WorldWideScience

Sample records for compton backscatter x-ray

  1. Compton backscattered collmated X-ray source

    Science.gov (United States)

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  2. Compton backscattered collimated x-ray source

    Science.gov (United States)

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  3. A compact Compton backscatter X-ray source for mammography and coronary angiography

    International Nuclear Information System (INIS)

    Nguyen, D.C.; Kinross-Wright, J.M.; Weber, M.E.; Volz, S.K.; Gierman, S.M.; Hayes, K.; Vernon, W.; Goldstein, D.J.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The project objective is to generate a large flux of tunable, monochromatic x-rays for use in mammography and coronary angiography. The approach is based on Compton backscattering of an ultraviolet solid-state laser beam against the high-brightness 20-MeV electron beams from a compact linear accelerator. The direct Compton backscatter approach failed to produce a large flux of x-rays due to the low photon flux of the scattering solid-state laser. The authors have modified the design of a compact x-ray source to the new Compton backscattering geometry with use of a regenerative amplifier free-electron laser. They have successfully demonstrated the production of a large flux of infrared photons and a high-brightness electron beam focused in both dimensions for performing Compton backscattering in a regenerative amplifier geometry

  4. Development of a sub-MeV X-ray source via Compton backscattering

    International Nuclear Information System (INIS)

    Kawase, K.; Kando, M.; Hayakawa, T.; Daito, I.; Kondo, S.; Homma, T.; Kameshima, T.; Kotaki, H.; Chen, L.-M.; Fukuda, Y.; Faenov, A.; Shizuma, T.; Shimomura, T.; Yoshida, H.; Hajima, R.; Fujiwara, M.; Bulanov, S.V.; Kimura, T.; Tajima, T.

    2011-01-01

    At the Kansai Photon Science Institute of the Japan Atomic Energy Agency, we have developed a Compton backscattered X-ray source in the energy region of a few hundred keV. The X-ray source consists of a 150-MeV electron beam, with a pulse duration of 10 ps (rms), accelerated by a Microtron accelerator and an Nd:YAG laser, with a pulse duration of 10 ns (FWHM). In the first trial experiment, the X-ray flux is estimated to be (2.2±1.0)x10 2 photons/pulse. For the actual application of an X-ray source, it is important to increase the generated X-ray flux as much as possible. Thus, for the purpose of increasing the X-ray flux, we have developed the pulse compression system for the Nd:YAG laser via stimulated Brillouin scattering (SBS). The SBS pulse compression has the great advantages of a high conversion efficiency and a simple structure. In this article, we review the present status of the Compton backscattered X-ray source and describe the SBS pulse compression system.

  5. Backscatter, anisotropy, and polarization of solar hard X-rays

    International Nuclear Information System (INIS)

    Bai, T.; Ramaty, R.

    1978-01-01

    Hard X-rays incident upon the photosphere with energies > or approx. =15 keV have high probabilities of backscatter due to Compton collisions with electrons. This effect has a strong influence on the spectrum, intensity, and polarization of solar hard X-rays - especially for anisotropic models in which the primary X-rays are emitted predominantly toward the photosphere. We have carried out a detailed study of X-ray backscatter, and we have investigated the interrelated problems of anisotropy, polarization, center-to-limb variation of the X-ray spectrum, and Compton backscatter in a coherent fashion. The results of this study are compared with observational data. Because of the large contribution from backscatter, for an anisotropic primary X-ray source which is due to bremsstrahlung of accelerated electrons moving predominantly down toward the photosphere, the observed X-ray flux around 30 keV does not depend significantly on the position of flare on the Sun. For such an anisotropic source, the X-ray spectrum observed in the 15-50 keV range becomes steeper with the increasing heliocentric angle of the flare. These results are compatible with the data. The degree of polarization of the sum of the primary and reflected X-rays with energies between about 15 and 30 keV can be very large for anisotropic primary X-ray sources, but it is less than about 4% for isotropic sources. We also discuss the characteristics of the brightness distribution of the X-ray albedo patch created by the Compton backscatter. The height and anisotropy of the primary hard X-ray source might be inferred from the study of the albedo patch

  6. Image combination enhancement method for X-ray compton back-scattering security inspection body scanner

    International Nuclear Information System (INIS)

    Wang Huaiying; Zhang Yujin; Yang Lirui; Li Dong

    2011-01-01

    As for X-ray Compton Back-Scattering (CBS) body scanner, image clearness is very important for the performance of detecting the contraband hidden on the body. A new image combination enhancement method is provided based on characteristics of CBS body images and points of human vision. After processed by this method, the CBS image will be obviously improved with clear levels, distinct outline and uniform background. (authors)

  7. X-ray backscatter imaging with a spiral scanner

    International Nuclear Information System (INIS)

    Bossi, R.H.; Cline, J.L.; Friddell, K.D.

    1989-01-01

    X-ray backscatter imaging allows radiographic inspections to be performed with access to only one side of the object. A collimated beam of radiation striking an object will scatter x-rays by Compton scatter and x-ray fluorescence. A detector located on the source side of the part will measure the backscatter signal. By plotting signal strength as gray scale intensity vs. beam position on the object, an image of the object can be constructed. A novel approach to the motion of the collimated incident beam is a spiral scanner. The spiral scanner approach, described in this paper, can image an area of an object without the synchronized motion of the object or detector, required by other backscatter imaging techniques. X-ray backscatter is particularly useful for flaw detection in light element materials such as composites. The ease of operation and the ability to operate non-contact from one side of an object make x-ray backscatter imaging of increasing interest to industrial inspection problems

  8. A compact X-ray source based on Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bulyak, E.; Gladkikh, P.; Grigor' ev, Yu.; Guk, I.; Karnaukhov, I.; Khodyachikh, A.; Kononenko, S.; Mocheshnikov, N.; Mytsykov, A.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Tarasenko, A.; Telegin, Yu.; Zelinsky, A

    2001-07-21

    The main parameters of Kharkov electron storage ring N-100 with a beam energy range from 70 to 150 MeV are presented. The main results that were obtained in experimental researches are briefly described. The future of the N-100 upgrade to the development of the X-ray generator based on Compton back-scattering are presented. The electron beam energy range will be extended up to 250 MeV and the circumference of the storage ring will be 13.72 m. The lattice, parameters of the electron beam and the Compton back-scattering photons flux are described.

  9. A compact X-ray source based on Compton scattering

    International Nuclear Information System (INIS)

    Bulyak, E.; Gladkikh, P.; Grigor'ev, Yu.; Guk, I.; Karnaukhov, I.; Khodyachikh, A.; Kononenko, S.; Mocheshnikov, N.; Mytsykov, A.; Shcherbakov, A.; Tarasenko, A.; Telegin, Yu.; Zelinsky, A.

    2001-01-01

    The main parameters of Kharkov electron storage ring N-100 with a beam energy range from 70 to 150 MeV are presented. The main results that were obtained in experimental researches are briefly described. The future of the N-100 upgrade to the development of the X-ray generator based on Compton back-scattering are presented. The electron beam energy range will be extended up to 250 MeV and the circumference of the storage ring will be 13.72 m. The lattice, parameters of the electron beam and the Compton back-scattering photons flux are described

  10. Designing scheme of a γ-ray ICT system using compton back-scattering

    International Nuclear Information System (INIS)

    Xiao Jianmin

    1998-01-01

    The designing scheme of a γ ray ICT system by using Compton back-scattering is put forward. The technical norms, detector system, γ radioactive source, mechanical scanning equipment, and data acquisition and image reconstruction principle of this ICT are described

  11. The applications possibilities of the gamma-ray compton backscattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Flechas, David; Gonzalez, Natalia; Sarmiento, Luis G.; Fajardo, Eduardo; Garzon, Claudia; Munoz, Juansebastian; Cristancho, Fernando [Universidad Nacional de Colombia, Bogota (Colombia). Dept. de Fisica

    2012-07-01

    Full text: X-rays have been for already longer than a century the instrument of choice when producing images of opaque objects. One important characteristic of the use of X-rays as an imaging tool is the geometrical arrangement in which the object under study is placed between the photons source and the imaging material (film or electronic device). This set-up cannot be realized in a multitude of situations of industrial interest. In those cases the source and the imaging device are limited to be at the same side of the object rendering impossible the use of present day's possibilities of X-ray imaging. It is in these cases where the technique discussed exhibits most of its power and advantages. By using the back-to-back emitted gamma-rays of the positron-decay of {sup 22}Na, the Gamma-Ray Compton Backscattering (GRCB) technique is able of building images of an object placed in front of the gamma-rays source. The set-up includes two detectors connected in time coincidence, one of them, a pixelated position- detector in charge of building the image and the other just providing the gating condition. The talk explains the working principle, shows some first images of hidden objects in soil, and discusses some of the prospective areas of application like oil industry and explosive landmines localization. (author)

  12. Compton spectra of atoms at high x-ray intensity

    Science.gov (United States)

    Son, Sang-Kil; Geffert, Otfried; Santra, Robin

    2017-03-01

    Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  13. Passive amplification of a fiber laser in a Fabry-Perot cavity: application to gamma-ray production by Compton backscattering

    International Nuclear Information System (INIS)

    Labaye, F.

    2012-01-01

    One of the critical points of the International Linear Collider (ILC) is the polarized positrons source. Without going through further explanation on the physical process of polarized positrons production, we point out that they are produced when circularly polarized gamma rays interact with mater. Thus, the critical point is the circularly polarized gamma-ray source. A technical solution for this source is the Compton backscattering and in the end, this thesis takes place in the framework for the design of a high average power laser systems enslaved to Fabry-Perot cavities for polarized gamma-ray production by Compton backscattering. In the first part, we present this thesis context, the Compton backscattering principle and the choice for an optical architecture based on a fiber laser and a Fabry-Perot cavity. We finish by enumerating several possible applications for Compton backscattering which shows that the work presented here might benefits from technology transfer through others research fields. In the second part, we present the different fiber laser architecture studied as well as the results obtained. In the third part, we remind the operating principle of a Fabry-Perot cavity and present the one used for our experiment as well as its specificities. In the fourth part, we address the Compton backscattering experiment which enables us to present the joint utilization of a fiber laser and a Fabry-Perot cavity in a particles accelerator to generate gamma rays for the first time to our knowledge. This experiment took place in the Accelerator Test Facility (ATF). The experimental apparatus as well as the results obtained are thus presented. In the end, we summarize the results presented in this manuscript and propose different evolution possibilities for the system in a general conclusion. (author)

  14. X-ray Compton line scan tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kupsch, Andreas; Lange, Axel; Jaenisch, Gerd-Ruediger [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachgruppe 8.5 - Mikro-ZfP; Hentschel, Manfred P. [Technische Univ. Berlin (Germany); Kardjilov, Nikolay; Markoetter, Henning; Hilger, Andre; Manke, Ingo [Helmholtz-Zentrum Berlin (HZB) (Germany); Toetzke, Christian [Potsdam Univ. (Germany)

    2015-07-01

    The potentials of incoherent X-ray scattering (Compton) computed tomography (CT) are investigated. The imaging of materials of very different atomic number or density at once is generally a perpetual challenge for X-ray tomography or radiography. In a basic laboratory set-up for simultaneous perpendicular Compton scattering and direct beam attenuation tomography are conducted by single channel photon counting line scans. This results in asymmetric distortions of the projection profiles of the scattering CT data set. In a first approach, corrections of Compton scattering data by taking advantage of rotational symmetry yield tomograms without major geometric artefacts. A cylindrical sample composed of PE, PA, PVC, glass and wood demonstrates similar Compton contrast for all the substances, while the conventional absorption tomogram only reveals the two high order materials. Comparison to neutron tomography reveals astonishing similarities except for the glass component (without hydrogen). Therefore, Compton CT offers the potential to replace neutron tomography, which requires much more efforts.

  15. HIGH ENERGY, HIGH BRIGHTNESS X-RAYS PRODUCED BY COMPTON BACKSCATTERING AT THE LIVERMORE PLEIADES FACILITY

    International Nuclear Information System (INIS)

    Tremaine, A M; Anderson, S G; Betts, S; Crane, J; Gibson, D J; Hartemann, F V; Jacob, J S; Frigola, P; Lim, J; Rosenzweig, J; Travish, G

    2005-01-01

    PLEIADES (Picosecond Laser Electron Interaction for the Dynamic Evaluation of Structures) produces tunable 30-140 keV x-rays with 0.3-5 ps pulse lengths and up to 10 7 photons/pulse by colliding a high brightness electron beam with a high power laser. The electron beam is created by an rf photo-injector system, accelerated by a 120 MeV linac, and focused to 20 (micro)m with novel permanent magnet quadrupoles. To produce Compton back scattered x-rays, the electron bunch is overlapped with a Ti:Sapphire laser that delivers 500 mJ, 100 fs, pulses to the interaction point. K-edge radiography at 115 keV on Uranium has verified the angle correlated energy spectrum inherent in Compton scattering and high-energy tunability of the Livermore source. Current upgrades to the facility will allow laser pumping of targets synchronized to the x-ray source enabling dynamic diffraction and time-resolved studies of high Z materials. Near future plans include extending the radiation energies to >400 keV, allowing for nuclear fluorescence studies of materials

  16. Landmine Detection: on the Role of Soil Composition in the Imaging Capabilities of Gamma-ray Compton Backscattering

    International Nuclear Information System (INIS)

    Cortes, M.L.; Merchan, E.; Blanco, W.J.; Cristancho, F.; Gerl, J.; Ameil, F.

    2010-01-01

    Two issues related with the use of γ-ray Compton backscattering as an imaging technique are addressed: γ-soil interaction, and image processing. Promising methodologies are described in both topics. (author)

  17. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    International Nuclear Information System (INIS)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Zgadzaj, Rafal; Henderson, Watson; Downer, M. C.; Arefiev, Alexey V.; Zhang, Xi; Khudik, V.; Shvets, G.

    2015-01-01

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a 0 ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10 −12 ) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements

  18. X-ray generator based on Compton scattering

    NARCIS (Netherlands)

    Androsov, V.P.; Agafonov, A.V.; Botman, J.I.M.; Bulyak, E.V.; Drebot, I.; Gladkikh, P.I.; Grevtsev, V.; Ivashchenko, V.; Karnaukhov, I.M.; Lapshin, V.I.

    2005-01-01

    Nowadays, the sources of the X-rays based on a storage ring with low beam energy and Compton scattering of intense laser beam are under development in several laboratories. In the paper the state-of-art in development and construction of cooperative project of a Kharkov advanced X-ray source NESTOR

  19. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1205 (Japan)

    2016-04-15

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  20. Development and characterization of a tunable ultrafast X-ray source via inverse-Compton-scattering

    International Nuclear Information System (INIS)

    Jochmann, Axel

    2014-01-01

    Ultrashort, nearly monochromatic hard X-ray pulses enrich the understanding of the dynamics and function of matter, e.g., the motion of atomic structures associated with ultrafast phase transitions, structural dynamics and (bio)chemical reactions. Inverse Compton backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright X-ray pulses which can be used in a pump-probe experiment, but also for the investigation of the electron beam dynamics at the interaction point. The focus of this PhD work lies on the detailed understanding of the kinematics during the interaction of the relativistic electron bunch and the laser pulse in order to quantify the influence of various experiment parameters on the emitted X-ray radiation. The experiment was conducted at the ELBE center for high power radiation sources using the ELBE superconducting linear accelerator and the DRACO Ti:sapphire laser system. The combination of both these state-of-the-art apparatuses guaranteed the control and stability of the interacting beam parameters throughout the measurement. The emitted X-ray spectra were detected with a pixelated detector of 1024 by 256 elements (each 26μm by 26μm) to achieve an unprecedented spatial and energy resolution for a full characterization of the emitted spectrum to reveal parameter influences and correlations of both interacting beams. In this work the influence of the electron beam energy, electron beam emittance, the laser bandwidth and the energy-anglecorrelation on the spectra of the backscattered X-rays is quantified. A rigorous statistical analysis comparing experimental data to ab-initio 3D simulations enabled, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard X-ray source PHOENIX (Photon electron collider for Narrow bandwidth Intense X-rays) and potential all optical gamma-ray sources. The results

  1. Kharkov X-ray Generator Based On Compton Scattering

    International Nuclear Information System (INIS)

    Shcherbakov, A.; Zelinsky, A.; Mytsykov, A.; Gladkikh, P.; Karnaukhov, I.; Lapshin, V.; Telegin, Y.; Androsov, V.; Bulyak, E.; Botman, J.I.M.; Tatchyn, R.; Lebedev, A.

    2004-01-01

    Nowadays X-ray sources based on storage rings with low beam energy and Compton scattering of intense laser beams are under development in several laboratories. An international cooperative project of an advanced X-ray source of this type at the Kharkov Institute of Physics and Technology (KIPT) is described. The status of the project is reviewed. The design lattice of the storage ring and calculated X-ray beam parameters are presented. The results of numerical simulation carried out for proposed facility show a peak spectral X-ray intensity of about 1014 can be produced

  2. Scattered X-ray beam nondestructive testing

    International Nuclear Information System (INIS)

    Harding, G.; Kosanetzky, J.

    1988-01-01

    X-ray scatter interactions generally dominate the linear attenuation coefficient at the photon energies typical of medical and industrial radiography. Specific advantages of X-ray scatter imaging, including a flexible choice of measurement geometry, direct 3D-imaging capability (tomography) and improved information for material characterization, are illustrated with results from Compton and coherent scatter devices. Applications of a Compton backscatter scanner (ComScan) in the aerospace industry and coherent scatter imaging in security screening are briefly considered [pt

  3. Compton scatter imaging: A tool for historical exploration

    International Nuclear Information System (INIS)

    Harding, G.; Harding, E.

    2010-01-01

    This review discusses the principles and technological realisation of a technique, termed Compton scatter imaging (CSI), which is based on spatially resolved detection of Compton scattered X-rays. The applicational focus of this review is to objects of historical interest. Following a historical survey of CSI, a description is given of the major characteristics of Compton X-ray scatter. In particular back-scattered X-rays allow massive objects to be imaged, which would otherwise be too absorbing for the conventional transmission X-ray technique. The ComScan (an acronym for Compton scatter scanner) is a commercially available backscatter imaging system, which is discussed here in some detail. ComScan images from some artefacts of historical interest, namely a fresco, an Egyptian mummy and a mediaeval clasp are presented and their use in historical analysis is indicated. The utility of scientific and technical advance for not only exploring history, but also restoring it, is briefly discussed.

  4. Compact X-ray source based on Compton backscattering

    CERN Document Server

    Bulyak, E V; Zelinsky, A; Karnaukhov, I; Kononenko, S; Lapshin, V G; Mytsykov, A; Telegin, Yu P; Khodyachikh, A; Shcherbakov, A; Molodkin, V; Nemoshkalenko, V; Shpak, A

    2002-01-01

    The feasibility study of an intense X-ray source based on the interaction between the electron beam in a compact storage ring and the laser pulse accumulated in an optical resonator is carried out. We propose to reconstruct the 160 MeV electron storage ring N-100, which was shutdown several years ago. A new magnetic lattice will provide a transverse of electron beam size of approx 35 mu m at the point of electron beam-laser beam interaction. The proposed facility is to generate X-ray beams of intensity approx 2.6x10 sup 1 sup 4 s sup - sup 1 and spectral brightness approx 10 sup 1 sup 2 phot/0.1%bw/s/mm sup 2 /mrad sup 2 in the energy range from 10 keV up to 0.5 MeV. These X-ray beam parameters meet the requirements for most of technological and scientific applications. Besides, we plan to use the new facility for studying the laser cooling effect.

  5. Compact X-ray source based on Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Bulyak, E.; Gladkikh, P.; Zelinsky, A. E-mail: zelinsky@kipt.kharkov.ua; Karnaukhov, I.; Kononenko, S.; Lapshin, V.; Mytsykov, A.; Telegin, Yu.; Khodyachikh, A.; Shcherbakov, A.; Molodkin, V.; Nemoshkalenko, V.; Shpak, A

    2002-07-21

    The feasibility study of an intense X-ray source based on the interaction between the electron beam in a compact storage ring and the laser pulse accumulated in an optical resonator is carried out. We propose to reconstruct the 160 MeV electron storage ring N-100, which was shutdown several years ago. A new magnetic lattice will provide a transverse of electron beam size of {approx}35 {mu}m at the point of electron beam-laser beam interaction. The proposed facility is to generate X-ray beams of intensity {approx}2.6x10{sup 14} s{sup -1} and spectral brightness {approx}10{sup 12} phot/0.1%bw/s/mm{sup 2}/mrad{sup 2} in the energy range from 10 keV up to 0.5 MeV. These X-ray beam parameters meet the requirements for most of technological and scientific applications. Besides, we plan to use the new facility for studying the laser cooling effect.

  6. X-ray backscatter radiography. Intrusive instead of penetrating, X-ray shadow phenomenon

    International Nuclear Information System (INIS)

    Wrobel, Norma; Kolkoori, Sanjeevareddy; Osterloh, Kurt; European Federation for Non-Destructive Testing

    2013-01-01

    Generally, the primary practical advantage of X-ray backscattering radiography is that there is no need to place a detector on the side of the specimen opposite to the source. Such a situation usually is encountered whenever the specimen is not only standing right in front of a wall or even inside a wall but also if the specimen is such big that radiography is not possible because of the layer thickness to be penetrated. The method used here differs fundamentally from the conventional method to interrogate the object with a scanning beam ('pencil beam') and to collect the whole backscattered radiation from the area. The object is fully illuminated by a (uncollimated) cone beam. Here, the image is recorded with a camera of absorbent material (tungsten, lead), which contains a matrix detector as the image receiver. The optical effect is generated by a special twisted slit collimator which operates according to an extended pinhole camera. The independent positioning of source and camera allows a variable irradiation geometry which causes different images as a result. As a consequence, a complex object in front of a backscattering wall appears completely different than standing alone. So X-ray backscatter images have to be interpreted according to their illumination with X-rays and their surroundings. (orig.)

  7. ILC beam energy measurement by means of laser Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Muchnoi, N. [Budker Inst. for Nuclear Physics, Novosibirsk (Russian Federation); Schreiber, H.J.; Viti, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-10-15

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered {gamma}-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10{sup -4} or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  8. ILC beam energy measurement by means of laser Compton backscattering

    International Nuclear Information System (INIS)

    Muchnoi, N.; Schreiber, H.J.; Viti, M.

    2008-10-01

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered γ-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10 -4 or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  9. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishimura, Yasuhiko; Togawa, Hiromi [Toyota Technical Development Corporation, 1-21 Imae, Hanamoto-cho, Toyota, Aichi 470-0334 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Kato, Ryukou [The Institute of Science and Industrial Research, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan)

    2014-11-15

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

  10. High-energy gamma-ray beams from Compton-backscattered laser light

    International Nuclear Information System (INIS)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized #betta#-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10 7 s - 1 ) of background-free polarized #betta# rays whose energy will be determined to a high accuracy (δE = 2.3 MeV). Initially, 300(420)-MeV #betta# rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the #betta#-ray energy up to 700 MeV

  11. High-energy gamma-ray beams from Compton-backscattered laser light

    Energy Technology Data Exchange (ETDEWEB)

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1983-01-01

    Collisions of light photons with relativistic electrons have previously been used to produce polarized ..gamma..-ray beams with modest (-10%) resolution but relatively low intensity. In contrast, the LEGS project (Laser + Electron Gamma Source) at Brookhaven will produce a very high flux (>2 x 10/sup 7/ s/sup -1/) of background-free polarized ..gamma.. rays whose energy will be determined to a high accuracy (..delta..E = 2.3 MeV). Initially, 300(420)-MeV ..gamma.. rays will be produced by backscattering uv light from the new 2.5(3.0)-GeV X-ray storage ring of the National Synchrotron Light Source (NSLS). The LEGS facility will operate as one of many passive users of the NSLS. In a later stage of the project, a Free Electron Laser is expectred to extend the ..gamma..-ray energy up to 700 MeV.

  12. Spatial distribution and polarization of gamma-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL

    CERN Document Server

    Park, S H; Tornow, W; Montgomery, C

    2001-01-01

    Beams of nearly monochromatic gamma-rays are produced via intracavity Compton backscattering in the OK-4/Duke storage ring FEL, the high-intensity gamma-ray source (HI gamma S). Presently, HI gamma S generates gamma-ray beams with an energy tunable from 2 to 58 MeV and a maximum flux of 5x10 sup 7 gamma-rays per second. The gamma-rays are linearly polarized with a degree of polarization close to 100% (V.N. Litvinenko, et al., Predictions and expected performance for the VUV OK-5/Duke Storage Ring FEL with variable polarization, Nucl. Instr. and Meth. A, to be published in this proceeding) and they are collimated to pencil-like semi-monoenergetic beams with RMS energy spreads as low as 0.2%. The detailed theoretical and experimental studies of the gamma-ray beam quality were conducted during the last two years (S.H. Park, Thesis, Duke University, Durham, NC, USA, 2000). In this paper, we present the theoretical analysis and the experimental results on the spatial distribution and polarization of gamma-rays fro...

  13. Spatial distribution and polarization of {gamma}-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H. E-mail: shpark@nanum.kaeri.re.kr; Litvinenko, V.N.; Tornow, W.; Montgomery, C

    2001-12-21

    Beams of nearly monochromatic {gamma}-rays are produced via intracavity Compton backscattering in the OK-4/Duke storage ring FEL, the high-intensity {gamma}-ray source (HI{gamma}S). Presently, HI{gamma}S generates {gamma}-ray beams with an energy tunable from 2 to 58 MeV and a maximum flux of 5x10{sup 7} {gamma}-rays per second. The {gamma}-rays are linearly polarized with a degree of polarization close to 100% (V.N. Litvinenko, et al., Predictions and expected performance for the VUV OK-5/Duke Storage Ring FEL with variable polarization, Nucl. Instr. and Meth. A, to be published in this proceeding) and they are collimated to pencil-like semi-monoenergetic beams with RMS energy spreads as low as 0.2%. The detailed theoretical and experimental studies of the {gamma}-ray beam quality were conducted during the last two years (S.H. Park, Thesis, Duke University, Durham, NC, USA, 2000). In this paper, we present the theoretical analysis and the experimental results on the spatial distribution and polarization of {gamma}-rays from the HI{gamma}S facility.

  14. Spatial distribution and polarization of γ-rays generated via Compton backscattering in the Duke/OK-4 storage ring FEL

    International Nuclear Information System (INIS)

    Park, S.H.; Litvinenko, V.N.; Tornow, W.; Montgomery, C.

    2001-01-01

    Beams of nearly monochromatic γ-rays are produced via intracavity Compton backscattering in the OK-4/Duke storage ring FEL, the high-intensity γ-ray source (HIγS). Presently, HIγS generates γ-ray beams with an energy tunable from 2 to 58 MeV and a maximum flux of 5x10 7 γ-rays per second. The γ-rays are linearly polarized with a degree of polarization close to 100% (V.N. Litvinenko, et al., Predictions and expected performance for the VUV OK-5/Duke Storage Ring FEL with variable polarization, Nucl. Instr. and Meth. A, to be published in this proceeding) and they are collimated to pencil-like semi-monoenergetic beams with RMS energy spreads as low as 0.2%. The detailed theoretical and experimental studies of the γ-ray beam quality were conducted during the last two years (S.H. Park, Thesis, Duke University, Durham, NC, USA, 2000). In this paper, we present the theoretical analysis and the experimental results on the spatial distribution and polarization of γ-rays from the HIγS facility

  15. Comparison of the time behavior in the separation of light and heavy materials in X-ray backscattered method as a diagnostic tool in inspection

    International Nuclear Information System (INIS)

    Faezeh, Rahmani; Sepideh Sadat, Azimi; Esmaiel, Bayat; Vahid, Dost Mohammadi

    2016-01-01

    X-ray backscattered method based on Compton backscattering is used in the inspection field. In contrast to transmission method, source and detectors are positioned on one side of the target, so in the situation that transmission inspection is difficult, X-ray backscattered method can be provided suitable data in the inspection field. Also, detection of hidden explosives and narcotic materials are very difficult or impossible in transmission methods. High intensity backscattered beam from light materials (low-Z), such as explosives and narcotics, in comparison to the heavy materials (high-Z), made this method as the strong technique in inspection. X-ray and gamma photons scattered by the light material (such as PE and PTFE) as well as heavy material (such as Fe and Cu) were studied using MCNPX2.6 Monte Carlo code. The results showed that rise time of pulse from light materials are slower than that of from heavy materials due to multi scattering of low energy photons in the light ones, so time expansion would occur in signals from light elements. If measurement is possible, the difference in time behavior can be used as a novel method in complementary diagnostic tool beside the use of pulse height in X-ray backscattered method.

  16. The simulation of an imaging gamma-ray Compton backscattering device using GEANT4

    International Nuclear Information System (INIS)

    Flechas, D.; Cristancho, F.; Sarmiento, L.G.; Fajardo, E.

    2014-01-01

    A gamma-backscattering imaging device dubbed Compton Camera, developed at GSI (Darmstadt, Germany) and modified and studied at the Nuclear Physics Group of the National University of Colombia in Bogota, uses the back-to-back emission of two gamma rays in the positron annihilation to construct a bidimensional image that represents the distribution of matter in the field-of-view of the camera. This imaging capability can be used in a host of different situations, for example, to identify and study deposition and structural defects, and to help locating concealed objects, to name just two cases. In order to increase the understanding of the response of the Compton Camera and, in particular, its image formation process, and to assist in the data analysis, a simulation of the camera was developed using the GEANT4 simulation toolkit. In this work, the images resulting from different experimental conditions are shown. The simulated images and their comparison with the experimental ones already suggest methods to improve the present experimental device. (author)

  17. A high intensity beam line of γ-rays up to 22MeV energy based on Compton backscattering

    International Nuclear Information System (INIS)

    Guo, W.; Xu, W.; Chen, J.G.; Ma, Y.G.; Cai, X.Z.; Wang, H.W.; Xu, Y.; Wang, C.B.; Lu, G.C.; Tian, W.D.; Yuan, R.Y.; Xu, J.Q.; Wei, Z.Y.; Yan, Z.; Shen, W.Q.

    2007-01-01

    Shanghai Laser Electron Gamma Source, a high intensity beam line of γ-ray, has been proposed recently. The beam line is expected to generate γ-rays up to the maximum energy of 22MeV by Compton backscattering between a CO 2 laser and electrons in the 3.5 GeV storage ring of the Shanghai Synchrotron Radiation Facility. The flux of non-collimated γ-rays is estimated to be 10 9 -10 10 s -1 when a CO 2 laser of several hundred Watt power is employed. We will discuss physics issues in the design and optimization of the beam line

  18. Three-Dimensional Backscatter X-Ray Imaging System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the proposal is to design, develop and demonstrate a potentially portable Compton x-ray scatter 3D-imaging system by using specially...

  19. Status of Kharkov X-ray Generator based on Compton Scattering NESTOR

    NARCIS (Netherlands)

    Zelinsky, A.; Androsov, V.P.; Bulyak, E.V.; Drebot, I.; Gladkikh, P.I.; Grevtsev, V.; Botman, J.I.M.; Ivashchenko, V.; Karnaukhov, I.M.; Lapshin, V.I.; Markov, V.; Mocheshnikov, N.; Mytsykov, A.; Peev, F.A.; Rezaev, A.; Shcherbakov, A.; Skomorkohov, V.; Skyrda, V.; Telegin, Y.; Trotsenko, V.; Tatchyn, R.; Lebedev, B.; Agafonov, A.V.

    2004-01-01

    Nowadays the sources of the X-rays based on a storage ring with low beam energy and Compton scattering of intense laser beam are under development in several laboratories. In the paper the state-of-art in development and construction of cooperative project of a Kharkov advanced X-ray source NESTOR

  20. NRF Based Nondestructive Inspection System for SNM by Using Laser-Compton-Backscattering Gamma-Rays

    Science.gov (United States)

    Ohgaki, H.; Omer, M.; Negm, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Hori, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.

    2015-10-01

    A non-destructive inspection system for special nuclear materials (SNMs) hidden in a sea cargo has been developed. The system consists of a fast screening system using neutron generated by inertial electrostatic confinement (IEC) device and an isotope identification system using nuclear resonance fluorescence (NRF) measurements with laser Compton backscattering (LCS) gamma-rays has been developed. The neutron flux of 108 n/sec has been achieved by the IEC in static mode. We have developed a modified neutron reactor noise analysis method to detect fission neutron in a short time. The LCS gamma-rays has been generated by using a small racetrack microtoron accelerator and an intense sub-nano second laser colliding head-on to the electron beam. The gamma-ray flux has been achieved more than 105 photons/s. The NRF gamma-rays will be measured using LaBr3(Ce) scintillation detector array whose performance has been measured by NRF experiment of U-235 in HIGS facility. The whole inspection system has been designed to satisfy a demand from the sea port.

  1. Measurement of conversion coefficients between air Kerma and personal dose equivalent and backscatter factors for diagnostic X-ray beams

    International Nuclear Information System (INIS)

    Rosado, Paulo Henrique Goncalves

    2008-01-01

    Two sets of quantities are import in radiological protection: the protection and operational quantities. Both sets can be related to basic physical quantities such as kerma through conversion coefficients. For diagnostic x-ray beams the conversion coefficients and backscatter factors have not been determined yet, those parameters are need for calibrating dosimeters that will be used to determine the personal dose equivalent or the entrance skin dose. Conversion coefficients between air kerma and personal dose equivalent and backscatter factors were experimentally determined for the diagnostic x-ray qualities RQR and RQA recommended by the International Electrotechnical Commission (IEC). The air kerma in the phantom and the mean energy of the spectrum were measured for such purpose. Harshaw LiF-100H thermoluminescent dosemeters (TLD) were used for measurements after being calibrated against an 180 cm 3 Radcal Corporation ionization chamber traceable to a reference laboratory. A 300 mm x 300 mm x 150 mm polymethylmethacrylate (PMMA) slab phantom was used for deep-dose measurements. Tl dosemeters were placed in the central axis of the x-ray beam at 5, 10, 15, 25 and 35 mm depth in the phantom upstream the beam direction Another required parameter for determining the conversion coefficients from was the mean energy of the x-ray spectrum. The spectroscopy of x-ray beams was done with a CdTe semiconductor detector that was calibrated with 133 Ba, 241 Am and 57 Co radiation sources. Measurements of the x-ray spectra were carried out for all RQR and RQA IEC qualities. Corrections due to the detector intrinsic efficiency, total energy absorption, escape fraction of the characteristic x-rays, Compton effect and attenuation in the detector were done aiming an the accurate determination of the mean energy. Measured x-ray spectra were corrected with the stripping method by using these response functions. The typical combined standard uncertainties of conversion coefficients and

  2. X-Band Linac Beam-Line for Medical Compton Scattering X-Ray Source

    CERN Document Server

    Dobashi, Katsuhiro; Ebina, Futaro; Fukasawa, Atsushi; Hayano, Hitoshi; Higo, Toshiyasu; Kaneyasu, Tatsuo; Ogino, Haruyuki; Sakamoto, Fumito; Uesaka, Mitsuru; Urakawa, Junji; Yamamoto, Tomohiko

    2005-01-01

    Compton scattering hard X-ray source for 10~80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U. Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard ( 10-80

  3. Sources of the X-rays Based on Compton Scattering

    International Nuclear Information System (INIS)

    Androsov, V.; Bulyak, E.; Gladkikh, P.; Karnaukhov, I.; Mytsykov, A.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.

    2007-01-01

    The principles of the intense X-rays generation by laser beam scattering on a relativistic electron beam are described and description of facilities assigned to produce the X-rays based on Compton scattering is presented. The possibilities of various types of such facilities are estimated and discussed. The source of the X-rays based on a storage ring with low beam energy is described in details and advantages of the sources of such type are discussed.The results of calculation and numerical simulation carried out for laser electron storage ring NESTOR that is under development in NSC KIPT show wide prospects of the accelerator facility of such type

  4. Beam dynamics simulation in the X-ray Compton source

    International Nuclear Information System (INIS)

    Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.

    2002-01-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center

  5. Beam dynamics simulation in the X-ray Compton source

    CERN Document Server

    Gladkikh, P; Telegin, Yu P; Shcherbakov, A; Zelinsky, A

    2002-01-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.

  6. Contribution of inner shell Compton ionization to the X-ray fluorescence line intensity

    Science.gov (United States)

    Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio

    2016-10-01

    The Compton effect is a potential ionization mechanism of atoms. It produces vacancies in inner shells that are filled with the same mechanism of atomic relaxation as the one following photo-absorption. This contribution to X-ray fluorescence emission is frequently neglected because the total Compton cross-section is apparently much lower than the photoelectric one at useful X-ray energies. However, a more careful analysis suggests that is necessary to consider single shell cross sections (instead of total cross sections) as a function of energy. In this article these Compton cross sections are computed for the shells K, L1-L3 and M1-M5 in the framework of the impulse approximation. By comparing the Compton and the photoelectric cross-section for each shell it is then possible to determine the extent of the Compton correction to the intensity of the corresponding characteristic lines. It is shown that for the K shell the correction becomes relevant for excitation energies which are too high to be influent in X-ray spectrometry. In contrast, for L and M shells the Compton contribution is relevant for medium-Z elements and medium energies. To illustrate the different grades of relevance of the correction, for each ionized shell, the energies for which the Compton contribution reaches the extent levels of 1, 5, 10, 20, 50 and 100% of the photoelectric one are determined for all the elements with Z = 11-92. For practical applications it is provided a simple formula and fitting coefficients to compute average correction levels for the shells considered.

  7. Beam dynamics simulation in the X-ray Compton source

    Energy Technology Data Exchange (ETDEWEB)

    Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A

    2002-05-01

    At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.

  8. X-band RF gun and linac for medical Compton scattering X-ray source

    International Nuclear Information System (INIS)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-01-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year

  9. X-band RF gun and linac for medical Compton scattering X-ray source

    Science.gov (United States)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-12-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year.

  10. Precise tests of x-ray scattering theories in the Compton regime

    International Nuclear Information System (INIS)

    Dunford, R. W.; Gemmell, D. S.; Kanter, E. P.; Kraessig, B.; Southworth, S. H.; Young, L.

    1999-01-01

    The authors report two experiments intended to test the accuracy of state-of-the-art theoretical predictions for x-ray scattering from low-Z atoms. The first one deals with the differential x-ray scattering cross sections in Ne and He from 11-22 keV and the Ne Compton-to-Rayleigh scattering ratio in this energy range. It was found that, in order to be consistent with the experimental results, an accurate description at low Z must include nonlocal exchange, electron correlation, and dynamic effects. The second experiment concerns the ratio of helium double-to-single ionization for Compton scattering in the 8-28 keV energy range where published experimental and theoretical results so far fail to give a consistent picture. The progress of the experiment and the data analysis is reported

  11. Improved backscatter x-ray detection for anti-terrorist applications

    International Nuclear Information System (INIS)

    Shope, S.L.; Lockwood, G.J.; Selph, M.M.; Wehlburg, J.C.

    1999-01-01

    Currently the most common method to determine the contents of a package suspected of containing an explosive device is to use transmission radiography. This technique requires that an x-ray source and film be placed on opposite sides of the package. This poses a problem if the package is placed so that only one side is accessible, such as against a wall. There is also a threat to personnel and property since explosive devices may be booby trapped. The authors have developed a method to x-ray a package using backscattered x-rays based on similar work for landmine detection. This procedure eliminates the use of film behind the target. All of the detection is done from the same side as the source. Backscatter experiments at Sandia National Laboratories have been conducted on mock bombs in packages. They are able to readily identify the bomb components. The images that are obtained in this procedure are done in real time and the image is displayed on a computer screen. Preliminary experiments have also imaged objects within or behind a wall. They are currently using a scanning x-ray source and scintillating plastic detectors. It can take several hours to image a briefcase size object. This time could be reduced if better x-ray detection methods could be used. They have looked at using pinhole photography and CCD cameras to reduce this time

  12. Transport equation theory of electron backscattering and x-ray production

    International Nuclear Information System (INIS)

    Fathers, D.J.; Rez, P.

    1978-02-01

    A transport equation theory of electron backscattering and x ray production is derived and applied to energy dissipation of 30-KeV electrons for copper as a function of depth and to the energy distribution of backscattered electrons for copper, aluminum, and gold. These results are plotted and compared with experiment. Plots for variations of backscattering with atomic number and with angle of incidence, and polar plots of backscattering for 30-keV electrons at normal incidence are also presented. 10 references, seven figures

  13. Analysis of tin-ore samples by the ratio of Rayleigh to Compton backscattering

    International Nuclear Information System (INIS)

    Ao Qi; Cao Liguo; Ding Yimin

    1990-01-01

    The relationship between the ratio of gamma-ray Rayleigh to Compton backscattering intensities (R/C) and the weight fraction of heavy element in light matrixes were investigated. An improved (R/C) eff analytical technique for tin-ore samples was described. The technique can be regarded as a substitute for the XRF method in which the self-absorption process worsens the analytical accuracy of heavy elements

  14. Quasimonochromatic x-rays generated from nonlinear Thomson backscattering

    International Nuclear Information System (INIS)

    Lan Pengfei; Lu Peixiang; Cao Wei; Wang Xinlin

    2007-01-01

    The nonlinear Thomson backscattering in a circularly polarized Gaussian laser pulse is investigated and spectral characteristics of the emission are discussed. It is indicated that the frequency of the emitted light is up-shifted by the nonlinear doppler effect. By using a properly focused laser beam or putting the electron before the focus, the variety of the nonlinear Doppler shift during the interaction can be minimized and quasimonochromatic x-rays are generated. Taking into account the emission power, the optimum situations for generating quasimonochromatic x-rays are explored

  15. Source of X-ray radiation based on back compton scattering

    CERN Document Server

    Bulyak, E V; Karnaukhov, I M; Kononenko, S G; Lapshin, V G; Mytsykov, A O; Telegin, Yu P; Shcherbakov, A A; Zelinsky, Andrey Yurij

    2000-01-01

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10 sup - sup 7 m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam.

  16. Source of X-ray radiation based on back compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bulyak, E.V.; Gladkikh, P.I.; Karnaukhov, I.M.; Kononenko, S.G.; Lapshin, V.I.; Mytsykov, A.O.; Telegin, Yu.N.; Shcherbakov, A.A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A.Yu

    2000-06-21

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10{sup -7} m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam.

  17. Source of X-ray radiation based on back compton scattering

    International Nuclear Information System (INIS)

    Bulyak, E.V.; Gladkikh, P.I.; Karnaukhov, I.M.; Kononenko, S.G.; Lapshin, V.I.; Mytsykov, A.O.; Telegin, Yu.N.; Shcherbakov, A.A.; Zelinsky, A.Yu.

    2000-01-01

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10 -7 m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam

  18. Production of X-rays by inverse Compton effect

    International Nuclear Information System (INIS)

    Mainardi, R.T.

    2005-01-01

    X-rays and gamma rays of high energy values can be produced by the scattering of low energy photons with high energy electrons, being this a process controlled by the Compton scattering. If a laser beam is used, the x-ray beam inherits the properties of intensity, monochromaticity and collimation from the laser. In this work we analyze the generation of intense x-ray beams of energies between 10 and 100 KeV to be used in a wide range of applications where a high intensity and high degrees of monochromaticity and polarization are important properties to improve image reduce doses and improve radiation treatments. To this purpose we evaluated, using relativistic kinematics the scattered beam properties in terms of the scattering angle. This arrangement is being considered in several worldwide laboratories as an alternative to synchrotron radiation and is referred to as 'table top synchrotron radiation', since it cost of installation is orders of magnitude smaller than a 'synchrotron radiation source'. The radiation beam might exhibit non-linear properties in its interaction with matter, in a similar way as a laser beam and we will investigate how to calibrate and evaluate TLD dosemeters properties, both in low and high intensity fields either mono or polyenergetic in wide spectral energy ranges. (Author)

  19. Modeling X-Ray Scattering Process and Applications of the Scattering Model

    Science.gov (United States)

    Al-Jundi, Taher Lutfi

    1995-01-01

    Computer modeling of nondestructive inspections with x-rays is proving to be a very useful tool for enhancing the performance of these techniques. Two x-ray based inspection techniques are considered in this study. The first is "Radiographic Inspection", where an existing simulation model has been improved to account for scattered radiation effects. The second technique is "Inspection with Compton backscattering", where a new simulation model has been developed. The effect of scattered radiation on a simulated radiographic image can be insignificant, equally important, or more important than the effect of the uncollided flux. Techniques to account for the scattered radiation effects include Monte Carlo techniques, and solving the particle transport equation for photons. However, these two techniques although accurate, are computationally expensive and hence inappropriate for use in computer simulation of radiography. A less accurate approach but computationally efficient is the principle of buildup factors. Traditionally, buildup factors are defined for monoenergetic photons of energies typical of a nuclear reactor. In this work I have expanded the definition of buildup factors to include a bremsstrahlung spectrum of photons with energies typically used in radiography (keV's instead of MeV's). This expansion of the definition relies on an intensive experimental work to measure buildup factors for a white spectrum of x-rays. I have also developed a monte carlo code to reproduce the measured buildup factors. The code was then converted to a parallel code and distributed on a network of workstations to reduce the execution time. The second inspection technique is based on Compton backscattering, where photons are scattered at large angles, more than 90 degrees. The importance of this technique arises when the inspected object is very large, or when access is limited to only one side of the specimen. The downside of detecting photons from backscattering is the low

  20. Production of X-rays by inverse Compton effect; Produccion de rayos X por efecto Compton inverso

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, R.T. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina)

    2005-07-01

    X-rays and gamma rays of high energy values can be produced by the scattering of low energy photons with high energy electrons, being this a process controlled by the Compton scattering. If a laser beam is used, the x-ray beam inherits the properties of intensity, monochromaticity and collimation from the laser. In this work we analyze the generation of intense x-ray beams of energies between 10 and 100 KeV to be used in a wide range of applications where a high intensity and high degrees of monochromaticity and polarization are important properties to improve image reduce doses and improve radiation treatments. To this purpose we evaluated, using relativistic kinematics the scattered beam properties in terms of the scattering angle. This arrangement is being considered in several worldwide laboratories as an alternative to synchrotron radiation and is referred to as 'table top synchrotron radiation', since it cost of installation is orders of magnitude smaller than a 'synchrotron radiation source'. The radiation beam might exhibit non-linear properties in its interaction with matter, in a similar way as a laser beam and we will investigate how to calibrate and evaluate TLD dosemeters properties, both in low and high intensity fields either mono or polyenergetic in wide spectral energy ranges. (Author)

  1. Spatial resolution measurements of the advanced radiographic capability x-ray imaging system at energies relevant to Compton radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Landen, O. L.; Tommasini, R.; Holder, J. P.; Hargrove, D.; Bradley, D. K.; Lumbard, A.; Cruz, J. G.; Piston, K.; Bell, P. M.; Carpenter, A. C.; Palmer, N. E.; Felker, B.; Rekow, V.; Allen, F. V. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Lee, J. J.; Romano, E. [National Security Technologies LLC, 161 S Vasco Rd., Livermore, California 94551 (United States)

    2016-11-15

    Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro-channel plate) to provide gating and high DQE at the 40–200 keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Experiments were performed at energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.

  2. A portable Compton spectrometer for clinical X-ray beams in the energy range 20-150 keV

    International Nuclear Information System (INIS)

    Vieira, A.A.; Linke, A.; Yoshimura, E.M.; Terini, R.A.; Herdade, S.B.

    2011-01-01

    Primary beam spectra were obtained for an X-ray industrial equipment (40-150 kV), and for a clinical mammography apparatus (25-35 kV) from beams scattered at angles close to 90 o , measured with a CdTe Compton spectrometer. Actual scattering angles were determined from the Compton energy shift of characteristic X-rays or spectra end-point energy. Evaluated contribution of coherent scattering amounts to more than 15% of fluence in mammographic beams. This technique can be used in clinical environments.

  3. X-band RF Photoinjector for Laser Compton X-ray and Gamma-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, R. A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Anderson, G. G. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Anderson, S. G. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Gibson, D. J. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Barty, C. J. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2015-05-06

    Extremely bright narrow bandwidth gamma-ray sources are expanding the application of accelerator technology and light sources in new directions. An X-band test station has been commissioned at LLNL to develop multi-bunch electron beams. This multi-bunch mode will have stringent requirements for the electron bunch properties including low emittance and energy spread, but across multiple bunches. The test station is a unique facility featuring a 200 MV/m 5.59 cell X-band photogun powered by a SLAC XL4 klystron driven by a Scandinova solid-state modulator. This paper focuses on its current status including the generation and initial characterization of first electron beam. Design and installation of the inverse-Compton scattering interaction region and upgrade paths will be discussed along with future applications.

  4. Inverse Compton gamma-ray source for nuclear physics and related applications at the Duke FEL

    International Nuclear Information System (INIS)

    O'Shea, P.G.; Litvinenko, V.N.; Madey, J.M.J.

    1995-01-01

    In recent years the development of intense, short-wavelength FEL light sources has opened opportunities for the development new applications of high-energy Compton-backscattered photons. These applications range from medical imaging with X-ray photons to high-energy physics with γγ colliders. In this paper we discuss the possibilities for nuclear physics studies using polarized Compton backscattered γ-rays from the Duke storage-ring-driven UV-FEL. There are currently a number of projects that produce polarized γ-rays for nuclear physics studies. All of these facilities operate by scattering conventional laser-light against electrons circulating in a storage ring. In our scheme, intra-cavity scattering of the UV-FEL light will produce a γ-flux enhancement of approximately 10 3 over existing sources. The Duke ring can operate at energies up to 1.2 GeV and can produce FEL photons up to 12.5 eV. We plan to generate γ-rays up to 200 MeV in energy with an average flux in excess of 10 7 /s/MeV, using a modest scattering beam of 10-mA average stored current. The γ-ray energy may be tuned by varying the FEL wavelength or by adjusting the stored electron beam energy. Because of the intense flux, we can eliminate the need for photon energy tagging by collimating of the γ-ray beam. We will discuss the characteristics of the device and its research opportunities

  5. Experimental evaluation of multiple Compton backscattering of gamma rays in copper

    International Nuclear Information System (INIS)

    Sabharwal, Arvind D.; Singh, Manpreet; Singh, Bhajan; Sandhu, B.S.

    2009-01-01

    The gamma ray photons continue to soften in energy as the number of scatterings increases in thick target, and results in the generation of singly and multiply scattered events. The number of these multiply scattered events increases with an increase in target thickness and saturates beyond a particular target thickness known as saturation depth. The present experiment is undertaken to study the saturation depth for 279 and 320 keV incident gamma ray photons multiply backscattered from copper targets of varying thickness. The backscattered photons are detected by a Nal(Tl) gamma detector whose pulse-height distribution is converted into a photon spectrum with the help of an inverse matrix approach. To extract the contribution of multiply backscattered photons only, the spectrum of singly scattered photon is reconstructed analytically. We observe that the numbers of multiply scattered events increases with an increase in target thickness and then saturate. The saturation depth is found to be decreasing with increase in incident gamma energy. (author)

  6. On the possibility of using X-ray Compton scattering to study magnetoelectrical properties of crystals

    Energy Technology Data Exchange (ETDEWEB)

    Collins, S. P., E-mail: steve.collins@diamond.ac.uk; Laundy, D.; Connolley, T.; Laan, G. van der; Fabrizi, F. [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE (United Kingdom); Janssen, O. [Department of Physics, New York University, New York, NY 10003 (United States); Cooper, M. J. [Department of Physics, University of Warwick, CV4 7AL (United Kingdom); Ebert, H.; Mankovsky, S. [Universität München, Department Chemie, Haus E2.033, Butenandtstrasse 5-13, D-81377 München (Germany)

    2016-02-16

    The possibility of using X-ray Compton scattering to reveal antisymmetric components of the electron momentum density, as a fingerprint of magnetoelectric sample properties, is investigated experimentally and theoretically by studying the polar ferromagnet GaFeO{sub 3}. This paper discusses the possibility of using Compton scattering – an inelastic X-ray scattering process that yields a projection of the electron momentum density – to probe magnetoelectrical properties. It is shown that an antisymmetric component of the momentum density is a unique fingerprint of such time- and parity-odd physics. It is argued that polar ferromagnets are ideal candidates to demonstrate this phenomenon and the first experimental results are shown, on a single-domain crystal of GaFeO{sub 3}. The measured antisymmetric Compton profile is very small (≃ 10{sup −5} of the symmetric part) and of the same order of magnitude as the statistical errors. Relativistic first-principles simulations of the antisymmetric Compton profile are presented and it is shown that, while the effect is indeed predicted by theory, and scales with the size of the valence spin–orbit interaction, its magnitude is significantly overestimated. The paper outlines some important constraints on the properties of the antisymmetric Compton profile arising from the underlying crystallographic symmetry of the sample.

  7. Theoretical modeling of Comptonized X-ray spectra of super-Eddington accretion flow: Origin of hard excess in ultraluminous X-ray sources

    Science.gov (United States)

    Kitaki, Takaaki; Mineshige, Shin; Ohsuga, Ken; Kawashima, Tomohisa

    2017-12-01

    X-ray continuum spectra of super-Eddington accretion flow are studied by means of Monte Carlo radiative transfer simulations based on the radiation hydrodynamic simulation data, in which both thermal- and bulk-Compton scatterings are taken into account. We compare the calculated spectra of accretion flow around black holes with masses of MBH = 10, 102, 103, and 104 M⊙ for a fixed mass injection rate (from the computational boundary at 103 rs) of 103 LEdd/c2 (with rs, LEdd, and c being the Schwarzschild radius, the Eddington luminosity, and the speed of light, respectively). The soft X-ray spectra exhibit mass dependence in accordance with the standard-disk relation; the maximum surface temperature is scaled as T ∝ M_{ BH}^{ -1/4}. The spectra in the hard X-ray band, by contrast with soft X-ray, look to be quite similar among different models, if we normalize the radiation luminosity by MBH. This reflects that the hard component is created by thermal- and bulk-Compton scatterings of soft photons originating from an accretion flow in the overheated and/or funnel regions, the temperatures of which have no dependence on mass. The hard X-ray spectra can be reproduced by a Wien spectrum with the temperature of T ˜ 3 keV accompanied by a hard excess at photon energy above several keV. The excess spectrum can be fitted well with a power law with a photon index of Γ ˜ 3. This feature is in good agreement with that of the recent NuSTAR observations of ULXs (ultra-luminous X-ray sources).

  8. The description of compton lines in energy-dispersive x-ray Fluorescence

    International Nuclear Information System (INIS)

    Van Gysel, Mon; Van Espen, P.J.M.

    2001-01-01

    Energy-Dispersive X-Ray Fluorescence (ED-XRF) is a non-destructive technique for the element analysis in a concentration range ppm - % making use of X rays up to 100 keV. Generally, two photon matter interactions occur, respectively absorption and scattering. The absorption of incident photons gives raise to characteristic lines. Scattering gives an incoherent and a coherent line. A Gaussian peak model is adequate to describe the characteristic and coherent scattered lines. Incoherent lines appear as non-Gaussian, broadened peaks. The profile of a Compton peak is complex. It depends on the geometry and the composition of the sample. Especially, when analyzing a low Z matrix; dominant scattering and multiple scattering may cause large interferences. The absence of an appropriate fitting model makes the Compton profile seen as a limiting factor in the evaluation of spectra. An accurate description of incoherent lines should improve quantitative analysis. Therefore, a suitable fitting model, making use of the expertise of non-linear least squares procedures and Monte-Carlo calculations was systematically investigated. The proposed model, containing a modified Gaussian, is tested on experimental data recorded with a HPGe detector

  9. A laser driven pulsed X-ray backscatter technique for enhanced penetrative imaging.

    Science.gov (United States)

    Deas, R M; Wilson, L A; Rusby, D; Alejo, A; Allott, R; Black, P P; Black, S E; Borghesi, M; Brenner, C M; Bryant, J; Clarke, R J; Collier, J C; Edwards, B; Foster, P; Greenhalgh, J; Hernandez-Gomez, C; Kar, S; Lockley, D; Moss, R M; Najmudin, Z; Pattathil, R; Symes, D; Whittle, M D; Wood, J C; McKenna, P; Neely, D

    2015-01-01

    X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (< 100 fs) electron beam generated by laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field. Content includes material subject to Dstl (c) Crown copyright (2014). Licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@ nationalarchives.gsi.gov.uk.

  10. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    Science.gov (United States)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; hide

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  11. WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS?

    Energy Technology Data Exchange (ETDEWEB)

    Luo, B.; Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Alexander, D. M.; Hickox, R. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Bauer, F. E. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E. [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Comastri, A. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fiore, F. [Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone (Italy); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Matt, G. [Dipartimento di Matematica e Fisica, Universita degli Studi Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Ogle, P. [IPAC, California Institute of Technology, Mail Code 220-6, Pasadena, CA 91125 (United States); and others

    2013-08-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  12. Compton tomography system

    Science.gov (United States)

    Grubsky, Victor; Romanoov, Volodymyr; Shoemaker, Keith; Patton, Edward Matthew; Jannson, Tomasz

    2016-02-02

    A Compton tomography system comprises an x-ray source configured to produce a planar x-ray beam. The beam irradiates a slice of an object to be imaged, producing Compton-scattered x-rays. The Compton-scattered x-rays are imaged by an x-ray camera. Translation of the object with respect to the source and camera or vice versa allows three-dimensional object imaging.

  13. Determination of total iron in iron ore by x-ray fluorescence analysis using the Compton effect: comparison with others analytical techniques

    International Nuclear Information System (INIS)

    Castilho, M.V. de; Oliveira, R.C.

    1991-01-01

    Total iron in iron ores is determines by X-ray fluorescence analysis method using the compton effect. The Bragg angle is determined for compton no-coherent scattering related to K alpha of Rhodium. This measurement procedure can be used for best fitting of analytical results in X-ray fluorescence, when compared with others methods used for results corrections. (M.V.M.)

  14. Study of a high finesse four mirrors Fabry Perot cavity for X-rays and Gamma rays production by laser-electron Compton scattering

    International Nuclear Information System (INIS)

    Fedala, Y.

    2008-10-01

    The main goal of this thesis is the study and design of a high finesse Fabry Perot cavity to amplify a laser beam in order to achieve power gains ranging from 10 4 to 10 5 . This cavity is dedicated to the production of intense and monochromatic X-ray for medical applications (medical RADIOTHOMX ring) and gamma rays for a Compton based polarized positron source by Compton scattering of a high power laser beam and electron beam. To increase the brightness of the Compton interaction at the collision points, it is essential to have not only a high power laser beam but also very small laser beam radii at the interaction points. To achieve such performances, 2 scenarios are possible: a concentric 2 mirrors cavity which is mechanically unstable or a 4 mirrors cavity more complex but more stable. We tested numerically mechanical stability and stability of Eigen modes polarization of various planar and non-planar geometries of 4 mirrors cavities. Experimentally, we have developed a four mirrors tetrahedral 'bow-tie' cavity; radii of the order of 20 microns were made. The Eigen modes of such a cavity, in both planar and non planar geometries, were measured and compared with the numerical results. A good agreement was observed. In a second time, the impact of Compton interaction on the transverse dynamics, in the case of the polarized positrons source, and the longitudinal dynamic, in the case of the medical ring of the electron beam was studied. Compton scattering causes energy loss and induces an additional dispersion of energy in electron beam. For the polarized positrons source, 10 collision points are planned. The transport line has been determined and the modelling of the Compton interaction effect with a simple matrix calculation was made. For the medical ring, Compton scattering causes bunch lengthening and the increase of energy dispersion which are to influence the produced X-ray flux. A study of the longitudinal dynamics of the electron beam in the ring was

  15. X-ray emission from BL Lac objects: Comparison to the synchrotron self-Compton models

    International Nuclear Information System (INIS)

    Schwartz, D.A.; Madejski, G.; Ku, W.H.-M.

    1982-01-01

    As one part of our joint study of the X-ray properties of BL Lac objects, the authors compare the measured X-ray flux densities with those predicted using the synchrotron self-Compton (SSC) formalism (Jones et al. 1974). Naive application of the formalism predicts X-ray fluxes from 10 -3 to 10 5 those observed. They therefore ask what we can learn by simply assuming the SSC mechanism, and looking for ways to reconcile the observed and measured X-ray fluxes. This paper reports investigation of beaming factors due to relativistic ejection of a radiation source which is isotropic in its own rest frame. The authors conclude that large Lorentz factors, GAMMA approximately > 10, do not apply to BL Lac objects as a class. (Auth.)

  16. Determination of the X-ray mass absorption coefficient by measurement of the intensity of AgKα Compton scattered radiation

    International Nuclear Information System (INIS)

    Franzini, M.; Leoni, L.; Saitta, M.

    1976-01-01

    By utilizing a reflection geometry, an accurate mass absorption coefficient of a sample can be determined by measuring the Ag Kα Compton intensity. Intensities of Ag Kα Compton scattered radiation have been collected by using either the usual reflection geometry of a Philips PW 1450 automatic x-ray spectrometer or a more refined reflection geometry, achieved on a Philips PW 1540/10A manual x-ray spectrometer. The experimental results have shown that the relationship between the Ag Kα Compton intensity and the mass absorption is a logarithmic function. The experimental results are not in agreement with those reported in literature, but a theoretical explanation to account for this fact has not been achieved as yet. (author)

  17. Status of Kharkov X-Ray Generator Based on Compton Scattering NESTOR

    Energy Technology Data Exchange (ETDEWEB)

    Zelinsky, A.

    2005-04-11

    Nowadays the sources of the X-rays based on a storage ring with low beam energy and Compton scattering of intense laser beam are under development in several laboratories. In the paper the state-of-art in development and construction of cooperative project of a Kharkov advanced X-ray source NESTOR based on electron storage ring with beam energy 43-225 MeV and Nd:YAG laser is described. The layout of the facility is presented and latest results are described. The designed lattice includes 4 dipole magnets with combined focusing functions, 20 quadrupole magnets and 19 sextupoles with correcting components of magnetic field. At the present time a set of quadrupole magnet is under manufacturing and bending magnet reconstruction is going on. The main parameters of developed vacuum system providing residual gas pressure in the storage ring vacuum chamber up to 10{sup -9} torr are presented. The basic parameters of the X-ray source laser and injection systems are presented. The facility is going to be in operation in the middle of 2006 and generated X-rays flux is expected to be of about 10{sup 13} phot/s.

  18. Measurement of position dependence of spectral distribution in primary X-ray beam of CT system using compton spectroscopy

    International Nuclear Information System (INIS)

    Matsumoto, Masao; Maeda, Koji; Maeda, Koji

    2005-01-01

    Our purpose is to acquire the diagnostic x-ray spectra of the CT system easily under clinical conditions by Compton scatter spectroscopy using a high resolution Schottky CdTe detector recently developed and to estimate the quality and quantity of these spectra compared the relative exposure measured using an ionization chamber with curves measured by the reconstructed spectra. Although the spectral broadening and the fluctuation were slightly shown, the errors of the relative exposure were under 10%. Though the experimental arrangement of this method is so easy and reconstructed algorithm is simple, these results suggested that this method is little influenced by the variation of dose rates or property of the incident x rays. We therefore propose that the Compton scatter spectroscopy with the newly developed Schottky CdTe detector is suitable for measuring the diagnostic x-ray spectra of the CT system under the clinical conditions and useful for quality assurance and quality control of the clinical x-ray CT system. (author)

  19. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    International Nuclear Information System (INIS)

    Hönnicke, M.G.; Delben, G.J.; Godoi, W.C.; Swinka-Filho, V.

    2014-01-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films

  20. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    Science.gov (United States)

    Hönnicke, M. G.; Delben, G. J.; Godoi, W. C.; Swinka-Filho, V.

    2014-11-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films.

  1. Development of a compact x-ray source via laser compton scattering at KEK-LUCX

    International Nuclear Information System (INIS)

    Sakaue, Kazuyuki; Washio, Masakazu; Aryshev, Alexander; Araki, Sakae; Urakawa, Junji; Terunuma, Nobuhiro; Fukuda, Masafumi; Miyoshi, Toshinobu; Takeda, Ayaki

    2013-01-01

    The compact X-ray source based on Laser-Compton scattering (LCS) has been developed at LUCX (Laser Undulator Compact X-ray source) facility in KEK. The multi-bunch high quality electron beam produced by a standing wave 3.6 cell RF Gun and accelerated by the followed S-band normal conducting 12 cells standing wave 'Booster' linear accelerator is scattered off the laser beam stored in the optical cavity. The 4-mirror planar optical cavity with finesse 335 is used. The MCP (Micro-Channer Plate) detector as well as SOI (Silicon-On-Insulator) pixel sensor was used for scattered X-ray detection. The SOI pixel sensor has been used for LCS X-ray detection for the first time and has demonstrated high spatial resolution and high SN ratio X-ray detection that in turn lead to clearest X-ray images achieved by LCS X-ray. We have also achieved generation of 6.38x10 6 ph./sec., which is more than 30 times larger LCS X-ray flux in comparison with our previous results. The complete details of LUCX LCS X-ray source, specifications of both electron and laser beams, and the results of LCS X-ray generation experiments are reported in this paper. (author)

  2. Inverse Compton gamma-rays from pulsars

    International Nuclear Information System (INIS)

    Morini, M.

    1983-01-01

    A model is proposed for pulsar optical and gamma-ray emission where relativistic electrons beams: (i) scatter the blackbody photons from the polar cap surface giving inverse Compton gamma-rays and (ii) produce synchrotron optical photons in the light cylinder region which are then inverse Compton scattered giving other gamma-rays. The model is applied to the Vela pulsar, explaining the first gamma-ray pulse by inverse Compton scattering of synchrotron photons near the light cylinder and the second gamma-ray pulse partly by inverse Compton scattering of synchrotron photons and partly by inverse Compton scattering of the thermal blackbody photons near the star surface. (author)

  3. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  4. Development of a hard x-ray focal plane compton polarimeter: a compact polarimetric configuration with scintillators and Si photomultipliers

    Science.gov (United States)

    Chattopadhyay, T.; Vadawale, S. V.; Goyal, S. K.; Mithun, N. P. S.; Patel, A. R.; Shukla, R.; Ladiya, T.; Shanmugam, M.; Patel, V. R.; Ubale, G. P.

    2016-02-01

    X-ray polarization measurement of cosmic sources provides two unique parameters namely degree and angle of polarization which can probe the emission mechanism and geometry at close vicinity of the compact objects. Specifically, the hard X-ray polarimetry is more rewarding because the sources are expected to be intrinsically highly polarized at higher energies. With the successful implementation of Hard X-ray optics in NuSTAR, it is now feasible to conceive Compton polarimeters as focal plane detectors. Such a configuration is likely to provide sensitive polarization measurements in hard X-rays with a broad energy band. We are developing a focal plane hard X-ray Compton polarimeter consisting of a plastic scintillator as active scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. The scatterer is 5 mm diameter and 100 mm long plastic scintillator (BC404) viewed by normal PMT. The photons scattered by the plastic scatterer are collected by a cylindrical array of 16 CsI(Tl) scintillators (5 mm × 5 mm × 150 mm) which are read by Si Photomultiplier (SiPM). Use of the new generation SiPMs ensures the compactness of the instrument which is essential for the design of focal plane detectors. The expected sensitivity of such polarimetric configuration and complete characterization of the plastic scatterer, specially at lower energies have been discussed in [11, 13]. In this paper, we characterize the CsI(Tl) absorbers coupled to SiPM. We also present the experimental results from the fully assembled configuration of the Compton polarimeter.

  5. Testing warm Comptonization models for the origin of the soft X-ray excess in AGNs

    Science.gov (United States)

    Petrucci, P.-O.; Ursini, F.; De Rosa, A.; Bianchi, S.; Cappi, M.; Matt, G.; Dadina, M.; Malzac, J.

    2018-03-01

    The X-ray spectra of many active galactic nuclei (AGNs) show a soft X-ray excess below 1-2 keV on top of the extrapolated high-energy power law. The origin of this component is uncertain. It could be a signature of relativistically blurred, ionized reflection or the high-energy tail of thermal Comptonization in a warm (kT 1 keV), optically thick (τ ≃ 10-20) corona producing the optical/UV to soft X-ray emission. The purpose of the present paper is to test the warm corona model on a statistically significant sample of unabsorbed, radio-quiet AGNs with XMM-Newton archival data, providing simultaneous optical/UV and X-ray coverage. The sample has 22 objects and 100 observations. We use two thermal Comptonization components to fit the broadband spectra, one for the warm corona emission and one for the high-energy continuum. In the optical/UV, we also include the reddening, the small blue bump, and the Galactic extinction. In the X-rays, we include a warm absorber and a neutral reflection. The model gives a good fit (reduced χ2 uniformly distributed in the 0.1-1 keV range, while the optical depth is in the range 10-40. These values are consistent with a warm corona covering a large fraction of a quasi-passive accretion disk, i.e., that mostly reprocesses the warm corona emission. The disk intrinsic emission represents no more than 20% of the disk total emission. According to this interpretation, most of the accretion power would be released in the upper layers of the accretion flow.

  6. LabVIEW-based X-ray detection system for laser compton scattering experiment

    International Nuclear Information System (INIS)

    Luo Wen; Xu Wang; Pan Qiangyan

    2010-01-01

    A LabVIEW-based X-ray detection system has been developed for laser-Compton scattering (LCS) experiment at the 100 MeV Linac of the Shanghai Institute of Applied Physics (SINAP). It mainly consists of a Si (Li) detector, readout electronics and a LabVIEW-based Data Acquisition (DAQ), and possesses the functions of signal spectrum displaying, acquisition control and simple online data analysis and so on. The performance test shows that energy and time resolutions of the system are 184 eV at 5.9 keV and ≤ 1% respectively and system instability is found to be 0.3‰ within a week. As a result, this X-ray detection system has low-cost and high-performance features and can meet the requirements of LCS experiment. (authors)

  7. A novel lobster-eye imaging system based on Schmidt-type objective for X-ray-backscattering inspection

    International Nuclear Information System (INIS)

    Xu, Jie; Wang, Xin; Zhan, Qi; Huang, Shengling; Chen, Yifan; Mu, Baozhong

    2016-01-01

    This paper presents a novel lobster-eye imaging system for X-ray-backscattering inspection. The system was designed by modifying the Schmidt geometry into a treble-lens structure in order to reduce the resolution difference between the vertical and horizontal directions, as indicated by ray-tracing simulations. The lobster-eye X-ray imaging system is capable of operating over a wide range of photon energies up to 100 keV. In addition, the optics of the lobster-eye X-ray imaging system was tested to verify that they meet the requirements. X-ray-backscattering imaging experiments were performed in which T-shaped polymethyl-methacrylate objects were imaged by the lobster-eye X-ray imaging system based on both the double-lens and treble-lens Schmidt objectives. The results show similar resolution of the treble-lens Schmidt objective in both the vertical and horizontal directions. Moreover, imaging experiments were performed using a second treble-lens Schmidt objective with higher resolution. The results show that for a field of view of over 200 mm and with a 500 mm object distance, this lobster-eye X-ray imaging system based on a treble-lens Schmidt objective offers a spatial resolution of approximately 3 mm.

  8. X-ray backscatter imaging for radiography by selective detection and snapshot: Evolution, development, and optimization

    Science.gov (United States)

    Shedlock, Daniel

    Compton backscatter imaging (CBI) is a single-sided imaging technique that uses the penetrating power of radiation and unique interaction properties of radiation with matter to image subsurface features. CBI has a variety of applications that include non-destructive interrogation, medical imaging, security and military applications. Radiography by selective detection (RSD), lateral migration radiography (LMR) and shadow aperture backscatter radiography (SABR) are different CBI techniques that are being optimized and developed. Radiography by selective detection (RSD) is a pencil beam Compton backscatter imaging technique that falls between highly collimated and uncollimated techniques. Radiography by selective detection uses a combination of single- and multiple-scatter photons from a projected area below a collimation plane to generate an image. As a result, the image has a combination of first- and multiple-scatter components. RSD techniques offer greater subsurface resolution than uncollimated techniques, at speeds at least an order of magnitude faster than highly collimated techniques. RSD scanning systems have evolved from a prototype into near market-ready scanning devices for use in a variety of single-sided imaging applications. The design has changed to incorporate state-of-the-art detectors and electronics optimized for backscatter imaging with an emphasis on versatility, efficiency and speed. The RSD system has become more stable, about 4 times faster, and 60% lighter while maintaining or improving image quality and contrast over the past 3 years. A new snapshot backscatter radiography (SBR) CBI technique, shadow aperture backscatter radiography (SABR), has been developed from concept and proof-of-principle to a functional laboratory prototype. SABR radiography uses digital detection media and shaded aperture configurations to generate near-surface Compton backscatter images without scanning, similar to how transmission radiographs are taken. Finally, a

  9. Compton Reflection in AGN with Simbol-X

    Science.gov (United States)

    Beckmann, V.; Courvoisier, T. J.-L.; Gehrels, N.; Lubiński, P.; Malzac, J.; Petrucci, P. O.; Shrader, C. R.; Soldi, S.

    2009-05-01

    AGN exhibit complex hard X-ray spectra. Our current understanding is that the emission is dominated by inverse Compton processes which take place in the corona above the accretion disk, and that absorption and reflection in a distant absorber play a major role. These processes can be directly observed through the shape of the continuum, the Compton reflection hump around 30 keV, and the iron fluorescence line at 6.4 keV. We demonstrate the capabilities of Simbol-X to constrain complex models for cases like MCG-05-23-016, NGC 4151, NGC 2110, and NGC 4051 in short (10 ksec) observations. We compare the simulations with recent observations on these sources by INTEGRAL, Swift and Suzaku. Constraining reflection models for AGN with Simbol-X will help us to get a clear view of the processes and geometry near to the central engine in AGN, and will give insight to which sources are responsible for the Cosmic X-ray background at energies >20 keV.

  10. Applications of simultaneous ion backscattering and ion-induced x-ray emission

    International Nuclear Information System (INIS)

    Musket, R.G.

    1983-05-01

    Simultaneous ion backscattering and ion-induced x-ray emission (E/sub x/greater than or equal to 300 eV) analyses have been performed using helium ions as probes of the first few hundred nanometers of various materials. These studies serve as a demonstration of the complementary nature of the two types of information obtained. Uncertainties associated with each of the individual techniques were reduced by performing both analyses. The principal advantages of simultaneous analyses over sequential analyses have been delineated

  11. First observation of multi-pulse X-ray train via multi-collision laser Compton scattering

    International Nuclear Information System (INIS)

    Kuroda, R.; Toyokawa, H.; Yasumoto, M.; Ikeura-Sekiguchi, H.; Koike, M.; Yamada, K.; Yanagida, T.; Nakajyo, T.; Sakai, F.

    2009-01-01

    A compact hard X-ray source via laser Compton scattering (LCS) has been developed for biological and medical applications at the National Institute of Advanced Industrial Science and Technology (AIST) in Japan. The multi-collision LCS has been investigated in order to enhance the X-ray yields. The first observation of multi-pulse X-ray train with 6 pulses via the multi-collision LCS has been successfully demonstrated between the multi-bunch electron train with 6 bunches and the multi-pulse Ti:Sa laser train with 6 pulses. The 32 MeV electron train was generated from a Cs 2 Te photocathode rf gun with a multi-pulse UV laser and the S-band linac. The Ti:Sa laser train was obtained with the chirp pulse amplification (CPA) including the modified regenerative amplifier. The X-ray train with 6 pulses with 12.6 ns spacing was observed with the micro-channel plate (MCP). The maximum energy of the X-ray is analytically estimated to be about 24 keV and the total number of generated photons was calculated to be about 1.8x10 6 photons/train.

  12. Compton Gamma-Ray Observatory

    Science.gov (United States)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  13. High-temperature cuprate superconductors studied by x-ray Compton scattering and positron annihilation spectroscopies

    International Nuclear Information System (INIS)

    Barbiellini, Bernardo

    2013-01-01

    The bulk Fermi surface in an overdoped (x = 0.3) single crystal of La 2−x Sr x CuO 4 has been observed by using x-ray Compton scattering. This momentum density technique also provides a powerful tool for directly seeing what the dopant Sr atoms are doing to the electronic structure of La 2 CuO 4 . Because of wave function effects, positron annihilation spectroscopy does not yield a strong signature of the Fermi surface in extended momentum space, but it can be used to explore the role of oxygen defects in the reservoir layers for promoting high temperature superconductivity.

  14. The weak neutral Fe fluorescence line and long-term X-ray evolution of the Compton-thick AGN in NGC 7674

    DEFF Research Database (Denmark)

    Gandhi, P.; Annuar, A.; Lansbury, G. B.

    2017-01-01

    We present NuSTAR X-ray observations of the active galactic nucleus (AGN) in NGC 7674. The source shows a flat X-ray spectrum, suggesting that it is obscured by Compton-thick gas columns. Based upon long-term flux dimming, previous work suggested the alternate possibility that the source is a rec...

  15. X-ray dosimetry in mammography for W/Mo and Mo/Mo combinations utilizing Compton spectrometry

    International Nuclear Information System (INIS)

    Almeida Junior, Jose N.; Terini, Ricardo A.; Herdade, Silvio B.; Furquim, Tania A.C.

    2009-01-01

    Mean Glandular Dose (MGD) cannot be measured directly in mammography equipment. Therefore, methods based on Compton spectrometry are alternatives to evaluate dose distributions in a standard breast phantom, as well as mean glandular dose. In this work, a CdTe detector was used for the spectrometry measurements of radiation scattered by compton effect, at nearly 90, by a PMMA cylinder. For this, the reconstruction of primary beam spectra from the scattered ones has been made using Klein-Nishina theory and Compton formalism, followed by a determination of incident air kerma, absorbed dose values in the breast phantom and, finally, MGD. Incident and attenuated X-ray spectra and depth-dose distributions in a BR-12 phantom have been determined and are presented for the mammography range (28 to 35kV), showing good agreement with previous literature data, obtained with TLD. (author)

  16. Characterization of nuclear physics targets using Rutherford backscattering and particle induced X-ray emission

    International Nuclear Information System (INIS)

    Rubehn, T.; Wozniak, G.J.; Phair, L.; Moretto, L.G.; Yu, K.M.

    1997-01-01

    Rutherford backscattering and particle induced X-ray emission have been utilized to precisely characterize targets used in nuclear fission experiments. The method allows for a fast and non-destructive determination of target thickness, homogeneity and element composition. (orig.)

  17. The Contribution of Compton-Thick AGN/ULIRGs to the X-Ray Background

    Science.gov (United States)

    Nardini, Emanuele

    Accretion onto the supermassive black holes located at the centre of Active Galactic Nuclei(AGN) is one of the most efficient power sources in the Universe, and provides a significant contribution to the energy radiated over cosmic times. The spectral shape of the X-ray background and its progressive resolution strongly suggests that most AGN are heavily obscured by large amounts of dust and gas. Their primary radiation field is reprocessed and re-emitted at longer wavelengths, driving a huge IR luminosity. Ultraluminous Infrared Galaxies (ULIRGs) are the local counterparts of the high-redshift (z sport the typical features of buried AGN in the mid-IR. IRAS 12127 1412 was observed for the first time in the X-rays by our group. Its Chandra spectrum clearly shows the signatures of AGN reflection at 2 10 keV. Similar properties were previously found in IRAS 00182 7112. Our Suzaku observations will allow to pinpont the AGN emission above 10 keV, and will provide fundamental information on the physical and geometrical structure of Compton-thick AGN embedded in a nuclear starburst. These sources are believed to experience the very initial phase of the AGN feedback on the surrounding environment, eventually leading to the formation of powerful optically- bright quasars. Besides this, we stress another remarkable opportunity related to the study of these two ULIRGs. Due to their really unique mid-IR and hard X-ray spectral properties, IRAS 00182 7112 and IRAS 12127 1412 can be considered as representative templates for a significant fraction of the obscured AGN population. Their broadband spectral energy distribution can then be used to calibrate new photometric diagnostics based on mid-IR colors and bolometric corrections, capable of selecting their faint counterparts within the IR deep fields. The wealth of data in the WISE and Spitzer archives will allow a complete census of this AGN subclass. The reflection efficiency inferred from our new Suzaku observations will make

  18. High-temperature cuprate superconductors studied by x-ray Compton scattering and positron annihilation spectroscopies

    Science.gov (United States)

    Barbiellini, Bernardo

    2013-06-01

    The bulk Fermi surface in an overdoped (x = 0.3) single crystal of La2-xSrxCuO4 has been observed by using x-ray Compton scattering. This momentum density technique also provides a powerful tool for directly seeing what the dopant Sr atoms are doing to the electronic structure of La2CuO4. Because of wave function effects, positron annihilation spectroscopy does not yield a strong signature of the Fermi surface in extended momentum space, but it can be used to explore the role of oxygen defects in the reservoir layers for promoting high temperature superconductivity.

  19. Weak hard X-ray emission from two broad absorption line quasars observed with NuSTAR: Compton-thick absorption or intrinsic X-ray weakness?

    DEFF Research Database (Denmark)

    Luo, B.; Brandt, W. N.; Alexander, D. M.

    2013-01-01

    are not significantly absorbed (NH ≲ 1024 cm-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain...... likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place...

  20. Measurement of conversion coefficients between air Kerma and personal dose equivalent and backscatter factors for diagnostic X-ray beams; Determinacao experimental dos coeficientes de conversao de Kerma no ar para o equivalente de dose pessoal, Hp(d), e fatores de retroespalhamento em feixes de raios-x diagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Rosado, Paulo Henrique Goncalves

    2008-07-01

    Two sets of quantities are import in radiological protection: the protection and operational quantities. Both sets can be related to basic physical quantities such as kerma through conversion coefficients. For diagnostic x-ray beams the conversion coefficients and backscatter factors have not been determined yet, those parameters are need for calibrating dosimeters that will be used to determine the personal dose equivalent or the entrance skin dose. Conversion coefficients between air kerma and personal dose equivalent and backscatter factors were experimentally determined for the diagnostic x-ray qualities RQR and RQA recommended by the International Electrotechnical Commission (IEC). The air kerma in the phantom and the mean energy of the spectrum were measured for such purpose. Harshaw LiF-100H thermoluminescent dosemeters (TLD) were used for measurements after being calibrated against an 180 cm{sup 3} Radcal Corporation ionization chamber traceable to a reference laboratory. A 300 mm x 300 mm x 150 mm polymethylmethacrylate (PMMA) slab phantom was used for deep-dose measurements. Tl dosemeters were placed in the central axis of the x-ray beam at 5, 10, 15, 25 and 35 mm depth in the phantom upstream the beam direction Another required parameter for determining the conversion coefficients from was the mean energy of the x-ray spectrum. The spectroscopy of x-ray beams was done with a CdTe semiconductor detector that was calibrated with {sup 133} Ba, {sup 241} Am and {sup 57} Co radiation sources. Measurements of the x-ray spectra were carried out for all RQR and RQA IEC qualities. Corrections due to the detector intrinsic efficiency, total energy absorption, escape fraction of the characteristic x-rays, Compton effect and attenuation in the detector were done aiming an the accurate determination of the mean energy. Measured x-ray spectra were corrected with the stripping method by using these response functions. The typical combined standard uncertainties of

  1. Ion backscattering and X-ray investigations of violin varnish and wood

    International Nuclear Information System (INIS)

    Sigurd, D.; Tove, P.A.; Petersson, S.

    1980-01-01

    The use of Rutherford backscattering (RBS) of ions (i.e. α-particles) and excitation of characteristic X-rays by protons, for determining the elemental composition of the top layers of violin varnish and wood is described. The amount of elements such as C, O, Si, S, Ca, Cu, Fe, Ni, Zn, Pb has been measured, on the varnished and unvarnished sides of wood samples from old instrument makers such as A. Stradivari, G. Guarneri del Gesu, Santo Serafin, C. Tononi etc. Differences in both the shape of the RBS spectra and in the presence of different elements are found and discussed. The use of X-ray excitation by ions (i.e. protons) helps in assessing the presence of the different elements. X-ray investigations can be done with instruments in air while RBS (at least in the presently used form) has to be performed in a vacuum chamber. Apart from offering an aid in determining the materials and procedures which were used in fabricating acoustically excellent instruments, the method could be of value for identifying their authenticity. (orig.)

  2. Ion backscattering and x-ray investigations of violin varnish and wood

    Science.gov (United States)

    Arne Tove, Per; Sigurd, Dag; Petersson, Sture

    1980-01-01

    The use of Rutherford backscattering (RBS) of ions (i.e. α-particles) and excitation of characteristic X-rays by protons, for determining the elemental composition of the top layers of violin varnish and wood is described. The amount of elements such as C, O, Si, S, Ca, Cu, Fe, Ni, Zn, Pb has been measured, on the varnished and unvarnished sides of wood samples from old instrument makers such as A. Stradivari, G. Guarneri del Gesu, Santo Serafin, C. Tononi etc. Differences in both the shape of the RBS spectra and in the presence of different elements are found and discussed. The use of X-ray excitation by ions (i.e. protons) helps in assessing the presence of the different elements. X-ray investigations can be done with instruments in air while RBS (at least in the presently used form) has to be performed in a vacuum chamber. Apart from offering an aid in determining the materials and procedures which were used in fabricating acoustically excellent instruments, the method could be of value for identifying their authenticity.

  3. Compton scattering artifacts in electron excited X-ray spectra measured with a silicon drift detector.

    Science.gov (United States)

    Ritchie, Nicholas W M; Newbury, Dale E; Lindstrom, Abigail P

    2011-12-01

    Artifacts are the nemesis of trace element analysis in electron-excited energy dispersive X-ray spectrometry. Peaks that result from nonideal behavior in the detector or sample can fool even an experienced microanalyst into believing that they have trace amounts of an element that is not present. Many artifacts, such as the Si escape peak, absorption edges, and coincidence peaks, can be traced to the detector. Others, such as secondary fluorescence peaks and scatter peaks, can be traced to the sample. We have identified a new sample-dependent artifact that we attribute to Compton scattering of energetic X-rays generated in a small feature and subsequently scattered from a low atomic number matrix. It seems likely that this artifact has not previously been reported because it only occurs under specific conditions and represents a relatively small signal. However, with the advent of silicon drift detectors and their utility for trace element analysis, we anticipate that more people will observe it and possibly misidentify it. Though small, the artifact is not inconsequential. Under some conditions, it is possible to mistakenly identify the Compton scatter artifact as approximately 1% of an element that is not present.

  4. X-ray Compton scattering experiments for fluid alkali metals at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K., E-mail: kazuhiro-matsuda@scphys.kyoto-u.ac.jp; Fukumaru, T.; Kimura, K.; Yao, M. [Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Tamura, K. [Graduate School of Engineering, Kyoto University, Kyoto 606-8502 (Japan); Katoh, M. [A.L.M.T. Corp., Iwasekoshi-Machi 2, Toyama 931-8543 (Japan); Kajihara, Y.; Inui, M. [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Itou, M.; Sakurai, Y. [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2015-08-17

    We have developed a high-pressure vessel and a cell for x-ray Compton scattering measurements of fluid alkali metals. Measurements have been successfully carried out for alkali metal rubidium at elevated temperatures and pressures using synchrotron radiation at SPring-8. The width of Compton profiles (CPs) of fluid rubidium becomes narrow with decreasing fluid density, which indicates that the CPs sensitively detect the effect of reduction in the valence electron density. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 10 September 2015. The original article supplied to AIP Publishing was not the final version and contained PDF conversion errors in Formulas (1) and (2). The errors have been corrected in the updated and re-published article.

  5. Inverse compton emission of gamma rays near the pulsar surface

    International Nuclear Information System (INIS)

    Morini, M.

    1981-01-01

    The physical conditions near pulsar surface that might give rise to gamma ray emission from Crab and Vela pulsars are not yet well understood. Here I suggest that, in the context of the vacuum discharge mechanism proposed by Ruderman and Sutherland (1975), gamma rays are produced by inverse Compton scattering of secondary electrons with the thermal radiation of the star surface as well as for curvature and synchotron radiation. It is found that inverse Compton scattering is relevant if the neutron star surface temperature is greater than 10 6 K or of the polar cap temperature is of the order of 5 x 10 6 K. Inverse Compton scattering in anisotropic photon fields and Klein-Nishina regime is here carefully considered. (orig.)

  6. Suzaku  Observations of Heavily Obscured (Compton-thick) Active Galactic Nuclei Selected by the Swift/BAT Hard X-Ray Survey

    Science.gov (United States)

    Tanimoto, Atsushi; Ueda, Yoshihiro; Kawamuro, Taiki; Ricci, Claudio; Awaki, Hisamitsu; Terashima, Yuichi

    2018-02-01

    We present a uniform broadband X-ray (0.5–100.0 keV) spectral analysis of 12 Swift/Burst Alert Telescope selected Compton-thick ({log}{N}{{H}}/{{cm}}-2≥slant 24) active galactic nuclei (CTAGNs) observed with Suzaku. The Suzaku data of three objects are published here for the first time. We fit the Suzaku and Swift spectra with models utilizing an analytic reflection code and those utilizing the Monte-Carlo-based model from an AGN torus by Ikeda et al. The main results are as follows: (1) The estimated intrinsic luminosity of a CTAGN strongly depends on the model; applying Compton scattering to the transmitted component in an analytic model may largely overestimate the intrinsic luminosity at large column densities. (2) Unabsorbed reflection components are commonly observed, suggesting that the tori are clumpy. (3) Most of CTAGNs show small scattering fractions (<0.5%), implying a buried AGN nature. (4) Comparison with the results obtained for Compton-thin AGNs suggests that the properties of these CTAGNs can be understood as a smooth extension from Compton-thin AGNs with heavier obscuration; we find no evidence that the bulk of the population of hard-X-ray-selected CTAGNs are different from less obscured objects.

  7. Inverse Compton scattering X-ray source yield optimization with a laser path folding system inserted in a pre-existent RF linac

    Energy Technology Data Exchange (ETDEWEB)

    Chaleil, A.; Le Flanchec, V.; Binet, A.; Nègre, J.P.; Devaux, J.F.; Jacob, V.; Millerioux, M.; Bayle, A.; Balleyguier, P. [CEA DAM DIF, F-91297 Arpajon (France); Prazeres, R. [CLIO/LCP, Bâtiment 201, Université Paris-Sud, F-91450 Orsay (France)

    2016-12-21

    An inverse Compton scattering source is under development at the ELSA linac of CEA, Bruyères-le-Châtel. Ultra-short X-ray pulses are produced by inverse Compton scattering of 30 ps-laser pulses by relativistic electron bunches. The source will be able to operate in single shot mode as well as in recurrent mode with 72.2 MHz pulse trains. Within this framework, an optical multipass system that multiplies the number of emitted X-ray photons in both regimes has been designed in 2014, then implemented and tested on ELSA facility in the course of 2015. The device is described from both geometrical and timing viewpoints. It is based on the idea of folding the laser optical path to pile-up laser pulses at the interaction point, thus increasing the interaction probability. The X-ray output gain measurements obtained using this system are presented and compared with calculated expectations.

  8. Three-dimensional imaging of flat natural and cultural heritage objects by a Compton scattering modality

    Science.gov (United States)

    Guerrero Prado, Patricio; Nguyen, Mai K.; Dumas, Laurent; Cohen, Serge X.

    2017-01-01

    Characterization and interpretation of flat ancient material objects, such as those found in archaeology, paleoenvironments, paleontology, and cultural heritage, have remained a challenging task to perform by means of conventional x-ray tomography methods due to their anisotropic morphology and flattened geometry. To overcome the limitations of the mentioned methodologies for such samples, an imaging modality based on Compton scattering is proposed in this work. Classical x-ray tomography treats Compton scattering data as noise in the image formation process, while in Compton scattering tomography the conditions are set such that Compton data become the principal image contrasting agent. Under these conditions, we are able, first, to avoid relative rotations between the sample and the imaging setup, and second, to obtain three-dimensional data even when the object is supported by a dense material by exploiting backscattered photons. Mathematically this problem is addressed by means of a conical Radon transform and its inversion. The image formation process and object reconstruction model are presented. The feasibility of this methodology is supported by numerical simulations.

  9. Laser-Compton Scattering as a Potential Electron Beam Monitor

    International Nuclear Information System (INIS)

    Chouffani, K.; Wells, D.; Harmon, F.; Lancaster, G.; Jones, J.

    2002-01-01

    LCS experiments were carried out at the Idaho Accelerator Center (IAC); sharp monochromatic x-ray lines were observed. These are produced using the so-called inverse Compton effect, whereby optical laser photons are collided with a relativistic electron beam. The back-scattered photons are then kinematically boosted to keV x-ray energies. We have first demonstrated these beams using a 20 MeV electron beam collided with a 100 MW, 7 ns Nd; YAG laser. We observed narrow LCS x-ray spectral peaks resulting from the interaction of the electron beam with the Nd; YAG laser second harmonic (532 nm). The LCS x-ray energy lines and energy deviations were measured as a function of the electron beam energy and energy-spread respectively. The results showed good agreement with the predicted valves. LCS could provide an excellent probe of electron beam energy, energy spread, transverse and longitudinal distribution and direction

  10. Compton suppression gamma ray spectrometry

    International Nuclear Information System (INIS)

    Landsberger, S.; Iskander, F.Y.; Niset, M.; Heydorn, K.

    2002-01-01

    In the past decade there have been many studies to use Compton suppression methods in routine neutron activation analysis as well as in the traditional role of low level gamma ray counting of environmental samples. On a separate path there have been many new PC based software packages that have been developed to enhance photopeak fitting. Although the newer PC based algorithms have had significant improvements, they still suffer from being effectively used in weak gamma ray lines in natural samples or in neutron activated samples that have very high Compton backgrounds. We have completed a series of experiments to show the usefulness of Compton suppression. As well we have shown the pitfalls when using Compton suppression methods for high counting deadtimes as in the case of neutron activated samples. We have also investigated if counting statistics are the same both suppressed and normal modes. Results are presented in four separate experiments. (author)

  11. Determination of the analyzing power of the A4 Compton-backscattering polarimeter for the measurement of the longitudinal spin polarization of the MAMI electron beam

    International Nuclear Information System (INIS)

    Diefenbacher, Juergen

    2010-01-01

    The A4 experiment determines the strange quark contribution to the electromagnetic from factors of the nucleon by measuring the parity violation in elastic electron nucleon scattering. These measurements are carried out using the spin polarized electron beam of the Mainzer Mikrotron (MAMI) with beam energies in the range from 315 to 1508 MeV. For the data analysis it is essential to determine the degree of polarization of the electron beam in order to extract the physics asymmetry from the measured parity violating asymmetry. For this reason the A4 collaboration has developed a novel type of Compton laser backscattering polarimeter that allows for a non-destructive measurement of the beam polarization in parallel to the running parity experiment. In the scope of this work the polarimeter was refined in order to enable reliable continuous operation of the polarimeter. The data acquisition system for the photon and electron detector was re-designed and optimized to cope with high count rates. A novel detector (LYSO) for the backscattered photons was commissioned. Furthermore, GEANT4 simulations of the detectors have been performed and an analysis environment for the extraction of Compton asymmetries from the backscattered photon data has been developed. The analysis makes use of the possibility to detect backscattered photons in coincidence with the scattered electrons, thus tagging the photons. The tagging introduces a differential energy scale which enables the precise determination of the analyzing power. In this work the analyzing power of the polarimeter has been determined. Therefore, at a beam current of 20 μA the product of electron and laser polarization can be determined, while the parity experiment is running, with a statistical accuracy of 1 % in 24 hours at 855 MeV or 2 =0.6 (GeV/c) 2 the analysis yields a raw asymmetry of A Roh PV =(-20.0±0.9 stat ) x 10 -6 at the moment. For a beam polarization of 80 % the total error would be 1,68 x 10 -6 with ΔP e

  12. The ELSA laser beamline for electron polarization measurements via Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Switka, Michael; Hinterkeuser, Florian; Koop, Rebecca; Hillert, Wolfgang [Electron Stretcher Facility ELSA, Physics Institute of Bonn University (Germany)

    2016-07-01

    The Electron Stretcher Facility ELSA provides a spin polarized electron beam with energies of 0.5 - 3.2 GeV for double polarization hadron physics experiments. As of 2015, the laser beamline of the polarimeter based on Compton backscattering restarted operation. It consists of a cw disk laser with design total beam power of 40 W and features two polarized 515 nm photon beams colliding head-on with the stored electron beam in ELSA. The polarization measurement is based on the vertical profile asymmetry of the back-scattered photons, which is dependent on the polarization degree of the stored electron beam. After recent laser repairs, beamline and detector modifications, the properties of the beamline have been determined and first measurements of the electron polarization degree were conducted. The beamline performance and first measurements are presented.

  13. Characteristics of Si-PIN diode X-ray detector with DSP electronics

    International Nuclear Information System (INIS)

    Dutta, Juhi; Tapader, Srijita; Bisoi, Abhijit; Ray, Sudatta; Saha Sarkar, M.; Pramanik, Dibyadyuti; Saha, Archisman

    2012-01-01

    In the present work, the studies to investigate the features of PIN diodes detector coupled with a digital processor have been extended. At low energies, backscattered Compton peaks are close in energy to photo peak of the gamma of interest. Thus the backscattered peaks pose a serious problem in the analysis of spectra of low energy gamma rays. It has been initiated some measurements to quantitatively estimate the same as function of energy and Z of the scatterer. Recently there has been application of backscattering in high-resolution gamma backscatter imaging for technical applications

  14. X rays and condensed matter

    International Nuclear Information System (INIS)

    Daillant, J.

    1997-01-01

    After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques

  15. A simple scanner for Compton tomography

    CERN Document Server

    Cesareo, R; Brunetti, A; Golosio, B; Castellano, A

    2002-01-01

    A first generation CT-scanner was designed and constructed to carry out Compton images. This CT-scanner is composed of a 80 kV, 5 mA X-ray tube and a NaI(Tl) X-ray detector; the tube is strongly collimated, generating a X-ray beam of 2 mm diameter, whilst the detector is not collimated to collect Compton photons from the whole irradiated cylinder. The performances of the equipment were tested contemporaneous transmission and Compton images.

  16. Compton Backscattering Concept for the Production of Molybdenum-99

    International Nuclear Information System (INIS)

    Merminga, L.; Krafft, G.A.

    2009-01-01

    The medical isotope Molybdenum-99 is presently used for 80-85% of all nuclear medicine procedures and is produced by irradiating highly enriched uranium U-235 targets in NRU reactors. It was recently proposed that an electron linac be used for the production of 99Mo via photo-fission of a natural uranium target coming from the excitation of the giant dipole resonance around 15 MeV. The photons can be produced using the braking radiation ('bremsstrahlung') spectrum of an electron beam impinged on a high Z material. In this paper we present an alternate concept for the production of 99Mo which is also based on photo-fission of U-238, but where the ∼15 MeV gamma-rays are produced by Compton backscattering of laser photons from relativistic electrons. We assume a laser wavelength of 330 nm, resulting in 485 MeV electron beam energy, and 10 mA of average current. Because the induced energy spread on the electron beam is a few percent, one may recover most of the electron beam energy, which substantially increases the efficiency of the system. The accelerator concept, based on a three-pass recirculation system with energy recovery, is described and efficiency estimates are presented.

  17. A coherent/Compton scattering method employing an x-ray tube for measurement of trabecular bone mineral content

    International Nuclear Information System (INIS)

    Puumalainen, P.; Uimarihuhta, A.; Olkkonen, H.

    1982-01-01

    Results showed that the x-ray generator could be used as a radiation source in the coherent/Compton scattering method of measuring trabecular bone mineral content. The quasimonoenergetic x-ray beam was produced from the continuous bremsstrahlung radiation with the aid of a spectral filter. Of the two measuring arrangements that were tested, the semiconductor detector geometry appeared to give distinctly more reproducible results than the two NaI detector system. However, to improve the counting efficiency of the coherent radiation, the 'coherent' NaI detector could be replaced by a bore-through scintillation probe (bore diameter about 10mm). By placing the x-ray fluorescence target inside the bore, the yield would be considerably higher. The present method is suitable for TBMC measurements of small animal and human peripheral bones. Errors are discussed in relation to increase of bone size. (U.K.)

  18. Human soft tissue analysis using x-ray or gamma-ray techniques

    International Nuclear Information System (INIS)

    Theodorakou, C; Farquharson, M J

    2008-01-01

    This topical review is intended to describe the x-ray techniques used for human soft tissue analysis. X-ray techniques have been applied to human soft tissue characterization and interesting results have been presented over the last few decades. The motivation behind such studies is to provide improved patient outcome by using the data obtained to better understand a disease process and improve diagnosis. An overview of theoretical background as well as a complete set of references is presented. For each study, a brief summary of the methodology and results is given. The x-ray techniques include x-ray diffraction, x-ray fluorescence, Compton scattering, Compton to coherent scattering ratio and attenuation measurements. The soft tissues that have been classified using x-rays or gamma rays include brain, breast, colon, fat, kidney, liver, lung, muscle, prostate, skin, thyroid and uterus. (topical review)

  19. Fluorescent x-ray computed tomography to visualize specific material distribution

    Science.gov (United States)

    Takeda, Tohoru; Yuasa, Tetsuya; Hoshino, Atsunori; Akiba, Masahiro; Uchida, Akira; Kazama, Masahiro; Hyodo, Kazuyuki; Dilmanian, F. Avraham; Akatsuka, Takao; Itai, Yuji

    1997-10-01

    Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT systems consists of a silicon channel cut monochromator, an x-ray slit and a collimator for detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the K(alpha) line, incident monochromatic x-ray was set at 37 keV. At 37 keV Monte Carlo simulation showed almost complete separation between Compton scattering and the K(alpha) line. Actual experiments revealed small contamination of Compton scattering on the K(alpha) line. A clear FXCT image of a phantom was obtained. Using this system the minimal detectable dose of iodine was 30 ng in a volume of 1 mm3, and a linear relationship was demonstrated between photon counts of fluorescent x-rays and the concentration of iodine contrast material. The use of high incident x-ray energy allows an increase in the signal to noise ratio by reducing the Compton scattering on the K(alpha) line.

  20. A deep X-ray view of the bare AGN Ark 120. IV. XMM-Newton and NuSTAR spectra dominated by two temperature (warm, hot) Comptonization processes

    Science.gov (United States)

    Porquet, D.; Reeves, J. N.; Matt, G.; Marinucci, A.; Nardini, E.; Braito, V.; Lobban, A.; Ballantyne, D. R.; Boggs, S. E.; Christensen, F. E.; Dauser, T.; Farrah, D.; Garcia, J.; Hailey, C. J.; Harrison, F.; Stern, D.; Tortosa, A.; Ursini, F.; Zhang, W. W.

    2018-01-01

    Context. The physical characteristics of the material closest to supermassive black holes (SMBHs) are primarily studied through X-ray observations. However, the origins of the main X-ray components such as the soft X-ray excess, the Fe Kα line complex, and the hard X-ray excess are still hotly debated. This is particularly problematic for active galactic nuclei (AGN) showing a significant intrinsic absorption, either warm or neutral, which can severely distort the observed continuum. Therefore, AGN with no (or very weak) intrinsic absorption along the line of sight, so-called "bare AGN", are the best targets to directly probe matter very close to the SMBH. Aims: We perform an X-ray spectral analysis of the brightest and cleanest bare AGN known so far, Ark 120, in order to determine the process(es) at work in the vicinity of the SMBH. Methods: We present spectral analyses of data from an extensive campaign observing Ark 120 in X-rays with XMM-Newton (4 × 120 ks, 2014 March 18-24), and NuSTAR (65.5 ks, 2014 March 22). Results: During this very deep X-ray campaign, the source was caught in a high-flux state similar to the earlier 2003 XMM-Newton observation, and about twice as bright as the lower-flux observation in 2013. The spectral analysis confirms the "softer when brighter" behavior of Ark 120. The four XMM-Newton/pn spectra are characterized by the presence of a prominent soft X-ray excess and a significant Fe Kα complex. The continuum is very similar above about 3 keV, while significant variability is present for the soft X-ray excess. We find that relativistic reflection from a constant-density, flat accretion disk cannot simultaneously produce the soft excess, broad Fe Kα complex, and hard X-ray excess. Instead, Comptonization reproduces the broadband (0.3-79 keV) continuum well, together with a contribution from a mildly relativistic disk reflection spectrum. Conclusions: During this 2014 observational campaign, the soft X-ray spectrum of Ark 120 below 0

  1. Design and Tests of the Hard X-ray Polarimeter X-Calibur

    Directory of Open Access Journals (Sweden)

    M. Beilicke

    2014-12-01

    Full Text Available X-ray polarimetry promises to give qualitatively new information bout high-energy astrophysical sources, such as binary black hole  systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested ahard X-ray polarimeter, X-Calibur, to be used in the focal plane of the InFOCuS grazing incidence hard X-ray telescope.X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 20−60 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation; in principal, a similar space-borne experiment could be operated in the 5−100 keV regime. X-Calibur achieves a high detection efficiency of order unity.

  2. Broadband Correlations Provide Evidence for Synchrotron Self-Compton X-rays from the Black Hole Binary GX 339-4

    International Nuclear Information System (INIS)

    Coriat, M.; Corbel, S.; Buxton, M. M.; Baylin, C. D.

    2009-01-01

    GX 339-4 has been one of the key sources for unravelling the accretion ejection coupling in accreting stellar mass black holes. After a long period of quiescence between 1999 and 2002, GX 339-4 underwent a series of 4 outbursts that have been intensively observed by many ground based observatories (radio/infrared/optical) and satellites (X-rays). Here, we present some specific results of these broad band observational campaigns, focusing on the optical-infrared/X-ray flux correlations over the four outbursts. Thanks to our extensive data-set, we found a strong OIR/X-ray correlation over four decades with the presence of a break in the correlation index. These results seem to favour a synchrotron self-Compton origin for the X-ray emission in GX 339-4 during the hard state and could also provide an indirect detection of the break frequency in the synchrotron spectrum of the compact jets.

  3. Regulatory considerations in the licensing of a mobile backscatter X-ray device used in security screening

    International Nuclear Information System (INIS)

    Scott, Jim; Railey, Leon

    2008-01-01

    This paper describes the regulatory and radiation protection issues taken into consideration in the licensing of a mobile security screening device which employs backscatter X-ray technology. The views expressed are those of the authors and are not the formal view of ARPANSA. The US standard ANSI N43.17 proposes doses limits for X-ray personnel security screening systems, viz. 0.1 μSv effective dose per scan; 250 μSv effective dose per year. The Z backscatter van TM satisfies the first criterion, as demonstrated by the independent measurements. Finally, if we assume an average effective dose of 0.1 μSv per scan, an individual would require to be scanned approximately 7 times per day, every day for a year in order to exceed the second dose limit of 250 μSv per year. This is considered extremely unlikely, and hence the van also meets the requirements of ANSI N43.17.

  4. Experimental determination of absolute-scale compton cross sections using the K X-ray escape and a comparison with three versions of the impulse approximation

    International Nuclear Information System (INIS)

    Pasic, S.; Uroic, M.; Tocilj, Z.; Majer, M.; Gamulin, O.; Bokulic, T.; Ilakovac, K.

    2005-01-01

    Double-differential Compton cross sections at two incident photon energies of 68.9 and 70.8 keV (mercury Kα X-rays) at the scattering angle of about 172 deg were measured in germanium using the coincidence technique with a detector as the scatterer. The cross sections were determined by normalization of the Compton spectra to the peaks due to the escape of characteristic Kα and Kβ X-rays from the target detector. This new approach of determination of absolute-scale Compton cross sections can also be applied in widely used single-mode measurements (source-scatterer-detector assembly). Our analysis shows that the new method is especially convenient and accurate at lower incident photon energies above the K-edge in the target atoms. The experimental results are compared with the non-relativistic impulse approximation, the frequently used simplified version of the relativistic impulse approximation and the non-relativistic impulse approximation used with the relativistic expression for the atomic electron momentum in the direction of the photon momentum transfer. Contrary to our expectation, the non-relativistic impulse approximation clearly gives the best agreement with the experimental data in the region of the Compton peak

  5. Development of Compton gamma-ray sources at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F.; Anderson, S. G.; Ebbers, C. A.; Gibson, D. J.; Hartemann, F. V.; Marsh, R. A.; Messerly, M. J.; Prantil, M. A.; Wu, S.; Barty, C. P. J. [Lawrence Livermore National Laboratory, NIF and Photon Science, 7000 East avenue, Livermore, CA 94550 (United States)

    2012-12-21

    Compact Compton scattering gamma-ray sources offer the potential of studying nuclear photonics with new tools. The optimization of such sources depends on the final application, but generally requires maximizing the spectral density (photons/eV) of the gamma-ray beam while simultaneously reducing the overall bandwidth on target to minimize noise. We have developed an advanced design for one such system, comprising the RF drive, photoinjector, accelerator, and electron-generating and electron-scattering laser systems. This system uses a 120 Hz, 250 pC, 2 ps, 0.35 mm mrad electron beam with 250 MeV maximum energy in an X-band accelerator scattering off a 150 mJ, 10 ps, 532 nm laser to generate 5 Multiplication-Sign 10{sup 10} photons/eV/s/Sr at 0.5 MeV with an overall bandwidth of less than 1%. The source will be able to produce photons up to energies of 2.5 MeV. We also discuss Compton scattering gamma-ray source predictions given by numerical codes.

  6. Doppler Broadening Calculations of Compton Scattering for Molecules, Plastics, Tissues, and Few Biological Materials in the X-Ray Region: An Analysis in Terms of Compton Broadening and Geometrical Energy Broadening

    Science.gov (United States)

    Rao, D. V.; Cesareo, R.; Brunetti, A.; Gigante, G. E.; Akatsuka, T.; Takeda, T.; Itai, Y.

    2004-09-01

    Relativistic and nonrelativistic Compton profile cross sections for H, C, N, O, P, and Ca and for a few important biological materials such as water, polyethylene, lucite, polystyrene, nylon, polycarbonate, bakelite, fat, bone and calcium hydroxyapatite are estimated for a number of Kα x-ray energies and for 59.54 keV (Am-241) γ photons. Energy broadening and geometrical broadening (ΔG) is estimated by assuming θmin and θmax are symmetrically situated around θ=90°. FWHM of J(PZ) and FWHM of Compton energy broadening are evaluated at various incident photon energies. These values are estimated around the centroid of the Compton profile with an energy interval of 0.1 and 1.0 keV for 59.54 keV photons. Total Compton, individual shell, and Compton energy-absorption scattering cross sections are evaluated in the energy region from 0.005 to 0.5 MeV. It is an attempt to know the effect of Doppler broadening for single atoms, many of which constitute the biological materials.

  7. The Weak Fe Fluorescence Line and Long-Term X-Ray Evolution of the Compton-Thick Active Galactic Nucleus in NGC7674

    Science.gov (United States)

    Ghandi, P.; Annuar, A.; Lansbury, G. B.; Stern, D.; Alexander, D. M.; Bauer, F. E.; Bianchi, S.; Boggs, S. E.; Boorman, P. G.; Brandt, W. N.; hide

    2017-01-01

    We present NuSTAR X-ray observations of the active galactic nucleus (AGN) in NGC7674.The source shows a flat X-ray spectrum, suggesting that it is obscured by Compton-thick gas columns. Based upon long-term flux dimming, previous work suggested the alternate possibility that the source is a recently switched-off AGN with the observed X-rays being the lagged echo from the torus. Our high-quality data show the source to be reflection-dominated in hard X-rays, but with a relatively weak neutral Fe K(alpha) emission line (equivalent width [EW] of approximately 0.4 keV) and a strong Fe XXVI ionized line (EW approximately 0.2 keV).We construct an updated long-term X-ray light curve of NGC7674 and find that the observed 2-10 keV flux has remained constant for the past approximately 20 yr, following a high-flux state probed by Ginga. Light travel time arguments constrain the minimum radius of the reflector to be approximately 3.2 pc under the switched-off AGN scenario, approximately 30 times larger than the expected dust sublimation radius, rendering this possibility unlikely. A patchy Compton-thick AGN (CTAGN) solution is plausible, requiring a minimum line-of-sight column density (N(sub H)) of 3 x 10(exp 24) cm(exp -2) at present, and yields an intrinsic 2-10 keV luminosity of (3-5) x 10(exp 43) erg s(exp -1). Realistic uncertainties span the range of approximately (1-13) x 10(exp 43) erg s1. The source has one of the weakest fluorescence lines amongst bona fide CTAGN, and is potentially a local analogue of bolometrically luminous systems showing complex neutral and ionized Fe emission. It exemplifies the difficulty of identification and proper characterization of distant CTAGN based on the strength of the neutral Fe K line

  8. A New Model for Thermal and Bulk Comptonization in Accretion-Powered X-ray Pulsars

    Science.gov (United States)

    Becker, Peter A.; Wolff, Michael T.

    2018-01-01

    The theory of spectral formation in accretion-powered X-ray pulsars has advanced considerably in the past decade, with the development of new models for the continuum and the cyclotron line formation processes. In many sources, the cyclotron line centroid energy is observed to vary as a function of source luminosity (and therefore accretion rate). In some cases, the variations in the luminosity seem to indicate a change in the structure of the accretion column, as the source passes from the sub-critical to the super-critical regime. With the recent launches of NuSTAR and NICER, observations of accreting X-ray pulsars are entering a new era, with large effective areas, broadband energy coverage, and good temporal resolution. These observations are already presenting new challenges to the theory, requiring the development of a new generation of more sophisticated physical models. In this paper, we discuss an improved model for bulk and thermal Comptonization in X-ray pulsars that will allow greater self-consistency in the data analysis process than current models, leading to more rigorous determinations of source parameters such as magnetic field strength, temperature, etc. The model improvements include (1) a more realistic geometry for the accretion column; (2) a more rigorous accretion velocity profile that merges smoothly with Newtonian free-fall as r → ∞ and (3) a more realistic free-streaming radiative boundary condition at the top of the column. This latter improvement means that we can now compute the pencil and fan beam components separately, which is necessary in order to analyze phase-dependent spectral data. We discuss applications of the new model to Her X-1, LMC X-4, and Cen X-3, and also to the Be X-ray binary 4U 0115+63.

  9. INVERSE COMPTON X-RAY EMISSION FROM SUPERNOVAE WITH COMPACT PROGENITORS: APPLICATION TO SN2011fe

    International Nuclear Information System (INIS)

    Margutti, R.; Soderberg, A. M.; Chomiuk, L.; Milisavljevic, D.; Foley, R. J.; Slane, P.; Moe, M.; Chevalier, R.; Hurley, K.; Hughes, J. P.; Fransson, C.; Barthelmy, S.; Cummings, J.; Boynton, W.; Enos, H.; Fellows, C.; Briggs, M.; Connaughton, V.; Costa, E.; Del Monte, E.

    2012-01-01

    We present a generalized analytic formalism for the inverse Compton X-ray emission from hydrogen-poor supernovae and apply this framework to SN 2011fe using Swift X-Ray Telescope (XRT), UVOT, and Chandra observations. We characterize the optical properties of SN 2011fe in the Swift bands and find them to be broadly consistent with a 'normal' SN Ia, however, no X-ray source is detected by either XRT or Chandra. We constrain the progenitor system mass-loss rate M-dot -9 M ☉ yr -1 (3σ c.l.) for wind velocity v w = 100 km s –1 . Our result rules out symbiotic binary progenitors for SN 2011fe and argues against Roche lobe overflowing subgiants and main-sequence secondary stars if ∼> 1% of the transferred mass is lost at the Lagrangian points. Regardless of the density profile, the X-ray non-detections are suggestive of a clean environment (n CSM –3 ) for 2 × 10 15 ∼ 16 cm around the progenitor site. This is either consistent with the bulk of material being confined within the binary system or with a significant delay between mass loss and supernova explosion. We furthermore combine X-ray and radio limits from Chomiuk et al. to constrain the post-shock energy density in magnetic fields. Finally, we searched for the shock breakout pulse using gamma-ray observations from the Interplanetary Network and find no compelling evidence for a supernova-associated burst. Based on the compact radius of the progenitor star we estimate that the shock breakout pulse was likely not detectable by current satellites.

  10. Extracting the redox orbitals in Li battery materials with high-resolution x-ray compton scattering spectroscopy.

    Science.gov (United States)

    Suzuki, K; Barbiellini, B; Orikasa, Y; Go, N; Sakurai, H; Kaprzyk, S; Itou, M; Yamamoto, K; Uchimoto, Y; Wang, Yung Jui; Hafiz, H; Bansil, A; Sakurai, Y

    2015-02-27

    We present an incisive spectroscopic technique for directly probing redox orbitals based on bulk electron momentum density measurements via high-resolution x-ray Compton scattering. Application of our method to spinel Li_{x}Mn_{2}O_{4}, a lithium ion battery cathode material, is discussed. The orbital involved in the lithium insertion and extraction process is shown to mainly be the oxygen 2p orbital. Moreover, the manganese 3d states are shown to experience spatial delocalization involving 0.16±0.05 electrons per Mn site during the battery operation. Our analysis provides a clear understanding of the fundamental redox process involved in the working of a lithium ion battery.

  11. Generation of laser Compton gamma-rays using Compact ERL

    International Nuclear Information System (INIS)

    Shizuma, Toshiyuki; Hajima, Ryoichi; Nagai, Ryoji; Hayakawa, Takehito; Mori, Michiaki; Seya, Michio

    2015-01-01

    Nondestructive isotope-specific assay system using nuclear resonance fluorescence has been developed at JAEA. In this system, intense, mono-energetic laser Compton scattering (LCS) gamma-rays are generated by combining an energy recovery linac (ERL) and laser enhancement cavity. As technical development for such an intense gamma-ray source, we demonstrated generation of LCS gamma-rays using Compact ERL (supported by the Ministry of Education, Culture, Sports, Science and Technology) developed in collaboration with KEK. We also measured X-ray fluorescence for elements near iron region by using mono-energetic LCS gamma-rays. In this presentation, we will show results of the experiment and future plan. (author)

  12. Comptonization of low-frequency radiation in accretion disks Angular distribution and polarization of hard X-ray radiation

    International Nuclear Information System (INIS)

    Suniaev, R.A.; Titarchuk, L.G.

    1984-01-01

    Analytical consideration is given to the comptonization of photons and its effects on the radiation emitted from accretion disks of compact X-ray sources, such as black holes and neutron stars. Attention is given to the photon distribution during escape from the disk, the angular distribution of hard radiation from the disk, the polarization of hard radiation and the electron temperature distribution over the optical depth. It is shown that the hard radiation spectrum is independent of the low-frequency photon source distribution. The angular distribution and polarization of the outgoing X-rays are a function of the optical depth. A Thomson approximation is used to estimate the angular distribution of the hard radiation and the polarization over the disk. The polarization results are compared with OSO-8 satellite data for Cyg X-1 and show good agreement at several energy levels. 17 references

  13. Determination of the mass attenuation coefficients for X-ray fluorescence measurements correction by the Rayleigh to Compton scattering ratio

    Science.gov (United States)

    Conti, C. C.; Anjos, M. J.; Salgado, C. M.

    2014-09-01

    X-ray fluorescence technique plays an important role in nondestructive analysis nowadays. The development of equipment, including portable ones, enables a wide assortment of possibilities for analysis of stable elements, even in trace concentrations. Nevertheless, despite of the advantages, one important drawback is radiation self-attenuation in the sample being measured, which needs to be considered in the calculation for the proper determination of elemental concentration. The mass attenuation coefficient can be determined by transmission measurement, but, in this case, the sample must be in slab shape geometry and demands two different setups and measurements. The Rayleigh to Compton scattering ratio, determined from the X-ray fluorescence spectrum, provides a link to the mass attenuation coefficient by means of a polynomial type equation. This work presents a way to construct a Rayleigh to Compton scattering ratio versus mass attenuation coefficient curve by using the MCNP5 Monte Carlo computer code. The comparison between the calculated and literature values of the mass attenuation coefficient for some known samples showed to be within 15%. This calculation procedure is available on-line at www.macx.net.br.

  14. Influence of backscattering on the spatial resolution of semiconductor X-ray detectors

    International Nuclear Information System (INIS)

    Hoheisel, M.; Korn, A.; Giersch, J.

    2005-01-01

    Pixelated X-ray detectors using semiconductor layers or scintillators as absorbers are widely used in high-energy physics, medical diagnosis, or non-destructive testing. Their good spatial resolution performance makes them particularly suitable for applications where fine details have to be resolved. Intrinsic limitations of the spatial resolution have been studied in previous simulations. These simulations focused on interactions inside the conversion layer. Transmitted photons were treated as a loss. In this work, we also implemented the structure behind the conversion layer to investigate the impact of backscattering inside the detector setup. We performed Monte Carlo simulations with the program ROSI (Roentgen Simulation) which is based on the well-established EGS4 algorithm. Line-spread functions of different fully implemented detectors were simulated. In order to characterize the detectors' spatial resolution, the modulation transfer functions (MTF) were calculated. The additional broadening of the line-spread function by carrier transport has been ignored in this work. We investigated two different detector types: a directly absorbing pixel detector where a semiconductor slab is bump-bonded to a readout ASIC such as the Medipix-2 setup with Si or GaAs as an absorbing semiconductor layer, and flat-panel detectors with a Se or a CsI converter. We found a significant degradation of the MTF compared to the case without backscattering. At energies above the K-edge of the backscattering material the spatial resolution drops and can account for the observed low-frequency drop of the MTF. Ignoring this backscatter effect might lead to misinterpretations of the charge sharing effect in counting pixel detectors

  15. Concept and realization of the A4 Compton backscattering polarimeter at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Han

    2008-12-15

    The main concern of the A4 parity violation experiment at the Mainzer Microtron accelerator facility is to study the electric and magnetic contributions of strange quarks to the charge and magnetism of the nucleons at the low momentum transfer region. More precisely, the A4 collaboration investigates the strange quarks' contribution to the electric and magnetic vector form factors of the nucleons. Thus, it is important that the A4 experiment uses an adequate and precise non-destructive online monitoring tool for the electron beam polarization when measuring single spin asymmetries in elastic scattering of polarized electrons from unpolarized nucleons. As a consequence, the A4 Compton backscattering polarimeter was designed and installed such that we can take the absolute measurement of the electron beam polarization without interruption to the parity violation experiment. The present study shows the development of an electron beam line that is called the chicane for the A4 Compton backscattering polarimeter. The chicane is an electron beam transport line and provides an interaction region where the electron beam and the laser beam overlap. After studying the properties of beam line components carefully, we developed an electron beam control system that makes a beam overlap between the electron beam and the laser beam. Using the system, we can easily achieve the beam overlap in a short time. The electron control system, of which the performance is outstanding, is being used in production beam times. And the study presents the development of a scintillating fiber electron detector that reduces the statistical error in the electron polarization measurement. We totally redesigned the scintillating fiber detector. The data that were taken during a 2008 beam time shows a huge background suppression, approximately 80 percent, while leaving the Compton spectra almost unchanged when a coincidence between the fiber detector and the photon detector is used. Thus, the

  16. Nondestructive Inspection System for Special Nuclear Material Using Inertial Electrostatic Confinement Fusion Neutrons and Laser Compton Scattering Gamma-Rays

    Science.gov (United States)

    Ohgaki, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Misawa, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.; Fujimoto, S.

    2017-07-01

    A Neutron/Gamma-ray combined inspection system for hidden special nuclear materials (SNMs) in cargo containers has been developed under a program of Japan Science and Technology Agency in Japan. This inspection system consists of an active neutron-detection system for fast screening and a laser Compton backscattering gamma-ray source in coupling with nuclear resonance fluorescence (NRF) method for precise inspection. The inertial electrostatic confinement fusion device has been adopted as a neutron source and two neutron-detection methods, delayed neutron noise analysis method and high-energy neutron-detection method, have been developed to realize the fast screening system. The prototype system has been constructed and tested in the Reactor Research Institute, Kyoto University. For the generation of the laser Compton backscattering gamma-ray beam, a race track microtron accelerator has been used to reduce the size of the system. For the NRF measurement, an array of LaBr3(Ce) scintillation detectors has been adopted to realize a low-cost detection system. The prototype of the gamma-ray system has been demonstrated in the Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology. By using numerical simulations based on the data taken from these prototype systems and the inspection-flow, the system designed by this program can detect 1 kg of highly enriched 235U (HEU) hidden in an empty 20-ft container within several minutes.

  17. The weak Fe fluorescence line and long-term X-ray evolution of the Compton-thick active galactic nucleus in NGC 7674

    Science.gov (United States)

    Gandhi, P.; Annuar, A.; Lansbury, G. B.; Stern, D.; Alexander, D. M.; Bauer, F. E.; Bianchi, S.; Boggs, S. E.; Boorman, P. G.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Comastri, A.; Craig, W. W.; Del Moro, A.; Elvis, M.; Guainazzi, M.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Lamperti, I.; Malaguti, G.; Masini, A.; Matt, G.; Puccetti, S.; Ricci, C.; Rivers, E.; Walton, D. J.; Zhang, W. W.

    2017-06-01

    We present NuSTAR X-ray observations of the active galactic nucleus (AGN) in NGC 7674. The source shows a flat X-ray spectrum, suggesting that it is obscured by Compton-thick gas columns. Based upon long-term flux dimming, previous work suggested the alternate possibility that the source is a recently switched-off AGN with the observed X-rays being the lagged echo from the torus. Our high-quality data show the source to be reflection-dominated in hard X-rays, but with a relatively weak neutral Fe Kα emission line (equivalent width [EW] of ≈ 0.4 keV) and a strong Fe xxvi ionized line (EW ≈ 0.2 keV). We construct an updated long-term X-ray light curve of NGC 7674 and find that the observed 2-10 keV flux has remained constant for the past ≈ 20 yr, following a high-flux state probed by Ginga. Light travel time arguments constrain the minimum radius of the reflector to be ˜ 3.2 pc under the switched-off AGN scenario, ≈ 30 times larger than the expected dust sublimation radius, rendering this possibility unlikely. A patchy Compton-thick AGN (CTAGN) solution is plausible, requiring a minimum line-of-sight column density (NH) of 3 × 1024 cm-2 at present, and yields an intrinsic 2-10 keV luminosity of (3-5) × 1043 erg s-1. Realistic uncertainties span the range of ≈ (1-13) × 1043 erg s-1. The source has one of the weakest fluorescence lines amongst bona fide CTAGN, and is potentially a local analogue of bolometrically luminous systems showing complex neutral and ionized Fe emission. It exemplifies the difficulty of identification and proper characterization of distant CTAGN based on the strength of the neutral Fe Kα line.

  18. Effect of moisture on the accuracy of coke-ash determination by X-ray backscattering

    International Nuclear Information System (INIS)

    Pandey, H.D.; Prasad, M.S.

    1984-01-01

    Effect of moisture on the rapid non-destructive estimation of ash content in coal specimens using the X-ray backscattering technique has been studied extensively by various workers. In the present work, an attempt has been made to estimate its influence when the technique is extended to coke-ash determinations. From the study of the variation of backscattered intensity with change in the moisture content of a coke specimen, it is observed that the ash content varies significantly at moisture levels higher than 5%. The variation, however, remains within allowable limits if the moisture level is kept below 5%. This observation is confirmed by the actual measurement of ash percentages in thirteen coke specimens containing three different states of moisture levels viz. (i) in the dry state, (ii) with 5% moisture and (iii) with 10% moisture. (author)

  19. The difference in backscatter factors of diagnostic X-rays by the difference in the scattering medium and in the objective dose

    International Nuclear Information System (INIS)

    Kato, Hideki; Sakai, Keita; Uchiyama, Mizuki; Suzuki, Kentaro

    2016-01-01

    The diagnostic reference levels (DRLs) of the general X-ray radiography are defined by the absorbed dose of air at the entrance surface with backscattered radiation from a scattering medium. Generally, the entrance surface dose of the general X-ray radiography is calculated from measured air kerma of primary X-ray multiplied by a backscatter factor (BSF). However, the BSF data employed at present used water for scattering medium, and was calculated based on the water-absorbed dose by incident primary photons and backscattered photons from the scattering medium. In the calculation of air dose at the entrance surface defined in DRLs, there are no theoretical consistencies for using BSF based on water dose, and this may be a cause of calculation error. In this paper, we verified the difference in BSF by the difference in the scattering medium and by the difference in the objective dose by means of the Monte Carlo simulation. In this calculation, the scattering medium was set as water and the soft-tissue, and the objective dose was set as air dose, water dose, soft-tissue dose, and skin dose. The difference in BSF calculated by the respective combination was at most about 1.3% and was less than 1% in most cases. In conclusion, even if the entrance surface dose defined by DRLs of general X-ray radiography is calculated using BSF, which set both the scattering medium and the object substance of the absorbed dose as water, a so big error doesn't show. (author)

  20. Compton polarimetry of 6-35 keV X-rays. Influence of Breit interaction on the linear polarisation of KLL dielectronic recombination transitions in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Joerg, Holger Eric

    2016-12-21

    The polarisation of X-rays emitted during K shell dielectronic recombination (DR) into highly charged ions was studied using electron beam ion traps. In the first experiment, the degree of linear polarisation of X-rays due to K shell DR transitions of highly charged krypton ions was measured with a newly developed Compton polarimeter based on SiPIN diodes. Such polarisation measurements allow a study of the population mechanism of magnetic sublevels in collisions between electrons and ions. In a second experiment, the influence of Breit interaction between electrons on the polarisation of X-rays emitted during K shell DR into highly charged xenon ions was studied. Here, polarisation measurements provide an access to the finer details of the electron-electron interaction in electron-ion collisions. Furthermore, a second Compton polarimeter based on silicon drift detectors has been developed for polarisation measurements at synchrotrons. It has been developed for X-ray polarimetry with a high energy resolution for energies between 6 keV and 35 keV. It was tested in the course of polarisation measurements at an electron beam ion trap and at a synchrotron radiation source.

  1. Compton current detector

    International Nuclear Information System (INIS)

    Carvalho Campos, J.S. de.

    1984-01-01

    The project and construction of a Compton current detector, with cylindrical geometry using teflon as dielectric material; for electromagnetic radiation in range energy between 10 KeV and 2 MeV are described. The measurements of Compton current in teflon were obtained using an electrometer. The Compton current was promoted by photon flux proceeding from X ray sources (MG 150 Muller device) and gamma rays of 60 Co. The theory elaborated to explain the experimental results is shown. The calibration curves for accumulated charge and current in detector in function of exposition rates were obtained. (M.C.K.) [pt

  2. Performance of a position sensitive Si(Li) x-ray detector dedicated to Compton polarimetry of stored and trapped highly-charged ions

    International Nuclear Information System (INIS)

    Weber, G; Braeuning, H; Hess, S; Maertin, R; Spillmann, U; Stoehlker, Th

    2010-01-01

    We report on a novel two-dimensional position sensitive Si(Li) detector dedicated to Compton polarimetry of x-ray radiation arising from highly-charged ions. The performance of the detector system was evaluated in ion-atom collision experiments at the ESR storage ringe at GSI, Darmstadt. Based on the data obtained, the polarimeter efficiency is estimated in this work.

  3. Time evolution analysis of the electron distribution in Thomson/Compton back-scattering

    International Nuclear Information System (INIS)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Maroli, C.; Serafini, L.; Rossi, A. R.

    2013-01-01

    We present the time evolution of the energy distribution of a relativistic electron beam after the Compton back-scattering with a counter-propagating laser field, performed in the framework of the Quantum Electrodynamics, by means of the code CAIN. As the correct angular distribution of the spontaneous emission is accounted, the main effect is the formation of few stripes, followed by the diffusion of the more energetic particles toward lower values in the longitudinal phase space. The Chapman-Kolmogorov master equation gives results in striking agreement with the numerical ones. An experiment on the Thomson source at SPARC-LAB is proposed

  4. Forward and backscatter dose profile to diagnostic X-rays at gold/tissue interfaces

    International Nuclear Information System (INIS)

    Rosa, Luiz A.R. da; Seidenbusch, Michael; Regulla, Dieter F.

    1997-01-01

    The radiological and clinical significance of dose distributions in the vicinity of media interfaces in radiotherapy and the complex nature of these dose distributions have long been recognised. A possible dosimetry method for dose profile assessment near interfaces is the use of the so-called thermally stimulated exoelectron emission (TSEE) dosemeter. In this work the possibility of using Be O/TSEE dosimeters to assess the forward and backscatter dose profile at the interface soft tissue/gold was investigated for diagnostic heavily filtered X-rays spectrum A-60 of ISO Standard A-quality. Dose and range profiles are presented. (author). 14 refs., 3 figs

  5. Image restoration techniques using Compton backscatter imaging for the detection of buried land mines

    Science.gov (United States)

    Wehlburg, Joseph C.; Keshavmurthy, Shyam P.; Watanabe, Yoichi; Dugan, Edward T.; Jacobs, Alan M.

    1995-06-01

    Earlier landmine imaging systems used two collimated detectors to image objects. These systems had difficulty in distinguishing between surface features and buried features. Using a combination of collimated and uncollimated detectors in a Compton backscatter imaging (CBI) system, allows the identification of surface and buried features. Images created from the collimated detectors contain information about the surface and the buried features, while the uncollimated detectors respond (approximately 80%) to features on the surface. The analysis of surface features are performed first, then these features can be removed and the buried features can be identified. Separation of the surface and buried features permits the use of a globbing algorithm to define regions of interest that can then be quantified [area, Y dimension, X dimension, and center location (xo, yo)]. Mine composition analysis is also possible because of the properties of the four detector system. Distinguishing between a pothole and a mine, that was previously very difficult, can now be easily accomplished.

  6. Compton suppression naa in the analysis of food and beverages

    International Nuclear Information System (INIS)

    Ahmed, Y.A.; Ewa, I.O.B.; Umar, I.M.; Funtua, I.I.; Lanberger, S.; O'kelly, D.J.; Braisted, J.D.

    2009-01-01

    Applicability and performance of Compton suppression method in the analysis of food and beverages was re-established in this study. Using ''1''3''7Cs and ''6''0Co point sources Compton Suppression Factors (SF), Compton Reduction Factors (RF), Peak-to-Compton ratio (P/C), Compton Plateau (C p l), and Compton Edge (C e ) were determined for each of the two sources. The natural background reduction factors in the anticoincidence mode compared to the normal mode were evaluated. The reported R.F. values of the various Compton spectrometers for ''6''0Co source at energy 50-210 keV (backscattering region), 600 keV (Compton edge corresponding to 1173.2 keV gamma-ray) and 1110 keV (Compton edge corresponding to 1332.5 keV gamma-ray) were compared with that of the present work. Similarly the S.F. values of the spectrometers for ''1''3''7Cs source were compared at the backscattered energy region (S.F. b = 191-210 keV), Compton Plateau (S.F. p l = 350-370 keV), and Compton Edge (S.F. e = 471-470 keV) and all were found to follow a similar trend. We also compared peak reduction ratios for the two cobalt energies (1173.2 and 1332.5) with the ones reported in literature and two results agree well. Applicability of the method to food and beverages was put to test for twenty one major, minor, and trace elements (Ba, Sr, I, Br, Cu, V, Mg, Na, Cl, Mn, Ca, Sn,K, Cd, Zn, As, Sb, Ni, Cs, Fe, and Co) commonly found in food, milk, tea and tobacco. The elements were assayed using five National Institute for Standards and Technology (NIST) certified reference materials (Non-fat powdered milk, Apple leaves, Tomato leaves, and Citrus leaves). The results obtained shows good agreement with NIST certified values, indicating that the method is suitable for simultaneous determination of micro-nutrients, macro-nutrients and heavy elements in food and beverages without undue interference problems

  7. X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation - Modelling, experiment, and Monte-Carlo simulation

    International Nuclear Information System (INIS)

    Hodoroaba, V.-D.; Radtke, M.; Vincze, L.; Rackwitz, V.; Reuter, D.

    2010-01-01

    X-ray scattering may contribute significantly to the spectral background of X-ray fluorescence (XRF) spectra. Based on metrological measurements carried out with a scanning electron microscope (SEM) having attached a well characterised X-ray source (polychromatic X-ray tube) and a calibrated energy dispersive X-ray spectrometer (EDS) the accuracy of a physical model for X-ray scattering is systematically evaluated for representative samples. The knowledge of the X-ray spectrometer efficiency, but also of the spectrometer response functions makes it possible to define a physical spectral background of XRF spectra. Background subtraction relying on purely mathematical procedures is state-of-the-art. The results produced by the analytical model are at least as reliable as those obtained by Monte-Carlo simulations, even without considering the very challenging contribution of multiple scattering. Special attention has been paid to Compton broadening. Relevant applications of the implementation of the analytical model presented in this paper are the prediction of the limits of detection for particular cases or the determination of the transmission of X-ray polycapillary lenses.

  8. Are X-ray emitting coronae around supermassive black holes outflowing?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Teng; Wang, Jun-Xian; Yang, Huan; Zhu, Fei-Fan; Zhou, You-Yuan, E-mail: liuteng@ustc.edu.cn, E-mail: jxw@ustc.edu.cn [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-03-10

    Hard X-ray emission in radio-quiet active galactic nuclei (AGNs) is believed to be produced via inverse Compton scattering by hot and compact coronae near the supermassive black hole. However, the origin and physical properties of the coronae, including geometry, kinematics, and dynamics, remain poorly known. In this work, taking [O IV] 25.89 μm emission line as an isotropic indicator of AGNs' intrinsic luminosity, we compare the intrinsic corona X-ray emission between Seyfert 1 and Compton-thin Seyfert 2 galaxies, which are viewed at different inclinations according to the unification scheme. We compile a sample of 130 Compton-thin Seyfert galaxies with both [O IV] 25.89 μm line luminosities measured with the Spitzer Infrared Spectrometer and X-ray spectra observed by XMM-Newton, Chandra, Suzaku, or Swift. Known radio-loud sources are excluded. We fit the X-ray spectra to obtain the absorption-corrected 2-10 keV continuum luminosities. We find that Seyfert 1 galaxies are intrinsically brighter in intrinsic 2-10 keV emission by a factor of 2.8{sub −0.4}{sup +0.5} (2.2{sub −0.3}{sup +0.9} in Swift Burst Alert Telescope 14-195 keV emission), compared with Compton-thin Seyfert 2 galaxies. The Seyfert 1 and Compton-thin Seyfert 2 galaxies follow a statistically identical correlation between the absorption-corrected 2-10 keV luminosity and the 14-195 keV luminosity, indicating that our absorption correction to the 2-10 keV flux is sufficient. The difference in X-ray emission between the two populations is thus unlikely to be due to X-ray absorption, and instead implies an intrinsic anisotropy in the corona X-ray emission. This striking anisotropy of X-ray emission can be explained by a bipolar outflowing corona with a bulk velocity of ∼0.3-0.5c. This would provide a natural link between the so-called coronae and weak jets in these systems. Other consequences of outflowing coronae are also discussed.

  9. Thermal x-rays from SN 1987A

    International Nuclear Information System (INIS)

    Nomoto, K.; Shigeyama, T.; Hayakawa, S.; Itoh, H.; Masai, K.

    1988-01-01

    The authors discuss how the x-ray spectrum of SN 1987A observed with the Ginga satellite may be explained by the ejecta-circumstellar matter collision model at photon energies below 15 keV. The harder x-rays may be ascribed to Compton degradation of the gamma-rays from 56 Co

  10. Fast and Precise Beam Energy Measurement using Compton Backscattering at e+e- Colliders

    CERN Document Server

    Kaminskiy, V V; Muchnoi, N Yu; Zhilich, V N

    2017-01-01

    The report describes a method for a fast and precise beam energy measurement in the beam energy range 0.5-2 GeV and its application at various e+e- colliders. Low-energy laser photons interact head-on with the electron or positron beam and produce Compton backscattered photons whose energy is precisely measured by HPGe detector. The method allows measuring the beam energy with relative accuracy of ∼2-5.10-5. The method was successfully applied at VEPP-4M, VEPP-3, VEPP-2000 (BINP, Russia) and BEPC-II (IHEP, China).

  11. Deducing Electron Properties from Hard X-Ray Observations

    Science.gov (United States)

    Kontar, E. P.; Brown, J. C.; Emslie, A. G.; Hajdas, W.; Holman, G. D.; Hurford, G. J.; Kasparova, J.; Mallik, P. C. V.; Massone, A. M.; McConnell, M. L.; hide

    2011-01-01

    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.

  12. Importance of Doppler broadening in Compton scatter imaging techniques

    Science.gov (United States)

    Rao, Donepudi V.; Takeda, Tohoru; Itai, Yuji; Seltzer, S. M.; Hubbell, John H.; Zeniya, Tsutomu; Akatsuka, Takao; Cesareo, Roberto; Brunetti, Antonio; Gigante, Giovanni E.

    2001-12-01

    Compton scattering is a potential tool for the determination of bone mineral content or tissue density for dose planning purposes, and requires knowledge of the energy distribution of the X-rays through biological materials of medical interest in the X-ray and (gamma) -ray region. The energy distribution is utilized in a number of ways in diagnostic radiology, for example, in determining primary photon spectra, electron densities in separate volumes, and in tomography and imaging. The choice of the X-ray energy is more related to X-ray absorption, where as that of the scattering angle is more related to geometry. The evaluation of all the contributions are mandatory in Compton profile measurements and is important in X-ray imaging systems in order to achieve good results. In view of this, Compton profile cross-sections for few biological materials are estimated at nineteen K(alpha) X-ray energies and 60 keV (Am-241) photons. Energy broadening, geometrical broadening from 1 to 180 degree(s), FWHM of J(Pz) and FWHM of Compton energy broadening has been evaluated at various incident photon energies. These values are estimated around the centroid of the Compton profile with an energy interval of 0.1 keV and 1.0 keV for 60 keV photons. The interaction cross sections for the above materials are estimated using fractions-by-weight of the constituent elements. Input data for these tables are purely theoretical.

  13. Can X-ray spectrum imaging replace backscattered electrons for compositional contrast in the scanning electron microscope?

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    2011-01-01

    The high throughput of the silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS) enables X-ray spectrum imaging (XSI) in the scanning electron microscope to be performed in frame times of 10-100 s, the typical time needed to record a high-quality backscattered electron (BSE) image. These short-duration XSIs can reveal all elements, except H, He, and Li, present as major constituents, defined as 0.1 mass fraction (10 wt%) or higher, as well as minor constituents in the range 0.01-0.1 mass fraction, depending on the particular composition and possible interferences. Although BSEs have a greater abundance by a factor of 100 compared with characteristic X-rays, the strong compositional contrast in element-specific X-ray maps enables XSI mapping to compete with BSE imaging to reveal compositional features. Differences in the fraction of the interaction volume sampled by the BSE and X-ray signals lead to more delocalization of the X-ray signal at abrupt compositional boundaries, resulting in poorer spatial resolution. Improved resolution in X-ray elemental maps occurs for the case of a small feature composed of intermediate to high atomic number elements embedded in a matrix of lower atomic number elements. XSI imaging strongly complements BSE imaging, and the SDD-EDS technology enables an efficient combined BSE-XSI measurement strategy that maximizes the compositional information. If 10 s or more are available for the measurement of an area of interest, the analyst should always record the combined BSE-XSI information to gain the advantages of both measures of compositional contrast. Copyright © 2011 Wiley Periodicals, Inc.

  14. Determination of combustible volatile matter in coal mine roadway dusts by backscatter of x-rays from a radioisotope source

    International Nuclear Information System (INIS)

    Ailwood, C.R.; Bunch, K.; Fookes, R.A.; Gravitis, V.L.; Watt, J.S.

    1977-01-01

    The combustible volatile matter in coal mine roadway dusts (CVM) has been determined using x-ray backscatter techniques. The correlation between x-ray and chemical techniques is reasonably good for the 92 samples from collieries on the Bulli seam, and the maximum error expected at the maximum level of 11.5 weight per cent CVM permitted in the N.S.W. Coal Mines Regulation Act, 1912, as amended, is about +- 2.5 weight per cent. This x-ray technique can be used only when the combustible volatile content of the coal matter (CVM) varies within a limited range, and a separate calibration is required for each coal seam. Portable equipment based on a radioisotope x-ray source and digital ratemeter makes possible simple and rapid analysis, and with adaptation to use in coal mines should lead to much more comprehensive testing of roadways and hence improved overall prevention of coal dust explosions. (author)

  15. Determination of the analyzing power of the A4 Compton-backscattering polarimeter for the measurement of the longitudinal spin polarization of the MAMI electron beam; Bestimmung der Analysierstaerke des A4-Compton-Rueckstreupolarimeters zur Messung der longitudinalen Spinpolarisation des MAMI-Elektronenstrahls

    Energy Technology Data Exchange (ETDEWEB)

    Diefenbacher, Juergen

    2010-08-22

    the A4 experiment can be reduced from 5 % to 1.5 % at 1508 MeV. For the data sets for the measurement of parity violation in electron scattering at a four momentum transfer of Q{sup 2}=0.6 (GeV/c){sup 2} the analysis yields a raw asymmetry of A{sup Roh}{sub PV}=(-20.0{+-}0.9{sub stat}) x 10{sup -6} at the moment. For a beam polarization of 80 % the total error would be 1,68 x 10{sup -6} with {delta}P{sub e}/P{sub e}=5 %. As the result of this work the error will be reduced using the Compton laser backscattering polarimeter by 29 % to 1.19 x 10{sup -6} ({delta}P{sub e} / P{sub e}=1.5 %). (orig.)

  16. A library for X-ray-matter interaction cross sections for X-ray fluorescence applications

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, A. [Istituto di Matematica e Fisica, Universita di Sassari, via Vienna 2, 07100 Sassari (Italy) and INFN, Sezione di Cagliari (Italy)]. E-mail: brunetti@uniss.it; Sanchez del Rio, M. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex (France); Golosio, B. [INFN, Sezione di Cagliari (Italy); European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex (France); Simionovici, A. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex (France); Laboratoire de Sciences de la Terre, Ecole Normale Superieure, Lyon, F-69364 (France); Somogyi, A. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex (France)

    2004-10-08

    Quantitative estimate of elemental composition by spectroscopic and imaging techniques using X-ray fluorescence requires the availability of accurate data of X-ray interaction with matter. Although a wide number of computer codes and data sets are reported in literature, none of them is presented in the form of freely available library functions which can be easily included in software applications for X-ray fluorescence. This work presents a compilation of data sets from different published works and an xraylib interface in the form of callable functions. Although the target applications are on X-ray fluorescence, cross sections of interactions like photoionization, coherent scattering and Compton scattering, as well as form factors and anomalous scattering functions, are also available.

  17. Measurement of the K X-ray absorption jump factors and jump ratios of Gd, Dy, Ho and Er by attenuation of a Compton peak

    International Nuclear Information System (INIS)

    Budak, G.; Polat, R.

    2004-01-01

    The X-ray absorption jump factor and jump ratio of Gd, Dy, Ho and Er were measured with a Si(Li) detector by attenuation, with Gd, Dy, Ho and Er foil, a Compton peak produced by the scattering of the 59.5 keV Am-241 Gamma rays. Al was chosen as secondary exciter. The experimental absorption jump factors and jump ratios are compared with the theoretical estimates of WinXcom (Radiat. Phys. Chem. 60 (2001) 23), McMaster (Compilation of X-ray cross sections UCRL-50174, 1969; Sec. II. Rev. I), Broll (X-ray Spectrom 15 (1986) 271), Hubbel and Seltzer (NISTIR (1995) 5632) and Budak (Radiat. Meas. accepted for publication). The present results constitute the first measurement for this combination of energy and elements, and good agreement is obtained between experiment and theory

  18. Inverse Compton gamma-rays from galactic dark matter annihilation. Anisotropy signatures

    International Nuclear Information System (INIS)

    Zhang, Le; Sigl, Guenter; Miniati, Francesco

    2010-08-01

    High energy electrons and positrons from annihilating dark matter can imprint unique angular anisotropies on the diffuse gamma-ray flux by inverse Compton scattering off the interstellar radiation field. We develop a numerical tool to compute gamma-ray emission from such electrons and positrons diffusing in the smooth host halo and in substructure halos with masses down to 10 -6 M s un. We show that, unlike the total gamma-ray angular power spectrum observed by Fermi-LAT, the angular power spectrum from inverse Compton scattering is exponentially suppressed below an angular scale determined by the diffusion length of electrons and positrons. For TeV scale dark matter with a canonical thermal freeze-out cross section 3 x 10 -26 cm 3 /s, this feature may be detectable by Fermi-LAT in the energy range 100-300 GeV after more sophisticated foreground subtraction. We also find that the total flux and the shape of the angular power spectrum depends sensitively on the spatial distribution of subhalos in the Milky Way. Finally, the contribution from the smooth host halo component to the gamma-ray mean intensity is negligibly small compared to subhalos. (orig.)

  19. Inverse Compton gamma-rays from galactic dark matter annihilation. Anisotropy signatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Le; Sigl, Guenter [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Miniati, Francesco [ETH Zuerich (Switzerland). Physics Dept.

    2010-08-15

    High energy electrons and positrons from annihilating dark matter can imprint unique angular anisotropies on the diffuse gamma-ray flux by inverse Compton scattering off the interstellar radiation field. We develop a numerical tool to compute gamma-ray emission from such electrons and positrons diffusing in the smooth host halo and in substructure halos with masses down to 10{sup -6}M{sub s}un. We show that, unlike the total gamma-ray angular power spectrum observed by Fermi-LAT, the angular power spectrum from inverse Compton scattering is exponentially suppressed below an angular scale determined by the diffusion length of electrons and positrons. For TeV scale dark matter with a canonical thermal freeze-out cross section 3 x 10{sup -26} cm{sup 3}/s, this feature may be detectable by Fermi-LAT in the energy range 100-300 GeV after more sophisticated foreground subtraction. We also find that the total flux and the shape of the angular power spectrum depends sensitively on the spatial distribution of subhalos in the Milky Way. Finally, the contribution from the smooth host halo component to the gamma-ray mean intensity is negligibly small compared to subhalos. (orig.)

  20. Laser Compton polarimetry at JLab and MAMI. A status report

    International Nuclear Information System (INIS)

    Diefenbach, J.; Imai, Y.; Han Lee, J.; Maas, F.; Taylor, S.

    2007-01-01

    For modern parity violation experiments it is crucial to measure and monitor the electron beam polarization continuously. In the recent years different high-luminosity concepts, for precision Compton backscattering polarimetry, have been developed, to be used at modern CW electron beam accelerator facilities. As Compton backscattering polarimetry is free of intrinsic systematic uncertainties, it can be a superior alternative to other polarimetry techniques such as Moeller and Mott scattering. State-of-the-art high-luminosity Compton backscattering designs currently in use and under development at JLab and Mainz are compared to each other. The latest results from the Mainz A4 Compton polarimeter are presented. (orig.)

  1. Compton scatter and X-ray crosstalk and the use of very thin intercrystal septa in high-resolution PET detectors

    International Nuclear Information System (INIS)

    Levin, C.S.; Tornai, M.P.; Cherry, S.R.; MacDonald, L.R.; Hoffman, E.J.

    1997-01-01

    To improve spatial resolution, positron emission tomography (PET) systems are being developed with finer detector elements. Unfortunately, using a smaller crystal size increases intercrystal Compton scatter and X-ray escape crosstalk, causing positioning errors that can lead to degradation of image contrast. The authors investigated the use of extremely thin lead strips for passive shielding of this intercrystal crosstalk. Using annihilation gamma rays and small Bismuth Germanate (BGO) crystal detectors in coincidence, crosstalk studies were performed with either two small adjacent crystals [(one-dimensional) (1-D)] or one crystal inside a volume of BGO [(two-dimensional) (2-D)]. The fraction of Compton scattered events from one crystal into an adjacent one was reduced, on average, by a factor of 3.2 (2.2) in the 1-D experiment and by a factor of 3.0 (2.1) in 2-D one, with a 300 (150)-microm-thick lead strip in between the crystals and a 300--700-keV energy window in both crystals. The authors could not measure a reduction in bismuth X-ray crosstalk with the sue of lead septa due to the production of lead X-rays of similar energy. The full-width at half-maximum (FWHM) of the coincident point-spread function (CPSF) was not significantly different for the 1- and 2-D studies, with or without the different septa in place. However, the FWTM was roughly 20% smaller with the 300-microm lead shielding in place. These results indicate that intercrystal crosstalk does not affect the positioning resolution at FWHM, but does affect the tails of the CPSF. Thus, without introducing any additional dead area, an insertion of very thin lead strips can reduce the extent of positioning errors. Reducing the intercrystal crosstalk in a high-resolution PET detector array could potentially improve tomographic image contrast in situations where intercrystal crosstalk plays a significant role in event mispositioning

  2. Toward the standard population synthesis model of the X-ray background: Evolution of X-ray luminosity and absorption functions of active galactic nuclei including Compton-thick populations

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Yoshihiro [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Akiyama, Masayuki [Astronomical Institute, Tohoku University, 6-3 Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Hasinger, Günther [Institute for Astronomy, 2680 Woodlawn Drive Honolulu, HI 96822-1839 (United States); Miyaji, Takamitsu [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California (Mexico); Watson, Michael G. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2014-05-10

    We present the most up to date X-ray luminosity function (XLF) and absorption function of active galactic nuclei (AGNs) over the redshift range from 0 to 5, utilizing the largest, highly complete sample ever available obtained from surveys performed with Swift/BAT, MAXI, ASCA, XMM-Newton, Chandra, and ROSAT. The combined sample, including that of the Subaru/XMM-Newton Deep Survey, consists of 4039 detections in the soft (0.5-2 keV) and/or hard (>2 keV) band. We utilize a maximum likelihood method to reproduce the count rate versus redshift distribution for each survey, by taking into account the evolution of the absorbed fraction, the contribution from Compton-thick (CTK) AGNs, and broadband spectra of AGNs, including reflection components from tori based on the luminosity- and redshift-dependent unified scheme. We find that the shape of the XLF at z ∼ 1-3 is significantly different from that in the local universe, for which the luminosity-dependent density evolution model gives much better description than the luminosity and density evolution model. These results establish the standard population synthesis model of the X-ray background (XRB), which well reproduces the source counts, the observed fractions of CTK AGNs, and the spectrum of the hard XRB. The number ratio of CTK AGNs to the absorbed Compton-thin (CTN) AGNs is constrained to be ≈0.5-1.6 to produce the 20-50 keV XRB intensity within present uncertainties, by assuming that they follow the same evolution as CTN AGNs. The growth history of supermassive black holes is discussed based on the new AGN bolometric luminosity function.

  3. 3D-printed coded apertures for x-ray backscatter radiography

    Science.gov (United States)

    Muñoz, André A. M.; Vella, Anna; Healy, Matthew J. F.; Lane, David W.; Jupp, Ian; Lockley, David

    2017-09-01

    Many different mask patterns can be used for X-ray backscatter imaging using coded apertures, which can find application in the medical, industrial and security sectors. While some of these patterns may be considered to have a self-supporting structure, this is not the case for some of the most frequently used patterns such as uniformly redundant arrays or any pattern with a high open fraction. This makes mask construction difficult and usually requires a compromise in its design by drilling holes or adopting a no two holes touching version of the original pattern. In this study, this compromise was avoided by 3D printing a support structure that was then filled with a radiopaque material to create the completed mask. The coded masks were manufactured using two different methods, hot cast and cold cast. Hot casting involved casting a bismuth alloy at 80°C into the 3D printed acrylonitrile butadiene styrene mould which produced an absorber with density of 8.6 g cm-3. Cold casting was undertaken at room temperature, when a tungsten/epoxy composite was cast into a 3D printed polylactic acid mould. The cold cast procedure offered a greater density of around 9.6 to 10 g cm-3 and consequently greater X-ray attenuation. It was also found to be much easier to manufacture and more cost effective. A critical review of the manufacturing procedure is presented along with some typical images. In both cases the 3D printing process allowed square apertures to be created avoiding their approximation by circular holes when conventional drilling is used.

  4. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    International Nuclear Information System (INIS)

    Luo, B.; Brandt, W. N.; Scott, A. E.; Alexander, D. M.; Gandhi, P.; Stern, D.; Teng, S. H.; Arévalo, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Ogle, P.; Puccetti, S.; Saez, C.

    2014-01-01

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ eff ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  5. Laser Compton Scattering Gamma Ray Induced Photo-Trasmutation

    CERN Document Server

    Li, Dazhi

    2004-01-01

    High brightness beams of gamma rays produced with laser Compton scattering have the potential to realize photo-transmutation through (γ,n) reaction, implying an efficient method to dispose long-lived fission products. Preliminary investigations have been carried out in understanding the feasibility of development of a transmutation facility to repose nuclear waste. A laser Compton scattering experimental setup based on a storage ring started to generate gamma-ray beams for studying the coupling of gamma photons and nuclear giant resonance. This paper demonstrates the dependency of nuclear transmutation efficiency on target dimensions and gamma ray features. 197Au sample was adopted in our experiment, and experimental results correspond to the theoretical estimations.

  6. Comparative study of macrotexture analysis using X-ray diffraction and electron backscattered diffraction techniques

    International Nuclear Information System (INIS)

    Serna, Marilene Morelli

    2002-01-01

    The macrotexture is one of the main characteristics in metallic materials, which the physical properties depend on the crystallographic direction. The analysis of the macrotexture to middles of the decade of 80 was just accomplished by the techniques of Xray diffraction and neutrons diffraction. The possibility of the analysis of the macrotexture using, the technique of electron backscattering diffraction in the scanning electronic microscope, that allowed to correlate the measure of the orientation with its location in the micro structure, was a very welcome tool in the area of engineering of materials. In this work it was studied the theoretical aspects of the two techniques and it was used of both techniques for the analysis of the macrotexture of aluminum sheets 1050 and 3003 with intensity, measured through the texture index 'J', from 2.00 to 5.00. The results obtained by the two techniques were shown reasonably similar, being considered that the statistics of the data obtained by the technique of electron backscatter diffraction is much inferior to the obtained by the X-ray diffraction. (author)

  7. Determination of the mass attenuation coefficients for X-ray fluorescence measurements correction by the Rayleigh to Compton scattering ratio

    Energy Technology Data Exchange (ETDEWEB)

    Conti, C.C., E-mail: ccconti@ird.gov.br [Institute for Radioprotection and Dosimetry – IRD/CNEN, Rio de Janeiro (Brazil); Physics Institute, State University of Rio de Janeiro – UERJ, Rio de Janeiro (Brazil); Anjos, M.J. [Physics Institute, State University of Rio de Janeiro – UERJ, Rio de Janeiro (Brazil); Salgado, C.M. [Nuclear Engineering Institute – IEN/CNEN, Rio de Janeiro (Brazil)

    2014-09-15

    Highlights: •This work describes a procedure for sample self-absorption correction. •The use of Monte Carlo simulation to calculate the mass attenuation coefficients curve was effective. •No need for transmission measurement, saving time, financial resources and effort. •This article provides de curves for the 90° scattering angle. •Calculation on-line at (www.macx.net.br). -- Abstract: X-ray fluorescence technique plays an important role in nondestructive analysis nowadays. The development of equipment, including portable ones, enables a wide assortment of possibilities for analysis of stable elements, even in trace concentrations. Nevertheless, despite of the advantages, one important drawback is radiation self-attenuation in the sample being measured, which needs to be considered in the calculation for the proper determination of elemental concentration. The mass attenuation coefficient can be determined by transmission measurement, but, in this case, the sample must be in slab shape geometry and demands two different setups and measurements. The Rayleigh to Compton scattering ratio, determined from the X-ray fluorescence spectrum, provides a link to the mass attenuation coefficient by means of a polynomial type equation. This work presents a way to construct a Rayleigh to Compton scattering ratio versus mass attenuation coefficient curve by using the MCNP5 Monte Carlo computer code. The comparison between the calculated and literature values of the mass attenuation coefficient for some known samples showed to be within 15%. This calculation procedure is available on-line at (www.macx.net.br)

  8. Shielded radiography with a laser-driven MeV-energy X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shouyuan; Golovin, Grigory [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Miller, Cameron [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Haden, Daniel; Banerjee, Sudeep; Zhang, Ping; Liu, Cheng; Zhang, Jun; Zhao, Baozhen [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Clarke, Shaun; Pozzi, Sara [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Umstadter, Donald, E-mail: donald.umstadter@unl.edu [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States)

    2016-01-01

    We report the results of experimental and numerical-simulation studies of shielded radiography using narrowband MeV-energy X-rays from a compact all-laser-driven inverse-Compton-scattering X-ray light source. This recently developed X-ray light source is based on a laser-wakefield accelerator with ultra-high-field gradient (GeV/cm). We demonstrate experimentally high-quality radiographic imaging (image contrast of 0.4 and signal-to-noise ratio of 2:1) of a target composed of 8-mm thick depleted uranium shielded by 80-mm thick steel, using a 6-MeV X-ray beam with a spread of 45% (FWHM) and 10{sup 7} photons in a single shot. The corresponding dose of the X-ray pulse measured in front of the target is ∼100 nGy/pulse. Simulations performed using the Monte-Carlo code MCNPX accurately reproduce the experimental results. These simulations also demonstrate that the narrow bandwidth of the Compton X-ray source operating at 6 and 9 MeV leads to a reduction of deposited dose as compared to broadband bremsstrahlung sources with the same end-point energy. The X-ray beam’s inherently low-divergence angle (∼mrad) is advantageous and effective for interrogation at standoff distance. These results demonstrate significant benefits of all-laser driven Compton X-rays for shielded radiography.

  9. Use of backscattered electron imaging, X-ray microanalysis and X-ray microscopy in demonstrating physiological cell death

    International Nuclear Information System (INIS)

    Bowen, I.D.; Worrill, N.A.; Winters, C.A.; Mullarkey, K.

    1988-01-01

    The cytochemical localization of enzymatic activity by means of backscattered electron imaging (BEI) is reviewed and the application of BEI to changes in acid phosphatase and ATPase distribution during physiological (programmed) cell death in Heliothis midgut is explored. Programmed cell death entails the release of nascent free acid phosphatase as extracisternal hydrolase. This shift can readily be detected by means of the atomic number contrast imparted by BEI of the lead phosphatase reaction product, thus enabling the distribution of dying cells to be mapped. BEI is particularly useful in this context as it allows the examination of bulk specimens at low magnification. Death of cells is also accompanied by a collapse in ATPase activity which shows up as cytochemically negative areas in the X-ray microscope and by means of BEI. Acid phosphatase in normal cells is localized in the apical microvilli and lysosomes. Senescent or dying cells, however, clearly show a basally situated free hydrolase which migrates throughout the cell. Parallel TEM results confirm that this enzyme is ribosomal and extracisternal rather than lysosomal in origin. ATPase activity is largely limited to the apical microvilli, although there is some activity associated with the basal plasma membranes. The apical ATPase, however is partially resistant to ouabain. Young and mature cells are positive although in the latter case some microvilli may be lost as the cells acquire a negative cap or dome. Inhibition by bromotetramizole indicates that apical activity is not to any significant extent contributed to by alkaline phosphatase. Degenerate or dead cells are negative and can be seen as a mozaic of black patches among normal cells when imaged by means of BEI or X-ray microscopy

  10. The development of a Compton lung densitometer

    Energy Technology Data Exchange (ETDEWEB)

    Loo, B.W.; Goulding, F.S.; Madden, N.W.; Simon, D.S.

    1988-11-01

    A field instrument is being developed for the non-invasive determination of absolute lung density using unique Compton backscattering techniques. A system consisting of a monoenergetic gamma-ray beam and a shielded high resolution high-purity-germanium (HPGe) detector in a close-coupled geometry is designed to minimize errors due to multiple scattering and uncontrollable attenuation in the chestwall. Results of studies on system performance with phantoms, the optimization of detectors, and the fabrication of a practical gamma-ray source are presented. 3 refs., 6 figs., 2 tabs.

  11. The development of a Compton lung densitometer

    International Nuclear Information System (INIS)

    Loo, B.W.; Goulding, F.S.; Madden, N.W.; Simon, D.S.

    1988-11-01

    A field instrument is being developed for the non-invasive determination of absolute lung density using unique Compton backscattering techniques. A system consisting of a monoenergetic gamma-ray beam and a shielded high resolution high-purity-germanium (HPGe) detector in a close-coupled geometry is designed to minimize errors due to multiple scattering and uncontrollable attenuation in the chestwall. Results of studies on system performance with phantoms, the optimization of detectors, and the fabrication of a practical gamma-ray source are presented. 3 refs., 6 figs., 2 tabs

  12. Polarized γ source based on Compton backscattering in a laser cavity

    Directory of Open Access Journals (Sweden)

    V. Yakimenko

    2006-09-01

    Full Text Available We propose a novel gamma source suitable for generating a polarized positron beam for the next generation of electron-positron colliders, such as the International Linear Collider (ILC, and the Compact Linear Collider (CLIC. This 30-MeV polarized gamma source is based on Compton scattering inside a picosecond CO_{2} laser cavity generated from electron bunches produced by a 4-GeV linac. We identified and experimentally verified the optimum conditions for obtaining at least one gamma photon per electron. After multiplication at several consecutive interaction points, the circularly polarized gamma rays are stopped on a target, thereby creating copious numbers of polarized positrons. We address the practicality of having an intracavity Compton-polarized positron source as the injector for these new colliders.

  13. Magnetic X-ray measurements using the elliptical multipole wiggler

    International Nuclear Information System (INIS)

    Montano, P. A.; Li, Y.; Beno, M. A.; Jennings, G.; Kimball, C. W.

    1999-01-01

    The EMW at the BESSRC beam lines at the APS provides high photon flux at high energies with the capability of producing circular polarization on axis. The authors observe a high degree of circularly polarized x-rays at such energies. The polarization and frequency tunability of the elliptical multipole wiggler (EMW) is an ideal source for many magnetic measurements from X-ray Magnetic Circular Dichroism (XMCD) to Compton scattering experiments. They performed Compton scattering measurements to determine the polarization and photon flux at the sample as a function of the deflection parameters K y and K x . They used for their measurements a Si (220) Laue monochromator providing simultaneous photon energies at 50 keV, 100 keV and 150 keV. Magnetic Compton Profiles were determined by either switching the magnet polarity or the photon helicity. The results obtained using Fe(110) single crystals were very similar

  14. Increase in compton scattering of gamma rays passing along metal surface

    International Nuclear Information System (INIS)

    Grigor'ev, A.N.; Bilyk, Z.V.; Sakun, A.V.; Marushchenko, V.V.; Chernyavskij, O.Yu.; Litvinov, Yu.V.

    2014-01-01

    The paper considers experimental study of changes in energy of 137 Cs gamma source as gamma rays pass along metal surface. Decrease in gamma energy was examined by reducing the number of gamma rays in the complete absorption peak to the Compton length level and increasing the Compton effect. The number of gamma rays in the complete absorption peak decreases by 3.5 times in the angle range under study

  15. Hard x- and gamma-rays from supernova 1987A

    International Nuclear Information System (INIS)

    Kumagai, S.; Shigeyama, T.; Nomoto, K.; Nishmura, J.; Itoh, M.

    1988-01-01

    The x-ray light curve and spectrum from SN 1987A due to Compton degradation of γ-rays from the 56 Co decay are calculated and compared with the Ginga and Kvant observations. If mixing of 56 Co into outer layers has taken place, the x-rays emerge much earlier than in the case without mixing and the resulting hard x-rays are in reasonable agreement with observations

  16. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  17. High-energy X-ray production in a boundary layer of an accreting neutron star

    International Nuclear Information System (INIS)

    Hanawa, Tomoyuki

    1991-01-01

    It is shown by Monte Carlo simulation that high-energy X-rays are produced through Compton scattering in a boundary layer of an accreting neutron star. The following is the mechanism for the high-energy X-ray production. An accreting neutron star has a boundary layer rotating rapidly on the surface. X-rays radiated from the star's surface are scattered in part in the boundary layer. Since the boundary layer rotates at a semirelativistic speed, the scattered X-ray energy is changed by the Compton effect. Some X-rays are scattered repeatedly between the neutron star and the boundary layer and become high-energy X-rays. This mechanism is a photon analog of the second-order Fermi acceleration of cosmic rays. When the boundary layer is semitransparent, high-energy X-rays are produced efficiently. 17 refs

  18. High energy power-law tail in X-ray binaries and bulk Comptonization due to an outflow from a disk

    Science.gov (United States)

    Kumar, Nagendra

    2018-02-01

    We study the high energy power-law tail emission of X-ray binaries (XRBs) by a bulk Comptonization process which is usually observed in the very high soft (VHS) state of black hole (BH) XRBs and the high soft (HS) state of the neutron star (NS) and BH XRBs. Earlier, to generate the power-law tail in bulk Comptonization framework, a free-fall converging flow into BH or NS had been considered as a bulk region. In this work, for a bulk region we consider mainly an outflow geometry from the accretion disk which is bounded by a torus surrounding the compact object. We have two choices for an outflow geometry: (i) collimated flow and (ii) conical flow of opening angle θ _b and the axis is perpendicular to the disk. We also consider an azimuthal velocity of the torus fluids as a bulk motion where the fluids are rotating around the compact object (a torus flow). We find that the power-law tail can be generated in a torus flow having large optical depth and bulk speed (>0.75 c), and in conical flow with θ _b > ˜ 30° for a low value of Comptonizing medium temperature. Particularly, in conical flow the low opening angle is more favourable to generate the power-law tail in both the HS state and the VHS state. We notice that when the outflow is collimated, then the emergent spectrum does not have power-law component for a low Comptonizing medium temperature.

  19. Extragalactic Hard X-ray Surveys: From INTEGRAL to Simbol-X

    Science.gov (United States)

    Paltani, S.; Dwelly, T.; Walter, R.; McHardy, I. M.; Courvoisier, T. J.-L.

    2009-05-01

    We present some results of the deepest extragalactic survey performed by the INTEGRAL satellite. The fraction of very absorbed AGN is quite large. The sharp decrease in the absorption fraction with X-ray luminosity observed at lower-energy X-rays is not observed. The current lack of truly Compton-thick objects, with an upper limit of 14% to the size of this population, is just compatible with recent modeling of the cosmic X-ray background. We also study the prospects for a future hard X-ray serendipitous survey with Simbol-X. We show that Simbol-X will easily detect a large number of serendipitous AGN, allowing us to study the evolution of AGN up to redshifts about 2, opening the door to the cosmological study of hard X-ray selected AGN, which is barely possible with existing satellites like Swift and INTEGRAL.

  20. Observation of material, thickness, and bremsstrahlung x-ray intensity dependent effects in moderate and high Z targets in a gamma and x-ray LIDAR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: xzhang39@utk.edu [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Ayaz-Maierhafer, Birsen; Laubach, Mitchell A. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Hayward, Jason P. [Department of Nuclear Engineering, University of Tennessee, TN 37996 (United States); Oak Ridge National Lab, Oak Ridge, TN 37831 (United States)

    2015-06-01

    A high energy gamma and x-ray LIDAR system consisting of a fast pulse (~50 ps, FWHM) LINAC and a Cherenkov detection system was used to investigate response differences among materials, their thicknesses, and bremsstrahlung x-ray intensities. The energies and pulse width of electrons used to produce bremsstrahlung x-rays were set at 20 or 40 MeV and 50 ps FWHM duration, respectively. The Cherenkov detector was built with a fused silica glass optically coupled to a 51 mm fast timing photomultiplier tube, which has an intrinsic energy threshold of 340.7 keV for Compton backscattered gammas. Such a fast detection system yields a coincidence resolving time of 93 ps FWHM, which is equivalent to a depth resolving capability of about 3 cm FWHM. The thicknesses of iron and lead targets were varied from 1 in. to 7 in. with a step of 1 in., and the thicknesses of DU were varied from 1/3 in. to 1 in. with a step of 1/3 in. The experimental results show that iron targets tend to produce a factor of five less observed x-rays and gammas, with less energetic photoelectron frequency distributions, compared with DU and lead targets for the same beam intensity and target thicknesses. Additionally, the self-shielding effect causes the lead to yield more gammas than the DU considering the experimental observation point. For the setup used in this study, a charge per pulse in the range of 1–2.5 nC yields the best resolving capability between the DU and lead targets.

  1. Compton imaging with the PorGamRays spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Judson, D.S., E-mail: dsj@ns.ph.liv.ac.uk [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Boston, A.J. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Coleman-Smith, P.J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Cullen, D.M. [Schuster Laboratory, University of Manchester, Manchester M13 9PL (United Kingdom); Hardie, A. [STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Harkness, L.J. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Jones, L.L. [STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Jones, M. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Lazarus, I. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Nolan, P.J. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Pucknell, V. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Rigby, S.V. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Seller, P. [STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Scraggs, D.P. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom); Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Slee, M.; Sweeney, A. [Department of Physics, University of Liverpool, Liverpool L697ZE (United Kingdom)

    2011-10-01

    The PorGamRays project aims to develop a portable gamma-ray detection system with both spectroscopic and imaging capabilities. The system is designed around a stack of thin Cadmium Zinc Telluride (CZT) detectors. The imaging capability utilises the Compton camera principle. Each detector is segmented into 100 pixels which are read out through custom designed Application Specific Integrated Circuits (ASICs). This device has potential applications in the security, decommissioning and medical fields. This work focuses on the near-field imaging performance of a lab-based demonstrator consisting of two pixelated CZT detectors, each of which is bonded to a NUCAM II ASIC. Measurements have been made with point {sup 133}Ba and {sup 57}Co sources located {approx}35mm from the surface of the scattering detector. Position resolution of {approx}20mm FWHM in the x and y planes is demonstrated.

  2. The reduction methods of operator's radiation dose for portable dental X-ray machines.

    Science.gov (United States)

    Cho, Jeong-Yeon; Han, Won-Jeong

    2012-08-01

    This study was aimed to investigate the methods to reduce operator's radiation dose when taking intraoral radiographs with portable dental X-ray machines. Two kinds of portable dental X-ray machines (DX3000, Dexcowin and Rextar, Posdion) were used. Operator's radiation dose was measured with an 1,800 cc ionization chamber (RadCal Corp.) at the hand level of X-ray tubehead and at the operator's chest and waist levels with and without the backscatter shield. The operator's radiation dose at the hand level was measured with and without lead gloves and with long and short cones. The backscatter shield reduced operator's radiation dose at the hand level of X-ray tubehead to 23 - 32%, the lead gloves to 26 - 31%, and long cone to 48 - 52%. And the backscatter shield reduced operator's radiation dose at the operator's chest and waist levels to 0.1 - 37%. When portable dental X-ray systems are used, it is recommended to select X-ray machine attached with a backscatter shield and a long cone and to wear the lead gloves.

  3. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-11-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power CO 2 laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps CO 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 angstrom) x-rays of 10-ps pulse duration, with a flux of ∼ 10 19 photons/sec, will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to the e-beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ''table-top'' LSS of monochromatic gamma radiation may become feasible

  4. Prospects for compact high-intensity laser synchrotron x-ray and gamma sources

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1997-01-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high- brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the laser synchrotron source (LSS) concept is still waiting for a convincing demonstration. Available at the BNL Accelerator Test Facility (ATF), a high- brightness electron beam and the high-power C0 2 laser may be used as prototype LSS brick stones. In a feasible demonstration experiment, 10 GW, 100 ps C0 2 laser beam will be brought to a head-on collision with a 10 ps, 0.5 nC, 50 MeV electron bunch. Flashes of collimated 4.7 keV (2.6 A) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec, will be produced via linear Compton backscattering. The x-ray spectra is tunable proportionally to the e- beam energy. A rational short-term extension of the proposed experiment would be further enhancement of the x-ray flux to the 10 22 photon/sec level, after the ongoing ATF C0 2 laser upgrade to 5 TW peak power and electron bunch shortening to 3 ps is realized. In the future, exploiting the promising approach of a high-gradient laser wake field accelerator, a compact ''table- top'' LSS of monochromatic gamma radiation may become feasible

  5. Arthur H. Compton and Compton Scattering

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Arthur H. Compton and Compton Scattering Resources with Additional Information * Compton Honored * Compton Scattering Arthur H. Compton Courtesy of Lawrence Berkeley , 1923 Establishing Site X: Letter, Arthur H. Compton to Enrico Fermi, September 14, 1942, DOE Technical

  6. X-ray backscatter sensing of defects in carbon fibre composite materials

    Science.gov (United States)

    O'Flynn, Daniel; Crews, Chiaki; Fox, Nicholas; Allen, Brian P.; Sammons, Mark; Speller, Robert D.

    2017-05-01

    X-ray backscatter (XBS) provides a novel approach to the field of non-destructive evaluation (NDE) in the aerospace industry. XBS is conducted by collecting the radiation which is scattered from a sample illuminated by a well-defined Xray beam, and the technique enables objects to be scanned at a sub-surface level using single-sided access, and without the requirement for coupling with the sample. Single-sided access is of particular importance when the objects of interest are very large, such as aircraft components. Carbon fibre composite materials are being increasingly used as a structural material in aircraft, and there is an increasing demand for techniques which are sensitive to the delaminations which occur in these composites as a result of both large impacts and barely visible impact damage (BVID). The XBS signal is greatly enhanced for plastics and lightweight materials, making it an ideal candidate for probing sub-surface damage and defects in carbon fibre composites. Here we present both computer modelling and experimental data which demonstrate the capability of the XBS technique for identifying hidden defects in carbon fibre.

  7. NuSTAR Observations of the Compton-thick Active Galactic Nucleus and Ultraluminous X-Ray Source Candidate in NGC 5643

    Science.gov (United States)

    Annuar, A.; Gandhi, P.; Alexander, D. M.; Lansbury, G. B.; Arévalo, P.; Ballantyne, D. R.; Baloković, M.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Del Moro, A.; Hailey, C. J.; Harrison, F. A.; Hickox, R. C.; Matt, G.; Puccetti, S.; Ricci, C.; Rigby, J. R.; Stern, D.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2015-12-01

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy (˜0.5-100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line of sight. However, the lack of high-quality ≳10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X-1, have left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X-1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of NH ≳ 5 × 1024 cm-2. The range of 2-10 keV absorption-corrected luminosity inferred from the best-fitting models is L2-10,int = (0.8-1.7) × 1042 erg s-1, consistent with that predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X-1 and show that it exhibits evidence of a spectral cutoff at energy E ˜ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3-8 keV band from 2003 to 2014, our results further strengthen the ULX classification of NGC 5643 X-1.

  8. THE NuSTAR X-RAY SPECTRUM OF HERCULES X-1: A RADIATION-DOMINATED RADIATIVE SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Michael T.; Wood, Kent S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Becker, Peter A. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030-4444 (United States); Gottlieb, Amy M.; Marcu-Cheatham, Diana M.; Pottschmidt, Katja [Department of Physics and Center for Space Science and Technology, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Fürst, Felix [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Hemphill, Paul B. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0424 (United States); Schwarm, Fritz-Walter; Wilms, Jörn [Dr. Karl-Remeis-Sternwarte and ECAP, Sternwartstr, 7, D-96049 Bamberg (Germany)

    2016-11-10

    We report on new spectral modeling of the accreting X-ray pulsar Hercules X-1. Our radiation-dominated radiative shock model is an implementation of the analytic work of Becker and Wolff on Comptonized accretion flows onto magnetic neutron stars. We obtain a good fit to the spin-phase-averaged 4–78 keV X-ray spectrum observed by the Nuclear Spectroscopic Telescope Array during a main-on phase of the Her X-1 35 day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters in the accretion column. This is in contrast to previous phenomenological models that characterized the shape of the X-ray spectrum, but could not determine the physical parameters of the accretion flow. We describe the spectral fitting details and discuss the interpretation of the accretion flow physical parameters.

  9. Astrophysical extended X-ray absorption fine-structure analysis

    International Nuclear Information System (INIS)

    Woo, J.W.; Forrey, R.C.; Cho, K.; Department of Physics and Division of Applied Sciences, Harvard University)

    1997-01-01

    We present an astrophysical extended X-ray absorption fine-structure (EXAFS) analysis (AEA) tool. The AEA tool is designed to generate a numerical model of the modification to the X-ray absorption coefficient due to the EXAFS phenomenon. We have constructed a complete database (elements up to the atomic number 92) of EXAFS parameters: central atom phase shift (2δ 1 ), backscattering phase shift (φ b ), and backscattering amplitude (F). Using the EXAFS parameter data base, the AEA tool can generate a numerical model of any compound when the atomic numbers of neighboring atoms and their distances to the central X-ray-absorbing atom are given. copyright 1997 The American Astronomical Society

  10. X-ray spectral variability of Seyfert 2 galaxies

    Science.gov (United States)

    Hernández-García, L.; Masegosa, J.; González-Martín, O.; Márquez, I.

    2015-07-01

    Context. Variability across the electromagnetic spectrum is a property of active galactic nuclei (AGN) that can help constrain the physical properties of these galaxies. Nonetheless, the way in which the changes happen and whether they occur in the same way in every AGN are still open questions. Aims: This is the third in a series of papers with the aim of studying the X-ray variability of different families of AGN. The main purpose of this work is to investigate the variability pattern(s) in a sample of optically selected Seyfert 2 galaxies. Methods: We use the 26 Seyfert 2s in the Véron-Cetty and Véron catalog with data available from Chandra and/or XMM-Newton public archives at different epochs, with timescales ranging from a few hours to years. All the spectra of the same source were simultaneously fitted, and we let different parameters vary in the model. Whenever possible, short-term variations from the analysis of the light curves and/or long-term UV flux variations were studied. We divided the sample into Compton-thick and Compton-thin candidates to account for the degree of obscuration. When transitions between Compton-thick and thin were obtained for different observations of the same source, we classified it as a changing-look candidate. Results: Short-term variability at X-rays was studied in ten cases, but variations are not found. From the 25 analyzed sources, 11 show long-term variations. Eight (out of 11) are Compton-thin, one (out of 12) is Compton-thick, and the two changing-look candidates are also variable. The main driver for the X-ray changes is related to the nuclear power (nine cases), while variations at soft energies or related to absorbers at hard X-rays are less common, and in many cases these variations are accompanied by variations in the nuclear continuum. At UV frequencies, only NGC 5194 (out of six sources) is variable, but the changes are not related to the nucleus. We report two changing-look candidates, MARK 273 and NGC 7319

  11. An experimental implementation of the 90 .deg. compton scattering inspection method for identifying explosive materials using dual energy x-ray

    International Nuclear Information System (INIS)

    Park, Ji Sung

    2012-02-01

    In order to obtain the physical properties of an inspection object using an X-ray source, the energy-resolving X-ray method, reflecting the characteristic of continuous energy, is a very useful tool. In this study, the effective atomic number (Z eff ) and normal density (ρ) obtained by the source weighting method on a dual energy X-ray inspection system are presented and demonstrated by experimental implementation. Two X-ray beams of the suggested method were designed using the XCOMP5r code. The filter design of a high energy X-ray source was fixed as 3.5 mm Sn at 150 kVp tube voltage, and the new high energy X-ray beam was named as IN150. The filter design of a low energy X-ray source was also fixed as 0.5 mm Sn at 90 kVp tube voltage, and the new beam was named as IN90. Benchmark calculations by MCNP simulation experiments were performed using four different materials, i.e., Polyethylene, Acetal, Urethane, and TNT. The results of the benchmark calculation showed that the new method can estimate the effective atomic number and the normal density of a scattered object accurately, even when the object was arbitrarily located in samples. Finally to verify the proposed new method, scattering experiments using various polymerized compounds were carried out. The effective attenuation coefficients (μ 1 , μ 2 ) of the experiment objects at the source energies E 1 and E 2 , were calculated using scattered spectra. The effective atomic number and the normal density were then calculated by using the ratio of μ 1 to μ 2 . As a result in case of all sample geometries, the relative differences between the calculation value and the reference value for the effective atomic numbers of each material were within 14 %, and the relative differences for the normal densities were within 12 %. This observation led us to the conclusion that the new 90 .deg. Compton scattering method for identifying explosive materials using a dual-energy X-ray is valid for calculating effective

  12. A soft X-ray image of the Moon

    International Nuclear Information System (INIS)

    Schmitt, J.H.M.M.; Aschenbach, B.; Hasinger, G.; Pfeffermann, E.; Predehl, P.; Truemper, J.; Snowden, S.L.; Wisconsin Univ., Madison, WI

    1991-01-01

    A soft X-ray image of the Moon obtained by the Roentgen Observatory Satellite ROSAT clearly shows a sunlit crescent, demonstrating that the Moon's X-ray luminosity arises from backscattering of solar X-rays. The Moon's optically dark side is also X-ray dark, and casts a distinct shadow on the diffuse cosmic X-ray background. Unexpectedly, the dark side seems to emit X-rays at a level about one per cent that of the bright side; this emission very probably results from energetic solar-wind electrons striking the Moon's surface. (author)

  13. Determination of plutonium in nitric acid solutions using energy dispersive L X-ray fluorescence with a low power X-ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Py, J. [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon (France); Commissariat à l’Énergie Atomique, Centre de Valduc, F-21120 Is-sur-Tille (France); Groetz, J.-E., E-mail: jegroetz@univ-fcomte.fr [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon (France); Hubinois, J.-C.; Cardona, D. [Commissariat à l’Énergie Atomique, Centre de Valduc, F-21120 Is-sur-Tille (France)

    2015-04-21

    This work presents the development of an in-line energy dispersive L X-ray fluorescence spectrometer set-up, with a low power X-ray generator and a secondary target, for the determination of plutonium concentration in nitric acid solutions. The intensity of the L X-rays from the internal conversion and gamma rays emitted by the daughter nuclei from plutonium is minimized and corrected, in order to eliminate the interferences with the L X-ray fluorescence spectrum. The matrix effects are then corrected by the Compton peak method. A calibration plot for plutonium solutions within the range 0.1–20 g L{sup −1} is given.

  14. Hard X-ray emission mechanism of active galactic nuclei sources

    International Nuclear Information System (INIS)

    Liang, E.P.T.

    1979-01-01

    Within the framework of unsaturated Compton disk accretion onto a supermassive black hole as model for power-law active galactic nuclei X-ray sources (as opposed to the synchro-Compton model), we compare the hot inner disk model of Shapiro, Lightman, and Eardley and the disk corona model with balanced conduction and Compton losses. Both can generate electron temperatures > or approx. =10 9 K in the supermassive case but promise other observable distinctions. The sandwich configuration of the disk corona provides a natural explanation of why Comptonization is unsaturated

  15. Faraday rotation in the M87 radio/X-ray halo

    Science.gov (United States)

    Dennison, B.

    1980-01-01

    Comparison of polarization maps at various wavelengths demonstrates the existence of a large Faraday rotation uniform over the radio core of M87. Much of this rotation must be external to the core, lest it appear completely depolarized when the rotation is about 90 degrees. The Faraday rotation is shown to occur primarily in the surrounding radio/X-ray halo. Using the electron density inferred from X-ray observations, the magnetic field in the halo is found to be 2.5 microgauss. The deduced magnetic field strength permits an evaluation of the importance of Compton scattering of 3 K background photons by relativistic electrons in the radio halo. The emergent Compton-scattered spectrum is calculated, and its contribution to the observed X-ray flux is small, probably about a percent or so, while the rest is due to thermal bremsstrahlung.

  16. INTERFERENCE AS AN ORIGIN OF THE PEAKED NOISE IN ACCRETING X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Veledina, Alexandra, E-mail: alexandra.veledina@gmail.com [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2016-12-01

    We propose a physical model for the peaked noise in the X-ray power density spectra of accreting X-ray binaries. We interpret its appearance as an interference of two Comptonization continua: one coming from the upscattering of seed photons from the cold thin disk and the other fed by the synchrotron emission of the hot flow. Variations of both X-ray components are caused by fluctuations in mass accretion rate, but there is a delay between them corresponding to the propagation timescale from the disk Comptonization radius to the region of synchrotron Comptonization. If the disk and synchrotron Comptonization are correlated, the humps in the power spectra are harmonically related and the dips between them appear at frequencies related as odd numbers 1:3:5. If they are anti-correlated, the humps are related as 1:3:5, but the dips are harmonically related. Similar structures are expected to be observed in accreting neutron star binaries and supermassive black holes. The delay can be easily recovered from the frequency of peaked noise and further used to constrain the combination of the viscosity parameter and disk height-to-radius ratio α ( H / R ){sup 2} of the accretion flow. We model multi-peak power spectra of black hole X-ray binaries GX 339–4 and XTE J1748–288 to constrain these parameters.

  17. LIFTING THE VEIL ON OBSCURED ACCRETION: ACTIVE GALACTIC NUCLEI NUMBER COUNTS AND SURVEY STRATEGIES FOR IMAGING HARD X-RAY MISSIONS

    International Nuclear Information System (INIS)

    Ballantyne, D. R.; Draper, A. R.; Madsen, K. K.; Rigby, J. R.; Treister, E.

    2011-01-01

    Finding and characterizing the population of active galactic nuclei (AGNs) that produces the X-ray background (XRB) is necessary to connect the history of accretion to observations of galaxy evolution at longer wavelengths. The year 2012 will see the deployment of the first hard X-ray imaging telescope which, through deep extragalactic surveys, will be able to measure the AGN population at the energies where the XRB peaks (∼20-30 keV). Here, we present predictions of AGN number counts in three hard X-ray bandpasses: 6-10 keV, 10-30 keV, and 30-60 keV. Separate predictions are presented for the number counts of Compton thick AGNs, the most heavily obscured active galaxies. The number counts are calculated for five different models of the XRB that differ in the assumed hard X-ray luminosity function, the evolution of the Compton thick AGNs, and the underlying AGN spectral model. The majority of the hard X-ray number counts will be Compton thin AGNs, but there is a greater than tenfold increase in the Compton thick number counts from the 6-10 keV to the 10-30 keV band. The Compton thick population shows enough variation that a hard X-ray number counts measurement will constrain the models. The computed number counts are used to consider various survey strategies for the NuSTAR mission, assuming a total exposure time of 6.2 Ms. We find that multiple surveys will allow a measurement of Compton thick evolution. The predictions presented here should be useful for all future imaging hard X-ray missions.

  18. A HARD X-RAY POWER-LAW SPECTRAL CUTOFF IN CENTAURUS X-4

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Deepto; Nowak, Michael A. [MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Tomsick, John A.; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Grefenstette, Brian W.; Fürst, Felix; Harrison, Fiona A.; Rana, Vikram [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Psaltis, Dimitrios [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Bachetti, Matteo; Barret, Didier [Observatoire Midi-Pyrénées, Université de Toulouse III - Paul Sabatier, F-31400 Toulouse (France); Christensen, Finn E. [Division of Astrophysics, National Space Institute, Technical University of Denmark, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Kaspi, Victoria M. [Department of Physics, McGill University, Montreal, PQ H3A 2T8 (Canada); Miller, Jon M. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wik, Daniel R.; Zhang, William W. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wilms, Jörn, E-mail: deepto@mit.edu [Dr. Karl-Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Universität Erlangen-Nürnberg, D-96049 Bamberg (Germany)

    2014-12-20

    The low-mass X-ray binary (LMXB) Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unknown origin. We report here on a simultaneous observation of Cen X-4 with NuSTAR (3-79 keV) and XMM-Newton (0.3-10 keV) in 2013 January, providing the first sensitive hard X-ray spectrum of a quiescent neutron star transient. The 0.3-79 keV luminosity was 1.1×10{sup 33} D{sub kpc}{sup 2} erg s{sup –1}, with ≅60% in the thermal component. We clearly detect a cutoff of the hard spectral tail above 10 keV, the first time such a feature has been detected in this source class. We show that thermal Comptonization and synchrotron shock origins for the hard X-ray emission are ruled out on physical grounds. However, the hard X-ray spectrum is well fit by a thermal bremsstrahlung model with kT{sub e} = 18 keV, which can be understood as arising either in a hot layer above the neutron star atmosphere or in a radiatively inefficient accretion flow. The power-law cutoff energy may be set by the degree of Compton cooling of the bremsstrahlung electrons by thermal seed photons from the neutron star surface. Lower thermal luminosities should lead to higher (possibly undetectable) cutoff energies. We compare Cen X-4's behavior with PSR J1023+0038, IGR J18245–2452, and XSS J12270–4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity.

  19. Fluorescent intensifying screens: contribution of secondary X-rays

    International Nuclear Information System (INIS)

    Barroso, R.C.; Goncalves, O.D.; Eichler, J.; Lopes, R.T.; Cardoso, S.C.

    1996-01-01

    The counting rate and angular distribution of secondary X-rays produced by fluorescent intensifying screens are studied. A source of 241 Am - gamma radiation of 59.54 keV - is used. Fluorescent intensifying screens reduce the radiation dose in radiology since they produce visible light which increases the efficiency of the film. In addition, secondary X-rays arise due to the photoelectric effect, elastic (Rayleigh) and inelastic (Compton) scattering

  20. Solar X-rays from Axions: Rest-Mass Dependent Signatures

    CERN Document Server

    Zioutas, Konstantin; Semertzidis, Yannis; Papaevangelou, Thomas; Gardikiotis, Antonios; Dafni, Theopisti; Anastassopoulos, Vassilis

    2010-01-01

    The spectral shape of solar X-rays is a power law. The more active the Sun is, the less steep the distribution. This behaviour can be explained by axion regeneration to X-rays occurring ~400km deep into the photosphere. Their down-comptonization reproduces the measured spectral shape, pointing at axions with rest mass m_a~17 meV/c2, without contradicting astrophysical-laboratory limits. Directly measured soft X-ray spectra from the extremely quiet Sun during 2009 (SphinX mission), though hitherto overlooked, fitt the axion scenario.

  1. A method for determination mass absorption coefficient of gamma rays by Compton scattering

    International Nuclear Information System (INIS)

    El Abd, A.

    2014-01-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. - Highlights: • Compton scattering of γ−rays was used for determining mass absorption coefficient. • Scattered intensities were determined by the MCSHAPE software. • Mass absorption coefficients were determined for some compounds, mixtures and alloys. • Mass absorption coefficients were calculated by Winxcom software. • Good agreements were found between determined and calculated results

  2. Observation of terrestrial orbital motion using the cosmic-ray Compton-Getting effect

    International Nuclear Information System (INIS)

    Cutler, D.J.; Groom, D.E.

    1986-01-01

    Using underground observations, the authors have found a small diurnal amplitude modulation of the cosmic-ray muon intensity which agrees in amplitude and phase with a first-order relativistic effect due to the Earth's motion, as discussed by Compton and Getting :1935, Phys. Rev., 47, 817:. Analysis of the arrival times of 5x10 8 muons during a period of 5.4 yr yields a fractional amplitude variation of 2.5sub(-0.6) sup(+0.7) x 10 -4 , with a maximum near dawn, at 08:18+-1.0 h local mean solar time (LT). The expected amplitude is 3.40 x 10 -4 , with the maximum at 06:00LT. (author)

  3. Developments in gamma-ray spectrometry: systems, software, and methods-II. 3. Low-Energy Gamma-Ray Spectrometry Using a Compton-Suppressed Telescope Detector

    International Nuclear Information System (INIS)

    Sigg, R.A.; DiPrete, D.P.

    2001-01-01

    The Savannah River Technology Center (SRTC) utilizes gamma-ray spectrometry in studying numerous areas of applied interest to the Savannah River Site (SRS). For example, analyses of long-lived gamma-ray-emitting fission products and actinides are required to meet waste characterization, process holdup, environmental restoration, and decontamination and decommissioning efforts. A significant portion of the overall effort centers on measurements of gamma rays having energies below several hundred kilo-electron-volts. To assist these efforts, the SRTC recently acquired a spectrometer system that provides lower natural and Compton scattered background levels while achieving relatively high counting efficiencies for low-energy gamma rays. The combination of high efficiency and low background provides factor-of- 2-to-4 improvements in minimum detectable activities and allows meeting programmatic objectives with shorter measurement times. Numerous Compton-suppression spectrometers have been reported since the concept was first advanced. The spectrometer consists of two high-purity germanium detectors in a telescope configuration surrounded by a background /Compton-suppression sodium iodide detector. The front germanium detector is a 20-mm-thick x 60-mm-diam broad energy spectrometer, and the rear detector is a 40% efficient 61- mm-diam x 60-cm-thick closed-end coaxial spectrometer. The cryostat housing the germanium detectors (a) includes a carbon composite window for transmitting low-energy gamma rays, (b) is in a J-type configuration to mask the germanium detectors from natural activities in the cryo-pumping media, and (c) is fabricated from materials selected for low background. The telescope detector is in the 8.6-cm-inside-diameter annulus of a 22.9- x 22.9-cm sodium iodide detector encased in a 10-cm-thick lead shield. The counting system is located in a basement counting room having ∼60-cm-thick concrete walls. Initial tests show that the low-energy segment of

  4. Compton-thick AGN at high and low redshift

    Science.gov (United States)

    Akylas, A.; Georgantopoulos, I.; Corral, A.; Ranalli, P.; Lanzuisi, G.

    2017-10-01

    The most obscured sources detected in X-ray surveys, the Compton-thick AGN present great interest both because they represent the hidden side of accretion but also because they may signal the AGN birth. We analyse the NUSTAR observations from the serendipitous observations in order to study the Compton-thick AGN at the deepest possible ultra-hard band (>10 keV). We compare our results with our SWIFT/BAT findings in the local Universe, as well as with our results in the CDFS and COSMOS fields. We discuss the comparison with X-ray background synthesis models finding that a low fraction of Compton-thick sources (about 15 per cent of the obscured population) is compatible with both the 2-10keV band results and those at harder energies.

  5. The gamma-ray emitting region of the jet in Cyg X-3

    Science.gov (United States)

    Zdziarski, Andrzej A.; Sikora, Marek; Dubus, Guillaume; Yuan, Feng; Cerutti, Benoit; Ogorzałek, Anna

    2012-04-01

    We study models of the γ-ray emission of Cyg X-3 observed by Fermi. We calculate the average X-ray spectrum during the γ-ray active periods. Then, we calculate spectra from Compton scattering of a photon beam into a given direction by isotropic relativistic electrons with a power-law distribution, both based on the Klein-Nishina cross-section and in the Thomson limit. Applying the results to scattering of stellar blackbody radiation in the inner jet of Cyg X-3, we find that a low-energy break in the electron distribution at a Lorentz factor of ˜300-103 is required by the shape of the observed X-ray/γ-ray spectrum in order to avoid overproducing the observed X-ray flux. The electrons giving rise to the observed γ-rays are efficiently cooled by Compton scattering, and the power-law index of the acceleration process is ≃2.5-3. The bulk Lorentz factor of the jet and the kinetic power before the dissipation region depend on the fraction of the dissipation power supplied to the electrons; if it is ≃1/2, the Lorentz factor is ˜2.5, and the kinetic power is ˜1038 erg s-1, which represents a firm lower limit on the jet power, and is comparable to the bolometric luminosity of Cyg X-3. Most of the power supplied to the electrons is radiated. The broad-band spectrum constrains the synchrotron and self-Compton emission from the γ-ray emitting electrons, which requires the magnetic field to be relatively weak, with the magnetic energy density ≲ a few times 10-3 of that in the electrons. The actual value of the magnetic field strength can be inferred from a future simultaneous measurement of the infrared and γ-ray fluxes.

  6. Compton recoil electron tracking with silicon strip detectors

    International Nuclear Information System (INIS)

    O'Neill, T.J.; Ait-Ouamer, F.; Schwartz, I.; Tumer, O.T.; White, R.S.; Zych, A.D.

    1992-01-01

    The application of silicon strip detectors to Compton gamma ray astronomy telescopes is described in this paper. The Silicon Compton Recoil Telescope (SCRT) tracks Compton recoil electrons in silicon strip converters to provide a unique direction for Compton scattered gamma rays above 1 MeV. With strip detectors of modest positional and energy resolutions of 1 mm FWHM and 3% at 662 keV, respectively, 'true imaging' can be achieved to provide an order of magnitude improvement in sensitivity to 1.6 x 10 - 6 γ/cm 2 -s at 2 MeV. The results of extensive Monte Carlo calculations of recoil electrons traversing multiple layers of 200 micron silicon wafers are presented. Multiple Coulomb scattering of the recoil electron in the silicon wafer of the Compton interaction and the next adjacent wafer is the basic limitation to determining the electron's initial direction

  7. Study of secondary X-rays from radiographic intensifying screens

    International Nuclear Information System (INIS)

    Barroso, R.C.; Eichler, J.; Lopes, R.T.; Cardoso, S.C.

    1998-01-01

    To reduce the radiation dose in radiology, fluorescent intensifying screens for X-ray films are used. They produce visible light which increases the efficiency of the film. In addition, there are two other effects that will degrade the image resolution. First, the gadolinium present in the screens produces X-rays isotropically. Second, the primary radiation can be scattered elastically (Rayleigh scattering) and inelastically (Compton scattering). The intensity and angular distribution of these secondary radiation were measured, showing that the ratio of secondary-to-primary radiation incident on the X-ray film is about 16%. (orig.)

  8. A method for determination mass absorption coefficient of gamma rays by Compton scattering.

    Science.gov (United States)

    El Abd, A

    2014-12-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The Kharkov X-ray Generator Facility NESTOR

    OpenAIRE

    Shcherbakov , A.A.; Androsov , V.P.; Aizatsky , N.; Boriskin , V.N.; Bulyak , E.V.; Dovbnya , A.N.; Gladkikh , P.; Gordienko , A.N.; Grevtsev , V.A.; Gvozd , A.; Ivashchenko , V.E.; Kalamayko , A.A.; Karnaukhov , I.I.; Karnaukhov , I.M.; Kozin , V.P.

    2013-01-01

    WEPWA060 - ISBN 978-3-95450-122-9; International audience; The last few years the sources of the X-rays NESTOR based on a storage ring with low beam energy and Compton scattering of intense laser beam are under design and development in NSC KIPT. The main task of the project is to develop compact intense X-ray generator on the base of relatively cheap accelerator equipment and up-to-date laser technologies. The paper is devoted to description of the last results on construction and commission...

  10. Multiple X-ray tomography using transmitted, scattered and fluorescent radiation

    International Nuclear Information System (INIS)

    Cesareo, R.; Brunetti, A.; Golosio, B.; Lopes, R.T.; Barroso, R.C.; Donativi, M.; Castellano, A.; Quarta, S.

    2003-01-01

    A multiple CT-scanner is described, which contemporaneously uses transmitted, scattered and fluorescent X-rays for Imaging. The scanner is characterized by a small size X-ray tube and by four detectors: a ''pencil'' X-ray NaI(Tl) for transmitted tomography, a larger size NaI(Tl) for 90 C o Compton tomography, a thermoelectrically cooled Si-PIN or CdZnTe for fluorescent imaging and a CdZnTe for Rayleigh (or diffraction) tomography. Examples of applications are shown

  11. Soft X-Ray Observations of a Complete Sample of X-Ray--selected BL Lacertae Objects

    Science.gov (United States)

    Perlman, Eric S.; Stocke, John T.; Wang, Q. Daniel; Morris, Simon L.

    1996-01-01

    We present the results of ROSAT PSPC observations of the X-ray selected BL Lacertae objects (XBLs) in the complete Einstein Extended Medium Sensitivity Survey (EM MS) sample. None of the objects is resolved in their respective PSPC images, but all are easily detected. All BL Lac objects in this sample are well-fitted by single power laws. Their X-ray spectra exhibit a variety of spectral slopes, with best-fit energy power-law spectral indices between α = 0.5-2.3. The PSPC spectra of this sample are slightly steeper than those typical of flat ratio-spectrum quasars. Because almost all of the individual PSPC spectral indices are equal to or slightly steeper than the overall optical to X-ray spectral indices for these same objects, we infer that BL Lac soft X-ray continua are dominated by steep-spectrum synchrotron radiation from a broad X-ray jet, rather than flat-spectrum inverse Compton radiation linked to the narrower radio/millimeter jet. The softness of the X-ray spectra of these XBLs revives the possibility proposed by Guilbert, Fabian, & McCray (1983) that BL Lac objects are lineless because the circumnuclear gas cannot be heated sufficiently to permit two stable gas phases, the cooler of which would comprise the broad emission-line clouds. Because unified schemes predict that hard self-Compton radiation is beamed only into a small solid angle in BL Lac objects, the steep-spectrum synchrotron tail controls the temperature of the circumnuclear gas at r ≤ 1018 cm and prevents broad-line cloud formation. We use these new ROSAT data to recalculate the X-ray luminosity function and cosmological evolution of the complete EMSS sample by determining accurate K-corrections for the sample and estimating the effects of variability and the possibility of incompleteness in the sample. Our analysis confirms that XBLs are evolving "negatively," opposite in sense to quasars, with Ve/Va = 0.331±0.060. The statistically significant difference between the values for X-ray

  12. NuSTAR OBSERVATIONS OF THE COMPTON-THICK ACTIVE GALACTIC NUCLEUS AND ULTRALUMINOUS X-RAY SOURCE CANDIDATE IN NGC 5643

    International Nuclear Information System (INIS)

    Annuar, A.; Gandhi, P.; Alexander, D. M.; Lansbury, G. B.; Moro, A. Del; Arévalo, P.; Ballantyne, D. R.; Baloković, M.; Brightman, M.; Harrison, F. A.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Brandt, W. N.; Christensen, F. E.; Hailey, C. J.; Hickox, R. C.; Matt, G.; Puccetti, S.; Ricci, C.

    2015-01-01

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy (∼0.5–100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line of sight. However, the lack of high-quality ≳10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X–1, have left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X–1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of N H ≳ 5 × 10 24 cm −2 . The range of 2–10 keV absorption-corrected luminosity inferred from the best-fitting models is L 2–10,int = (0.8–1.7) × 10 42 erg s −1 , consistent with that predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X–1 and show that it exhibits evidence of a spectral cutoff at energy E ∼ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3–8 keV band from 2003 to 2014, our results further strengthen the ULX classification of NGC 5643 X–1

  13. Compton radiography, 2

    International Nuclear Information System (INIS)

    Okuyama, Shinichi; Sera, Koichiro; Fukuda, Hiroshi; Shishido, Fumio; Mishina, Hitoshi.

    1977-01-01

    Compton radiography, a tomographic technic with Compton-scattered rays of a monochromatic gamma ray beam, was feasible of tomographing a chest phantom. The result suggested that the technic could be extended to imaging of the lung and the surrounding structures of the chest wall, mediastinum and liver in Compton tomographic mode. (auth.)

  14. Sulfur content measurement in coal by X-ray fluorescence method

    International Nuclear Information System (INIS)

    Cechak, T.; Thinova, L.

    2001-01-01

    X-ray fluorescence, using backscattering, was employed in the determination of sulfur content and ash content measurement in coal. The results of the methods are given to illustrate the differences between the chemical analysis and X-ray fluorescence method.

  15. Possible use of CdTe detectors in kVp monitoring of diagnostic X-ray tubes

    International Nuclear Information System (INIS)

    Krmar, M.; Bucalovic, N.; Baucal, M.; Jovancevic, N.

    2010-01-01

    It has been suggested that kVp of diagnostic X-ray devices (or maximal energy of X-ray photon spectra) should be monitored routinely; however a standardized non-invasive technique has yet to be developed and proposed. It is well known that the integral number of Compton scattered photons and the intensities of fluorescent X-ray lines registered after irradiation of some material by an X-ray beam are a function of the maximal beam energy. CdTe detectors have sufficient energy resolution to distinguish individual X-ray fluorescence lines and high efficiency for the photon energies in the diagnostic region. Our initial measurements have demonstrated that the different ratios of the integral number of Compton scattered photons and intensities of K and L fluorescent lines detected by CdTe detector are sensitive function of maximal photon energy and could be successfully applied for kVp monitoring.

  16. Hard X-ray variability of V404 Cygni during the 2015 outburst

    Science.gov (United States)

    Sánchez-Fernández, C.; Kajava, J. J. E.; Motta, S. E.; Kuulkers, E.

    2017-06-01

    Aims: Hard X-ray spectra of black hole binaries (BHB) are produced by Comptonization of soft seed photons by hot electrons near the black hole. The slope of the resulting energy spectra is governed by two main parameters: the electron temperature (Te) and optical depth (τ) of the emitting plasma. Given the extreme brightness of V404 Cyg during the 2015 outburst, we aim to constrain the source spectral properties using an unprecedented time resolution in hard X-rays, and to monitor the evolution of Te and τ over the outburst. Methods: We have extracted and analysed 602 X-ray spectra of V404 Cyg obtained by the IBIS/ISGRI instrument on-board INTEGRAL during the 2015 June outburst, using effective integration times ranging between 8 and 176 000 s. We fitted the resulting spectra in the 20-200 keV energy range. Results: We find that while the light curve and soft X-ray spectra of V404 Cyg are remarkably different from those of other BHBs, the spectral evolution of V404 Cyg in hard X-rays and the relations between the spectral parameters are consistent with those observed in other BHBs. We identify a hard branch in which the Te is anti-correlated with the hard X-ray flux, and a soft flaring branch in which the relation reverses. In addition, we find that during long X-ray plateaus detected at intermediate fluxes, the thermal Comptonization models fail to describe the spectra. However, the statistics improve if we allow NH to vary freely in the fits to these spectra. Conclusions: We conclude that the hard branch in V404 Cyg is analogous to the canonical hard state of BHBs. V404 Cyg never seems to enter the canonical soft state, although the soft flaring branch bears resemblance to the BHB intermediate state and ultra-luminous state. The X-ray plateaus are likely the result of absorption by a Compton-thick outflow (NH ≳ 1024 cm-2) which reduces the observed flux by a factor of about 10. Variable covering of the central source by this Compton-thick material may be the

  17. Soft X-ray generation via inverse compton scattering between high quality electron beam and high power laser

    International Nuclear Information System (INIS)

    Masakazu Washio; Kazuyuki Sakaue; Yoshimasa Hama; Yoshio Kamiya; Tomoko Gowa; Akihiko Masuda; Aki Murata; Ryo Moriyama; Shigeru Kashiwagi; Junji Urakawa

    2007-01-01

    High quality beam generation project based on High-Tech Research Center Project, which has been approved by Ministry of Education, Culture, Sports, Science and Technology in 1999, has been conducted by advance research institute for science and engineering, Waseda University. In the project, laser photo-cathode RF-gun has been selected for the high quality electron beam source. RF cavities with low dark current, which were made by diamond turning technique, have been successfully manufactured. The low emittance electron beam was realized by choosing the modified laser injection technique. The obtained normalized emmitance was about 3 m.mrad at 100 pC of electron charge. The soft x-ray beam generation with the energy of 370 eV, which is in the energy region of so-called water window, by inverse Compton scattering has been performed by the collision between IR laser and the low emmitance electron beams. (Author)

  18. Resonant Inverse Compton Scattering Spectra from Highly Magnetized Neutron Stars

    Science.gov (United States)

    Wadiasingh, Zorawar; Baring, Matthew G.; Gonthier, Peter L.; Harding, Alice K.

    2018-02-01

    Hard, nonthermal, persistent pulsed X-ray emission extending between 10 and ∼150 keV has been observed in nearly 10 magnetars. For inner-magnetospheric models of such emission, resonant inverse Compton scattering of soft thermal photons by ultrarelativistic charges is the most efficient production mechanism. We present angle-dependent upscattering spectra and pulsed intensity maps for uncooled, relativistic electrons injected in inner regions of magnetar magnetospheres, calculated using collisional integrals over field loops. Our computations employ a new formulation of the QED Compton scattering cross section in strong magnetic fields that is physically correct for treating important spin-dependent effects in the cyclotron resonance, thereby producing correct photon spectra. The spectral cutoff energies are sensitive to the choices of observer viewing geometry, electron Lorentz factor, and scattering kinematics. We find that electrons with energies ≲15 MeV will emit most of their radiation below 250 keV, consistent with inferred turnovers for magnetar hard X-ray tails. More energetic electrons still emit mostly below 1 MeV, except for viewing perspectives sampling field-line tangents. Pulse profiles may be singly or doubly peaked dependent on viewing geometry, emission locale, and observed energy band. Magnetic pair production and photon splitting will attenuate spectra to hard X-ray energies, suppressing signals in the Fermi-LAT band. The resonant Compton spectra are strongly polarized, suggesting that hard X-ray polarimetry instruments such as X-Calibur, or a future Compton telescope, can prove central to constraining model geometry and physics.

  19. Laser propagation and compton scattering in parabolic plasma channel

    CERN Document Server

    Dongguo, L; Yokoya, K; Hirose, T

    2003-01-01

    A Gaussian laser beam propagating in a parabolic plasma channel is discussed in this paper. For a weak laser, plasma density perturbation induced by interaction between the laser field and plasma is very small, the refractive index can be assumed to be constant with respect to time variable. For a parabolic plasma channel, through the static propagation equation, we obtain an analytical solution of the profile function of the Gaussian laser beam for an unmatched case and give the general condition for the matched case. As the laser intensity increases, an effect due to strong laser fields is included. We discuss how to design and select the distribution of plasma density for a certain experiment in which a plasma channel is utilized to guide a laser beam. The number of scattered photons (X-rays) generated through Compton backscattering in a plasma channel is discussed. (author)

  20. A MODEL FOR THE CORRELATION OF HARD X-RAY INDEX WITH EDDINGTON RATIO IN BLACK HOLE X-RAY BINARIES

    International Nuclear Information System (INIS)

    Qiao, Erlin; Liu, B. F.

    2013-01-01

    Observations show that there is a positive correlation between the Eddington ratio λ and hard X-ray index Γ for λ ∼> 0.01, and there is an anti-correlation between λ and Γ for λ ∼ bol /L Edd ). In this work, we theoretically investigate the correlation between Γ and λ within the framework of a disk-corona model. We improve the model by taking into account all cooling processes, including synchrotron and self-Compton radiations in the corona, Comptonization of the soft photons from the underlying accretion disk, and the bremsstrahlung radiations. Presuming that the coronal flow above the disk can reach up to the 0.1 Eddington rate at the outer region, we calculate the structure of the two-phase accretion flows and the emergent spectra for accretion rates from 0.003 to 0.1. We find that at accretion rates larger than bsim0.01 Eddington rate, a fraction of coronal gas condenses into the disk and an inner disk can be sustained by condensation. In this case, the X-ray emission is dominated by the scattering of the soft photon from the underlying disk in the corona. The emission from the inner disk and corona can produce the positive correlation between λ and Γ. While at accretion rates lower than bsim0.01 Eddington accretion rate, the inner disk vanishes completely by evaporation, and the accretion is dominated by advection-dominated accretion flows (ADAFs), in which the X-ray emission is produced by the Comptonization of the synchrotron and bremsstrahlung photons of ADAF itself. The emission from ADAFs can produce the anti-correlation between λ and Γ. We show that our model can roughly explain the observed evolution of Γ 3-25keV with L 0.5-25keV /L Edd for the black hole X-ray transient H1743–322 in the decay of 2003 from the thermal-dominated state to low/hard state.

  1. Design Study for Direction Variable Compton Scattering Gamma Ray

    Science.gov (United States)

    Kii, T.; Omer, M.; Negm, H.; Choi, Y. W.; Kinjo, R.; Yoshida, K.; Konstantin, T.; Kimura, N.; Ishida, K.; Imon, H.; Shibata, M.; Shimahashi, K.; Komai, T.; Okumura, K.; Zen, H.; Masuda, K.; Hori, T.; Ohgaki, H.

    2013-03-01

    A monochromatic gamma ray beam is attractive for isotope-specific material/medical imaging or non-destructive inspection. A laser Compton scattering (LCS) gamma ray source which is based on the backward Compton scattering of laser light on high-energy electrons can generate energy variable quasi-monochromatic gamma ray. Due to the principle of the LCS gamma ray, the direction of the gamma beam is limited to the direction of the high-energy electrons. Then the target object is placed on the beam axis, and is usually moved if spatial scanning is required. In this work, we proposed an electron beam transport system consisting of four bending magnets which can stick the collision point and control the electron beam direction, and a laser system consisting of a spheroidal mirror and a parabolic mirror which can also stick the collision point. Then the collision point can be placed on one focus of the spheroid. Thus gamma ray direction and collision angle between the electron beam and the laser beam can be easily controlled. As the results, travelling direction of the LCS gamma ray can be controlled under the limitation of the beam transport system, energy of the gamma ray can be controlled by controlling incident angle of the colliding beams, and energy spread can be controlled by changing the divergence of the laser beam.

  2. X-ray observations of the starburst galaxy M82

    International Nuclear Information System (INIS)

    Schaaf, R.; Pietsch, W.; Biermann, P.L.; Kronberg, P.P.; Schmutzler, T.

    1989-01-01

    Long X-ray observations of the starburst galaxy M82 with the European X-ray satellite EXOSAT are reported. The observations with the low-energy imaging instrument confirm that there is extended X-ray emission from above and below the disk, with an overall extent perpendicular to the disk of almost 6 arcmin corresponding to 6 kpc. One of the best defined X-ray spectra yet of a starburst galaxy is presented. The medium energy instrument measurements can be fitted with a power-law spectrum, consistent with inverse Compton emission, or with thermal emission from optically thin hot gas of a temperature of 9 + 9 or -4 keV. Using, in addition, the earlier Einstein HRI and MPC observations, the possible origin of the X-ray emission is discussed. 31 references

  3. Compton radiography, 2. Clinical significance of Compton radiography of a chest phantom

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, S; Sera, K; Fukuda, H; Shishido, F [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer; Mishina, H

    1977-09-01

    Compton radiography, a tomographic technic with Compton-scattered rays of a monochromatic gamma ray beam, was feasible of tomographing a chest phantom. The result suggested that the technic could be extended to imaging of the lung and the surrounding structures of the chest wall, mediastinum and liver in Compton tomographic mode.

  4. Discovery of x-rays and its impact on the development of physics

    International Nuclear Information System (INIS)

    Sirdeshmukh, D.B.

    1996-01-01

    Roentgen's discovery of x-rays is discussed. Roentgen's discovery was important not only for the property of transmission of x-rays, which immediately resulted in the new field of radiology, but also because it led to several experiments which had a great impact on the development of physics. Laue's discovery of x-ray diffraction in turn led to the development of x-ray crystallography and x-ray spectroscopy. The contributions of Barkla, Moseley and Siegbahn are discussed. The experiments of Duane and Hunt on continuous x-rays and Compton on scattering of x-rays lent support to the photon nature of radiation. In recent times, the line-widths of x-ray emission lines have given information about the band structure of solids. (author). 21 refs., 6 figs

  5. X rays from radio binaries

    International Nuclear Information System (INIS)

    Apparao, K.M.V.

    1977-01-01

    Reference is made to the radio binary systems CC Cas, AR Lac, β Per (Algol), β Lyr, b Per and Cyg X-1. It is stated that a thermal interpretation of the radiation from Algol requires a much larger x-ray flux than the observed value of 3.8 x 10 -11 erg/cm 2 /sec/keV in the 2 to 6 keV energy range. Observations of some non-thermal flares, together with the small size of the radio source in Algol, indicate that the radio emission is non-thermal in nature. The radio emission is interpreted as synchrotron radiation and it is suggested that the observed x-ray emission is due to inverse Compton scattering of the light of the primary star by the radio electrons. The x-ray emission from other radio binaries is also calculated using this model. The energy for the radio electrons can arise from annihilation of magnetic lines connecting the binary stars, twisted by the rotation of the stars. (U.K.)

  6. Probing the Cosmic X-Ray and MeV Gamma-Ray Background Radiation through the Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Madejski, Grzegorz M. [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once the future hard X-ray all sky satellites achieve the sensitivity better than 10-12 erg/cm2/s-1 at 10-30 keV or 30-50 keV - although this is beyond the sensitivities of current hard X-ray all sky monitors - angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  7. Probing the cosmic x-ray and MeV gamma ray background radiation through the anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States); Madejski, Grzegorz M. [Stanford Univ., CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States); Rikkyo Univ., Tokyo (Japan)

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once future hard X-ray all sky satellites achieve a sensitivity better than 10–12 erg cm–2 s–1 at 10-30 keV or 30-50 keV—although this is beyond the sensitivities of current hard X-ray all sky monitors—angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  8. SU-C-209-05: Monte Carlo Model of a Prototype Backscatter X-Ray (BSX) Imager for Projective and Selective Object-Plane Imaging

    International Nuclear Information System (INIS)

    Rolison, L; Samant, S; Baciak, J; Jordan, K

    2016-01-01

    Purpose: To develop a Monte Carlo N-Particle (MCNP) model for the validation of a prototype backscatter x-ray (BSX) imager, and optimization of BSX technology for medical applications, including selective object-plane imaging. Methods: BSX is an emerging technology that represents an alternative to conventional computed tomography (CT) and projective digital radiography (DR). It employs detectors located on the same side as the incident x-ray source, making use of backscatter and avoiding ring geometry to enclose the imaging object. Current BSX imagers suffer from low spatial resolution. A MCNP model was designed to replicate a BSX prototype used for flaw detection in industrial materials. This prototype consisted of a 1.5mm diameter 60kVp pencil beam surrounded by a ring of four 5.0cm diameter NaI scintillation detectors. The imaging phantom consisted of a 2.9cm thick aluminum plate with five 0.6cm diameter holes drilled halfway. The experimental image was created using a raster scanning motion (in 1.5mm increments). Results: A qualitative comparison between the physical and simulated images showed very good agreement with 1.5mm spatial resolution in plane perpendicular to incident x-ray beam. The MCNP model developed the concept of radiography by selective plane detection (RSPD) for BSX, whereby specific object planes can be imaged by varying kVp. 10keV increments in mean x-ray energy yielded 4mm thick slice resolution in the phantom. Image resolution in the MCNP model can be further increased by increasing the number of detectors, and decreasing raster step size. Conclusion: MCNP modelling was used to validate a prototype BSX imager and introduce the RSPD concept, allowing for selective object-plane imaging. There was very good visual agreement between the experimental and MCNP imaging. Beyond optimizing system parameters for the existing prototype, new geometries can be investigated for volumetric image acquisition in medical applications. This material is

  9. SU-C-209-05: Monte Carlo Model of a Prototype Backscatter X-Ray (BSX) Imager for Projective and Selective Object-Plane Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rolison, L; Samant, S; Baciak, J; Jordan, K [University of Florida, Gainesville, FL (United States)

    2016-06-15

    Purpose: To develop a Monte Carlo N-Particle (MCNP) model for the validation of a prototype backscatter x-ray (BSX) imager, and optimization of BSX technology for medical applications, including selective object-plane imaging. Methods: BSX is an emerging technology that represents an alternative to conventional computed tomography (CT) and projective digital radiography (DR). It employs detectors located on the same side as the incident x-ray source, making use of backscatter and avoiding ring geometry to enclose the imaging object. Current BSX imagers suffer from low spatial resolution. A MCNP model was designed to replicate a BSX prototype used for flaw detection in industrial materials. This prototype consisted of a 1.5mm diameter 60kVp pencil beam surrounded by a ring of four 5.0cm diameter NaI scintillation detectors. The imaging phantom consisted of a 2.9cm thick aluminum plate with five 0.6cm diameter holes drilled halfway. The experimental image was created using a raster scanning motion (in 1.5mm increments). Results: A qualitative comparison between the physical and simulated images showed very good agreement with 1.5mm spatial resolution in plane perpendicular to incident x-ray beam. The MCNP model developed the concept of radiography by selective plane detection (RSPD) for BSX, whereby specific object planes can be imaged by varying kVp. 10keV increments in mean x-ray energy yielded 4mm thick slice resolution in the phantom. Image resolution in the MCNP model can be further increased by increasing the number of detectors, and decreasing raster step size. Conclusion: MCNP modelling was used to validate a prototype BSX imager and introduce the RSPD concept, allowing for selective object-plane imaging. There was very good visual agreement between the experimental and MCNP imaging. Beyond optimizing system parameters for the existing prototype, new geometries can be investigated for volumetric image acquisition in medical applications. This material is

  10. Testing special relativity theory using Compton scattering

    International Nuclear Information System (INIS)

    Contreras S, H.; Hernandez A, L.; Baltazar R, A.; Escareno J, E.; Mares E, C. A.; Hernandez V, C.; Vega C, H. R.

    2010-10-01

    The validity of the special relativity theory has been tested using the Compton scattering. Since 1905 several experiments has been carried out to show that time, mass, and length change with the velocity, in this work the Compton scattering has been utilized as a simple way to show the validity to relativity. The work was carried out through Monte Carlo calculations and experiments with different gamma-ray sources and a gamma-ray spectrometer with a 3 x 3 NaI (Tl) detector. The pulse-height spectra were collected and the Compton edge was observed. This information was utilized to determine the relationship between the electron's mass and energy using the Compton -knee- position, the obtained results were contrasted with two collision models between photon and electron, one model was built using the classical physics and another using the special relativity theory. It was found that calculations and experiments results fit to collision model made using the special relativity. (Author)

  11. X-ray/UV variability and the origin of soft X-ray excess emission from II Zw 177

    Science.gov (United States)

    Pal, Main

    We study a detailed broad-band X-ray/UV emission from the narrow line Seyfert 1 galaxy II Zw 177 based on two XMM-Newton and single Swift/XRT observations. Both XMM-Newton observations show the soft X-ray excess emission below 2 keV when the best-fit 2 - 10 keV power law is extrapolated down to 0.3 keV. We find the blurred reflection from an ionized accretion disc and Comptonized disc emission both describe the observed soft excess well. We find a remarkable trend of decreasing UV flux with increasing soft X-ray excess and power law emission. We suggest that this could be due to that the external edge of corona hide a fraction of accretion disk. Co-Author: Prof. Gulab C. Dewangan (IUCAA), Prof. Ranjeev Misra (IUCAA), Pramod Kumar (Nanded university)

  12. Trace element determination in tomato puree using particle induced X-ray emission and Rutherford backscattering

    International Nuclear Information System (INIS)

    Romero-Davila, E.; Miranda, J.

    2004-01-01

    Particle induced X-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) were used to determine the concentrations of trace elements in samples of 12 tomato puree brands sold in the Mexican market. While RBS offered information about the main elements present in the matrix, PIXE gave results on trace elements. As a whole, data for 17 elements (C, N, O, Na, Mg, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn) were obtained. To evaluate the results, a comparison with brands from USA, Japan, Colombia, and Chile was carried out, using tomato purees produced following the domestic technology recipe. Additionally, the results were considered in the light of the Codex Alimentarius and the Mexican standard. It was found that all of the brands fall within the limits established by these standards, being of the same order of magnitude as the foreign brands. (author)

  13. Luminosity dependence in the ratio of X-ray to infrared emission of QSOs

    International Nuclear Information System (INIS)

    Worrall, D.M.

    1987-01-01

    The correlation of X-ray and near-infrared luminosity is studied for a sample of radio-quiet QSOs. The X-ray to infrared ratio is found to decrease as the infrared luminosity increases. No preference is found between the correlations of X-ray luminosity with optical or infrared luminosity. This implies that optical and infrared emission are equally good predictors of X-ray emission. Source models which directly link infrared and X-ray emission are discussed, and a preference is found for a specific synchrotron self-Compton model. This model predicts the correct luminosity dependence of the X-ray to infrared ratio if certain conditions apply. 55 references

  14. Progress in Development of Kharkov X-Ray Generator Nestor

    CERN Document Server

    Androsov, V; Botman, J I M; Bulyak, V; Dovbnya, A; Drebot, I; Gladkikh, P; Grevtsev, V; Grigorev, Yu; Gvozd, A; Ivashchenko, V; Karnaukhov, I; Kovalyova, N; Kozin, V; Lapshin, V; Lebedev, A; Lyashchenko, V; Markov, V; Mocheshnikov, N; Molodkin, V; Mytsykov, A; Neklyudov, I; Peev, F; Rezaev, A; Shcherbakov, A; Shpak, A; Skirda, V; Skomorovsky, V I; Tatchyn, R; Telegin, Yu P; Trotsenko, V; Zelinsky, A; Zvonarova, O

    2005-01-01

    The sources of the X-rays based on Compton scattering of intense Nd:YAG laser beam on electron beam circulating in a storage ring with beam energy 43 - 225 MeV is under construction in NSC KIPT. In the paper the progress in development and construction of Kharkov X-ray generator NESTOR is presented. The current status of the main facility system design and development are described. New scheme and main parameters of injection system are presented. The facility is going to be in operation in the middle of 2007 and generated X-rays flux is expected to be of about 10(13) phot/s.

  15. NuSTAR OBSERVATIONS OF THE COMPTON-THICK ACTIVE GALACTIC NUCLEUS AND ULTRALUMINOUS X-RAY SOURCE CANDIDATE IN NGC 5643

    Energy Technology Data Exchange (ETDEWEB)

    Annuar, A.; Gandhi, P.; Alexander, D. M.; Lansbury, G. B.; Moro, A. Del [Centre for Extragalactic Astronomy, Department of Physics, University of Durham, South Road, Durham, DH1 3LE (United Kingdom); Arévalo, P. [Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretana N 1111, Playa Ancha, Valparaíso (Chile); Ballantyne, D. R. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Baloković, M.; Brightman, M.; Harrison, F. A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bauer, F. E. [EMBIGGEN Anillo, Concepción (Chile); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Brandt, W. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Christensen, F. E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Matt, G. [Dipartimento di Matematica e Fisica, Universitá degli Studi Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Puccetti, S. [ASI Science Data Center, via Galileo Galilei, I-00044 Frascati (Italy); Ricci, C. [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); and others

    2015-12-10

    We present two Nuclear Spectroscopic Telescope Array (NuSTAR) observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton, and Swift-BAT, we perform a high-quality broadband spectral analysis of the AGN over two decades in energy (∼0.5–100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line of sight. However, the lack of high-quality ≳10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X–1, have left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X–1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of N{sub H} ≳ 5 × 10{sup 24} cm{sup −2}. The range of 2–10 keV absorption-corrected luminosity inferred from the best-fitting models is L{sub 2–10,int} = (0.8–1.7) × 10{sup 42} erg s{sup −1}, consistent with that predicted from multiwavelength intrinsic luminosity indicators. In addition, we also study the NuSTAR data for NGC 5643 X–1 and show that it exhibits evidence of a spectral cutoff at energy E ∼ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3–8 keV band from 2003 to 2014, our results further strengthen the ULX classification of NGC 5643 X–1.

  16. The X-ray to [Ne V]3426 flux ratio: discovering heavily obscured AGN in the distant Universe

    Science.gov (United States)

    Gilli, R.; Vignali, C.; Mignoli, M.; Iwasawa, K.; Comastri, A.; Zamorani, G.

    2010-09-01

    We investigate the possibility of using the ratio between the 2-10 keV flux and the [Ne V]3426 emission line flux (X/NeV) as a diagnostic diagram to discover heavily obscured, possibly Compton-thick active galactic nuclei (AGN) in the distant Universe. While it is on average about one order of magnitude fainter than the more commonly used [O III]5007 emission line, the [Ne V]3426 line can be observed with optical spectroscopy up to z~1.5, whereas the [O III]5007 line is redshifted out of the optical bands already at z~0.8. First, we calibrated a relation between X/NeV and the cold absorbing column density NH using a sample of 74 bright, nearby Seyferts with both X-ray and [Ne V] data available in the literature and for which the column density is determined unambiguously. Similar to what is found for the X-ray to [O III]5007 flux ratio (X/OIII), we found that the X/NeV ratio decreases towards high column densities, as expected if [Ne V]3426 emission is a good tracer of the AGN intrinsic power. Essentially all local Seyferts with X/NeV values below 15 are found to be Compton-thick objects. At X/NeV values below 100, the percentage of Compton-thick nuclei decreases to ~50%, but ~80% of the considered sample is still absorbed with NH > 1023 cm-2. Second, we applied this diagnostic diagram to different samples of distant obscured and unobscured QSOs in the Sloan Digital Sky Survey (SDSS). SDSS blue, unobscured, type-1 QSOs in the redshift range z = [0.1-1.5] indeed show X/NeV values typical of unobscured Seyfert 1s in the local Universe. Conversely, SDSS type-2 QSOs at z~0.5 classified either as Compton-thick or Compton-thin on the basis of their X/OIII ratio, would have mostly been classified in the same way based on the X/NeV ratio. We applied the X/NeV diagnostic diagram to 9 SDSS obscured QSOs in the redshift range z = [0.85-1.31], selected by means of their prominent [Ne V]3426 line (rest EW > 4 Å) and observed with Chandra ACIS-S for 10ks each (8 of them as part

  17. Inelastic X-ray scattering activities in Europe

    International Nuclear Information System (INIS)

    Dorner, B.

    1984-01-01

    Inelastic X-ray scattering requires an energy determination before and after the scattering process together with a technique to vary at least one energy continuously in a controlled way. Sufficiently monochromatic beams can only be produced by Bragg reflection from single crystals. Stationary X-ray monochromators are standard equipment of conventional X-ray generators to select a particular characteristic line. Quite often they are curved to focus on the sample or the detector. Devices with variable Bragg angle have been and are used as analyzers in Compton scattering which is inelastic X-ray scattering with moderate resolution. With the rapidly increasing availability of synchrotron radiation (SR) monochromators and analyzers became more and more sophisticated improving momentum (Q) resolution and only somewhat the energy resolution ΔE which stays in the order of eV. Very high energy resolution can only be obtained with Bragg angles Theta near to 90 0 . This field is the topic of the present paper

  18. Proceedings of the Fourth Compton Symposium. Proceedings

    International Nuclear Information System (INIS)

    Dermer, C.D.; Strickman, M.S.; Kurfess, J.D.

    1997-01-01

    These proceedings represent the papers presented at the Fourth Compton Symposium held in Williamsburg, Virginia in April, 1997. This symposium gives the latest development in gamma ray astronomy and summarizes the results obtained by the Compton Gamma Ray Observatory. One of the missions of the Observatory has been the study of physical processes taking place in the most dynamic sites in the Universe, including supernovae, novae, pulsars, black holes, active galaxies, and gamma-ray bursts. The energies covered range from hard X-ray to gamma-ray regions from 15 KeV to 30 GeV. The Burst and Transient Experiment (BASTE) measures brightness variations in gamma-ray bursts and solar flares. The Oriented Scintillation Spectroscopy Experiment (OSSE), measures spectral output of astrophysical sources in the 0.05 to 10 MeV range. The Imaging Compton Telescope (COMPTEL) detects gamma-rays and performs sky survey in the energy range 1 to 30 MeV. The Energetic Gamma Ray Experiment Telescope (EGRET) covers the broadest energy range from 20 MeV to 30 GeV. The papers presented result from all of the above. There were 249 papers presented and out of these, 6 have been abstracted for the Energy, Science and Technology database

  19. X-ray fluorescence analysis in environmental radiological surveillance using HPGe detectors

    International Nuclear Information System (INIS)

    Herrera Peraza, E.; Renteria Villalobos, M.; Montero Cabrera, M.E.; Munoz Romero, A.

    2004-01-01

    X-ray fluorescence (XRF) has been proven to be a valuable tool for determining trace quantities of heavy metals, such as uranium and lead, in different types of samples. The present paper demonstrates the applicability of XRF spectrometry to measure the concentrations of these heavy metals in samples from natural ore and soil. The values of uranium concentrations in rock from the Pena Blanca uranium ore, in Chihuahua, Mexico, were calculated for the purpose of precertifying the rock powders samples. The comparison with other techniques, such as inductively coupled plasma atomic emission spectrometry, atomic absorption spectrometry, alpha spectrometry and electron microscopy, was used to complete the precertification process, so that the sample powders may be used as secondary standards. The source-sample-detector geometry and the incident angle are the most important factors for obtaining low detection limits. The selected system uses a 57 Co source of about 0.1 mCi to excite the K X-rays from uranium and lead. X-rays were recorded on a CANBERRA HPGe coaxial detector. The comparative results for two incident angles (90 deg and 180 deg ) performed previously by other authors show that the best geometry is the backscattering geometry. In the present paper, using EGS4 code system with Monte Carlo simulation, it was possible to determine the location and distribution of background produced by the Compton edge in the optimized geometry. This procedure allowed to find the minimum detectable concentration of uranium and lead, which was experimentally calculated using standards. The possibility of performing in vivo measurements rapidly and easily, as well as the factors affecting accuracy and the minimum detectable concentration in several samples are also discussed

  20. X-ray fluorescence analysis in environmental radiological surveillance using HPGe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Peraza, E. [Department of Environmental Radiological Surveillance, Centro de Investigacion en Materiales Avanzados (CIMAV), P.O. Box 31109, Miguel de Cervantes no. 120, Complejo Industrial Chihuahua, Chihuahua (Mexico)]. E-mail: eduardo.herrera@cimav.edu.mx; Renteria Villalobos, M. [Department of Environmental Radiological Surveillance, Centro de Investigacion en Materiales Avanzados (CIMAV), P.O. Box 31109, Miguel de Cervantes no. 120, Complejo Industrial Chihuahua, Chihuahua (Mexico); Montero Cabrera, M.E. [Department of Environmental Radiological Surveillance, Centro de Investigacion en Materiales Avanzados (CIMAV), P.O. Box 31109, Miguel de Cervantes no. 120, Complejo Industrial Chihuahua, Chihuahua (Mexico); Munoz Romero, A. [Department of Environmental Radiological Surveillance, Centro de Investigacion en Materiales Avanzados (CIMAV), P.O. Box 31109, Miguel de Cervantes no. 120, Complejo Industrial Chihuahua, Chihuahua (Mexico)

    2004-10-08

    X-ray fluorescence (XRF) has been proven to be a valuable tool for determining trace quantities of heavy metals, such as uranium and lead, in different types of samples. The present paper demonstrates the applicability of XRF spectrometry to measure the concentrations of these heavy metals in samples from natural ore and soil. The values of uranium concentrations in rock from the Pena Blanca uranium ore, in Chihuahua, Mexico, were calculated for the purpose of precertifying the rock powders samples. The comparison with other techniques, such as inductively coupled plasma atomic emission spectrometry, atomic absorption spectrometry, alpha spectrometry and electron microscopy, was used to complete the precertification process, so that the sample powders may be used as secondary standards. The source-sample-detector geometry and the incident angle are the most important factors for obtaining low detection limits. The selected system uses a {sup 57}Co source of about 0.1 mCi to excite the K X-rays from uranium and lead. X-rays were recorded on a CANBERRA HPGe coaxial detector. The comparative results for two incident angles (90 deg and 180 deg ) performed previously by other authors show that the best geometry is the backscattering geometry. In the present paper, using EGS4 code system with Monte Carlo simulation, it was possible to determine the location and distribution of background produced by the Compton edge in the optimized geometry. This procedure allowed to find the minimum detectable concentration of uranium and lead, which was experimentally calculated using standards. The possibility of performing in vivo measurements rapidly and easily, as well as the factors affecting accuracy and the minimum detectable concentration in several samples are also discussed.

  1. 2 years of integral monitoring of GRS 1915+105. II. X-ray spectro-temporal analysis

    DEFF Research Database (Denmark)

    Rodriguez, J.; Shaw, S.E.; Hannikainen, D.C.

    2008-01-01

    -ray emission. In the steady state observation, the X-ray spectrum is indicative of the hard-intermediate state, with the presence of a relatively strong emission at 15 GHz. The X-ray spectrum is the sum of a Comptonized component and an extra power law extending to energies > 200 keV without any evidence...

  2. Quantum effets in nonresonant X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Slowik, Jan Malte

    2015-11-15

    experiments. In the quantum theory it has however been revealed that X-ray scattering patterns of electronic motion are related to complex spatio-temporal correlations, instead of the instantaneous electron density. I scrutinize the time-resolved scattering pattern from coherent electronic wave packets. I show that timeresolved PCI recovers the instantaneous electron density of electronic motion. For the far-field diffraction scattering pattern, I analyze the influence of photon energy resolution of the detector. Moreover, I demonstrate that X-ray scattering from a crystal of identical wave packets also recovers the instantaneous electron density. I point out that a generalized electron density propagator of the wave packet can be reconstructed from a scattering experiment. Finally, I propose timeresolved Compton scattering of electronic wave packets. I show that X-ray scattering with large energy transfer can be used to recover the instantaneous momentum space density of the target. The third topic of this dissertation is Compton scattering in single molecule coherent diffractive imaging (CDI). The structure determination of single macromolecules via CDI is one of the key applications of XFELs. The structure of the molecule can be reconstructed from the elastic diffraction pattern. Inelastic X-ray scattering generates a background signal, which I determine for typical high-intensity imaging conditions. I find that at high X-ray fluence the background signal becomes dominating, posing a problem for high resolution imaging. The strong ionization by the X-ray pulse may ionize several electrons per atom. Scattering from these free electrons makes a major contribution to the background signal. I present and discuss detailed numerical studies for different X-ray fluence and photon energy.

  3. Quantum effets in nonresonant X-ray scattering

    International Nuclear Information System (INIS)

    Slowik, Jan Malte

    2015-11-01

    experiments. In the quantum theory it has however been revealed that X-ray scattering patterns of electronic motion are related to complex spatio-temporal correlations, instead of the instantaneous electron density. I scrutinize the time-resolved scattering pattern from coherent electronic wave packets. I show that timeresolved PCI recovers the instantaneous electron density of electronic motion. For the far-field diffraction scattering pattern, I analyze the influence of photon energy resolution of the detector. Moreover, I demonstrate that X-ray scattering from a crystal of identical wave packets also recovers the instantaneous electron density. I point out that a generalized electron density propagator of the wave packet can be reconstructed from a scattering experiment. Finally, I propose timeresolved Compton scattering of electronic wave packets. I show that X-ray scattering with large energy transfer can be used to recover the instantaneous momentum space density of the target. The third topic of this dissertation is Compton scattering in single molecule coherent diffractive imaging (CDI). The structure determination of single macromolecules via CDI is one of the key applications of XFELs. The structure of the molecule can be reconstructed from the elastic diffraction pattern. Inelastic X-ray scattering generates a background signal, which I determine for typical high-intensity imaging conditions. I find that at high X-ray fluence the background signal becomes dominating, posing a problem for high resolution imaging. The strong ionization by the X-ray pulse may ionize several electrons per atom. Scattering from these free electrons makes a major contribution to the background signal. I present and discuss detailed numerical studies for different X-ray fluence and photon energy.

  4. Mobile, hybrid Compton/coded aperture imaging for detection, identification and localization of gamma-ray sources at stand-off distances

    Science.gov (United States)

    Tornga, Shawn R.

    The Stand-off Radiation Detection System (SORDS) program is an Advanced Technology Demonstration (ATD) project through the Department of Homeland Security's Domestic Nuclear Detection Office (DNDO) with the goal of detection, identification and localization of weak radiological sources in the presence of large dynamic backgrounds. The Raytheon-SORDS Tri-Modal Imager (TMI) is a mobile truck-based, hybrid gamma-ray imaging system able to quickly detect, identify and localize, radiation sources at standoff distances through improved sensitivity while minimizing the false alarm rate. Reconstruction of gamma-ray sources is performed using a combination of two imaging modalities; coded aperture and Compton scatter imaging. The TMI consists of 35 sodium iodide (NaI) crystals 5x5x2 in3 each, arranged in a random coded aperture mask array (CA), followed by 30 position sensitive NaI bars each 24x2.5x3 in3 called the detection array (DA). The CA array acts as both a coded aperture mask and scattering detector for Compton events. The large-area DA array acts as a collection detector for both Compton scattered events and coded aperture events. In this thesis, developed coded aperture, Compton and hybrid imaging algorithms will be described along with their performance. It will be shown that multiple imaging modalities can be fused to improve detection sensitivity over a broader energy range than either alone. Since the TMI is a moving system, peripheral data, such as a Global Positioning System (GPS) and Inertial Navigation System (INS) must also be incorporated. A method of adapting static imaging algorithms to a moving platform has been developed. Also, algorithms were developed in parallel with detector hardware, through the use of extensive simulations performed with the Geometry and Tracking Toolkit v4 (GEANT4). Simulations have been well validated against measured data. Results of image reconstruction algorithms at various speeds and distances will be presented as well as

  5. Characteristics of an intrinsic germanium detector for measurement of soft x-rays from high-temperature plasmas

    International Nuclear Information System (INIS)

    Kumagai, Katsuaki; Matoba, Tohru; Funahashi, Akimasa; Kawakami, Tomohide

    1976-09-01

    An intrinsic germanium (Ge(I)) detector has been prepared for measurement of soft X-ray spectra from high-temperature tokamak plasmas. Its characteristics of photo-peak efficiency, escape-peak and Compton scattering were calibrated with standard radioisotopes and soft X-rays from the JFT-2a plasma, and compared with those of a lithium-drifted silicon (Si(Li)) detector. Features of the Ge(I) detector are as follows: (i) high detection efficiency in the high energy range, (ii) wide energy range for measurement of soft X-ray spectra, and (iii) low Compton scattering effect in measurement of continuous spectra. Its dead-layer depth is about 0.06μm, and the minimum detectable energies in the Ge(I) detector are similar to those in the Si(Li) detector. The Ge(I) detector is effective for measuring soft X-ray spectra from high-temperature tokamak plasmas. (auth.)

  6. Line focus x-ray tubes-a new concept to produce high brilliance x-rays.

    Science.gov (United States)

    Bartzsch, Stefan; Oelfke, Uwe

    2017-10-27

    Currently hard coherent x-ray radiation at high photon fluxes can only be produced with large and expensive radiation sources, such as 3[Formula: see text] generation synchrotrons. Especially in medicine, this limitation prevents various promising developments in imaging and therapy from being translated into clinical practice. Here we present a new concept of highly brilliant x-ray sources, line focus x-ray tubes (LFXTs), which may serve as a powerful and cheap alternative to synchrotrons and a range of other existing technologies. LFXTs employ an extremely thin focal spot and a rapidly rotating target for the electron beam which causes a change in the physical mechanism of target heating, allowing higher electron beam intensities at the focal spot. Monte Carlo simulations and numeric solutions of the heat equation are used to predict the characteristics of the LFXT. In terms of photon flux and coherence length, the performance of the line focus x-ray tube compares with inverse Compton scattering sources. Dose rates of up to 180 Gy [Formula: see text] can be reached in 50 cm distance from the focal spot. The results demonstrate that the line focus tube can serve as a powerful compact source for phase contrast imaging and microbeam radiation therapy. The production of a prototype seems technically feasible.

  7. What SWIFT has taught us about X-ray flashes and long-duration gamma-ray bursts

    CERN Document Server

    De Rújula, Alvaro

    2007-01-01

    Recent data gathered and triggered by the SWIFT satellite have greatly improved our knowledge of long-duration gamma ray bursts (GRBs) and X-ray flashes (XRFs). This is particularly the case for the X-ray data at all times, and for UV and optical data at very early times. I show that the optical and X-ray observations are in excellent agreement with the predictions of the "cannonball" model of GRBs and XRFs. Elementary physics and just two mechanisms underlie these predictions: inverse Compton scattering and synchrotron radiation, generally dominant at early and late times, respectively. I put this result in its proper context and dedicate the paper to those who planed, built and operate SWIFT, a true flying jewel.

  8. Progress in Development of Kharkov X-Ray Generator Nestor

    Energy Technology Data Exchange (ETDEWEB)

    Androsov, V.; Bulyak, V.; Dovbnya, A.; Drebot, I.; Gladkikh, P.; Grevtsev, V.; Grigorev, Yu.; Gvozd, A.; Ivashchenko, V.; Karnaukhov, I.; Kovalyova, N.; Kozin, V.; Lapshin, V.; Lyashchenko, V.; Markov, V.; Mocheshnikov, N.; Mytsykov, A.; Neklyudov, I.; Peev, F.; Rezaev, A.; Shcherbakov, A.; /Kharkov, KIPT /SLAC, SSRL /Eindhoven, Tech. U.

    2005-09-14

    The sources of the X-rays based on Compton scattering of intense Nd:YAG laser beam on electron beam circulating in a storage ring with beam energy 43-225 MeV is under construction in NSC KIPT. In the paper the progress in development and construction of Kharkov X-ray generator NESTOR is presented. The current status of the main facility system design and development are described. New scheme and main parameters of injection system are presented. The status of power supply system and control system is described. The facility is going to be in operation in the middle of 2007 and generated X-rays flux is expected to be of about 10{sup 13} phot/s.

  9. Radio and X-Ray Observations of the 1998 Outburst of the Recurrent X-Ray Transient 4U 1630-47

    Science.gov (United States)

    Hjellming, R. M.; Rupen, M. P.; Mioduszewski, A. J.; Kuulkers, E.; McCollough, M.; Harmon, B. A.; Buxton, M.; Sood, R.; Tzioumis, A.; Rayner, D.; Dieters, S.; Durouchoux, P.

    1999-03-01

    We report radio (NRAO VLA and Australia Telescope Compact Array), soft X-ray (Rossi X-Ray Timing Explorer ASM), and hard X-ray (Compton Gamma Ray Observatory BATSE) observations of a 1998 outburst in the recurring X-ray transient 4U 1630-47, where radio emission was detected for the first time. The radio observations identify the position of 4U 1630-47 to within 1". Because the radio emission is optically thin with a spectral index of ~-0.8 during the rise, peak, and decay of the initial radio event, the emission is probably coming from an optically thin radio jet ejected over a period of time. The 20-100 keV emission first appeared 1998 January 28 (MJD 50841), the 2-12 keV emission first appeared 1998 February 3 (MJD 50847), and the first radio emission was detected 1998 February 12.6 (MJD 50856.6). The rise of the radio emission probably began about 1998 February 7 (MJD 50851) when the X-rays were in a very hard fluctuating-hardness state, just before changing to a softer, more stable hardness state.

  10. The X-Ray Weakness of GPS Radio Galaxies: A Volume-Limited Complete Sample

    Science.gov (United States)

    Mushotzky, Richard F. (Technical Monitor); Siemiginowska, Aneta (Principal Investigator)

    2004-01-01

    The XMM observations of Mkn 668 have been analyzed. We found soft X-ray signatures of a hot plasma (kT approximately 10^7 approximately K) and a hard X-ray emission from the nucleus. The X-ray spectrum above 2.5 approximately keV is characterized by a very flat (observed photon index, Gamma approximately 0.5) power-law continuum, alongside with a strong Fe-K-alpha neutral iron fluorescent line (EW approximately 600 approximately eV). The best explanation for the origin of this high energy X-ray emission is in terms of the Compton-reflection of the nuclear emission. The primary X-ray emission is obscured by a Compton-thick (N_H approximately 10^24 approximately cm-2) matter which becomes transparent at higher energies. The observed above 2.5-keV X-rays are mostly due to reflection which is indicated by a strong Fe-K-alpha line. This represents the second hard X-ray detection of the GPS galaxy ever (the first one being 1345+125; O Dea et al. 2000). Interestingly, the both such trend is confirmed by our on going XMM-Newton observations of a larger GPS sample, it would lead us to looking into the question on how the dense nuclear environment impacts the nature and evolution of a GPS source, and more generally, on the history of radio power in the universe. The paper summarizing the results has been submitted to Astronomy and Astrophysics in December 2003.

  11. Inverse Compton X-Ray Halos Around High-z Radio Galaxies: A Feedback Mechanism Powered by Far-Infrared Starbursts or the Cosmic Microwave Background?

    Science.gov (United States)

    Small, Ian; Blundell, Katherine M.; Lehmer, B. D.; Alexander, D. M.

    2012-01-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z approx. 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L(sub X) approx. 3 x 10(exp 44) erg/s and sizes of approx.60 kpc. Their morphologies are broadly similar to the approx.60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z approx. 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z approx. 3.6 radio galaxies, which are 4 fainter in the far-infrared than those at z 3.8, also have approx.4x fainter X-ray IC emission. Including data for a further six z > or approx. 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes < or approx.100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on approx.100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly(alpha) emission line halos found around some of these systems. The starburst and active galactic nucleus

  12. Determination of the calcium salt content on the trunk skeleton and on the peripheral bone applying the Compton backscattering method and the ashing method

    International Nuclear Information System (INIS)

    Schmitt, K.W.

    1974-01-01

    The Compton backscattering method is applied to determine the bone decalcification. Post mortal excised calcanei and vertebral bodies of 50 people are taken as investigation objects which are examined for their calcium salt content and are then ashed for control measurement. The results show that the method would be better suited to early diagnosis of calcipenic osteopathy than the densitometric method used today on extremity bones. (ORU/LH) [de

  13. Determination of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite

    International Nuclear Information System (INIS)

    Berecz, Tibor; Jenei, Péter; Csóré, András; Lábár, János; Gubicza, Jenő

    2016-01-01

    The microstructure and the dislocation density in as-quenched ferrous lath martensite were studied by different methods. The blocks, packets and variants formed due to martensitic transformation were identified and their sizes were determined by electron backscatter diffraction (EBSD). Concomitant transmission electron microscopy (TEM) investigation revealed that the laths contain subgrains with the size between 50 and 100 nm. A novel evaluation procedure of EBSD images was elaborated for the determination of the density and the space distribution of geometrically necessary dislocations from the misorientation distribution. The total dislocation density obtained by X-ray diffraction line profile analysis was in good agreement with the value determined by EBSD, indicating that the majority of dislocations formed due to martensitic transformation during quenching are geometrically necessary dislocations.

  14. The Compton Camera - medical imaging with higher sensitivity Exhibition LEPFest 2000

    CERN Multimedia

    2000-01-01

    The Compton Camera reconstructs the origin of Compton-scattered X-rays using electronic collimation with Silicon pad detectors instead of the heavy conventional lead collimators in Anger cameras - reaching up to 200 times better sensitivity and a factor two improvement in resolution. Possible applications are in cancer diagnosis, neurology neurobiology, and cardiology.

  15. Low-temperature system for simultaneous counting of conversion electrons and backscattered [gamma]-rays in Moessbauer effect experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ruskov, Todor (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Passage, Guener (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Rastanawi, Abdallah (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria)); Radev, Rumen (Institute for Nuclear Research and Nuclear Energy, Tsarigradsko shosse 72, Sofia 1784 (Bulgaria))

    1994-12-01

    A system for simultaneous detection of conversion electrons, emitted after resonant exciting of [sup 57]Fe, and resonant backscattered [gamma]-rays and X-rays, accompanying the conversion electrons, is described. The system includes a helium proportional counter, for detection of conversion electrons, and a toroidal ''Keisch-type'' proportional counter, connected to the vacuum part of a helium cryostat. ((orig.))

  16. The hard X-ray spectrum of Cyg X-1 during the transition in November 1975

    International Nuclear Information System (INIS)

    Sommer, M.; Maurus, H.; Urbach, R.

    1976-01-01

    Some observations are reported of the hard X-ray spectrum of Cyg X-1 during a transition to the high state in November 1975, made with a balloon-borne X-ray detector. The range covered was 25 to 150 keV. The data obtained appeared to confirm the characteristic spectral time variation, and suggested a single power law spectrum from 3 to 80 keV, with an increasing spectral index during the upward transition to the high state. A power spectrum is expected if it is assumed that the universe Compton effect is the basic mechanism that produces the hard X-ray tail of Cyg X-1. Spectral time variation may be caused by a varying intensity of an inner soft photon source within a stable hot cloud. (U.K.)

  17. Some implications of excess soft X-ray emission from Seyfert 1 galaxies

    International Nuclear Information System (INIS)

    Fabian, A.C.; Guilbert, P.W.; Arnaud, K.A.; Shafer, R.A.; Tennant, A.F.; Ward, M.J.

    1986-01-01

    The X-ray spectrum of Seyfert 1 galaxies is characterized by a hard power-law spectrum. It is often postulated that this maintains a Compton-heated two-phase Broad-Line Region (BLR) around the central source. It is shown here that the strong excess soft X-ray emission observed in MKN 841 and other Seyfert galaxies invalidates this model if the BLR is spherically symmetric. Alternatives are proposed. (author)

  18. Compton scattering of microwave background radiation by gas in galaxy clusters

    International Nuclear Information System (INIS)

    Gould, R.J.; Rephaeli, Y.

    1978-01-01

    Based on data on the X-ray spectrum of the Coma cluster, interpreted as thermal bremsstrahlung, the expected brightness depletion from Compton scattering of the microwave background in the direction of the cluster is computed. The calculated depletion is about one-third that recently observed by Gull and Northover, and the discrepancy is discussed. In comparing the observed microwave depletion in the direction of other clusters which are X-ray sources it is found that there is no correlation with the cluster X-ray luminosity, while a dependence proportional to L/sub x//sup 1/2/ is expected. Consequently, the microwave depletion observations cannot yet be taken as good evidence for a thermal bremsstrahlung origin for the X-ray emission. The perturbation from Compton scattering of photons on the high-frequency (Wien) tail of the blackbody distribution is computed and found to be much larger than predicted in previous calculations. In the Wien tail the effect is a relative increase in the blackbody intensity that is appreciably greater in magnitude than the depletion in the Rayleigh-Jeans domain

  19. INVERSE COMPTON X-RAY HALOS AROUND HIGH-z RADIO GALAXIES: A FEEDBACK MECHANISM POWERED BY FAR-INFRARED STARBURSTS OR THE COSMIC MICROWAVE BACKGROUND?

    Energy Technology Data Exchange (ETDEWEB)

    Smail, Ian [Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE (United Kingdom); Blundell, Katherine M. [Department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Lehmer, B. D. [Department of Physics and Astronomy, The Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Alexander, D. M. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2012-12-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z {approx} 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L {sub X} {approx} 3 Multiplication-Sign 10{sup 44} erg s{sup -1} and sizes of {approx}60 kpc. Their morphologies are broadly similar to the {approx}60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z {approx} 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z {approx} 3.6 radio galaxies, which are {approx}4 Multiplication-Sign fainter in the far-infrared than those at z {approx} 3.8, also have {approx}4 Multiplication-Sign fainter X-ray IC emission. Including data for a further six z {approx}> 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes {approx}<100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on {approx}100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly{alpha} emission line

  20. THE BROADBAND XMM-NEWTON AND NuSTAR X-RAY SPECTRA OF TWO ULTRALUMINOUS X-RAY SOURCES IN THE GALAXY IC 342

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Vikram; Harrison, Fiona A.; Walton, Dominic J.; Furst, Felix; Grefenstette, Brian W.; Madsen, Kristin K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Bachetti, Matteo; Barret, Didier; Webb, Natalie A. [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Miller, Jon M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Fabian, Andrew C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn C. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Ptak, Andrew F.; Zhang, William W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2015-02-01

    We present results for two ultraluminous X-ray sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by ∼7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3-30 keV luminosities being 1.04{sub −0.06}{sup +0.08}×10{sup 40} erg s{sup –1} for IC 342 X-1 and 7.40 ± 0.20 × 10{sup 39} erg s{sup –1} for IC 342 X-2, so that both were observed in a similar, luminous state. Both sources have a high absorbing column in excess of the Galactic value. Neither source has a spectrum consistent with a black hole binary in low/hard state, and both ULXs exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk-like blackbody component at low energies and a cool, optically thick Comptonization continuum at high energies, but unique physical interpretation of the spectral components remains challenging. The broadband spectrum of IC 342 X-2 can be fit by either a hot (3.8 keV) accretion disk or a Comptonized continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin blackbody disk component. Secure identification of the origin of the spectral components in these sources will likely require broadband spectral variability studies.

  1. Quantum theory for 1D X-ray free electron laser

    Science.gov (United States)

    Anisimov, Petr M.

    2018-06-01

    Classical 1D X-ray Free Electron Laser (X-ray FEL) theory has stood the test of time by guiding FEL design and development prior to any full-scale analysis. Future X-ray FELs and inverse-Compton sources, where photon recoil approaches an electron energy spread value, push the classical theory to its limits of applicability. After substantial efforts by the community to find what those limits are, there is no universally agreed upon quantum approach to design and development of future X-ray sources. We offer a new approach to formulate the quantum theory for 1D X-ray FELs that has an obvious connection to the classical theory, which allows for immediate transfer of knowledge between the two regimes. We exploit this connection in order to draw quantum mechanical conclusions about the quantum nature of electrons and generated radiation in terms of FEL variables.

  2. Design of a scattering polarimeter for hard X-ray astronomy

    International Nuclear Information System (INIS)

    Costa, E.; Cinti, M.N.; Feroci, M.; Matt, G.; Rapisarda, M.

    1995-01-01

    The design of a new hard X-ray Compton scattering polarimeter based on scintillating fibre technology is presented and studied in detail by means of Monte Carlo calculations. Several different configurations and materials have been tested in order to optimise the sensitivity in the medium/high energy X-ray band. A high sensitivity over the energy band 20-200 keV is obtained for a two material configuration. The advantages deriving from employing a new scintillating material, the YAP (YAlO 3 ), are also discussed. (orig.)

  3. AXIS: An instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Tommasini, R.; Carpenter, A. C.; Palmer, N. E.; Zacharias, R.; Felker, B.; Holder, J. P.; Allen, F. V.; Bell, P. M.; Bradley, D.; Montesanti, R.; Landen, O. L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)

    2014-11-15

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV–200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  4. AXIS: an instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF.

    Science.gov (United States)

    Hall, G N; Izumi, N; Tommasini, R; Carpenter, A C; Palmer, N E; Zacharias, R; Felker, B; Holder, J P; Allen, F V; Bell, P M; Bradley, D; Montesanti, R; Landen, O L

    2014-11-01

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV-200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  5. A new high quality X-ray source for Cultural Heritage

    International Nuclear Information System (INIS)

    Walter, Ph.; Variola, A.; Zomer, F.; Jaquet, M.

    2009-01-01

    Compton based photon sources have generated much interest since the rapid advance in laser and accelerator technologies has allowed envisaging their utilisation for ultra-compact radiation sources. These should provide X-ray short pulses with a relatively high average flux. Moreover, the univocal dependence between the scattered photon energy and its angle gives the possibility of obtaining a quasi-monochromatic beam with a simple diaphragm system. For the most ambitious projects the expected performance takes into account a rate of 10 12 - 10 13 photons/s, with an angular divergence of few mrad, an X-ray energy cut-off of few tens of keV and a bandwidth ΔE/E ∼ 1-10 %. Even if the integrated rate cannot compete with synchrotron radiation sources, the cost and the compactness of these Compton based machines make them attractive for a wide spectrum of applications. We explore here the interest of these systems for Cultural Heritage preservation. (authors)

  6. A new high quality X-ray source for Cultural Heritage

    Science.gov (United States)

    Walter, Philippe; Variola, Alessandro; Zomer, Fabian; Jaquet, Marie; Loulergue, Alexandre

    2009-09-01

    Compton based photon sources have generated much interest since the rapid advance in laser and accelerator technologies has allowed envisaging their utilisation for ultra-compact radiation sources. These should provide X-ray short pulses with a relatively high average flux. Moreover, the univocal dependence between the scattered photon energy and its angle gives the possibility of obtaining a quasi-monochromatic beam with a simple diaphragm system. For the most ambitious projects the expected performance takes into account a rate of 10-10 photons/s, with an angular divergence of few mrad, an X-ray energy cut-off of few tens of keV and a bandwidth ΔE/E˜1-10%. Even if the integrated rate cannot compete with synchrotron radiation sources, the cost and the compactness of these Compton based machines make them attractive for a wide spectrum of applications. We explore here the interest of these systems for Cultural Heritage preservation. To cite this article: P. Walter et al., C. R. Physique 10 (2009).

  7. Étude de la production de rayonnement X par diffusion Compton sur l’installation ELSA

    OpenAIRE

    Chauchat , Anne-Sophie

    2011-01-01

    Compton scattering by collisions between relativistic electron beam and laser beam is a way to produce X-rays. Laser beam is seen as an undulator which gives electrons a periodic waved motion. This radiation emitted by electrons motion has some characteristics close to those of synchrotron radiation but can be produced by smaller machines. ELSA facility at CEA DAM DIF is a linear electron accelerator (17 MeV) running with a photoinjector and a laser (532 nm). Characteristics of electrons and ...

  8. Compton radiography, 3. Compton scinti-tomography of the chest diseases

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, S; Sera, K; Shishido, F; Fukuda, H [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer; Mishina, H

    1977-10-01

    The compton radiography aims at collection of depth information by recording with a scinticamera those Compton rays that have resulted from scattering of a monoenergetic gamma beam by a volume of interest. Appreciably clear clinical scinti-tomograms were obtained of the chest wall, and intrathoracic structures such as the lungs, intrapulmonary pathologies, and mediastinum. This was achieved without any computer assistance for image reconstruction such as those in the case of XCT. Apparently, suitable corrections of the attenuations of the primary monoenergetic gamma rays and secondary Compton rays would greatly improve the image quality, and imaging time and radiation exposure as well. This technic is simple in principle, relatively cheap, and yet prospective of development of stereoptic fluoroscopy that would be extremely helpful in guiding such procedures as visceral biopsies.

  9. Human thyroid specimen imaging by fluorescent x-ray computed tomography with synchrotron radiation

    Science.gov (United States)

    Takeda, Tohoru; Yu, Quanwen; Yashiro, Toru; Yuasa, Tetsuya; Hasegawa, Yasuo; Itai, Yuji; Akatsuka, Takao

    1999-09-01

    Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT system consists of a silicon (111) channel cut monochromator, an x-ray slit and a collimator for fluorescent x ray detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the fluorescent K(alpha) line, incident monochromatic x-ray was set at 37 keV. The FXCT clearly imaged a human thyroid gland and iodine content was estimated quantitatively. In a case of hyperthyroidism, the two-dimensional distribution of iodine content was not uniform, and thyroid cancer had a small amount of iodine. FXCT can be used to detect iodine within thyroid gland quantitatively and to delineate its distribution.

  10. The Quantum Mechanics of Nano-Confined Water: New Cooperative Effects Revealed with Neutron and X-Ray Compton Scattering

    International Nuclear Information System (INIS)

    Reiter, G F; Deb, Aniruddha

    2014-01-01

    Neutron Compton scattering(NCS) measurements of the momentum distribution of light ions using the Vesuvio instrument at ISIS provide a sensitive local probe of the environment of those ions. NCS measurements of the proton momentum distribution in bulk water show only small deviations from the usual picture of water as a collection of molecules, with the protons covalently bonded to an oxygen and interacting weakly, primarily electrostatically, with nearby molecules. However, a series of measurements of the proton momentum distribution in carbon nanotubes, xerogel, and Nafion show that the proton delocalizes over distances of 0.2-0.3Å when water is confined on the scale of 20Å. This delocalization must be the result of changes in the Born-Oppenheimer surface for the protons, which would imply that there are large deviations in the electron distribution from that of a collection of weakly interacting molecules. This has been observed at Spring-8 using x-ray Compton scattering. The observed deviation in the valence electron momentum distribution from that of bulk water is more than an order of magnitude larger than the change observed in bulk water as the water is heated from just above melting to just below boiling. We conclude that the protons and electrons in nano-confined water are in a qualitatively different ground state from that of bulk water. Since the properties of this state persist at room temperature, and the confinement distance necessary to observe it is comparable to the distance between the elements of biological cells, this state presumably plays a role in the functioning of those cells

  11. Comparison of VLBI radio core and X-ray flux densities of extragalactic radio sources

    International Nuclear Information System (INIS)

    Bloom, S.D.; Marscher, A.P.

    1990-01-01

    The Einstein Observatory revealed that most quasars, selected in a variety of ways, are strong x-ray emitters. Radio bright quasars are statistically more luminous in the x-ray than their radio-quiet counterparts. It was also found that the 90 GHz to soft x-ray spectral index has a very small dispersion for sources selected by their strong millimeter emission. This implies a close relationship between compact radio flux density and x-ray emission. Strong correlations have been found between the arcsecond scale flux densities and soft x-ray fluxes. It is suggested that the correlation can be explained if the soft x-rays were produced by the synchrotron self-Compton (SSC) process within the compact radio emitting region. (author)

  12. The electron beam dynamics simulation in the laser-electron storage ring involving compton and intrabeam scattering

    International Nuclear Information System (INIS)

    Gladkikh, P.I.; Telegin, Yu.N.; Karnaukhov, I.M.

    2002-01-01

    The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented

  13. The electron beam dynamics simulation in the laser-electron storage ring involving compton and intrabeam scattering

    CERN Document Server

    Gladkikh, P I; Karnaukhov, I M

    2002-01-01

    The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented.

  14. Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving

    International Nuclear Information System (INIS)

    Shvyd’ko, Yuri; Blank, Vladimir; Terentyev, Sergey

    2017-01-01

    Diamond features a unique combination of outstanding physical properties perfect for numerous x-ray optics applications, where traditional materials such as silicon fail to perform. In the last two decades, impressive progress has been achieved in synthesizing diamond with high crystalline perfection, in manufacturing efficient, resilient, high-resolution, wavefront-preserving diamond optical components, and in implementing them in cutting-edge x-ray instruments. Diamond optics are essential for tailoring x-rays to the most challenging needs of x-ray research. Furthermore, they are becoming vital for the generation of fully coherent hard x-rays by seeded x-ray free-electron lasers. In this article, we review progress in manufacturing flawless diamond crystal components and their applications in diverse x-ray optical devices, such as x-ray monochromators, beam splitters, high-reflectance backscattering mirrors, lenses, phase plates, diffraction gratings, bent-crystal spectrographs, and windows.

  15. Method and Apparatus for Computed Imaging Backscatter Radiography

    Science.gov (United States)

    Shedlock, Daniel (Inventor); Meng, Christopher (Inventor); Sabri, Nissia (Inventor); Dugan, Edward T. (Inventor); Jacobs, Alan M. (Inventor)

    2013-01-01

    Systems and methods of x-ray backscatter radiography are provided. A single-sided, non-destructive imaging technique utilizing x-ray radiation to image subsurface features is disclosed, capable of scanning a region using a fan beam aperture and gathering data using rotational motion.

  16. Single shot diffraction of picosecond 8.7-keV x-ray pulses

    Directory of Open Access Journals (Sweden)

    F. H. O’Shea

    2012-02-01

    Full Text Available We demonstrate multiphoton, single shot diffraction images of x rays produced by inverse Compton scattering a high-power CO_{2} laser from a relativistic electron beam, creating a pulse of 8.7 keV x rays. The tightly focused, relatively high peak brightness electron beam and high photon density from the 2 J CO_{2} laser yielded 6×10^{7} x-ray photons over the full opening angle in a single shot. Single shot x-ray diffraction is performed by passing the x rays though a vertical slit and on to a flat silicon (111 crystal. 10^{2} diffracted photons were detected. The spectrum of the detected x rays is compared to simulation. The diffraction and detection of 10^{2} x rays is a key step to a more efficient time resolved diagnostic in which the number of observed x rays might reach 10^{4}; enabling a unique, flexible x-ray source as a sub-ps resolution diagnostic for studying the evolution of chemical reactions, lattice deformation and melting, and magnetism.

  17. Towards A Complete Census of Compton-thick AGN and N_H Distribution in the Local Universe

    Science.gov (United States)

    Annuar, A.; Gandhi, P.; Alexander, D.; Asmus, D.; Goulding, A.; Harrison, C.; Lansbury, G.

    2014-07-01

    Many studies have shown that Compton-thick AGNs (CTAGNs) provide important contribution to the cosmic X-ray background spectrum (˜25% at 20keV). They are expected to dominate the Seyfert 2 population in the local universe, yet only ˜20 bona fide CTAGNs are known. We present an updated census of CTAGN population in the local universe using a volume-limited AGN sample complete to D=15Mpc. Intrinsic relations between 2-10keV X-ray luminosity and mid-IR emission at 12μm, [OIV]λ25.68μm and [NeV]λ14.32μm are investigated, and it is found that the emission at 12μm has the tightest correlation with the X-ray luminosity.Candidates for CTAGN are then selected using this relation and by comparing their 12μm luminosity with the observed X-ray luminosity.We also investigate the Compton-thick nature of these sources using the optical [OIII]λ5007{A}:X-ray diagnostic for comparison, and find that 35-50% of the sample are Compton-thick,of which 10-20% would be missed with the optical approach.Finally, we estimate the intrinsic N_{H} distribution of AGN population in the local universe from this analysis, and show that up to 70% of the sources are heavily obscured (N_{H}>10^{23} cm^{-2}), with ≥50% lying in the Compton-thick regime (N_{H}>10^{24} cm^{-2}).This work provides a well-defined local benchmark for AGN obscuration studies.

  18. The 2-79 keV X-ray spectrum of the Circinus galaxy with NuSTAR, XMM-Newton, and Chandra: a fully Compton-thick active galactic nucleus

    International Nuclear Information System (INIS)

    Arévalo, P.; Bauer, F. E.; Puccetti, S.; Walton, D. J.; Fuerst, F.; Grefenstette, B. W.; Harrison, F. A.; Madsen, K. K.; Koss, M.; Boggs, S. E.; Craig, W. W.; Brandt, W. N.; Luo, B.; Brightman, M.; Christensen, F. E.; Comastri, A.; Gandhi, P.; Hailey, C. J.; Madejski, G.; Marinucci, A.

    2014-01-01

    The Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region, but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N H = (6-10) × 10 24 cm –2 , and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 10 42 erg s –1 . These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and L X versus L IR phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. The lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.

  19. Backscattering of 59.54 keV photons for characterization of metallic elements

    International Nuclear Information System (INIS)

    Elyaseery, I.S.; Chong Chon Sing; Ahmad Shukri Mustapa Kamal; Abdul Aziz Tajuddin

    2000-01-01

    Scattering measurements of x-rays and gamma rays have been developed for the characterization of internal features of materials such as density or composition. Previous studies were generally carried at small scattering angles. In this paper, a system is described for preliminary studies of back scattering of photons for characterization of materials. The apparatus consist of an annular 100 mCi 241 Am source and a high purity thin intensities for the 59.54 keV photons are presented for different metallic elements such as Al, Cu, Zn, Zr, Nb, Mo, Ag, Cd, In, Sn, Ta and W. The measurements were carried out at back scattering angles of 145 0 , 154 0 , 165 0 . Coherent peak measurements offer greater sensitivity than Compton peak measurements. In particular, the 59.54 keV coherent peak intensity shows a proportional increase with increasing Z number elements except for the elements Ta and W whose absorption edges are in the vicinity of this photon energy. The experimental results demonstrate the feasibility of the backscattering method for the characterization of metallic elements. (Author)

  20. Dual-energy x-ray image decomposition by independent component analysis

    Science.gov (United States)

    Jiang, Yifeng; Jiang, Dazong; Zhang, Feng; Zhang, Dengfu; Lin, Gang

    2001-09-01

    The spatial distributions of bone and soft tissue in human body are separated by independent component analysis (ICA) of dual-energy x-ray images. It is because of the dual energy imaging modelí-s conformity to the ICA model that we can apply this method: (1) the absorption in body is mainly caused by photoelectric absorption and Compton scattering; (2) they take place simultaneously but are mutually independent; and (3) for monochromatic x-ray sources the total attenuation is achieved by linear combination of these two absorption. Compared with the conventional method, the proposed one needs no priori information about the accurate x-ray energy magnitude for imaging, while the results of the separation agree well with the conventional one.

  1. Soft X-ray production by photon scattering in pulsating binary neutron star sources

    International Nuclear Information System (INIS)

    Bussard, R.W.; Meszaros, P.; Alexander, S.

    1985-01-01

    A new mechanism is proposed as a source of soft (less than 1 keV) radiation in binary pulsating X-ray sources, in the form of photon scattering which leaves the electron in an excited Landau level. In a plasma with parameters typical of such sources, the low-energy X-ray emissivity of this mechanism far exceeds that of bremsstrahlung. This copious source of soft photons is quite adequate to provide the seed photons needed to explain the power-law hard X-ray spectrum by inverse Comptonization on the hot electrons at the base of the accretion column. 13 references

  2. A new gamma-ray diagnostic for energetic ion distributions - The Compton tail on the neutron capture line

    International Nuclear Information System (INIS)

    Vestrand, W.T.

    1990-01-01

    This paper presents a new radiation diagnostic for assaying the energy spectrum and the angular distribution of energetic ions incident on thick hydrogen-rich thermal targets. This diagnostic compares the number of emergent photons in the narrow neutron capture line at 2.223 MeV to the number of Compton scattered photons that form a low-energy tail on the line. It is shown that the relative strength of the tail can be used as a measure of the hardness of the incident ion-energy spectrum. Application of this diagnostic to solar flare conditions is the main thrust of the work presented here. It is examined how the strength of the Compton tail varies with flare viewing angle and the angular distribution of the flare-accelerated particles. Application to compact X-ray binary systems is also briefly discussed. 39 refs

  3. Hard X-ray Emission from Galaxy Clusters Observed with INTEGRAL and Prospects for Simbol-X

    Science.gov (United States)

    Eckert, D.; Paltani, S.; Courvoisier, T. J.-L.

    2009-05-01

    Some galaxy clusters are known to contain a large population of relativistic electrons, which produce radio emission through synchrotron radiation. Therefore, it is expected that inverse-Compton scattering of the relativistic electrons with the CMB produce non-thermal emission which should be observable in the hard X-ray domain. Here we focus on the recent results by INTEGRAL, which shed a new light on the non-thermal emission thanks to its angular resolution and sensitivity in the hard X-ray range. We also present the exciting prospects in this field for Simbol-X, which will allow us to detect the non-thermal emission in a number of clusters and map the magnetic field throughout the intra-cluster medium.

  4. Doppler broadening and its contribution to Compton energy-absorption cross sections: An analysis of the Compton component in terms of mass-energy absorption coefficient

    International Nuclear Information System (INIS)

    Rao, D.V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Cesareo, R.; Brunetti, A.; Gigante, G.E.

    2002-01-01

    Compton energy absorption cross sections are calculated using the formulas based on a relativistic impulse approximation to assess the contribution of Doppler broadening and to examine the Compton profile literature and explore what, if any, effect our knowledge of this line broadening has on the Compton component in terms of mass-energy absorption coefficient. Compton energy-absorption cross sections are evaluated for all elements, Z=1-100, and for photon energies 1 keV-100 MeV. Using these cross sections, the Compton component of the mass-energy absorption coefficient is derived in the energy region from 1 keV to 1 MeV for all the elements Z=1-100. The electron momentum prior to the scattering event should cause a Doppler broadening of the Compton line. The momentum resolution function is evaluated in terms of incident and scattered photon energy and scattering angle. The overall momentum resolution of each contribution is estimated for x-ray and γ-ray energies of experimental interest in the angular region 1 deg. -180 deg. . Also estimated is the Compton broadening using nonrelativistic formula in the angular region 1 deg. -180 deg., for 17.44, 22.1, 58.83, and 60 keV photons for a few elements (H, C, N, O, P, S, K, and Ca) of biological importance

  5. Doppler Broadening and its Contribution to Compton Energy-Absorption Cross Sections: An Analysis of the Compton Component in Terms of Mass-Energy Absorption Coefficient

    Science.gov (United States)

    Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Cesareo, R.; Brunetti, A.; Gigante, G. E.

    2002-09-01

    Compton energy absorption cross sections are calculated using the formulas based on a relativistic impulse approximation to assess the contribution of Doppler broadening and to examine the Compton profile literature and explore what, if any, effect our knowledge of this line broadening has on the Compton component in terms of mass-energy absorption coefficient. Compton energy-absorption cross sections are evaluated for all elements, Z=1-100, and for photon energies 1 keV-100 MeV. Using these cross sections, the Compton component of the mass-energy absorption coefficient is derived in the energy region from 1 keV to 1 MeV for all the elements Z=1-100. The electron momentum prior to the scattering event should cause a Doppler broadening of the Compton line. The momentum resolution function is evaluated in terms of incident and scattered photon energy and scattering angle. The overall momentum resolution of each contribution is estimated for x-ray and γ-ray energies of experimental interest in the angular region 1°-180°. Also estimated is the Compton broadening using nonrelativistic formula in the angular region 1°-180°, for 17.44, 22.1, 58.83, and 60 keV photons for a few elements (H, C, N, O, P, S, K, and Ca) of biological importance.

  6. Diamond Thermal Expansion Measurement Using Transmitted X-ray Back-diffraction.

    OpenAIRE

    Giles, Carlos; Adriano, Cris; Lubambo, Adriana Freire; Cusatis, Cesar; Mazzaro, Irineu; Hönnicke, Marcelo Goncalves

    2015-01-01

    The linear thermal expansion coefficient of diamond has been measured using forward-diffracted profiles in X-ray backscattering. This experimental technique is presented as an alternative way of measuring thermal expansion coefficients of solids in the high-resolution Bragg backscattering geometry without the intrinsic difficulty of detecting the reflected beam. The temperature dependence of the lattice parameter is obtained from the high sensitivity of the transmitted profiles to the Bragg a...

  7. SU-G-IeP3-10: Molecular Imaging with Clinical X-Ray Sources and Compton Cameras

    International Nuclear Information System (INIS)

    Vernekohl, D; Ahmad, M; Chinn, G; Xing, L

    2016-01-01

    Purpose: The application of Compton cameras (CC) is a novel approach translating XFCT to a practical modality realized with clinical CT systems without the restriction of pencil beams. The dual modality design offers additional information without extra patient dose. The purpose of this work is to investigate the feasibility and efficacy of using CCs for volumetric x-ray fluorescence (XF) imaging by Monte Carlo (MC) simulations and statistical image reconstruction. Methods: The feasibility of a CC for imaging x-ray fluorescence emitted from targeted lesions is examined by MC simulations. 3 mm diameter water spheres with various gold concentrations and detector distances are placed inside the lung of an adult human phantom (MIRD) and are irradiated with both fan and cone-beam geometries. A sandwich design CC composed of Silicon and CdTe is used to image the gold nanoparticle distribution. The detection system comprises four 16×26 cm"2 detector panels placed on the chest of a MIRD phantom. Constraints of energy-, spatial-resolution, clinical geometries and Doppler broadening are taken into account. Image reconstruction is performed with a list-mode MLEM algorithm with cone-projector on a GPU. Results: The comparison of reconstruction of cone- and fan-beam excitation shows that the spatial resolution is improved by 23% for fan-beams with significantly decreased processing time. Cone-beam excitation increases scatter content disturbing quantification of lesions near the body surface. Spatial resolution and detectability limit in the center of the lung is 8.7 mm and 20 fM for 50 nm diameter gold nanoparticles at 20 mGy. Conclusion: The implementation of XFCT with a CC is a feasible method for molecular imaging with high atomic number probes. Given constrains of detector resolutions, Doppler broadening, and limited exposure dose, spatial resolutions comparable with PET and molecular sensitivities in the fM range are realizable with current detector technology.

  8. SU-G-IeP3-10: Molecular Imaging with Clinical X-Ray Sources and Compton Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Vernekohl, D; Ahmad, M; Chinn, G; Xing, L [Stanford University, Stanford, CA (United States)

    2016-06-15

    Purpose: The application of Compton cameras (CC) is a novel approach translating XFCT to a practical modality realized with clinical CT systems without the restriction of pencil beams. The dual modality design offers additional information without extra patient dose. The purpose of this work is to investigate the feasibility and efficacy of using CCs for volumetric x-ray fluorescence (XF) imaging by Monte Carlo (MC) simulations and statistical image reconstruction. Methods: The feasibility of a CC for imaging x-ray fluorescence emitted from targeted lesions is examined by MC simulations. 3 mm diameter water spheres with various gold concentrations and detector distances are placed inside the lung of an adult human phantom (MIRD) and are irradiated with both fan and cone-beam geometries. A sandwich design CC composed of Silicon and CdTe is used to image the gold nanoparticle distribution. The detection system comprises four 16×26 cm{sup 2} detector panels placed on the chest of a MIRD phantom. Constraints of energy-, spatial-resolution, clinical geometries and Doppler broadening are taken into account. Image reconstruction is performed with a list-mode MLEM algorithm with cone-projector on a GPU. Results: The comparison of reconstruction of cone- and fan-beam excitation shows that the spatial resolution is improved by 23% for fan-beams with significantly decreased processing time. Cone-beam excitation increases scatter content disturbing quantification of lesions near the body surface. Spatial resolution and detectability limit in the center of the lung is 8.7 mm and 20 fM for 50 nm diameter gold nanoparticles at 20 mGy. Conclusion: The implementation of XFCT with a CC is a feasible method for molecular imaging with high atomic number probes. Given constrains of detector resolutions, Doppler broadening, and limited exposure dose, spatial resolutions comparable with PET and molecular sensitivities in the fM range are realizable with current detector technology.

  9. A new Compton densitometer for measuring pulmonary edema

    International Nuclear Information System (INIS)

    Loo, B.W.; Goulding, F.S.; Simon, S.

    1986-01-01

    Pulmonary edema (PE) is the pathological increase of extravascular lung water found most often in patients with congestive heart failure and other critically ill patients who suffer from intravenous fluid overload. The chest x-ray, the standard method for validating the presence of PE, is neither quantitative nor sensitive. A non-invasive lung density monitor that is accurate, easily portable, safe and inexpensive is needed for clinical use. To deal with the problem of attenuation along the beam paths, previous gamma-ray techniques require simultaneous measurement of transmitted and scattered beams. Since multiple scattering is a strong function of the density of the scattering medium and the mass distribution within the detection geometry, there will be inherent uncertainties in the system calibration unless it is performed on a body structure closely matched to that of each individual patient. Other researchers who have employed Compton scattering techniques generally used systems of extended size and detectors with poor energy resolution. This has resulted in significant systematic biases from multiply-scattered photons and larger errors in counting statistics at a given radiation dose to the patient. We are proposing a patented approach in which only backscattered photons are measured with a high-resolution HPGe detector in a compact system geometry. By proper design and a unique data extraction scheme, effects of the variable chest wall on lung density measurements are minimized. Preliminary test results indicate that with a radioactive source of under 30 GBq, it should be possible to make an accurate lung density, measurement in one minute, with a risk of radiation exposure to the patient a thousand times smaller than that from a typical chest x-ray

  10. X-Ray Quasi-periodic Oscillations in the Lense–Thirring Precession Model. I. Variability of Relativistic Continuum

    Science.gov (United States)

    You, Bei; Bursa, Michal; Życki, Piotr T.

    2018-05-01

    We develop a Monte Carlo code to compute the Compton-scattered X-ray flux arising from a hot inner flow that undergoes Lense–Thirring precession. The hot flow intercepts seed photons from an outer truncated thin disk. A fraction of the Comptonized photons will illuminate the disk, and the reflected/reprocessed photons will contribute to the observed spectrum. The total spectrum, including disk thermal emission, hot flow Comptonization, and disk reflection, is modeled within the framework of general relativity, taking light bending and gravitational redshift into account. The simulations are performed in the context of the Lense–Thirring precession model for the low-frequency quasi-periodic oscillations, so the inner flow is assumed to precess, leading to periodic modulation of the emitted radiation. In this work, we concentrate on the energy-dependent X-ray variability of the model and, in particular, on the evolution of the variability during the spectral transition from hard to soft state, which is implemented by the decrease of the truncation radius of the outer disk toward the innermost stable circular orbit. In the hard state, where the Comptonizing flow is geometrically thick, the Comptonization is weakly variable with a fractional variability amplitude of ≤10% in the soft state, where the Comptonizing flow is cooled down and thus becomes geometrically thin, the fractional variability of the Comptonization is highly variable, increasing with photon energy. The fractional variability of the reflection increases with energy, and the reflection emission for low spin is counterintuitively more variable than the one for high spin.

  11. Signature of inverse Compton emission from blazars

    Science.gov (United States)

    Gaur, Haritma; Mohan, Prashanth; Wierzcholska, Alicja; Gu, Minfeng

    2018-01-01

    Blazars are classified into high-, intermediate- and low-energy-peaked sources based on the location of their synchrotron peak. This lies in infra-red/optical to ultra-violet bands for low- and intermediate-peaked blazars. The transition from synchrotron to inverse Compton emission falls in the X-ray bands for such sources. We present the spectral and timing analysis of 14 low- and intermediate-energy-peaked blazars observed with XMM-Newton spanning 31 epochs. Parametric fits to X-ray spectra help constrain the possible location of transition from the high-energy end of the synchrotron to the low-energy end of the inverse Compton emission. In seven sources in our sample, we infer such a transition and constrain the break energy in the range 0.6-10 keV. The Lomb-Scargle periodogram is used to estimate the power spectral density (PSD) shape. It is well described by a power law in a majority of light curves, the index being flatter compared to general expectation from active galactic nuclei, ranging here between 0.01 and 1.12, possibly due to short observation durations resulting in an absence of long-term trends. A toy model involving synchrotron self-Compton and external Compton (EC; disc, broad line region, torus) mechanisms are used to estimate magnetic field strength ≤0.03-0.88 G in sources displaying the energy break and infer a prominent EC contribution. The time-scale for variability being shorter than synchrotron cooling implies steeper PSD slopes which are inferred in these sources.

  12. Accelerators and x-rays in cultural heritage investigations

    International Nuclear Information System (INIS)

    Heinz-Eberhard, Mahnke; Salomon, J.; Heinz-Eberhard, Mahnke; Denker, A.; Heinz-Eberhard, Mahnke

    2009-01-01

    In the following article a review is given on the use of accelerators in studies connected to our cultural heritage. It focuses on making use of the production and detection of x-rays as a general tool. At 'small accelerators', the proton induced x-ray emission (PIXE), especially when combined with Rutherford backscattering spectroscopy (RBS), has been developed to a very versatile and powerful technique for near-surface investigations. It is well complemented by larger facilities, synchrotron radiation sources as well as medium energy ion accelerators for high energy PIXE. With the development of small compact electron accelerators, a new generation of mono-energetic high-energy high-intensity x-ray sources will add a very comfortable complement in cultural heritage studies

  13. Simultaneous Planck, Swift, and Fermi Observations of X-ray and Gamma-ray Selected Blazars

    Science.gov (United States)

    Giommi, P.; Polenta, G.; Laehteenmaeki, A.; Thompson, D. J.; Capalbi, M.; Cutini, S.; Gasparrini, D.; Gonzalez, Nuevo, J.; Leon-Tavares, J.; Lopez-Caniego, M.; hide

    2012-01-01

    We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and gamma-ray bands, with additional 5 GHz flux-density limits to ensure a good probability of a Planck detection. We compare our results to those of a companion paper presenting simultaneous Planck and multi-frequency observations of 104 radio-loud northern active galactic nuclei selected at radio frequencies. While we confirm several previous results, our unique data set allows us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by the Fermi Large Area Telescope (LAT), whereas 30% to 40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the gamma-ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-millimetre spectral slope of blazars is quite flat, with (alpha) approx 0 up to about 70GHz, above which it steepens to (alpha) approx -0.65. The BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency (nu(sup s)(sub peak)) in the spectral energy distribution (SED) of FSRQs is the same in all the blazar samples with (nu(sup s)(sub peak)) = 10(exp 13.1 +/- 0.1) Hz, while the mean inverse Compton peak frequency, (nu(sup IC)(sub peak)), ranges from 10(exp 21) to 10(exp 22) Hz. The distributions of nu(sup s)(sub peak) and nu(sup IC)(sub peak) of BL Lacs are much broader and are shifted to higher energies than those of FSRQs; their shapes strongly depend on the selection method. The Compton dominance of blazars. defined as the ratio of the inverse Compton to synchrotron peak luminosities, ranges from less than 0.2 to nearly 100, with only FSRQs reaching values larger than about 3. Its distribution is broad and depends

  14. Pulsar high energy emission due to inverse Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lyutikov, Maxim

    2013-06-15

    We discuss growing evidence that pulsar high energy is emission is generated via Inverse Compton mechanism. We reproduce the broadband spectrum of Crab pulsar, from UV to very high energy gamma-rays - nearly ten decades in energy, within the framework of the cyclotron-self-Compton model. Emission is produced by two counter-streaming beams within the outer gaps, at distances above ∼ 20 NS radii. The outward moving beam produces UV-X-ray photons via Doppler-booster cyclotron emission, and GeV photons by Compton scattering the cyclotron photons produced by the inward going beam. The scattering occurs in the deep Klein-Nishina regime, whereby the IC component provides a direct measurement of particle distribution within the magnetosphere. The required plasma multiplicity is high, ∼10{sup 6} – 10{sup 7}, but is consistent with the average particle flux injected into the pulsar wind nebula.

  15. Generation and application of soft-X-ray by means of inverse compton scattering between high quality election beam and IR laser

    International Nuclear Information System (INIS)

    Washio, M.; Sakaue, K.; Hama, Y.; Kamiya, Y.; Moriyama, R.; Hezume, K.; Saito, T.; Kuroda, R.; Kashiwagi, S.; Ushida, K.; Hayano, H.; Urakawa, J.

    2006-01-01

    High quality beam generation project based on High-Tech Research Center Project, which has been approved by Ministry of Education, Culture, Sports, Science and Technology in 1999, has been conducted by advance research institute for science and engineering, Waseda University. In the project, laser photo-cathode RF-gun has been selected for the high quality electron beam source. RF cavities with low dark current, which were made by diamond turning technique, have been successfully manufactured. The low emittance electron beam was realized by choosing the modified laser injection technique. The obtained normalized emittance was about 3 mm·mrad at 100 pC of electron charge. The soft X-ray beam generation with the energy of 370 eV, which is in the energy region of so-called 'water window', by inverse Compton scattering has been performed by the collision between IR laser and the low emittance electron beams. (authors)

  16. High-repetition intra-cavity source of Compton radiation

    International Nuclear Information System (INIS)

    Pogorelsky, I; Polyanskiy, M; Agustsson, R; Campese, T; Murokh, A; Ovodenko, A; Shaftan, T

    2014-01-01

    We report our progress in developing a high-power Compton source for a diversity of applications ranging from university-scale compact x-ray light sources and metrology tools for EUV lithography, to high-brilliance gamma-sources for nuclear analysis. Our conceptual approach lies in multiplying the source’s repetition rate and increasing its average brightness by placing the Compton interaction point inside the optical cavity of an active laser. We discuss considerations in its design, our simulations, and tests of the laser’s cavity that confirm the feasibility of the proposed concept. (paper)

  17. Electronic structure of the palladium hydride studied by compton scattering

    CERN Document Server

    Mizusaki, S; Yamaguchi, M; Hiraoka, N; Itou, M; Sakurai, Y

    2003-01-01

    The hydrogen-induced changes in the electronic structure of Pd have been investigated by Compton scattering experiments associated with theoretical calculations. Compton profiles (CPs) of single crystal of Pd and beta phase hydride PdH sub x (x=0.62-0.74) have been measured along the [100], [110] and [111] directions with a momentum resolution of 0.14-0.17 atomic units using 115 keV x-rays. The theoretical Compton profiles have been calculated from the wavefunctions obtained utilizing the full potential linearized augmented plane wave method within the local density approximation for Pd and stoichiometric PdH. The experimental and the theoretical results agreed well with respect to the difference in the CPs between PdH sub x and Pd, and the anisotropy in the CPs of Pd or PdH sub x. This study provides lines of evidence that upon hydride formation the lowest valance band of Pd is largely modified due to hybridization with H 1s-orbitals and the Fermi energy is raised into the sp-band. (author)

  18. Effective atomic numbers of blue topaz at different gamma-rays energies obtained from Compton scattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Tuschareon, S., E-mail: tuscharoen@hotmail.com; Limkitjaroenporn, P., E-mail: tuscharoen@hotmail.com; Kaewkhao, J., E-mail: tuscharoen@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000, Thailand and Science Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom, 73000 (Thailand)

    2014-03-24

    Topaz occurs in a wide range of colors, including yellow, orange, brown, pink-to-violet and blue. All of these color differences are due to color centers. In order to improve the color of natural colorless topaz, the most commonly used is irradiated with x- or gamma-rays, indicated that attenuation parameters is important to enhancements by irradiation. In this work, the mass attenuation coefficients of blue topaz were measured at the different energy of γ-rays using the Compton scattering technique. The results show that, the experimental values of mass attenuation coefficient are in good agreement with the theoretical values. The mass attenuation coefficients increase with the decrease in gamma rays energies. This may be attributed to the higher photon interaction probability of blue topaz at lower energy. This result is a first report of mass attenuation coefficient of blue topaz at different gamma rays energies.

  19. Storage of laser pulses in a Fabry-Perot optical cavity for high flux x-ray

    International Nuclear Information System (INIS)

    Takezawa, K.; Honda, Y.; Sasao, N.; Araki, S.; Higashi, Y.; Taniguchi, T.; Urakawa, J.; Nomura, M.; Sakai, H.

    2004-01-01

    We have a plan to produce a high flux x-ray for medical use by using a Fabry-Perot optical cavity in which the lower pulses from a mode-locked laser are stored and enhanced. In this plan, the X-ray is produced from the Compton scattering of electrons in a storage ring with the laser light in the optical cavity. In order to increase X-ray flux, high power laser light is necessary. We show the enhancement of the laser power from the model locked laser with a Fabry-Perot optical cavity. (author)

  20. Response function of NaI(Tl) detectors and multiple backscattering of gamma rays in aluminium

    International Nuclear Information System (INIS)

    Sabharwal, Arvind D.; Singh, Manpreet; Singh, Bhajan; Sandhu, B.S.

    2008-01-01

    The response function, converting the observed pulse-height distribution of a NaI(Tl) detector to a true photon spectrum, is obtained experimentally with the help of an inverse matrix approach. The energy of gamma-ray photons continuously decreases as the number of scatterings increases in a sample having finite dimensions when one deals with the depth of the sample. The present experiments are undertaken to study the effect of target thickness on intensity distribution of gamma photons multiply backscattered from an aluminium target. A NaI(Tl) gamma-ray detector detects the photons backscattered from the aluminium target. The subtraction of analytically estimated singly scattered distribution from the observed intensity distribution (originating from interactions of primary gamma-ray photons with the target) results in multiply backscattered events. We observe that for each incident gamma photon energy, the number of multiply backscattered photons increases with increase in target thickness and then saturates at a particular target thickness called the saturation thickness (depth). Saturation thickness for multiply backscattering of gamma photons is found to decrease with increase in energy of incident gamma-ray photons

  1. NuSTAR SPECTROSCOPY OF MULTI-COMPONENT X-RAY REFLECTION FROM NGC 1068

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Franz E. [Pontificia Universidad Católica de Chile, Instituto de Astrofísica, Casilla 306, Santiago 22 (Chile); Arévalo, Patricia [EMBIGGEN Anillo, Concepción (Chile); Walton, Dominic J.; Baloković, Mislav; Brightman, Murray; Harrison, Fiona A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Koss, Michael J. [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Puccetti, Simonetta [ASDC-ASI, Via del Politecnico, I-00133 Roma (Italy); Gandhi, Poshak [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Alexander, David M.; Moro, Agnese Del [Department of Physics, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Boggs, Steve E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Brandt, William N.; Luo, Bin [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Comastri, Andrea [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Hickox, Ryan [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); and others

    2015-10-20

    We report on high-energy X-ray observations of the Compton-thick Seyfert 2 galaxy NGC 1068 with NuSTAR, which provide the best constraints to date on its >10 keV spectral shape. The NuSTAR data are consistent with those from past and current instruments to within cross-calibration uncertainties, and we find no strong continuum or line variability over the past two decades, which is in line with its X-ray classification as a reflection-dominated Compton-thick active galactic nucleus. The combined NuSTAR, Chandra, XMM-Newton, and Swift BAT spectral data set offers new insights into the complex secondary emission seen instead of the completely obscured transmitted nuclear continuum. The critical combination of the high signal-to-noise NuSTAR data and the decomposition of the nuclear and extranuclear emission with Chandra allow us to break several model degeneracies and greatly aid physical interpretation. When modeled as a monolithic (i.e., a single N{sub H}) reflector, none of the common Compton reflection models are able to match the neutral fluorescence lines and broad spectral shape of the Compton reflection hump without requiring unrealistic physical parameters (e.g., large Fe overabundances, inconsistent viewing angles, or poor fits to the spatially resolved spectra). A multi-component reflector with three distinct column densities (e.g., with best-fit values of N{sub H} of 1.4 × 10{sup 23}, 5.0 × 10{sup 24}, and 10{sup 25} cm{sup −2}) provides a more reasonable fit to the spectral lines and Compton hump, with near-solar Fe abundances. In this model, the higher N{sub H} component provides the bulk of the flux to the Compton hump, while the lower N{sub H} component produces much of the line emission, effectively decoupling two key features of Compton reflection. We find that ≈30% of the neutral Fe Kα line flux arises from >2″ (≈140 pc) and is clearly extended, implying that a significant fraction (and perhaps most) of the <10 keV reflected component

  2. Quantitative X ray analysis system. User's manual and guide to X ray fluorescence technique

    International Nuclear Information System (INIS)

    2009-01-01

    This guide covers trimmed and re-arranged version 3.6 of the Quantitative X ray Analysis System (QXAS) software package that includes the most frequently used methods of quantitative analysis. QXAS is a comprehensive quantitative analysis package that has been developed by the IAEA through research and technical contracts. Additional development has also been carried out in the IAEA Laboratories in Seibersdorf where QXAS was extensively tested. New in this version of the manual are the descriptions of the Voigt-profile peak fitting, the backscatter fundamental parameters' and emission-transmission methods of chemical composition analysis, an expanded chapter on the X ray fluorescence physics, and completely revised and increased number of practical examples of utilization of the QXAS software package. The analytical data accompanying this manual were collected in the IAEA Seibersdorf Laboratories in the years 2006/2007

  3. From neutron Compton profiles to momentum distribution: Assessment of direct numerical determination

    International Nuclear Information System (INIS)

    Senesi, R.; Flammini, D.; Romanelli, G.; Andreani, C.

    2013-01-01

    Inelastic neutron scattering at high momentum transfers, in the neutron Compton scattering regime, provides an access to the neutron Compton profiles, the analogous of Compton profiles in X-ray scattering. The line shape analysis of the neutron Compton profiles is usually carried out making use of multiparametric nonlinear fitting, garnering detailed information about the momentum distribution of the target atoms. This paper presents the proposal to directly determine numerically the momentum distribution from the profiles, thus eliminating the possible instabilities present in multiparametric fitting. A comparison with Monte Carlo simulations and with previous measurements on polycrystalline ice provides quantitative assessments of the proposed method

  4. A FOURIER-TRANSFORMED BREMSSTRAHLUNG FLASH MODEL FOR THE PRODUCTION OF X-RAY TIME LAGS IN ACCRETING BLACK HOLE SOURCES

    International Nuclear Information System (INIS)

    Kroon, John J.; Becker, Peter A.

    2014-01-01

    Accreting black hole sources show a wide variety of rapid time variability, including the manifestation of time lags during X-ray transients, in which a delay (phase shift) is observed between the Fourier components of the hard and soft spectra. Despite a large body of observational evidence for time lags, no fundamental physical explanation for the origin of this phenomenon has been presented. We develop a new theoretical model for the production of X-ray time lags based on an exact analytical solution for the Fourier transform describing the diffusion and Comptonization of seed photons propagating through a spherical corona. The resulting Green's function can be convolved with any source distribution to compute the associated Fourier transform and time lags, hence allowing us to explore a wide variety of injection scenarios. We show that thermal Comptonization is able to self-consistently explain both the X-ray time lags and the steady-state (quiescent) X-ray spectrum observed in the low-hard state of Cyg X-1. The reprocessing of bremsstrahlung seed photons produces X-ray time lags that diminish with increasing Fourier frequency, in agreement with the observations for a wide range of sources

  5. Gamma ray burst source locations with the Ulysses/Compton/PVO Network

    International Nuclear Information System (INIS)

    Cline, T.L.; Hurley, K.C.; Boer, M.; Sommer, M.; Niel, M.; Fishman, G.J.; Kouveliotou, C.; Meegan, C.A.; Paciesas, W.S.; Wilson, R.B.; Laros, J.G.; Klebesadel, R.W.

    1991-01-01

    The new interplanetary gamma-ray burst network will determine source fields with unprecedented accuracy. The baseline of the Ulysses mission and the locations of Pioneer-Venus Orbiter and of Mars Observer will ensure precision to a few tens of arc seconds. Combined with the event phenomenologies of the Burst and Transient Source Experiment on Compton Observatory, the source locations to be achieved with this network may provide a basic new understanding of the puzzle of gamma ray bursts

  6. On the origin of X-ray spectra in luminous blazars

    International Nuclear Information System (INIS)

    Sikora, Marek; Janiak, Mateusz; Moderski, Rafał; Nalewajko, Krzysztof; Madejski, Greg M.

    2013-01-01

    Gamma-ray luminosities of some quasar-associated blazars imply jet powers reaching values comparable to the accretion power even if assuming very strong Doppler boosting and very high efficiency of gamma-ray production. With much lower radiative efficiencies of protons than of electrons, and the recent reports of very strong coupling of electrons with shock-heated protons indicated by particle-in-cell simulations, the leptonic models seem to be strongly favored over the hadronic ones. However, the electron-proton coupling combined with the external-radiation-Compton (ERC) models of gamma-ray production in leptonic models predict extremely hard X-ray spectra, with energy indices α x ∼ 0. This is inconsistent with the observed 2-10 keV slopes of blazars, which cluster around α x ∼ 0.6. This problem can be resolved by assuming that electrons can be efficiently cooled down radiatively to non-relativistic energies, or that blazar spectra are entirely dominated by the synchrotron self-Compton (SSC) component up to at least 10 keV. Here, we show that the required cooling can be sufficiently efficient only at distances r < 0.03 pc. SSC spectra, on the other hand, can be produced roughly co-spatially with the observed synchrotron and ERC components, which are most likely located roughly at a parsec scale. We show that the dominant SSC component can also be produced much further than the dominant synchrotron and ERC components, at distances of ≳ 10 pc. Hence, depending on the spatial distribution of the energy dissipation along the jet, one may expect to see γ-ray/optical events with either correlated or uncorrelated X-rays. In all cases the number of e + e – pairs per proton is predicted to be very low. The direct verification of the proposed SSC scenario, and particularly the question of the co-spatiality of the SSC component with other spectral components, requires sensitive observations in the hard X-ray band. This is now possible with the deployment of the Nu

  7. Detection of detachments and inhomogeneities in frescos by Compton scattering

    International Nuclear Information System (INIS)

    Castellano, A.; Cesareo, R.; Buccolieri, G.; Donativi, M.; Palama, F.; Quarta, S.; De Nunzio, G.; Brunetti, A.; Marabelli, M.; Santamaria, U.

    2005-01-01

    A mobile instrument has been developed for the detection and mapping of detachments in frescos by using Compton back scattered photons. The instrument is mainly composed of a high energy X-ray tube, an X-ray detection system and a translation table. The instrument was first applied to samples simulating various detachment situations, and then transferred to the Vatican Museum to detect detachments and inhomogeneities in the stanza di Eliodoro, one of the 'Raphael's stanze'

  8. Calibration of the Gamma-RAy Polarimeter Experiment (GRAPE) at a polarized hard X-ray beam

    International Nuclear Information System (INIS)

    Bloser, P.F.; Legere, J.S.; McConnell, M.L.; Macri, J.R.; Bancroft, C.M.; Connor, T.P.; Ryan, J.M.

    2009-01-01

    The Gamma-RAy Polarimeter Experiment (GRAPE) is a concept for an astronomical hard X-ray Compton polarimeter operating in the 50-500 keV energy band. The instrument has been optimized for wide-field polarization measurements of transient outbursts from energetic astrophysical objects such as gamma-ray bursts and solar flares. The GRAPE instrument is composed of identical modules, each of which consists of an array of scintillator elements read out by a multi-anode photomultiplier tube (MAPMT). Incident photons Compton scatter in plastic scintillator elements and are subsequently absorbed in inorganic scintillator elements; a net polarization signal is revealed by a characteristic asymmetry in the azimuthal scattering angles. We have constructed a prototype GRAPE module containing a single CsI(Na) calorimeter element, at the center of the MAPMT, surrounded by 60 plastic elements. The prototype has been combined with custom readout electronics and software to create a complete 'engineering model' of the GRAPE instrument. This engineering model has been calibrated using a nearly 100% polarized hard X-ray beam at the Advanced Photon Source at Argonne National Laboratory. We find modulation factors of 0.46±0.06 and 0.48±0.03 at 69.5 and 129.5 keV, respectively, in good agreement with Monte Carlo simulations. In this paper we present details of the beam test, data analysis, and simulations, and discuss the implications of our results for the further development of the GRAPE concept.

  9. X-Rays from NGC 3256: High-Energy Emission in Starburst Galaxies and Their Contribution to the Cosmic X-Ray Background

    International Nuclear Information System (INIS)

    Moran, Edward C.; Lehnert, Matthew D.; Helfand, David J.

    1999-01-01

    The infrared-luminous galaxy NGC 3256 is a classic example of a merger-induced nuclear starburst system. We find here that it is the most X-ray-luminous star-forming galaxy yet detected (L 0.5-10keV =1.6x10 42 ergs s-1). Long-slit optical spectroscopy and a deep, high-resolution ROSAT X-ray image show that the starburst is driving a ''superwind'' which accounts for ∼20% of the observed soft X-ray emission. Analysis of X-ray spectral data from ASCA indicates this gas has a characteristic temperature of kT≅0.3 keV. Our model for the broadband X-ray emission of NGC 3256 contains two additional components: a warm thermal plasma (kT≅0.8 keV) associated with the central starburst, and a hard power-law component with an energy index of α X ≅0.7. We discuss the energy budget for the two thermal plasmas and find that the input of mechanical energy from the starburst is more than sufficient to sustain the observed level of emission. We also examine possible origins for the power-law component, concluding that neither a buried AGN nor the expected population of high-mass X-ray binaries can account for this emission. Inverse Compton scattering, involving the galaxy's copious flux of infrared photons and the relativistic electrons produced by supernovae, is likely to make a substantial contribution to the hard X-ray flux. Such a model is consistent with the observed radio and IR fluxes and the radio and X-ray spectral indices. We explore the role of X-ray-luminous starbursts in the production of the cosmic X-ray background radiation. The number counts and spectral index distribution of the faint radio source population, thought to be dominated by star-forming galaxies, suggest that a significant fraction of the hard X-ray background could arise from starbursts at moderate redshift. (c) (c) 1999. The American Astronomical Society

  10. X-ray studies of BL Lacertae objects

    International Nuclear Information System (INIS)

    Madejski, G.M.

    1986-01-01

    This thesis presents spectral x-ray data for BL Lac objects observed by the IPC and MPC aboard the Einstein Observatory and interprets that data in a context of their overall radiation spectra using synchrotron and synchrotron self-Compton models. The objects considered are: OJ 287, PKS 0735 + 178, I Zw 186, PKS 0548-322, Mkn 180, BL Lacertae, PKS 2155-304, H 0414-009 and H 0323 + 022. X-ray spectra of BL Lac objects are well described by a power law model with a low energy cutoff due to absorption within the own Galaxy. The best fit values of the energy spectral index α in the IPC (0.2-4.0 keV) band range from 0.73 to 2.35, with a mean of 1.2 and rms spread of 0.51. No single, universal index can fit the spectra of all objects. For all objects except PKS 0735 + 178, the x-ray spectrum is an extrapolation of the infrared/optical UV spectrum; in PKS 0735 + 178, the x-ray spectrum lies significantly below such an extrapolation. The overall electromagnetic distribution in those objects is interpreted as arising due to the synchrotron process in at least two spatial regions, with sizes respectively ∼10 18 cm for the radio component and ∼10 16 cm for the optical component. In objects where the x-ray spectrum lies on the extrapolation of the infrared-optical-ultraviolet spectrum, the x-ray emission is interpreted also to be due to the synchrotron process

  11. EXTERNAL COMPTON SCATTERING IN BLAZAR JETS AND THE LOCATION OF THE GAMMA-RAY EMITTING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Finke, Justin D., E-mail: justin.finke@nrl.navy.mil [U.S. Naval Research Laboratory, Code 7653, 4555 Overlook Ave. SW, Washington, DC, 20375-5352 (United States)

    2016-10-20

    I study the location of the γ -ray emission in blazar jets by creating a Compton-scattering approximation that is valid for all anisotropic radiation fields in the Thomson through Klein–Nishina regimes, is highly accurate, and can speed up numerical calculations by up to a factor of ∼10. I apply this approximation to synchrotron self-Compton, external Compton scattering of photons from the accretion disk, broad line region (BLR), and dust torus. I use a stratified BLR model and include detailed Compton-scattering calculations of a spherical and flattened BLR. I create two dust torus models, one where the torus is an annulus and one where it is an extended disk. I present detailed calculations of the photoabsorption optical depth using my detailed BLR and dust torus models, including the full angle dependence. I apply these calculations to the emission from a relativistically moving blob traveling through these radiation fields. The ratio of γ -ray to optical flux produces a predictable pattern that could help locate the γ -ray emission region. I show that the bright flare from 3C 454.3 in 2010 November detected by the Fermi Large Area Telescope is unlikely to originate from a single blob inside the BLR. This is because it moves outside the BLR in a time shorter than the flare duration, although emission by multiple blobs inside the BLR is possible. Also, γ -rays are unlikely to originate from outside of the BLR, due to the scattering of photons from an extended dust torus, since the cooling timescale would be too long to explain the observed short variability.

  12. A Ge(Li)-NaI(Tl) Compton-suppression spectrometer for in-beam γ-ray spectroscopy, ch. 2

    International Nuclear Information System (INIS)

    Driel, M.A. van; Hoogenboom, A.M.

    1976-01-01

    A Compton-suppression spectrometer has been constructed for in-beam γ-ray work. It consists of a closed-end Ge(Li) detector with an efficiency of 21% and a resolution of 2.0 keV for 1.33 MeV γ-rays surrounded by a NaI(Tl) shield (dia. 230 mm, length 280 mm). The overall Compton-suppression factor for a 60 Co spectrum is 10. Details of the construction are discussed and experimental properties are compared with design calculations

  13. Compact X-ray source at STF (Super Conducting Accelerator Test Facility)

    International Nuclear Information System (INIS)

    Urakawa, J

    2012-01-01

    KEK-STF is a super conducting linear accelerator test facility for developing accelerator technologies for the ILC (International Linear Collider). We are supported in developing advanced accelerator technologies using STF by Japanese Ministry (MEXT) for Compact high brightness X-ray source development. Since we are required to demonstrate the generation of high brightness X-ray based on inverse Compton scattering using super conducting linear accelerator and laser storage cavity technologies by October of next year (2012), the design has been fixed and the installation of accelerator components is under way. The necessary technology developments and the planned experiment are explained.

  14. BOW TIES IN THE SKY. I. THE ANGULAR STRUCTURE OF INVERSE COMPTON GAMMA-RAY HALOS IN THE FERMI SKY

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Avery E.; Shalaby, Mohamad [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada); Tiede, Paul [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada); Pfrommer, Christoph [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Puchwein, Ewald [Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom); Chang, Philip [Department of Physics, University of Wisconsin-Milwaukee, 1900 E. Kenwood Boulevard, Milwaukee, WI 53211 (United States); Lamberts, Astrid [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2016-12-01

    Extended inverse Compton halos are generally anticipated around extragalactic sources of gamma rays with energies above 100 GeV. These result from inverse Compton scattered cosmic microwave background photons by a population of high-energy electron/positron pairs produced by the annihilation of the high-energy gamma rays on the infrared background. Despite the observed attenuation of the high-energy gamma rays, the halo emission has yet to be directly detected. Here, we demonstrate that in most cases these halos are expected to be highly anisotropic, distributing the upscattered gamma rays along axes defined either by the radio jets of the sources or oriented perpendicular to a global magnetic field. We present a pedagogical derivation of the angular structure in the inverse Compton halo and provide an analytic formalism that facilitates the generation of mock images. We discuss exploiting this fact for the purpose of detecting gamma-ray halos in a set of companion papers.

  15. Non-thermal Hard X-Ray Emission from Coma and Several Abell Clusters

    International Nuclear Information System (INIS)

    Correa, C

    2004-01-01

    We report results of hard X-Ray observations of the clusters Coma, Abell 496, Abell754, Abell 1060, Abell 1367, Abell2256 and Abell3558 using RXTE data from the NASA HEASARC public archive. Specifically we searched for clusters with hard x-ray emission that can be fitted by a power law because this would indicate that the cluster is a source of non-thermal emission. We are assuming the emission mechanism proposed by Vahk Petrosian where the inter cluster space contains clouds of relativistic electrons that by themselves create a magnetic field and emit radio synchrotron radiation. These relativistic electrons Inverse-Compton scatter Microwave Background photons up to hard x-ray energies. The clusters that were found to be sources of non-thermal hard x-rays are Coma, Abell496, Abell754 and Abell 1060

  16. Development of a Compton camera for online monitoring and dosimetry of laser-accelerated proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Thirolf, Peter G.; Lang, Christian; Aldawood, Saad; Parodi, Katia [LMU Muenchen (Germany); Habs, Dietrich [LMU Muenchen (Germany); MPI fuer Quantenoptik, Garching (Germany); Maier, Ludwig [TU Muenchen (Germany)

    2013-07-01

    A Compton camera is presently under construction in Garching, designed for monitoring and dosimetry of laser-accelerated protons for bio-medical applications via position-resolved prompt γ-ray detection. When ion beams suitable for hadron therapy (protons, carbon ions) interact with tissue (or tissue-equivalent plastic or water phantoms), nuclear reactions induce prompt γ rays that can be utilized, e.g., to verify the ion beam range (i.e. monitor the Bragg peak position) by exploiting the Compton scattering kinematics of these photons. Our Compton camera (formed by a combination of scatter and absorber detector) consists of a stack of six double-sided Si-strip detectors (50 x 50 mm{sup 2}, 0.5 mm thick, 128 strips/side, pitch 390 μm) acting as scatterers, while the absorber is formed by a LaBr{sub 3} scintillator crystal (50 x 50 x 30 mm{sup 3}), read out by a (8 x 8) pixelated multi-anode PMT. Simulation results for design specifications and expected values of resolution and efficiency are presented, as well as the status of the prototype presently under construction.

  17. The NuSTAR View of Nearby Compton-thick Active Galactic Nuclei: The Cases of NGC 424, NGC 1320, and IC 2560

    Energy Technology Data Exchange (ETDEWEB)

    Baloković, M.; Comastri, A.; Harrison, F. A.; Alexander, D. M.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Moro, A. Del; Gandhi, P.; Hailey, C. J.; Koss, M.; Lansbury, G. B.; Luo, B.; Madejski, G. M.; Marinucci, A.; Matt, G.; Markwardt, C. B.; Puccetti, S.; Reynolds, C. S.; Risaliti, G.; Rivers, E.; Stern, D.; Walton, D. J.; Zhang, W. W.

    2014-09-30

    We present X-ray spectral analyses for three Seyfert 2 active galactic nuclei, NGC 424, NGC 1320, and IC 2560, observed by NuSTAR in the 3-79 keV band. The high quality hard X-ray spectra allow detailed modeling of the Compton reflection component for the first time in these sources. Using quasi-simultaneous NuSTAR and Swift/XRT data, as well as archival XMM-Newton data, we find that all three nuclei are obscured by Compton-thick material with column densities in excess of ~ 5 x 1024 cm-2, and that their X-ray spectra above 3 keV are dominated by reflection of the intrinsic continuum on Compton-thick material. Due to the very high obscuration, absorbed intrinsic continuum components are not formally required by the data in any of the sources. We constrain the intrinsic photon indices and the column density of the reflecting medium through the shape of the reflection spectra. Using archival multi-wavelength data we recover the intrinsic X-ray luminosities consistent with the broadband spectral energy distributions. Our results are consistent with the reflecting medium being an edge-on clumpy torus with a relatively large global covering factor and overall reflection efficiency of the order of 1%. Given the unambiguous confirmation of the Compton-thick nature of the sources, we investigate whether similar sources are likely to be missed by commonly used selection criteria for Compton-thick AGN, and explore the possibility of finding their high-redshift counterparts.

  18. Detection of detachments and inhomogeneities in frescos by Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, A. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Cesareo, R. [Istituto di Matematica e Fisica, Universita di Sassari, 07100 Sassari (Italy) and INFN, Sezione di Cagliari, Cittadella Universitaria di Monserrato, 09042 Cagliari (Italy)]. E-mail: cesareo@uniss.it; Buccolieri, G. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Donativi, M. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); Palama, F. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Quarta, S. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); De Nunzio, G. [Dipartimento di Scienza dei Materiali, Universita di Lecce, 73100 Lecce (Italy); INFN, Sezione di Lecce, via per Arnesano, 73100 Lecce (Italy); Brunetti, A. [Istituto di Matematica e Fisica, Universita di Sassari, 07100 Sassari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria di Monserrato, 09042 Cagliari (Italy); Marabelli, M. [Istituto Centrale del Restauro, P.zza S. Francesco di Paola, 00184 Rome (Italy); Santamaria, U. [Laboratori dei Musei Vaticani, Citta del Vaticano, Rome (Italy)

    2005-07-01

    A mobile instrument has been developed for the detection and mapping of detachments in frescos by using Compton back scattered photons. The instrument is mainly composed of a high energy X-ray tube, an X-ray detection system and a translation table. The instrument was first applied to samples simulating various detachment situations, and then transferred to the Vatican Museum to detect detachments and inhomogeneities in the stanza di Eliodoro, one of the 'Raphael's stanze'.

  19. SENSITIVITY OF STACKED IMAGING DETECTORS TO HARD X-RAY POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Muleri, Fabio; Campana, Riccardo, E-mail: fabio.muleri@iaps.inaf.it [INAF-IAPS, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2012-06-01

    The development of multi-layer optics which allow to focus photons up to 100 keV and more promises an enormous jump in sensitivity in the hard X-ray energy band. This technology is already planned to be exploited by future missions dedicated to spectroscopy and imaging at energies >10 keV, e.g., Astro-H and NuSTAR. Nevertheless, our understanding of the hard X-ray sky would greatly benefit from carrying out contemporaneous polarimetric measurements, because the study of hard spectral tails and of polarized emission are often two complementary diagnostics of the same non-thermal and acceleration processes. At energies above a few tens of keV, the preferred technique to detect polarization involves the determination of photon directions after a Compton scattering. Many authors have asserted that stacked detectors with imaging capabilities can be exploited for this purpose. If it is possible to discriminate those events which initially interact in the first detector by Compton scattering and are subsequently absorbed by the second layer, then the direction of scattering is singled out from the hit pixels in the two detectors. In this paper, we give the first detailed discussion of the sensitivity of such a generic design to the X-ray polarization. The efficiency and the modulation factor are calculated analytically from the geometry of the instruments and then compared with the performance as derived by means of Geant4 Monte Carlo simulations.

  20. Simultaneous radio and x-ray activity in SS 433

    International Nuclear Information System (INIS)

    Seaquist, E.R.; Gilmore, W.S.; Johnston, K.J.; Grindlay, J.E.

    1982-01-01

    Simultaneous observations at radio and X-ray wavelengths of flarelike events in SS 433 were made during 1979 October 5-9 and 19-22. The radio spectra show evidence for low-frequency absorption, which may be due to either synchrotron self-absorption or free-free absorption by a stellar wind. In the latter case, a model is developed indicating that clouds of relativistic gas are generated at least 10 14 cm from the stellar object and are swept outward through the stellar wind by highly collimated beams. A mass loss of approx.10 -5 M/sub sun/ yr -1 and an outflow speed of approx.1000 km s -1 are consistent with the data. The beam velocities (0.26c) are found to be consistent with the previous optical and radio data. The X-ray emission is evidently nonthermal and closely related to the radio flares, particularly during the event on October 5-9. The behavior during the second event on October 19-22 is considerably more complex. The source of the X-ray radiation is either synchrotron or inverse Compton emission. No clear cut decision is permitted by the data, although the latter mechanism seems to be an inevitable consequence of the known presence of both ultrarelativistic electrons and a high optical stellar luminosity. The inverse Compton mechansim is considered in more detail in the context of the model used to explain the radio behavior. The complexity of the October 19-22 data seems to defy' any simple model

  1. Characterization of uranium in bituminized radioactive waste drums by self-induced X-ray fluorescence

    International Nuclear Information System (INIS)

    Pin, Patrick; Perot, Bertrand

    2013-06-01

    This paper reports the experimental qualification of an original uranium characterization method based on fluorescence X rays induced by the spontaneous gamma emission of bituminized radioactive waste drums. The main 661.7 keV gamma ray following the 137 Cs decay produces by Compton scattering in the bituminized matrix an intense photon continuum around 100 keV, i.e. in the uranium X-ray fluorescence region. 'Self-induced' X-rays produced without using an external source allow a quantitative assessment of uranium as 137 Cs and uranium are homogeneously mixed and distributed in the bituminized matrix. The paper presents the experimental qualification of the method with real waste drums, showing a detection limit well below 1 kg of uranium in 20 min acquisitions while the usual gamma rays of 235 U (185 keV) or 238 U (1001 keV of 234m Pa in the radioactive decay chain) are not detected. The relative uncertainty on the uranium mass assessed by self-induced X-ray fluorescence (SXRF) is about 50%, with a 95% confidence level, taking into account the correction of photon attenuation in the waste matrix. This last indeed contains high atomic numbers elements like uranium, but also barium, in quantities which are not known for each drum. Attenuation is estimated thanks to the peak-to-Compton ratio to limit the corresponding uncertainty. The SXRF uranium masses measured in the real drums are in good agreement with long gamma-ray spectroscopy measurements (1001 keV peak) or with radiochemical analyses. (authors)

  2. Composition of Renaissance paint layers: simultaneous particle induced X-ray emission and backscattering spectrometry.

    Science.gov (United States)

    de Viguerie, L; Beck, L; Salomon, J; Pichon, L; Walter, Ph

    2009-10-01

    Particle induced X-ray emission spectroscopy (PIXE) is now routinely used in the field of cultural heritage. Various setups have been developed to investigate the elemental composition of wood/canvas paintings or of cross-section samples. However, it is not possible to obtain information concerning the quantity of organic binder. Backscattering spectrometry (BS) can be a useful complementary method to overcome this limitation. In the case of paint layers, PIXE brings the elemental composition (major elements to traces) and the BS spectrum can give access to the proportion of pigment and binder. With the use of 3 MeV protons for PIXE and BS simultaneously, it was possible to perform quantitative analysis including C and O for which the non-Rutherford cross sections are intense. Furthermore, with the use of the same conditions for PIXE and BS, the experiment time and the potential damage by the ion beam were reduced. The results obtained with the external beam of the Accélérateur Grand Louvre pour l'Analyse Elementaire (AGLAE) facility on various test painting samples and on cross sections from Italian Renaissance masterpieces are shown. Simultaneous combination of PIXE and BS leads to a complete characterization of the paint layers: elemental composition and proportion of the organic binder have been determined and thus provide useful information about ancient oil painting recipes.

  3. Development of Compact Soft X-ray Source Based on Laser Undulator

    CERN Document Server

    Kuroda, Ryunosuke; Minamiguchi, S; Saitô, T; Ueyama, D; Washio, Masakazu

    2004-01-01

    A compact soft X-ray source is required in various research fields such as material and biological science. The laser undulator based on backward Compton scattering has been developed as a compact soft X-ray source for the biological observation at Waseda University. It is performed in a water window region (250eV - 500 eV) using the interaction between 1047 nm Nd:YLF laser and 4 MeV high quality electron beam generated from rf gun system. The range of energy in the water window region has K-shell absorption edges of Oxygen, Carbon and Nitrogen, which mainly constitute of living body. Since the absorption coefficient of water is much smaller than the protein’s coefficient in this range, a dehydration of the specimens is not necessary. As a preliminary experiment, about 300 eV X-ray generation was carried out. As next step, soft X-ray optics with zone plate was proposed for Soft X-ray microscopy. In this conference, we will report details and results of the experiment.

  4. Accelerator X-ray sources

    International Nuclear Information System (INIS)

    Talman, R.

    2006-01-01

    This is the first monograph to cover in-depth the production of brilliant x-ray beams in accelerators, with emphasis on fourth generation designs, such as energy recovery linacs (ERL), fast cycling storage rings, and free electron lasers (FEL). Going beyond existing treatments of the influence of synchroton radiation on accelerator operation, special emphasis is placed on the design of undulator-based beam lines, and the physics of undulator radiation. Starting from the unified treatment of electron and photon beams both as bunches of particles and as waves, the author proceeds to analyse the main components, from electron gun, through linac and arc lattice, to the x-ray beam line. Designs are given for both an ERL and a more conventional storage ring complex, and their anticipated properties are compared in detail. Space charge effects are analysed with emphasis on coherent synchrotron radiation and emittance dilution. Beam diagnostics using synchrotron radiation or laser wire (Compton scattering) are also analysed in detail. Written primarily for general, particle, and radiation physicists, the systematic treatment adopted by the work makes it equally suitable as an advanced textbook for young researchers. (orig.)

  5. Physical models for the hypothesized F(nu) varies as the inverse of nu infrared to X-ray continuum of quasi-stellar objects

    International Nuclear Information System (INIS)

    Stein, W.A.

    1991-01-01

    Models for producing the large ultraviolet bump, low-energy X-rays and the hypothesized F(nu) varies as the inverse of nu IR to X-ray continua of QSOs are investigated. Thermal Comptonization in a hot corona of an accretion disk appears to offer the best potential. However, under the energy input conditions in QSOs a corona will reach T above 100 million K. It must be optically thin, so as to not Comptonize the accretion disk ultraviolet emission to an unacceptable extent. However, it then cannot Comptonize a low-frequency source to an F(nu) varies as the inverse of nu continuum extending from the infrared to X-rays. An inner corona, possibly optically thick because of n varies as the sq rt of r density increase, is required for the F(nu) varies as the inverse of nu continuum, but it cannot therefore cover the UV-emitting accretion disk. However, then a Wien peak associated with this inner volume may be implied at 10 keV, contrary to observations. 42 refs

  6. Quasi-simultaneous observations of the BL Lac object MK 501 in X-ray, UV, visible, IR and radio frequencies

    Science.gov (United States)

    Kondo, D. M.; Worrall, D. M.; Mushotzky, R. F.; Hackney, R. L.; Hackney, K. H.; Oke, J. B.; Yee, H.; Neugebauer, G.; Matthews, K.; Feldman, P. A.

    1980-01-01

    Quasi-simultaneous observations of the BL Lacertae (Lac) objects MK 501 were performed for the first time at X-ray, ultraviolet, visible, infrared, and radio frequencies. The observed spectral slope from the X-ray to UV regions is positive and continuous, but that from the mid UV to visible light region becomes gradually flat and possibly turns down toward lower frequencies; the optical radio emission can not be accounted for by a single power law. Several theoretical models were considered for the emission mechanism. A quantitative comparison was performed with the synchrotron-self-Compton model; the total spectrum is found consistent with this model. The spectrum from visible light to X-ray is consistent with synchrotron radiation or with inverse-Compton scattering by a hot thermal cloud of electrons. The continuity of the spectral slope from X-ray to UV implied by the current data suggests that the previous estimates of the total luminosity of this BL Lac object is underestimated by a factor of about three or four.

  7. Single-shot beam-position monitor for x-ray free electron laser

    Science.gov (United States)

    Tono, Kensuke; Kudo, Togo; Yabashi, Makina; Tachibana, Takeshi; Feng, Yiping; Fritz, David; Hastings, Jerome; Ishikawa, Tetsuya

    2011-02-01

    We have developed an x-ray beam-position monitor for detecting the radiation properties of an x-ray free electron laser (FEL). It is composed of four PIN photodiodes that detect backscattered x-rays from a semitransparent diamond film placed in the beam path. The signal intensities from the photodiodes are used to compute the beam intensity and position. A proof-of-principle experiment at a synchrotron light source revealed that the error in the beam position is reduced to below 7 μm by using a nanocrystal diamond film prepared by plasma-enhanced chemical vapor deposition. Owing to high dose tolerance and transparency of the diamond film, the monitor is suitable for routine diagnostics of extremely intense x-ray pulses from the FEL.

  8. Evaluation of geometrical contributions to the spread of the Compton-scatter energy distribution

    International Nuclear Information System (INIS)

    Hanson, A.L.; Gigante, G.E.; Dipartimento di Fisica, Universita degli Studi di Roma I, ''La Sapienza,'' Corso Vittorio Emanuele II, 244, 00186 Roma, Italy)

    1989-01-01

    The spectrum from Compton-scattered x rays is an inherently broad distribution. This distribution is the sum of several Gaussian-like distributions, which gives the sum its unique shape. The Gaussian-like distributions are the result of convoluting the so-called Compton profile, the spread in the scattered-x-ray energies due to the momentum distributions of the target electrons, with the detector response and the geometrical effects. The distribution is then further modified by the absorption within the sample. A formulation for both qualitatively and quantitatively determining the magnitude of the geometrical contributions is presented. This formulation is based on a recently devised approach to the scattering geometry [Hanson, Gigante, Meron, Phys. Rev. Lett. 61, 135 (1988)]. A methodology for determining the geometrical spread in the energy of the scattered x rays is presented. The results can be conveniently used to optimize scattering geometries for the reduction of the geometry-caused spread

  9. Quasi-simultaneous observations of BL Lac object Mrk 501 in X-ray, UV, visible, IR, and radio frequencies

    Science.gov (United States)

    Kondo, Y.; Worrall, D. M.; Oke, J. B.; Yee, H. K. C.; Neugebauer, G.; Matthews, K.; Feldman, P. A.; Mushotzky, R. F.; Hackney, R. L.; Hackney, K. R. H.

    1981-01-01

    Observations in the X-ray, UV, visible, IR and radio regions of the BL Lac object Mrk 501 made over the course of two months are reported. The measurements were made with the A2 experiment on HEAO 1 (X-ray), the SWP and LWR cameras on IUE (UV), the 5-m Hale telescope (visible), the 2.5-m telescope at Mount Wilson (IR), the NRAO 92-m radio telescope at Green Bank (4750 MHz) and the 46-m radio telescope at the Algonquin Observatory (10275 and 10650 MHz). The quasi-simultaneously observed spectral slope is found to be positive and continuous from the X-ray to the UV, but to gradually flatten and possibly turn down from the mid-UV to the visible; the optical-radio emission cannot be accounted for by a single power law. The total spectrum is shown to be compatible with a synchrotron self-Compton emission mechanism, while the spectrum from the visible to the X-ray is consistent with synchrotron radiation or inverse-Compton scattering by a hot thermal electron cloud. The continuity of the spectrum from the UV to the X-ray is noted to imply a total luminosity greater than previous estimates by a factor of 3-4.

  10. Shielding design and radioprotection for Andromede and ThomX accelerators

    Directory of Open Access Journals (Sweden)

    Horodynski Jean-Michel

    2017-01-01

    Full Text Available The Institut de physique nucléaire – Institute of Nuclear Physics (IPN and the Laboratoire de l’accélérateur linéaire – Laboratory of the linear accelerator (LAL are about to build two accelerators at the University Paris-Sud, Orsay. Andromede is a new imaging mass spectrometry instrument for surface analysis: the electron positron emission microscope (EPEM will analyse impacts on a surface made by nano-particles (Au404 in the keV to MeV range to study ion-surface interactions. ThomX is a compact X-ray source (energy up to 90 keV – flux up to 1013 photons.s-1 that will produce X-rays using Compton backscattering effect between an electron beam and a laser. In order to use these machines in the same area, hutches are designed to comply with French regulations for radiation protection. This paper presents the methods used to design the hutches, complying with safety objectives, technical issues and budget.

  11. RefleX: X-ray absorption and reflection in active galactic nuclei for arbitrary geometries

    Science.gov (United States)

    Paltani, S.; Ricci, C.

    2017-11-01

    Reprocessed X-ray radiation carries important information about the structure and physical characteristics of the material surrounding the supermassive black hole (SMBH) in active galactic nuclei (AGN). We report here on a newly developed simulation platform, RefleX, which allows to reproduce absorption and reflection by quasi-arbitrary geometries. We show here the reliability of our approach by comparing the results of our simulations with existing spectral models such as pexrav, MYTorus and BNTorus. RefleX implements both Compton scattering on free electrons and Rayleigh scattering and Compton scattering on bound electrons. We show the effect of bound-electron corrections on a torus geometry simulated like in MYTorus. We release with this paper the RefleX executable, as well as RXTorus, a model that assumes absorption and reflection from a torus with a varying ratio of the minor to major axis of the torus. To allow major flexibility RXTorus is also distributed in three components: absorbed primary emission, scattered radiation and fluorescent lines. RXTorus is provided for different values of the abundance, and with (atomic configuration) or without (free-electron configuration) taking into account Rayleigh scattering and bound electrons. We apply the RXTorus model in both configurations on the XMM-Newton and NuSTAR spectrum of the Compton-thick AGN NGC 424 and find that the models are able to reproduce very well the observations, but that the assumption on the bound or free state of the electrons has significant consequences on the fit parameters. RefleX executable, user manual and example models are available at http://www.astro.unige.ch/reflex. A copy of the RefleX executable is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A31

  12. Gamma-ray detection and Compton camera image reconstruction with application to hadron therapy

    International Nuclear Information System (INIS)

    Frandes, M.

    2010-09-01

    A novel technique for radiotherapy - hadron therapy - irradiates tumors using a beam of protons or carbon ions. Hadron therapy is an effective technique for cancer treatment, since it enables accurate dose deposition due to the existence of a Bragg peak at the end of particles range. Precise knowledge of the fall-off position of the dose with millimeters accuracy is critical since hadron therapy proved its efficiency in case of tumors which are deep-seated, close to vital organs, or radio-resistant. A major challenge for hadron therapy is the quality assurance of dose delivery during irradiation. Current systems applying positron emission tomography (PET) technologies exploit gamma rays from the annihilation of positrons emitted during the beta decay of radioactive isotopes. However, the generated PET images allow only post-therapy information about the deposed dose. In addition, they are not in direct coincidence with the Bragg peak. A solution is to image the complete spectrum of the emitted gamma rays, including nuclear gamma rays emitted by inelastic interactions of hadrons to generated nuclei. This emission is isotropic, and has a spectrum ranging from 100 keV up to 20 MeV. However, the measurement of these energetic gamma rays from nuclear reactions exceeds the capability of all existing medical imaging systems. An advanced Compton scattering detection method with electron tracking capability is proposed, and modeled to reconstruct the high-energy gamma-ray events. This Compton detection technique was initially developed to observe gamma rays for astrophysical purposes. A device illustrating the method was designed and adapted to Hadron Therapy Imaging (HTI). It consists of two main sub-systems: a tracker where Compton recoiled electrons are measured, and a calorimeter where the scattered gamma rays are absorbed via the photoelectric effect. Considering a hadron therapy scenario, the analysis of generated data was performed, passing trough the complete

  13. X-ray Point Source Populations in Spiral and Elliptical Galaxies

    Science.gov (United States)

    Colbert, E.; Heckman, T.; Weaver, K.; Strickland, D.

    2002-01-01

    The hard-X-ray luminosity of non-active galaxies has been known to be fairly well correlated with the total blue luminosity since the days of the Einstein satellite. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Chandra images of normal, elliptical and starburst galaxies now show that a significant amount of the total hard X-ray emission comes from individual point sources. We present here spatial and spectral analyses of the point sources in a small sample of Chandra obervations of starburst galaxies, and compare with Chandra point source analyses from comparison galaxies (elliptical, Seyfert and normal galaxies). We discuss possible relationships between the number and total hard luminosity of the X-ray point sources and various measures of the galaxy star formation rate, and discuss possible options for the numerous compact sources that are observed.

  14. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution x-ray Compton scattering.

    Science.gov (United States)

    Hafiz, Hasnain; Suzuki, Kosuke; Barbiellini, Bernardo; Orikasa, Yuki; Callewaert, Vincent; Kaprzyk, Staszek; Itou, Masayoshi; Yamamoto, Kentaro; Yamada, Ryota; Uchimoto, Yoshiharu; Sakurai, Yoshiharu; Sakurai, Hiroshi; Bansil, Arun

    2017-08-01

    Reduction-oxidation (redox) reactions are the key processes that underlie the batteries powering smartphones, laptops, and electric cars. A redox process involves transfer of electrons between two species. For example, in a lithium-ion battery, current is generated when conduction electrons from the lithium anode are transferred to the redox orbitals of the cathode material. The ability to visualize or image the redox orbitals and how these orbitals evolve under lithiation and delithiation processes is thus of great fundamental and practical interest for understanding the workings of battery materials. We show that inelastic scattering spectroscopy using high-energy x-ray photons (Compton scattering) can yield faithful momentum space images of the redox orbitals by considering lithium iron phosphate (LiFePO 4 or LFP) as an exemplar cathode battery material. Our analysis reveals a new link between voltage and the localization of transition metal 3d orbitals and provides insight into the puzzling mechanism of potential shift and how it is connected to the modification of the bond between the transition metal and oxygen atoms. Our study thus opens a novel spectroscopic pathway for improving the performance of battery materials.

  15. Development and calibration of the tracking Compton/Pair telescope MEGA

    International Nuclear Information System (INIS)

    Kanbach, G.; Andritschke, R.; Zoglauer, A.; Ajello, M.; McConnell, M.L.; Macri, J.R.; Ryan, J.M.; Bloser, P.; Hunter, S.; DiCocco, G.; Kurfess, J.; Reglero, V.

    2005-01-01

    We describe the development and tests of the prototype for a new telescope for Medium Energy Gamma-ray Astronomy (MEGA) in the energy band 0.4-50 MeV. As a successor to COMPTEL and EGRET (at low energies), MEGA aims to improve the sensitivity for astronomical sources by at least an order of magnitude. It could thus fill the severe sensitivity gap between scheduled or operating hard-X-ray and high-energy gamma-ray missions and open the way for a future Advanced Compton Telescope. MEGA records and images γ-rays by completely tracking Compton and Pair creation events in a stack of double-sided Si-strip track detectors surrounded by a pixelated CsI calorimeter. A scaled down prototype has been built and we describe technical details of its design and properties. Results from calibrations using radioactive sources and from measurements with an accelerator generated, fully polarized, γ-ray beam are presented and an outlook to future plans with MEGA is given

  16. Investigation of the interaction of Greek dolomitic marble with metal aqueous solutions using Rutherford backscattering and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Godelitsas, A.; Kokkoris, M.; Misaelides, P.

    2005-01-01

    The interaction of dolomitic marble from Thassos Island (northern Aegean sea, Greece) with Co 2+ -, Cd 2+ -, Pb 2+ - and Cr 3+ - aqueous solutions (metal concentration: 1000 mgL -1 ) was investigated using Rutherford backscattering (RBS) and X-ray photoelectron spectroscopy (XPS). The initial material as well as the interaction products were also characterized by scanning electron microscopy (SEM/EDS), radioisotope induced X-ray fluorescence analysis (RI-XRFA), powder X-ray diffraction (Powder-XRD) and Fourier transform infra-red spectroscopy (FT-IR). The contact time of the samples with the aqueous solutions was one week and took place under ambient temperature. To our knowledge, the sorption of the above mentioned metals with dolomite (CaMg(CO 3 ) 2 ) has not yet been presented in the literature and the only data available concern the adsorption of Ca, Mg and Nd from NaCl solutions. The Thassos island dolomitic marble is a snow-white homogeneous carbonate metamorphic rock, with fine physicochemical and mechanical properties, currently used as natural building stone in many parts of the world (see http://www.thassosmarble.com), This dolomite-bearing material was also extensively used in the past as construction material of many .classical Greek and Roman sculptures and architectural elements; in 301 AD the Roman emperor Diocletian included 'Thassian marble' in the list of the 19 most expensive and important 'marbles' produced in the imperial quarries. Previous literature presented the isotopic analysis(δ 13 C, δ 18 O) and EPR studies (Mn 2+ and Fe 3+ ) of this stone. The obtained results indicated a limited Cd 2+ - and Co 2+ -sorption on the dissolved surface of the carbonate substrate, whereas, under the same experimental conditions, the Pb 2+ - and Cr 3+ -interaction is more intense leading to extended overgrowth of crystalline Pb-carbonates and surface precipitation of amorphous Cr-hydroxides/oxyhydroxides.

  17. Compton Polarimetry at ELSA

    International Nuclear Information System (INIS)

    Hillert, Wolfgang; Aurand, Bastian; Wittschen, Juergen

    2009-01-01

    Part of the future polarization program performed at the Bonn accelerator facility ELSA will rely on precision Compton polarimetry of the stored transversely polarized electron beam. Precise and fast polarimetry poses high demands on the light source and the detector which were studied in detail performing numerical simulations of the Compton scattering process. In order to experimentally verify these calculations, first measurements were carried out using an argon ion laser as light source and a prototype version of a counting silicon microstrip detector. Calculated and measured intensity profiles of backscattered photons are presented and compared, showing excellent agreement. Background originating from beam gas radiation turned out to be the major limitation of the polarimeter performance. In order to improve the situation, a new polarimeter was constructed and is currently being set up. Design and expected performance of this polarimeter upgrade are presented.

  18. Complex UV/X-ray variability of 1H 0707-495

    Science.gov (United States)

    Pawar, P. K.; Dewangan, G. C.; Papadakis, I. E.; Patil, M. K.; Pal, Main; Kembhavi, A. K.

    2017-12-01

    We study the relationship between the UV and X-ray variability of the narrow-line Seyfert 1 galaxy 1H 0707-495. Using a year-long Swift monitoring and four long XMM-Newton observations, we perform cross-correlation analyses of the UV and X-ray light curves, on both long and short time-scales. We also perform time-resolved X-ray spectroscopy on 1-2 ks scale, and study the relationship between the UV emission and the X-ray spectral components - soft X-ray excess and a power law. We find that the UV and X-ray variations anticorrelate on short, and possibly on long time-scales as well. Our results rule out reprocessing as the dominant mechanism for the UV variability, as well as the inward propagating fluctuations in the accretion rate. Absence of a positive correlation between the photon index and the UV flux suggests that the observed UV emission is unlikely to be the seed photons for the thermal Comptonization. We find a strong correlation between the continuum flux and the soft-excess temperature which implies that the soft excess is most likely the reprocessed X-ray emission in the inner accretion disc. Strong X-ray heating of the innermost regions in the disc, due to gravitational light bending, appears to be an important effect in 1H 0707-495, giving rise to a significant fraction of the soft excess as reprocessed thermal emission. We also find indications for a non-static, dynamic X-ray corona, where either the size or height (or both) vary with time.

  19. X-ray echoes from gamma-ray bursts

    International Nuclear Information System (INIS)

    Dermer, C.D.; Hurley, K.C.; Hartmann, D.H.

    1991-01-01

    The identification of an echo of reflected radiation in time histories of gamma-ray burst spectra can provide important information about the existence of binary companions or accretion disks in gamma-ray burst systems. Because of the nature of Compton scattering, the spectrum of the echo will be attenuated at gamma-ray energies compared with the spectrum of the primary burst emission. The expected temporal and spectral signatures of the echo and a search for such echoes are described, and implications for gamma-ray burst models are discussed. 35 refs

  20. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    Science.gov (United States)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  1. A high-density relativistic reflection origin for the soft and hard X-ray excess emission from Mrk 1044

    Science.gov (United States)

    Mallick, L.; Alston, W. N.; Parker, M. L.; Fabian, A. C.; Pinto, C.; Dewangan, G. C.; Markowitz, A.; Gandhi, P.; Kembhavi, A. K.; Misra, R.

    2018-06-01

    We present the first results from a detailed spectral-timing analysis of a long (˜130 ks) XMM-Newton observation and quasi-simultaneous NuSTAR and Swift observations of the highly-accreting narrow-line Seyfert 1 galaxy Mrk 1044. The broadband (0.3-50 keV) spectrum reveals the presence of a strong soft X-ray excess emission below ˜1.5 keV, iron Kα emission complex at ˜6 -7 keV and a `Compton hump' at ˜15 -30 keV. We find that the relativistic reflection from a high-density accretion disc with a broken power-law emissivity profile can simultaneously explain the soft X-ray excess, highly ionized broad iron line and the Compton hump. At low frequencies ([2 - 6] × 10-5 Hz), the power-law continuum dominated 1.5-5 keV band lags behind the reflection dominated 0.3-1 keV band, which is explained with a combination of propagation fluctuation and Comptonization processes, while at higher frequencies ([1 - 2] × 10-4 Hz), we detect a soft lag which is interpreted as a signature of X-ray reverberation from the accretion disc. The fractional root-mean-squared (rms) variability of the source decreases with energy and is well described by two variable components: a less variable relativistic disc reflection and a more variable direct coronal emission. Our combined spectral-timing analyses suggest that the observed broadband X-ray variability of Mrk 1044 is mainly driven by variations in the location or geometry of the optically thin, hot corona.

  2. High energy resolution inelastic x-ray scattering at the SRI-CAT

    International Nuclear Information System (INIS)

    Macrander, A.T.

    1996-08-01

    This report is a combination of vugraphs and two papers. The vugraphs give information on the beamline at the APS for IXS and the science addressable by IXS. They also cover the 10 milli-eV resolution spectrometer and the 200 milli-eV resolution spectrometer. The first paper covers the performance of the focusing Ge(444) backscattering analyzers for the inelastic x-ray scattering. The second paper discusses inelastic x-ray scattering from TiC and Ti single crystals

  3. Forward directed x-ray from source produced by relativistic electrons from a Self-Modulated Laser Wakefield Accelerator

    Science.gov (United States)

    Lemos, Nuno; Albert, Felicie; Shaw, Jessica; King, Paul; Milder, Avi; Marsh, Ken; Pak, Arthur; Joshi, Chan

    2017-10-01

    Plasma-based particle accelerators are now able to provide the scientific community with novel light sources. Their applications span many disciplines, including high-energy density sciences, where they can be used as probes to explore the physics of dense plasmas and warm dense matter. A recent advance is in the experimental and theoretical characterization of x-ray emission from electrons in the self-modulated laser wakefield regime (SMLWFA) where little is known about the x-ray properties. A series of experiments at the LLNL Jupiter Laser Facility, using the 1 ps 150 J Titan laser, have demonstrated low divergence electron beams with energies up to 300 MeV and 6 nCs of charge, and betatron x-rays with critical energies up to 20 keV. This work identifies two other mechanisms which produce high energy broadband x-rays and gamma-rays from the SMLWFA: Bremsstrahlung and inverse Compton scattering. We demonstrate the use of Compton scattering and bremsstrahlung to generate x/Gamma-rays from 3 keV up to 1.5 MeV with a source size of 50um and a divergence of 100 mrad. This work is an important step towards developing this x-ray light source on large-scale international laser facilities, and also opens up the prospect of using them for applications. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under the contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  4. Discovery of the Orbit of the X-ray pulsar OAO 1657-415

    Science.gov (United States)

    Chakrabarty, Deepto; Grunsfeld, John M.; Prince, Thomas A.; Bildsten, Lars; Finger, Mark H.; Wilson, Robert B.; Fishman, Gerald J.; Meegan, Charles A.; Paciesas, William S.

    1993-01-01

    Timing observations of the 38 s accreting X-ray pulsar OAO 1657-415 made with the BATSE large-area detectors on the Compton Gamma Ray Observatory have revealed a binary orbit with an X-ray eclipse by the stellar companion. From the pulsar mass function fx(M) = 11.7 +/- 0.2 solar masses and the measured eclipse half-angle theta(e) = 29.7 +/- 1.3 deg, we infer that the stellar companion is a supergiant of spectral class B0-B6. If the companion can be identified and its orbital velocity measured, the neutron star mass can be constrained. Both intrinsic spin-up and spin-down of the pulsar were measured during our observation.

  5. A SUPER-EDDINGTON, COMPTON-THICK WIND IN GRO J1655–40?

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, J.; Homan, J. [MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Rahoui, F. [European Southern Observatory, Karl Schwarzschild-Strasse 2, D-85748 Garching bei Munchen (Germany); Buxton, M., E-mail: jneilsen@space.mit.edu [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States)

    2016-05-01

    During its 2005 outburst, GRO J1655–40 was observed at high spectral resolution with the Chandra High-Energy Transmission Grating Spectrometer, revealing a spectrum rich with blueshifted absorption lines indicative of an accretion disk wind—apparently too hot, too dense, and too close to the black hole to be driven by radiation pressure or thermal pressure (Miller et al.). However, this exotic wind represents just one piece of the puzzle in this outburst, as its presence coincides with an extremely soft and curved X-ray continuum spectrum, remarkable X-ray variability (Uttley and Klein-Wolt), and a bright, unexpected optical/infrared blackbody component that varies on the orbital period. Focusing on the X-ray continuum and the optical/infrared/UV spectral energy distribution, we argue that the unusual features of this “hypersoft state” are natural consequences of a super-Eddington Compton-thick wind from the disk: the optical/infrared blackbody represents the cool photosphere of a dense, extended outflow, while the X-ray emission is explained as Compton scattering by the relatively cool, optically thick wind. This wind obscures the intrinsic luminosity of the inner disk, which we suggest may have been at or above the Eddington limit.

  6. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy.

    Science.gov (United States)

    Gazder, Azdiar A; Al-Harbi, Fayez; Spanke, Hendrik Th; Mitchell, David R G; Pereloma, Elena V

    2014-12-01

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. High-z X-ray Obscured Quasars in Galaxies with Extreme Mid-IR/Optical Colors

    Science.gov (United States)

    Piconcelli, E.; Lanzuisi, G.; Fiore, F.; Feruglio, C.; Vignali, C.; Salvato, M.; Grappioni, C.

    2009-05-01

    Extreme Optical/Mid-IR color cuts have been used to uncover a population of dust-enshrouded, mid-IR luminous galaxies at high redshifts. Several lines of evidence point towards the presence of an heavily absorbed, possibly Compton-thick quasar at the heart of these systems. Nonetheless, the X-ray spectral properties of these intriguing sources still remain largely unexplored. Here we present an X-ray spectroscopic study of a large sample of 44 extreme dust-obscured galaxies (EDOGs) with F24 μm/FR>2000 and F24 μm>1.3 mJy selected from a 6 deg2 region in the SWIRE fields. The application of our selection criteria to a wide area survey has been capable of unveiling a population of X-ray luminous, absorbed z>1 quasars which is mostly missed in the traditional optical/X-ray surveys performed so far. Advances in the understanding of the X-ray properties of these recently-discovered sources by Simbol-X observations will be also discussed.

  8. Self-compensating x-ray or γ-ray thickness gauge

    International Nuclear Information System (INIS)

    Allport, J.J.

    1977-01-01

    A gauge is described for determining the mass per unit area, or alternatively the thickness of sheet material by measuring the attenuation, as well as backscatter, of an x-ray beam or the like, while continuously taking into account deviations and changes in localized material composition, insofar as these have an effect on the transmission coefficient of the beam. Electrical signals representing these deviations are combined with calibration data for given material nominal properties, i.e., nominal composition. The resultant and output signal represents the mass per unit area or thickness

  9. Diagnostic x-ray spectra measurements using a silicon surface barrier detector

    International Nuclear Information System (INIS)

    Pani, R.; Laitano, R.F.

    1987-01-01

    A silicon surface barrier detector having a low efficiency for x-ray is used to analyse diagnostic x-ray spectra. This characteristic is advantageous in overcoming experimental problems caused by high fluence rates typical of diagnostic x-ray beams. The pulse height distribution obtained with silicon surface barrier detectors is very different from the true photon spectra because of the presence of escaped Compton photons and the fact that detection efficiency falls abruptly when photon energy increases. A detailed analysis of the spurious effects involved in detection is made by a Monte Carlo method. A stripping procedure is described for implementation on a personal computer. The validity of this method is tested by comparison with experimental results obtained with a Ge detector. The spectra obtained with the Si detector are in fairly good agreement with the analogous spectra measured with a Ge detector. The advantages of using Si as opposed to Ge detectors in x-ray spectrometry are: its simplicity of use, its greater economy for use in routine diagnostic x-ray spectroscopy and the possibility that the stripping procedure can be implemented on a personal computer. (author)

  10. Hard X-ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR

    Science.gov (United States)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; Annuar, A.; Arévalo, P.; Baloković, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Koss, M. J.; La Massa, S.; Marinucci, A.; Ricci, C.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2016-01-01

    We present a broadband (~0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ~1.̋5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (τ ≃ 1.2, NH ~ 1.5 × 1024 cm-2). We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at ~30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH ≤ 2 × 1023 cm-2 over long (~3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  11. Determining the Covering Factor of Compton-Thick Active Galactic Nuclei with NuSTAR

    Science.gov (United States)

    Brightman, M.; Balokovic, M.; Stern, D.; Arevalo, P.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Zhang, W. W.

    2015-01-01

    The covering factor of Compton-thick (CT) obscuring material associated with the torus in active galactic nuclei (AGNs) is at present best understood through the fraction of sources exhibiting CT absorption along the line of sight (N(sub H) greater than 1.5 x 10(exp 24) cm(exp -2)) in the X-ray band, which reveals the average covering factor. Determining this CT fraction is difficult, however, due to the extreme obscuration. With its spectral coverage at hard X-rays (greater than 10 keV), Nuclear Spectroscopic Telescope Array (NuSTAR) is sensitive to the AGNs covering factor since Compton scattering of X-rays off optically thick material dominates at these energies. We present a spectral analysis of 10 AGNs observed with NuSTAR where the obscuring medium is optically thick to Compton scattering, so-called CT AGNs. We use the torus models of Brightman and Nandra that predict the X-ray spectrum from reprocessing in a torus and include the torus opening angle as a free parameter and aim to determine the covering factor of the CT gas in these sources individually. Across the sample we find mild to heavy CT columns, with N(sub H) measured from 10(exp 24) to 10(exp 26) cm(exp -2), and a wide range of covering factors, where individual measurements range from 0.2 to 0.9. We find that the covering factor, f(sub c), is a strongly decreasing function of the intrinsic 2-10 keV luminosity, L(sub X), where f(sub c) = (-0.41 +/- 0.13)log(sub 10)(L(sub X)/erg s(exp -1))+18.31 +/- 5.33, across more than two orders of magnitude in L(sub X) (10(exp 41.5) - 10(exp 44) erg s(exp -1)). The covering factors measured here agree well with the obscured fraction as a function of LX as determined by studies of local AGNs with L(sub X) greater than 10(exp 42.5) erg s(exp -1).

  12. A high-energy Compton polarimeter for the POET SMEX mission

    Science.gov (United States)

    Bloser, Peter F.; McConnell, Mark L.; Legere, Jason S.; Ertley, Camden D.; Hill, Joanne E.; Kippen, Marc; Ryan, James M.

    2014-07-01

    The primary science goal of the Polarimeters for Energetic Transients (POET) mission is to measure the polarization of gamma-ray bursts over a wide energy range, from X rays to soft gamma rays. The higher-energy portion of this band (50 - 500 keV) will be covered by the High Energy Polarimeter (HEP) instrument, a non-imaging, wide field of view Compton polarimeter. Incident high-energy photons will Compton scatter in low-Z, plastic scintillator detector elements and be subsequently absorbed in high-Z, CsI(Tl) scintillator elements; polarization is detected by measuring an asymmetry in the azimuthal scatter angle distribution. The HEP design is based on our considerable experience with the development and flight of the Gamma-Ray Polarimeter Experiment (GRAPE) balloon payload. We present the design of the POET HEP instrument, which incorporates lessons learned from the GRAPE balloon design and previous work on Explorer proposal efforts, and its expected performance on a two-year SMEX mission.

  13. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  14. Gamma-ray burst observations with the Compton/Ulysses/Pioneer-Venus network

    International Nuclear Information System (INIS)

    Cline, T.L.; Hurley, K.C.; Sommer, M.; Boer, M.; Niel, M.; Fishman, G.J.; Kouveliotou, C.; Meegan, C.A.; Paciesas, W.S.; Wilson, R.B.; Fenimore, E.E.; Laros, J.G.; Klebesadel, R.W.

    1993-01-01

    The third and latest interplanetary network for the precise directional analysis of gamma ray bursts consists of the Burst and Transient Source Experiment in Compton Gamma Ray Observatory and instruments on Pioneer-Venus Orbiter and the deep-space mission Ulysses. The unsurpassed resolution of the BATSE instrument, the use of refined analysis techniques, and Ulysses' distance of up to 6 AU all contribute to a potential for greater precision than had been achieved with former networks. Also, the departure of Ulysses from the ecliptic plane in 1992 avoids any positional alignment of the three instruments that would lessen the source directional accuracy

  15. X-ray observations of a flare in NGC 4151 from OSO 8

    Science.gov (United States)

    Mushotzky, R. F.; Holt, S. S.; Serlemitsos, P. J.

    1978-01-01

    The 2-60-keV flux from NGC 4151 has been observed to change by a factor of 2 on a time scale of 1.5 days. No fluctuations in excess of a factor of 3 are detected on time scales less than 4 hours. During a total observation of approximately 11 days there were no statistically significant changes in spectral shape. The spectrum can be fitted by a power law with photon index of about 1.42 + or - 0.06 and a hydrogen column density of approximately 7.5 + or - 0.5 x 10 to the 22nd power atoms/sq cm. A 2-sigma residual to this fit implies fluorescent Fe line emission with an equivalent width of about 240 eV. Both synchrotron self-Compton and thermal Compton models are consistent with the X-ray data.

  16. The high energy X-ray spectrum of 4U 0900-40 observed from OSO 8

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Ellison, D. C.

    1981-01-01

    The X-ray source 4U 0900-40 (= Vela XR-1) was observed with the high-energy X-ray spectrometer on OSO 8 for one week in 1976 and three weeks in 1978. Spectra of the source are presented above 16 keV. No systematic difference exists between the X-ray eclipse centers and the eclipse centers predicted from optical ephermerides. Short period intrinsic variability in the system's X-ray intensity may be related to changes in the Compton scattering optical depth in the system and does not require sporadic mass transfer via Roche lobe overflow. The 282 s modulation in the source's X-ray flux above 21 keV consists of two essentially similar pulses per period, most easily interpreted as arising from the two different magnetic poles of a rotating neutron star. The secondary appears to be a spherically accreting, magnetic neutron star.

  17. Improving accuracy and capabilities of X-ray fluorescence method using intensity ratios

    Energy Technology Data Exchange (ETDEWEB)

    Garmay, Andrey V., E-mail: andrew-garmay@yandex.ru; Oskolok, Kirill V.

    2017-04-15

    An X-ray fluorescence analysis algorithm is proposed which is based on a use of ratios of X-ray fluorescence lines intensities. Such an analytical signal is more stable and leads to improved accuracy. Novel calibration equations are proposed which are suitable for analysis in a broad range of matrix compositions. To apply the algorithm to analysis of samples containing significant amount of undetectable elements a use of a dependence of a Rayleigh-to-Compton intensity ratio on a total content of these elements is suggested. The technique's validity is shown by analysis of standard steel samples, model metal oxides mixture and iron ore samples.

  18. Gamma-Ray Burst Arrival Time Localizations: Simultaneous Observations by Pioneer Venus Orbiter, Compton Gamma-Ray Observatory, and Ulysses

    International Nuclear Information System (INIS)

    Laros, J.G.; Hurley, K.C.; Fenimore, E.E.; Klebesadel, R.W.; Briggs, M.S.; Kouveliotou, C.; McCollough, M.L.; Fishman, G.J.; Meegan, C.A.; Cline, T.L.; Boer, M.; Niel, M.

    1998-01-01

    Between the Compton Gamma Ray Observatory (CGRO) launch in 1991 April and the Pioneer Venus Orbiter (PVO) demise in 1992 October, concurrent coverage by CGRO, PVO, and Ulysses was obtained for several hundred gamma-ray bursts (GRBs). Although most of these were below the PVO and Ulysses thresholds, 37 were positively detected by all three spacecraft, with data quality adequate for quantitative localization analysis. All were localized independently to ∼2 degree accuracy by the CGRO Burst and Transient Source Experiment (BATSE), and three were also localized by COMPTEL. We computed arrival-time error boxes, whose larger dimensions range from about 2' to several degrees and whose smaller dimensions are in the arcminute range. Twelve have areas less than 10 arcmin 2 , and only four have areas greater than 1 deg 2 . The area of the smallest box is 0.44 arcmin 2 . We find that the overall BATSE localization accuracy for these events is consistent with the most recent stated uncertainties. This work indicates that the ROSAT soft X-ray source found within a preliminary IPN error box for GB920501 (Trig 1576) (Hurley et al.) is less likely to be the GRB counterpart than previously reported. copyright copyright 1998. The American Astronomical Society

  19. NuSTAR and XMM-Newton Observations of the Hard X-Ray Spectrum of Centaurus A

    DEFF Research Database (Denmark)

    Fürst, F.; Müller, C.; Madsen, K. K.

    2016-01-01

    with an absorbed power-law witha photon index Γ = 1.815 ± 0.005 and a fluorescent Fe Kα line in good agreement with literature values.The spectrum does not require a high-energy exponential rollover, with a constraint of Efold > 1 MeV. Athermal Comptonization continuum describes the data well, with parameters....... We use archival Chandra data to estimatethe contribution from diffuse emission, extra-nuclear point-sources, and the X-ray jet to the observed NuSTAR and XMM-Newton X-ray spectra and find the contribution to be negligible. We discuss different scenarios forthe physical origin of the observed X...

  20. PROBING THE TRANSITION BETWEEN THE SYNCHROTRON AND INVERSE-COMPTON SPECTRAL COMPONENTS OF 1ES 1959+650

    International Nuclear Information System (INIS)

    Bottacini, E.; Schady, P.; Rau, A.; Zhang, X.-L.; Greiner, J.; Boettcher, M.; Ajello, M.; Fendt, C.

    2010-01-01

    1ES 1959+650 is one of the most remarkable high-peaked BL Lacertae objects (HBL). In 2002, it exhibited a TeV γ-ray flare without a similar brightening of the synchrotron component at lower energies. This orphan TeV flare remained a mystery. We present the results of a multifrequency campaign, triggered by the INTEGRAL IBIS detection of 1ES 1959+650. Our data range from the optical to hard X-ray energies, thus covering the synchrotron and inverse-Compton components simultaneously. We observed the source with INTEGRAL, the Swift X-Ray Telescope, and the UV-Optical Telescope, and nearly simultaneously with a ground-based optical telescope. The steep spectral component at X-ray energies is most likely due to synchrotron emission, while at soft γ-ray energies the hard spectral index may be interpreted as the onset of the high-energy component of the blazar spectral energy distribution (SED). This is the first clear measurement of a concave X-ray-soft γ-ray spectrum for an HBL. The SED can be well modeled with a leptonic synchrotron self-Compton model. When the SED is fitted this model requires a very hard electron spectral index of q ∼ 1.85, possibly indicating the relevance of second-order Fermi acceleration.

  1. Silicon photomultipliers as readout elements for a Compton effect polarimeter: the COMPASS project

    CERN Document Server

    Del Monte, E; Brandonisio, A; Muleri, F; Soffitta, P; Costa, E; di Persio, G; Cosimo, S Di; Massaro, E; Morbidini, A; Morelli, E; Pacciani, L; Fabiani, S; Michilli, D; Giarrusso, S; Catalano, O; Impiombato, D; Mineo, T; Sottile, G; Billotta, S

    2016-01-01

    COMpton Polarimeter with Avalanche Silicon readout (COMPASS) is a research and development project that aims to measure the polarization of X-ray photons through Compton Scattering. The measurement is obtained by using a set of small rods of fast scintillation materials with both low-Z (as active scatterer) and high-Z (as absorber), all read-out with Silicon Photomultipliers. By this method we can operate scattering and absorbing elements in coincidence, in order to reduce the background. In the laboratory we are characterising the SiPMs using different types of scintillators and we are optimising the performances in terms of energy resolution, energy threshold and photon tagging efficiency. We aim to study the design of two types of satellite-borne instruments: a focal plane polarimeter to be coupled with multilayer optics for hard X-rays and a large area and wide field of view polarimeter for transients and Gamma Ray Bursts. In this paper we describe the status of the COMPASS project, we report about the la...

  2. New Compton densitometer for measuring pulmonary edema

    Energy Technology Data Exchange (ETDEWEB)

    Loo, B.W.; Goulding, F.S.; Simon, D.S.

    1985-10-01

    Pulmonary edema is the pathological increase of extravascular lung water found most often in patients with congestive heart failure and other critically ill patients who suffer from intravenous fluid overload. A non-invasive lung density monitor that is accurate, easily portable, safe and inexpensive is needed for clinical evaluation of pulmonary edema. Other researchers who have employed Compton scattering techniques generally used systems of extended size and detectors with poor energy resolution. This has resulted in significant systematic biases from multiply-scattered photons and larger errors in counting statistics at a given radiation dose to the patient. We are proposing a patented approach in which only backscattered photons are measured with a high-resolution HPGe detector in a compact system geometry. By proper design and a unique data extraction scheme, effects of the variable chest wall on lung density measurements are minimized. Preliminary test results indicate that with a radioactive source of under 30 GBq, it should be possible to make an accurate lung density measurement in one minute, with a risk of radiation exposure to the patient a thousand times smaller than that from a typical chest x-ray. The ability to make safe, frequent lung density measurements could be very helpful for monitoring the course of P.E. at the hospital bedside or outpatient clinics, and for evaluating the efficacy of therapy in clinical research. 6 refs., 5 figs.

  3. New Compton densitometer for measuring pulmonary edema

    International Nuclear Information System (INIS)

    Loo, B.W.; Goulding, F.S.; Simon, D.S.

    1985-10-01

    Pulmonary edema is the pathological increase of extravascular lung water found most often in patients with congestive heart failure and other critically ill patients who suffer from intravenous fluid overload. A non-invasive lung density monitor that is accurate, easily portable, safe and inexpensive is needed for clinical evaluation of pulmonary edema. Other researchers who have employed Compton scattering techniques generally used systems of extended size and detectors with poor energy resolution. This has resulted in significant systematic biases from multiply-scattered photons and larger errors in counting statistics at a given radiation dose to the patient. We are proposing a patented approach in which only backscattered photons are measured with a high-resolution HPGe detector in a compact system geometry. By proper design and a unique data extraction scheme, effects of the variable chest wall on lung density measurements are minimized. Preliminary test results indicate that with a radioactive source of under 30 GBq, it should be possible to make an accurate lung density measurement in one minute, with a risk of radiation exposure to the patient a thousand times smaller than that from a typical chest x-ray. The ability to make safe, frequent lung density measurements could be very helpful for monitoring the course of P.E. at the hospital bedside or outpatient clinics, and for evaluating the efficacy of therapy in clinical research. 6 refs., 5 figs

  4. An Imaging Camera for Biomedical Application Based on Compton Scattering of Gamma Rays

    OpenAIRE

    Fontana, Cristiano Lino

    2013-01-01

    In this thesis we present the R&D of a Compton Camera (CC) for small object imaging. The CC concept requires two detectors to obtain the incoming direction of the gamma ray. This approach, sometimes named ``Electronic Collimation,'' differs from the usual technique that employs collimators for physically selecting gamma-rays of a given direction. This solution offers the advantage of much greater sensitivity and hence smaller doses. We propose a novel design, which uses two simila...

  5. The Swift BAT Hard X-ray Survey - A New Window on the Local AGN Universe

    Science.gov (United States)

    Mushotzky, Richard

    2009-01-01

    The Swift Burst and Transient telescope (BAT) has surveyed the entire sky for the last 3.5 years obtaining the first sensitive all sky survey of the 14-195 keV sky. At high galactic latitudes the vast majority of the detected sources are AGN. Since hard x-rays penetrate all but Compton thick obscuring material (Column densities of 1.6E24 atms/cm2) this survey is unbiased with respect to obscuration, host galaxy type, optical , radio or IR properties. We will present results on the broad band x-ray properties, the nature of the host galaxies, the luminosity function and will discuss a few of the optical, IR and x-ray results in detail.

  6. DETECTING RELATIVISTIC X-RAY JETS IN HIGH-REDSHIFT QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    McKeough, Kathryn [Department of Statistics, Harvard University, Cambridge, MA 02138 (United States); Siemiginowska, Aneta; Kashyap, Vinay L.; Lee, N. P.; Harris, D. E.; Schwartz, D. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Stawarz, Łukasz [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244, Kraków (Poland); Stein, Nathan [Department of Statistics, The Wharton School, University of Pennsylvania, 400 Jon M. Huntsman Hall, 3730 Walnut Street, Philadelphia, PA 19104-6340 (United States); Stampoulis, Vasileios; Dyk, David A. van [Statistics Section, Imperial College London, Huxley Building, South Kensington Campus, London SW7 (United Kingdom); Wardle, J. F. C. [Department of Physics, MS 057, Brandeis University, Waltham, MA 02454 (United States); Donato, Davide [CRESST and Astroparticle Physics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Maraschi, Laura; Tavecchio, Fabrizio, E-mail: kathrynmckeough@g.harvard.edu [INAF Osservatorio Astronomico di Brera, via Brera 28, I-20124, Milano (Italy)

    2016-12-10

    We analyze Chandra X-ray images of a sample of 11 quasars that are known to contain kiloparsec scale radio jets. The sample consists of five high-redshift ( z  ≥ 3.6) flat-spectrum radio quasars, and six intermediate redshift (2.1 <  z  < 2.9) quasars. The data set includes four sources with integrated steep radio spectra and seven with flat radio spectra. A total of 25 radio jet features are present in this sample. We apply a Bayesian multi-scale image reconstruction method to detect and measure the X-ray emission from the jets. We compute deviations from a baseline model that does not include the jet, and compare observed X-ray images with those computed with simulated images where no jet features exist. This allows us to compute p -value upper bounds on the significance that an X-ray jet is detected in a pre-determined region of interest. We detected 12 of the features unambiguously, and an additional six marginally. We also find residual emission in the cores of three quasars and in the background of one quasar that suggest the existence of unresolved X-ray jets. The dependence of the X-ray to radio luminosity ratio on redshift is a potential diagnostic of the emission mechanism, since the inverse Compton scattering of cosmic microwave background photons (IC/CMB) is thought to be redshift dependent, whereas in synchrotron models no clear redshift dependence is expected. We find that the high-redshift jets have X-ray to radio flux ratios that are marginally inconsistent with those from lower redshifts, suggesting that either the X-ray emissions are due to the IC/CMB rather than the synchrotron process, or that high-redshift jets are qualitatively different.

  7. Diagnostic Spectrometers for High Energy Density X-Ray Sources

    International Nuclear Information System (INIS)

    Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.

    2007-01-01

    A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results.We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength

  8. Development of Electron Tracking Compton Camera using micro pixel gas chamber for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kabuki, Shigeto; Hattori, Kaori [Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Kohara, Ryota [Hitachi Medical Corporation, Kashiwa, Chiba 277-0804 (Japan); Kunieda, Etsuo; Kubo, Atsushi [Department of Radiography, Keio University, Shinjuku-ku, Tokyo 160-8582 (Japan); Kubo, Hidetoshi; Miuchi, Kentaro [Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Nakahara, Tadaki [Department of Radiography, Keio University, Shinjuku-ku, Tokyo 160-8582 (Japan); Nagayoshi, Tsutomu; Nishimura, Hironobu; Okada, Yoko; Orito, Reiko; Sekiya, Hiroyuki [Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Shirahata, Takashi [Hitachi Medical Corporation, Kashiwa, Chiba 277-0804 (Japan); Takada, Atsushi [Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Tanimori, Toru [Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: tanimori@cr.scphys.kyoto-u.ac.jp; Ueno, Kazuki [Department of Physics, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)

    2007-10-01

    We have developed the Electron Tracking Compton Camera (ETCC) with reconstructing the 3-D tracks of the scattered electron in Compton process for both sub-MeV and MeV gamma rays. By measuring both the directions and energies of not only the recoil gamma ray but also the scattered electron, the direction of the incident gamma ray is determined for each individual photon. Furthermore, a residual measured angle between the recoil electron and scattered gamma ray is quite powerful for the kinematical background rejection. For the 3-D tracking of the electrons, the Micro Time Projection Chamber ({mu}-TPC) was developed using a new type of the micro pattern gas detector. The ETCC consists of this {mu}-TPC (10x10x8 cm{sup 3}) and the 6x6x13 mm{sup 3} GSO crystal pixel arrays with a flat panel photo-multiplier surrounding the {mu}-TPC for detecting recoil gamma rays. The ETCC provided the angular resolution of 6.6 deg. (FWHM) at 364 keV of {sup 131}I. A mobile ETCC for medical imaging, which is fabricated in a 1 m cubic box, has been operated since October 2005. Here, we present the imaging results for the line sources and the phantom of human thyroid gland using 364 keV gamma rays of {sup 131}I.

  9. Accurate Compton scattering measurements for N{sub 2} molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kohjiro [Advanced Technology Research Center, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Itou, Masayoshi; Tsuji, Naruki; Sakurai, Yoshiharu [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hosoya, Tetsuo; Sakurai, Hiroshi, E-mail: sakuraih@gunma-u.ac.jp [Department of Production Science and Technology, Gunma University, 29-1 Hon-cho, Ota, Gunma 373-0057 (Japan)

    2011-06-14

    The accurate Compton profiles of N{sub 2} gas were measured using 121.7 keV synchrotron x-rays. The present accurate measurement proves the better agreement of the CI (configuration interaction) calculation than the Hartree-Fock calculation and suggests the importance of multi-excitation in the CI calculations for the accuracy of wavefunctions in ground states.

  10. Analysis of monochromatic and quasi-monochromatic X-ray sources in imaging and therapy

    Science.gov (United States)

    Westphal, Maximillian; Lim, Sara; Nahar, Sultana; Orban, Christopher; Pradhan, Anil

    2017-04-01

    We studied biomedical imaging and therapeutic applications of recently developed quasi-monochromatic and monochromatic X-ray sources. Using the Monte Carlo code GEANT4, we found that the quasi-monochromatic 65 keV Gaussian X-ray spectrum created by inverse Compton scattering with relatavistic electron beams were capable of producing better image contrast with less radiation compared to conventional 120 kV broadband CT scans. We also explored possible experimental detection of theoretically predicted K α resonance fluorescence in high-Z elements using the European Synchrotron Research Facility with a tungsten (Z = 74) target. In addition, we studied a newly developed quasi-monochromatic source generated by converting broadband X-rays to monochromatic K α and β X-rays with a zirconium target (Z = 40). We will further study how these K α and K β dominated spectra can be implemented in conjunction with nanoparticles for targeted therapy. Acknowledgement: Ohio Supercomputer Center, Columbus, OH.

  11. X-ray study of bow shocks in runaway stars

    Science.gov (United States)

    De Becker, M.; del Valle, M. V.; Romero, G. E.; Peri, C. S.; Benaglia, P.

    2017-11-01

    Massive runaway stars produce bow shocks through the interaction of their winds with the interstellar medium, with the prospect for particle acceleration by the shocks. These objects are consequently candidates for non-thermal emission. Our aim is to investigate the X-ray emission from these sources. We observed with XMM-Newton a sample of five bow shock runaways, which constitutes a significant improvement of the sample of bow shock runaways studied in X-rays so far. A careful analysis of the data did not reveal any X-ray emission related to the bow shocks. However, X-ray emission from the stars is detected, in agreement with the expected thermal emission from stellar winds. On the basis of background measurements we derive conservative upper limits between 0.3 and 10 keV on the bow shocks emission. Using a simple radiation model, these limits together with radio upper limits allow us to constrain some of the main physical quantities involved in the non-thermal emission processes, such as the magnetic field strength and the amount of incident infrared photons. The reasons likely responsible for the non-detection of non-thermal radiation are discussed. Finally, using energy budget arguments, we investigate the detectability of inverse Compton X-rays in a more extended sample of catalogued runaway star bow shocks. From our analysis we conclude that a clear identification of non-thermal X-rays from massive runaway bow shocks requires one order of magnitude (or higher) sensitivity improvement with respect to present observatories.

  12. Comptonization effects in spherical accretion onto black holes

    International Nuclear Information System (INIS)

    Ipser, J.R.; Price, R.H.

    1983-01-01

    For spherical accretion of gas onto a black hole, dissipative heating (from magnetic reconnection), dissipation of turbulence, etc.) leads at high accretion rates to densities and temperatures at which Comptonization unavoidably plays an important role, both in determining gas temperature and in forming the emergent spectrum. A careful and reliable treatment of the interaction of the gas with the radiation field is greatly complicated by the necessity of dealing with the essentially nonlocal nature of Comptonization. We limit ourselves here to finding approximate descriptions of some observational features of such astrophysical objects with a simple, yet justifiable, Ansatz that evades the complexities of nonlocality. The results for accretion spectra are of interest, e.g., in connection with galactic halo objects (1--10 5 M/sub sun/). High mass (10 7 --10 10 M/sub sun/) cases are of interest as models for active galactic nuclei. In particular, a very natural connection between the ratio of luminosity to Eddington luminosity and the hardness of X-ray spectra emerges, suggesting that the observed X-ray hardness ratios of luminous sources are a consequence of those sources being more or less Eddington limited

  13. A counting silicon microstrip detector for precision compton polarimetry

    CERN Document Server

    Doll, D W; Hillert, W; Krüger, H; Stammschroer, K; Wermes, N

    2002-01-01

    A detector for the detection of laser photons backscattered off an incident high-energy electron beam for precision Compton polarimetry in the 3.5 GeV electron stretcher ring ELSA at Bonn University has been developed using individual photon counting. The photon counting detector is based on a silicon microstrip detector system using dedicated ASIC chips. The produced hits by the pair converted Compton photons are accumulated rather than individually read out. A transverse profile displacement can be measured with mu m accuracy rendering a polarization measurement of the order of 1% on the time scale of 10-15 min possible.

  14. Modeling of X-ray Images and Energy Spectra Produced by Stepping Lightning Leaders

    Science.gov (United States)

    Xu, Wei; Marshall, Robert A.; Celestin, Sebastien; Pasko, Victor P.

    2017-11-01

    Recent ground-based measurements at the International Center for Lightning Research and Testing (ICLRT) have greatly improved our knowledge of the energetics, fluence, and evolution of X-ray emissions during natural cloud-to-ground (CG) and rocket-triggered lightning flashes. In this paper, using Monte Carlo simulations and the response matrix of unshielded detectors in the Thunderstorm Energetic Radiation Array (TERA), we calculate the energy spectra of X-rays as would be detected by TERA and directly compare with the observational data during event MSE 10-01. The good agreement obtained between TERA measurements and theoretical calculations supports the mechanism of X-ray production by thermal runaway electrons during the negative corona flash stage of stepping lightning leaders. Modeling results also suggest that measurements of X-ray bursts can be used to estimate the approximate range of potential drop of lightning leaders. Moreover, the X-ray images produced during the leader stepping process in natural negative CG discharges, including both the evolution and morphological features, are theoretically quantified. We show that the compact emission pattern as recently observed in X-ray images is likely produced by X-rays originating from the source region, and the diffuse emission pattern can be explained by the Compton scattering effects.

  15. Measurements of ionic structure in shock compressed lithium hydride from ultrafast x-ray Thomson scattering.

    Science.gov (United States)

    Kritcher, A L; Neumayer, P; Brown, C R D; Davis, P; Döppner, T; Falcone, R W; Gericke, D O; Gregori, G; Holst, B; Landen, O L; Lee, H J; Morse, E C; Pelka, A; Redmer, R; Roth, M; Vorberger, J; Wünsch, K; Glenzer, S H

    2009-12-11

    We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.

  16. Determination of ash content of coal by mass absorption coefficient measurements at two X-ray energies

    International Nuclear Information System (INIS)

    Fookes, R.A.; Gravitis, V.L.; Watt, J.S.

    1977-01-01

    A method for determining the ash content of coal is proposed. It involves measurements proportional to mass absorption coefficients of coal at two X-ray energies. These measurements can be made using X-ray transmission or scatter techniques. Calculations based on transmission of narrow beams of X-rays have shown that ash can be determined to about 1wt%(1 sigma) in coal of widely varying ash content and composition. Experimentally, ash content was determined to 0.67wt% by transmission techniques and 1.0wt% by backscatter techniques in coal samples from the Bulli seam, NSW, Australia, having ash in the range 11-34wt%. For samples with a much wider range of coal composition (7-53wt% ash and 0-25wt% iron in the ash), ash content was determined by backscatter measurements to 1.62wt%. The method produced ash determinations at least as accurate as those produced by the established technique which compensates for variation in iron content of the ash by X-ray fluorescence analysis for iron. Compared with the established technique, it has the advantage of averaging analysis over much larger volumes of coal, but the disadvantage that much more precise measurements of X-ray intensities are required. (author)

  17. Inverse comptonization vs. thermal synchrotron

    International Nuclear Information System (INIS)

    Fenimore, E.E.; Klebesadel, R.W.; Laros, J.G.

    1983-01-01

    There are currently two radiation mechanisms being considered for gamma-ray bursts: thermal synchrotron and inverse comptonization. They are mutually exclusive since thermal synchrotron requires a magnetic field of approx. 10 12 Gauss whereas inverse comptonization cannot produce a monotonic spectrum if the field is larger than 10 11 and is too inefficient relative to thermal synchrotron unless the field is less than 10 9 Gauss. Neither mechanism can explain completely the observed characteristics of gamma-ray bursts. However, we conclude that thermal synchrotron is more consistent with the observations if the sources are approx. 40 kpc away whereas inverse comptonization is more consistent if they are approx. 300 pc away. Unfortunately, the source distance is still not known and, thus, the radiation mechanism is still uncertain

  18. Panel type X-ray image intensifier tube

    International Nuclear Information System (INIS)

    Wang, S.P.

    1977-01-01

    A panel shaped, proximity type, X-ray image intensifier tube for medical X-ray diagnostic is disclosed. It has all linear components and yet a high brightness gain, in the range of 500 to 20,000 cd-sec/m 2 -R, the tube being comprised of a rugged metallic tube envelope, an inwardly concave metallic input window of full size output display screen, an alkaline-halide scintillator photocathode screen suspended on insulators within the envelope and in between the input window and the output screen, and a high Z glass output window to reduce X-ray backscatter inside and outside of the tube. An X-ray sensitive photographic camera for medical diagnostic use is also disclosed which includes an X-ray sensitive image intensifier means of the proximity type and a reduction type optical system having an effective foral length in excess of 100mm for focusing the emage generated on the output display screen of the image intensifier tube onto a small size but directly viewable photographic film. The parameters of the image intensifier, the optics and the film are specified and linked to each other in a manner which maximizes the image quality for a camera system of this type and at the same time restricts the system speed of the camera to a range of 500 to 5,000 R -1 for the film to achieve a net density of 1.0. (Auth.)

  19. Probing the Accretion Geometry of Black Holes with X-Ray Polarization

    Science.gov (United States)

    Schnitman, Jeremy D.

    2011-01-01

    In the coming years, new space missions will be able to measure X-ray polarization at levels of 1% or better in the approx.1-10 keV energy band. In particular, X-ray polarization is an ideal tool for determining the nature of black hole (BH) accretion disks surrounded by hot coronae. Using a Monte Carlo radiation transport code in full general relativity, we calculate the spectra and polarization features of these BH systems. At low energies, the signal is dominated by the thermal flux coming directly from the optically thick disk. At higher energies, the thermal seed photons have been inverse-Compton scattered by the corona, often reflecting back off the disk before reaching the observer, giving a distinctive polarization signature. By measuring the degree and angle of this X-ray polarization, we can infer the BH inclination, the emission geometry of the accretion flow, and also determine the spin of the black hole.

  20. Fast, versatile x-ray fluorescence method for measuring tin in impregnated wood

    DEFF Research Database (Denmark)

    Drabæk, I.; Christensen, Leif Højslet

    1985-01-01

    The present paper describes an energy-dispersive x-ray fluorescence method for measuring tin in bis(tri-n-butyl)tin-oxide impregnated wood. The proposed method is of the backscatter/fundamental parameter type. Its versatility, precision, and accuracy is demonstrated by analyses of eleven samples...

  1. Initial idea to use optical flats for x-ray fluorescence analysis and recent applications to diffraction studies

    International Nuclear Information System (INIS)

    Horiuchi, T.

    1993-01-01

    Described in this work is the initial idea of using an optical flat for X-ray fluorescence analysis based upon studies of anomalous surface reflection (ASR). To develop total-reflection X-ray fluorescence analysis (TXRF) as one of the most powerful tools for microchemical analysis, various experiments such as the micro-determinations of uranium in sea-water, iron in human blood and rare earth elements in hot spring-water were attempted. Furthermore, the physically interesting experiment on Compton scattering under total-reflection conditions was conducted. Recent applications of the total-reflection phenomenon to diffraction studies, i.e. total-reflection X-ray diffraction (TXRD), are also presented. (author)

  2. Determination of coal ash content by the combined x-ray fluorescence and scattering spectrum

    Science.gov (United States)

    Mikhailov, I. F.; Baturin, A. A.; Mikhailov, A. I.; Borisova, S. S.; Fomina, L. P.

    2018-02-01

    An alternative method is proposed for the determination of the inorganic constituent mass fraction (ash) in solid fuel by the ratio of Compton and Rayleigh X-ray scattering peaks IC/IR subject to the iron fluorescence intensity. An original X-ray optical scheme with a Ti/Mo (or Sc/Cu) double-layer secondary radiator allows registration of the combined fluorescence-and-scattering spectrum at the specified scattering angle. An algorithm for linear calibration of the Compton-to-Rayleigh IC/IR ratio is proposed which uses standard samples with two certified characteristics: mass fractions of ash (Ad) and iron oxide (WFe2O3). Ash mass fractions have been determined for coals of different deposits in the wide range of Ad from 9.4% to 52.7% mass and WFe2O3 from 0.3% to 4.95% mass. Due to the high penetrability of the probing radiation with energy E > 17 keV, the sample preparation procedure is rather simplified in comparison with the traditional method of Ad determination by the sum of fluorescence intensities of all constituent elements.

  3. A Compton suppressed detector multiplicity trigger based digital DAQ for gamma-ray spectroscopy

    Science.gov (United States)

    Das, S.; Samanta, S.; Banik, R.; Bhattacharjee, R.; Basu, K.; Raut, R.; Ghugre, S. S.; Sinha, A. K.; Bhattacharya, S.; Imran, S.; Mukherjee, G.; Bhattacharyya, S.; Goswami, A.; Palit, R.; Tan, H.

    2018-06-01

    The development of a digitizer based pulse processing and data acquisition system for γ-ray spectroscopy with large detector arrays is presented. The system is based on 250 MHz 12-bit digitizers, and is triggered by a user chosen multiplicity of Compton suppressed detectors. The logic for trigger generation is similar to the one practised for analog (NIM/CAMAC) pulse processing electronics, while retaining the fast processing merits of the digitizer system. Codes for reduction of data acquired from the system have also been developed. The system has been tested with offline studies using radioactive sources as well as in the in-beam experiments with an array of Compton suppressed Clover detectors. The results obtained therefrom validate its use in spectroscopic efforts for nuclear structure investigations.

  4. PLEIADES: A picosecond Compton scattering x-ray source for advanced backlighting and time-resolved material studies

    International Nuclear Information System (INIS)

    Gibson, David J.; Anderson, Scott G.; Barty, Christopher P.J.; Betts, Shawn M.; Booth, Rex; Brown, Winthrop J.; Crane, John K.; Cross, Robert R.; Fittinghoff, David N.; Hartemann, Fred V.; Kuba, Jaroslav; Le Sage, Gregory P.; Slaughter, Dennis R.; Tremaine, Aaron M.; Wootton, Alan J.; Hartouni, Edward P.; Springer, Paul T.; Rosenzweig, James B.

    2004-01-01

    The PLEIADES (Picosecond Laser-Electron Inter-Action for the Dynamical Evaluation of Structures) facility has produced first light at 70 keV. This milestone offers a new opportunity to develop laser-driven, compact, tunable x-ray sources for critical applications such as diagnostics for the National Ignition Facility and time-resolved material studies. The electron beam was focused to 50 μm rms, at 57 MeV, with 260 pC of charge, a relative energy spread of 0.2%, and a normalized emittance of 5 mm mrad horizontally and 13 mm mrad vertically. The scattered 820 nm laser pulse had an energy of 180 mJ and a duration of 54 fs. Initial x rays were captured with a cooled charge-coupled device using a cesium iodide scintillator; the peak photon energy was approximately 78 keV, with a total x-ray flux of 1.3x10 6 photons/shot, and the observed angular distribution found to agree very well with three-dimensional codes. Simple K-edge radiography of a tantalum foil showed good agreement with the theoretical divergence-angle dependence of the x-ray energy. Optimization of the x-ray dose is currently under way, with the goal of reaching 10 8 photons/shot and a peak brightness approaching 10 20 photons/mm 2 /mrad 2 /s/0.1% bandwidth

  5. Simulations of X-ray synchrotron beams using the EGS4 code system in medical applications

    International Nuclear Information System (INIS)

    Orion, I.; Henn, A.; Sagi, I.; Dilmanian, F.A.; Pena, L.; Rosenfeld, A.B.

    2001-01-01

    X-ray synchrotron beams are commonly used in biological and medical research. The availability of intense, polarized low-energy photons from the synchrotron beams provides a high dose transfer to biological materials. The EGS4 code system, which includes the photoelectron angular distribution, electron motion inside a magnetic field, and the LSCAT package, found to be the appropriate Monte Carlo code for synchrotron-produced X-ray simulations. The LSCAT package was developed in 1995 for the EGS4 code to contain the routines to simulate the linear polarization, the bound Compton, and the incoherent scattering functions. Three medical applications were demonstrated using the EGS4 Monte Carlo code as a proficient simulation code system for the synchrotron low-energy X-ray source. (orig.)

  6. Spatially resolving a starburst galaxy at hard X-ray energies: NuSTAR, CHANDRA, AND VLBA observations of NGC 253

    DEFF Research Database (Denmark)

    Wik, D. R.; Lehmer, B. D.; Hornschemeier, A. E.

    2014-01-01

    for the first time. As a follow up to our initial study of its nuclear region, we present the first results concerning the full galaxy from simultaneous NuSTAR, Chandra, and Very Long Baseline Array monitoring of the local starburst galaxy NGC 253. Above ~10 keV, nearly all the emission is concentrated within...... is detected at E > 40 keV. We report upper limits on diffuse inverse Compton emission for a range of spatial models. For the most extended morphologies considered, these hard X-ray constraints disfavor a dominant inverse Compton component to explain the γ-ray emission detected with Fermi and H.E.S.S. If NGC...

  7. Timing and Spectral Studies of the Peculiar X-ray Binary Circinus X-1

    Energy Technology Data Exchange (ETDEWEB)

    Saz Parkinson, Pablo M.

    2003-08-26

    Circinus X-1 (Cir X-1) is an X-ray binary displaying an array of phenomena which makes it unique in our Galaxy. Despite several decades of observation, controversy surrounds even the most basic facts about this system. It is generally classified as a Neutron Star (NS) Low Mass X-ray Binary (LMXB),though this classification is based primarily on the observation of Type I X-ray Bursts by EXOSAT in 1985. It is believed to be in a very eccentric {approx} 16.5 day orbit, displaying periodic outbursts in the radio and other frequency bands (including optical and IR) which reinforce the notion that this is in fact the orbital period. Cir X-1 lies in the plane of the Galaxy, where optical identification of the companion is made difficult due to dust obscuration. The companion is thought to be a low mass star, though a high mass companion has not currently been ruled out. In this work, the author analyzes recent observations of Cir X-1 made with the Unconventional Stellar Aspect (USA) experiment, as well as archival observations of Cir X-1 made by a variety of instruments, from as early as 1969. The fast (< 1 s) timing properties of Cir X-1 are studied by performing FFT analyses of the USA data. Quasi-Periodic Oscillations (QPOs) in the 1-50 Hz range are found and discussed in the context of recent correlations which question the leading models invoked for their generation. The energy dependence of the QPOs (rms increasing with energy) argues against them being generated in the disk and favors models in which the QPOs are related to a higher energy Comptonizing component. The power spectrum of Cir X-1 in its soft state is compared to that of Cygnus X-1 (Cyg X-1), the prototypical black hole candidate. Using scaling arguments the author argues that the mass of Cir X-1 could exceed significantly the canonical 1.4 M{circle_dot} mass of a neutron star, possibly partly explaining why this object appears so different to other neutron stars. The spectral evolution of Cir X-1 is

  8. The nature of the torus in the heavily obscured AGN Markarian 3: an X-ray study

    OpenAIRE

    Guainazzi, M.; Risaliti, G.; Awaki, H.; Arevalo, P.; Bauer, F. E.; Bianchi, S.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Christensen, Finn Erland; Craig, W. W.; Forster, K.; Hailey, C. J.; Harrison, F.; Koss, M.

    2016-01-01

    In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMM–Newton. The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column dens...

  9. Texture development study during the primary recrystallization of ferritic steels by using X ray and electron backscattering diffraction

    International Nuclear Information System (INIS)

    Loew, Marjorie

    2006-01-01

    X ray and electron backscattering diffraction, in distinct levels, were applied to evaluate microstructural changes in two low carbon ferritic steels (2 per cent Si and ABNT 1006), observing the texture development in cold lamination step (skin-pass) and in the subsequent annealing at 760 deg C. In these two steels, results showed that after the skin-pass and annealing in the conditions of the present work, the observed phenomenon is the primary recrystallization. By applying skin-pass dislocations were introduced mostly in low Taylor factor grains as they are prone to be more deformed. Nucleation and grain growth were observed in high density dislocation cell regions. Silicon presence delayed the recovery favoring the sub-boundaries increase. It was not observed the abnormal grain growth, even in the presence of Gross grains. CSL boundaries did not guarantee the grains growth. Growing nuclei gave rise to grains with distinct orientations, showing that the grain growth was not dependent on the previous presence of grains with the developed orientation. This fact demonstrates that the abnormal grain growth is not necessarily related to the Gross grains. (author)

  10. Optimisation of a dual head semiconductor Compton camera using Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, L.J. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L697ZE (United Kingdom)], E-mail: ljh@ns.ph.liv.ac.uk; Boston, A.J.; Boston, H.C.; Cooper, R.J.; Cresswell, J.R.; Grint, A.N.; Nolan, P.J.; Oxley, D.C.; Scraggs, D.P. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L697ZE (United Kingdom); Beveridge, T.; Gillam, J. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia); Lazarus, I. [STFC Daresbury Laboratory, Warrington, Cheshire (United Kingdom)

    2009-06-01

    Conventional medical gamma-ray camera systems utilise mechanical collimation to provide information on the position of an incident gamma-ray photon. Systems that use electronic collimation utilising Compton image reconstruction techniques have the potential to offer huge improvements in sensitivity. Position sensitive high purity germanium (HPGe) detector systems are being evaluated as part of a single photon emission computed tomography (SPECT) Compton camera system. Data have been acquired from the orthogonally segmented planar SmartPET detectors, operated in Compton camera mode. The minimum gamma-ray energy which can be imaged by the current system in Compton camera configuration is 244 keV due to the 20 mm thickness of the first scatter detector which causes large gamma-ray absorption. A simulation package for the optimisation of a new semiconductor Compton camera has been developed using the Geant4 toolkit. This paper will show results of preliminary analysis of the validated Geant4 simulation for gamma-ray energies of SPECT, 141 keV.

  11. Quasi-simultaneous observations of BL Lac object Mrk 501 in X-ray, UV, visible, IR, and radio frequencies

    International Nuclear Information System (INIS)

    Kondo, Y.; Worrall, D.M.; Mushotzky, R.F.; Hackney, R.L.; Hackney, K.R.H.; Oke, J.B.; Yee, H.K.C.; Neugebauer, G.; Matthews, K.; Feldman, P.A.; Brown, R.L.

    1981-01-01

    Quasi-simultaneous observations of the BL Lac object Mrk 501 were performed for the first time at X-ray, ultraviolet, visible infrared, and radio frequencies. As the BL Lac objects are known to vary in their flux, such a ''quasi-instantaneous'' spectral energy profile is necessary in order to describe properly the energy generation mechanism. The observed spectral slope from the X-ray to UV regions is positive and continuous, but that from the mid-UV to visible light region becomes gradually flat and possibly turns down toward lower frequencies; the optical-radio emission cannot be accounted for by a single power law. Several theoretical models have been considered for the emission mechanism. In some cases quantitative comparison with the data is not practical. However, most of the models are, at least, not inconsistent with the observations. A quantitative comparison has been peformed with the synchroton self-Compton model; the total spectrum is found consistent with this model. The spectrum from visible light to X-ray is consistent with synchrotron radiation or with inverse-Compton scattering by a hot thermal cloud of electrons. The continuity of the spectral slope from X-ray to UV implied by the current data suggests that the previous estimates of the total luminosity of this BL Lac object has been underestimated by a factor of about 3 or 4

  12. Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stoupin, Stanislav; Shvyd' ko, Yuri; Shu Deming; Khachatryan, Ruben; Xiao, Xianghui; DeCarlo, Francesco; Goetze, Kurt; Roberts, Timothy; Roehrig, Christian; Deriy, Alexey [Advanced Photon Source, Argonne National Laboratory, Illinois 60439 (United States)

    2012-02-15

    We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of {Delta}E{sub X}{approx_equal} 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E{sub H} = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

  13. Discovery of Diffuse Hard X-ray Emission associated with Jupiter

    Science.gov (United States)

    Ezoe, Y.; Miyoshi, Y.; Ishikawa, K.; Ohashi, T.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2009-12-01

    Our discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter is reported. Recent Chandra and XMM-Newton observations revealed several types of X-rays in the vicinity of Jupiter such as auroral and disk emission from Jupiter and faint diffuse X-rays from the Io Plasma Torus (see Bhardwaj et al. 2007 for review). To investigate possible diffuse hard X-ray emission around Jupiter with the highest sensitivity, we conducted data analysis of Suzaku XIS observations of Jupiter on Feb 2006. After removing satellite and planetary orbital motions, we detected a significant diffuse X-ray emission extending to ~6 x 3 arcmin with the 1-5 keV X-ray luminosity of ~3e15 erg/s. The emitting region very well coincided with the Jupiter's radiation belts. The 1-5 keV X-ray spectrum was represented by a simple power law model with a photon index of 1.4. Such a flat continuum strongly suggests non-thermal origin. Although such an emission can be originated from multiple background point sources, its possibility is quite low. We hence examined three mechanisms, assuming that the emission is truly diffuse: bremsstrahlung by keV electrons, synchrotron emission by TeV electrons, and inverse Compton scattering of solar photons by MeV electrons. The former two can be rejected because of the X-ray spectral shape and implausible existence of TeV electrons around Jupiter, respectively. The last possibility was found to be possible because tens MeV electrons, which have been confirmed in inner radiation belts (Bolton et al. 2002), can kick solar photons to the keV energy range and provide a simple power-law continuum. We estimated an average electron density from the X-ray luminosity assuming the oblate spheroid shaped emitting region with 8 x 8 x 4 Jovian radii. The necessary density was 0.02 1/cm3 for 50 MeV electrons. Hence, our results may suggest a new particle acceleration phenomenon around Jupiter.

  14. Compton radiography, 1

    International Nuclear Information System (INIS)

    Okuyama, Shinichi; Sera, Koichiro; Fukuda, Hiroshi; Shishido, Fumio; Matsuzawa, Taiju

    1977-01-01

    Tomographic images of an object are obtainable by irradiating it with a collimated beam of monochromatic gamma rays and recording the resultant Compton rays scattered upward at right angles. This is the scattered-ray principle of the formation of a radiation image that differs from the traditional ''silhouette principle'' of radiography, and that bears prospects of stereopsis as well as cross-section tomography. (Evans, J.)

  15. PATCHY ACCRETION DISKS IN ULTRA-LUMINOUS X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Bachetti, M.; Barret, D.; Webb, N. A. [Universite de Toulouse, UPS-OMP, IRAP, F- 31100 Toulouse (France); Harrison, F. A.; Walton, D. J.; Rana, V. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Fabian, A. C., E-mail: jonmm@umich.edu [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2014-04-10

    The X-ray spectra of the most extreme ultra-luminous X-ray sources—those with L ≥ 10{sup 40} erg s{sup –1}—remain something of a mystery. Spectral roll-over in the 5-10 keV band was originally detected in the deepest XMM-Newton observations of the brightest sources; this is confirmed in subsequent NuSTAR spectra. This emission can be modeled via Comptonization, but with low electron temperatures (kT{sub e} ≅ 2 keV) and high optical depths (τ ≅ 10) that pose numerous difficulties. Moreover, evidence of cooler thermal emission that can be fit with thin disk models persists, even in fits to joint XMM-Newton and NuSTAR observations. Using NGC 1313 X-1 as a test case, we show that a patchy disk with a multiple temperature profile may provide an excellent description of such spectra. In principle, a number of patches within a cool disk might emit over a range of temperatures, but the data only require a two-temperature profile plus standard Comptonization, or three distinct blackbody components. A mechanism such as the photon bubble instability may naturally give rise to a patchy disk profile, and could give rise to super-Eddington luminosities. It is possible, then, that a patchy disk (rather than a disk with a standard single-temperature profile) might be a hallmark of accretion disks close to or above the Eddington limit. We discuss further tests of this picture and potential implications for sources such as narrow-line Seyfert-1 galaxies and other low-mass active galactic nuclei.

  16. Bulk Comptonization: new hints from the luminous blazar 4C+25.05

    Science.gov (United States)

    Kammoun, E. S.; Nardini, E.; Risaliti, G.; Ghisellini, G.; Behar, E.; Celotti, A.

    2018-01-01

    Blazars are often characterized by a spectral break at soft X-rays, whose origin is still debated. While most sources show a flattening, some exhibit a blackbody-like soft excess with temperatures of the order of ∼0.1 keV, similar to low-luminosity, non-jetted Seyferts. Here, we present the analysis of the simultaneous XMM-Newton and NuSTAR observations of the luminous flat-spectrum radio quasar 4C+25.05 (z = 2.368). The observed 0.3-30 keV spectrum is best described by the sum of a hard X-ray power law (Γ = 1.38_{-0.03}^{+0.05}) and a soft component, approximated by a blackbody with kT_BB = 0.66_{-0.04}^{+0.05} keV (rest frame). If the spectrum of 4C+25.05 is interpreted in the context of bulk Comptonization by cold electrons of broad-line region photons emitted in the direction of the jet, such an unusual temperature implies a bulk Lorentz factor of the jet of Γbulk ∼ 11.7. Bulk Comptonization is expected to be ubiquitous on physical grounds, yet no clear signature of it has been found so far, possibly due to its transient nature and the lack of high-quality, broad-band X-ray spectra.

  17. Hard X-ray emission from accretion shocks around galaxy clusters

    Science.gov (United States)

    Kushnir, Doron; Waxman, Eli

    2010-02-01

    We show that the hard X-ray (HXR) emission observed from several galaxy clusters is consistent with a simple model, in which the nonthermal emission is produced by inverse Compton scattering of cosmic microwave background photons by electrons accelerated in cluster accretion shocks: The dependence of HXR surface brightness on cluster temperature is consistent with that predicted by the model, and the observed HXR luminosity is consistent with the fraction of shock thermal energy deposited in relativistic electrons being lesssim0.1. Alternative models, where the HXR emission is predicted to be correlated with the cluster thermal emission, are disfavored by the data. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed.

  18. Hard X-ray emission from accretion shocks around galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Kushnir, Doron; Waxman, Eli, E-mail: doron.kushnir@weizmann.ac.il, E-mail: eli.waxman@weizmann.ac.il [Physics Faculty, Weizmann Institute of Science, PO Box 26, Rehovot (Israel)

    2010-02-01

    We show that the hard X-ray (HXR) emission observed from several galaxy clusters is consistent with a simple model, in which the nonthermal emission is produced by inverse Compton scattering of cosmic microwave background photons by electrons accelerated in cluster accretion shocks: The dependence of HXR surface brightness on cluster temperature is consistent with that predicted by the model, and the observed HXR luminosity is consistent with the fraction of shock thermal energy deposited in relativistic electrons being ∼<0.1. Alternative models, where the HXR emission is predicted to be correlated with the cluster thermal emission, are disfavored by the data. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed.

  19. Hard X-ray emission from accretion shocks around galaxy clusters

    International Nuclear Information System (INIS)

    Kushnir, Doron; Waxman, Eli

    2010-01-01

    We show that the hard X-ray (HXR) emission observed from several galaxy clusters is consistent with a simple model, in which the nonthermal emission is produced by inverse Compton scattering of cosmic microwave background photons by electrons accelerated in cluster accretion shocks: The dependence of HXR surface brightness on cluster temperature is consistent with that predicted by the model, and the observed HXR luminosity is consistent with the fraction of shock thermal energy deposited in relativistic electrons being ∼<0.1. Alternative models, where the HXR emission is predicted to be correlated with the cluster thermal emission, are disfavored by the data. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed

  20. Simultaneous Planck, Swift, and Fermi observations of X-ray and γ-ray selected blazars

    International Nuclear Information System (INIS)

    Giommi, P.; Polenta, G.; Lähteenmäki, A.; Thompson, D. J.; Capalbi, M.

    2012-01-01

    We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and γ-ray bands, with additional 5GHz flux-density limits to ensure a good probability of a Planck detection. We compare our results to those of a companion paper presenting simultaneous Planck and multi-frequency observations of 104 radio-loud northern active galactic nuclei selected at radio frequencies. While we confirm several previous results, our unique data set allows us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by the Fermi Large AreaTelescope (LAT), whereas 30% to 40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the γ-ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-millimetre spectral slope of blazars is quite flat, with >α> ~ 0 up to about 70GHz, above which it steepens to ~ -0.65. The BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency (ν_p_e_a_k"S) in the spectral energy distribution (SED) of FSRQs is the same in all the blazar samples with ν_p_e_a_k"I"C>, ranges from 1021 to 1022 Hz. The distributions of ν_p_e_a_k"S and ν_p_e_a_k"I"C of BL Lacs are much broader and are shifted to higher energies than those of FSRQs; their shapes strongly depend on the selection method. The Compton dominance of blazars, defined as the ratio of the inverse Compton to synchrotron peak luminosities, ranges from less than 0.2 to nearly 100, with only FSRQs reaching values larger than about 3. Its distribution is broad and depends strongly on the selection method, with γ-ray selected blazars peaking at ~7 or more, and radio-selected blazars at values close to 1, thus implying that the common

  1. A Compton Imaging Prototype for Range Verification in Particle Therapy

    International Nuclear Information System (INIS)

    Golnik, C.; Hueso Gonzalez, F.; Kormoll, T.; Pausch, G.; Rohling, H.; Fiedler, F.; Heidel, K.; Schoene, S.; Sobiella, M.; Wagner, A.; Enghardt, W.

    2013-06-01

    During the 2012 AAPM Annual Meeting 33 percent of the delegates considered the range uncertainty in proton therapy as the main obstacle of becoming a mainstream treatment modality. Utilizing prompt gamma emission, a side product of particle tissue interaction, opens the possibility of in-beam dose verification, due to the direct correlation between prompt gamma emission and particle dose deposition. Compton imaging has proven to be a technique to measure three dimensional gamma emission profiles and opens the possibility of adaptive dose monitoring and treatment correction. We successfully built a Compton Imaging prototype, characterized the detectors and showed the imaging capability of the complete device. The major advantage of CZT detectors is the high energy resolution and the high spatial resolution, which are key parameters for Compton Imaging. However, our measurements at the proton beam accelerator facility KVI in Groningen (Netherlands) disclosed a spectrum of prompt gamma rays under proton irradiation up to 4.4 MeV. As CZT detectors of 5 mm thickness do not efficiently absorb photons in such energy ranges, another absorption, based on a Siemens LSO block detector is added behind CZT1. This setup provides a higher absorption probability of high energy photons. With a size of 5.2 cm x 5.2 cm x 2.0 cm, this scintillation detector further increases the angular acceptance of Compton scattered photons due to geometric size. (authors)

  2. X-Ray Spectral Characteristics of Ginga Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Strohmayer, T.E.; Fenimore, E.E.; Murakami, T.; Yoshida, A.

    1998-01-01

    We have investigated the spectral characteristics of a sample of bright gamma-ray bursts detected with the gamma-ray burst sensors aboard the satellite Ginga. This instrument employed a proportional and scintillation counter to provide sensitivity to photons in the 2 endash 400 keV region and as such provided a unique opportunity to characterize the largely unexplored X-ray properties of gamma-ray bursts. The photon spectra of the Ginga bursts are well described by a low-energy slope, a bend energy, and a high-energy slope. In the energy range where they can be compared, this result is consistent with burst spectral analyses obtained from the BATSE experiment aboard the Compton Gamma-Ray Observatory. However, below 20 keV we find evidence for a positive spectral number index in approximately 40% of our burst sample, with some evidence for a strong rolloff at lower energies in a few events. There is a correlation (Pearson's r = -0.62) between the low-energy slope and the bend energy. We find that the distribution of spectral bend energies extends below 10 keV. There has been some concern in cosmological models of gamma-ray bursts (GRBs) that the bend energy covers only a small dynamic range. Our result extends the observed dynamic range, and, since we observe bend energies down to the limit of our instrument, perhaps observations have not yet limited the range. The Ginga trigger range was virtually the same as that of BATSE, yet we find a different range of fit parameters. One possible explanation might be that GRBs have two break energies, one often in the 50 endash 500 keV range and the other near 5 keV. Both BATSE and Ginga fit with only a single break energy, so BATSE tends to find breaks near the center of its energy range, and we tend to find breaks in our energy range. The observed ratio of energy emitted in the X-rays relative to the gamma rays can be much larger than a few percent and, in fact, is sometimes larger than unity. The average for our 22 bursts

  3. High-energy gamma-rays from Cyg X-1

    Science.gov (United States)

    Zdziarski, Andrzej A.; Malyshev, Denys; Chernyakova, Maria; Pooley, Guy G.

    2017-11-01

    We have obtained a firm detection of Cyg X-1 during its hard and intermediate spectral states in the energy range of 40 MeV-60 GeV based on observations by the Fermi Large Area Telescope, confirming the independent results at ≥60 MeV of a previous work. The detection significance is ≃8σ in the 0.1-10 GeV range. In the soft state, we have found only upper limits on the emission at energies ≳0.1 MeV. However, we have found emission with a very soft spectrum in the 40-80 MeV range, not detected previously. This is likely to represent the high-energy cut-off of the high-energy power-law tail observed in the soft state. Similarly, we have detected a γ-ray soft excess in the hard state, which appears to be of similar origin. We have also confirmed the presence of an orbital modulation of the detected emission in the hard state, expected if the γ-rays are from Compton upscattering of stellar blackbody photons. However, the observed modulation is significantly weaker than that predicted if the blackbody upscattering were the dominant source of γ-rays. This argues for a significant contribution from γ-rays produced by the synchrotron self-Compton process. We have found that such strong contribution is possible if the jet is strongly clumped. We reproduce the observed hard-state average broad-band spectrum using a self-consistent jet model, taking into account all the relevant emission processes, e± pair absorption and clumping. This model also reproduces the amplitude of the observed orbital modulation.

  4. Comparative experimental study of PIXE and X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Vega B, L.R. De la.

    1994-01-01

    PIXE and X RF techniques are powerful analysis instruments in the determination of traces of elements. Although the physical processes characteristic X-rays production (ionization-emission) are similar in both methods, the representative background of each technique, responsible of its sensitivity, are different. This is because the interaction between exciter agents and the matter produces different effects. In PIXE, the background is caused by the radiation produced by the braking of the secondary electrons: Bremsstrahlung. In X RF, the background is due to the elastic and inelastic scattering of photons: Rayleigh and Compton effects. In this work, we have compared the results of the analysis of environmental samples using both methods, in order to know the scope of each one and develop them as complementary techniques. (Author)

  5. An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements

    Science.gov (United States)

    Ross, H. Richard

    1993-01-01

    A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.

  6. Radio/X-ray monitoring of the broad-line radio galaxy 3C 382. High-energy view with XMM-Newtonand NuSTAR

    Science.gov (United States)

    Ursini, F.; Petrucci, P.-O.; Matt, G.; Bianchi, S.; Cappi, M.; Dadina, M.; Grandi, P.; Torresi, E.; Ballantyne, D. R.; De Marco, B.; De Rosa, A.; Giroletti, M.; Malzac, J.; Marinucci, A.; Middei, R.; Ponti, G.; Tortosa, A.

    2018-05-01

    We present the analysis of five joint XMM-Newton/NuSTARobservations, 20 ks each and separated by 12 days, of the broad-line radio galaxy 3C 382. The data were obtained as part of a campaign performed in September-October 2016 simultaneously with VLBA. The radio data and their relation with the X-ray ones will be discussed in a following paper. The source exhibits a moderate flux variability in the UV/X-ray bands, and a limited spectral variability especially in the soft X-ray band. In agreement with past observations, we find the presence of a warm absorber, an iron Kα line with no associated Compton reflection hump, and a variable soft excess well described by a thermal Comptonization component. The data are consistent with a "two-corona" scenario, in which the UV emission and soft excess are produced by a warm (kT ≃ 0.6 keV), optically thick (τ ≃ 20) corona consistent with being a slab fully covering a nearly passive accretion disc, while the hard X-ray emission is due to a hot corona intercepting roughly 10% of the soft emission. These results are remarkably similar to those generally found in radio-quiet Seyferts, thus suggesting a common accretion mechanism.

  7. The influence of magnetic field geometry on magnetars X-ray spectra

    International Nuclear Information System (INIS)

    Viganò, D; Pons, J A; Miralles, J A; Parkins, N; Zane, S; Turolla, R

    2012-01-01

    Nowadays, the analysis of the X-ray spectra of magnetically powered neutron stars or magnetars is one of the most valuable tools to gain insight into the physical processes occurring in their interiors and magnetospheres. In particular, the magnetospheric plasma leaves a strong imprint on the observed X-ray spectrum by means of Compton up-scattering of the thermal radiation coming from the star surface. Motivated by the increased quality of the observational data, much theoretical work has been devoted to develop Monte Carlo (MC) codes that incorporate the effects of resonant Compton scattering (RCS) in the modeling of radiative transfer of photons through the magnetosphere. The two key ingredients in this simulations are the kinetic plasma properties and the magnetic field (MF) configuration. The MF geometry is expected to be complex, but up to now only mathematically simple solutions (self-similar solutions) have been employed. In this work, we discuss the effects of new, more realistic, MF geometries on synthetic spectra. We use new force-free solutions [14] in a previously developed MC code [9] to assess the influence of MF geometry on the emerging spectra. Our main result is that the shape of the final spectrum is mostly sensitive to uncertain parameters of the magnetospheric plasma, but the MF geometry plays an important role on the angle-dependence of the spectra.

  8. Energy distribution of 0. 279 MeV gamma rays Compton scattered from bound electrons

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B; Singh, P; Singh, G; Ghumman, B S

    1984-11-01

    Energy and intensity distribution of 0.279 MeV gamma rays Compton scattered from K-shell electrons of tantalum is measured at scattering angle of 70deg. The experimental results are compared with the available theoretical data. Spectral distribution is also obtained as a function of scatterer thickness to account for the contribution of false events. 13 refs.

  9. An Iwasawa-Taniguchi Effect for Compton-thick Active Galactic Nuclei

    Science.gov (United States)

    Boorman, Peter G.; Gandhi, Poshak; Baloković, Mislav; Brightman, Murray; Harrison, Fiona; Ricci, Claudio; Stern, Daniel

    2018-04-01

    We present the first study of an Iwasawa-Taniguchi/`X-ray Baldwin' effect for Compton-thick active galactic nuclei (AGN). We report a statistically significant anti-correlation between the rest-frame equivalent width (EW) of the narrow core of the neutral Fe Kα fluorescence emission line, ubiquitously observed in the reflection spectra of obscured AGN, and the mid-infrared 12 μ m continuum luminosity (taken as a proxy for the bolometric AGN luminosity). Our sample consists of 72 Compton-thick AGN selected from pointed and deep-field observations covering a redshift range of z ˜ 0.0014 - 3.7. We employ a Monte Carlo-based fitting method, which returns a Spearman's Rank correlation coefficient of ρ = - 0.28 ± 0.12, significant to 98.7% confidence. The best fit found is log(EW_{Fe Kα }) ∝ -0.08± 0.04 log(L_{12 {μ } m}), which is consistent with multiple studies of the X-ray Baldwin effect for unobscured and mildly obscured AGN. This is an unexpected result, as the Fe Kα line is conventionally thought to originate from the same region as the underlying reflection continuum, which together constitute the reflection spectrum. We discuss the implications this could have if confirmed on larger samples, including a systematic underestimation of the line of sight X-ray obscuring column density and hence the intrinsic luminosities and growth rates for the most luminous AGN.

  10. Time variability of X-ray binaries: observations with INTEGRAL. Modeling

    International Nuclear Information System (INIS)

    Cabanac, Clement

    2007-01-01

    The exact origin of the observed X and Gamma ray variability in X-ray binaries is still an open debate in high energy astrophysics. Among others, these objects are showing aperiodic and quasi-periodic luminosity variations on timescales as small as the millisecond. This erratic behavior must put constraints on the proposed emission processes occurring in the vicinity of the neutrons star or the stellar mass black-hole held by these objects. We propose here to study their behavior following 3 different ways: first we examine the evolution of a particular X-ray source discovered by INTEGRAL, IGR J19140+0951. Using timing and spectral data given by different instruments, we show that the source type is plausibly consistent with a High Mass X-ray Binary hosting a neutrons star. Subsequently, we propose a new method dedicated to the study of timing data coming from coded mask aperture instruments. Using it on INTEGRAL/ISGRI real data, we detect the presence of periodic and quasi-periodic features in some pulsars and micro-quasars at energies as high as a hundred keV. Finally, we suggest a model designed to describe the low frequency variability of X-ray binaries in their hardest state. This model is based on thermal comptonization of soft photons by a warm corona in which a pressure wave is propagating in cylindrical geometry. By computing both numerical simulations and analytical solution, we show that this model should be suitable to describe some of the typical features observed in X-ray binaries power spectra in their hard state and their evolution such as aperiodic noise and low frequency quasi-periodic oscillations. (author) [fr

  11. From laser-plasma accelerators to femtosecond X-ray sources: study, development and applications

    International Nuclear Information System (INIS)

    Corde, S.

    2012-01-01

    During the relativistic interaction between a short and intense laser pulse and an underdense plasma, electrons can be injected and accelerated up to hundreds of MeV in an accelerating structure formed in the wake of the pulse: this is the so-called laser-plasma accelerator. One of the major perspectives for laser-plasma accelerators resides in the realization of compact sources of femtosecond x-ray beams. In this thesis, two x-ray sources was studied and developed. The betatron radiation, intrinsic to laser-plasma accelerators, comes from the transverse oscillations of electrons during their acceleration. Its characterization by photon counting revealed an x-ray beam containing 10"9 photons, with energies extending above 10 keV. We also developed an all-optical Compton source producing photons with energies up to hundreds of keV, based on the collision between a photon beam and an electron beam. The potential of these x-ray sources was highlighted by the realization of single shot phase contrast imaging of a biological sample. Then, we showed that the betatron x-ray radiation can be a powerful tool to study the physics of laser-plasma acceleration. We demonstrated the possibility to map the x-ray emission region, which gives a unique insight into the interaction, permitting us for example to locate the region where electrons are injected. The x-ray angular and spectral properties allow us to gain information on the transverse dynamics of electrons during their acceleration. (author)

  12. A flexible geometry Compton camera for industrial gamma ray imaging

    International Nuclear Information System (INIS)

    Royle, G.J.; Speller, R.D.

    1996-01-01

    A design for a Compton scatter camera is proposed which is applicable to gamma ray imaging within limited access industrial sites. The camera consists of a number of single element detectors arranged in a small cluster. Coincidence circuitry enables the detectors to act as a scatter camera. Positioning the detector cluster at various locations within the site, and subsequent reconstruction of the recorded data, allows an image to be obtained. The camera design allows flexibility to cater for limited space or access simply by positioning the detectors in the optimum geometric arrangement within the space allowed. The quality of the image will be limited but imaging could still be achieved in regions which are otherwise inaccessible. Computer simulation algorithms have been written to optimize the various parameters involved, such as geometrical arrangement of the detector cluster and the positioning of the cluster within the site, and to estimate the performance of such a device. Both scintillator and semiconductor detectors have been studied. A prototype camera has been constructed which operates three small single element detectors in coincidence. It has been tested in a laboratory simulation of an industrial site. This consisted of a small room (2 m wide x 1 m deep x 2 m high) into which the only access points were two 6 cm diameter holes in a side wall. Simple images of Cs-137 sources have been produced. The work described has been done on behalf of BNFL for applications at their Sellafield reprocessing plant in the UK

  13. Monte Carlo simulation of muon-induced background of an anti-Compton gamma-ray spectrometer placed in a surface and underground laboratory

    CERN Document Server

    Vojtyla, P

    2005-01-01

    Simulations of cosmic ray muon induced background of an HPGe detector placed inside an anti-Compton shield on the surface and in shallow underground is described. Investigation of several model set-ups revealed some trends useful for design of low-level gamma-ray spectrometers. It has been found that background spectrum of an HPGe detector can be scaled down with the shielding depth. No important difference is observed when the same set-up of the anti-Compton spectrometer is positioned horizontally or vertically. A cosmic-muon rejection factor of at least 40 (at around 1 MeV) can be reached when the anti-Compton suppression is operational. The cosmicmuon background can be reduced to such a level that other background components prevail, like those from the residual contamination of the detector and shield materials and/or from radon, especially for the underground facilities.

  14. A FOCUSED, HARD X-RAY LOOK AT ARP 299 WITH NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Ptak, A.; Hornschemeier, A.; Lehmer, B.; Yukita, M.; Wik, D.; Tatum, M. [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Zezas, A. [Department of Physics, University of Crete, Herakleion (Greece); Antoniou, V. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Argo, M. K. [Jodrell Bank Centre for Astrophysics, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Ballo, L.; Della Ceca, R. [Osservatorio Astronomico di Brera (INAF), via Brera 28, I-20121 Milano (Italy); Bechtol, K. [Kavli Institute for Cosmological Physics, Chicago, IL 60637 (United States); Boggs, S.; Craig, W. W.; Krivonos, R. [U.C. Berkeley Space Sciences Laboratory, Berkeley, CA (United States); Christensen, F. E. [National Space Institute, Technical University of Denmark, DK-2100 Copenhagen (Denmark); Hailey, C. J. [Columbia University, New York, NY (United States); Harrison, F. A. [Caltech Division of Physics, Mathematics and Astronomy, Pasadena, CA (United States); Maccarone, T. J. [Department of Physics, Texas Tech University, Lubbock, TX 79409 (United States); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); and others

    2015-02-20

    We report on simultaneous observations of the local starburst system Arp 299 with NuSTAR and Chandra, which provides the first resolved images of this galaxy up to energies of ∼45 keV. Fitting the 3-40 keV spectrum reveals a column density of N {sub H} ∼ 4 × 10{sup 24} cm{sup –2}, characteristic of a Compton-thick active galactic nucleus (AGN), and a 10-30 keV luminosity of 1.2 × 10{sup 43} erg s{sup –1}. The hard X-rays detected by NuSTAR above 10 keV are centered on the western nucleus, Arp 299-B, which previous X-ray observations have shown to be the primary source of neutral Fe-K emission. Other X-ray sources, including Arp 299-A, the eastern nucleus also thought to harbor an AGN, as well as X-ray binaries, contribute ≲ 10% to the 10-20 keV emission from the Arp 299 system. The lack of significant emission above 10 keV other than that attributed to Arp 299-B suggests that: (1) any AGN in Arp 299-A must be heavily obscured (N {sub H} > 10{sup 24} cm{sup –2}) or have a much lower luminosity than Arp 299-B and (2) the extranuclear X-ray binaries have spectra that cut-off above ∼10 keV. Such soft spectra are characteristic of ultraluminous X-ray sources observed to date by NuSTAR.

  15. The Nature of the Torus in the Heavily Obscured AGN Markarian 3: an X-Ray Study

    Science.gov (United States)

    Guainazzi, M.; Risaliti, G.; Awaki, H.; Arevalo, P.; Bauer, F. E.; Bianchi, S.; Boggs, S.E; Brandt, W. N.; Brightman, M.; Christensen, F. E.; hide

    2016-01-01

    In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMMNewton. The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column density (N(sub H) approx. 0.8-1.1 x 10(exp 24)/sq cm). If arranged in a spherical-toroidal geometry, the Compton scattering matter has an opening angle approx. 66deg, and is seen at a grazing angle through its upper rim (inclination angle approx. 70deg). We report a possible occultation event during the 2014 campaign. If the torus is constituted by a system of clouds sharing the same column density, this event allows us to constrain their number (17 +/- 5) and individual column density, [approx. (4.9 +/- 1.5) x 10(exp 22)/ sq cm]. The comparison of IR and X-ray spectroscopic results with state-of-the art torus models suggests that at least two-thirds of the X-ray obscuring gas volume might be located within the dust sublimation radius. We report also the discovery of an ionized absorber, characterized by variable resonant absorption lines due to He- and H-like iron. This discovery lends support to the idea that moderate column density absorbers could be due to clouds evaporated at the outer surface of the torus, possibly accelerated by the radiation pressure due to the central AGN emission leaking through the patchy absorber.

  16. A COMPTON-THICK ACTIVE GALACTIC NUCLEUS AT z ∼ 5 IN THE 4 Ms CHANDRA DEEP FIELD SOUTH

    International Nuclear Information System (INIS)

    Gilli, R.; Comastri, A.; Su, J.; Norman, C.; Vignali, C.; Tozzi, P.; Rosati, P.; Mainieri, V.; Stiavelli, M.; Brandt, W. N.; Xue, Y. Q.; Luo, B.; Castellano, M.; Fontana, A.; Fiore, F.; Ptak, A.

    2011-01-01

    We report the discovery of a Compton-thick active galactic nucleus (AGN) at z = 4.76 in the 4 Ms Chandra Deep Field South. This object was selected as a V-band dropout in HST/ACS images and previously recognized as an AGN from optical spectroscopy. The 4 Ms Chandra observations show a significant (∼4.2σ) X-ray detection at the V-band dropout position. The X-ray source displays a hardness ratio of HR = 0.23 ± 0.24, which, for a source at z ∼ 5, is highly suggestive of Compton-thick absorption. The source X-ray spectrum is seen above the background level in the energy range of ∼0.9-4 keV, i.e., in the rest-frame energy range of ∼5-23 keV. When fixing the photon index to Γ = 1.8, the measured column density is N H = 1.4 +0.9 -0.5 x 10 24 cm -2 , which is Compton thick. To our knowledge, this is the most distant heavily obscured AGN, confirmed by X-ray spectral analysis, discovered so far. The intrinsic (de-absorbed), rest-frame luminosity in the 2-10 keV band is ∼2.5 x 10 44 erg s -1 , which places this object among type-2 quasars. The spectral energy distribution shows that massive star formation is associated with obscured black hole (BH) accretion. This system may have then been caught during a major coeval episode of BH and stellar mass assembly at early times. The measure of the number density of heavily obscured AGN at high redshifts will be crucial to reconstructing the BH/galaxy evolution history from the beginning.

  17. OSO 8 X-ray spectra of clusters of galaxies. I - Observations of twenty clusters: Physical correlations

    Science.gov (United States)

    Mushotzky, R. F.; Serlemitsos, P. J.; Boldt, E. A.; Holt, S. S.; Smith, B. W.

    1978-01-01

    OSO 8 X-ray spectra from 2 to 20 keV have been analyzed for 26 clusters of galaxies. For 20 clusters temperatures, emission integrals, iron abundances, and low-energy absorption measurements are presented. The data give, in general, better fits to thermal bremsstrahlung than to power-law models. Eight clusters have positive iron emission-line detections at the 90% confidence level, and all 20 cluster spectra are consistent with Fe/H = 0.000014 by number with the possible exception of Virgo. Thus it is confirmed that X-ray emission in this energy band is predominantly thermal radiation from hot intracluster gas rather than inverse Compton radiation. Physical correlations between X-ray spectral parameters and other cluster properties are examined. It is found that (1) the X-ray temperature is approximately proportional to the square of the velocity dispersion of the galaxies; (2) the emission integral is a strong function of the X-ray temperature; (3) the X-ray temperature and emission integral are better correlated with cluster central-galaxy density than with richness; and (4) the fraction of galaxies which are spirals is correlated with the observed ram pressure in the cluster core.

  18. GRB 071112C: A CASE STUDY OF DIFFERENT MECHANISMS IN X-RAY AND OPTICAL TEMPORAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K. Y.; Tung, Y. H.; Lin, H. M.; Wang, S. Y.; Lehner, M. J.; Wang, J. H.; Wen, C. Y. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Urata, Y.; Ip, W. H. [Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Xin, L. P.; Qiu, Y.; Wei, J. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Yoshida, M. [Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Zheng, W.; Akerlof, C. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Bianco, F. B. [Department of Physics, University of California Santa Barbara, Mail Code 9530, Santa Barbara, CA 93106-9530 (United States); Kawai, N. [Department of Physics, Tokyo Institute of Technology, 2-21-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Kuroda, D. [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Kamogata, Asakuchi, Okayama 719-0232 (Japan); Marshall, S. L. [Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, MS 29, Menlo Park, CA 94025 (United States); Schwamb, M. E. [Department of Physics, Yale University, P.O. Box 208121, New Haven, CT 06520-8121 (United States); and others

    2012-03-20

    We present a study on GRB 071112C X-ray and optical light curves. In these two wavelength ranges, we have found different temporal properties. The R-band light curve showed an initial rise followed by a single power-law decay, while the X-ray light curve was described by a single power-law decay plus a flare-like feature. Our analysis shows that the observed temporal evolution cannot be described by the external shock model in which the X-ray and optical emission are produced by the same emission mechanism. No significant color changes in multi-band light curves and a reasonable value of the initial Lorentz factor ({Gamma}{sub 0} = 275 {+-} 20) in a uniform interstellar medium support the afterglow onset scenario as the correct interpretation for the early R band rise. The result suggests that the optical flux is dominated by afterglow. Our further investigations show that the X-ray flux could be created by an additional feature related to energy injection and X-ray afterglow. Different theoretical interpretations indicate the additional feature in X-ray can be explained by either late internal dissipation or local inverse-Compton scattering in the external shock.

  19. Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Komura, S.; Takada, A.; Mizumura, Y.; Miyamoto, S.; Takemura, T.; Kishimoto, T.; Kubo, H.; Matsuoka, Y.; Mizumoto, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Parker, J. D.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K. [Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502 (Japan); Kurosawa, S. [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, 980-8579 (Japan); Miuchi, K. [Department of Physics, Kobe University, Kobe, Hyogo, 658-8501 (Japan); Sawano, T., E-mail: komura@cr.scphys.kyoto-u.ac.jp [College of Science and Engineering, School of Mathematics and Physics, Kanazawa University, Kanazawa, Ishikawa, 920-1192 (Japan)

    2017-04-10

    X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factor over an FoV of up to 2 π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 10{sup 7} s exposure and over 20 GRBs down to a 6 × 10{sup −6} erg cm{sup −2} fluence and 10% polarization during a one-year observation.

  20. Studies of coherent/Compton scattering method for bone mineral content measurement

    International Nuclear Information System (INIS)

    Sakurai, Kiyoko; Iwanami, Shigeru; Nakazawa, Keiji; Matsubayashi, Takashi; Imamura, Keiko.

    1980-01-01

    A measurement of bone mineral content by a coherent/Compton scattering method was described. A bone sample was irradiated by a collimated narrow beam of 59.6 keV gamma-rays emitted from a 300 mCi 241 Am source, and the scattered radiations were detected using a collimated pure germanium detector placed at 90 0 to the incident beam. The ratio of coherent to Compton peaks in a spectrum of the scattered radiations depends on the bone mineral content of the bone sample. The advantage of this method is that bone mineral content of a small region in a bone can be accurately measured. Assuming that bone consists of two components, protein and bone mineral, and that the mass absorption coefficient for Compton scattering is independent of material, the coherent to Compton scattering ratio is linearly related to the percentage in weight of bone mineral. A calibration curve was obtained by measuring standard samples which were mixed with Ca 3 (PO 4 ) 2 and H 2 O. The error due to the assumption about the mass absorption coefficient for Compton scattering and to the difference between true bone and standard samples was estimated to be less than 3% within the range from 10 to 60% in weight of bone mineral. The fat in bone affects an estimated value by only 1.5% when it is 20% in weight. For the clinical application of this method, the location to be analyzed should be selected before the measurement with two X-ray images viewed from the source and the detector. These views would be also used to correct the difference in absorption between coherent and Compton scattered radiations whose energies are slightly different from each other. The absorbed dose to the analyzed region was approximately 150 mrad. The time required for one measurement in this study was about 10 minutes. (author)

  1. Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1

    Science.gov (United States)

    Laurent, P.; Rodriquez, J.; Wilms, J.; Bel, M. Cadolle; Pottschmidt, K.; Grinberg, V.

    2011-01-01

    Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-I with the INTEGRAL/IBIS telescope. Spectral modeling ofthe data reveals two emission mechanisms: The 250-400 keY data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.

  2. X-RAY EMISSION FROM SN 2004dj: A TALE OF TWO SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborti, Sayan; Yadav, Naveen; Ray, Alak [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai 400 005 (India); Smith, Randall [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Chandra, Poonam [Department of Physics, Royal Military College of Canada, Kingston, ON K7K 7B4 (Canada); Pooley, David, E-mail: schakraborti@fas.harvard.edu [Department of Physics, Sam Houston State University, Huntsville, TX (United States)

    2012-12-20

    Type IIP (Plateau) supernovae are the most commonly observed variety of core-collapse events. They have been detected in a wide range of wavelengths from radio, through optical to X-rays. The standard picture of a Type IIP supernova has the blastwave interacting with the progenitor's circumstellar matter to produce a hot region bounded by a forward and a reverse shock. This region is thought to be responsible for most of the X-ray and radio emission from these objects. Yet the origin of X-rays from these supernovae is not well understood quantitatively. The relative contributions of particle acceleration and magnetic field amplification in generating the X-ray and radio emission need to be determined. In this work, we analyze archival Chandra observations of SN 2004dj, one of the nearest supernovae since SN 1987A, along with published radio and optical information. We determine the pre-explosion mass-loss rate, blastwave velocity, electron acceleration, and magnetic field amplification efficiencies. We find that a greater fraction of the thermal energy goes into accelerating electrons than into amplifying magnetic fields. We conclude that the X-ray emission arises out of a combination of inverse Compton scattering by non-thermal electrons accelerated in the forward shock and thermal emission from supernova ejecta heated by the reverse shock.

  3. Beam Diagnostics for Laser Undulator Based on Compton Backward Scattering

    CERN Document Server

    Kuroda, R

    2005-01-01

    A compact soft X-ray source is required in various research fields such as material and biological science. The laser undulator based on Compton backward scattering has been developed as a compact soft X-ray source for the biological observation at Waseda University. It is performed in a water window region (250eV - 500 eV) using the interaction between 1047 nm Nd:YLF laser (10ps FWHM) and about 5 MeV high quality electron beam (10ps FWHM) generated from rf gun system. The range of X-ray energy in the water window region has K-shell absorption edges of Oxygen, Carbon and Nitrogen, which mainly constitute of living body. Since the absorption coefficient of water is much smaller than the protein's coefficient in this range, a dehydration of the specimens is not necessary. To generate the soft X-ray pulse stably, the electron beam diagnostics have been developed such as the emittance measurement using double slit scan technique, the bunch length measurement using two frequency analysis technique. In this confere...

  4. The ultraluminous X-ray sources NGC 1313 X-1 and X-2: A broadband study with NuSTAR and XMM-Newton

    Energy Technology Data Exchange (ETDEWEB)

    Bachetti, Matteo; Barret, Didier; Webb, Natalie A. [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Rana, Vikram; Walton, Dominic J.; Harrison, Fiona A.; Fürst, Felix; Grefenstette, Brian W.; Madsen, Kristin K. [Cahill Center for Astronomy and Astrophysics, Caltech, Pasadena, CA 91125 (United States); Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Fabian, Andrew C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Hornschemeier, Ann; Ptak, Andrew F.; Zhang, William W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Miller, Jon M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Stern, Daniel, E-mail: matteo.bachetti@irap.omp.eu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2013-12-01

    We present the results of NuSTAR and XMM-Newton observations of the two ultraluminous X-ray sources: NGC 1313 X-1 and X-2. The combined spectral bandpass of the two satellites enables us to produce the first spectrum of X-1 between 0.3 and 30 keV, while X-2 is not significantly detected by NuSTAR above 10 keV. The NuSTAR data demonstrate that X-1 has a clear cutoff above 10 keV, whose presence was only marginally detectable with previous X-ray observations. This cutoff rules out the interpretation of X-1 as a black hole in a standard low/hard state, and it is deeper than predicted for the downturn of a broadened iron line in a reflection-dominated regime. The cutoff differs from the prediction of a single-temperature Comptonization model. Further, a cold disk-like blackbody component at ∼0.3 keV is required by the data, confirming previous measurements by XMM-Newton only. We observe a spectral transition in X-2, from a state with high luminosity and strong variability to a lower-luminosity state with no detectable variability, and we link this behavior to a transition from a super-Eddington to a sub-Eddington regime.

  5. Reduction of Compton background from hydrogen in prompt gamma-ray analysis by multiple photon detection

    International Nuclear Information System (INIS)

    Toh, Y.; Oshima, M.; Kimura, A.; Koizumi, M.; Furutaka, K.; Hatsukawa, Y.

    2008-01-01

    Low-energy photons produced by the Compton scattering from hydrogen increase the background in the lower-energy region of the gamma-ray spectrum. This results in an increase in the detection limit for trace elements. In multiple photon detection prompt gamma-ray analysis (MPGA), only those elements that simultaneously emit two or more prompt gamma-rays, which have cascade relation and are emitted within a short interval, can be measured. Therefore, the influence of hydrogen can be reduced. In this study, standard polymer and food samples are measured. The hydrogen background is reduced in MPGA. (author)

  6. RENEWED ACTIVITY FROM THE X-RAY TRANSIENT SAXJ 1810.8-2609 WITH INTEGRAL

    DEFF Research Database (Denmark)

    Fiocchi, M.; Natalucci, L.; Chenevez, Jérôme

    2009-01-01

    (36) erg s(-1) in the 20-100 keV energy range. This low outburst luminosity and the long-term time-average accretion rate of similar to 5 x 10(-12) M-circle dot yr(-1) suggest that SAX J1810.8-2609 is a faint soft X-ray transient. During the flux increase, spectra are consistent with a thermal...... Comptonization model with a temperature plasma of kT(e) similar to 23-30 keV and an optical depth of tau similar to 1.2-1.5, independent of the luminosity of the system. This is a typical low hard spectral state for which the X-ray emission is attributed to the upscattering of soft seed photons by a hot......, optically thin electron plasma. During the decay, spectra have a different shape, the high energy tail being compatible with a single power law. This confirm similar behavior observed by BeppoSAX during the previous outburst, with the absence of visible cutoff in the hard X-ray spectrum. INTEGRAL...

  7. Estimating the sky map in gamma-ray astronomy with a Compton telescope

    International Nuclear Information System (INIS)

    Herbert, T.J.

    1991-01-01

    Compton telescopes represent an effective design for γ-ray astronomy in the 1-30 MeV range. However, the complexity of the system response to incident γ-rays has restricted the formulation of optimal methods for processing the data. Since data is only acquired at considerable expense and difficulty a significant investment in both algorithm development and computer processing time are warranted. Current methods for processing low level data form the sky map as either the sum or product of the probabilities that each recorded γ-ray originated from within an area of the sky map. Instead, we model the unknown sky map itself as the means of a Poisson process generating the γ-ray recorded by the telescope. In this paper the authors formulate the probability density function of the data conditioned upon the sky map and derive an iterative algorithm for estimating the sky map by the method of maximum likelihood

  8. THE γ-RAY SPECTRUM OF GEMINGA AND THE INVERSE COMPTON MODEL OF PULSAR HIGH-ENERGY EMISSION

    International Nuclear Information System (INIS)

    Lyutikov, Maxim

    2012-01-01

    We reanalyze the Fermi spectra of the Geminga and Vela pulsars. We find that the spectrum of Geminga above the break is well approximated by a simple power law without the exponential cutoff, making Geminga's spectrum similar to that of Crab. Vela's broadband γ-ray spectrum is equally well fit with both the exponential cutoff and the double power-law shapes. In the broadband double power-law fits, for a typical Fermi spectrum of a bright γ-ray pulsar, most of the errors accumulate due to the arbitrary parameterization of the spectral roll-off. In addition, a power law with an exponential cutoff gives an acceptable fit for the underlying double power-law spectrum for a very broad range of parameters, making such fitting procedures insensitive to the underlying Fermi photon spectrum. Our results have important implications for the mechanism of pulsar high-energy emission. A number of observed properties of γ-ray pulsars—i.e., the broken power-law spectra without exponential cutoffs and stretching in the case of Crab beyond the maximal curvature limit, spectral breaks close to or exceeding the maximal breaks due to curvature emission, patterns of the relative intensities of the leading and trailing pulses in the Crab repeated in the X-ray and γ-ray regions, presence of profile peaks at lower energies aligned with γ-ray peaks—all point to the inverse Compton origin of the high-energy emission from majority of pulsars.

  9. DYNAMICS INSIDE THE RADIO AND X-RAY CLUSTER CAVITIES OF CYGNUS A AND SIMILAR FRII SOURCES

    International Nuclear Information System (INIS)

    Mathews, William G.; Guo Fulai

    2012-01-01

    We describe approximate axisymmetric computations of the dynamical evolution of material inside radio lobes and X-ray cluster gas cavities in Fanaroff-Riley II (FRII) sources such as Cygnus A. All energy is delivered by a jet to the lobe/cavity via a moving hotspot where jet energy dissipates in a reverse shock. Our calculations describe the evolution of hot plasma, cosmic rays (CRs), and toroidal magnetic fields flowing from the hotspot into the cavity. Many important observational features are explained. Gas, CRs, and field flow back along the cavity surface in a 'boundary backflow' consistent with detailed FRII observations. Computed ages of backflowing CRs are consistent with observed radio-synchrotron age variations only if shear instabilities in the boundary backflow are damped and we assume this is done with viscosity of unknown origin. We compute a faint thermal jet along the symmetry axis and suggest that it is responsible for redirecting the Cygnus A nonthermal jet. Magnetic fields estimated from synchrotron self-Compton (SSC) X-radiation observed near the hotspot evolve into radio lobe fields. Computed profiles of radio-synchrotron lobe emission perpendicular to the jet reveal dramatically limb-brightened emission in excellent agreement with FRII observation, although computed lobe fields exceed those observed. Strong winds flowing from hotspots naturally create kiloparsec-sized spatial offsets between hotspot nonthermal X-ray inverse Compton (IC-CMB) emission and radio-synchrotron emission that peaks 1-2 kpc ahead where the field increases due to wind compression. In our computed version of Cygnus A, nonthermal X-ray emission increases from the hotspot (some IC-CMB, mostly SSC) toward the offset radio-synchrotron peak (mostly SSC).

  10. Compact FEL-driven inverse compton scattering gamma-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, M. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Di Mitri, S., E-mail: simone.dimitri@elettra.eu [Elettra - Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste (Italy); Pellegrini, C. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); University of California, Los Angeles, CA 90095 (United States); Penn, G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2017-05-21

    Many research and applications areas require photon sources capable of producing gamma-ray beams in the multi-MeV energy range with reasonably high fluxes and compact footprints. Besides industrial, nuclear physics and security applications, a considerable interest comes from the possibility to assess the state of conservation of cultural assets like statues, columns etc., via visualization and analysis techniques using high energy photon beams. Computed Tomography scans, widely adopted in medicine at lower photon energies, presently provide high quality three-dimensional imaging in industry and museums. We explore the feasibility of a compact source of quasi-monochromatic, multi-MeV gamma-rays based on Inverse Compton Scattering (ICS) from a high intensity ultra-violet (UV) beam generated in a free-electron laser by the electron beam itself. This scheme introduces a stronger relationship between the energy of the scattered photons and that of the electron beam, resulting in a device much more compact than a classic ICS for a given scattered energy. The same electron beam is used to produce gamma-rays in the 10–20 MeV range and UV radiation in the 10–15 eV range, in a ~4×22 m{sup 2} footprint system.

  11. Attenuation studies near K-absorption edges using Compton scattered 241Am gamma rays

    International Nuclear Information System (INIS)

    Abdullah, K.K.; Ramachandran, N.; Karunakaran Nair, K.; Babu, B.R.S.; Joseph, Antony; Thomas, Rajive; Varier, K.M.

    2008-01-01

    We have carried out photon attenuation measurements at several energies in the range from 49.38 keV to 57.96 keV around the K-absorption edges of the rare earth elements Sm, Eu, Gd, Tb, Dy and Er using 59.54 keV gamma rays from 241 Am source after Compton scattering from an aluminium target. Pellets of oxides of the rare earth elements were chosen as mixture absorbers in these investigations. A narrow beam good geometry set-up was used for the attenuation measurements. The scattered gamma rays were detected by an HPGe detector. The results are consistent with theoretical values derived from the XCOM package. (author)

  12. Development of a methodology for low-energy X-ray absorption correction in biological samples using radiation scattering techniques

    International Nuclear Information System (INIS)

    Pereira, Marcelo O.; Anjos, Marcelino J.; Lopes, Ricardo T.

    2009-01-01

    Non-destructive techniques with X-ray, such as tomography, radiography and X-ray fluorescence are sensitive to the attenuation coefficient and have a large field of applications in medical as well as industrial area. In the case of X-ray fluorescence analysis the knowledge of photon X-ray attenuation coefficients provides important information to obtain the elemental concentration. On the other hand, the mass attenuation coefficient values are determined by transmission methods. So, the use of X-ray scattering can be considered as an alternative to transmission methods. This work proposes a new method for obtain the X-ray absorption curve through superposition peak Rayleigh and Compton scattering of the lines L a e L β of Tungsten (Tungsten L lines of an X-ray tube with W anode). The absorption curve was obtained using standard samples with effective atomic number in the range from 6 to 16. The method were applied in certified samples of bovine liver (NIST 1577B) , milk powder and V-10. The experimental measurements were obtained using the portable system EDXRF of the Nuclear Instrumentation Laboratory (LIN-COPPE/UFRJ) with Tungsten (W) anode. (author)

  13. Detection of non-thermal X-ray emission in the lobes and jets of Cygnus A

    Science.gov (United States)

    de Vries, M. N.; Wise, M. W.; Huppenkothen, D.; Nulsen, P. E. J.; Snios, B.; Hardcastle, M. J.; Birkinshaw, M.; Worrall, D. M.; Duffy, R. T.; McNamara, B. R.

    2018-06-01

    We present a spectral analysis of the lobes and X-ray jets of Cygnus A, using more than 2 Ms of Chandra observations. The X-ray jets are misaligned with the radio jets and significantly wider. We detect non-thermal emission components in both lobes and jets. For the eastern lobe and jet, we find 1 keV flux densities of 71_{-10}^{+10} nJy and 24_{-4}^{+4} nJy, and photon indices of 1.72_{-0.03}^{+0.03} and 1.64_{-0.04}^{+0.04} respectively. For the western lobe and jet, we find flux densities of 50_{-13}^{+12} nJy and 13_{-5}^{+5} nJy, and photon indices of 1.97_{-0.10}^{+0.23} and 1.86_{-0.12}^{+0.18} respectively. Using these results, we modeled the electron energy distributions of the lobes as broken power laws with age breaks. We find that a significant population of non-radiating particles is required to account for the total pressure of the eastern lobe. In the western lobe, no such population is required and the low energy cutoff to the electron distribution there needs to be raised to obtain pressures consistent with observations. This discrepancy is a consequence of the differing X-ray photon indices, which may indicate that the turnover in the inverse-Compton spectrum of the western lobe is at lower energies than in the eastern lobe. We modeled the emission from both jets as inverse-Compton emission. There is a narrow region of parameter space for which the X-ray jet can be a relic of an earlier active phase, although lack of knowledge about the jet's electron distribution and particle content makes the modelling uncertain.

  14. X-ray filter for x-ray powder diffraction

    Science.gov (United States)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.; Dooryhee, Eric; Ghose, Sanjit

    2018-01-23

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.

  15. A Compton Suppressed Gamma Ray Counter For Radio Assay of Materials

    Science.gov (United States)

    Godfrey, Benjamin

    2016-03-01

    Rare event searches, such as direct dark matter experiments, require materials with ultra-low levels of natural radioactivity. We present a neutron activation analysis (NAA) technique for assaying metals, specifically titanium used for cryostat construction. Earlier attempts at NAA encountered limitations due to bulk activation via (n, p) reactions, which contributed to large continuum backgrounds due to Compton tails. Our method involves a heavy water shielded exposure to minimize (n,p) reactions and a sodium iodide shielded high purity germanium counter for the gamma ray assay. Preliminary results on assays for U/Th/K contamination in titaniumwill be presented.

  16. Revelations of X-ray spectral analysis of the enigmatic black hole binary GRS 1915+105

    Science.gov (United States)

    Peris, Charith; Remillard, Ronald A.; Steiner, James; Vrtilek, Saeqa Dil; Varniere, Peggy; Rodriguez, Jerome; Pooley, Guy

    2016-01-01

    Of the black hole binaries discovered thus far, GRS 1915+105 stands out as an exceptional source primarily due to its wild X-ray variability, the diversity of which has not been replicated in any other stellar-mass black hole. Although extreme variability is commonplace in its light-curve, about half of the observations of GRS1915+105 show fairly steady X-ray intensity. We report on the X-ray spectral behavior within these steady observations. Our work is based on a vast RXTE/PCA data set obtained on GRS 1915+105 during the course of its entire mission and 10 years of radio data from the Ryle Telescope, which overlap the X-ray data. We find that the steady observations within the X-ray data set naturally separate into two regions in a color-color diagram, which we refer to as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the Comptonization component within the PCA band pass suggesting significantly heating from a hot disk present in all states. A new Comptonization model 'simplcut' was developed in order to model this curvature to best effect. A majority of the steady-soft observations display a roughly constant inner radius; remarkably reminiscent of canonical soft state black hole binaries. In contrast, the steady-hard observations display a growing disk truncation that is correlated to the mass accretion rate through the disk, which suggests a magnetically truncated disk. A comparison of X-ray model parameters to the canonical state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while the thermal state observations dominate the constant radius branch. A large portion (80%) of the steady-hard observations matches the hard state criteria when the disk fraction constraint is neglected. These results suggest that within the complexity of this source is a simpler underlying basis of states, which map to those observed in canonical black hole binaries. When

  17. Experimental confirmation of neoclassical Compton scattering theory

    Energy Technology Data Exchange (ETDEWEB)

    Aristov, V. V., E-mail: aristov@iptm.ru [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation); Yakunin, S. N. [National Research Centre “Kurchatov Institute” (Russian Federation); Despotuli, A. A. [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation)

    2013-12-15

    Incoherent X-ray scattering spectra of diamond and silicon crystals recorded on the BESSY-2 electron storage ring have been analyzed. All spectral features are described well in terms of the neoclassical scattering theory without consideration for the hypotheses accepted in quantum electrodynamics. It is noted that the accepted tabular data on the intensity ratio between the Compton and Rayleigh spectral components may significantly differ from the experimental values. It is concluded that the development of the general theory (considering coherent scattering, incoherent scattering, and Bragg diffraction) must be continued.

  18. Analysis of nearly simultaneous x-ray and optical observations of active galactic nuclei

    International Nuclear Information System (INIS)

    Webb, J.R.

    1988-01-01

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 galactic nuclei (AGN) were reduced and analyzed. Seventy-two x-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectra observations, significant hydrogen column densities above the galactic value were required for nine of the active galactic nuclei. X-ray variability was detected in eight of the eleven sources which were observed more than once by EINSTEIN. Correlations between the x-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the x-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the x-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the x-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec

  19. Heavily Obscured AGN with SIMBOL-X

    International Nuclear Information System (INIS)

    Ceca, R. Della; Caccianiga, A.; Severgnini, P.

    2009-01-01

    By comparing an optically selected sample of narrow lines AGN with an X-ray selected sample of AGN we have recently derived an estimate of the intrinsic (i.e. before absorption) 2-10 keV luminosity function (XLF) of Compton Thick AGNs. We will use this XLF to derive the number of Compton Thick AGN that will be found in the SIMBOL-X survey(s).

  20. Heavily Obscured AGN with SIMBOL-X

    Science.gov (United States)

    Della Ceca, R.; Caccianiga, A.; Severgnini, P.

    2009-05-01

    By comparing an optically selected sample of narrow lines AGN with an X-ray selected sample of AGN we have recently derived an estimate of the intrinsic (i.e. before absorption) 2-10 keV luminosity function (XLF) of Compton Thick AGNs. We will use this XLF to derive the number of Compton Thick AGN that will be found in the SIMBOL-X survey(s).

  1. Upper limits of a cosmic infrared background flux as determined by X- and gamma-ray observations on M87

    International Nuclear Information System (INIS)

    Schlickeiser, R.; Cambridge Univ.; Harwit, M.; Cornell Univ., Ithaca, NY

    1982-01-01

    Upper limits on the energy density of infrared photons in the radio lobe regions of M87 are derived using measurements of the X-ray and gamma-ray emission. The calculations are based on an inverse Compton scattering model initiated by radio-flux producing electrons. It is shown that the energy density of infrared photons in the radio lobe regions is similar than 2 eV cm -3 . (orig.)

  2. X-ray fluorescence imaging with polycapillary X-ray optics

    International Nuclear Information System (INIS)

    Yonehara, Tasuku; Yamaguchi, Makoto; Tsuji, Kouichi

    2010-01-01

    X-ray fluorescence spectrometry imaging is a powerful tool to provide information about the chemical composition and elemental distribution of a specimen. X-ray fluorescence spectrometry images were conventionally obtained by using a μ-X-ray fluorescence spectrometry spectrometer, which requires scanning a sample. Faster X-ray fluorescence spectrometry imaging would be achieved by eliminating the process of sample scanning. Thus, we developed an X-ray fluorescence spectrometry imaging instrument without sample scanning by using polycapillary X-ray optics, which had energy filter characteristics caused by the energy dependence of the total reflection phenomenon. In the present paper, we show that two independent straight polycapillary X-ray optics could be used as an energy filter of X-rays for X-ray fluorescence. Only low energy X-rays were detected when the angle between the two optical axes was increased slightly. Energy-selective X-ray fluorescence spectrometry images with projection mode were taken by using an X-ray CCD camera equipped with two polycapillary optics. It was shown that Fe Kα (6.40 keV) and Cu Kα (8.04 keV) could be discriminated for Fe and Cu foils.

  3. Deconvolution of shift-variant broadening for Compton scatter imaging

    International Nuclear Information System (INIS)

    Evans, Brian L.; Martin, Jeffrey B.; Roggemann, Michael C.

    1999-01-01

    A technique is presented for deconvolving shift-variant Doppler broadening of singly Compton scattered gamma rays from their recorded energy distribution. Doppler broadening is important in Compton scatter imaging techniques employing gamma rays with energies below roughly 100 keV. The deconvolution unfolds an approximation to the angular distribution of scattered photons from their recorded energy distribution in the presence of statistical noise and background counts. Two unfolding methods are presented, one based on a least-squares algorithm and one based on a maximum likelihood algorithm. Angular distributions unfolded from measurements made on small scattering targets show less evidence of Compton broadening. This deconvolution is shown to improve the quality of filtered backprojection images in multiplexed Compton scatter tomography. Improved sharpness and contrast are evident in the images constructed from unfolded signals

  4. Study of semiconductor detectors applied to diagnostic X-ray

    International Nuclear Information System (INIS)

    Salgado, Cesar Marques

    2003-08-01

    This work aims an evaluation of procedures for photons spectrum determination, produced by a X ray tube, normally used for medical diagnoses which operation voltage ranges from 20 to 150 kVp, to allow more precise characterization of the photon beam. The use of spectrum analysis will contribute to reduce the uncertainty in the ionization camera calibrations. For this purpose, two kind of detectors were selected, a Cadmium Zinc Telluride (CZT) and a planar HPGe detector. The X ray interaction with the detector's crystal produces, by electronic processes, a pulse high distribution as an output, which is no the true photon spectrum, due to the presence of K shell escape peaks, Compton scattering and to the fact that the detectors efficiency diminish rapidly with the increase of the photon energy. A detailed analysis of the contributing factors to distortions in the spectrum is necessary and was performed by Monte Carlo calculation with the MCNP 4B computer code. In order to determine the actual photon spectrum for a X ray tube a spectra stripping procedure is described for the HPGe detector. The detector's response curves, determined by the Monte Carlo calculation, were compared to the experimental ones, for isotropic point sources. For the methodology validation, stripped spectra were compared to the theoretical ones, for the same X ray tube's settings, for a qualitative evaluation. The air kerma rate calculated with the photon spectra were compared to the direct measurement using an ionization chamber, for a quantitative evaluation. (author)

  5. Absorption and backscatter of internal conversion electrons in the measurements of surface contamination of 137Cs

    International Nuclear Information System (INIS)

    Yunoki, A.; Kawada, Y.; Yamada, T.; Unno, Y.; Sato, Y.; Hino, Y.

    2013-01-01

    We measured 4π and 2π counting efficiencies for internal conversion electrons (ICEs), gross β-particles and also β-rays alone with various source conditions regarding absorber and backing foil thickness using e-X coincidence technique. Dominant differences regarding the penetration, attenuation and backscattering properties among ICEs and β-rays were revealed. Although the abundance of internal conversion electrons of 137 Cs- 137 Ba is only 9.35%, 60% of gross counts may be attributed to ICEs in worse source conditions. This information will be useful for radionuclide metrology and for surface contamination monitoring. - Highlights: • Counting efficiencies for internal conversion electrons from 137 Cs were measured, and compared with those for β-rays. • Electron-X coincidence technique was employed. • A thin NaI(Tl) scintillation detector was used for X-ray detection. • Backscattering fractions of electrons and beta particles were studied by similar experiments

  6. Generation of Attosecond X-Ray Pulse through Coherent Relativistic Nonlinear Thomson Scattering

    CERN Document Server

    Lee, K; Jeong, Y U; Lee, B C; Park, S H

    2005-01-01

    In contrast to some recent experimental results, which state that the Nonlinear Thomson Scattered (NTS) radiation is incoherent, a coherent condition under which the scattered radiation of an incident laser pulse by a bunch of electrons can be coherently superposed has been investigated. The Coherent Relativistic Nonlinear Thomson Scattered (C-RNTS) radiation makes it possible utilizing the ultra-short pulse nature of NTS radiation with a bunch of electrons, such as plasma or electron beams. A numerical simulation shows that a 25 attosecond X-ray pulse can be generated by irradiating an ultra-intense laser pulse of 4x10(19) W/cm2 on an ultra-thin solid target of 50 nm thickness, which is commercially available. The coherent condition can be easily extended to an electron beam from accelerators. Different from the solid target, much narrower electron beam is required for the generation of an attosecond pulse. Instead, this condition could be applied for the generation of intense Compton scattered X-rays with a...

  7. Iron K and Compton hump reverberation in SWIFT J2127.4+5654 and NGC 1365 revealed by NuSTAR and XMM–Newton

    DEFF Research Database (Denmark)

    Kara, E.; Zoghbi, A.; Marinucci, A.

    2015-01-01

    In the past five years, a flurry of X-ray reverberation lag measurements of accreting supermassive black holes have been made using the XMM–Newton telescope in the 0.3–10 keV energy range. In this work, we use the NuSTAR (Nuclear Spectroscopic Telescope Array) telescope to extend the lag analysis...... up to higher energies for two Seyfert galaxies, SWIFT J2127.4+5654 and NGC 1365. X-ray reverberation lags are due to the light travel time delays between the direct continuum emission and the reprocessed emission from the inner radii of an ionized accretion disc. XMM–Newton has been particularly...... evidence for Compton reflection, known as the Compton ‘hump’. The XMM–Newton data show Fe K lags in both SWIFT J2127.4+5654 and NGC 1365. The NuSTAR data provide independent confirmation of these Fe K lags, and also show evidence for the corresponding Compton hump lags, especially in SWIFT J2127...

  8. X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. I. CONSTANT DENSITY ATMOSPHERES

    International Nuclear Information System (INIS)

    Garcia, J.; Kallman, T. R.

    2010-01-01

    We present new models for illuminated accretion disks, their structure, and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by simultaneously solving the equations of radiative transfer, energy balance, and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell processes of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Kα line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.

  9. Polarimetric Analysis of the Long Duration Gamma-Ray Burst GRB 160530A With the Balloon Borne Compton Spectrometer and Imager

    Energy Technology Data Exchange (ETDEWEB)

    Lowell, A. W.; Boggs, S. E; Chiu, C. L.; Kierans, C. A.; Sleator, C.; Tomsick, J. A.; Zoglauer, A. C. [Space Sciences Laboratory, University of California, Berkeley (United States); Chang, H.-K.; Tseng, C.-H.; Yang, C.-Y. [Institute of Astronomy, National Tsing Hua University, Taiwan (China); Jean, P.; Ballmoos, P. von [IRAP Toulouse (France); Lin, C.-H. [Institute of Physics, Academia Sinica, Taiwan (China); Amman, M. [Lawrence Berkeley National Laboratory (United States)

    2017-10-20

    A long duration gamma-ray burst, GRB 160530A, was detected by the Compton Spectrometer and Imager (COSI) during the 2016 COSI Super Pressure Balloon campaign. As a Compton telescope, COSI is inherently sensitive to the polarization of gamma-ray sources in the energy range 0.2–5.0 MeV. We measured the polarization of GRB 160530A using (1) a standard method (SM) based on fitting the distribution of azimuthal scattering angles with a modulation curve and (2) an unbinned, maximum likelihood method (MLM). In both cases, the measured polarization level was below the 99% confidence minimum detectable polarization levels of 72.3% ± 0.8% (SM) and 57.5% ± 0.8% (MLM). Therefore, COSI did not detect polarized gamma-ray emission from this burst. Our most constraining 90% confidence upper limit on the polarization level was 46% (MLM).

  10. Design of a 4.8-m ring for inverse Compton scattering x-ray source

    Directory of Open Access Journals (Sweden)

    H. S. Xu

    2014-07-01

    Full Text Available In this paper we present the design of a 50 MeV compact electron storage ring with 4.8-meter circumference for the Tsinghua Thomson scattering x-ray source. The ring consists of four dipole magnets with properly adjusted bending radii and edge angles for both horizontal and vertical focusing, and a pair of quadrupole magnets used to adjust the horizontal damping partition number. We find that the dynamic aperture of compact storage rings depends essentially on the intrinsic nonlinearity of the dipole magnets with small bending radius. Hamiltonian dynamics is found to agree well with results from numerical particle tracking. We develop a self-consistent method to estimate the equilibrium beam parameters in the presence of the intrabeam scattering, synchrotron radiation damping, quantum excitation, and residual gas scattering. We also optimize the rf parameters for achieving a maximum x-ray flux.

  11. Gamma ray polarimetry using a position sensitive germanium detector

    CERN Document Server

    Kroeger, R A; Kurfess, J D; Phlips, B F

    1999-01-01

    Imaging gamma-ray detectors make sensitive polarimeters in the Compton energy regime by measuring the scatter direction of gamma rays. The principle is to capitalize on the angular dependence of the Compton scattering cross section to polarized gamma rays and measure the distribution of scatter directions within the detector. This technique is effective in a double-sided germanium detector between roughly 50 keV and 1 MeV. This paper reviews device characteristics important to the optimization of a Compton polarimeter, and summarizes measurements we have made using a device with a 5x5 cm active area, 1 cm thickness, and strip-electrodes on a 2 mm pitch.

  12. Application of particle-induced X-ray emission, backscattering spectrometry and scanning electron microscopy in the evaluation of orthodontic materials

    International Nuclear Information System (INIS)

    Gihwala, D.; Mars, J.A.; Pineda-Vargas, C.

    2013-01-01

    The focus of this investigation was on orthodontic materials used in the manufacture of dental brackets. The properties of these dental materials are subjected to various physical parameters such as elongation, yield strength and elasticity that justify their application. In turn, these parameters depend on the quantitative elemental concentration distribution (QECD) in the materials used in the manufacture. For compositional analysis, proton-induced X-ray emission (PIXE), backscatter spectrometry (BS) and scanning electron microscopy (SEM) were applied. QECD analysis was performed to correlate the physical parameters with the composition and to quantify imperfections in the materials. PIXE and BS analyses were performed simultaneously with a 3 MeV proton beam while electrons accelerated at 25 keV were used for the SEM analysis. From the QECDs it was observed that: (1) the major elements Cr, Fe and Ni were homogeneously distributed in the orthodontic plate; (2) the distribution of Mo and O correlated with one another; (3) there was a spread of Cr around regions of high C concentration; and, (4) areas of high concentrations of Mo and O corresponded to a decrease in C concentrations. Elemental concentration correlations are shown to indicate the similarities and differences in the ease of formation of phases, based on the tangent of linearity. (author)

  13. Study of the Betatron and Compton X-ray sources produced in laser wakefield acceleration of electrons

    International Nuclear Information System (INIS)

    Ferri, Julien

    2016-01-01

    An ultra-short and ultra-intense laser pulse propagating in a low-density gas can accelerate in its wake a part of the electrons ionized from the gas to relativistic energies of a few hundreds of MeV over distances of a few millimeters only. During their acceleration, as a consequence of their transverse motion, these electrons emit strongly collimated X-rays in the forward direction, which are called betatron radiations. The characteristics of this source turn it into an interesting tool for high-resolution imagery.In this thesis, we explore three different axis to work on this source using simulations on the Particles-In-Cells codes CALDER and CALDER-Circ. We first study the creation of a betatron X-ray source with kilo-joule and pico-second laser pulses, for which duration and energy are then much higher than usual in this domain. In spite of the unusual laser parameters, we show that X-ray sources can still be generated, furthermore in two different regimes.In a second study, the generally observed discrepancies between experiments and simulations are investigated. We show that the use of realistic laser profiles instead of Gaussian ones in the simulations strongly degrades the performances of the laser-plasma accelerator and of the betatron source. Additionally, this leads to a better qualitative and quantitative agreement with the experiment. Finally, with the aim of improving the X-ray emission, we explore several techniques based on the manipulation of the plasma density profile used for acceleration. We find that both the use of a transverse gradient and of a density step increases the amplitude of the electrons transverse motions, and then increases the radiated energy. Alternatively, we show that this goal can also be achieved through the transition from a laser wakefield regime to a plasma wakefield regime induced by an increase of the density. The laser wakefield optimizes the electron acceleration whereas the plasma wakefield favours the X-ray

  14. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  15. Feasibility of Strong and Quasi-Monochromatic Gamma-Ray Generation by the Laser Compton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiyoung; Rehman, Haseeb ur; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    This is because LCS γ-rays are energy-tunable, quasi-monochromatic, and beam-like. The photon intensity of the mono-chromatic LCS gamma-ray should be high or strong for efficient and high transmutation rate. It was recently reported that a so-called energy-recovery linac system is able to produce a very high-intensity LCS photons in the order of approximately 1013 photons/s economically. It however did not evaluate quality of the LCS photon beam although a quasi-monoenergetic LCS beam is of huge importance in the photo-nuclear transmutation reactions. It is upon this observation that this paper was prepared. Specifically, this work attempts to quantify intensity of the quasi-monochromatic LCS beam from the said linac system. In addition, this paper aims to discuss general characteristics of the LCS photon, and possible approaches to increase its intensity. This paper presents essential characteristics of the laser Compton scattering (LCS) in terms of its photon energy, cross-section and photon intensity. By using different combinations of electron energy, laser energy and scattering angle, we can effectively generate high-intensity and highly-chromatic LCS gamma-rays. Our preliminary analyses indicate that, in view of Compton cross-section, higher-energy photon can be better generated by increasing the electron energy rather than increasing the laser energy. However, in order to maximize the intensity of monochromatic beam, the laser energy should be maximized for a targeted LCS photon energy.

  16. Characterization of Compton-suppressed TIGRESS detectors for high energy gamma-rays

    International Nuclear Information System (INIS)

    Kshetri, R.; Andreoiu, C.; Cross, D.S.; Galinski, N.; Ball, G.C.; Djongolov, M.; Garnsworthy, A.B.; Hackman, G.; Orce, J.N.; Pearson, C.; Triambak, S.; Williams, S.J.; Drake, T.; Smalley, D.; Svensson, C.E.

    2009-01-01

    The TRIUMF-ISAC Gamma-Ray Escape- Suppressed Spectrometer (TIGRESS) will consist of 12 large-volume, 32-fold segmented HPGe clover detectors. Each detector is shielded by a 20-fold segmented Compton suppression shield. For performing discrete gamma-ray spectroscopy of light mass nuclei with TIGRESS, we need information about full energy peak efficiency, resolution and lineshape of full energy peaks for high energy gamma-rays. However, suitable radioactive sources having decay gamma-rays of energies greater than ∼ 3.5 MeV are not easily available. So the characteristics of gamma spectrometers at energies higher than 3.5 MeV are usually determined from simulation data. Predictions from GEANT4 simulations (experimentally validated from 0.3 to 3 MeV) indicate that TIGRESS will be capable for single 10 MeV gamma-rays of absolute detection efficiency of 1.5% for backward configuration of the array. It has been observed experimentally that simulation results work well up to certain energies and might deviate at higher energies. So, it is essential to check the validity of simulation results for energies above 3.3 MeV. We have investigated the high energy performance of seven TIGRESS detectors up to 8 MeV

  17. Development of a Compton camera for online ion beam range verification via prompt γ detection

    Energy Technology Data Exchange (ETDEWEB)

    Aldawood, S. [LMU Munich, Garching (Germany); King Saud University, Riyadh (Saudi Arabia); Liprandi, S.; Marinsek, T.; Bortfeldt, J.; Lang, C.; Lutter, R.; Dedes, G.; Parodi, K.; Thirolf, P.G. [LMU Munich, Garching (Germany); Maier, L.; Gernhaeuser, R. [TU Munich, Garching (Germany); Kolff, H. van der [LMU Munich, Garching (Germany); TU Delft (Netherlands); Castelhano, I. [LMU Munich, Garching (Germany); University of Lisbon, Lisbon (Portugal); Schaart, D.R. [TU Delft (Netherlands)

    2015-07-01

    Precise and preferably online ion beam range verification is a mandatory prerequisite to fully exploit the advantages of hadron therapy in cancer treatment. An imaging system is being developed in Garching aiming to detect promptγ rays induced by nuclear reactions between the ion beam and biological tissue. The Compton camera prototype consists of a stack of six customized double-sided Si-strip detectors (DSSSD, 50 x 50 mm{sup 2}, 0.5 mm thick, 128 strips/side) acting as scatterer, while the absorber is formed by a monolithic LaBr{sub 3}:Ce scintillator crystal (50 x 50 x 30 mm{sup 3}) read out by a position-sensitive multi-anode photomultiplier (Hamamatsu H9500). The on going characterization of the Compton camera properties and its individual components both offline in the laboratory as well as online using proton beam are presented.

  18. The Mathematical Foundations of 3D Compton Scatter Emission Imaging

    Directory of Open Access Journals (Sweden)

    T. T. Truong

    2007-01-01

    Full Text Available The mathematical principles of tomographic imaging using detected (unscattered X- or gamma-rays are based on the two-dimensional Radon transform and many of its variants. In this paper, we show that two new generalizations, called conical Radon transforms, are related to three-dimensional imaging processes based on detected Compton scattered radiation. The first class of conical Radon transform has been introduced recently to support imaging principles of collimated detector systems. The second class is new and is closely related to the Compton camera imaging principles and invertible under special conditions. As they are poised to play a major role in future designs of biomedical imaging systems, we present an account of their most important properties which may be relevant for active researchers in the field.

  19. Compton profile with synchrotron light - application to Y-123 superconductivity

    International Nuclear Information System (INIS)

    De, Udayan

    2005-01-01

    Electron beam accelerated to 6 GeV in the European Synchrotron Radiation Facility (ESRF) at Grenoble, France, can deliver highly mono-energetic, intense (10 12 photons/sec at sample at 100 mA ring current) and fine photon beam reaching x-ray and γ energies. So photons of 57 keV from this synchrotron has been used for Compton Profile or CP experiment (at different temperatures down to 70 K) on our YBa 2 Cu 3 O 7 or Y-123 single crystals with T c = 91 K. Photons, Compton scattered even at a definite angle, θ, show a distribution (called Compton Profile) of energy and hence of momentum reflecting the EMD or electron momentum distribution in the solid. The temperature variation of S-parameter, defined as the fraction of low momentum electrons, has been found from preliminary CP data. It confirmed the surprising double minimum found from Doppler broadening of positron annihilation radiation lineshape (DBPARL). The CP set-up at the synchrotron including the detectors and cryogenics as well as the new results are outlined. (author)

  20. Linear iterative near-field phase retrieval (LIPR) for dual-energy x-ray imaging and material discrimination.

    Science.gov (United States)

    Li, Heyang Thomas; Kingston, Andrew M; Myers, Glenn R; Beeching, Levi; Sheppard, Adrian P

    2018-01-01

    Near-field x-ray refraction (phase) contrast is unavoidable in many lab-based micro-CT imaging systems. Quantitative analysis of x-ray refraction (a.k.a. phase retrieval) is in general an under-constrained problem. Regularizing assumptions may not hold true for interesting samples; popular single-material methods are inappropriate for heterogeneous samples, leading to undesired blurring and/or over-sharpening. In this paper, we constrain and solve the phase-retrieval problem for heterogeneous objects, using the Alvarez-Macovski model for x-ray attenuation. Under this assumption we neglect Rayleigh scattering and pair production, considering only Compton scattering and the photoelectric effect. We formulate and test the resulting method to extract the material properties of density and atomic number from single-distance, dual-energy imaging of both strongly and weakly attenuating multi-material objects with polychromatic x-ray spectra. Simulation and experimental data are used to compare our proposed method with the Paganin single-material phase-retrieval algorithm, and an innovative interpretation of the data-constrained modeling phase-retrieval technique.

  1. Compton scattering spectrum as a source of information of normal and neoplastic breast tissues' composition

    Energy Technology Data Exchange (ETDEWEB)

    Antoniassi, M.; Conceicao, A.L.C. [Departamento de Fisica-Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, 14040-901 Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica-Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, 14040-901 Sao Paulo (Brazil)

    2012-07-15

    In this work we measured X-ray scatter spectra from normal and neoplastic breast tissues using photon energy of 17.44 keV and a scattering angle of 90 Degree-Sign , in order to study the shape (FWHM) of the Compton peaks. The obtained results for FWHM were discussed in terms of composition and histological characteristics of each tissue type. The statistical analysis shows that the distribution of FWHM of normal adipose breast tissue clearly differs from all other investigated tissues. Comparison between experimental values of FWHM and effective atomic number revealed a strong correlation between them, showing that the FWHM values can be used to provide information about elemental composition of the tissues. - Highlights: Black-Right-Pointing-Pointer X-ray scatter spectra from normal and neoplastic breast tissues were measured. Black-Right-Pointing-Pointer Shape (FWHM) of Compton peak was related with elemental composition and characteristics of each tissue type. Black-Right-Pointing-Pointer A statistical hypothesis test showed clear differences between normal and neoplastic breast tissues. Black-Right-Pointing-Pointer There is a strong correlation between experimental values of FWHM and effective atomic number. Black-Right-Pointing-Pointer Shape (FWHM) of Compton peak can be used to provide information about elemental composition of the tissues.

  2. Gamma-ray detection and Compton camera image reconstruction with application to hadron therapy; Detection des rayons gamma et reconstruction d'images pour la camera Compton: Application a l'hadrontherapie

    Energy Technology Data Exchange (ETDEWEB)

    Frandes, M.

    2010-09-15

    A novel technique for radiotherapy - hadron therapy - irradiates tumors using a beam of protons or carbon ions. Hadron therapy is an effective technique for cancer treatment, since it enables accurate dose deposition due to the existence of a Bragg peak at the end of particles range. Precise knowledge of the fall-off position of the dose with millimeters accuracy is critical since hadron therapy proved its efficiency in case of tumors which are deep-seated, close to vital organs, or radio-resistant. A major challenge for hadron therapy is the quality assurance of dose delivery during irradiation. Current systems applying positron emission tomography (PET) technologies exploit gamma rays from the annihilation of positrons emitted during the beta decay of radioactive isotopes. However, the generated PET images allow only post-therapy information about the deposed dose. In addition, they are not in direct coincidence with the Bragg peak. A solution is to image the complete spectrum of the emitted gamma rays, including nuclear gamma rays emitted by inelastic interactions of hadrons to generated nuclei. This emission is isotropic, and has a spectrum ranging from 100 keV up to 20 MeV. However, the measurement of these energetic gamma rays from nuclear reactions exceeds the capability of all existing medical imaging systems. An advanced Compton scattering detection method with electron tracking capability is proposed, and modeled to reconstruct the high-energy gamma-ray events. This Compton detection technique was initially developed to observe gamma rays for astrophysical purposes. A device illustrating the method was designed and adapted to Hadron Therapy Imaging (HTI). It consists of two main sub-systems: a tracker where Compton recoiled electrons are measured, and a calorimeter where the scattered gamma rays are absorbed via the photoelectric effect. Considering a hadron therapy scenario, the analysis of generated data was performed, passing trough the complete

  3. A possible role for silicon microstrip detectors in nuclear medicine Compton imaging of positron emitters

    CERN Document Server

    Scannavini, M G; Royle, G J; Cullum, I; Raymond, M; Hall, G; Iles, G

    2002-01-01

    Collimation of gamma-rays based on Compton scatter could provide in principle high resolution and high sensitivity, thus becoming an advantageous method for the imaging of radioisotopes of clinical interest. A small laboratory prototype of a Compton camera is being constructed in order to initiate studies aimed at assessing the feasibility of Compton imaging of positron emitters. The design of the camera is based on the use of a silicon collimator consisting of a stack of double-sided, AC-coupled microstrip detectors (area 6x6 cm sup 2 , 500 mu m thickness, 128 channels/side). Two APV6 chips are employed for signal readout on opposite planes of each detector. This work presents the first results on the noise performance of the silicon strip detectors. Measurements of the electrical characteristics of the detector are also reported. On the basis of the measured noise, an angular resolution of approximately 5 deg. is predicted for the Compton collimator.

  4. Combined synthetic x-ray and radio observations of simulated radio jets

    Energy Technology Data Exchange (ETDEWEB)

    Tregillis, I. L. (Ian L.); Jones, T. W. (Thomas Walter),; Ryu, Dongsu

    2004-01-01

    We present results from an extensive synthetic observation analysis of numerically-simulated radio galaxy jets. This is the first such analysis to be based on simulations with sufficient physical detail to allow the application of standard observational analysis techniques to simulated radio galaxies. Here we focus on extracting magnetic field properties from nonthermal intensity information. We study field values obtained via the combination of synchrotron radio and inverse-Compton X-ray data as well as those from the minimum-energy approach. The combined radio/X-ray technique provides meaningful information about the field. The minimum-energy approach retrieves reasonable field estimates in regions physically close to the minimum-energy partitioning, though the technique is highly susceptible to deviations from the underlying assumptions. We also look at how the two field measurement techniques might be combined to provide a rough measure of the actual energy in particles and fields. A full report on this work can be found in the Astrophysical Journal, v601, p778.

  5. Theoretical model of x-ray scattering as a dense matter probe.

    Science.gov (United States)

    Gregori, G; Glenzer, S H; Rozmus, W; Lee, R W; Landen, O L

    2003-02-01

    We present analytical expressions for the dynamic structure factor, or form factor S(k,omega), which is the quantity describing the x-ray cross section from a dense plasma or a simple liquid. Our results, based on the random phase approximation for the treatment on the charged particle coupling, can be applied to describe scattering from either weakly coupled classical plasmas or degenerate electron liquids. Our form factor correctly reproduces the Compton energy down-shift and the known Fermi-Dirac electron velocity distribution for S(k,omega) in the case of a cold degenerate plasma. The usual concept of scattering parameter is also reinterpreted for the degenerate case in order to include the effect of the Thomas-Fermi screening. The results shown in this work can be applied to interpreting x-ray scattering in warm dense plasmas occurring in inertial confinement fusion experiments or for the modeling of solid density matter found in the interior of planets.

  6. Radiation exposure with the NOMAD portable X-ray system.

    Science.gov (United States)

    Goren, A D; Bonvento, M; Biernacki, J; Colosi, D C

    2008-02-01

    A new hand-held battery-operated portable X-ray system was tested for possible leakage radiation through the existing heavy metal compounds surrounding the X-ray tube, backscatter radiation through the lead-filled acrylic shield attached at the end of the exit tube and patient exposure. Dose measurements were conducted using a DXTRR phantom and a water phantom. All measurements were recorded using calibrated thermoluminescent dosimetry (TLD), calibrated Unfors Model 583L dosemeter, and a calibrated Radcal MDH model 1015 dosemeter. The settings for all exposure were 60 kVp, 2.3 mA and 0.25 s using Kodak Insight (Class F) film. All backscatter measurements, in front of the shield, behind the shield, at the finger of the operator, the operator's chest, eyes and gonads were significantly below the maximum permissible radiation leakage as per the United States Food and Drug Administration regulations (100 mR h(-1)). Our measurements indicate that the exposure would be well within the occupational maximum permissible dose for an occupationally exposed person. Film dose was consistent with the manufacturer's recommendations. As a result of our measurements, the State of New York Bureau of Environmental Radiation Protection granted us a variance to use the NOMAD on a case-by-case basis. Our data have shown that the NOMAD presents risks that are no greater than with standard dental radiographic units to the patient or operator and the measured doses are well below recommended levels.

  7. Maximum Likelihood Compton Polarimetry with the Compton Spectrometer and Imager

    Energy Technology Data Exchange (ETDEWEB)

    Lowell, A. W.; Boggs, S. E; Chiu, C. L.; Kierans, C. A.; Sleator, C.; Tomsick, J. A.; Zoglauer, A. C. [Space Sciences Laboratory, University of California, Berkeley (United States); Chang, H.-K.; Tseng, C.-H.; Yang, C.-Y. [Institute of Astronomy, National Tsing Hua University, Taiwan (China); Jean, P.; Ballmoos, P. von [IRAP Toulouse (France); Lin, C.-H. [Institute of Physics, Academia Sinica, Taiwan (China); Amman, M. [Lawrence Berkeley National Laboratory (United States)

    2017-10-20

    Astrophysical polarization measurements in the soft gamma-ray band are becoming more feasible as detectors with high position and energy resolution are deployed. Previous work has shown that the minimum detectable polarization (MDP) of an ideal Compton polarimeter can be improved by ∼21% when an unbinned, maximum likelihood method (MLM) is used instead of the standard approach of fitting a sinusoid to a histogram of azimuthal scattering angles. Here we outline a procedure for implementing this maximum likelihood approach for real, nonideal polarimeters. As an example, we use the recent observation of GRB 160530A with the Compton Spectrometer and Imager. We find that the MDP for this observation is reduced by 20% when the MLM is used instead of the standard method.

  8. An investigation of dose changes for therapeutic kilovoltage x-ray beams with underlying lead shielding

    International Nuclear Information System (INIS)

    Hill, Robin; Healy, Brendan; Holloway, Lois; Baldock, Clive

    2007-01-01

    Kilovoltage x-ray beams are used to treat cancer on or close to the skin surface. Many clinical cases use high atomic number materials as shielding to reduce dose to underlying healthy tissues. In this work, we have investigated the effect on both the surface dose and depth doses in a water phantom with lead shielding at depth in the phantom. The EGSnrc Monte Carlo code was used to simulate the water phantom and to calculate the surface doses and depth doses using primary x-ray beam spectra derived from an analytical model. The x-ray beams were in the energy range of 75-135 kVp with field sizes of 2, 5 and 8 cm diameter. The lead sheet was located beneath the water surface at depths ranging from 0.5-7.5 cm. The surface dose decreased as the lead was positioned closer to the water surface and as the field size was increased. The variation in surface dose as a function of x-ray beam energy was only small but the maximum reduction occurred for the 100 kVp x-ray beam. For the 8 cm diameter field with the lead at 1 cm depth and using the 100 kVp x-ray beam, the surface dose was reduced to 0.898 of the surface dose in the water phantom only. Measured surface dose changes, using a Farmer-type ionization chamber, agreed with the Monte Carlo calculated doses. Calculated depth doses in water with a lead sheet positioned below the surface showed that the dose fall-off increased as the lead was positioned closer to the water surface as compared to the depth dose in the water phantom only. Monte Carlo calculations of the total x-ray beam spectrum at the water surface showed that the total fluence decreased due to a reduction in backscatter from within the water and very little backscatter from the lead. The mean energy of the x-ray spectrum varied less than 1 keV, with the lead at 1 cm beneath the water phantom surface. As the Monte Carlo calculations showed good agreement with the measured results, this method can be used to verify surface dose changes in clinical situations

  9. X-Band RF Gun Development

    International Nuclear Information System (INIS)

    Vlieks, A.E.

    2012-01-01

    In support of the MEGa-ray program at LLNL and the High Gradient research program at SLAC, a new X-band multi-cell RF gun is being developed. This gun, similar to earlier guns developed at SLAC for Compton X-ray source program, will be a standing wave structure made of 5.5 cells operating in the pi mode with copper cathode. This gun was designed following criteria used to build SLAC X-band high gradient accelerating structures. It is anticipated that this gun will operate with surface electric fields on the cathode of 200 MeV/m with low breakdown rate. RF will be coupled into the structure through a final cell with symmetric duel feeds and with a shape optimized to minimize quadrupole field components. In addition, geometry changes to the original gun, operated with Compton X-ray source, will include a wider RF mode separation, reduced surface electric and magnetic fields.

  10. AN X-RAY SPECTRAL MODEL OF REPROCESSING BY SMOOTH AND CLUMPY MOLECULAR TORI IN ACTIVE GALACTIC NUCLEI WITH THE MONACO FRAMEWORK

    Energy Technology Data Exchange (ETDEWEB)

    Furui, Shun’ya; Fukazawa, Yasushi; Ohno, Masanori; Hayashi, Kazuma [Department of Physical Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Odaka, Hirokazu [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Kawaguchi, Toshihiro, E-mail: fukazawa@hep01.hepl.hiroshima-u.ac.jp [Department of Liberal Arts and Sciences, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556 (Japan)

    2016-02-20

    We construct an X-ray spectral model of reprocessing by a torus in an active galactic nucleus (AGN) with the Monte Carlo simulation framework MONACO. Two torus geometries of smooth and clumpy cases are considered and compared. In order to reproduce a Compton shoulder accurately, MONACO includes not only free electron scattering but also bound electron scattering. Raman and Rayleigh scattering are also treated, and scattering cross sections dependent on chemical states of hydrogen and helium are included. Doppler broadening by turbulence velocity can be implemented. Our model gives results consistent with other available models, such as MYTorus, except for differences due to different physical parameters and assumptions. We studied the dependence on torus parameters for a Compton shoulder, and found that a intensity ratio of a Compton shoulder to the line core mainly depends on column density, inclination angle, and metal abundance. For instance, an increase of metal abundance makes a Compton shoulder relatively weak. Also, the shape of a Compton shoulder depends on the column density. Furthermore, these dependences become different between smooth and clumpy cases. Then, we discuss the possibility of ASTRO-H/SXS spectroscopy of Compton shoulders in AGN reflection spectra.

  11. Complete k-space visualization of x-ray photoelectron diffraction

    International Nuclear Information System (INIS)

    Denlinger, J.D.; Lawrence Berkeley Lab., CA; Rotenberg, E.; Lawrence Berkeley Lab., CA; Kevan, S.D.; Tonner, B.P.

    1996-01-01

    A highly detailed x-ray photoelectron diffraction data set has been acquired for crystalline Cu(001). The data set for bulk Cu 3p emission encompasses a large k-space volume (k = 3--10 angstrom -1 ) with sufficient energy and angular sampling to monitor the continuous variation of diffraction intensities. The evolution of back-scattered intensity oscillations is visualized by energy and angular slices of this volume data set. Large diffraction data sets such as this will provide rigorous experimental tests of real-space reconstruction algorithms and multiple-scattering simulations

  12. Contribution of back-scattered electromagnetic rays to the Moessbauer conversion electron spectrum

    International Nuclear Information System (INIS)

    Ruskov, T.; Ruskov, R.; Paneva, D.; Lefterov, D.

    1999-01-01

    The contribution of back-scattered electromagnetic rays in a 57 Fe conversion electron Moessbauer spectrum is considered using proportional counter as a detector. A simplified method for measuring this contribution is described. The experimental results show that this contribution strongly depends on the construction of the counter and the selected fraction in the pulse-height spectrum

  13. Beta ray backscattering studies for thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M; Sharma, K K [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1979-01-01

    Back-scattering of beta rays from /sup 204/Tl (Esub(..beta..)max = 740 keV) and /sup 90/Sr-/sup 90/Y (Esub(..beta..)max =550 and 2250 keV) has been studied in an improved reflection geometry, using annular sources, from a number of elemental targets with Z values ranging from 13 to 82. Source to target and target to detector geometry factors are 0.0225 and 0.0282 respectively. Values of saturation back scattering thickness obtained in the two cases are 72 +- 10 and 190 +- 40 mg/cm/sup 2/ respectively. It is observed that the intensity of back scattered radiation varies linearly with thickness upto a value of 12 +- 2 mg/cm/sup 2/ in /sup 204/Tl and 17 +- 3 mg/cm/sup 2/ in /sup 90/Sr-/sup 90/Y.

  14. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Gursky, H.

    1974-01-01

    This text contains ten chapters and three appendices. Following an introduction, chapters two through five deal with observational techniques, mechanisms for the production of x rays in a cosmic setting, the x-ray sky and solar x-ray emission. Chapters six through ten include compact x-ray sources, supernova remnants, the interstellar medium, extragalactic x-ray sources and the cosmic x-ray background. Interactions of x rays with matter, units and conversion factors and a catalog of x-ray sources comprise the three appendices. (U.S.)

  15. Crystal Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Braverman, Joshua B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hornback, Donald Eric [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fabris, Lorenzo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Newby, Jason [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-09-26

    Stand-off detection is one of the most important radiation detection capabilities for arms control and the control of illicit nuclear materials. For long range passive detection one requires a large detector and a means of “seeing through” the naturally occurring and varying background radiation, i.e. imaging. Arguably, Compton imaging is the best approach over much of the emission band suitable for long range detection. It provides not only imaging, but more information about the direction of incidence of each detected gamma-ray than the alternate approach of coded-aperture imaging. The directional information allows one to reduce the background and hence improve the sensitivity of a measurement. However, to make an efficient Compton imager requires localizing and measuring the simultaneous energy depositions when gamma-rays Compton scatter and are subsequently captured within a single, large detector volume. This concept has been demonstrated in semi-conductor detectors (HPGe, CZT, Si) but at ~ $1k/cm3 these materials are too expensive to build the large systems needed for standoff detection. Scintillator detectors, such as NaI(Tl), are two orders of magnitude less expensive and possess the energy resolution required to make such an imager. However, they do not currently have the ability to localize closely spaced, simultaneous energy depositions in a single large crystal. In this project we are applying a new technique that should, for the first time ever, allow cubic-millimeter event localization in a bulk scintillator crystal.

  16. Procedure for analyzing the x-ray line profiles of disordered carbons

    International Nuclear Information System (INIS)

    Henry, L.G.; Bragg, R.H.; Bose, S.

    1981-12-01

    A systematic procedure to correct for various distortions in the broad x-ray line profiles of glass-like carbons (GC) is described. The profile is first corrected for distortions due to low specimen absorption, secondly for incoherent (Compton) scattering, and then strong small angle scattering. The resulting profile is then multiplied by the appropriate trigonometric (Lorentz and polarization) factors. Finally, correction is made for the variation of the atomic scattering factor across the broad peaks. Two examples of the GC heat treatment at 1000 0 C and 2700 0 C have been used to illustrate the outcome of the corrections. 8 figures

  17. X-ray Spectroscopy for Quality Control of Chemotherapy Drugs

    International Nuclear Information System (INIS)

    Greaves, E. D.; Barros, H.; Bermudez, J.; Sajo-Bohus, L.; Angeli-Greaves, M.

    2007-01-01

    We develop a method, employing Compton peak standardization and the use of matrix-matched spiked samples with Total Reflection X-ray Fluorescence (TXRF), for the determination of platinum plasma concentrations of patients undergoing chemotherapy with Pt-bearing drugs. Direct blood plasma analysis attains Pt detection limits of 70 ng/ml. Measurement results of prescribed drug doses are compared to achieved blood Pt concentrations indicating a lack of expected correlations. Direct analysis of Pt-containing infused drugs from a variety of suppliers indicates cases of abnormal concentrations which raises quality control issues. We demonstrate the potential usefulness of the method for pharmacokinetic studies or for routine optimization and quality control of Pt chemotherapy treatments

  18. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  19. The spectral and temporal behavior of the variable X-ray binary star Cyg X-1 in the hard region of X-radiation

    International Nuclear Information System (INIS)

    Steinle, H.

    1981-01-01

    In the present work the measurements of the X-ray spectrum of Cyg X-1 in the energy range 15 to 160 keV in the years 1975, 1976, 1977 are investigated. The measurements are of such a good quality, that a simple power spectrum as the best fit of a model to the data of Cyg X-1 can be excluded because the spectrum breaks off in the range 70-100 keV. The model of Sunyaev and Titarchuk which describes the comptonizing of protons will low energy in a hot plasma is used first time for filling to the Cyg X-1 spectra and it is seen, that the shape of the spectrum is represented in an excellent manner. From the parameters of the best fit to the spectrum from 1977 an electron temperature of 3.4 x 10 8 K and an optical depth tau = 5 for the plasma in which the photons are scattered are found. (orig./WB) [de

  20. High-intensity, subkolovolt x-ray calibration facility using a Cockroft--Walton proton accelerator

    International Nuclear Information System (INIS)

    Kuckuck, R.W.; Gaines, J.L.; Ernst, R.D.

    1976-01-01

    Considerable need has arisen for the development of well-calibrated x-ray detectors capable of detecting photons with energies between 100 and 1000 electron-volts. This energy region is of significant interest since the x-ray emission from high-temperature (kT approximately 1.0 keV), laser-produced plasmas is predominantly in this range. A high-intensity, subkilovolt x-ray calibration source was developed which utilizes proton-induced inner-shell atomic fluorescence of low-Z elements. The high photon yields and low bremsstrahlung background associated with this phenomenon are ideally suited to provide an intense, nearly monoenergetic x-ray calibration source for detector development applications. The proton accelerator is a 3 mA, 300 kV Cockroft-Walton using a conventional rf hydrogen ion source. Seven remotely-selectable liquid-cooled targets capable of heat dissipation of 5 kW/cm 2 are used to provide characteristic x-rays with energies between 100 and 1000 eV. Source strengths are of the order of 10 13 to 10 14 photons/sec. A description of the facility is presented. Typical x-ray spectra (B-K, C-K, Ti-L, Fe-L and Cu-L) and flux values will be shown. Problems such as spectral contamination due to carbon buildup on the target and to backscattered particles are discussed

  1. STRONGER REFLECTION FROM BLACK HOLE ACCRETION DISKS IN SOFT X-RAY STATES

    International Nuclear Information System (INIS)

    Steiner, James F.; Remillard, Ronald A.; García, Javier A.; McClintock, Jeffrey E.

    2016-01-01

    We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe–K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe–K line, namely, the Compton power law. We find that reflection is several times more pronounced (∼3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.

  2. STRONGER REFLECTION FROM BLACK HOLE ACCRETION DISKS IN SOFT X-RAY STATES

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, James F.; Remillard, Ronald A. [MIT Kavli Institute for Astrophysics and Space Research, MIT, 70 Vassar Street, Cambridge, MA 02139 (United States); García, Javier A.; McClintock, Jeffrey E., E-mail: jsteiner@mit.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-10-01

    We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe–K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe–K line, namely, the Compton power law. We find that reflection is several times more pronounced (∼3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.

  3. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in AN X-Ray Binary System

    Science.gov (United States)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn

    2014-01-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  4. AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kärtner, F.X., E-mail: franz.kaertner@cfel.de [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA (United States); Ahr, F. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); DESY, Hamburg (Germany); Max Planck Institute for the Structure and Dynamics of Matter, Hamburg (Germany); Calendron, A.-L. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Çankaya, H. [Center for Free-Electron Laser Science, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Carbajo, S. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); DESY, Hamburg (Germany); Chang, G.; Cirmi, G. [Center for Free-Electron Laser Science, Hamburg (Germany); The Hamburg Center for Ultrafast Imaging, Hamburg (Germany); DESY, Hamburg (Germany); Dörner, K. [Center for Free-Electron Laser Science, Hamburg (Germany); DESY, Hamburg (Germany); Dorda, U. [DESY, Hamburg (Germany); Fallahi, A. [Center for Free-Electron Laser Science, Hamburg (Germany); DESY, Hamburg (Germany); Hartin, A. [Center for Free-Electron Laser Science, Hamburg (Germany); Institute for Experimental Physics, University of Hamburg, Hamburg (Germany); DESY, Hamburg (Germany); Hemmer, M. [Center for Free-Electron Laser Science, Hamburg (Germany); DESY, Hamburg (Germany); and others

    2016-09-01

    X-ray crystallography is one of the main methods to determine atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes consisting of hundred-thousands of atoms that constitute the macromolecular machinery of life. Life is not static, and unravelling the structure and dynamics of the most important reactions in chemistry and biology is essential to uncover their mechanism. Many of these reactions, including photosynthesis which drives our biosphere, are light induced and occur on ultrafast timescales. These have been studied with high time resolution primarily by optical spectroscopy, enabled by ultrafast laser technology, but they reduce the vast complexity of the process to a few reaction coordinates. In the AXSIS project at CFEL in Hamburg, funded by the European Research Council, we develop the new method of attosecond serial X-ray crystallography and spectroscopy, to give a full description of ultrafast processes atomically resolved in real space and on the electronic energy landscape, from co-measurement of X-ray and optical spectra, and X-ray diffraction. This technique will revolutionize our understanding of structure and function at the atomic and molecular level and thereby unravel fundamental processes in chemistry and biology like energy conversion processes. For that purpose, we develop a compact, fully coherent, THz-driven attosecond X-ray source based on coherent inverse Compton scattering off a free-electron crystal, to outrun radiation damage effects due to the necessary high X-ray irradiance required to acquire diffraction signals. This highly synergistic project starts from a completely clean slate rather than conforming to the specifications of a large free-electron laser (FEL) user facility, to optimize the entire instrumentation towards fundamental measurements of the mechanism of light absorption and excitation energy transfer. A multidisciplinary team formed by laser

  5. Compact X-ray sources. Simulating the electron/strong laser interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hartin, Anthony [DESY, CFEL, Hamburg (Germany)

    2016-07-01

    The collision of an intense laser with an electron bunch can be used to produce X-rays via the inverse Compton scattering (ICS) mechanism. The ICS can be simulated via either a classical theory in which electrons and photons are treated in terms of classical electromagnetic waves - or a quantum theory in which charged particles interact with strong electromagnetic fields. The laser intensity used in a practical ICS collision is likely to be at such a level that quantum effects may be significant and the use of quantum theory may become a necessity. A simulation study is presented here comparing the classical and quantum approaches to the ICS. A custom particle-in-cell (PIC) software code, with photon generation by monte carlo of the exact quantum transition probability is used to simulate the quantum treatment. Peak resonant energies and the angular distribution of the X-rays are obtained and compared with those predicted by the classical theory. The conditions under which significant differences between the two theories emerges is obtained.

  6. Use of primary beam filtration in estimating mass attenuation coefficients by Compton scattering

    International Nuclear Information System (INIS)

    O'Connor, B.H.; Chang, W.J.

    1985-01-01

    Mass attenuation coefficients (MACs) are frequently estimated over a range of wavelengths in x-ray spectrometry from the intensity of the Compton peak I /SUB C/ associated with a prominent tube line. The MAC μ /SUB ll/ at wavelength lambda is estimated from the MAC at the Compton wavelength lambda /SUB C/ with the approximations μ /SUB ll/ α μ /SUB C/ and μ /SUB C/ α l/I /SUB C/ , Systematic errors may introduce absorption edge bias (AEB) effects into the results, caused by sample components with absorption edges between lambda /SUB C/ and lambda. A procedure is described which eliminates AEB effects by measuring I /SUB C/ using emission radiation from a primary beam filter

  7. Method and apparatus for measuring incombustible content of coal mine dust using gamma-ray backscatter

    International Nuclear Information System (INIS)

    Armstrong, F.E.

    1976-01-01

    A method and apparatus for measuring incombustible content of particulate material, particularly coal mine dust, include placing a sample of the particulate material in a container to define a pair of angularly oriented surfaces of the sample, directing an incident gamma-ray beam from a radiation source at one surface of the sample and detecting gamma-ray backscatter from the other surface of the sample with a radiation detector having an output operating a display to indicate incombustible content of the sample. The positioning of the source and detector along different surfaces of the sample permits the depth of the scattering volume defined by intersection of the incident beam and a detection cone from the detector to be selected such that variations in scattered radiation produced by variations in density of the sample are compensated by variations in the attenuation of the incident beam and the gamma-ray backscatter. 17 claims 5 figures

  8. Bayesian Multiscale Analysis of X-Ray Jet Features in High Redshift Quasars

    Science.gov (United States)

    McKeough, Kathryn; Siemiginowska, A.; Kashyap, V.; Stein, N.

    2014-01-01

    X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet’s relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. We implement a sophisticated Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) (Esch et al. 2004; Conners & van Dyk 2007), to analyze jet features in 11 Chandra images of high redshift quasars (z ~ 2 - 4.8). Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. We measured the ratios of the X-ray and radio luminosities of the detected features and found that they are consistent with the CMB radiation relationship. We derived a range of the bulk lorentz factor (Γ) for detected jet features under the CMB jet emission model. There is no discernible trend of Γ with redshift within the sample. The efficiency of the X-ray emission between the detected jet feature and the corresponding quasar also shows no correlation with redshift. This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. We thank Teddy Cheung for providing the VLA radio images. Connors, A., & van Dyk, D. A. 2007, Statistical Challenges in Modern Astronomy IV, 371, 101 Esch, D. N., Connors, A., Karovska, M., & van Dyk, D. A. 2004, ApJ, 610, 1213

  9. Rossi X-Ray Timing Explorer Observation of PSR B0656+14

    International Nuclear Information System (INIS)

    Chang, H.; Ho, C.

    1999-01-01

    PSR B0656+14 was observed by the Rossi X-Ray Timing Explorer (RXTE) with the proportional counter array (PCA) and the high-energy X-ray timing experiment (HEXTE) for 160 ks during 1997 August 22 - September 3. No pulsation was firmly found in the timing analysis, during which the contemporaneous radio ephemeris and various statistical tests were applied in searching for evidence of pulsation. A marginal detection of pulsation at a confidence level of 95.5% based on the H test was found with data in the whole HEXTE energy band. In the energy band of 2-10 keV the RXTE PCA upper limits are about 1 order of magnitude lower than that from ASCA GIS data. If the Compton Gamma Ray Observatory EGRET detection of this pulsar is real, considering the common trait that most EGRET-detected pulsars have a cooling spectrum in hard X-ray and gamma-ray energy bands, the estimated RXTE upper limits indicate a deviation (low-energy turnover) from a cooling spectrum starting from 20 keV or higher. This in turn suggests an outer magnetospheric synchrotron radiation origin for high-energy emissions from PSR B0656+14. The RXTE PCA upper limits also suggest that a reported power-law component based on ASCA SIS data in 1-10 keV fitted jointly with ROSAT data, if real, should be mainly unpulsed. copyright copyright 1999. The American Astronomical Society

  10. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  11. The Compton-thick Growth of Supermassive Black Holes constrained

    Science.gov (United States)

    Buchner, J.; Georgakakis, A.; Nandra, K.

    2017-10-01

    A heavily obscured growth phase of supermassive black holes (SMBH) is thought to be important in the co-evolution with galaxies. X-rays provide a clean and efficient selection of unobscured and obscured AGN. Recent work with deeper observations and improved analysis methodology allowed us to extend constraints to Compton-thick number densities. We present the first luminosity function of Compton-thick AGN at z=0.5-4 and constrain the overall mass density locked into black holes over cosmic time, a fundamental constraint for cosmological simulations. Recent studies including ours find that the obscuration is redshift and luminosity-dependent in a complex way, which rules out entire sets of obscurer models. A new paradigm, the radiation-lifted torus model, is proposed, in which the obscurer is Eddington-rate dependent and accretion creates and displaces torus clouds. We place observational limits on the behaviour of this mechanism.

  12. Fermi Non-detections of Four X-Ray Jet Sources and Implications for the IC/CMB Mechanism

    Science.gov (United States)

    Breiding, Peter; Meyer, Eileen T.; Georganopoulos, Markos; Keenan, M. E.; DeNigris, N. S.; Hewitt, Jennifer

    2017-11-01

    Since its launch in 1999, the Chandra X-ray observatory has discovered several dozen X-ray jets associated with powerful quasars. In many cases, the X-ray spectrum is hard and appears to come from a second spectral component. The most popular explanation for the kpc-scale X-ray emission in these cases has been inverse-Compton (IC) scattering of Cosmic Microwave Background (CMB) photons by relativistic electrons in the jet (the IC/CMB model). Requiring the IC/CMB emission to reproduce the observed X-ray flux density inevitably predicts a high level of gamma-ray emission, which should be detectable with the Fermi Large Area Telescope (LAT). In previous work, we found that gamma-ray upper limits from the large-scale jets of 3C 273 and PKS 0637-752 violate the predictions of the IC/CMB model. Here, we present Fermi/LAT flux density upper limits for the X-ray jets of four additional sources: PKS 1136-135, PKS 1229-021, PKS 1354+195, and PKS 2209+080. We show that these limits violate the IC/CMB predictions at a very high significance level. We also present new Hubble Space Telescope observations of the quasar PKS 2209+080 showing a newly detected optical jet, and Atacama Large Millimeter/submillimeter Array band 3 and 6 observations of all four sources, which provide key constraints on the spectral shape that enable us to rule out the IC/CMB model.

  13. Application of the gamma rays backscattering for determining the quantity of steel

    International Nuclear Information System (INIS)

    Huapaya P, B.F.

    1996-01-01

    This work tries to purpose a methodology based on the nuclear technology available in the country, for measuring the position and diameter of the reinforcing rods placed in reinforced concrete structures. The technique of gamma backscattering that utilizes the changes of density was used for determining the presence of steel (average density of concrete 2,5 g/cm 3 and steel 7,8 g/cm 3 ). The concrete test tubes of different resistances were prepared with diverse concentrations into the aggregates as crushed rock and coarse sand, and also with three steel rods of 0,5 inch separated by 4 inches among themselves. The source Cs-137 of 20 mCi in activity was a monoenergetic radioisotope of the element Cs from 662 KeV. The source was placed in a lead shield with a hole which generates a collimator beam of 2 mm. The detector was one type of scintillation (INa-Tl) 2 x 2 inch; it was sealed with lead and had a hole of 10 mm which worked as collimator. The shield was placed in an angle of 15 degrees over concrete surface in order to pick up the backscattering gamma rays by the concrete. The test tube was displaced over a little car affixed to a endless screw which permitted to reproduce displacements of 0,25 inch. The data recording was realized through a multichannel of 1024 channels where was accounted the number of counts viewed under the backscattering spectrum by the concrete. It is possible to determine the position and diameter of the steel rod into concrete, changing the parameters of detector collimator source, distance source-detector and type of concrete. Furthermore, it was shown that this same equipment can measure the density of the concrete. The applications of this equipment are used in the inspection works where it is necessary to make a non-destructive control of quality about the structure of building. (author). 7 refs., 46 tabs., 24 figs

  14. Revealing the nature of the ULX and X-ray population of the spiral galaxy NGC 4088

    Energy Technology Data Exchange (ETDEWEB)

    Mezcua, M. [Instituto de Astrofísica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Fabbiano, G. [Harvard-Smithsonian Center for Astrophysics (CfA), 60 Garden Street, Cambridge, MA 02138 (United States); Gladstone, J. C. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Farrell, S. A. [Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006 (Australia); Soria, R., E-mail: mmezcua@iac.es [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia)

    2014-04-20

    We present the first Chandra and Swift X-ray study of the spiral galaxy NGC 4088 and its ultraluminous X-ray source (ULX N4088-X1). We also report very long baseline interferometry (VLBI) observations at 1.6 and 5 GHz performed quasi-simultaneously with the Swift and Chandra observations, respectively. Fifteen X-ray sources are detected by Chandra within the D25 ellipse of NGC 4088, from which we derive the X-ray luminosity function (XLF) of this galaxy. We find the XLF is very similar to those of star-forming galaxies and estimate a star-formation rate of 4.5 M {sub ☉} yr{sup –1}. The Chandra detection of the ULX yields its most accurate X-ray position, which is spatially coincident with compact radio emission at 1.6 GHz. The ULX Chandra X-ray luminosity, L {sub 0.2-10.0} {sub keV} = 3.4 × 10{sup 39} erg s{sup –1}, indicates that N4088-X1 could be located at the high-luminosity end of the high-mass X-ray binary (HMXB) population of NGC 4088. The estimates of the black hole (BH) mass and ratio of radio to X-ray luminosity of N4088-X1 rule out a supermassive BH nature. The Swift X-ray spectrum of N4088-X1 is best described by a thermal Comptonization model and presents a statistically significant high-energy cutoff. We conclude that N4088-X1 is most likely a stellar remnant BH in an HMXB, probably fed by Roche lobe overflow, residing in a super-Eddington ultraluminous state. The 1.6 GHz VLBI source is consistent with radio emission from possible ballistic jet ejections in this state.

  15. Towards tabletop production of intense quasimonochromatic X-ray beams using small 2-20 MeV accelerators

    International Nuclear Information System (INIS)

    Avakian, R.O.; Ispirian, K.A.

    2004-01-01

    Full text: The existing synchrotron radiation sources and the fourth generation x-ray sources, which are projected at SLAC, USA, and DESY, Germany, are very expensive. For this reason the search of the novel and cheaper sources using various types of radiation produced by 5-20 MeV electrons available at many hospitals, universities and firms in various countries is of great interest. In this article a review of the physics, history, new theoretical and experimental results and of some applications is given with a purpose to consider the possibilities of construction of small tabletop sources of quasimonochromatic X-ray photon beams necessary for scientific, industrial, medicine and other applications. Simple formulae for almost all types of radiation are given with the help of which one can estimate the expected useful yield and background. PACS: 41.60.-m; 43.35.Ty; 61.85+p;m 78.67.Pt; 78.70.-g. Key words: Bremsstrahlung/Cherenkov radiation/ Transition radiation / Parametric X-ray radiation / Channeling radiation/ Compton scattering

  16. Estimation of organ and effective dose due to Compton backscatter security scans

    International Nuclear Information System (INIS)

    Hoppe, Michael E.; Schmidt, Taly Gilat

    2012-01-01

    Purpose: To estimate organ and effective radiation doses due to backscatter security scanners using Monte Carlo simulations and a voxelized phantom set. Methods: Voxelized phantoms of male and female adults and children were used with the GEANT4 toolkit to simulate a backscatter security scan. The backscatter system was modeled based on specifications available in the literature. The simulations modeled a 50 kVp spectrum with 1.0 mm-aluminum-equivalent filtration and a previously measured exposure of approximately 4.6 μR at 30 cm from the source. Photons and secondary interactions were tracked from the source until they reached zero kinetic energy or exited from the simulation’s boundaries. The energy deposited in the phantoms’ respective organs was tallied and used to calculate total organ dose and total effective dose for frontal, rear, and full scans with subjects located 30 and 75 cm from the source. Results: For a full screen, all phantoms’ total effective doses were below the established 0.25 μSv standard, with an estimated maximum total effective dose of 0.07 μSv for full screen of a male child. The estimated maximum organ dose due to a full screen was 1.03 μGy, deposited in the adipose tissue of the male child phantom when located 30 cm from the source. All organ dose estimates had a coefficient of variation of less than 3% for a frontal scan and less than 11% for a rear scan. Conclusions: Backscatter security scanners deposit dose in organs beyond the skin. The effective dose is below recommended standards set by the Health Physics Society (HPS) and the American National Standards Institute (ANSI) assuming the system provides a maximum exposure of approximately 4.6 μR at 30 cm.

  17. Inner Disk Structure of Dwarf Novae in the Light of X-Ray Observations

    Directory of Open Access Journals (Sweden)

    S. Balman

    2015-02-01

    Full Text Available Diversity of the X-ray observations of dwarf nova are still not fully understood. I review the X-ray spectral characteristics of dwarf novae during the quiescence in general explained by cooling flow models and the outburst spectra that show hard X-ray emission dominantly with few sources that reveal soft X-ray/EUV blackbody emission. The nature of aperiodic time variability of brightness of dwarf novae shows band limited noise, which can be adequately described in the framework of the model of propagating fluctuations. The frequency of the break (1-6 mHz indicates inner disk truncation of the optically thick disk with a range of radii (3.0-10.0×109 cm. The RXTE and optical (RTT150 data of SS Cyg in outburst and quiescence reveal that the inner disk radius moves towards the white dwarf and receeds as the outburst declines to quiescence. A preliminary analysis of SU UMa indicates a similar behaviour. In addition, I find that the outburst spectra of WZ Sge shows two component spectrum of only hard X-ray emission, one of which may be fitted with a power law suggesting thermal Comptonization occuring in the system. Cross-correlations between the simultaneous UV and X-ray light curves (XMM −Newton of five DNe in quiescence show time lags in the X-rays of 96-181 sec consistent with travel time of matter from a truncated inner disk to the white dwarf surface. All this suggests that dwarf novae and other plausible nonmagnetic systems have truncated accretion disks indicating that the disks may be partially evaporated and the accretion may occur through hot (coronal flows in the disk.

  18. X-Ray

    Science.gov (United States)

    ... enema. What you can expect During the X-ray X-rays are performed at doctors' offices, dentists' offices, ... as those using a contrast medium. Your child's X-ray Restraints or other techniques may be used to ...

  19. High-energy gamma-ray emission in compact binaries

    International Nuclear Information System (INIS)

    Cerutti, Benoit

    2010-01-01

    Four gamma-ray sources have been associated with binary systems in our Galaxy: the micro-quasar Cygnus X-3 and the gamma-ray binaries LS I +61 degrees 303, LS 5039 and PSR B1259-63. These systems are composed of a massive companion star and a compact object of unknown nature, except in PSR B1259-63 where there is a young pulsar. I propose a comprehensive theoretical model for the high-energy gamma-ray emission and variability in gamma-ray emitting binaries. In this model, the high-energy radiation is produced by inverse Compton scattering of stellar photons on ultra-relativistic electron-positron pairs injected by a young pulsar in gamma-ray binaries and in a relativistic jet in micro-quasars. Considering anisotropic inverse Compton scattering, pair production and pair cascade emission, the TeV gamma-ray emission is well explained in LS 5039. Nevertheless, this model cannot account for the gamma-ray emission in LS I +61 degrees 303 and PSR B1259-63. Other processes should dominate in these complex systems. In Cygnus X-3, the gamma-ray radiation is convincingly reproduced by Doppler-boosted Compton emission of pairs in a relativistic jet. Gamma-ray binaries and micro-quasars provide a novel environment for the study of pulsar winds and relativistic jets at very small spatial scales. (author)

  20. TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES

    International Nuclear Information System (INIS)

    De Marco, B.; Ponti, G.; Nandra, K.; Muñoz-Darias, T.

    2015-01-01

    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4 in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation