of AGIS, the camera must be reliable, robust, and cost effective. We are investigating several directions that include innovative technologies such as Geiger-mode avalanche-photodiodes as a possible detector and switched capacitor arrays for the digitization.

  13. The Advanced Gamma-ray Imaging System (AGIS): Telescope Optical System Designs

    Science.gov (United States)

    Vassiliev, Vladimir; Buckley, Jim; Falcone, Abe; Fegan, Steven; Finley, John; Gaurino, Victor; Hanna, David; Kaaret, Philip; Konopelko, Alex; Krawczynski, Henric; Romani, Roger; Weekes, Trevor

    2008-04-01

    AGIS is a conceptual design for a future ground-based gamma-ray observatory based on an array of ˜100 imaging atmospheric Cherenkov telescopes (IACTs) with a sensitivity to gamma-rays in the energy range 40 GeV-100 TeV. The anticipated improvement of AGIS sensitivity, angular resolution, and reliability of operation imposes demanding technological and cost requirements on the design of the IACTs. In this submission we focus on the optical system (OS) of the AGIS telescopes and consider options which include traditional Davies-Cotton and the other prime- focus telescope designs, as well as a novel two-mirror aplanatic OS originally proposed by Schwarzschild. Emerging new mirror production technologies based on replication processes such as cold and hot glass slumping, cured CFRP, and electroforming provide new opportunities for cost effective solutions for the design of the OS. We evaluate the capabilities of these mirror fabrication methods for the AGIS project.

  14. The gamma-ray arc-minute imaging system (GRATIS) - Mechanical design and expected performance

    International Nuclear Information System (INIS)

    Seiffert, M.; Lubin, P.; Hailey, C.J.; Ziock, K.P.; Harrison, F.A.

    1989-01-01

    A balloon experiment, GRATIS, is being constructed which will perform the first arcmin imaging of cosmic sources in the 30 - 200 keV energy band. Observations conducted with GRATIS can provide data relevant to several key problems in high energy astrophysics, including the physical processes responsible for the high energy tail observed in the soft gamma-ray spectra of clusters of galaxies and the origin of both the diffuse and point-source components of the gamma-ray emission from the Galactic Center. This paper discusses the scientific motivations in detail, outlines the experiment, discusses several aspects of the design and construction of hardware components, gives an overview of the stabilized platform, and shows the expected performance and sensitivity. 16 refs

  15. Maximum likelihood positioning for gamma-ray imaging detectors with depth of interaction measurement

    International Nuclear Information System (INIS)

    Lerche, Ch.W.; Ros, A.; Monzo, J.M.; Aliaga, R.J.; Ferrando, N.; Martinez, J.D.; Herrero, V.; Esteve, R.; Gadea, R.; Colom, R.J.; Toledo, J.; Mateo, F.; Sebastia, A.; Sanchez, F.; Benlloch, J.M.

    2009-01-01

    The center of gravity algorithm leads to strong artifacts for gamma-ray imaging detectors that are based on monolithic scintillation crystals and position sensitive photo-detectors. This is a consequence of using the centroids as position estimates. The fact that charge division circuits can also be used to compute the standard deviation of the scintillation light distribution opens a way out of this drawback. We studied the feasibility of maximum likelihood estimation for computing the true gamma-ray photo-conversion position from the centroids and the standard deviation of the light distribution. The method was evaluated on a test detector that consists of the position sensitive photomultiplier tube H8500 and a monolithic LSO crystal (42mmx42mmx10mm). Spatial resolution was measured for the centroids and the maximum likelihood estimates. The results suggest that the maximum likelihood positioning is feasible and partially removes the strong artifacts of the center of gravity algorithm.

  16. Maximum likelihood positioning for gamma-ray imaging detectors with depth of interaction measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, Ch.W. [Grupo de Sistemas Digitales, ITACA, Universidad Politecnica de Valencia, 46022 Valencia (Spain)], E-mail: lerche@ific.uv.es; Ros, A. [Grupo de Fisica Medica Nuclear, IFIC, Universidad de Valencia-Consejo Superior de Investigaciones Cientificas, 46980 Paterna (Spain); Monzo, J.M.; Aliaga, R.J.; Ferrando, N.; Martinez, J.D.; Herrero, V.; Esteve, R.; Gadea, R.; Colom, R.J.; Toledo, J.; Mateo, F.; Sebastia, A. [Grupo de Sistemas Digitales, ITACA, Universidad Politecnica de Valencia, 46022 Valencia (Spain); Sanchez, F.; Benlloch, J.M. [Grupo de Fisica Medica Nuclear, IFIC, Universidad de Valencia-Consejo Superior de Investigaciones Cientificas, 46980 Paterna (Spain)

    2009-06-01

    The center of gravity algorithm leads to strong artifacts for gamma-ray imaging detectors that are based on monolithic scintillation crystals and position sensitive photo-detectors. This is a consequence of using the centroids as position estimates. The fact that charge division circuits can also be used to compute the standard deviation of the scintillation light distribution opens a way out of this drawback. We studied the feasibility of maximum likelihood estimation for computing the true gamma-ray photo-conversion position from the centroids and the standard deviation of the light distribution. The method was evaluated on a test detector that consists of the position sensitive photomultiplier tube H8500 and a monolithic LSO crystal (42mmx42mmx10mm). Spatial resolution was measured for the centroids and the maximum likelihood estimates. The results suggest that the maximum likelihood positioning is feasible and partially removes the strong artifacts of the center of gravity algorithm.

  17. Advantages of GSO Scintillator in Imaging and Law Level Gamma-ray Spectroscopy

    CERN Document Server

    Sharaf, J

    2002-01-01

    The single GSO crystal is an excellent scintillation material featuring a high light yield and short decay time for gamma-ray detection. Its performance characteristics were investigated and directly compared to those of BGO. For this purpose, the two scintillators are cut into small crystals of approximately 4*4*10 mm sup 3 and mounted on a PMT. Energy resolution, detection efficiency and counting precision have been measured for various photon energies. In addition to this spectroscopic characterization, the imaging performance of GSO was studied using a scanning rig. The modulation transfer function was calculated and the spatial resolution evaluated by measurements of the detector's point spread function. It is shown that there exists some source intensity for which the two scintillators yield identical precision for identical count time. Below this intensity, the GSO is superior to the BGO detector. The presented properties of GSO suggest potential applications of this scintillator in gamma-ray spectrosc...

  18. Multiwire proportional gamma camera for imaging /sup 99/Tcsup(m) radionuclide distributions

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J E; Connolly, J F [Science Research Council, Chilton (UK). Rutherford Lab.

    1978-05-01

    A gamma camera made of multiple multiwire proportional chambers with thin converter foils has been evaluated for clinical application. Results are presented from a small prototype (10 cm x 10 cm) showing good imaging of /sup 99/Tcsup(m) radionuclide distributions and confirming the predictions of the theory regarding quantum efficiency and spatial resolution. The technique is especially aimed at creating a gamma camera with an active area > approximately 3 1m/sup 2/, a quantum efficiency of 15% and a spatial resolution approximately 3 mm, whole body scanning and tomographic applications. The results generated by the current prototype indicate that the above requirements can be met using relatively cheap mass production techniques from the electronics industry. This apparatus is covered by patent application number 26595/77.

  19. A multiwire proportional gamma camera for imaging 99Tcsup(m) radionuclide distributions

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1978-01-01

    A gamma camera made of multiple multiwire proportional chambers with thin converter foils has been evaluated for clinical application. Results are presented from a small prototype (10 cm x 10 cm) showing good imaging of 99 Tcsup(m) radionuclide distributions and confirming the predictions of the theory regarding quantum efficiency and spatial resolution. The technique is especially aimed at creating a gamma camera with an active area > approximately 3 1m 2 , a quantum efficiency of 15% and a spatial resolution approximately 3 mm, whole body scanning and tomographic applications. The results generated by the current prototype indicate that the above requirements can be met using relatively cheap mass production techniques from the electronics industry. This apparatus is covered by patent application number 26595/77. (author)

  20. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J.; Galvis-Alonso, O.Y., E-mail: mejia_famerp@yahoo.com.b [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Biologia Molecular; Castro, A.A. de; Simoes, M.V. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Clinica Medica; Leite, J.P. [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Braga, J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Astrofisica

    2010-11-15

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology. (author)

  1. Cerebral cavernous malformations. Serial magnetic resonance imaging findings in patients with and without gamma knife surgery

    International Nuclear Information System (INIS)

    Yoon Pyeong-Ho; Kim, Dong-Ik; Jeon Pyoung; Ryu, Young-Hoon; Hwang, Geum-Joo; Park, Sang-Joon

    1998-01-01

    To classify the cerebral cavernous malformations and to investigate the natural history of cavernous malformations according to the classification, 41 patients with 61 cavernous malformations (40 cavernous malformations from 22 patients treated with gamma knife surgery) were regularly followed up using MR imaging for a mean period of 25.5 months in treated cavernous malformations and 20.7 months in untreated cavernous malformations, respectively. Cavernous malformations were classified into four types. Follow-up MR images were analyzed to evaluate changes in size, signal intensity, rebleeding, and perilesional adverse reaction of irradiation. A total of 61 cavernous malformations including 17 in type I, 23 in type II, 10 in type III, and 11 in type IV showed usual degradation of blood product in 22 cavernous malformations, no change in shape and signal intensity in 31 cavernous malformations, and eight cavernous malformations with rebleedings in the serial MR images. In these eight cavernous malformations with rebleedings, six occurred in type II and two in type III, but none in type I or IV. Rebleedings were more frequent in type II than in other types. Adverse reaction of irradiation was observed in five of 22 patients treated with gamma knife surgery. Although most cerebral cavernous malformations showed evolution of hemorrhage or no change in size or shape on follow-up MR images, cerebral cavernous malformations represented as mixture of subacute and chronic hemorrhage with hemosiderin rim (type II) have a higher frequency to rebleed than other types of cerebral cavernous malformations. Cerebral cavernous malformations represented as hemosiderin deposition without central core (type IV) have a lower tendency to rebleed than other types and do not need any treatment. Most of the adverse reaction of irradiation after gamma knife surgery around cavernous malformations are transient findings and are considered to be perilesional edema. (K.H)

  2. Gamma-ray imaging and holdup assays of 235-F PuFF cells 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    Aucott, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-12-20

    Savannah River National Laboratory (SRNL) Nuclear Measurements (L4120) was tasked with performing enhanced characterization of the holdup in the PuFF shielded cells. Assays were performed in accordance with L16.1-ADS-2460 using two high-resolution gamma-ray detectors. The first detector, an In Situ Object Counting System (ISOCS)-characterized detector, was used in conjunction with the ISOCS Geometry Composer software to quantify grams of holdup. The second detector, a Germanium Gamma-ray Imager (GeGI), was used to visualize the location and relative intensity of the holdup in the cells. Carts and collimators were specially designed to perform optimum assays of the cells. Thick, pencil-beam tungsten collimators were fabricated to allow for extremely precise targeting of items of interest inside the cells. Carts were designed with a wide range of motion to position and align the detectors. A total of 24 measurements were made, each typically 24 hours or longer to provide sufficient statistical precision. This report presents the results of the enhanced characterization for cells 1 and 2. The measured gram values agree very well with results from the 2014 study. In addition, images were created using both the 2014 data and the new GeGI data. The GeGI images of the cells walls reveal significant Pu-238 holdup on the surface of the walls in cells 1 and 2. Additionally, holdup is visible in the two pass-throughs from cell 1 to the wing cabinets. This report documents the final element (exterior measurements coupled with gamma-ray imaging and modeling) of the enhanced characterization of cells 1-5 (East Cell Line).

  3. Image Denoising via Bayesian Estimation of Statistical Parameter Using Generalized Gamma Density Prior in Gaussian Noise Model

    Science.gov (United States)

    Kittisuwan, Pichid

    2015-03-01

    The application of image processing in industry has shown remarkable success over the last decade, for example, in security and telecommunication systems. The denoising of natural image corrupted by Gaussian noise is a classical problem in image processing. So, image denoising is an indispensable step during image processing. This paper is concerned with dual-tree complex wavelet-based image denoising using Bayesian techniques. One of the cruxes of the Bayesian image denoising algorithms is to estimate the statistical parameter of the image. Here, we employ maximum a posteriori (MAP) estimation to calculate local observed variance with generalized Gamma density prior for local observed variance and Laplacian or Gaussian distribution for noisy wavelet coefficients. Evidently, our selection of prior distribution is motivated by efficient and flexible properties of generalized Gamma density. The experimental results show that the proposed method yields good denoising results.

  4. The clinical impact of a combined gamma camera/CT imaging system on somatostatin receptor imaging of neuroendocrine tumours

    International Nuclear Information System (INIS)

    Hillel, P.G.; Beek, E.J.R. van; Taylor, C.; Lorenz, E.; Bax, N.D.S.; Prakash, V.; Tindale, W.B.

    2006-01-01

    AIM: With a combined gamma camera/CT imaging system, CT images are obtained which are inherently registered to the emission images and can be used for the attenuation correction of SPECT and for mapping the functional information from these nuclear medicine tomograms onto anatomy. The aim of this study was to evaluate the clinical impact of SPECT/CT using such a system for somatostatin receptor imaging (SRI) of neuroendocrine tumours. MATERIALS AND METHODS: SPECT/CT imaging with 111 In-Pentetreotide was performed on 29 consecutive patients, the majority of whom had carcinoid disease. All SPECT images were first reported in isolation and then re-reported with the addition of the CT images for functional anatomical mapping (FAM). RESULTS: Fifteen of the 29 SPECT images were reported as abnormal, and in 11 of these abnormal images (73%) FAM was found to either establish a previously unknown location (7/11) or change the location (4/11) of at least one lesion. The revised location could be independently confirmed in 64% of these cases. Confirmation of location was not possible in the other patients due to either a lack of other relevant investigations, or the fact that lesions seen in the SPECT images were not apparent in the other investigations. FAM affected patient management in 64% of the cases where the additional anatomical information caused a change in the reported location of lesions. CONCLUSION: These results imply that FAM can improve the reporting accuracy for SPECT SRI with significant impact on patient management

  5. Polarization observables in Virtual Compton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Doria, Luca

    2007-10-15

    Virtual Compton Scattering (VCS) is an important reaction for understanding nucleon structure at low energies. By studying this process, the generalized polarizabilities of the nucleon can be measured. These observables are a generalization of the already known polarizabilities and will permit theoretical models to be challenged on a new level. More specifically, there exist six generalized polarizabilities and in order to disentangle them all, a double polarization experiment must be performed. Within this work, the VCS reaction p(e,e'p){gamma} was measured at MAMI using the A1 Collaboration three spectrometer setup with Q{sup 2}=0.33 (GeV/c){sup 2}. Using the highly polarized MAMI beam and a recoil proton polarimeter, it was possible to measure both the VCS cross section and the double polarization observables. Already in 2000, the unpolarized VCS cross section was measured at MAMI. In this new experiment, we could confirm the old data and furthermore the double polarization observables were measured for the first time. The data were taken in five periods between 2005 and 2006. In this work, the data were analyzed to extract the cross section and the proton polarization. For the analysis, a maximum likelihood algorithm was developed together with the full simulation of all the analysis steps. The experiment is limited by the low statistics due mainly to the focal plane proton polarimeter efficiency. To overcome this problem, a new determination and parameterization of the carbon analyzing power was performed. The main result of the experiment is the extraction of a new combination of the generalized polarizabilities using the double polarization observables. (orig.)

  6. Compton suppression system at Penn State Radiation Science and Engineering Center

    International Nuclear Information System (INIS)

    Cetiner, N.Oe.; Uenlue, K.; Brenizer, J.S.

    2008-01-01

    A Compton suppression system is used to reduce the contribution of scattered gamma-rays that originate within the HPGe detector to the gamma ray spectrum. The HPGe detector is surrounded by an assembly of guard detectors, usually NaI(Tl). The HPGe and NaI(Tl) detectors are operated in anti-coincidence mode. The NaI(Tl) guard detector detects the photons that Compton scatter within, and subsequently escape from the HPGe detector. Since these photons are correlated with the partial energy deposition within the detector, much of the resulting Compton continuum can be subtracted from the spectrum reducing the unwanted background in gamma-ray spectra. A commercially available Compton suppression spectrometer (CSS) was purchased from Canberra Industries and tested at the Radiation Science and Engineering Center at Penn State University. The PSU-CSS includes a reverse bias HPGe detector, four annulus NaI(Tl) detectors, a NaI(Tl) plug detector, detector shields, data acquisition electronics, and a data processing computer. The HPGe detector is n-type with 54% relative efficiency. The guard detectors form an annulus with 9-inch diameter and 9-inch height, and have a plug detector that goes into/out of the annulus with the help of a special lift apparatus to raise/lower. The detector assembly is placed in a shielding cave. State-of-the-art electronics and software are used. The system was tested using standard sources, neutron activated NIST SRM sample and Dendrochronologically Dated Tree Ring samples. The PSU-CSS dramatically improved the peak-to-Compton ratio, up to 1000 : 1 for the 137 Cs source. (author)

  7. Optical imaging of gamma-ray bursts with the LONEOS telescope

    International Nuclear Information System (INIS)

    Wagner, R.M.; Bowell, E.; Koehn, B.W.; Cook, K.H.; Howell, S.B.; Shrader, C.R.; Starrfield, S.G.; Stubbs, C.W.

    1998-01-01

    The optical identification of gamma-ray bursts discovered and localized by BACODINE/LOCBURST using the Lowell Observatory Near-Earth Object Search (LONEOS) 58-cm Schmidt-type telescope and mosaic CCD camera is described. In its final form, LONEOS images 10 square degrees of the sky (3.2 degree x3.2 degree) to ∼22nd mag (2σ) in a 5 minute integration. Identification of optical transients will be based on variability by comparison with subsequent images or previous scans of the region. To date, optical images have been obtained of three BATSE triggers processed by LOCBURST for development and evaluation purposes. copyright 1998 American Institute of Physics

  8. Gamma camera imaging of bilateral adrenocartical hyperplasia and adrenal tumors in the dog

    International Nuclear Information System (INIS)

    Mulnix, J.A.; Van den Brom, W.E.; Lubberink, A.A.; de Bruijne, J.J.; Rijnberk, A.

    1976-01-01

    Gamma camera imaging of the adrenal glands was done in 8 dogs with hyperadrenocorticism and 4 normal dogs given intravenous injections of 131I-19-iodocholesterol. In normal dogs, both adrenal glands could be visualized separately, and there was no difficulty in distinguishing among the images of normal glands, hyperplastic glands, and functional adrenal tumors. In addition, gamma camera imaging enabled the correct surgical site to be selected for removal of adrenal tumors. Hyperadrenocorticism was diagnosed in 8 dogs by evaluation of urinary 17-hydroxycorticosteroid (OHCS) excretion rates, urinary 17-OHCS and plasma 11 beta-OHCS responses to dexamethasone suppression of endogenous adrenocorticotropin (ACTH) secretion, and plasma 11 beta-OHCS response to intravenous administration of ACTH. Base line 17-OHCS excretion increased in 5 of the 8 dogs. Plasma 11 beta-OHCS concentrations were not decreased by dexamethasone administration in the 4 dogs subsequently found to have adrenal tumors; however, there was an exaggerated increase in plasma 11 beta-OHCS concentration after administration of ACTH in 3 of the 4 dogs which had bilateral adrenocortical hyperplasia

  9. Deeply virtual Compton scattering. Results and future

    International Nuclear Information System (INIS)

    Nowak, W.D.

    2005-03-01

    Access to generalised parton distributions (GPDs) through deeply virtual Compton scattering (DVCS) is briefly described. Presently available experimental results on DVCS are summarized in conjunction with plans for future measurements. (orig.)

  10. Computer control in a compton scattering spectrometer

    International Nuclear Information System (INIS)

    Cui Ningzhuo; Chen Tao; Gong Zhufang; Yang Baozhong; Mo Haiding; Hua Wei; Bian Zuhe

    1995-01-01

    The authors introduced the hardware and software of computer autocontrol of calibration and data acquisition in a Compton Scattering spectrometer which consists of a HPGe detector, Amplifiers and a MCA

  11. Neutron Compton scattering from selectively deuterated acetanilide

    Science.gov (United States)

    Wanderlingh, U. N.; Fielding, A. L.; Middendorf, H. D.

    With the aim of developing the application of neutron Compton scattering (NCS) to molecular systems of biophysical interest, we are using the Compton spectrometer EVS at ISIS to characterize the momentum distribution of protons in peptide groups. In this contribution we present NCS measurements of the recoil peak (Compton profile) due to the amide proton in otherwise fully deuterated acetanilide (ACN), a widely studied model system for H-bonding and energy transfer in biomolecules. We obtain values for the average width of the potential well of the amide proton and its mean kinetic energy. Deviations from the Gaussian form of the Compton profile, analyzed on the basis of an expansion due to Sears, provide data relating to the Laplacian of the proton potential.

  12. The Advanced Gamma-ray Imaging System (AGIS) - Camera Electronics Development

    Science.gov (United States)

    Tajima, Hiroyasu; Bechtol, K.; Buehler, R.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Hanna, D.; Horan, D.; Humensky, B.; Karlsson, N.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Mukherjee, R.; Ong, R.; Otte, N.; Quinn, J.; Schroedter, M.; Swordy, S.; Wagner, R.; Wakely, S.; Weinstein, A.; Williams, D.; Camera Working Group; AGIS Collaboration

    2010-03-01

    AGIS, a next-generation imaging atmospheric Cherenkov telescope (IACT) array, aims to achieve a sensitivity level of about one milliCrab for gamma-ray observations in the energy band of 50 GeV to 100 TeV. Achieving this level of performance will require on the order of 50 telescopes with perhaps as many as 1M total electronics channels. The larger scale of AGIS requires a very different approach from the currently operating IACTs, with lower-cost and lower-power electronics incorporated into camera modules designed for high reliability and easy maintenance. Here we present the concept and development status of the AGIS camera electronics.

  13. Computer assisted collimation gamma camera: A new approach to imaging contaminated tissues

    International Nuclear Information System (INIS)

    Quartuccio, M.; Franck, D.; Pihet, P.; Begot, S.; Jeanguillaume, C.

    2000-01-01

    Measurement systems with the capability of imaging tissues contaminated with radioactive materials would find relevant applications in medical physics research and possibly in health physics. The latter in particular depends critically on the performance achieved for sensitivity and spatial resolution. An original approach of computer assisted collimation gamma camera (French acronym CACAO) which could meet suitable characteristics has been proposed elsewhere. CACAO requires detectors with high spatial resolution. The present work was aimed at investigating the application of the CACAO principle on a laboratory testing bench using silicon detectors made of small pixels. (author)

  14. Computer assisted collimation gamma camera: A new approach to imaging contaminated tissues

    Energy Technology Data Exchange (ETDEWEB)

    Quartuccio, M.; Franck, D.; Pihet, P.; Begot, S.; Jeanguillaume, C

    2000-07-01

    Measurement systems with the capability of imaging tissues contaminated with radioactive materials would find relevant applications in medical physics research and possibly in health physics. The latter in particular depends critically on the performance achieved for sensitivity and spatial resolution. An original approach of computer assisted collimation gamma camera (French acronym CACAO) which could meet suitable characteristics has been proposed elsewhere. CACAO requires detectors with high spatial resolution. The present work was aimed at investigating the application of the CACAO principle on a laboratory testing bench using silicon detectors made of small pixels. (author)

  15. Lesion evolution after gamma knife irradiation observed by magnetic resonance imaging

    Czech Academy of Sciences Publication Activity Database

    Jirák, D.; Náměstková, K.; Herynek, V.; Liščák, R.; Vymazal, J.; Mareš, Vladislav; Syková, Eva; Hájek, M.

    2007-01-01

    Roč. 83, č. 4 (2007), s. 237-244 ISSN 0955-3002 R&D Projects: GA MŠk 1M0538; GA MŠk(CZ) LC554 Grant - others:EU(DE) 512146 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50110509 Source of funding: R - rámcový projekt EK Keywords : Gamma knife * Rat brain * Magnetic resonance imaging Subject RIV: FH - Neurology Impact factor: 1.468, year: 2007

  16. The development of gamma imaging system's aided software using matlab GUI

    International Nuclear Information System (INIS)

    Yang Yapeng; Xu Yuan; Jin Gen

    2011-01-01

    The RadCam 2000 gamma imaging system's software supplied by the manufacture cannot be run when the PC disconnected to the system's hardware, also cannot be used to analysis the results acquired, therefore, we have developed easyRadCam using Matlab GUI with the ability of generating the 'hot point' three-dimensional distribution by importing the results acquired, giving the counts distribution versus channel number. After the system be calibrated, we can get the energy spectrum, even the type of nuclides exist. (authors)

  17. Development of EPSILON. A gamma ray imaging system for the nuclear industry

    International Nuclear Information System (INIS)

    Durrant, P.T.

    1999-06-01

    In recent years, much effort has been focused on the need to characterise, stabilise, decontaminate and eventually decommission radioactively contaminated nuclear facilities. These tasks can be complex and hazardous and are often hampered by a lack of knowledge of the nature and distribution of the contamination. A gamma-ray imaging system, capable of remotely mapping a contaminated scene, could be a useful tool in many tasks related to the decommissioning of nuclear facilities. This thesis describes and discusses the design, development, commissioning and characterisation of EPSILON, a multipurpose gamma-ray imaging system designed to meet the needs of a range of applications in the nuclear industry. Following a review of the range of potential applications and a critical assessment of the imaging systems available at the time, a set of design criteria for a multi-purpose gamma-ray imaging system are identified. The design and development of an imaging system to meet these criteria is described in detail. Suitable image-formation techniques are discussed and a pinhole collimator selected as the most appropriate. Consideration is given to the use of a scintillator-photodiode array as the imager detection plane but this option is rejected in favour of a position-sensitive photomultiplier tube (PSPMT). The development of two data-acquisition systems is described and comparisons made between the performance of these two techniques. The factors affecting the performance and image quality of this pinhole imaging system are discussed and a prototype design presented for a well-shielded, high-sensitivity imager. Experimental results obtained with this prototype are presented. These results demonstrate a good angular resolution of 1.6 deg across a 12.8 deg FOV and a factor of 7 improvement in sensitivity over a comparable resolution, single-pixel scanning-system. The spectral resolution of this prototype imager did not meet the design criteria. A modified design is

  18. A new gamma ray imaging diagnostic for runaway electron studies at DIII-D

    Science.gov (United States)

    Cooper, C. M.; Pace, D. C.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Hollmann, E. M.; Moyer, R. A.; Risov, V.

    2015-11-01

    A new Gamma Ray Imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at DIII-D. The diagnostic is sensitive to 0.5 - 50 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE dissipation from pellet injection. The GRI consists of a lead ``pinhole camera'' mounted on the midplane with 11x11 counter-current tangential chords 20 cm wide that span the vessel. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE Bremsstrahlung radiation. Detectors operate in current saturation mode at 10 MHz, or the flux is attenuated for Pulse Height Analysis (PHA) capable of discriminating up to ~10k pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. Work supported by the US DOE under DE-AC05-00OR22725, DE-FG02-07ER54917 & DE-FC02-04ER54698.

  19. Photons-based medical imaging - Radiology, X-ray tomography, gamma and positrons tomography, optical imaging; Imagerie medicale a base de photons - Radiologie, tomographie X, tomographie gamma et positons, imagerie optique

    Energy Technology Data Exchange (ETDEWEB)

    Fanet, H.; Dinten, J.M.; Moy, J.P.; Rinkel, J. [CEA Leti, Grenoble (France); Buvat, I. [IMNC - CNRS, Orsay (France); Da Silva, A. [Institut Fresnel, Marseille (France); Douek, P.; Peyrin, F. [INSA Lyon, Lyon Univ. (France); Frija, G. [Hopital Europeen George Pompidou, Paris (France); Trebossen, R. [CEA-Service hospitalier Frederic Joliot, Orsay (France)

    2010-07-01

    This book describes the different principles used in medical imaging. The detection aspects, the processing electronics and algorithms are detailed for the different techniques. This first tome analyses the photons-based techniques (X-rays, gamma rays and visible light). Content: 1 - physical background: radiation-matter interaction, consequences on detection and medical imaging; 2 - detectors for medical imaging; 3 - processing of numerical radiography images for quantization; 4 - X-ray tomography; 5 - positrons emission tomography: principles and applications; 6 - mono-photonic imaging; 7 - optical imaging; Index. (J.S.)

  20. Colour coherence in deep inelastic Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, A.I.; Vazdik, J.A. (Lebedev Physical Inst., Academy of Sciences, Moscow (USSR))

    1992-01-01

    MC simulation of Deep Inelastic Compton on proton - both QED and QCD - was performed on the basis of LUCIFER program for HERA energies. Charged hadron flow was calculated for string and independent fragmentation with different cuts on p{sub t} and x. It is shown that interjet colour coherence leads in the case of QCD Compton to the drag effects diminishing the hadron flow in the direction between quark jet and proton remnant jet. (orig.).

  1. Colour coherence in deep inelastic Compton scattering

    International Nuclear Information System (INIS)

    Lebedev, A.I.; Vazdik, J.A.

    1992-01-01

    MC simulation of Deep Inelastic Compton on proton - both QED and QCD - was performed on the basis of LUCIFER program for HERA energies. Charged hadron flow was calculated for string and independent fragmentation with different cuts on p t and x. It is shown that interjet colour coherence leads in the case of QCD Compton to the drag effects diminishing the hadron flow in the direction between quark jet and proton remnant jet. (orig.)

  2. Trends in X-, gamma and neutron radiographic imaging at IGCAR Kalpakkam

    International Nuclear Information System (INIS)

    Venkatraman, B.; Raghu, N.; Menaka, M.; Anandraj, R.

    2015-01-01

    In the nuclear fuel cycle, right from raw material stage through fabrication and in service inspection upto the retirement of the component, NDE is an indispensable tool. While X- and gamma radiography is quite common, neutron radiography is a very efficient and complementary tool which can enhance investigations in the field of non-destructive testing as well as in many fundamental research applications. The main advantage of neutrons compared to X-rays is its ability to penetrate heavy elements and also image light elements (i.e. with low atomic numbers) such as hydrogen, water, carbon etc. This is because, neutrons interact with the nucleus rather than with the outer electron in the shell. This also makes it possible to distinguish between different isotopes of the same element by neutron radiography. The KAMINI reactor at IGCAR is a versatile and unique facility wherein extensive work has been undertaken on neutron radiography and activation analysis. Apart from conventional neutron radiography using transfer technique, real time neutron imaging of fuel pins and other objects have also been carried out. Using Beam purity indicator and sensitivity indicator, the neutron beam from KAMINI has also been characterized. This paper focuses on the developments and applications of digital imaging NDE using X-, gamma and neutrons at IGCAR. Both 2-dimensional imaging and -D tomography has been undertaken. Case studies undertaken for strategic and core industries including societal applications such as in cultural heritage is also highlighted. Advanced image processing and analysis has also been applied for enhancing the sensitivity and better defect quantification

  3. MO-FG-202-06: Improving the Performance of Gamma Analysis QA with Radiomics- Based Image Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, L; Nyflot, M; Ford, E [University of Washington Department of Radiation Oncology, Seattle, WA (United States); Chaovalitwongse, A [University of Washington Department of Industrial and Systems Engineering, Seattle, Washington (United States); University of Washington Department of Radiology, Seattle, WA (United States); Li, N [University of Washington Department of Industrial and Systems Engineering, Seattle, Washington (United States)

    2016-06-15

    Purpose: The use of gamma analysis for IMRT quality assurance has well-known limitations. Traditionally, a simple thresholding technique is used to evaluated passing criteria. However, like any image the gamma distribution is rich in information which thresholding mostly discards. We therefore propose a novel method of analyzing gamma images that uses quantitative image features borrowed from radiomics, with the goal of improving error detection. Methods: 368 gamma images were generated from 184 clinical IMRT beams. For each beam the dose to a phantom was measured with EPID dosimetry and compared to the TPS dose calculated with and without normally distributed (2mm sigma) errors in MLC positions. The magnitude of 17 intensity histogram and size-zone radiomic features were derived from each image. The features that differed most significantly between image sets were determined with ROC analysis. A linear machine-learning model was trained on these features to classify images as with or without errors on 180 gamma images.The model was then applied to an independent validation set of 188 additional gamma distributions, half with and half without errors. Results: The most significant features for detecting errors were histogram kurtosis (p=0.007) and three size-zone metrics (p<1e-6 for each). The sizezone metrics detected clusters of high gamma-value pixels under mispositioned MLCs. The model applied to the validation set had an AUC of 0.8, compared to 0.56 for traditional gamma analysis with the decision threshold restricted to 98% or less. Conclusion: A radiomics-based image analysis method was developed that is more effective in detecting error than traditional gamma analysis. Though the pilot study here considers only MLC position errors, radiomics-based methods for other error types are being developed, which may provide better error detection and useful information on the source of detected errors. This work was partially supported by a grant from the Agency for

  4. Optimal energy window setting depending on the energy resolution for radionuclides used in gamma camera imaging. Planar imaging evaluation

    International Nuclear Information System (INIS)

    Kojima, Akihiro; Watanabe, Hiroyuki; Arao, Yuichi; Kawasaki, Masaaki; Takaki, Akihiro; Matsumoto, Masanori

    2007-01-01

    In this study, we examined whether the optimal energy window (EW) setting depending on an energy resolution of a gamma camera, which we previously proposed, is valid on planar scintigraphic imaging using Tl-201, Ga-67, Tc-99m, and I-123. Image acquisitions for line sources and paper sheet phantoms containing each radionuclide were performed in air and with scattering materials. For the six photopeaks excluding the Hg-201 characteristic x-rays' one, the conventional 20%-width energy window (EW20%) setting and the optimal energy window (optimal EW) setting (15%-width below 100 keV and 13%-width above 100 keV) were compared. For the Hg-201 characteristic x-rays' photopeak, the conventional on-peak EW20% setting was compared with the off-peak EW setting (73 keV-25%) and the wider off-peak EW setting (77 keV-29%). Image-count ratio (defined as the ratio of the image counts obtained with an EW and the total image counts obtained with the EW covered the whole photopeak for a line source in air), image quality, spatial resolutions (full width half maximum (FWHM) and full width tenth maximum (FWTM) values), count-profile curves, and defect-contrast values were compared between the conventional EW setting and the optimal EW setting. Except for the Hg-201 characteristic x-rays, the image-count ratios were 94-99% for the EW20% setting, but 78-89% for the optimal EW setting. However, the optimal EW setting reduced scatter fraction (defined as the scattered-to-primary counts ratio) effectively, as compared with the EW20% setting. Consequently, all the images with the optimal EW setting gave better image quality than ones with the EW20% setting. For the Hg-201 characteristic x-rays, the off-peak EW setting showed great improvement in image quality in comparison with the EW20% setting and the wider off-peak EW setting gave the best results. In conclusion, from our planar imaging study it was shown that although the optimal EW setting proposed by us gives less image-count ratio by

  5. Breast Imaging Utilizing Dedicated Gamma Camera and (99m)Tc-MIBI: Experience at the Tel Aviv Medical Center and Review of the Literature Breast Imaging.

    Science.gov (United States)

    Even-Sapir, Einat; Golan, Orit; Menes, Tehillah; Weinstein, Yuliana; Lerman, Hedva

    2016-07-01

    The scope of the current article is the clinical role of gamma cameras dedicated for breast imaging and (99m)Tc-MIBI tumor-seeking tracer, as both a screening modality among a healthy population and as a diagnostic modality in patients with breast cancer. Such cameras are now commercially available. The technology utilizing a camera composed of a NaI (Tl) detector is termed breast-specific gamma imaging. The technology of dual-headed camera composed of semiconductor cadmium zinc telluride detectors that directly converts gamma-ray energy into electronic signals is termed molecular breast imaging. Molecular breast imaging system has been installed at the Department of Nuclear medicine at the Tel Aviv Sourasky Medical Center, Tel Aviv in 2009. The article reviews the literature well as our own experience. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Segmentation and intensity estimation of microarray images using a gamma-t mixture model.

    Science.gov (United States)

    Baek, Jangsun; Son, Young Sook; McLachlan, Geoffrey J

    2007-02-15

    We present a new approach to the analysis of images for complementary DNA microarray experiments. The image segmentation and intensity estimation are performed simultaneously by adopting a two-component mixture model. One component of this mixture corresponds to the distribution of the background intensity, while the other corresponds to the distribution of the foreground intensity. The intensity measurement is a bivariate vector consisting of red and green intensities. The background intensity component is modeled by the bivariate gamma distribution, whose marginal densities for the red and green intensities are independent three-parameter gamma distributions with different parameters. The foreground intensity component is taken to be the bivariate t distribution, with the constraint that the mean of the foreground is greater than that of the background for each of the two colors. The degrees of freedom of this t distribution are inferred from the data but they could be specified in advance to reduce the computation time. Also, the covariance matrix is not restricted to being diagonal and so it allows for nonzero correlation between R and G foreground intensities. This gamma-t mixture model is fitted by maximum likelihood via the EM algorithm. A final step is executed whereby nonparametric (kernel) smoothing is undertaken of the posterior probabilities of component membership. The main advantages of this approach are: (1) it enjoys the well-known strengths of a mixture model, namely flexibility and adaptability to the data; (2) it considers the segmentation and intensity simultaneously and not separately as in commonly used existing software, and it also works with the red and green intensities in a bivariate framework as opposed to their separate estimation via univariate methods; (3) the use of the three-parameter gamma distribution for the background red and green intensities provides a much better fit than the normal (log normal) or t distributions; (4) the

  7. Spectroscopic CZT detectors development for x- and gamma-ray imaging instruments

    Science.gov (United States)

    Quadrini, Egidio M.; Uslenghi, Michela; Alderighi, Monica; Casini, Fabio; D'Angelo, Sergio; Fiorini, Mauro; La Palombara, Nicola; Mancini, Marcello; Monti, Serena; Bazzano, Angela; Di Cosimo, Sergio; Frutti, Massimo; Natalucci, Lorenzo; Ubertini, Pietro; Guadalupi, Giuseppe M.; Sassi, Matteo; Negri, Barbara

    2007-09-01

    In the context of R&D studies financed by the Italian Space Agency (ASI), a feasibility study to evaluate the Italian Industry interest in medium-large scale production of enhanced CZT detectors has been performed by an Italian Consortium. The R&D investment aims at providing in-house source of high quality solid state spectrometers for Space Astrophysics applications. As a possible spin-off industrial applications to Gamma-ray devices for non-destructive inspections in medical, commercial and security fields have been considered by ASI. The short term programme mainly consists of developing proprietary procedures for 2-3" CZT crystals growth, including bonding and contact philosophy, and a newly designed low-power electronics readout chain. The prototype design and breadboarding is based on a fast signal AD conversion with the target in order to perform a new run for an already existing low-power (digital photon energy reconstruction with particular care for multiple events and polarimetry evaluations. Scientific requirement evaluations for Space Astrophysics Satellite applications have been carried out in parallel, targeted to contribute to the ESA Cosmic Vision 2015-2025 Announcement of Opportunity. Detailed accommodation studies are undergoing, as part of this programme, to size a "Large area arcsecond angular resolution Imager" for the Gamma Ray Imager satellite (Knödlseder et al., this conference).and a new Gamma-ray Wide Field Camera for the "EDGE" proposal (Piro et al., this conference). Finally, an extended market study for cost analysis evaluation in view of the foreseen massive detector production has been performed.

  8. High-Resolution Gamma-Ray Imaging Measurements Using Externally Segmented Germanium Detectors

    Science.gov (United States)

    Callas, J.; Mahoney, W.; Skelton, R.; Varnell, L.; Wheaton, W.

    1994-01-01

    Fully two-dimensional gamma-ray imaging with simultaneous high-resolution spectroscopy has been demonstrated using an externally segmented germanium sensor. The system employs a single high-purity coaxial detector with its outer electrode segmented into 5 distinct charge collection regions and a lead coded aperture with a uniformly redundant array (URA) pattern. A series of one-dimensional responses was collected around 511 keV while the system was rotated in steps through 180 degrees. A non-negative, linear least-squares algorithm was then employed to reconstruct a 2-dimensional image. Corrections for multiple scattering in the detector, and the finite distance of source and detector are made in the reconstruction process.

  9. The application of two-dimensional imaging to very high energy gamma ray astronomy

    International Nuclear Information System (INIS)

    Weekes, T.C.

    1992-05-01

    A technique has been developed to distinguish air showers generated by gamma rays from those generated by hadronic cosmic rays. The method involves the registration of the Cherenkov light images by a large aperture multi-phototube telescope at the Whipple Observatory in southern Arizona. The energy threshold is 0.4 TeV. The efficacy of the technique has been demonstrated by the detection of a signal from the Crab Nebula, a supernova remnant. The physics of shower development at TeV energies is demonstrated to be what is expected, and no support is found for the detection of anomalous signals from binary sources. The sensitivity of the technique is such that a five sigma gamma-ray signal from the Crab can be detected in just an hour of observation. Further improvements in the technique are under way; in particular, a second large aperture camera is now operated in conjunction with the original camera to give stereoscopic images of showers. When completed, this system will give a flux sensitivity a factor of ten below that now available

  10. Analysis of tin-ore samples by the ratio of Rayleigh to Compton backscattering

    International Nuclear Information System (INIS)

    Ao Qi; Cao Liguo; Ding Yimin

    1990-01-01

    The relationship between the ratio of gamma-ray Rayleigh to Compton backscattering intensities (R/C) and the weight fraction of heavy element in light matrixes were investigated. An improved (R/C) eff analytical technique for tin-ore samples was described. The technique can be regarded as a substitute for the XRF method in which the self-absorption process worsens the analytical accuracy of heavy elements

  11. Determination of the integrated luminosity at HERA using elastic QED Compton events

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2012-04-15

    A measurement of the integrated luminosity at the ep collider HERA is presented, exploiting the elastic QED Compton process ep{yields}e{gamma}p. The electron and the photon are detected in the backward calorimeter of the H1 experiment. The integrated luminosity of the data recorded in 2003 to 2007 is determined with a precision of 2.3%. The measurement is found to be compatible with the corresponding result obtained using the Bethe-Heitler process.

  12. High resolution phoswich gamma-ray imager utilizing monolithic MPPC arrays with submillimeter pixelized crystals

    International Nuclear Information System (INIS)

    Kato, T; Kataoka, J; Nakamori, T; Kishimoto, A; Yamamoto, S; Sato, K; Ishikawa, Y; Yamamura, K; Kawabata, N; Ikeda, H; Kamada, K

    2013-01-01

    We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 10 5 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to ≤ 400 kcps per channel. We selected Ce-doped (Lu,Y) 2 (SiO 4 )O (Ce:LYSO) and a brand-new scintillator, Ce-doped Gd 3 Al 2 Ga 3 O 12 (Ce:GAGG) due to their high light yield and density. To improve the spatial resolution, these scintillators were fabricated into 15 × 15 matrices of 0.5 × 0.5 mm 2 pixels. The Ce:LYSO and Ce:GAGG scintillator matrices were assembled into phosphor sandwich (phoswich) detectors, and then coupled to the MPPC array along with an acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22 Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.

  13. Egret observations of the extragalactic gamma-ray emission

    DEFF Research Database (Denmark)

    Sreekumar, P.; Bertsch, D.L.; Dingus, B.L.

    1998-01-01

    The all-sky survey in high-energy gamma rays (E > 30 MeV) carried out by EGRET aboard the Compton Gamma Ray Observatory provides a unique opportunity to examine in detail the diffuse gamma-ray emission. The observed diffuse emission has a Galactic component arising from cosmic-ray interactions wi...

  14. Characterization of LaBr{sub 3}:Ce and CeBr{sub 3} calorimeter modules for 3D imaging in gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Gostojić, A., E-mail: aleksandar.gostojic@csnsm.in2p3.fr [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay (France); Tatischeff, V.; Kiener, J.; Hamadache, C.; Peyré, J.; Karkour, N.; Linget, D.; Gibelin, L.; Lafay, X.; Grave, X.; Dosme, N.; Legay, E. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay (France); Blin, S. [OMEGA, École Polytechnique, CNRS/IN2P3, Route de Saclay, 91128 Palaiseau (France); Barrillon, P. [LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91898 Orsay (France)

    2016-10-01

    For the purpose of future space instrumentation for γ-ray astronomy, we developed a small prototype of a Compton telescope and studied novel detector modules aimed for Compton imaging. We assembled and tested 2 modules, one with a cerium-doped lanthanum(III) bromide (LaBr{sub 3}:Ce) crystal and the other with cerium(III) bromide (CeBr{sub 3}). Both crystals measure 5×5 cm{sup 2} in area and are 1 cm thick. They are coupled to and read out by 64-channel multi-anode PMTs. Our goals are to obtain the best possible energy resolution and position resolution in 3D on the first impact of an incident γ-ray within the detector. Both information are vital for successful reconstruction of a Compton image with the telescope prototype. We developed a test bench to experimentally study both modules and have utilized a customized readout electronics and data acquisition system. Furthermore, we have written a detailed Geant4 simulation of the experiment, and utilize simulated data to train an Artificial Neural Network (ANN) algorithm to create a simplified 3D impact position reconstruction method. We give experimental test results obtained by both modules and present detailed parametrization and results from the Geant4 simulation and from the ANN. We compare and discuss the performance of the modules and conclude by giving a brief overview of the future prospects for using such modules in γ-ray astronomy.

  15. Luminosity optimization schemes in Compton experiments based on Fabry-Perot optical resonators

    Directory of Open Access Journals (Sweden)

    Alessandro Variola

    2011-03-01

    Full Text Available The luminosity of Compton x-ray and γ sources depends on the average current in electron bunches, the energy of the laser pulses, and the geometry of the particle bunch to laser pulse collisions. To obtain high power photon pulses, these can be stacked in a passive optical resonator (Fabry-Perot cavity especially when a high average flux is required. But, in this case, owing to the presence of the optical cavity mirrors, the electron bunches have to collide at an angle with the laser pulses with a consequent luminosity decrease. In this article a crab-crossing scheme is proposed for Compton sources, based on a laser amplified in a Fabry-Perot resonator, to eliminate the luminosity losses given by the crossing angle, taking into account that in laser-electron collisions only the electron bunches can be tilted at the collision point. We report the analytical study on the crab-crossing scheme for Compton gamma sources. The analytical expression for the total yield of photons generated in Compton sources with the crab-crossing scheme of collision is derived. The optimal collision angle of the bunch was found to be equal to half of the collision angle. At this crabbing angle, the maximal yield of scattered off laser photons is attained thanks to the maximization, in the collision process, of the time spent by the laser pulse in the electron bunch. Estimations for some Compton source projects are presented. Furthermore, some schemes of the optical cavities configuration are analyzed and the luminosity calculated. As illustrated, the four-mirror two- or three-dimensional scheme is the most appropriate for Compton sources.

  16. Fast cooling of bunches in compton storage rings*

    CERN Document Server

    Bulyak, E; Zimmermann, F

    2011-01-01

    We propose an enhancement of laser radiative cooling by utilizing laser pulses of small spatial and temporal dimensions, which interact only with a fraction of an electron bunch circulating in a storage ring. We studied the dynamics of such electron bunch when laser photons scatter off the electrons at a collision point placed in a section with nonzero dispersion. In this case of ‘asymmetric cooling’, the stationary energy spread is much smaller than under conditions of regular scattering where the laser spot size is larger than the electron beam; and the synchrotron oscillations are damped faster. Coherent oscillations of large amplitude may be damped within one synchrotron period, so that this method can support the rapid successive injection of many bunches in longitudinal phase space for stacking purposes. Results of extensive simulations are presented for the performance optimization of Compton gamma-ray sources and damping rings.

  17. A New Adaptive Gamma Correction Based Algorithm Using DWT-SVD for Non-Contrast CT Image Enhancement.

    Science.gov (United States)

    Kallel, Fathi; Ben Hamida, Ahmed

    2017-12-01

    The performances of medical image processing techniques, in particular CT scans, are usually affected by poor contrast quality introduced by some medical imaging devices. This suggests the use of contrast enhancement methods as a solution to adjust the intensity distribution of the dark image. In this paper, an advanced adaptive and simple algorithm for dark medical image enhancement is proposed. This approach is principally based on adaptive gamma correction using discrete wavelet transform with singular-value decomposition (DWT-SVD). In a first step, the technique decomposes the input medical image into four frequency sub-bands by using DWT and then estimates the singular-value matrix of the low-low (LL) sub-band image. In a second step, an enhanced LL component is generated using an adequate correction factor and inverse singular value decomposition (SVD). In a third step, for an additional improvement of LL component, obtained LL sub-band image from SVD enhancement stage is classified into two main classes (low contrast and moderate contrast classes) based on their statistical information and therefore processed using an adaptive dynamic gamma correction function. In fact, an adaptive gamma correction factor is calculated for each image according to its class. Finally, the obtained LL sub-band image undergoes inverse DWT together with the unprocessed low-high (LH), high-low (HL), and high-high (HH) sub-bands for enhanced image generation. Different types of non-contrast CT medical images are considered for performance evaluation of the proposed contrast enhancement algorithm based on adaptive gamma correction using DWT-SVD (DWT-SVD-AGC). Results show that our proposed algorithm performs better than other state-of-the-art techniques.

  18. A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning.

    Science.gov (United States)

    Rundo, Leonardo; Stefano, Alessandro; Militello, Carmelo; Russo, Giorgio; Sabini, Maria Gabriella; D'Arrigo, Corrado; Marletta, Francesco; Ippolito, Massimo; Mauri, Giancarlo; Vitabile, Salvatore; Gilardi, Maria Carla

    2017-06-01

    Nowadays, clinical practice in Gamma Knife treatments is generally based on MRI anatomical information alone. However, the joint use of MRI and PET images can be useful for considering both anatomical and metabolic information about the lesion to be treated. In this paper we present a co-segmentation method to integrate the segmented Biological Target Volume (BTV), using [ 11 C]-Methionine-PET (MET-PET) images, and the segmented Gross Target Volume (GTV), on the respective co-registered MR images. The resulting volume gives enhanced brain tumor information to be used in stereotactic neuro-radiosurgery treatment planning. GTV often does not match entirely with BTV, which provides metabolic information about brain lesions. For this reason, PET imaging is valuable and it could be used to provide complementary information useful for treatment planning. In this way, BTV can be used to modify GTV, enhancing Clinical Target Volume (CTV) delineation. A novel fully automatic multimodal PET/MRI segmentation method for Leksell Gamma Knife ® treatments is proposed. This approach improves and combines two computer-assisted and operator-independent single modality methods, previously developed and validated, to segment BTV and GTV from PET and MR images, respectively. In addition, the GTV is utilized to combine the superior contrast of PET images with the higher spatial resolution of MRI, obtaining a new BTV, called BTV MRI . A total of 19 brain metastatic tumors, undergone stereotactic neuro-radiosurgery, were retrospectively analyzed. A framework for the evaluation of multimodal PET/MRI segmentation is also presented. Overlap-based and spatial distance-based metrics were considered to quantify similarity concerning PET and MRI segmentation approaches. Statistics was also included to measure correlation among the different segmentation processes. Since it is not possible to define a gold-standard CTV according to both MRI and PET images without treatment response assessment

  19. Design of a Gamma Reaction History Diagnostic for the National Ignition Facility

    International Nuclear Information System (INIS)

    Malone, R.M.; Cox, B.C.; Frogget, B.C.; Kaufman, M.I.; Tunnell, T.W.; Herrmann, H.W.; Evans, S.C.; Mack, J.M; Young, C.S.; Stoeffl, W.

    2009-01-01

    Gas Cherenkov detectors have been used to convert fusion gammas into photons to achieve gamma reaction history (GRH) measurements. These gas detectors include a converter, pressurized gas volume, relay optics, and a photon detector. A novel design for the National Ignition Facility (NIF) using 90 o Off-Axis Parabolic mirrors efficiently collects signal from fusion gammas with 8-ps time dispersion.1 Fusion gammas are converted to Compton electrons, which generate broadband Cherenkov light (our response is from 250 to 700 nm) in a pressurized gas cell. This light is relayed into a high-speed detector using three parabolic mirrors. The detector optics collect light from a 125-mm-diameter by 600-mm-long interchangeable gas (CO2 or SF6) volume. Because light is collected from source locations throughout the gas volume, the detector is positioned at the stop position rather than at an image position. The stop diameter and its position are independent of the light-generation locations along the gas cell. This design incorporates a fixed time delay that allows the detector to recover from prompt radiation. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they traverse the gas volume. A Monte Carlo model of the conversion process from gammas to Cherenkov photons is used to generate photon trajectories. The collection efficiencies for different gamma energies are evaluated. At NIF, a cluster of four channels will allow for increased dynamic range, as well as different gamma energy thresholds. This GRH design is compared to a gas Cherenkov detector that utilizes a Cassegrain reflector now used at the OMEGA laser facility. 1. R. M. Malone, H. W. Herrmann, W. Stoeffl, J. M. Mack, C. S. Young, 'Gamma bang time/reaction history diagnostics for the National Ignition Facility using 90 o off-axis parabolic mirrors', Rev. Sci. Instrum. 79, 10E532 (2008)

  20. Determination of silicon in biological and botanical reference materials by epithermal INAA and Compton suppression

    International Nuclear Information System (INIS)

    Landsberger, S.; Peshev, S.; Becker, D.A.

    1994-01-01

    Silicon determination in sixteen botanical and biological standard reference materials is described using the 29 Si(n, p) 29 Al reaction through instrumental epithermal neutron activation analysis and Compton suppression gamma-ray spectroscopy. By simultaneous utilization of both cadmium and boron epithermal filters along with anticoincidence gamma-counting, detection limits as low as 12 ppm were obtained for certain matrices, much lower than previously reported values for this type of analysis. The method is applicable to many botanical and biological matrices and is attractive with its interference free, purely instrumental nature, compared with methods using the 28 Si(n, p) 28 Al reaction or chemical separation techniques. ((orig.))

  1. Verification of source and collimator configuration for Gamma Knife Perfexion using panoramic imaging

    International Nuclear Information System (INIS)

    Cho, Young-Bin; Prooijen, Monique van; Jaffray, David A.; Islam, Mohammad K.

    2010-01-01

    Purpose: The new model of stereotactic radiosurgery system, Gamma Knife Perfexion, allows automatic selection of built-in collimation, eliminating the need for the time consuming manual collimator installation required with previous models. However, the configuration of sources and collimators inside the system does not permit easy access for the verification of the selected collimation. While the conventional method of exposing a film at the isocenter is useful for obtaining composite dose information, it is difficult to interpret the data in terms of the integrity of each individual source and corresponding collimation. The primary aim of this study was to develop a method of verifying the geometric configuration of the sources and collimator modules of the Gamma Knife Perfexion. In addition, the method was extended to make dose measurements and verify the accuracy of dose distributions calculated by the mathematical formalism used in the treatment planning system, Leksell Gamma Plan. Methods: A panoramic view of all of 192 cobalt sources was simultaneously acquired by exposing a radiochromic film wrapped around the surface of a cylindrical phantom. The center of the phantom was mounted at the isocenter with its axis aligned along the longitudinal axis of the couch. The sizes and shapes of the source images projected on the phantom surface were compared to those calculated based on the manufacturer's design specifications. The measured dose at various points on the film was also compared to calculations using the algorithm of the planning system. Results: The panoramic images allowed clear identification of each of the 192 sources, verifying source integrity and selected collimator sizes. Dose on the film surface is due to the primary beam as well as phantom scatter and leakage contributions. Therefore, the dose at a point away from the isocenter cannot be determined simply based on the proportionality of collimator output factors; the use of a dose computation

  2. The Advanced Gamma-ray Imaging System (AGIS): Telescope Mechanical Designs

    Science.gov (United States)

    Guarino, V.; Buckley, J.; Byrum, K.; Falcone, A.; Fegan, S.; Finley, J.; Hanna, D.; Horan, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Wagner, R.; Woods, M.; Vassiliev, V.

    2008-04-01

    The concept of a future ground-based gamma-ray observatory, AGIS, in the energy range 40 GeV-100 TeV is based on an array of sim 100 imaging atmospheric Cherenkov telescopes (IACTs). The anticipated improvements of AGIS sensitivity, angular resolution and reliability of operation impose demanding technological and cost requirements on the design of IACTs. The relatively inexpensive Davies-Cotton telescope design has been used in ground-based gamma-ray astronomy for almost fifty years and is an excellent option. We are also exploring alternative designs and in this submission we focus on the recent mechanical design of a two-mirror telescope with a Schwarzschild-Couder (SC) optical system. The mechanical structure provides support points for mirrors and camera. The design was driven by the requirement of minimizing the deflections of the mirror support structures. The structure is also designed to be able to slew in elevation and azimuth at 10 degrees/sec.

  3. Investigation of runaway electron dissipation in DIII-D using a gamma ray imager

    Science.gov (United States)

    Lvovskiy, A.; Paz-Soldan, C.; Eidietis, N.; Pace, D.; Taussig, D.

    2017-10-01

    We report the findings of a novel gamma ray imager (GRI) to study runaway electron (RE) dissipation in the quiescent regime on the DIII-D tokamak. The GRI measures the bremsstrahlung emission by RE providing information on RE energy spectrum and distribution across a poloidal cross-section. It consists of a lead pinhole camera illuminating a matrix of BGO detectors placed in the DIII-D mid-plane. The number of detectors was recently doubled to provide better spatial resolution and additional detector shielding was implemented to reduce un-collimated gamma flux and increase single-to-noise ratio. Under varying loop voltage, toroidal magnetic field and plasma density, a non-monotonic RE distribution function has been revealed as a result of the interplay between electric field, synchrotron radiation and collisional damping. A fraction of the high-energy RE population grows forming a bump at the RE distribution function while synchrotron radiation decreases. A possible destabilizing effect of Parail-Pogutse instability on the RE population will be also discussed. Work supported by the US DOE under DE-FC02-04ER54698.

  4. Gamma-Ray Imaging Spectrometer (GRIS) instrument and plans for serving SN 1987A

    International Nuclear Information System (INIS)

    Tueller, J.; Barthelmy, S.; Gehrels, N.; Teegarden, B.J.; Leventhal, M.; MacCallum, C.J.

    1988-01-01

    The Gamma-Ray Imaging Spectrometer (GRIS) is a powerful second-generation high-resolution gamma-ray spectrometer. It consists of an array of seven large (typically >200 cm 3 ) n-type Germanium detectors surrounded by a thick (15 m) NaI active shield. Its energy range is 0.02 to 10 MeV. A new detector segmentation technique will be employed to reduce the detector background. The β-decay background component, which is expected to be dominant in the 0.2--2 MeV range, will be suppressed by roughly a factor of 20. The 3σ GRIS sensitivity to a narrow Fe line at 847 keV (expected to be the most intense from a supernova) will be ∼2 x 10 -4 photons/cm 2 -s for an 8 hr observation of the LMC over Alice Springs, Australia with unsegmented detectors. The instrument in simplified form will be ready to observe SN 1987A in early 1988

  5. Modeling of Pulses in Terrestrial Gamma-ray Flashes

    Science.gov (United States)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor

    2015-04-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere that are associated with lightning activities. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Photon spectra corresponding to the mechanism of relativistic runaway electron avalanches (RREAs) usually provide a very good agreement with satellite observations [Dwyer and Smith, GRL, 32, L22804, 2005]. On the other hand, Celestin and Pasko [JGR, 116, A03315, 2011] have shown theoretically that the large flux of thermal runaway electrons generated by streamers during the negative corona flash stage of stepping lightning leaders in intracloud lightning flashes could be responsible for TGFs. Recently, based on analysis of the temporal profiles of 278 TGF events observed by the Fermi Gamma-Ray Burst Monitor, Foley et al. [JGR, 119, 5931, 2014] have suggested that 67% of TGF pulses detected are asymmetric and these asymmetric pulses are consistent with the production mechanism of TGFs by relativistic feedback discharges. In the present work, we employ a Monte Carlo model to study the temporal distribution of photons at low-orbit satellite altitudes during TGF events. Using the pulse fitting method described in [Foley et al., 2014], we further investigate the characteristics of TGF pulses. We mainly focus on the effects of Compton scattering on the symmetry properties and the rise and fall times of TGF pulses.

  6. The clinical determination of absolute density in bone utilizing single and dual energy compton scattering

    International Nuclear Information System (INIS)

    Huddleston, A.L.; Weaver, J.

    1980-01-01

    Several methods important in the clinical diagnosis of skeletal diseases have been proposed for the determination of bone mass, such as photon absorptiometry, computed tomography, and neutron activation. None of these present methods provides for the determination of the physical density of bone. In the Radiological Physics Research Laboratory at the University of Virginia, the principles of Compton scattering are being investigated with the intent of determining the electron density and the physical density of human bone. A Compton-scatter densitometer has been constructed for the in vivo density determination of the femoral head. This technique utilizes of collimated low energy gamma source and detector system. The method has been tested in cadavers and in known density samples and has an accuracy of 2 %. A second densitometer has been designed for the in vivo determination of electron density of the vertebrae based upon a new technique which employs dual energy Compton scattering in the spinal column. These systems will be discussed; and the principles of dual energy Compton scatter densitometry will be presented. The importance of these isotope techniques and the feasibility of in vivo density determination in the vertebrae and femoral head will be discussed as they relate to clinical diagnosis and research. (author)

  7. Prompt gamma-ray 3D-imaging for cultural heritage purposes

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Ralf

    2010-07-01

    The development of new, and the enhancement of existing element-sensitive imaging methods utilizing neutrons of different energy regions was the aim of the European ANCIENT CHARM project. During the present work the setup for Prompt Gamma-ray Activation Analysis (PGAA) at the research reactor FRM2 in Garching near Munich was modified to enable the spatial mapping of elemental abundances in the analysed samples. Because the PGAA setup at FRM2 was under construction at the beginning of the project first tests and the development of calibration and measurement procedures for the new imaging method were done by the PGAA group at the Budapest Research Reactor in cooperation with the Institute for Nuclear Physics of the University of Cologne. Due to the higher neutron flux at the PGAA setup at FRM2 the equipment was transferred from the Budapest Research Reactor to FRM2 after the PGAA setup at FRM2 started its regular operation. After further optimizations and the characterization of the setup, measurements were started on replicas of real archaeological objects before several measurements on real objects were performed and analysed. Several measurement configurations were applied. Additional to 2D and 3D imaging measurements a new application for the measurement of thin surface layers in the order of a few 100 {mu}m was developed. For the quantitative analysis of elemental distributions the exact knowledge of the neutron flux at each measured position in the analysed sample has to be known. Based on the well-established cold Neutron Tomography (NT) method a method and software have been developed, which enables the calculation of the neutron flux inside samples with the map of attenuation properties obtained through NT. A new data acquisition system was developed for the regular operation of the PGAA setup at FRM2, which supports traditional bulk PGAA measurements as well as measurements in the new imaging configuration. The high automation of the system allows a

  8. Prompt gamma-ray 3D-imaging for cultural heritage purposes

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Ralf

    2010-07-01

    The development of new, and the enhancement of existing element-sensitive imaging methods utilizing neutrons of different energy regions was the aim of the European ANCIENT CHARM project. During the present work the setup for Prompt Gamma-ray Activation Analysis (PGAA) at the research reactor FRM2 in Garching near Munich was modified to enable the spatial mapping of elemental abundances in the analysed samples. Because the PGAA setup at FRM2 was under construction at the beginning of the project first tests and the development of calibration and measurement procedures for the new imaging method were done by the PGAA group at the Budapest Research Reactor in cooperation with the Institute for Nuclear Physics of the University of Cologne. Due to the higher neutron flux at the PGAA setup at FRM2 the equipment was transferred from the Budapest Research Reactor to FRM2 after the PGAA setup at FRM2 started its regular operation. After further optimizations and the characterization of the setup, measurements were started on replicas of real archaeological objects before several measurements on real objects were performed and analysed. Several measurement configurations were applied. Additional to 2D and 3D imaging measurements a new application for the measurement of thin surface layers in the order of a few 100 {mu}m was developed. For the quantitative analysis of elemental distributions the exact knowledge of the neutron flux at each measured position in the analysed sample has to be known. Based on the well-established cold Neutron Tomography (NT) method a method and software have been developed, which enables the calculation of the neutron flux inside samples with the map of attenuation properties obtained through NT. A new data acquisition system was developed for the regular operation of the PGAA setup at FRM2, which supports traditional bulk PGAA measurements as well as measurements in the new imaging configuration. The high automation of the system allows a

  9. Designing scheme of a γ-ray ICT system using compton back-scattering

    International Nuclear Information System (INIS)

    Xiao Jianmin

    1998-01-01

    The designing scheme of a γ ray ICT system by using Compton back-scattering is put forward. The technical norms, detector system, γ radioactive source, mechanical scanning equipment, and data acquisition and image reconstruction principle of this ICT are described

  10. TU-FG-BRB-07: GPU-Based Prompt Gamma Ray Imaging From Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S; Suh, T; Yoon, D; Jung, J; Shin, H; Kim, M [The catholic university of Korea, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusion: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray reconstruction using the GPU computation for BNCT simulations.

  11. Study, development and clinical evaluation of a per-operative {gamma} imager; Etude, developpement et evaluation clinique d`un imageur {gamma} per-operatoire

    Energy Technology Data Exchange (ETDEWEB)

    Menard, Laurent [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-01-19

    The precise localization and complete surgical ablation of tumors are one of the most important procedures in cancer treatment. In that context, the use, in operating room, of light hand-held detectors associated to radiopharmaceutical compounds for tumor labelling, plays a significant role in assisting surgeons in real-time detection of lesion. The POCI gamma imaging probe (Per-Operative Compact Imager), which is presented here, is precisely dedicated to improve the radio-guided operative cancer surgery efficiency by bringing a new tool discriminating between healthy and pathological tissues. To match the specifications of intra-operative detection, we chose to build our camera around an intensified position sensitive diode which appeared to be particularly suitable to achieve a high resolution small size imager. The optimal geometry of two gamma detection head modules, composed of parallel hole collimators and scintillation crystals, was then investigated by numerical simulations. From these technological solutions, a first prototype of POCI with a 24 mm diameter field of view has been developed. Its characterization has put forward a millimeter spatial resolution and a detection efficiency comparable to that of clinical gamma cameras and in agreement with the numerical predictions. Finally, in collaboration with Gustave Roussy, a first clinical evaluation of the POCI camera has been performed for sentinel ganglion pre-operative localization in patients afflicted by malignant melanomas or breast cancers. The preliminary results have already shown that the performances of POCI are compatible with intraoperative imaging purposes and suggest how this camera can boost the success rate of tumor removal surgeries for other cancerous diseases. (author) 100 refs., 67 figs., 11 tabs.

  12. The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs

    Science.gov (United States)

    Tajima, H.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Williams, D.

    2008-04-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off in the studies of these design concepts.

  13. The Advanced Gamma-ray Imaging System (AGIS) Telescope Optical System Designs

    Science.gov (United States)

    Bugaev, V.; Buckley, J.; Diegel, S.; Falcone, A.; Fegan, S.; Finley, J.; Guarino, V.; Hanna, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Ramsey, B.; Romani, R.; Vassiliev, V.; Weekes, T.

    2008-12-01

    AGIS is a conceptual design for a future ground-based gamma-ray observatory operating in the energy range 25 GeV-100 TeV, which is based on an array of ~20-100 imaging atmospheric Cherenkov telescopes (IACTs). The desired improvement in sensitivity, angular resolution, and reliability of operation of AGIS imposes demanding technological and cost requirements on the design of the IACTs. We are considering several options for the optical system (OS) of the AGIS telescopes, which include the traditional Davies-Cotton design as well as novel two-mirror design. Emerging mirror production technologies based on replication processes such as cold and hot glass slumping, cured carbon fiber reinforced plastic (CFRP), and electroforming provide new opportunities for cost-effective solutions for the design of the OS.

  14. The inverse problems of reconstruction in the X-rays, gamma or positron tomographic imaging systems

    International Nuclear Information System (INIS)

    Grangeat, P.

    1999-01-01

    The revolution in imagery, brought by the tomographic technic in the years 70, allows the computation of local values cartography for the attenuation or the emission activity. The reconstruction techniques thus allow the connection from integral measurements to characteristic information distribution by inversion of the measurement equations. They are a main application of the solution technic for inverse problems. In a first part the author recalls the physical principles for measures in X-rays, gamma and positron imaging. Then he presents the various problems with their associated inversion techniques. The third part is devoted to the activity sector and examples, to conclude in the last part with the forecast. (A.L.B.)

  15. Imaging of gamma rays with the WINKLER high-resolution germanium spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, T.R.; Hamilton, T.W.; Hawley, J.D.; Kilner, J.R.; Murphy, M.J.; Nakano, G.H. (Luckheed Palo Alto Research Lab., Palo Alto, CA (US))

    1990-06-01

    The WINKLER spectrometer is a matrix of nine high-purity {ital n}-type germanium detectors developed for astrophysical observations and terrestrial radiation monitoring. The spectrometer has been fitted with a set of modulation collimator grids designed for imaging hard x-ray and gamma-ray sources by the Mertz, Nakano, and Kilner method. This technique employs a pair of gridded collimators in front of each detector with the number of grid bars varying from one to {ital N}, where {ital N} is the number of detectors. When the collimator pairs are rotated through a full 360-degree angular range, the detector signals provide the information for a two-dimensional band-limited Fourier reconstruction of order {ital N}. Tests of the spectrometer with single and multiple point sources as well as continuous source distributions are reported.

  16. Heart imaging by cadmium telluride gamma camera European Program 'BIOMED' consortium

    CERN Document Server

    Scheiber, C; Chambron, J; Prat, V; Kazandjan, A; Jahnke, A; Matz, R; Thomas, S; Warren, S; Hage-Hali, M; Regal, R; Siffert, P; Karman, M

    1999-01-01

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3x3 mm, field of view: 15 cmx15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15 deg. tilt of the collimator with respect to the detector grid. A 16x16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16...

  17. 3D tomographic imaging with the γ-eye planar scintigraphic gamma camera

    Science.gov (United States)

    Tunnicliffe, H.; Georgiou, M.; Loudos, G. K.; Simcox, A.; Tsoumpas, C.

    2017-11-01

    γ-eye is a desktop planar scintigraphic gamma camera (100 mm × 50 mm field of view) designed by BET Solutions as an affordable tool for dynamic, whole body, small-animal imaging. This investigation tests the viability of using γ-eye for the collection of tomographic data for 3D SPECT reconstruction. Two software packages, QSPECT and STIR (software for tomographic image reconstruction), have been compared. Reconstructions have been performed using QSPECT’s implementation of the OSEM algorithm and STIR’s OSMAPOSL (Ordered Subset Maximum A Posteriori One Step Late) and OSSPS (Ordered Subsets Separable Paraboloidal Surrogate) algorithms. Reconstructed images of phantom and mouse data have been assessed in terms of spatial resolution, sensitivity to varying activity levels and uniformity. The effect of varying the number of iterations, the voxel size (1.25 mm default voxel size reduced to 0.625 mm and 0.3125 mm), the point spread function correction and the weight of prior terms were explored. While QSPECT demonstrated faster reconstructions, STIR outperformed it in terms of resolution (as low as 1 mm versus 3 mm), particularly when smaller voxel sizes were used, and in terms of uniformity, particularly when prior terms were used. Little difference in terms of sensitivity was seen throughout.

  18. Gabor zone-plate apertures for imaging with the mercuric iodide gamma-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E [EG and G Energy Measurements, Inc., Goleta, CA (USA); Meyyappan, A; Cai, A; Wade, G [California Univ., Santa Barbara (USA). Dept. of Electrical and Computer Engineering

    1990-12-20

    Gabor zone-plate (GZP) apertures have been developed for use in EG and G EM's mercuric iodide (HgI{sub 2}) gamma-ray camera. The purpose of such an aperture is to increase efficiency, while maintaining good resolution. The GZP is similar to the Fresnel zone plate (FZP) but it has continuous transitions between opaque and transparent regions. Because there are no sharp transitions in the transmission, the inherent interference noise in GZP imaging is lower than that in FZP imaging. GZP parameters were chosen by considering the effects of constraints such as detector pixel size, number of pixels, minimum field of view required, maximum angle of incidence tolerated, and the Nyquist criterion for the minimum sampling rate. As a result an aperture was designed and fabricated with eight zones and a diameter of 3 cm. Lead was chosen as the aperture medium due to its high attenuation coefficient. Experimental data were obtained from the camera with the above GZP aperture. The point-spread function was determined and compared to the calculated response. Excellent agreement was obtained. The reconstruction process involves simulating, by computer, planar-wave illumination of a scaled transparency of the image and recording the intensity pattern at the focal plane. (orig.).

  19. Nucleon structure study by virtual compton scattering

    International Nuclear Information System (INIS)

    Berthot, J.; Bertin, P.Y.; Breton, V.; Fonvielle, H.; Hyde-Wright, C.; Quemener, G.; Ravel, O.; Braghieri, A.; Pedroni, P.; Boeglin, W.U.; Boehm, R.; Distler, M.; Edelhoff, R.; Friedrich, J.; Geiges, R.; Jennewein, P.; Kahrau, M.; Korn, M.; Kramer, H.; Krygier, K.W.; Kunde, V.; Liesenfeld, A.; Merle, K.; Neuhausen, R.; Offermann, E.A.J.M.; Pospischil, T.; Rosner, G.; Sauer, P.; Schmieden, H.; Schardt, S.; Tamas, G.; Wagner, A.; Walcher, T.; Wolf, S.

    1995-01-01

    We propose to study nucleon structure by Virtual Compton Scattering using the reaction p(e,e'p)γ with the MAMI facility. We will detect the scattered electron and the recoil proton in coincidence in the high resolution spectrometers of the hall A1. Compton events will be separated from the other channels (principally π 0 production) by missing-mass reconstruction. We plan to investigate this reaction near threshold. Our goal is to measure new electromagnetic observables which generalize the usual magnetic and electric polarizabilities. (authors). 9 refs., 18 figs., 7 tabs

  20. Determination of the cork bark porosity through the gamma ray transmission technology and electronic scanning microscopy image analysis

    International Nuclear Information System (INIS)

    Moraes, Antonio M.C.; Moreira, Anderson C.; Appoloni, Carlos R.

    2007-01-01

    This work applies the gamma transmission techniques (GTR) and imaging by scanning electron microscopy (SEM) for determination of porosity in the sparkling wine bottle corks. The gamma transmission experimental apparatus consists of a micrometric table (ZX) of sample movement automated, a Am-241 source (59,53 keV, 100 mCi), lead collimators, sample-holder, Na I(Tl) detector and appropriated electronics. For the microscopic images an FEI (Quanta 200), electronic microscope with associated electronics was used, and the image analysis was performed with IMAGO software. The average porosity for 22 samples analysed by GTR was of φ=58 +- 4.6 percent. By the imaging technique the found average porosity was φ=60.0 +- 6.2 percent. (author)

  1. A prototype small CdTe gamma camera for radioguided surgery and other imaging applications.

    Science.gov (United States)

    Tsuchimochi, Makoto; Sakahara, Harumi; Hayama, Kazuhide; Funaki, Minoru; Ohno, Ryoichi; Shirahata, Takashi; Orskaug, Terje; Maehlum, Gunnar; Yoshioka, Koki; Nygard, Einar

    2003-12-01

    Gamma probes have been used for sentinel lymph node biopsy in melanoma and breast cancer. However, these probes can provide only radioactivity counts and variable pitch audio output based on the intensity of the detected radioactivity. We have developed a small semiconductor gamma camera (SSGC) that allows visualisation of the size, shape and location of the target tissues. This study is designed to characterise the performance of the SSGC for radioguided surgery of metastatic lesions and for other imaging applications amenable to the smaller format of this prototype imaging system. The detector head had 32 cadmium telluride semiconductor arrays with a total of 1,024 pixels, and with application-specific integrated circuits (ASICs) and a tungsten collimator. The entire assembly was encased in a lead housing measuring 152 mmx166 mmx65 mm. The effective visual field was 44.8 mmx44.8 mm. The energy resolution and imaging aspects were tested. Two spherical 5-mm- and 15-mm-diameter technetium-99m radioactive sources that had activities of 0.15 MBq and 100 MBq, respectively, were used to simulate a sentinel lymph node and an injection site. The relative detectability of these foci by the new detector and a conventional scintillation camera was studied. The prototype was also examined in a variety of clinical applications. Energy resolution [full-width at half-maximum (FWHM)] for a single element at the centre of the field of view was 4.2% at 140 keV (99mTc), and the mean energy resolution of the CdTe detector arrays was approximately 7.8%. The spatial resolution, represented by FWHM, had a mean value of 1.56 +/- 0.05 mm. Simulated node foci could be visualised clearly by the SSGC using a 15-s acquisition time. In preliminary clinical tests, the SSGC successfully imaged diseases in a variety of tissues, including salivary and thyroid glands, temporomandibular joints and sentinel lymph nodes. The SSGC has significant potential for diagnosing diseases and facilitating

  2. A prototype small CdTe gamma camera for radioguided surgery and other imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchimochi, Makoto; Hayama, Kazuhide [Department of Oral and Maxillofacial Radiology, The Nippon Dental University School of Dentistry at Niigata, 1-8 Hamaura-cho, 951-8580, Niigata (Japan); Sakahara, Harumi [Department of Radiology, Hamamatsu University School of Medicine, Hamamatsu (Japan); Funaki, Minoru; Ohno, Ryoichi; Shirahata, Takashi [Acrorad Co. Ltd., Tokyo (Japan); Orskaug, Terje; Maehlum, Gunnar; Yoshioka, Koki; Nygard, Einar [Integrated Detector and Electronics A.S (IDE AS), Hovik (Norway)

    2003-12-01

    Gamma probes have been used for sentinel lymph node biopsy in melanoma and breast cancer. However, these probes can provide only radioactivity counts and variable pitch audio output based on the intensity of the detected radioactivity. We have developed a small semiconductor gamma camera (SSGC) that allows visualisation of the size, shape and location of the target tissues. This study is designed to characterise the performance of the SSGC for radioguided surgery of metastatic lesions and for other imaging applications amenable to the smaller format of this prototype imaging system. The detector head had 32 cadmium telluride semiconductor arrays with a total of 1,024 pixels, and with application-specific integrated circuits (ASICs) and a tungsten collimator. The entire assembly was encased in a lead housing measuring 152 mm x 166 mm x 65 mm. The effective visual field was 44.8 mm x 44.8 mm. The energy resolution and imaging aspects were tested. Two spherical 5-mm- and 15-mm-diameter technetium-99m radioactive sources that had activities of 0.15 MBq and 100 MBq, respectively, were used to simulate a sentinel lymph node and an injection site. The relative detectability of these foci by the new detector and a conventional scintillation camera was studied. The prototype was also examined in a variety of clinical applications. Energy resolution [full-width at half-maximum (FWHM)] for a single element at the centre of the field of view was 4.2% at 140 keV ({sup 99m}Tc), and the mean energy resolution of the CdTe detector arrays was approximately 7.8%. The spatial resolution, represented by FWHM, had a mean value of 1.56{+-}0.05 mm. Simulated node foci could be visualised clearly by the SSGC using a 15-s acquisition time. In preliminary clinical tests, the SSGC successfully imaged diseases in a variety of tissues, including salivary and thyroid glands, temporomandibular joints and sentinel lymph nodes. The SSGC has significant potential for diagnosing diseases and

  3. A prototype small CdTe gamma camera for radioguided surgery and other imaging applications

    International Nuclear Information System (INIS)

    Tsuchimochi, Makoto; Hayama, Kazuhide; Sakahara, Harumi; Funaki, Minoru; Ohno, Ryoichi; Shirahata, Takashi; Orskaug, Terje; Maehlum, Gunnar; Yoshioka, Koki; Nygard, Einar

    2003-01-01

    Gamma probes have been used for sentinel lymph node biopsy in melanoma and breast cancer. However, these probes can provide only radioactivity counts and variable pitch audio output based on the intensity of the detected radioactivity. We have developed a small semiconductor gamma camera (SSGC) that allows visualisation of the size, shape and location of the target tissues. This study is designed to characterise the performance of the SSGC for radioguided surgery of metastatic lesions and for other imaging applications amenable to the smaller format of this prototype imaging system. The detector head had 32 cadmium telluride semiconductor arrays with a total of 1,024 pixels, and with application-specific integrated circuits (ASICs) and a tungsten collimator. The entire assembly was encased in a lead housing measuring 152 mm x 166 mm x 65 mm. The effective visual field was 44.8 mm x 44.8 mm. The energy resolution and imaging aspects were tested. Two spherical 5-mm- and 15-mm-diameter technetium-99m radioactive sources that had activities of 0.15 MBq and 100 MBq, respectively, were used to simulate a sentinel lymph node and an injection site. The relative detectability of these foci by the new detector and a conventional scintillation camera was studied. The prototype was also examined in a variety of clinical applications. Energy resolution [full-width at half-maximum (FWHM)] for a single element at the centre of the field of view was 4.2% at 140 keV ( 99m Tc), and the mean energy resolution of the CdTe detector arrays was approximately 7.8%. The spatial resolution, represented by FWHM, had a mean value of 1.56±0.05 mm. Simulated node foci could be visualised clearly by the SSGC using a 15-s acquisition time. In preliminary clinical tests, the SSGC successfully imaged diseases in a variety of tissues, including salivary and thyroid glands, temporomandibular joints and sentinel lymph nodes. The SSGC has significant potential for diagnosing diseases and facilitating

  4. Study of the feasibility of a compact gamma camera for real-time cancer assessment

    CERN Document Server

    Caballero Ontanaya, Luis

    2017-01-01

    Results from the simulations of a Compton gamma camera based on compact configuration of detectors consisting in two detection modules, each of them having two stages of high-resolution position- and energy sensitive radiation detectors operated in time-coincidence are presented. Monolithic scintillation crystals instead of pixelated crystals in order to reduce dead areas have been simulated. In order to study the system feasibility to produce real-time images, different setups are considered. Performance in terms of acquisition times have been calculated to determine the real-time capabilities and limitations of such a system.

  5. A study of the sensitivity of an imaging telescope (GRITS) for high energy gamma-ray astronomy. Final report

    International Nuclear Information System (INIS)

    Yearian, M.R.

    1990-08-01

    When a gamma-ray telescope is placed in Earth orbit, it is bombarded by a flux of cosmic protons much greater than the flux of interesting gammas. These protons can interact in the telescope's thermal shielding to produce detectable gamma rays, most of which are vetoed. Since the proton flux is so high, the unvetoed gamma rays constitute a significant background relative to some weak sources. This background increases the observing time required to pinpoint some sources and entirely obscures other sources. Although recent telescopes have been designed to minimize this background, its strength and spectral characteristics were not previously calculated in detail. Monte Carlo calculations are presented which characterize the strength, spectrum and other features of the cosmic proton background using FLUKA, a hadronic cascade program. Several gamma-ray telescopes, including SAS-2, EGRET and the Gamma Ray Imaging Telescope System (GRITS), are analyzed, and their proton-induced backgrounds are characterized. In all cases, the backgrounds are either shown to be low relative to interesting signals or suggestions are made which would reduce the background sufficiently to leave the telescope unimpaired. In addition, several limiting cases are examined for comparison to previous estimates and calibration measurements

  6. Advanced concepts in multi-dimensional radiation detection and imaging

    International Nuclear Information System (INIS)

    Vetter, Kai; Barnowski, Ross; Pavlovsky, Ryan; Haefner, Andy; Torii, Tatsuo; Shikaze, Yoshiaki; Sanada, Yukihisa

    2016-01-01

    Recent developments in the detector fabrication, signal readout, and data processing enable new concepts in radiation detection that are relevant for applications ranging from fundamental physics to medicine as well as nuclear security and safety. We present recent progress in multi-dimensional radiation detection and imaging in the Berkeley Applied Nuclear Physics program. It is based on the ability to reconstruct scenes in three dimensions and fuse it with gamma-ray image information. We are using the High-Efficiency Multimode Imager HEMI in its Compton imaging mode and combining it with contextual sensors such as the Microsoft Kinect or visual cameras. This new concept of volumetric imaging or scene data fusion provides unprecedented capabilities in radiation detection and imaging relevant for the detection and mapping of radiological and nuclear materials. This concept brings us one step closer to the seeing the world with gamma-ray eyes. (author)

  7. Results of Gamma-Ray Imaging with High-Energy Radiation Visualizer HERV at Nuclear Reactor in Russia and Germany

    International Nuclear Information System (INIS)

    Ivanov, O.P.; Stepanov, V.E.; Sudarkin, A.N.; Urutskoev, L.I.

    1999-01-01

    HER V-high energy radiation visualizer is a system for imaging in X-and gamma-ray regions developed by RECOM during recent years. Its later version provides the real industrial prototype that has been already tested under the complex gamma-field conditions of highly contaminated nuclear facilities in Russia and Germany. New special options for initial CCD camera frames processing (CCD camera operates in slow repetition mode) allow one to perform imaging without heavy shielding during a long exposure time. Image processing options allowing one to take into account background radiation, noise and drift of electronics are described. The contaminated pipelines and vessels HER V imagery results are presented. Background does rate in rooms with contaminated equipment appeared to be up to 1 R/hour and from 1m R/hour up to 50 m R/hour at detector's head location. The major contaminating nuclides proved to be Co-60 and Cs-137. Imaging time was chosen to be 0.2-1 hour. Data acquisition and processing procedures enabled to avoid the high background dose rate influence at the device measuring head location. Superposition of gamma images over optical images indicates that the major contaminated parts of the pipelines were their bends, places of their connection, and their valves

  8. Comparison of myocardial perfusion imaging between the new high-speed gamma camera and the standard anger camera

    International Nuclear Information System (INIS)

    Tanaka, Hirokazu; Chikamori, Taishiro; Hida, Satoshi

    2013-01-01

    Cadmium-zinc-telluride (CZT) solid-state detectors have been recently introduced into the field of myocardial perfusion imaging. The aim of this study was to prospectively compare the diagnostic performance of the CZT high-speed gamma camera (Discovery NM 530c) with that of the standard 3-head gamma camera in the same group of patients. The study group consisted of 150 consecutive patients who underwent a 1-day stress-rest 99m Tc-sestamibi or tetrofosmin imaging protocol. Image acquisition was performed first on a standard gamma camera with a 15-min scan time each for stress and for rest. All scans were immediately repeated on a CZT camera with a 5-min scan time for stress and a 3-min scan time for rest, using list mode. The correlations between the CZT camera and the standard camera for perfusion and function analyses were strong within narrow Bland-Altman limits of agreement. Using list mode analysis, image quality for stress was rated as good or excellent in 97% of the 3-min scans, and in 100% of the ≥4-min scans. For CZT scans at rest, similarly, image quality was rated as good or excellent in 94% of the 1-min scans, and in 100% of the ≥2-min scans. The novel CZT camera provides excellent image quality, which is equivalent to standard myocardial single-photon emission computed tomography, despite a short scan time of less than half of the standard time. (author)