WorldWideScience

Sample records for compressive strength prediction

  1. Prediction of potential compressive strength of Portland clinker from its mineralogy

    DEFF Research Database (Denmark)

    Svinning, K.; Høskuldsson, Agnar; Justnes, H.

    2010-01-01

    Based on a statistical model first applied for prediction of compressive strength up to 28 d from the microstructure of Portland cement, potential compressive strength of clinker has been predicted from its mineralogy. The prediction model was evaluated by partial least squares regression...

  2. Predicting the Compressive Strength of Concretes Made with ...

    African Journals Online (AJOL)

    In most of these cases the cause of the collapse could be traced to the strength of the construction materials, mainly concrete. Secondly, experimental ... The compressive strength predictions were compared with predictions from an alternative model based on regression analysis. The results of the study show that for the ...

  3. Statistical approach to predict compressive strength of high workability slag-cement mortars

    International Nuclear Information System (INIS)

    Memon, N.A.; Memon, N.A.; Sumadi, S.R.

    2009-01-01

    This paper reports an attempt made to develop empirical expressions to estimate/ predict the compressive strength of high workability slag-cement mortars. Experimental data of 54 mix mortars were used. The mortars were prepared with slag as cement replacement of the order of 0, 50 and 60%. The flow (workability) was maintained at 136+-3%. The numerical and statistical analysis was performed by using database computer software Microsoft Office Excel 2003. Three empirical mathematical models were developed to estimate/predict 28 days compressive strength of high workability slag cement-mortars with 0, 50 and 60% slag which predict the values accurate between 97 and 98%. Finally a generalized empirical mathematical model was proposed which can predict 28 days compressive strength of high workability mortars up to degree of accuracy 95%. (author)

  4. models for predicting compressive strength and water absorption

    African Journals Online (AJOL)

    user

    presents a mathematical model for predicting the compressive strength and water absorption of laterite-quarry dust cement block using ... building and construction of new infrastructure and .... In (6), R is a vector containing the real ratios of the.

  5. Models for predicting compressive strength and water absorption of ...

    African Journals Online (AJOL)

    This work presents a mathematical model for predicting the compressive strength and water absorption of laterite-quarry dust cement block using augmented Scheffe's simplex lattice design. The statistical models developed can predict the mix proportion that will yield the desired property. The models were tested for lack of ...

  6. Dataset on predictive compressive strength model for self-compacting concrete.

    Science.gov (United States)

    Ofuyatan, O M; Edeki, S O

    2018-04-01

    The determination of compressive strength is affected by many variables such as the water cement (WC) ratio, the superplasticizer (SP), the aggregate combination, and the binder combination. In this dataset article, 7, 28, and 90-day compressive strength models are derived using statistical analysis. The response surface methodology is used toinvestigate the effect of the parameters: Varying percentages of ash, cement, WC, and SP on hardened properties-compressive strengthat 7,28 and 90 days. Thelevels of independent parameters are determinedbased on preliminary experiments. The experimental values for compressive strengthat 7, 28 and 90 days and modulus of elasticity underdifferent treatment conditions are also discussed and presented.These dataset can effectively be used for modelling and prediction in concrete production settings.

  7. Prediction of Corrosion Resistance of Concrete Containing Natural Pozzolan from Compressive Strength

    Science.gov (United States)

    al-Swaidani, A. M.; Ismat, R.; Diyab, M. E.; Aliyan, S. D.

    2015-11-01

    A lot of Reinforced Concrete (RC) structures in Syria have suffered from reinforcement corrosion which shortened significantly their service lives. Probably, one of the most effective approaches to make concrete structures more durable and concrete industry on the whole - more sustainable is to substitute pozzolan for a portion of Portland cement (PC). Syria is relatively rich in natural pozzolan. In the study, in order to predict the corrosion resistance from compressive strength, concrete specimens were produced with seven cement types: one plain Portland cement (control) and six natural pozzolan-based cements with replacement levels ranging from 10 to 35%. The development of the compressive strengths of concrete cube specimens with curing time has been investigated. Chloride penetrability has also been evaluated for all concrete mixes after three curing times of 7, 28 and 90 days. The effect on resistance of concrete against damage caused by corrosion of the embedded reinforcing steel has been investigated using an accelerated corrosion test by impressing a constant anodic potential for 7, 28 and 90 days curing. Test results have been statistically analysed and correlation equations relating compressive strength and corrosion performance have been developed. Significant correlations have been noted between the compressive strength and both rapid chloride penetrability and corrosion initiation times. So, this prediction could be reliable in concrete mix design when using natural pozzolan as cement replacement.

  8. Relationship between the edgewise compression strength of ...

    African Journals Online (AJOL)

    The results of this study were used to determine the linear regression constants in the Maltenfort model by correlating the measured board edgewise compression strength (ECT) with the predicted strength, using the paper components' compression strengths, measured with the short-span compression test (SCT) and the ...

  9. Using the Maturity Method in Predicting the Compressive Strength of Vinyl Ester Polymer Concrete at an Early Age

    Directory of Open Access Journals (Sweden)

    Nan Ji Jin

    2017-01-01

    Full Text Available The compressive strength of vinyl ester polymer concrete is predicted using the maturity method. The compressive strength rapidly increased until the curing age of 24 hrs and thereafter slowly increased until the curing age of 72 hrs. As the MMA content increased, the compressive strength decreased. Furthermore, as the curing temperature decreased, compressive strength decreased. For vinyl ester polymer concrete, datum temperature, ranging from −22.5 to −24.6°C, decreased as the MMA content increased. The maturity index equation for cement concrete cannot be applied to polymer concrete and the maturity of vinyl ester polymer concrete can only be estimated through control of the time interval Δt. Thus, this study introduced a suitable scaled-down factor (n for the determination of polymer concrete’s maturity, and a factor of 0.3 was the most suitable. Also, the DR-HILL compressive strength prediction model was determined as applicable to vinyl ester polymer concrete among the dose-response models. For the parameters of the prediction model, applying the parameters by combining all data obtained from the three different amounts of MMA content was deemed acceptable. The study results could be useful for the quality control of vinyl ester polymer concrete and nondestructive prediction of early age strength.

  10. Comparison of Machine Learning Techniques for the Prediction of Compressive Strength of Concrete

    Directory of Open Access Journals (Sweden)

    Palika Chopra

    2018-01-01

    Full Text Available A comparative analysis for the prediction of compressive strength of concrete at the ages of 28, 56, and 91 days has been carried out using machine learning techniques via “R” software environment. R is digging out a strong foothold in the statistical realm and is becoming an indispensable tool for researchers. The dataset has been generated under controlled laboratory conditions. Using R miner, the most widely used data mining techniques decision tree (DT model, random forest (RF model, and neural network (NN model have been used and compared with the help of coefficient of determination (R2 and root-mean-square error (RMSE, and it is inferred that the NN model predicts with high accuracy for compressive strength of concrete.

  11. Prediction of concrete compressive strength considering humidity and temperature in the construction of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seung Hee; Jang, Kyung Pil [Department of Civil and Environmental Engineering, Myongji University, Yongin (Korea, Republic of); Bang, Jin-Wook [Department of Civil Engineering, Chungnam National University, Daejeon (Korea, Republic of); Lee, Jang Hwa [Structural Engineering Research Division, Korea Institute of Construction Technology (Korea, Republic of); Kim, Yun Yong, E-mail: yunkim@cnu.ac.kr [Structural Engineering Research Division, Korea Institute of Construction Technology (Korea, Republic of)

    2014-08-15

    Highlights: • Compressive strength tests for three concrete mixes were performed. • The parameters of the humidity-adjusted maturity function were determined. • Strength can be predicted considering temperature and relative humidity. - Abstract: This study proposes a method for predicting compressive strength developments in the early ages of concretes used in the construction of nuclear power plants. Three representative mixes with strengths of 6000 psi (41.4 MPa), 4500 psi (31.0 MPa), and 4000 psi (27.6 MPa) were selected and tested under various curing conditions; the temperature ranged from 10 to 40 °C, and the relative humidity from 40 to 100%. In order to consider not only the effect of the temperature but also that of humidity, an existing model, i.e. the humidity-adjusted maturity function, was adopted and the parameters used in the function were determined from the test results. A series of tests were also performed in the curing condition of a variable temperature and constant humidity, and a comparison between the measured and predicted strengths were made for the verification.

  12. Prediction of compressive strength up to 28 days from microstructure of Portland cement

    DEFF Research Database (Denmark)

    Svinning, K.; Høskuldsson, Agnar; Justnes, H.

    2008-01-01

    represented by curves from X-ray diffraction analysis and differential thermogravimetric analysis, as well as particle size distributions. PLS gave maximum explained variance in compressive strength at 1, 2, 7 and 28 days of 93%, 90%, 79% and 67%, respectively. The high explained variance makes the prediction...

  13. Use of triangular membership function for prediction of compressive strength of concrete containing nanosilica

    Directory of Open Access Journals (Sweden)

    Sakshi Gupta

    2015-12-01

    Full Text Available In this paper, application of fuzzy logic technique using triangular membership function for developing models for predicting compressive strength of concrete with partial replacement of cement with nanosilica has been carried out. For this, the data have been taken from various literatures and help in optimizing the constituents available and reducing cost and efforts in studying design to develop mixes by predefining suitable range for experimenting. The use of nanostructured materials in concrete can add many benefits that are directly related to the durability of various cementitious materials, besides the fact that it is possible to reduce the quantities of cement in the composite. Successful prediction by the model indicates that fuzzy logic could be a useful modelling tool for engineers and research scientists in the area of cement and concrete. Compressive strength values of concrete can be predicted in fuzzy logic models without attempting any experiments in a quite short period of time with tiny error rates.

  14. predicting the compressive strength of concretes made with granite

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... computational model based on artificial neural networks for the determination of the compressive strength of concrete ... Strength being the most important property of con- ... to cut corners use low quality concrete materials in .... manner of operation of natural neurons in the human body. ... the output ai.

  15. Experimental Investigation and Prediction of Compressive Strength of Ultra-High Performance Concrete Containing Supplementary Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Jisong Zhang

    2017-01-01

    Full Text Available Ultra-high performance concrete (UHPC has superior mechanical properties and durability to normal strength concrete. However, the high amount of cement, high environmental impact, and initial cost are regarded as disadvantages, restricting its wider application. Incorporation of supplementary cementitious materials (SCMs in UHPC is an effective way to reduce the amount of cement needed while contributing to the sustainability and cost. This paper investigates the mechanical properties and microstructure of UHPC containing fly ash (FA and silica fume (SF with the aim of contributing to this issue. The results indicate that, on the basis of 30% FA replacement, the incorporation of 10% and 20% SF showed equivalent or higher mechanical properties compared to the reference samples. The microstructure and pore volume of the UHPCs were also examined. Furthermore, to minimise the experimental workload of future studies, a prediction model is developed to predict the compressive strength of the UHPC using artificial neural networks (ANNs. The results indicate that the developed ANN model has high accuracy and can be used for the prediction of the compressive strength of UHPC with these SCMs.

  16. Non-Uniform Compressive Strength of Debonded Sandwich Panels

    DEFF Research Database (Denmark)

    Nøkkentved, Alexandros; Lundsgaard-Larsen, Christian; Berggreen, Carl Christian

    2005-01-01

    debonds show a considerable strength reduction with increasing debond diameter, with failure mechanisms varying between fast debond propagation and wrinkling-introduced face compression failure for large and small debonds, respectively. Residual strength predictions are based on intact panel testing...

  17. Compressive strength of concrete and mortar containing fly ash

    Science.gov (United States)

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  18. Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors.

    Science.gov (United States)

    Yoon, Hyejin; Kim, Young Jin; Kim, Hee Seok; Kang, Jun Won; Koh, Hyun-Moo

    2017-08-07

    Surface wave velocity measurement of concrete using ultrasonic sensors requires testing on only one side of a member. Thus, it is applicable to concrete cast inside a form and is often used to detect flaws and evaluate the compressive strength of hardened concrete. Predicting the in situ concrete strength at a very early stage inside the form helps with determining the appropriate form removal time and reducing construction time and costs. In this paper, the feasibility of using surface wave velocities to predict the strength of in situ concrete inside the form at a very early stage was evaluated. Ultrasonic sensors were used to measure a series of surface waves for concrete inside a form in the first 24 h after placement. A continuous wavelet transform was used to compute the travel time of the propagating surface waves. The cylindrical compressive strength and penetration resistance tests were also performed during the test period. Four mixtures and five curing temperatures were used for the specimens. The surface wave velocity was confirmed to be applicable to estimating the concrete strength at a very early age in wall-like elements. An empirical formula is proposed for evaluating the early-age compressive strength of concrete considering the 95% prediction intervals.

  19. OPTIMISATION OF COMPRESSIVE STRENGTH OF PERIWINKLE ...

    African Journals Online (AJOL)

    In this paper, a regression model is developed to predict and optimise the compressive strength of periwinkle shell aggregate concrete using Scheffe's regression theory. The results obtained from the derived regression model agreed favourably with the experimental data. The model was tested for adequacy using a student ...

  20. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  1. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  2. The relationship between compressive strength and flexural strength of pavement geopolymer grouting material

    Science.gov (United States)

    Zhang, L.; Han, X. X.; Ge, J.; Wang, C. H.

    2018-01-01

    To determine the relationship between compressive strength and flexural strength of pavement geopolymer grouting material, 20 groups of geopolymer grouting materials were prepared, the compressive strength and flexural strength were determined by mechanical properties test. On the basis of excluding the abnormal values through boxplot, the results show that, the compressive strength test results were normal, but there were two mild outliers in 7days flexural strength test. The compressive strength and flexural strength were linearly fitted by SPSS, six regression models were obtained by linear fitting of compressive strength and flexural strength. The linear relationship between compressive strength and flexural strength can be better expressed by the cubic curve model, and the correlation coefficient was 0.842.

  3. Prediction of zeolite-cement-sand unconfined compressive strength using polynomial neural network

    Science.gov (United States)

    MolaAbasi, H.; Shooshpasha, I.

    2016-04-01

    The improvement of local soils with cement and zeolite can provide great benefits, including strengthening slopes in slope stability problems, stabilizing problematic soils and preventing soil liquefaction. Recently, dosage methodologies are being developed for improved soils based on a rational criterion as it exists in concrete technology. There are numerous earlier studies showing the possibility of relating Unconfined Compressive Strength (UCS) and Cemented sand (CS) parameters (voids/cement ratio) as a power function fits. Taking into account the fact that the existing equations are incapable of estimating UCS for zeolite cemented sand mixture (ZCS) well, artificial intelligence methods are used for forecasting them. Polynomial-type neural network is applied to estimate the UCS from more simply determined index properties such as zeolite and cement content, porosity as well as curing time. In order to assess the merits of the proposed approach, a total number of 216 unconfined compressive tests have been done. A comparison is carried out between the experimentally measured UCS with the predictions in order to evaluate the performance of the current method. The results demonstrate that generalized polynomial-type neural network has a great ability for prediction of the UCS. At the end sensitivity analysis of the polynomial model is applied to study the influence of input parameters on model output. The sensitivity analysis reveals that cement and zeolite content have significant influence on predicting UCS.

  4. STOCHASTIC MODELING OF COMPRESSIVE STRENGTH OF PHOSPHORUS SLAG CONTENT CEMENT

    Directory of Open Access Journals (Sweden)

    Ali Allahverdi

    2016-07-01

    Full Text Available One of the common methods for quick determination of compressive strength as one of the most important properties for assessment of cement quality is to apply various modeling approaches. This study is aimed at finding a model for estimating the compressive strength of phosphorus slag content cements. For this purpose, the compressive strengths of chemically activated high phosphorus slag content cement prepared from phosphorus slag (80 wt.%, Portland cement (14 wt.% and a compound chemical activator containing sodium sulfate and anhydrite (6 wt.% were measured at various Blaine finenesses and curing times. Based on the obtained results, a primary stochastic model in terms of curing time and Blaine fineness has been developed. Then, another different dataset was used to incorporate composition variable including weight fractions of phosphorus slag, cement, and activator in the model. This model can be effectively used to predict the compressive strength of phosphorus slag content cements at various Blaine finenesses, curing times, and compositions.

  5. A hybrid approach to predict the relationship between tablet tensile strength and compaction pressure using analytical powder compression.

    Science.gov (United States)

    Persson, Ann-Sofie; Alderborn, Göran

    2018-04-01

    The objective was to present a hybrid approach to predict the strength-pressure relationship (SPR) of tablets using common compression parameters and a single measurement of tablet tensile strength. Experimental SPR were derived for six pharmaceutical powders with brittle and ductile properties and compared to predicted SPR based on a three-stage approach. The prediction was based on the Kawakita b -1 parameter and the in-die Heckel yield stress, an estimate of maximal tensile strength, and a parameter proportionality factor α. Three values of α were used to investigate the influence of the parameter on the SPR. The experimental SPR could satisfactorily be described by the three stage model, however for sodium bicarbonate the tensile strength plateau could not be observed experimentally. The shape of the predicted SPR was to a minor extent influenced by the Kawakita b -1 but the width of the linear region was highly influenced by α. An increased α increased the width of the linear region and thus also the maximal predicted tablet tensile strength. Furthermore, the correspondence between experimental and predicted SPR was influenced by the α value and satisfactory predictions were in general obtained for α = 4.1 indicating the predictive potential of the hybrid approach. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Effect of shallow angles on compressive strength of biaxial and triaxial laminates.

    Science.gov (United States)

    Jia, Hongli; Yang, Hyun-Ik

    2016-01-01

    Biaxial (BX) and triaxial (TX) composite laminates with ±45° angled plies have been widely used in wind turbine blades. As the scale of blades increases, BX and TX laminates with shallow-angled plies (i.e. off-axis ply angle shallow-angled BX and TX laminates are critical considering their locations in a wind turbine blade, and therefore in this study, the uniaxial static compression tests were conducted using BX and TX laminates with angled-plies of ±45°, ±35°, and ±25°, for the purpose of evaluation. On the other hand, Mori-Tanaka mean field homogenization method was employed to predict elastic constants of plies in BX and TX laminates involved in tests; linear regression analyses of experimentally measured ply strengths collected from various sources were then performed to estimate strengths of plies in BX and TX laminates; finally, Tsai-Wu, Hashin, and Puck failure criteria were chosen to predict compressive strengths of BX and TX laminates. Comparison between theoretical predictions and test results were carried out to illustrate the effectiveness of each criterion. The compressive strength of BX laminate decreases as ply angle increases, and the trend was successfully predicted by all three failure criteria. For TX laminates, ±35° angled plies rather than ±45° angled plies led to the lowest laminate compressive strength. Hashin and Puck criteria gave good predictions at certain ply angles for TX laminates, but Tsai-Wu criterion was able to capture the unexpected strength variation of TX laminates with ply angle. It was concluded that the transverse tensile stress in 0° plies of TX laminates, which attains its maximum when the off-axis ply angle is 35°, is the dominant factor in failure determination if using Tsai-Wu criterion. This explains the unexpected strength variation of TX laminates with ply angle, and also indicates that proper selection of ply angle is the key to fully utilizing the advantages of shallow-angled laminates.

  7. optimisation of compressive strength of periwinkle shell aggregate

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... In this paper, a regression model is developed to predict and optimise the compressive strength of periwinkle shell aggregate concrete using Scheffe's regression theory. The results obtained from the derived regression model agreed favourably with the experimental data. The model was tested for ...

  8. Prediction of compression strength of high performance concrete using artificial neural networks

    International Nuclear Information System (INIS)

    Torre, A; Moromi, I; Garcia, F; Espinoza, P; Acuña, L

    2015-01-01

    High-strength concrete is undoubtedly one of the most innovative materials in construction. Its manufacture is simple and is carried out starting from essential components (water, cement, fine and aggregates) and a number of additives. Their proportions have a high influence on the final strength of the product. This relations do not seem to follow a mathematical formula and yet their knowledge is crucial to optimize the quantities of raw materials used in the manufacture of concrete. Of all mechanical properties, concrete compressive strength at 28 days is most often used for quality control. Therefore, it would be important to have a tool to numerically model such relationships, even before processing. In this aspect, artificial neural networks have proven to be a powerful modeling tool especially when obtaining a result with higher reliability than knowledge of the relationships between the variables involved in the process. This research has designed an artificial neural network to model the compressive strength of concrete based on their manufacturing parameters, obtaining correlations of the order of 0.94

  9. Comparison of Open-Hole Compression Strength and Compression After Impact Strength on Carbon Fiber/Epoxy Laminates for the Ares I Composite Interstage

    Science.gov (United States)

    Hodge, Andrew J.; Nettles, Alan T.; Jackson, Justin R.

    2011-01-01

    Notched (open hole) composite laminates were tested in compression. The effect on strength of various sizes of through holes was examined. Results were compared to the average stress criterion model. Additionally, laminated sandwich structures were damaged from low-velocity impact with various impact energy levels and different impactor geometries. The compression strength relative to damage size was compared to the notched compression result strength. Open-hole compression strength was found to provide a reasonable bound on compression after impact.

  10. Compressive Strength of Compacted Clay-Sand Mixes

    Directory of Open Access Journals (Sweden)

    Faseel Suleman Khan

    2014-01-01

    Full Text Available The use of sand to improve the strength of natural clays provides a viable alternative for civil infrastructure construction involving earthwork. The main objective of this note was to investigate the compressive strength of compacted clay-sand mixes. A natural clay of high plasticity was mixed with 20% and 40% sand (SP and their compaction and strength properties were determined. Results indicated that the investigated materials exhibited a brittle behaviour on the dry side of optimum and a ductile behaviour on the wet side of optimum. For each material, the compressive strength increased with an increase in density following a power law function. Conversely, the compressive strength increased with decreasing water content of the material following a similar function. Finally, the compressive strength decreased with an increase in sand content because of increased material heterogeneity and loss of sand grains from the sides during shearing.

  11. Strength properties of interlocking compressed earth brick units

    Science.gov (United States)

    Saari, S.; Bakar, B. H. Abu; Surip, N. A.

    2017-10-01

    This study presents a laboratory investigation on the properties of interlocking compressed earth brick (ICEB) units. Compressive strength, which is one of the most important properties in masonry structures, is used to determine masonry performance. The compressive strength of the ICEB units was determined by applying a compressive strength test for 340 units from four types of ICEB. To analyze the strength of the ICEB units, each unit was capped by a steel plate at the top and bottom to create a flat surface, and then ICEB was loaded until failure. The average compressive strength of the corresponding ICEB units are as follows: wall brick, 19.15 N/mm2; beam brick, 16.99 N/mm2; column brick, 13.18 N/mm2; and half brick, 11.79 N/mm2. All the ICEB units had compressive strength of over 5 N/mm2, which is the minimum strength for a load-bearing brick. This study proves that ICEB units may be used as load-bearing bricks. The strength of ICEBs is equal to that of other common bricks and blocks that are currently available in the market.

  12. Risk of vertebral insufficiency fractures in relation to compressive strength predicted by quantitative computed tomography

    International Nuclear Information System (INIS)

    Biggemann, M.; Hilweg, D.; Seidel, S.; Horst, M.; Brinckmann, P.

    1991-01-01

    Vertebral insufficiency fractures may result from excessive loading of normal and routine loading of osteoporotic spines. Fractures occur when the mechanical load exceeds the vertebral compressive strength, i.e., the maximum load a vertebra can tolerate. Vertebral compressive strength is determined by trabecular bone density and the size of end-plate area. Both parameters can be measured non-invasively by quanti-tative computed tomography (QCT). In 75 patients compressive strength (i.e., trabecular bone density and endplate area) of the vertebra L3 was determined using QCT. In addition, conventional radiographs of the spines were analysed for the prevalence of insufficiency fractures in each case. By relating fracture prevalence to strength, 3 fracture risk groups were found: a high-risk group with strength values of L3 5 kN and a fracture risk near 0 percent. Biomechanical measurements and model calculations indicate that spinal loads of 3 to 4 kN at L3/4 will be common in everyday activities. These data and the results described above suggest that spines with strength values of L3<3 kN are at an extremely high risk of insufficiency fractures in daily life. Advantages of fracture risk assessment by strength determination over risk estimation based on clinically used trabecular bone density measurements are discussed. (author). 18 refs.; 4 figs

  13. An investigation of the compressive strength of Kevlar 49/epoxy composites

    Science.gov (United States)

    Kulkarni, S. V.; Rosen, B. W.; Rice, J. S.

    1975-01-01

    Tests were performed to evaluate the effect of a wide range of variables including matrix properties, interface properties, fiber prestressing, secondary reinforcement, and others on the ultimate compressive strength of Kevlar 49/epoxy composites. Scanning electron microscopy is used to assess the resulting failure surfaces. In addition, a theoretical study is conducted to determine the influence of fiber anisotropy and lack of perfect bond between fiber and matrix on the shear mode microbuckling. The experimental evaluation of the effect of various constituent and process characteristics on the behavior of these unidirectional composites in compression did not reveal any substantial increase in strength. However, theoretical evaluations indicate that the high degree of fiber anisotropy results in a significant drop in the predicted stress level for internal instability. Scanning electron microscope data analysis suggests that internal fiber failure and smooth surface debonding could be responsible for the measured low compressive strengths.

  14. Compressive strength improvement for recycled concrete aggregate

    Directory of Open Access Journals (Sweden)

    Mohammed Dhiyaa

    2018-01-01

    Full Text Available Increasing amount of construction waste and, concrete remnants, in particular pose a serious problem. Concrete waste exist in large amounts, do not decay and need long time for disintegration. Therefore, in this work old demolished concrete is crashed and recycled to produce recycled concrete aggregate which can be reused in new concrete production. The effect of using recycled aggregate on concrete compressive strength has been experimentally investigated; silica fume admixture also is used to improve recycled concrete aggregate compressive strength. The main parameters in this study are recycled aggregate and silica fume admixture. The percent of recycled aggregate ranged from (0-100 %. While the silica fume ranged from (0-10 %. The experimental results show that the average concrete compressive strength decreases from 30.85 MPa to 17.58 MPa when the recycled aggregate percentage increased from 0% to 100%. While, when silica fume is used the concrete compressive strength increase again to 29.2 MPa for samples with 100% of recycled aggregate.

  15. A compressibility based model for predicting the tensile strength of directly compressed pharmaceutical powder mixtures.

    Science.gov (United States)

    Reynolds, Gavin K; Campbell, Jacqueline I; Roberts, Ron J

    2017-10-05

    A new model to predict the compressibility and compactability of mixtures of pharmaceutical powders has been developed. The key aspect of the model is consideration of the volumetric occupancy of each powder under an applied compaction pressure and the respective contribution it then makes to the mixture properties. The compressibility and compactability of three pharmaceutical powders: microcrystalline cellulose, mannitol and anhydrous dicalcium phosphate have been characterised. Binary and ternary mixtures of these excipients have been tested and used to demonstrate the predictive capability of the model. Furthermore, the model is shown to be uniquely able to capture a broad range of mixture behaviours, including neutral, negative and positive deviations, illustrating its utility for formulation design. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Experimental study on compressive strength of sediment brick masonry

    Science.gov (United States)

    Woen, Ean Lee; Malek, Marlinda Abdul; Mohammed, Bashar S.; Chao-Wei, Tang; Tamunif, Muhammad Thaqif

    2018-02-01

    The effects of pre-wetted unit bricks, mortar type and slenderness ratio of prisms on the compressive strength and failure mode of newly developed sediment brick have been evaluated and compared to clay brick and cement-sand bricks. The results show that pre-wetted sediment brick masonry exhibits higher compressive strength of up to 20% compared to the dry sediment masonry. Using cement-lime mortar leads to lower compressive strength compared to cement mortar. However, the sediment brick masonry with the cement lime mortar exhibit higher compressive strength in comparison with cement mortar masonry. More of diagonal shear cracks have been observed in the failure mode of the sediment bricks masonry compared to clay and cement-sand bricks masonry that show mostly vertical cracks and crushing. The sediment unit bricks display compressive strength in between clay and cement-sand bricks.

  17. Prediction of strength of wood composite materials using ultrasonic

    International Nuclear Information System (INIS)

    Mahmoud, M.K.; Emam, A.

    2005-01-01

    Wood is a biological material integrating a very large variability of its mechanical properties (tensile and compressive), on the two directional longitudinal and transverse Ultrasonic method has been utilized to measure both wood physical and / or wood mechanical properties. The aim of this article is to show the development of ultrasonic technique for quality evaluation of trees, wood material and wood based composites. For quality assessment of these products we discuss the nondestructive evaluation of different factors such as: moisture content, temperature, biological degradation induced by bacterial attack and fungal attack. These techniques were adapted for trees, timber and wood based composites. The present study discusses the prediction of tensile and compressive strength of wood composite materials using ultrasonic testing. Empirical relationships between the tensile properties, compression strength and ultrasonic were proposed. The experimental results indicate the possibility of establishing a relationship between tensile strength and compression values. Moreover, the fractures in tensile and compressive are discussed by photographic

  18. Compressive strength of thick composite panels

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter

    2011-01-01

    The aim of this study is to investigate how much the compressive strength of thick composite panels is reduced due to delaminations and to investigate under which conditions a delamination will grow. Understanding of this is essential in order to move forward the design limits used in the structu......The aim of this study is to investigate how much the compressive strength of thick composite panels is reduced due to delaminations and to investigate under which conditions a delamination will grow. Understanding of this is essential in order to move forward the design limits used...

  19. Study on conversion relationships of compressive strength indexes for recycled lightweight aggregate concrete

    Science.gov (United States)

    Zhang, Xiang-gang; Yang, Jian-hui; Kuang, Xiao-mei

    2017-01-01

    In order to study cube compressive strength and axial compressive strength of recycled lightweight aggregate concrete(RLAC), and conversion relationship between the two, with the replacement rate of recycled lightweight coarse aggregate as change parameters, 15 standard cube test specimens and 15 standard prism test specimens were produced to carry out the test. Then compressive strength of test specimens were measured, and the law of different replacement rate of recycled lightweight coarse aggregate influencing compressive strength of RLAC was analyzed, as the method of statistical regression adopted, the conversion relationships between of cube compressive strength and axial compressive strength of RLAC was obtained. It is shown that compressive strength of RLAC are lower than compressive strength of ordinary concrete; and that compressive strength of RLAC gradually decreases as replacement rate of recycled lightweight coarse aggregate increases; as well as, the conversion relationship between axial compressive strength and cube compressive strength of RLAC is different from ordinary concrete; based on the experimental data, conversion relationship formula between compressive strength indexes of RLAC was established. It is suggested that the replacement rate of recycled lightweight aggregate should be controlled within 25%.

  20. Axial Compressive Strength of Foamcrete with Different Profiles and Dimensions

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-01-01

    Full Text Available Lightweight foamcrete is a versatile material; primarily consist of a cement based mortar mixed with at least 20% volume of air. High flow ability, lower self-weight, minimal requirement of aggregate, controlled low strength and good thermal insulation properties are a few characteristics of foamcrete. Its dry densities, typically, is below 1600kg/m3 with compressive strengths maximum of 15MPa. The ASTM standard provision specifies a correction factor for concrete strengths of between 14 and 42MPa to compensate for the reduced strength when the aspect height-to-diameter ratio of specimen is less than 2.0, while the CEB-FIP provision specifically mentions the ratio of 150 x 300mm cylinder strength to 150 mm cube strength. However, both provisions requirements do not specifically clarify the applicability and/or modification of the correction factors for the compressive strength of foamcrete. This proposed laboratory work is intended to study the effect of different dimensions and profiles on the axial compressive strength of concrete. Specimens of various dimensions and profiles are cast with square and circular cross-sections i.e., cubes, prisms and cylinders, and to investigate their behavior in compression strength at 7 and 28 days. Hypothetically, compressive strength will decrease with the increase of concrete specimen dimension and concrete specimen with cube profile would yield comparable compressive strength to cylinder (100 x 100 x 100mm cube to 100dia x 200mm cylinder.

  1. The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus

    Science.gov (United States)

    Zhang, Zuhua; Wang, Hao

    2016-08-01

    The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA) and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm) is considered. This “critical void model” is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.

  2. Compressive and flexural strength of high strength phase change mortar

    Science.gov (United States)

    Qiao, Qingyao; Fang, Changle

    2018-04-01

    High-strength cement produces a lot of hydration heat when hydrated, it will usually lead to thermal cracks. Phase change materials (PCM) are very potential thermal storage materials. Utilize PCM can help reduce the hydration heat. Research shows that apply suitable amount of PCM has a significant effect on improving the compressive strength of cement mortar, and can also improve the flexural strength to some extent.

  3. optimizing compressive strength characteristics of hollow building

    African Journals Online (AJOL)

    eobe

    Keywords: hollow building Blocks, granite dust, sand, partial replacement, compressive strength. 1. INTRODUCTION ... exposed to extreme climate. The physical ... Sridharan et al [13] conducted shear strength studies on soil-quarry dust.

  4. Shear strength and compressibility behaviour of lime-treated organic clay

    OpenAIRE

    Yunus, NZM; Wanatowski, D; Hassan, NA; Marto, A

    2016-01-01

    Apart from strength characteristics, a review of studies on the compressibility of lime-treated soils is equally important that influenced the stability of soil structures. Due to the fact that no study has been carried out, an investigation on the effects of humic acid on strength and compressibility behaviour of lime-stabilised organic clay is presented in this paper. Unconfined Compressive Strength (UCS) and oedometer tests were carried out at different curing periods of 7, 28 and 90 days....

  5. Predicting of the compressive strength of RCA concrete

    Directory of Open Access Journals (Sweden)

    Jaskulski Roman

    2017-01-01

    Full Text Available The paper presents the results of predicting the strength of 61 concretes made with the use of recycled concrete aggregate (RCA. Five models in the form of first-order polynomials containing two to six variables characterizing the composition of the mixture were formulated for this purpose. Factors for unknowns were selected using linear regression in two variants: with and without additional coefficient. For each model, the average absolute error of the concrete strength estimation was determined. Because of the various consequences of underestimation and overestimation of the results, the analysis of models quality was carried out with the distinction of the two cases. The results indicate that the key to improving the quality of models is to take into account the quality of the aggregate expressed by the ACV parameter. Better match results were also obtained for models with more variables and the additional coefficient.

  6. Effect of shelf life on compressive strength of zinc phosphate cement

    Science.gov (United States)

    Dwiputri, D. R.; Damiyanti, M.; Eriwati, Y. K.

    2017-08-01

    Usage of zinc phosphate cements with no account of the shelf life left before the expiry date can affect its compressive strength. The aim of this study is to determine the different compressive strength values of zinc phosphate cement with different shelf lives before expiry. Three groups of zinc phosphate cement (GC Elite cement 100) with different expiry dates were tested for compressive strength using a universal testing machine (crosshead speed 1 mm/min: load cell of 250 kgF). The results showed that there was a significant difference (p<0.05) between the compressive strengths of zinc phosphate cement in group III (2 months before expiry date), group I (2 years and 5 months before expiry date), and group II (11 months before expiry date). It can be concluded that there is a significant decrease in compressive strength of zinc phosphate cement near its expiry date.

  7. Compressive Strength of Volcanic Ash/Ordinary Portland Cement Laterized Concrete

    Directory of Open Access Journals (Sweden)

    Olusola K. O.

    2010-01-01

    Full Text Available This study investigates the effect of partial replacement of cement with volcanic ash (VA on the compressive strength of laterized concrete. A total of 192 cubes of 150mm dimensions were cast and cured in water for 7, 14, 21, and 28 days of hydration with cement replacement by VA and sand replacement by laterite both ranging from 0 to 30% respectively, while a control mix of 28-day target strength of 25 N/mm2 was adopted. The results show that the density and compressive strength of concrete decreased with increase in volcanic ash content. The 28-day, density dropped from 2390 kg/m3 to 2285 kg/m3 (i.e. 4.4% loss and the compressive strength from 25.08 N/mm2 to 17.98 N/mm2 (i.e. 28% loss for 0-30% variation of VA content with no laterite introduced. The compressive strength also decreased with increase in laterite content; the strength of the laterized concrete however increases as the curing age progresses.

  8. Correlation between compressive strength and ultrasonic pulse velocity of high strength concrete incorporating chopped basalt fibre

    Science.gov (United States)

    Shafiq, Nasir; Fadhilnuruddin, Muhd; Elshekh, Ali Elheber Ahmed; Fathi, Ahmed

    2015-07-01

    Ultrasonic pulse velocity (UPV), is considered as the most important test for non-destructive techniques that are used to evaluate the mechanical characteristics of high strength concrete (HSC). The relationship between the compressive strength of HSC containing chopped basalt fibre stands (CBSF) and UPV was investigated. The concrete specimens were prepared using a different ratio of CBSF as internal strengthening materials. The compressive strength measurements were conducted at the sample ages of 3, 7, 28, 56 and 90 days; whilst, the ultrasonic pulse velocity was measured at 28 days. The result of HSC's compressive strength with the chopped basalt fibre did not show any improvement; instead, it was decreased. The UPV of the chopped basalt fibre reinforced concrete has been found to be less than that of the control mix for each addition ratio of the basalt fibre. A relationship plot is gained between the cube compressive strength for HSC and UPV with various amounts of chopped basalt fibres.

  9. Models for Strength Prediction of High-Porosity Cast-In-Situ Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Wenhui Zhao

    2018-01-01

    Full Text Available A study was undertaken to develop a prediction model of compressive strength for three types of high-porosity cast-in-situ foamed concrete (cement mix, cement-fly ash mix, and cement-sand mix with dry densities of less than 700 kg/m3. The model is an extension of Balshin’s model and takes into account the hydration ratio of the raw materials, in which the water/cement ratio was a constant for the entire construction period for a certain casting density. The results show that the measured porosity is slightly lower than the theoretical porosity due to few inaccessible pores. The compressive strength increases exponentially with the increase in the ratio of the dry density to the solid density and increases with the curing time following the composite function A2ln⁡tB2 for all three types of foamed concrete. Based on the results that the compressive strength changes with the porosity and the curing time, a prediction model taking into account the mix constitution, curing time, and porosity is developed. A simple prediction model is put forward when no experimental data are available.

  10. Mechanical properties of Concrete with SAP. Part I: Development of compressive strength

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede

    2010-01-01

    The development of mechanical properties has been studied in a test program comprising 15 different concrete mixes with 3 different w/c ratios and different additions of superabsorbent polymers (SAP). The degree of hydration is followed for 15 corresponding paste mixes. This paper concerns...... compressive strength. It shows that results agree well with a model based on the following: 1. Concrete compressive strength is proportional to compressive strength of the paste phase 2. Paste strength depends on gel space ratio, as suggested by Powers 3. The influence of air voids created by SAP...... on compressive strength can be accounted for in the same way as when taking the air content into account in Bolomeys formula. The implication of the model is that at low w/c ratios (w/c SAP additions, SAP increases the compressive strength at later ages (from 3 days after casting and onwards...

  11. Testing compression strength of wood logs by drilling resistance

    Science.gov (United States)

    Kalny, Gerda; Rados, Kristijan; Rauch, Hans Peter

    2017-04-01

    Soil bioengineering is a construction technique using biological components for hydraulic and civil engineering solutions, based on the application of living plants and other auxiliary materials including among others log wood. Considering the reliability of the construction it is important to know about the durability and the degradation process of the wooden logs to estimate and retain the integral performance of a soil bioengineering system. An important performance indicator is the compression strength, but this parameter is not easy to examine by non-destructive methods. The Rinntech Resistograph is an instrument to measure the drilling resistance by a 3 mm wide needle in a wooden log. It is a quasi-non-destructive method as the remaining hole has no weakening effects to the wood. This is an easy procedure but result in values, hard to interpret. To assign drilling resistance values to specific compression strengths, wooden specimens were tested in an experiment and analysed with the Resistograph. Afterwards compression tests were done at the same specimens. This should allow an easier interpretation of drilling resistance curves in future. For detailed analyses specimens were investigated by means of branch inclusions, cracks and distances between annual rings. Wood specimens are tested perpendicular to the grain. First results show a correlation between drilling resistance and compression strength by using the mean drilling resistance, average width of the annual rings and the mean range of the minima and maxima values as factors for the drilling resistance. The extended limit of proportionality, the offset yield strength and the maximum strength were taken as parameters for compression strength. Further investigations at a second point in time strengthen these results.

  12. Screening of Low Clinker Binders, Compressive Strength and Chloride Ingress

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; De Weerdt, Klaartje; Garzón, Sergio Ferreiro

    2017-01-01

    This paper reports an initial screening of potential new binders for concrete with reduced CO2-emission. Mortars cured saturated for 90 days are compared with regard to a) compressive strength of mortars with similar water-to-binder ratio, and b) chloride ingress in similar design strength mortar...... compromising the 90 days compressive strength and resistance to chloride ingress in marine exposure by using selected alternative binders....

  13. Compressive Strength Prediction of Square Concrete Columns Retrofitted with External Steel Collars

    Directory of Open Access Journals (Sweden)

    Pudjisuryadi, P.

    2013-01-01

    Full Text Available Transverse confining stress in concrete members, commonly provided by transverse reinforcement, has been recognized to enhance strength and ductility. Nowadays, the confining method has been further developed to external confinement approach. This type of confinement can be used for retrofitting existing concrete columns. Many external confining techniques have been proven to be successful in retrofitting circular columns. However, for square or rectangular columns, providing effective confining stress by external retrofitting method is not a simple task due to high stress concentration at column’s corners. This paper proposes an analytical model to predict the peak strength of square concrete columns confined by external steel collars. Comparison with the experimental results showed that the model can predict the peak strength reasonably well. However, it should be noted that relatively larger amount of steel is needed to achieve comparable column strength enhancement when it is compared with those of conve tional internally-confined columns.

  14. mathematical model for the optimization of compressive strength

    African Journals Online (AJOL)

    ES Obe

    cement and sand either wholly or partially without adverse effect on the strength properties of the ... sandcrete block, compressive strength, laterite, scheffe's theory. 1. Introduction ... that for the properties of a q-component mix- ture which ...

  15. Compressive strength, flexural strength and water absorption of concrete containing palm oil kernel shell

    Science.gov (United States)

    Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya

    2017-11-01

    Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS

  16. Identification of Bacteria and the Effect on Compressive Strength of Concrete

    Directory of Open Access Journals (Sweden)

    Anneza L. H.

    2016-01-01

    Full Text Available This paper presents the species of bacteria used in this study as well as the effect of the bacteria on compressive strength of bioconcrete. Bioconcrete is not only more environmentally friendly but it is easy to procure. The objective of this research is to identify the ureolytic bacteria and sulphate reduction bacteria that have been isolated and further use the bacteria in concrete to determine the effect of bacteria on compressive strength. Identification of bacteria is conducted through Polymerase chain reaction (PCR method and DNA sequencing. The DNA of the bacteria was run through BLAST algorithm to determine the bacterial species.The bacteria were added into the concrete mix as a partial replacement of water. 3% of water is replaced by ureolytic bacteria and 5% of water is replaced by sulphate reduction bacteria. After running BLAST algorithm the bacteria were identified as Enterococcus faecalis (ureolytic bacteria and Bacillus sp (sulphate reduction bacteria. The result of the compressive strength for control is 36.0 Mpa. Partial replacement of 3% water by ureolytic bacteria has strength of 38.2Mpa while partial replacement of 5% of water by sulphate reduction bacteria has strength of 42.5Mpa. The significant increase of compressive strength with the addition of bacteria shows that bacteria play a significant role in the improvement of compressive strength.

  17. Relationship between the Compressive and Tensile Strength of Recycled Concrete

    International Nuclear Information System (INIS)

    El Dalati, R.; Haddad, S.; Matar, P.; Chehade, F.H

    2011-01-01

    Concrete recycling consists of crushing the concrete provided by demolishing the old constructions, and of using the resulted small pieces as aggregates in the new concrete compositions. The resulted aggregates are called recycled aggregates and the new mix of concrete containing a percentage of recycled aggregates is called recycled concrete. Our previous researches have indicated the optimal percentages of recycled aggregates to be used for different cases of recycled concrete related to the original aggregates nature. All results have shown that the concrete compressive strength is significantly reduced when using recycled aggregates. In order to obtain realistic values of compressive strength, some tests have been carried out by adding water-reducer plasticizer and a specified additional quantity of cement. The results have shown that for a limited range of plasticizer percentage, and a fixed value of additional cement, the compressive strength has reached reasonable value. This paper treats of the effect of using recycled aggregates on the tensile strength of concrete, where concrete results from the special composition defined by our previous work. The aim is to determine the relationship between the compressive and tensile strength of recycled concrete. (author)

  18. Predicting vertebral bone strength by vertebral static histomorphometry

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Ebbesen, Ebbe Nils; Mosekilde, Lis

    2002-01-01

    of the entire vertebral bodies (L-2) were used for histomorphometry. The other iliac crest biopsies and the L-3 were destructively tested by compression. High correlation was found between BV/TV or Tb.Sp and vertebral bone strength (absolute value of r = 0.86 in both cases). Addition of Tb.Th significantly....... No gender-related differences were found in any of the relationships. Neither static histomorphometry nor biomechanical testing of iliac crest bone biopsies is a good predictor of vertebral bone strength.......The study investigates the relationship between static histomorphometry and bone strength of human lumbar vertebral bone. The ability of vertebral histomorphometry to predict vertebral bone strength was compared with that of vertebral densitometry, and also with histomorphometry and bone strength...

  19. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, Henrik; Brincker, Rune

    is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...... method has been used to investigate the influence of boundary conditions, loading rate, size effects and the influence of the strength on the fracture energy of high-strength concrete over the range 70 MPa to 150 MPa, expressed in nominal values....

  20. Research on the compressive strength of a passenger vehicle roof

    Science.gov (United States)

    Zhao, Guanglei; Cao, Jianxiao; Liu, Tao; Yang, Na; Zhao, Hongguang

    2017-05-01

    To study the compressive strength of a passenger vehicle roof, this paper makes the simulation test on the static collapse of the passenger vehicle roof and analyzes the stress and deformation of the vehicle roof under pressure in accordance with the Roof Crush Resistance of Passenger Cars (GB26134-2010). It studies the optimization on the major stressed parts, pillar A, pillar B and the rail of roof, during the static collapse process of passenger vehicle roof. The result shows that the thickness of pillar A and the roof rail has significant influence on the compressive strength of the roof while that of pillar B has minor influence on the compressive strength of the roof.

  1. Enhancing the compressive strength of landfill soil using cement and bagasse ash

    Science.gov (United States)

    Azim, M. A. M.; Azhar, A. T. S.; Tarmizi, A. K. A.; Shahidan, S.; Nabila, A. T. A.

    2017-11-01

    The stabilisation of contaminated soil with cement and agricultural waste is a widely applied method which contributes to the sustainability of the environment. Soil may be stabilised to increase strength and durability or to prevent erosion and other geotechnical failure. This study was carried out to evaluate the compressive strength of ex-landfill soil when cement and bagasse ash (BA) are added to it. Different proportions of cement (5%, 10%, 15% and 20%) was added to sample weights without BA. On the other hand, the cement in a different batch of sample weights was replaced by 2.5%, 5%, 7.5% and 10% of BA. All samples were allowed to harden and were cured at room temperature for 7, 14 and 28 days respectively. The strength of the contaminated soil was assessed using an unconfined compressive strength test (UCS). The laboratory tests also included the index properties of soil, cement and bagasse ash in raw form. The results indicated that the samples with cement achieved the highest compressive strength measuring 4.39 MPa. However, this study revealed that the use of bagasse ash produced low quality products with a reduction in strength. For example, when 5% of cement was replaced with 5% ash, the compressive strength decreased by about 54% from 0.72 MPa to 0.33 MPa. Similarly, the compressive strength of each sample after a curing period of 28 days was higher compared to samples cured for 7 and 14 days respectively. This is proved that a longer curing period is needed to increase the compressive strength of the samples.

  2. Compression strength perpendicular to grain of structural timber and glulam

    DEFF Research Database (Denmark)

    Damkilde, Lars; Hoffmeyer, Preben; Pedersen, Torben N.

    1998-01-01

    The characteristic strength values for compression perpendicular to grain as they appear in EN 338 (structural timber) and EN 1194 (glulam) are currently up for discussion. The present paper provides experimental results based on EN 1193 that may assist in the correct assignment of such strength...... values. The dominant failure mode of glulam specimens is shown to be fundamentally different from that of structural timber specimens. Glulam specimens often show tension perpendicular to grain failure before the compression strength value is reached. Such failure mode is not seen for structural timber....... Nonetheless test results show that the levels of characteristic compression strength perpendicular to grain are of the same order for structural timber and glulam. The values are slightly lower than those appearing in EN 1194 and less than half of those appearing in EN 338. The paper presents a numerical...

  3. Effect of Hand Mixing on the Compressive Strength of Concrete

    Directory of Open Access Journals (Sweden)

    James Isiwu AGUWA

    2010-12-01

    Full Text Available This paper presents the effect of hand mixing on the compressive strength of concrete. Before designing the concrete mix, sieve analysis of sharp sand and chippings was carried out and their fineness moduli were determined. Also the dry weight of chippings and the specific gravities of both sand and chippings were determined. A designed concrete mix of 1:2:4 was used and the number of turnings of the mixture over from one end to another by hand mixing was varying from one time up to and including seven times. The strengths were measured at the curing ages of 7, 14, 21 and 28 days respectively using 150mm concrete cubes cast, cured and crushed. The results revealed that the compressive strengths of concrete cubes appreciably increased with increase in number of turnings from one to four times but remained almost constant beyond four times of turning for all the ages tested. For example, at 1, 2, and 3 times turning; the compressive strengths at 28 days were 4.67, 13.37 and 20.28N/mm2 respectively while at 4, 5 and 6 times turning; the compressive strengths at 28 days were 21.15, 21.34 and 21.69N/mm2. From the data, adequate strengths were not developed at turnings below three times of hand mixing, concluding that a minimum of three times turning is required to produce concrete with satisfactory strength.

  4. Compressive Strength of Cometary Surfaces Derived from Radar Observations

    Science.gov (United States)

    ElShafie, A.; Heggy, E.

    2014-12-01

    Landing on a comet nucleus and probing it, mechanically using harpoons, penetrometers and drills, and electromagnetically using low frequency radar waves is a complex task that will be tackled by the Rosetta mission for Comet 67P/Churyumov-Gerasimenko. The mechanical properties (i.e. density, porosity and compressive strength) and the electrical properties (i.e. the real and imaginary parts of the dielectric constant) of the comet nucleus, constrain both the mechanical and electromagnetic probing capabilities of Rosetta, as well as the choice of landing site, the safety of the landing, and subsurface data interpretation. During landing, the sounding radar data that will be collected by Rosetta's CONSERT experiment can be used to probe the comet's upper regolith layer by assessing its dielectric properties, which are then inverted to retrieve the surface mechanical properties. These observations can help characterize the mechanical properties of the landing site, which will optimize the operation of the anchor system. In this effort, we correlate the mechanical and electrical properties of cometary analogs to each other, and derive an empirical model that can be used to retrieve density, porosity and compressive strength from the dielectric properties of the upper regolith inverted from CONSERT observations during the landing phase. In our approach we consider snow as a viable cometary material analog due to its low density and its porous nature. Therefore, we used the compressive strength and dielectric constant measurements conducted on snow at a temperature of 250 K and a density range of 0.4-0.9 g/cm3 in order to investigate the relation between compressive strength and dielectric constant under cometary-relevant density range. Our results suggest that compressive strength increases linearly as function of the dielectric constant over the observed density range mentioned above. The minimum and maximum compressive strength of 0.5 and 4.5 MPa corresponded to a

  5. Effect of Curing Temperature Histories on the Compressive Strength Development of High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2015-01-01

    Full Text Available This study examined the relative strength-maturity relationship of high-strength concrete (HSC specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1 isothermal curing conditions of 5°C, 20°C, and 40°C and (2 terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.

  6. Compressive Strength of Concrete made from Natural Fine Aggregate Sources in Minna, Nigeria

    Directory of Open Access Journals (Sweden)

    M. Abdullahi

    2017-12-01

    Full Text Available This work presented an investigation of concrete developed from five fine aggregate sources in Minna, Niger state, Nigeria. Tests conducted on the fine aggregate samples included specific gravity, sieve analysis, bulk density and moisture content. The concrete mix design was done using absolute volume method at various mix proportion of 1:2:4, 1:2:3 and 1:1:2 and water-cement ratios of 0.4, 0.45, 0.5, 0.55 and 0.6. The compressive strengths of concrete were determined at 28-day curing age. Test results revealed that the specific gravities of the aggregate were between 2.60 to 2.70, compacted bulk densities also ranged from 1505.18 to 1701.15kg/m3, loose bulk densities ranged from 1379.32 to 1478.17kg/m3, and moisture content ranged from 0.93 to 2.47%. All the fine aggregate samples satisfied the overall and medium grading limits for natural fine aggregates. The coarse aggregate used fairly followed the grading limit for aggregate size of 20 to 5 mm. The compressive strength of the concrete obtained using the aggregate samples A, B, C, D, and Eall within the ranges of 18.97 to 34.98 N/mm2. Statistical models were developed for the compressive strength of concrete as a function of water-cement ratio for various fine aggregate sources and mix proportions. The models were found to have good predictive the capabilities of the compressive strength of concrete for given water-cement ratio. The properties of fine aggregates and the resulting concrete characteristics showed that all the fine aggregate samples are suitable to be used for concrete production.

  7. Influence of bottom ash of palm oil on compressive strength of concrete

    Science.gov (United States)

    Saputra, Andika Ade Indra; Basyaruddin, Laksono, Muhamad Hasby; Muntaha, Mohamad

    2017-11-01

    The technological development of concrete demands innovation regarding the alternative material as a part of the effort in improving quality and minimizing reliance on currently used raw materials such as bottom ash of palm oil. Bottom ash known as domestic waste stemming from palm oil cultivation in East Kalimantan contains silica. Like cement in texture and size, bottom ash can be mixed with concrete in which the silica in concrete could help increase the compressive strength of concrete. This research was conducted by comparing between normal concrete and concrete containing bottom ash as which the materials were apart of cement replacement. The bottom ash used in this research had to pass sieve size (#200). The composition tested in this research involved ratio between cement and bottom ash with the following percentages: 100%: 0%, 90%: 10%, 85%: 15% and 80%: 20%. Planned to be within the same amount of compressive strength (fc 25 MPa), the compressive strength of concrete was tested at the age of 7, 14, and 28 days. Research result shows that the addition of bottom ash to concrete influenced workability in concrete, but it did not significantly influence the compressive strength of concrete. Based on the result of compressive strength test, the optimal compressive strength was obtained from the mixture of 100% cement and 0% bottom ash.

  8. Effect of Pelletized Coconut Fibre on the Compressive Strength of Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Mohd Jaini Zainorizuan

    2016-01-01

    Full Text Available Foamed concrete is a controlled low density ranging from 400kg/m3 to 1800kg/m3, and hence suitable for the construction of buildings and infrastructures. The uniqueness of foamed concrete is does not use aggregates in order to retain low density. Foamed concrete contains only cement, sand, water and foam agent. Therefore, the consumption of cement is higher in producing a good quality and strength of foamed concrete. Without the present of aggregates, the compressive strength of foamed concrete can only achieve as high as 15MPa. Therefore, this study aims to introduce the pelletized coconut fibre aggregate to reduce the consumption of cement but able to enhance the compressive strength. In the experimental study, forty-five (45 cube samples of foamed concrete with density 1600kg/m3 were prepared with different volume fractions of pelletized coconut fibre aggregate. All cube samples were tested using the compression test to obtain compressive strength. The results showed that the compressive strength of foamed concrete containing 5%, 10%, 15% and 20% of pelletized coconut fibre aggregate are 9.6MPa, 11.4MPa, 14.6MPa and 13.4MPa respectively. It is in fact higher than the controlled foamed concrete that only achieves 9MPa. It is found that the pelletized coconut fibre aggregate indicates a good potential to enhance the compressive strength of foamed concrete.

  9. Green and early age compressive strength of extruded cement mortar monitored with compression tests and ultrasonic techniques

    International Nuclear Information System (INIS)

    Voigt, Thomas; Malonn, Tim; Shah, Surendra P.

    2006-01-01

    Knowledge about the early age compressive strength development of cementitious materials is an important factor for the progress and safety of many construction projects. This paper uses cylindrical mortar specimens produced with a ram extruder to investigate the transition of the mortar from plastic and deformable to hardened state. In addition, wave transmission and reflection measurements with P- and S-waves were conducted to obtain further information about the microstructural changes during the setting and hardening process. The experiments have shown that uniaxial compression tests conducted on extruded mortar cylinders are a useful tool to evaluate the green strength as well as the initiation and further development of the compressive strength of the tested material. The propagation of P-waves was found to be indicative of the internal structure of the tested mortars as influenced, for example, by the addition of fine clay particles. S-waves used in transmission and reflection mode proved to be sensitive to the inter-particle bonding caused by the cement hydration and expressed by an increase in compressive strength

  10. Effect Of RPC Compositions On: Compressive Strength and Absorption

    Directory of Open Access Journals (Sweden)

    Ahmed Sultan Ali

    2016-03-01

    Full Text Available Concrete is a critical material for the construction of infrastructure facilities throughout the world. A new material known as Reactive Powder Concrete (RPC, or sometimes called Ultra-High Performance Concrete (UHPC, is becoming available that differs significantly from traditional concretes. It is an ultra high strength and high ductility composite material with advanced mechanical properties. It consists of special concrete whose microstructure is optimized by precise gradation of all particles in the mix to yield maximum density. Different RPC mixes in the experimental investigation of the present study the mechanical properties of RPC including compressive strength, density and absorption. The main variables used in the production of the different RPC mixes of the present research are three, namely, type of pozzolanic admixture (metakaolin, micro silica, and silica fume, type of fibers (steel and polypropylene fibers and volume fraction of fibers (1.0,1.5, and 2.0%. The experimental results indicated that RPC mixes with silica fume gave the highest values of compressive strength and density and lowest value of absorption in comparison with RPC using micro silica or metakaolin where metakaolin was the third in such comparisons. However the RPC mixes used in the present investigation gave group compressive strength ranging between 164 -195 MPa. It was also found that the use of steel fibers with high volume fraction (2% in an RPC mix increases the compressive strength by 8% and density of the concrete by 2.5% and reduces its absorption by 13%, unlike an RPC mix using polypropylene fibers of lesser volume fraction.

  11. The statitistical evaluation of the uniaxial compressive strength of the Ruskov andesite

    Directory of Open Access Journals (Sweden)

    Krepelka František

    2002-03-01

    Full Text Available The selection of a suitable model of the statistical distribution of the uniaxial compressive strength is discussed in the paper. The uniaxial compressive strength was studied on 180 specimens of the Ruskov andesite. The rate of loading was 1MPa.s-1. The experimental specimens had a prismatic form with a square base; the slightness ratio of specimens was 2:1. Three sets of specimens with a different length of the base edge were studied, namely 50, 30 and 10 mm. The result of the measurement were three sets with 60 values of the uniaxial compressive strength. The basic statistical parameters: the sample mean, the sample standard deviation, the variational interval, the minimum and maximum value, the sample obliqueness coefficient and the sharpness coefficient were evaluated for each collection. Two types of the distribution which can be joined with the real physical fundamentals of the desintegration of rocks ( the normal and the Weibull distribution were tested. The two-parametric Weibull distribution was tested. The basic characteristics of both distributions were evaluated for each set and the accordance of the model distribution with an experimental distribution was tested. The ÷2-test was used for testing. The two-parametric Weibull distribution was selected following the comparison of the test results of both model distributions as a suitable distribution model for the characterization of uniaxial compressive strength of the Ruskov andesite. The two-parametric Weibull distribution showed better results of the goodness-of-fit test. The normal distribution was suitable for two sets; one of the sets showed a negative result of the goodness-of-fit testing. At the uniaxial compressive strength of the Ruskov andesite, a scale effect was registered : the mean value of uniaxial compressive strength decreases with increasing the specimen base edge. This is another argument for using the Weibull distribution as a suitable statistical model of the

  12. Effect of Compaction on Compressive Strength of Unfired Clay Blocks

    International Nuclear Information System (INIS)

    Lakho, N.A.; Zardari, M.A.; Pathan, A.A.

    2016-01-01

    This study investigates the possible use of unfired compacted clay blocks as a substitute of CSEB (Compressed Stabilized Earth Blocks) for the construction of economical houses. Cubes of 150 mm size were cut from the clay blocks which were compacted at various intensities of pressure during the casting. The results show that the compressive strength of the clay cubes increased with the compacting pressure to which the blocks were subjected during casting. The average crushing strength of the cubes, sawed from clay blocks that were subjected to compacting pressure of 7.2 MPa, was found to be 4.4 MPa. This value of compressive strength is about 50 percent more than that of normal CSEB. This study shows that the compacted clay blocks could be used as economical walling material as replacement of CSEB. (author)

  13. Efficient predictive algorithms for image compression

    CERN Document Server

    Rosário Lucas, Luís Filipe; Maciel de Faria, Sérgio Manuel; Morais Rodrigues, Nuno Miguel; Liberal Pagliari, Carla

    2017-01-01

    This book discusses efficient prediction techniques for the current state-of-the-art High Efficiency Video Coding (HEVC) standard, focusing on the compression of a wide range of video signals, such as 3D video, Light Fields and natural images. The authors begin with a review of the state-of-the-art predictive coding methods and compression technologies for both 2D and 3D multimedia contents, which provides a good starting point for new researchers in the field of image and video compression. New prediction techniques that go beyond the standardized compression technologies are then presented and discussed. In the context of 3D video, the authors describe a new predictive algorithm for the compression of depth maps, which combines intra-directional prediction, with flexible block partitioning and linear residue fitting. New approaches are described for the compression of Light Field and still images, which enforce sparsity constraints on linear models. The Locally Linear Embedding-based prediction method is in...

  14. Compressive strength of brick masonry made with weak mortars

    DEFF Research Database (Denmark)

    Pedersen, Erik Steen; Hansen, Klavs Feilberg

    2013-01-01

    in the joint will ensure a certain level of load-carrying capacity. This is due to the interaction between compression in the weak mortar and tension in the adjacent bricks. This paper proposes an expression for the compressive strength of masonry made with weak lime mortars (fm... of masonry depends only on the strength of the bricks. A compression failure in masonry made with weak mortars occurs as a tension failure in the bricks, as they seek to prevent the mortar from being pressed out of the joints. The expression is derived by assuming hydrostatic pressure in the mortar joints......, which is the most unfavourable stress distribution with respect to tensile stresses in bricks. The expression is compared with the results of compression tests of masonry made with weak mortars. It can take into account bricks with arbitrary dimensions as well as perforated bricks. For a stronger mortar...

  15. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete.

    Science.gov (United States)

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-03-18

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions.

  16. Research of compression strength of fissured rock mass

    Directory of Open Access Journals (Sweden)

    А. Г. Протосеня

    2017-03-01

    Full Text Available The article examines a method of forecasting strength properties and their scale effect in fissured rock mass using computational modelling with final elements method in ABAQUS software. It shows advantages of this approach for solving tasks of determining mechanical properties of fissured rock mass, main stages of creating computational geomechanic model of rock mass and conducting a numerical experiment. The article presents connections between deformation during loading of numerical model, inclination angle of main fracture system from uniaxial and biaxial compression strength value, size of the sample of fissured rock mass and biaxial compression strength value under conditions of apatite-nepheline rock deposit at Plateau Rasvumchorr OAO «Apatit» in Kirovsky region of Murmanskaya oblast. We have conducted computational modelling of rock mass blocks testing in discontinuities based on real experiment using non-linear shear strength criterion of Barton – Bandis and compared results of computational experiments with data from field studies and laboratory tests. The calculation results have a high-quality match to laboratory results when testing fissured rock mass samples.

  17. Effect of shelf life on compressive strength of type iv gypsum

    Science.gov (United States)

    Kusumastuti, K. S.; Irawan, B.; Damiyanti, M.

    2017-08-01

    Type IV gypsum, as a dental material for an indirect restoration’s working model, should have strength and abrasive-resistant properties. These properties depend on the product’s shelf life and its proper storage, which sometimes are easily missed by sellers. The aim of this research was to observe the effect of shelf life on the compressive strength of type IV gypsum with different production dates. Twenty cylindrical specimens were separated into two groups with different production dates and tested with a universal testing with the crosshead speed of 1 mm per minute and a load of 2,500 kgf. The data were analyzed with independent t-tests. There was a significant difference (p<0.05) in the compressive strength between the two groups with an increase in compressive strength seen in the gypsum that was stored longer.

  18. Face compression yield strength of the copper-Inconel composite specimen

    International Nuclear Information System (INIS)

    Horie, T.

    1987-05-01

    A new equation for the face compression yield strength of copper-Inconel composite material has been derived. Elastic-plastic finite element analyses were also made for composite specimens with various aspect ratios to examine the edge effect of the specimen. According to the results of both the new equation and the analyses, the face compression yield strength of the composite should be decreased by about 25% from the value obtained with Becker's equation

  19. Insulation interlaminar shear strength testing with compression and irradiation

    International Nuclear Information System (INIS)

    McManamy, T.J.; Brasier, J.E.; Snook, P.

    1989-01-01

    The Compact Ignition Tokamak (CIT) project identified the need for research and development for the insulation to be used in the toroidal field coils. The requirements included tolerance to a combination of high compression and shear and a high radiation dose. Samples of laminate-type sheet material were obtained from commercial vendors. The materials included various combinations of epoxy, polyimide, E-glass, S-glass, and T-glass. The T-glass was in the form of a three-dimensional weave. The first tests were with 50 x 25 x 1 mm samples. These materials were loaded in compression and then to failure in shear. At 345-MPa compression, the interlaminar shear strength was generally in the range of 110 to 140 MPa for the different materials. A smaller sample configuration was developed for irradiation testing. The data before irradiation were similar to those for the larger samples but approximately 10% lower. Limited fatigue testing was also performed by cycling the shear load. No reduction in shear strength was found after 50,000 cycles at 90% of the failure stress. Because of space limitations, only three materials were chosen for irradiation: two polyimide systems and one epoxy system. All used boron-free glass. The small shear/compression samples and some flexure specimens were irradiated to 4 x 10 9 and 2 x 10 10 rad in the Advanced Technology Reactor at Idaho National Engineering Laboratory. A lead shield was used to ensure that the majority of the dose was from neutrons. The shear strength with compression before and after irradiation at the lower dose was determined. Flexure strength and the results from irradiation at the higher dose level will be available in the near future. 7 refs., 7 figs., 2 tabs

  20. Measurement and Improvement the Quality of the Compressive Strength of Product Concrete

    Directory of Open Access Journals (Sweden)

    Zohair Hassan Abdullah

    2018-01-01

    Full Text Available The research dealt with studying path technology to manufacture of concrete cubes according to specification design of Iraq to the degree of concrete C20 No. 52 of 1984, and in which sample was cubic shape and the dimensions (150 × 150 × 150 mm for each dimensions and the proportion of mixing of the concrete is (1:2:4 using in the casting floor. For concrete resistance required that achieve the degree of confidence of 100%, were examined compressive strength 40 samples of concrete cubes of age 28 days in the Labs section of Civil Department – Technical Institute of Babylon, all made from the same mixing concrete. Where, these samples classified within the acceptable tests were adopted in the implementation of investment projects in the construction sector. The research aims first, to measure the compressive strength of concrete cubes because the decrease or increase the compressive strength from specification design contributes to the failure of investment projects in the construction sector therefore, test was classified units that produced within damaged units. Second, to study an improvement the quality of compressive strength of concrete cubes. Results show that the proportion of damaged cubes are 0.00685, compressive strength was achieve confidence level 99.5% and producing of concrete cubes within the acceptable level of quality (3 Sigma. The quality of compressive strength was improved to good level use advanced sigma  levels. DOI: http://dx.doi.org/10.25130/tjes.24.2017.20

  1. Forecasting the compressive strength of soil-concretedepending on ...

    African Journals Online (AJOL)

    One of the most important physical and mechanical properties of soil-concrete is the compressive strength. To this end we carried out a study of soil-concrete strength depending on its curing conditions and percentage of cement. For our study we used loam soil with the plasticity index of Ip = 12.3, Portland cement of type I, ...

  2. Estimation of hardness and compressive strength of SP 100 aluminum powder epoxy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Young [Pusan National Univ., Busan (Korea, Republic of); Kim, Myung Hun [Korea Institute of Footwear and Leather Technology, Busan (Korea, Republic of); Kang, Sung Soo [Jeonju Univ., Jeonju (Korea, Republic of)

    2012-09-15

    In this study, we performed experimental tests on five SP 100 aluminum powder epoxy specimens with several after curing conditions in order to estimate their hardness with temperature and compressive strength. In the surface hardness test, it was found that the higher the after curing temperature, the higher was the hardness. In particular, it was found that the hardness of the specimens in cases 3 and 4 was much higher than in the other cases. In addition, in the compression tests carried out to evaluate the compressive strength, it was found that the specimens showed relatively similar stiffness and strength with after curing, and specimens with no after curing showed compression stress strain curves similar to those of thermoplastic resins.

  3. Estimation of hardness and compressive strength of SP 100 aluminum powder epoxy

    International Nuclear Information System (INIS)

    Han, Jeong Young; Kim, Myung Hun; Kang, Sung Soo

    2012-01-01

    In this study, we performed experimental tests on five SP 100 aluminum powder epoxy specimens with several after curing conditions in order to estimate their hardness with temperature and compressive strength. In the surface hardness test, it was found that the higher the after curing temperature, the higher was the hardness. In particular, it was found that the hardness of the specimens in cases 3 and 4 was much higher than in the other cases. In addition, in the compression tests carried out to evaluate the compressive strength, it was found that the specimens showed relatively similar stiffness and strength with after curing, and specimens with no after curing showed compression stress strain curves similar to those of thermoplastic resins

  4. Effect of Specimen Shape and Size on the Compressive Strength of Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Sudin M.A.S.

    2014-03-01

    Full Text Available Lightweight concrete, in the form of foamed concrete, is a versatile material that primarily consists of a cement based mortar, mixed with at least 20% volume of air. Its dry density is typically below 1600 kg/m3 with a maximum compressive strength of 15MPa. The ASTM standard provision specifies a correction factor for concrete strength of between 14 and 42Mpa, in order to compensate for a reduced strength, when the aspect height-to-diameter ratio of a specimen is less than 2.0. However, the CEB-FIP provision specifically mentions a ratio of 150mm dia. × 300mm cylinder strength to 150 mm cube strength; though, both provision requirements do not specifically clarify the applicability and/or modification of the correction factors for the compressive strength to lightweight concrete (in this case, foamed concrete. The focus of this work is to study the effect of specimen size and shape on the axial compressive strength of concrete. Specimens of various sizes and shapes were cast with square and circular cross-sections i.e., cubes, prisms, and cylinders. Their compression strength behaviours at 7 and 28 days were investigated. The results indicate that, as the CEB-FIP provision specified, even for foamed concrete, 100mm cubes (l/d = 1.0 produce a comparable compressive strength with 100mm dia. × 200mm cylinders (l/d = 2.0.

  5. Workability and Compressive Strength for Concrete With Coconut Shell Aggregate

    Directory of Open Access Journals (Sweden)

    Leman Alif Syazani

    2017-01-01

    Full Text Available This study was conducted to investigate the compressive strength and workability of concrete added with coconut shells. Comparisons were made between conventional concrete with concrete mix coconut shell. In this study, the concretes were mixes with coconut shell by percentage of weight concrete which is 0%, 5%, and 10%. The coconut shell has been crushed first, then it was sieved, to get the optimum size which, that retained on the 5mm sieve and passing 10mm sieve. Experimental tests conducted in this study are slump test and compressive test. The results from this study are workability of concrete added with 0% and 5% of coconut shell has medium degree of workability compared to concrete added with 10% that has low workability. For the compressive strength, the concrete added with 5% and 10% of coconut shell has lower strength compared with normal concrete.

  6. Dataset of the relationship between unconfined compressive strength and tensile strength of rock mass

    International Nuclear Information System (INIS)

    Sugita, Yutaka; Yui, Mikazu

    2002-02-01

    This report summary the dataset of the relationship between unconfined compressive strength and tensile strength of the rock mass described in supporting report 2; repository design and engineering technology of second progress report (H12 report) on research and development for the geological disposal of HLW in Japan. (author)

  7. Numerical analysis of the spacer grids' compression strength

    International Nuclear Information System (INIS)

    Schettino, C.F.M.; Gouvea, J.P.; Medeiros, N.

    2013-01-01

    Among the components of the fuel assembly, the spacer grids play an important structural role during the energy generation process, mainly for their requirement to have enough structural strength to withstand lateral impact loads, due to fuel assembly shipping/handling and due to forces outcome from postulated accidents (earthquake and LOCA). This requirement ensures a proper geometry for cooling and for guide thimble straightness in the fuel assembly. In this way, the understanding of the macroscopic mechanical behavior of this component becomes essential even to any subsequent geometrical modifications to optimize the flue assemblies' structural behavior. In the present work, three-dimensional finite element models destined to provide consistent predictions of 16X16-type spacer grids lateral strength were proposed. Firstly, buckling tests based on results available in the literature were performed to establish a methodology for spacer grid finite element-based modeling. The, by considering a spacer grid interesting geometry and some possible variations associated to its fabrication, tolerance, the proposed numerical models were submitted to compression conditions to calculate the buckling force. Also, these models were validated for comparison with experimental buckling load results. Comparison of buckling predictions combined to observations of actual and simulated deformed spacer grids geometries permitted to verify the consistency and applicability of the proposed models. Thus, these numerical results show a good agreement between the and the experimental results. (author)

  8. The relationship between vickers microhardness and compressive strength of functional surface geopolymers

    Science.gov (United States)

    Subaer, Ekaputri, Januari Jaya; Fansuri, Hamzah; Abdullah, Mustafa Al Bakri

    2017-09-01

    An experimental study to investigate the relationship between Vickers microhardness and compressive strength of geopolymers made from metakaolin has been conducted. Samples were prepared by using metakaolin activated with a sodium silicate solution at a different ratio of Si to Al and Na to Al and cured at 70oC for one hour. The resulting geopolymers were stored in an open air for 28 days before conducting any measurement. Bulk density and apparent porosity of the samples were measured by using Archimedes's method. Vickers microhardness measurements were performed on a polished surface of geopolymers with a load ranging from 0.3 - 1.0 kg. The topographic of indented samples were examined by using scanning electron microscopy (SEM). Compressive strength of the resulting geopolymers was measured on the cylindrical samples with a ratio of height to the diameter was 2:1. The results showed that the molar ratios of geopolymers compositions play important roles in the magnitude of bulk density, porosity, Vickers's microhardness as well as the compressive strength. The porosity reduced exponentially the magnitude of the strength of geopolymers. It was found that the relationship between Vickers microhardness and compressive strength was linear. At the request of all authors and with the approval of the proceedings editor, article 020188 titled, "The relationship between vickers microhardness and compressive strength of functional surface geopolymers," is being retracted from the public record due to the fact that it is a duplication of article 020170 published in the same volume.

  9. Effect of In-Situ Curing on Compressive Strength of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Bali Ika

    2016-01-01

    Full Text Available A development of Reactive Powder Concrete (RPC currently is the use of quartz powder as a stabilizing agent with the content to cement ratio of 30% and steam curing method in an autoclave temperature of 250ºC which produced a high compressive strength of 180 MPa. That RPC can be generated due to one reason for using the technique of steam curing in an autoclave in the laboratory. This study proposes in-situ curing method in order the curing can be applied in the field and with a reasonable compressive strength results of RPC. As the benchmarks in this study are the curing methods in laboratory that are steam curing of 90°C for 8 hours (C1, and water curing for 28 days (C2. For the in-situ curing methods that are covering with tarpaulins and flowed steam of 3 hours per day for 7 days (C3, covering with wet sacks for 28 days (C4, and covering with wet sacks for 28 days for specimen with unwashed sand as fine aggregate (C5. The comparison of compressive strength of the specimens in this study showed compressive strength of RPC with in-situ steam curing (101.64 MPa close to the compressive strength of RPC with steam curing in the laboratory with 8.2% of different. While in-situ wet curing compared with the water curing in laboratory has the different of 3.4%. These results indicated that the proposed in-situ curing methods are reasonable good in term of the compressive strength that can be achieved.

  10. Characterization of the Compressive Strength of Sandcrete Blocks in ...

    African Journals Online (AJOL)

    On the basis of the noted poor quality control, recommendations appropriate for improving the strength and effectiveness of sandcrete blocks production in Nigeria are made. Keywords: Sandcrete Blocks, Compressive Strength, Mix Ratio Journal of Civil Engineering Research and Practice Vol. 5 (1) 2008: pp. 15-28 ...

  11. Relationship between pore structure and compressive strength

    Indian Academy of Sciences (India)

    Properties of concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the pore structure-compressive strength relationship in concrete. Several concrete mixtures with different pore structures are proportioned and ...

  12. Evaluation of Compressive Strength and Sorption/Solubility of Four Luting Cements

    Directory of Open Access Journals (Sweden)

    Tavangar MS

    2017-06-01

    Full Text Available Abstract: Statement of Problem: Compressive strength (CS and sorption/solubility of the luting cements are two associated factors. Searching a correlation between sorption/solubility and compressive strength of various luting cements is required. Objectives: To measure the water sorption/solubility, and compressive strength of three resin-based and one conventional glass ionomer (CGI luting cement after 1 and 24 h of immersion in distilled water and to determine if there is any correlation between those properties found. Materials and Methods: Four luting cements were investigated. For each material, 10 disc shaped specimens were prepared for measuring the sorption/solubility. The specimens were cured according to the manufacturer’s instructions, and the sorption/solubility were measured in accordance with the ISO 4049’s. For testing the compression strength, for each material 16 cylindrical specimens were prepared by insertion of cements into a stainless steel split mould. The specimens were cured, divided into groups of 8, and then stored in distilled water at (37 ± 1°C for 1 and 24 h. The test was performed using the universal testing machine, the maximum load was recorded and CS was calculated. The data were analysed using SPSS software version 18. One-way ANOVA, post-hoc Tukey’s test and Pearson’s correlation coefficient were performed. Results: G-CEM had the highest mean CS (153.60± 25.15 and CGI luting had the lowest CS (21.36±5.37 (p 0.05. The lowest mean sorption/solubility value was for RelyXTM U200 and Panavia F, and the highest for CGI luting (all p < 0.001. Conclusions: The compressive strength of all cements did not necessarily increase after 24 h and varied depending on the materials. There was a strong reverse correlation between sorption and CS values after both 1 and 24 h immersion. It may be practical for clinician to use those cements with the less sorption / solubility and more stable compression strength over

  13. Influence of Curing Conditions on Long-Term Compressive Strength of Mortars with Accelerating Admixtures

    Science.gov (United States)

    Pizoń, Jan; Łaźniewska-Piekarczyk, Beata

    2017-10-01

    One of disadvantages of accelerating admixtures usage is possibility of significant decline of long-term compressive strength of concrete in comparison to non-modified one. Described tests were intended to define scale of lowered long-term compressive strength of mortars caused by accelerating admixtures in different curing conditions. Portland cement and blended cement with ground granulated blast furnace slag (GGBFS) addition and four types of non-chloride accelerating agents were used. Compressive strength was tested after 7 up to 360 days. Curing conditions were designed to simulate probable conditions close to reality. Such conditions are simulation of internal concrete elements, external elements cast on start of summer and external elements cast on start of winter. Results had shown that it is invalid to state that every accelerating admixture will cause drop of long-term compressive strength in every conditions and for every cement type. Change of curing conditions even after a long time (in this case half of the year) leads to significant differences in compression strength.

  14. The impact of water content and ionic diffusion on the uniaxial compressive strength of shale

    Directory of Open Access Journals (Sweden)

    Talal AL-Bazali

    2013-12-01

    Finally, the impact of ionic diffusion on the compressive strength of shale was carried out in the absence of both chemical osmosis and capillary forces. Results show that the invasion of sodium and calcium ions into shale reduced its compressive strength considerably while the invasion of potassium ions enhanced its compressive strength.

  15. Optimum concrete compression strength using bio-enzyme

    OpenAIRE

    Bagio Tony Hartono; Basoeki Makno; Tistogondo Julistyana; Pradana Sofyan Ali

    2017-01-01

    To make concrete with high compressive strength and has a certain concrete specifications other than the main concrete materials are also needed concrete mix quality control and other added material is also in line with the current technology of concrete mix that produces concrete with specific characteristics. Addition of bio enzyme on five concrete mixture that will be compared with normal concrete in order to know the optimum level bio-enzyme in concrete to increase the strength of the con...

  16. A Study of Compressive Strength Characteristics of Laterite Sand Hollow Blocks

    Directory of Open Access Journals (Sweden)

    Abiodun Olanipekun

    2007-01-01

    Full Text Available This paper presents the results of experimental investigations carried out on partial replacement of sand with laterite as it affects the compressive strength of sandcrete hollow blocks. Two mix proportions (1:6 and 1:8 were used with laterite content varying between 0 and 50% at 10% intervals. Hand and machine compaction methods were used. Curing was done by sprinkling water on the specimens. The results showed that for each mix proportion and compaction method, the compressive strength decreases with increase in laterite content. Machine compacted hollow sandcrete blocks made from mix ratio 1:6 and with up to 10% laterite content is found suitable and hence recommended for building construction having attained a 28-day compressive strength of 2.07N/mm2 as required by the Nigerian Standards.

  17. Experimental study on ultimate strength and strain behavior of concrete under biaxial compressive stresses

    International Nuclear Information System (INIS)

    Onuma, Hiroshi; Aoyagi, Yukio

    1976-01-01

    The purpose of this investigation was to study the ultimate strength failure mode and deformation behavior of concrete under short-term biaxial compressive stresses, as an aid to design and analyze the concrete structures subjected to multiaxial compression such as prestressed or reinforced concrete vessel structures. The experimental work on biaxial compression was carried out on the specimens of three mix proportions and different ages with 10cm x 10cm x 10cm cubic shape in a room controlled at 20 0 C. The results are summarized as follows. (1) To minimize the surface friction between specimens and loading platens, the pads of teflon sheets coated with silicone grease were used. The coefficient of friction was measured and was 3 percent on the average. (2) The test data showed that the strength of the concrete subjected to biaxial compression increased as compared to uniaxial compressive strength, and that the biaxial strength increase was mainly dependent on the ratio of principal stresses, and it was hardly affected by mix proportions and ages. (3) The maximum increase of strength, which occurred at the stress ratio of approximately sigma 2 /sigma 1 = 0.6, was about 27 percent higher than the uniaxial strength of concrete. (4) The ultimate strength in case of biaxial compression could be approximated by the parabolic equation. (Kako, I.)

  18. Effect of raw material ratios on the compressive strength of magnesium potassium phosphate chemically bonded ceramics

    International Nuclear Information System (INIS)

    Wang, Ai-juan; Yuan, Zhi-long; Zhang, Jiao; Liu, Lin-tao; Li, Jun-ming; Liu, Zheng

    2013-01-01

    The compressive strength of magnesium potassium phosphate chemically bonded ceramics is important in biomedical field. In this work, the compressive strength of magnesium potassium phosphate chemically bonded ceramics was investigated with different liquid-to-solid and MgO-to-KH 2 PO 4 ratios. X-ray diffractometer was applied to characterize its phase composition. The microstructure was imaged using a scanning electron microscope. The results showed that the compressive strength of the chemically bonded ceramics increased with the decrease of liquid-to-solid ratio due to the change of the packing density and the crystallinity of hydrated product. However, with the increase of MgO-to-KH 2 PO 4 weight ratio, its compressive strength increased firstly and then decreased. The low compressive strength in lower MgO-to-KH 2 PO 4 ratio might be explained by the existence of the weak phase KH 2 PO 4 . However, the low value of compressive strength with the higher MgO-to-KH 2 PO 4 ratio might be caused by lack of the joined phase in the hydrated product. Besides, it has been found that the microstructures were different in these two cases by the scanning electron microscope. Colloidal structure appeared for the samples with lower liquid-to-solid and higher MgO-to-KH 2 PO 4 ratios possibly because of the existence of amorphous hydrated products. The optimization of both liquid-to-solid and MgO-to-KH 2 PO 4 ratios was important to improve the compressive strength of magnesium potassium phosphate chemically bonded ceramics. - Highlights: • High packing density and amorphous hydrated phase improved the compressive strength. • Residual KH 2 PO 4 and poor bonding phase lower the compressive strength. • MPCBC fabricated with optimized parameters had the highest compressive strength

  19. The Effects of Different Curing Methods on the Compressive Strength of Terracrete

    Directory of Open Access Journals (Sweden)

    O. Alake

    2009-01-01

    Full Text Available This research evaluated the effects of different curing methods on the compressive strength of terracrete. Several tests that included sieve analysis were carried out on constituents of terracrete (granite and laterite to determine their particle size distribution and performance criteria tests to determine compressive strength of terracrete cubes for 7 to 35 days of curing. Sand, foam-soaked, tank and open methods of curing were used and the study was carried out under controlled temperature. Sixty cubes of 100 × 100 × 100mm sized cubes were cast using a mix ratio of 1 part of cement, 1½ part of latrite, and 3 part of coarse aggregate (granite proportioned by weight and water – cement ratio of 0.62. The result of the various compressive strengths of the cubes showed that out of the four curing methods, open method of curing was the best because the cubes gained the highest average compressive strength of 10.3N/mm2 by the 35th day.

  20. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters.

    Science.gov (United States)

    Chowdhury, S; Maniar, A; Suganya, O M

    2015-11-01

    In this study, Wood Ash (WA) prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45) and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20%) including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM), strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.

  1. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    Directory of Open Access Journals (Sweden)

    Solikin Mochamad

    2017-01-01

    Full Text Available High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly Ash Concrete. The experiment and data analysis were prepared using minitab, a statistic software for design of experimental. The specimens were concrete cylinder with diameter of 15 cm and height of 30 cm, tested for its compressive strength at 56 days. The result of the research demonstrates that high volume fly ash concrete can produce comparable compressive strength which meets the strength of OPC design strength especially for high strength concrete. In addition, the best mix proportion to achieve the design strength is the combination of high strength concrete and 50% content of fly ash. Moreover, the use of spraying method for curing method of concrete on site is still recommended as it would not significantly reduce the compressive strength result.

  2. Compressive strength of dental composites photo-activated with different light tips

    International Nuclear Information System (INIS)

    Galvão, M R; Campos, E A; Rastelli, A N S; Andrade, M F; Caldas, S G F R; Calabrez-Filho, S; Bagnato, V S

    2013-01-01

    The aim of this study was to evaluate the compressive strength of microhybrid (Filtek™ Z250) and nanofilled (Filtek™ Supreme XT) composite resins photo-activated with two different light guide tips, fiber optic and polymer, coupled with one LED. The power density was 653 mW cm −2 when using the fiber optic light tip and 596 mW cm −2 with the polymer. After storage in distilled water at 37 ± 2 °C for seven days, the samples were subjected to mechanical testing of compressive strength in an EMIC universal mechanical testing machine with a load cell of 5 kN and speed of 0.5 mm min −1 . The statistical analysis was performed using ANOVA with a confidence interval of 95% and Tamhane’s test. The results showed that the mean values of compressive strength were not influenced by the different light tips (p > 0.05). However, a statistical difference was observed (p < 0.001) between the microhybrid composite resin photo-activated with the fiber optic light tip and the nanofilled composite resin. Based on these results, it can be concluded that microhybrid composite resin photo-activated with the fiber optic light tip showed better results than nanofilled, regardless of the tip used, and the type of the light tip did not influence the compressive strength of either composite. Thus, the presented results suggest that both the fiber optic and polymer light guide tips provide adequate compressive strength to be used to make restorations. However, the fiber optic light tip associated with microhybrid composite resin may be an interesting option for restorations mainly in posterior teeth. (paper)

  3. Multiple Regression Analysis of Unconfined Compression Strength of Mine Tailings Matrices

    Directory of Open Access Journals (Sweden)

    Mahmood Ali A.

    2017-01-01

    Full Text Available As part of a novel approach of sustainable development of mine tailings, experimental and numerical analysis is carried out on newly formulated tailings matrices. Several physical characteristic tests are carried out including the unconfined compression strength test to ascertain the integrity of these matrices when subjected to loading. The current paper attempts a multiple regression analysis of the unconfined compressive strength test results of these matrices to investigate the most pertinent factors affecting their strength. Results of this analysis showed that the suggested equation is reasonably applicable to the range of binder combinations used.

  4. Investigation on Compressive Strength of Special Concrete made with Crushed Waste Glass

    Directory of Open Access Journals (Sweden)

    Mohd Sani Mohd Syahrul Hisyam

    2015-01-01

    Full Text Available Special concrete is the type of concrete that produced by using waste material or using unusual techniques/method of preparation. Special concrete made with waste material is becoming popular in a construction site. This is because the special concrete is selected due to quality, integrity, economic factor and environmental factor. The waste glass is selected as an additional material to provide a good in compressive strength value. The compressive strength is the importance of mechanical properties of concrete and typically the concrete is sustained and stiffed in compression load. The significant issue to utilize the waste glass from the automotive windscreen is to improve the strength of concrete. The waste glass is crushed to become 5 mm size and recognised as crushed waste glass that be used in concrete as additional material. The main objective of the study is to determine the appropriate percentage of crushed waste glass in concrete grade, 30 in order to enhance the compressive strength. There are four mixes of concrete that contained of crushed waste glass with percentage of 2 %, 4 %, 6 % and 8 % and one control mix with 0 % of crushed waste glass. As the result, crushed waste glass with an additional 4 % in concrete is reported having a higher value of compressive strength in early and mature stage. In addition, if the percentage of crushed glass wastes in concrete increases and it leads to a reduction in the workability of concrete.

  5. Relationship between pore structure and compressive strength of ...

    Indian Academy of Sciences (India)

    J BU

    compressive strength relationship in ... He applied this equation to experimental data on gypsum plasters and ... Popovics [15] observes that this is true even for different types of ... proportions and curing ages of concrete samples are listed in table 1.

  6. Predicting the drying shrinkage behavior of high strength portland cement mortar under the combined influence of fine aggregate and steel micro fiber

    International Nuclear Information System (INIS)

    Li, Zhengqi

    2017-01-01

    The workability, 28-day compressive strength and free drying shrinkage of a very high strength (121-142 MPa) steel micro fiber reinforced portland cement mortar were studied under a combined influence of fine aggregate content and fiber content. The test results showed that an increase in the fine aggregate content resulted in decreases in the workability, 28-day compressive strength and drying shrinkage of mortar at a fixed fiber content. An increase in the fiber content resulted in decreases in the workability and drying shrinkage of mortar, but an increase in the 28-day compressive strength of mortar at a fixed fine aggregate content. The modified Gardner model most accurately predicted the drying shrinkage development of the high strength mortars, followed by the Ross model and the ACI 209R-92 model. The Gardner model gave the least accurate prediction for it was developed based on a database of normal strength concrete. [es

  7. Predicting the drying shrinkage behavior of high strength portland cement mortar under the combined influence of fine aggregate and steel micro fiber

    Directory of Open Access Journals (Sweden)

    Zhengqi Li

    2017-03-01

    Full Text Available The workability, 28-day compressive strength and free drying shrinkage of a very high strength (121-142 MPa steel micro fiber reinforced portland cement mortar were studied under a combined influence of fine aggregate content and fiber content. The test results showed that an increase in the fine aggregate content resulted in decreases in the workability, 28-day compressive strength and drying shrinkage of mortar at a fixed fiber content. An increase in the fiber content resulted in decreases in the workability and drying shrinkage of mortar, but an increase in the 28-day compressive strength of mortar at a fixed fine aggregate content. The modified Gardner model most accurately predicted the drying shrinkage development of the high strength mortars, followed by the Ross model and the ACI 209R-92 model. The Gardner model gave the least accurate prediction for it was developed based on a database of normal strength concrete.

  8. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters

    Directory of Open Access Journals (Sweden)

    S. Chowdhury

    2015-11-01

    Full Text Available In this study, Wood Ash (WA prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45 and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20% including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM, strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.

  9. The increase of compressive strength of natural polymer modified concrete with Moringa oleifera

    Science.gov (United States)

    Susilorini, Rr. M. I. Retno; Santosa, Budi; Rejeki, V. G. Sri; Riangsari, M. F. Devita; Hananta, Yan's. Dianaga

    2017-03-01

    Polymer modified concrete is one of some concrete technology innovations to meet the need of strong and durable concrete. Previous research found that Moringa oleifera can be applied as natural polymer modifiers into mortars. Natural polymer modified mortar using Moringa oleifera is proven to increase their compressive strength significantly. In this resesearch, Moringa oleifera seeds have been grinded and added into concrete mix for natural polymer modified concrete, based on the optimum composition of previous research. The research investigated the increase of compressive strength of polymer modified concrete with Moringa oleifera as natural polymer modifiers. There were 3 compositions of natural polymer modified concrete with Moringa oleifera referred to previous research optimum compositions. Several cylinder of 10 cm x 20 cm specimens were produced and tested for compressive strength at age 7, 14, and, 28 days. The research meets conclusions: (1) Natural polymer modified concrete with Moringa oleifera, with and without skin, has higher compressive strength compared to natural polymer modified mortar with Moringa oleifera and also control specimens; (2) Natural polymer modified concrete with Moringa oleifera without skin is achieved by specimens contains Moringa oleifera that is 0.2% of cement weight; and (3) The compressive strength increase of natural polymer modified concrete with Moringa oleifera without skin is about 168.11-221.29% compared to control specimens

  10. Improvement of the Early-Age Compressive Strength, Water Permeability, and Sulfuric Acid Resistance of Scoria-Based Mortars/Concrete Using Limestone Filler

    Directory of Open Access Journals (Sweden)

    Aref Al-Swaidani

    2017-01-01

    Full Text Available Natural pozzolan is being widely used as cement replacement. Despite the economic, ecological, and technical benefits of its adding, it is often associated with shortcomings such as the need of moist-curing for longer time and a lower early strength. This study is an attempt to investigate the effect of adding limestone filler on the compressive strength and durability of mortars/concrete containing scoria. Sixteen types of binders with different replacement levels of scoria (0, 10, 20, and 30% and limestone (0, 5, 10, and 15% were prepared. The development of the compressive strength of mortar/concrete specimens was investigated after 2, 7, 28, and 90 days’ curing. In addition, the acid resistance of the 28 days’ cured mortars was evaluated after 90 days’ exposure to 5% H2SO4. Concrete permeability was also evaluated after 2, 7, 28, and 90 days’ curing. Test results revealed that there was an increase in the early-age compressive strength and a decrease in water penetration depths with adding limestone filler. Contrary to expectation, the best acid resistance to 5% H2SO4 solution was noted in the mortars containing 15% limestone. Based on the results obtained, an empirical equation was derived to predict the compressive strength of mortars.

  11. Experimental study of tensile strength of pharmaceutical tablets: effect of the diluent nature and compression pressure

    Directory of Open Access Journals (Sweden)

    Juban Audrey

    2017-01-01

    Full Text Available In the pharmaceutical field, tablets are the most common dosage form for oral administration in the world. Among different manufacturing processes, direct compression is widely used because of its economics interest and it is a process which avoids the steps of wet granulation and drying processes. Tablets are composed of at least two ingredients: an active pharmaceutical ingredient (API which is mixed with a diluent. The nature of the powders and the processing conditions are crucial for the properties of the blend and, consequently, strongly influence the mechanical characteristics of tablets. Moreover, tablets have to present a suitable mechanical strength to avoid crumbling or breaking when handling, while ensuring an appropriate disintegration after administration. Accordingly, this mechanical property is an essential parameter to consider. Experimental results showed that proportion of the diluent, fragmentary (DCPA or plastic (MCC, had a large influence on the tensile strength evolution with API content as well as the compression load applied during tableting process. From these results a model was developed in order to predict the tensile strength of binary tablets by knowing the compression pressure. The validity of this model was demonstrated for the two studied systems and a comparison was made with two existing models.

  12. Experimental study of tensile strength of pharmaceutical tablets: effect of the diluent nature and compression pressure

    Science.gov (United States)

    Juban, Audrey; Briançon, Stéphanie; Puel, François; Hoc, Thierry; Nouguier-Lehon, Cécile

    2017-06-01

    In the pharmaceutical field, tablets are the most common dosage form for oral administration in the world. Among different manufacturing processes, direct compression is widely used because of its economics interest and it is a process which avoids the steps of wet granulation and drying processes. Tablets are composed of at least two ingredients: an active pharmaceutical ingredient (API) which is mixed with a diluent. The nature of the powders and the processing conditions are crucial for the properties of the blend and, consequently, strongly influence the mechanical characteristics of tablets. Moreover, tablets have to present a suitable mechanical strength to avoid crumbling or breaking when handling, while ensuring an appropriate disintegration after administration. Accordingly, this mechanical property is an essential parameter to consider. Experimental results showed that proportion of the diluent, fragmentary (DCPA) or plastic (MCC), had a large influence on the tensile strength evolution with API content as well as the compression load applied during tableting process. From these results a model was developed in order to predict the tensile strength of binary tablets by knowing the compression pressure. The validity of this model was demonstrated for the two studied systems and a comparison was made with two existing models.

  13. Effect Of Coir Fibres On The Compaction And Unconfined Compressive Strength Of Bentonite-Lime-Gypsum Mixture

    Directory of Open Access Journals (Sweden)

    Tilak B. Vidya

    2015-06-01

    Full Text Available This paper presents the effect of coir fibres on the compaction and unconfined compressive strength of a bentonite-lime-gypsum mixture. The coir fiber content varied from 0.5 to 2 %. The results indicated that the dry unit weight and the optimum moisture content of a bentonite – lime mix increased with the addition of gypsum. The unconfined compressive strength of the bentonite increased with the increase in the lime content up to 8 %. Beyond 8 %, the unconfined compressive strength decreased. The dry unit weight of the reference mix decreased, and the optimum moisture content increased with the addition of coir fibre. The unconfined compressive strength of the bentonite + 8 % lime mix increased up to 4 % with the gypsum. Beyond 4 %, the unconfined compressive strength decreased. The unconfined compressive strength of the reference mix increased with the addition of coir fibre up to a fibre content of 1.5 %. The unconfined compressive strength of the reference mix-coir fibre composite was less in comparison to the reference mix. The unconfined compressive strength of the bentonite increased with the addition of lime and gypsum and with the increase in the curing period. The improvement in the post-peak region was better for the reference mix with reinforced coir fibres as compared to the unreinforced reference mix. The improved post-peak behaviour of the bentonite-lime-gypsum-coir fibre mixture could boost the construction of temporary roads on such problematic soils. Further, its use will also provide an environmental motivation for providing a means of consuming large quantities of coir fibres.

  14. Numerical analysis of the spacer grids' compression strength

    Energy Technology Data Exchange (ETDEWEB)

    Schettino, C.F.M.; Gouvea, J.P.; Medeiros, N., E-mail: carlosschettino@inb.gov.br, E-mail: jpg@metal.eeimvr.uff.br [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Programa de Engenharia Metalurgica

    2013-07-01

    Among the components of the fuel assembly, the spacer grids play an important structural role during the energy generation process, mainly for their requirement to have enough structural strength to withstand lateral impact loads, due to fuel assembly shipping/handling and due to forces outcome from postulated accidents (earthquake and LOCA). This requirement ensures a proper geometry for cooling and for guide thimble straightness in the fuel assembly. In this way, the understanding of the macroscopic mechanical behavior of this component becomes essential even to any subsequent geometrical modifications to optimize the flue assemblies' structural behavior. In the present work, three-dimensional finite element models destined to provide consistent predictions of 16X16-type spacer grids lateral strength were proposed. Firstly, buckling tests based on results available in the literature were performed to establish a methodology for spacer grid finite element-based modeling. The, by considering a spacer grid interesting geometry and some possible variations associated to its fabrication, tolerance, the proposed numerical models were submitted to compression conditions to calculate the buckling force. Also, these models were validated for comparison with experimental buckling load results. Comparison of buckling predictions combined to observations of actual and simulated deformed spacer grids geometries permitted to verify the consistency and applicability of the proposed models. Thus, these numerical results show a good agreement between the and the experimental results. (author)

  15. The use of non-destructive tests to estimate Self-compacting concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Djamila Boukhelkhal

    2018-01-01

    Full Text Available Until now, there are few studies on the effect of mineral admixtures on correlation between compressive strength and ultrasonic pulse velocity for concrete. The aim of this work is to study the effect of mineral admixture available in Algeria such as limestone powder, granulated slag and natural pozzolana on the correlation between compressive strength and corresponding ultrasonic pulse velocity for self-compacting concrete (SCC. Compressive strength and ultrasonic pulse velocity (UPV were determined for four different SCC (with and without mineral admixture at the 3, 7, 28 and 90 day curing period. The results of this study showed that it is possible to develop a good correlation relationship between the compressive strength and the corresponding ultrasonic pulse velocity for all SCC studied in this research and all the relationships had exponential form. However, constants were different for each mineral admixture type; where, the best correlation was found in the case of SCC with granulated slag (R2 = 0.85. Unlike the SCC with pozzolana, which have the lowest correlation coefficient (R2 = 0.69.

  16. Foamed concrete containing rice husk ash as sand replacement: an experimental study on compressive strength

    Science.gov (United States)

    Rum, R. H. M.; Jaini, Z. M.; Boon, K. H.; Khairaddin, S. A. A.; Rahman, N. A.

    2017-11-01

    This study presents the utilization of rice husk ash (RHA) as sand replacement in foamed concrete. The study focuses on the effect of RHA on the compressive strength of foamed concrete. RHA contains high pozzolanic material that reacts with cementitious to enhance the strength and durability of foamed concrete. RHA also acts as filler causing the foamed concrete to become denser while retaining its unique low density. A total 243 cube specimens was prepared for the compression test. Two sets of mix design were employed at water-cement (W/C) ratio of 0.55, 0.60 and cement-sand ratio of 0.50, 0.33. The results revealed that the presence of RHA as sand replacement resulted in an increase in the compressive strength of foamed concrete. Moreover, 30% to 40% RHA was the optimum content level, contributing to the compressive strength of 18.1 MPa to 22.4 MPa. The W/C ratio and superplasticiser dosage play small roles in improving workability. In contrast, density governs the compressive strength of foamed concrete.

  17. Coefficient αcc in design value of concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Goleš Danica

    2016-01-01

    Full Text Available Coefficient αcc introduces the effects of rate and duration of loading on compressive strength of concrete. These effects may be partially or completely compensated by the increase in concrete strength over time. Selection of the value of this coefficient, in recommended range between 0.8 and 1.0, is carried out through the National Annexes to Eurocode 2. This paper presents some considerations related to the introduction of this coefficient and its value adopted in some European countries. The article considers the effect of the adoption of conservative value αcc=0.85 on design value of compressive and flexural resistance of rectangular cross-section made of normal and high strength concrete. It analyzes the influence of different values of coefficient αcc on the area of reinforcement required to achieve the desired resistance of cross-section.

  18. Effect of Pressure and Heat Treatments on the Compressive Strength of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Helmi Masdar

    2018-01-01

    Full Text Available This paper presents the corresponding compressive strength of RPC with variable pressure combined with heating rate, heating duration, and starting time of heating. The treatments applied were 8 MPa static pressure on fresh RPC prims and heat curing at 240 °C in an oven. The compressive strength test was conducted at 7-d and 28-d. The images of RPC morphology were captured on the surface of a fractured specimen using Scanning Electron Microscopy in Secondary Electron detector mode to describe pore filing mechanism after treatments. The results show that a heating rate at 50 °C/hr resulted in the highest compressive strength about 40 % more than those at 10 or 100 °C/hr. A heating duration of 48 hours led to the maximum compressive strength. Heat curing applied 2 days after casting resulted in the maximum compressive. Heat curing had a signicant effect on the compresssive strength due to the acceleration of both reactions (hydration and pozzolanic and the degree of transformation from tobermorite to xonotlite. It is concluded that the optimum condition of treatments is both pressure and heat curing at 2-day after casting with a rate of 50 °C/hr for 48 hours.

  19. comparative analysis of the compressive strength of hollow

    African Journals Online (AJOL)

    user

    2016-04-02

    Apr 2, 2016 ... Previous analysis showed that cavity size and number on one hand and combinations thickness affect the compressive strength of hollow sandcrete blocks. Series arrangement of the cavities is common but parallel arrangement has been recommended. This research performed a comparative analysis of ...

  20. Predicting the Compressive Strength of Concretes Made with ...

    African Journals Online (AJOL)

    Cases of collapsed buildings and structures are prevalent in Nigeria. In most of these cases the cause of the collapse could be traced to the strength of the construction materials, mainly concrete. Secondly, experimental determination of the strength of concrete materials used in buildings and structures is quite expensive ...

  1. Optimum Compressive Strength of Hardened Sandcrete Building Blocks with Steel Chips

    Directory of Open Access Journals (Sweden)

    Alohan Omoregie

    2013-02-01

    Full Text Available The recycling of steel chips into an environmentally friendly, responsive, and profitable commodity in the manufacturing and construction industries is a huge and difficult challenge. Several strategies designed for the management and processing of this waste in developed countries have been largely unsuccessful in developing countries mainly due to its capital-intensive nature. To this end, this investigation attempts to provide an alternative solution to the recycling of this material by maximizing its utility value in the building construction industry. This is to establish their influence on the compressive strength of sandcrete hollow blocks and solid cubes with the aim of specifying the range percent of steel chips for the sandcrete optimum compressive strength value. This is particularly important for developing countries in sub-Saharan Africa, and even Latin America where most sandcrete blocks exhibit compressive strengths far below standard requirements. Percentages of steel chips relative to the weight of cement were varied and blended with the sand in an attempt to improve the sand grading parameters. The steel chips variations were one, two, three, four, five, ten and fifteen percent respectively. It was confirmed that the grading parameters were improved and there were significant increases in the compressive strength of the blocks and cube samples. The greatest improvement was noticed at four percent steel chips and sand combination. Using the plotted profile, the margin of steel chips additions for the optimum compressive strength was also established. It is recommended that steel chip sandcrete blocks are suitable for both internal load bearing, and non-load bearing walls, in areas where they are not subjected to moisture ingress. However, for external walls, and in areas where they are liable to moisture attack after laying, the surfaces should be well rendered. Below ground level, the surfaces should be coated with a water

  2. Reliability of using nondestructive tests to estimate compressive strength of building stones and bricks

    Directory of Open Access Journals (Sweden)

    Ali Abd Elhakam Aliabdo

    2012-09-01

    Full Text Available This study aims to investigate the relationships between Schmidt hardness rebound number (RN and ultrasonic pulse velocity (UPV versus compressive strength (fc of stones and bricks. Four types of rocks (marble, pink lime stone, white lime stone and basalt and two types of burned bricks and lime-sand bricks were studied. Linear and non-linear models were proposed. High correlations were found between RN and UPV versus compressive strength. Validation of proposed models was assessed using other specimens for each material. Linear models for each material showed good correlations than non-linear models. General model between RN and compressive strength of tested stones and bricks showed a high correlation with regression coefficient R2 value of 0.94. Estimation of compressive strength for the studied stones and bricks using their rebound number and ultrasonic pulse velocity in a combined method was generally more reliable than using rebound number or ultrasonic pulse velocity only.

  3. Colour, compressive strength and workability of mortars with an iron rich sewage sludge ash

    DEFF Research Database (Denmark)

    Kappel, Annemette; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie

    2017-01-01

    This paper reports a study of the colour, compressive strength and workability of mortar when cement is partly replaced by sewage sludge ash (SSA). In the study, an iron rich SSA was dry milled into six different fractions. The results showed that the colour, compressive strength and workability...

  4. Evaluation of the Compressive Strength of Cement-Spent Resins Matrix Mixed with Bio char

    International Nuclear Information System (INIS)

    Zalina Laili; Muhamad Samudi Yasir; Zalina Laili; Mohd Abdul Wahab; Nur Azna Mahmud; Nurfazlina Zainal Abidin

    2015-01-01

    The evaluation of compressive strength of cement-spent resins matrix mixed with bio char was investigated. In this study, bio char with different percentage (5 %, 8 %, 11 % 14 % and 18 %) was used as alternative admixture material for cement solidification of spent resins. Some properties of the physical and chemical of spent resins and bio char were also investigated. The performance of cemented spent resins with the addition of bio char was evaluated based on their compressive strength and the water resistance test. The compressive strength was evaluated at three different curing periods of 7, 14 and 28 days, while 4 weeks of immersion in distilled water was chosen for water resistance test. The result indicated that the compressive strength at 7, 14 and 28 days of curing periods were above the minimum criterion for example > 3.45 MPa of acceptable level for cemented waste form. Statistical analysis showed that there was no significant relationship between the compressive strength of the specimen and the percentage of bio char content. Result from the water resistance test showed that only one specimen that contained of 5 % of bio char failed the water resistance test due to the high of spent resins/ bio char ratio. The compressive strength of cement solidified spent resins was found increased after the water resistance test indicating further hydration occurred after immersed in water. The results of this study also suggest that the specimen with 8 %, 11 %, 14 % and 18 % of bio char content were resistance in water and suitable for the leaching study of radionuclides from cement-bio char-spent resins matrix. (author)

  5. Compressive strength of structural concrete made with locally available coarse aggregates

    International Nuclear Information System (INIS)

    Kumar, A.; Khaskheli, G.B.

    2009-01-01

    Quality of CA (Coarse Aggregate) is one of the prime factors to control the quality of concrete. But construction industry of Sindh is not very much bothered about the quality of CA in concrete manufacturing. In Sindh, Hyderabad vicinity is comparatively rich in production of CA. This research is to evaluate the compressive strength of structural concrete made with CA obtained from five different crush plants (Petaro, Parker, Palari, Ghulam Hyder Baloch and Ongar), available in the vicinity of Hyderabad. ln total 360 concrete cubes (150x150x150mm) were manufactured, 72 for each source of CA by keeping 1:2:4 and 1:1.5:3 material ratios. The cubes were manufactured with 0.45 w/c (water cement ratio), 0.5 and 0.55 w/c and tested for compressive strength after 3, 7, 14 and 28 days of curing. Results show that performance of CA obtained from all the five crush plants remained in agreement with BS and ACI Code recommendations. Concrete made with CA obtained from Petaro and Parker gave higher early strength than that of others while concrete made with CA obtained from Petaro, Parker together with Palari gave higher 28th day compressive strength. (author)

  6. Compressive strength, chloride permeability, and freeze-thaw resistance of MWNT concretes under different chemical treatments.

    Science.gov (United States)

    Wang, Xingang; Rhee, Inkyu; Wang, Yao; Xi, Yunping

    2014-01-01

    This study investigated compressive strength, chloride penetration, and freeze-thaw resistance of multiwalled carbon nanotube (MWNT) concrete. More than 100 cylindrical specimens were used to assess test variables during sensitivity observations, including water-cement ratios (0.75, 0.5, and 0.4) and exposure to chemical agents (including gum arabic, propanol, ethanol, sodium polyacrylate, methylcellulose, sodium dodecyl sulfate, and silane). To determine the adequate sonication time for MWNT dispersal in water, the compressive strengths of MWNT concrete cylinders were measured after sonication times ranging from 2 to 24 minutes. The results demonstrated that the addition of MWNT can increase the compressive strength of concrete by up to 108%. However, without chemical treatment, MWNT concretes tend to have poor freeze-thaw resistance. Among the different chemical treatments, MWNT concrete treated with sodium polyacrylate has the best compressive strength, chloride resistance, and freeze-thaw durability.

  7. Compressive and flexural strength of expanded perlite aggregate mortar subjected to high temperatures

    Science.gov (United States)

    Zulkifeli, Muhamad Faqrul Hisham bin Mohd; Saman@Hj Mohamed, Hamidah binti Mohd

    2017-08-01

    Work on thermal resistant of outer structures of buildings is one of the solution to reduce death, damages and properties loss in fire cases. Structures protected with thermal resistant materials can delay or avoid failure and collapse during fire. Hence, establishment of skin cladding with advance materials to protect the structure of buildings is a necessary action. Expanded perlite is a good insulation material which can be used as aggregate replacement in mortar. This study is to study on mortar mechanical properties of flexural and compressive strength subjected to elevated temperatures using expanded perlite aggregate (EPA). This study involved experimental work which was developing mortar with sand replacement by volume of 0%, 10%, 20%, 30% and 40% of EPA and cured for 56 days. The mortars then exposed to 200°C, 400 °C, 700 °C and 1000 °C. Flexural and compressive strength of the mortar were tested. The tests showed that there were increased of flexural and compressive strength at 200°C, and constantly decreased when subjected to 400°C, 700°C and 1000 °C. There were also variation of strengths at different percentages of EPA replacement. Highest compressive strength and flexural strength recorded were both at 200 °C with 65.52 MPa and 21.34 MPa respectively. The study conclude that by using EPA as aggregate replacement was ineffective below elevated temperatures but increased the performance of the mortar at elevated temperatures.

  8. Effect of different dispersants in compressive strength of carbon fiber cementitious composites

    Science.gov (United States)

    Lestari, Yulinda; Bahri, Saiful; Sugiarti, Eni; Ramadhan, Gilang; Akbar, Ari Yustisia; Martides, Erie; Khaerudini, Deni S.

    2013-09-01

    Carbon Fiber Cementitious Composites (CFCC) is one of the most important materials in smart concrete applications. CFCC should be able to have the piezoresistivity properties where its resistivity changes when there is applied a stress/strain. It must also have the compressive strength qualification. One of the important additives in carbon fiber cementitious composites is dispersant. Dispersion of carbon fiber is one of the key problems in fabricating piezoresistive carbon fiber cementitious composites. In this research, the uses of dispersants are methylcellulose, mixture of defoamer and methylcellulose and superplasticizer based polycarboxylate. The preparation of composite samples is similar as in the mortar technique according to the ASTM C 109/109M standard. The additives material are PAN type carbon fibers, methylcellulose, defoamer and superplasticizer (as water reducer and dispersant). The experimental testing conducts the compressive strength and resistivity at various curing time, i.e. 3, 7 and 28 days. The results obtained that the highest compressive strength value in is for the mortar using superplasticizer based polycarboxylate dispersant. This also shown that the distribution of carbon fiber with superplasticizer is more effective, since not reacting with the cementitious material which was different from the methylcellulose that creates the cement hydration reaction. The research also found that the CFCC require the proper water cement ratio otherwise the compressive strength becomes lower.

  9. Compressive strength of different brands of cement (OPC) in province of Sindh

    International Nuclear Information System (INIS)

    Khaskheli, G.B.; Kumar, A.; Sheikh, A.

    2009-01-01

    OPC (Ordinary Portland Cement) is the most common type of cement used in construction industry. Three major brands of OPC are normal OPC, SRC (Sulphate Resisting Cement) and SC (Slag Cement). It is seen that the variation in constituents of cement may cause serious effects on the quality of cement. Thus the motivation of this research is to study the basic properties (consistency, setting time, and fineness), compressive strength (cement mortar and concrete cubes) and modulus of elasticity of all the OPC brands (OPC, SRC and SC) manufactured in Sindh. In total 10 cement factories, altogether 21 different brands of cement, were studied in the light of BS and ASTM Code specifications. In total 126 mortar cubes (1:3), 252 concrete cubes (126 for 3000 psi mix design and remaining for 5000 psi) and 126 concrete cylinders (6 for the each brand of cement pertaining to 3000 psi and 5000 psi mix design) were manufactured and tested. Experimental results demonstrated that all the cement brands fulfilled the BS and ASTM Code requirements for (i) basic properties (ii) compressive strength of mortar cubes at 3 and 28 days curing age (iii) compressive strength of concrete cubes at 28 days curing age, and (iv) modulus of elasticity. Some of the cements did not fulfill the BS and ASTM Code requirements for compressive strength of concrete cubes at 7 days curing age. (author)

  10. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths.

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-12-08

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete's compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

  11. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-01-01

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength. PMID:28788279

  12. Scaling of compression strength in disordered solids: metallic foams

    Directory of Open Access Journals (Sweden)

    J. Kováčik

    2016-03-01

    Full Text Available The scaling of compression strength with porosity for aluminium foams was investigated. The Al 99.96, AlMg1Si0.6 and AlSi11Mg0.6 foams of various porosity, sample size with and without surface skin were tested in compression. It was observed that the compression strength of aluminium foams scales near the percolation threshold with Tf ≈ 1.9 - 2.0 almost independently on the matrix alloy, sample size and presence of surface skin. The difference of the obtained values of Tf to the theoretical estimate of Tf = 2.64 ± 0.3 by Arbabi and Sahimi and to Ashby estimate of 1.5 was explained using an analogy with the Daoud and Coniglio approach to the scaling of the free energy of sol-gel transition. It leads to the finding that, there are two different universality classes for the critical exponent Tf: when the stretching forces dominate Tf = f = 2.1, respectively when bending forces prevail Tf = .d = 2.64 seems to be valid. Another possibility is the validity of relation Tf ≤ f which varies only according to the universality class of modulus of elasticity in foam.

  13. Compressive strength test for cemented waste forms: validation process

    International Nuclear Information System (INIS)

    Haucz, Maria Judite A.; Candido, Francisco Donizete; Seles, Sandro Rogerio

    2007-01-01

    In the Cementation Laboratory (LABCIM), of the Development Centre of the Nuclear Technology (CNEN/CDTN-MG), hazardous/radioactive wastes are incorporated in cement, to transform them into monolithic products, preventing or minimizing the contaminant release to the environment. The compressive strength test is important to evaluate the cemented product quality, in which it is determined the compression load necessary to rupture the cemented waste form. In LABCIM a specific procedure was developed to determine the compressive strength of cement waste forms based on the Brazilian Standard NBR 7215. The accreditation of this procedure is essential to assure reproductive and accurate results in the evaluation of these products. To achieve this goal the Laboratory personal implemented technical and administrative improvements in accordance with the NBR ISO/IEC 17025 standard 'General requirements for the competence of testing and calibration laboratories'. As the developed procedure was not a standard one the norm ISO/IEC 17025 requests its validation. There are some methodologies to do that. In this paper it is described the current status of the accreditation project, especially the validation process of the referred procedure and its results. (author)

  14. Compressive Strength, Chloride Permeability, and Freeze-Thaw Resistance of MWNT Concretes under Different Chemical Treatments

    Directory of Open Access Journals (Sweden)

    Xingang Wang

    2014-01-01

    Full Text Available This study investigated compressive strength, chloride penetration, and freeze-thaw resistance of multiwalled carbon nanotube (MWNT concrete. More than 100 cylindrical specimens were used to assess test variables during sensitivity observations, including water-cement ratios (0.75, 0.5, and 0.4 and exposure to chemical agents (including gum arabic, propanol, ethanol, sodium polyacrylate, methylcellulose, sodium dodecyl sulfate, and silane. To determine the adequate sonication time for MWNT dispersal in water, the compressive strengths of MWNT concrete cylinders were measured after sonication times ranging from 2 to 24 minutes. The results demonstrated that the addition of MWNT can increase the compressive strength of concrete by up to 108%. However, without chemical treatment, MWNT concretes tend to have poor freeze-thaw resistance. Among the different chemical treatments, MWNT concrete treated with sodium polyacrylate has the best compressive strength, chloride resistance, and freeze-thaw durability.

  15. The Effect of Polymer-Cement Stabilization on the Unconfined Compressive Strength of Liquefiable Soils

    Directory of Open Access Journals (Sweden)

    Ali Ateş

    2013-01-01

    Full Text Available Soil stabilization has been widely used as an alternative to substitute the lack of suitable material on site. The use of nontraditional chemical stabilizers in soil improvement is growing daily. In this study a laboratory experiment was conducted to evaluate the effects of waterborne polymer on unconfined compression strength and to study the effect of cement grout on pre-venting of liquefiable sandy soils. The laboratory tests were performed including grain size of sandy soil, unit weight, ultrasonic pulse velocity, and unconfined compressive strength test. The sand and various amounts of polymer (1%, 2%, 3%, and 4% and cement (10%, 20%, 30%, and 40% were mixed with all of them into dough using mechanical kneader in laboratory conditions. Grouting experiment is performed with a cylindrical mould of  mm. The samples were subjected to unconfined compression tests to determine their strength after 7 and 14 days of curing. The results of the tests indicated that the waterborne polymer significantly improved the unconfined compression strength of sandy soils which have susceptibility of liquefaction.

  16. Predicting development of undrained shear strength in soft oil sands tailings

    Energy Technology Data Exchange (ETDEWEB)

    Masala, S. [Klohn Crippen Berger, Calgary, AB (Canada); Matthews, J. [Shell Canada Ltd., Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation discussed a method of predicting the development of undrained shear strength in soft oil sands tailings. Phenomenology charts of oil sands tailings ponds were used to present the suspension, density, stresses and hydrostatic behaviour of tailings. Sedimentation and consolidation processes were discussed. The charts demonstrated how the tailings slurry settles and consolidates, releases water and dissipates pore pressures. The slurry then develops intergranular stresses and increases in density. The increases correlate with increased resistance to deformation and decreased compressibility and hydraulic conductivity. A critical state soil mechanics (CSSM) was used to characterize the soft oil sands tailings. Undrained strength was determined using the concept of the undrained strength ratio (USR). The USR was determined using traditional geotechnical investigation methods. Settling of the non-consolidated (NC) soil deposits was simulated using the finite strain consolidation theory. The model was based on the premise that current effective stresses control undrained shear strength in the NC deposits. Case studies were used to demonstrate the predictive framework. tabs, figs.

  17. Effect of isothermal annealing on the compressive strength of a ZrAlNiCuNb metallic glass

    International Nuclear Information System (INIS)

    Song Min; He Yuehui

    2011-01-01

    Research highlights: → Only structural relaxation happens during annealing at the temperature below T g . → Nanocrystallization happens during annealing at the temperature above T g . → The compressive strength increases with annealing time up to 20 min. → The compressive strength decreases with annealing time after 20 min. - Abstract: The effects of isothermal annealing on the microstructures and compressive strength of a Zr 56 Al 10.9 Ni 4.6 Cu 27.8 Nb 0.7 bulk metallic glass (BMG) have been studied using X-ray diffraction, scanning electron microscopy and compression tests. It has been shown that only structural relaxation happens during annealing at the temperature below T g (glass transition temperature), while both structural relaxation and nanocrystallization happen during annealing at the temperature above T g . Compression tests indicated that the strength of the BMG increases with annealing time at 437 deg. C up to 20 min, after which the strength starts to decrease. The strength evolution of the BMG with the annealing time is due to combined effects of the variations of the free volume and nanocrystals.

  18. Effect of silica fume on compressive strength of oil-polluted concrete in different marine environments

    Science.gov (United States)

    Shahrabadi, Hamid; Sayareh, Sina; Sarkardeh, Hamed

    2017-12-01

    In the present research, effect of silica fume as an additive and oil polluted sands as aggregates on compressive strength of concrete were investigated experimentally. The amount of oil in the designed mixtures was assumed to be constant and equal to 2% of the sand weight. Silica fume accounting for 10%, 15% and 20% of the weight is added to the designed mixture. After preparation and curing, concrete specimens were placed into the three different conditions: fresh, brackish and saltwater environments (submerged in fresh water, alternation of exposed in air & submerged in sea water and submerged in sea water). The result of compressive strength tests shows that the compressive strength of the specimens consisting of silica fume increases significantly in comparison with the control specimens in all three environments. The compressive strength of the concrete with 15% silica fume content was about 30% to 50% higher than that of control specimens in all tested environments under the condition of using polluted aggregates in the designed mixture.

  19. Prediction on flexural strength of encased composite beam with cold-formed steel section

    Science.gov (United States)

    Khadavi, Tahir, M. M.

    2017-11-01

    A flexural strength of composite beam designed as boxed shaped section comprised of lipped C-channel of cold-formed steel (CFS) facing each other with reinforcement bars is proposed in this paper. The boxed shaped is kept restrained in position by a profiled metal decking installed on top of the beam to form a slab system. This profiled decking slab is cast by using self-compacting concrete where the concrete is in compression when load is applied to the beam. Reinforcement bars are used as shear connector between slab and CFS as beam. A numerical analysis method proposed by EC4 is used to predict the flexural strength of the proposed composite beam. It was assumed that elasto-plastic behaviour is developed in the cross -sectional of the proposed beam. The calculated predicted flexural strength of the proposed beam shows reasonable flexural strength for cold-formed composite beam.

  20. Strength and deformation behaviors of veined marble specimens after vacuum heat treatment under conventional triaxial compression

    Science.gov (United States)

    Su, Haijian; Jing, Hongwen; Yin, Qian; Yu, Liyuan; Wang, Yingchao; Wu, Xingjie

    2017-10-01

    The mechanical behaviors of rocks affected by high temperature and stress are generally believed to be significant for the stability of certain projects involving rocks, such as nuclear waste storage and geothermal resource exploitation. In this paper, veined marble specimens were treated to high temperature treatment and then used in conventional triaxial compression tests to investigate the effect of temperature, confining pressure, and vein angle on strength and deformation behaviors. The results show that the strength and deformation parameters of the veined marble specimens changed with the temperature, presenting a critical temperature of 600 °C. The triaxial compression strength of a horizontal vein (β = 90°) is obviously larger than that of a vertical vein (β = 0°). The triaxial compression strength, elasticity modulus, and secant modulus have an approximately linear relation to the confining pressure. Finally, Mohr-Coulomb and Hoek-Brown criteria were respectively used to analyze the effect of confining pressure on triaxial compression strength.

  1. Unfired clay bricks – moisture properties and compressive strength

    DEFF Research Database (Denmark)

    Hansen, E.J. de Place; Hansen, Kurt Kielsgaard

    2002-01-01

    Apparatus, methods and test results from an experimental investigation of (1) the properties for moisture performance of the materials, including water vapour sorption and water vapour transmission, (2) humidity buffering of the indoor climate by an absorbent material, and (3) the compressive...... strength are presented....

  2. Dependence of compressive strength of green compacts on pressure, density and contact area of powder particles

    International Nuclear Information System (INIS)

    Salam, A.; Akram, M.; Shahid, K.A.; Javed, M.; Zaidi, S.M.

    1994-08-01

    The relationship between green compressive strength and compacting pressure as well as green density has been investigated for uniaxially pressed aluminium powder compacts in the range 0 - 520 MPa. Two linear relationships occurred between compacting pressure and green compressive strength which corresponded to powder compaction stages II and III respectively, increase in strength being large during stage II and quite small in stage III with increasing pressure. On the basis of both, the experimental results and a previous model on cold compaction of powder particles, relationships between green compressive strength and green density and interparticle contact area of the compacts has been established. (author) 9 figs

  3. Reliability estimate of unconfined compressive strength of black cotton soil stabilized with cement and quarry dust

    Directory of Open Access Journals (Sweden)

    Dayo Oluwatoyin AKANBI

    2017-06-01

    Full Text Available Reliability estimates of unconfined compressive strength values from laboratory results for specimens compacted at British Standard Light (BSLfor compacted quarry dust treated black cotton soil using cement for road sub – base material was developed by incorporating data obtained from Unconfined compressive strength (UCS test gotten from the laboratory test to produce a predictive model. Data obtained were incorporated into a FORTRAN-based first-order reliability program to obtain reliability index values. Variable factors such as water content relative to optimum (WRO, hydraulic modulus (HM, quarry dust (QD, cement (C, Tri-Calcium silicate (C3S, Di-calcium silicate (C2S, Tri-Calcium Aluminate (C3A, and maximum dry density (MDD produced acceptable safety index value of1.0and they were achieved at coefficient of variation (COV ranges of 10-100%. Observed trends indicate that WRO, C3S, C2S and MDD are greatly influenced by the COV and therefore must be strictly controlled in QD/C treated black cotton soil for use as sub-base material in road pavements. Stochastically, British Standard light (BSL can be used to model the 7 days unconfined compressive strength of compacted quarry dust/cement treated black cotton soil as a sub-base material for road pavement at all coefficient of variation (COV range 10 – 100% because the safety index obtained are higher than the acceptable 1.0 value.

  4. Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar

    International Nuclear Information System (INIS)

    Ranjbar, Navid; Mehrali, Mehdi; Behnia, Arash; Alengaram, U. Johnson; Jumaat, Mohd Zamin

    2014-01-01

    Highlights: • Results show POFA is adaptable as replacement in FA based geopolymer mortar. • The increase in POFA/FA ratio delay of the compressive development of geopolymer. • The density of POFA based geoploymer is lower than FA based geopolymer mortar. - Abstract: This paper presents the effects and adaptability of palm oil fuel ash (POFA) as a replacement material in fly ash (FA) based geopolymer mortar from the aspect of microstructural and compressive strength. The geopolymers developed were synthesized with a combination of sodium hydroxide and sodium silicate as activator and POFA and FA as high silica–alumina resources. The development of compressive strength of POFA/FA based geopolymers was investigated using X-ray florescence (XRF), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and field emission scanning electron microscopy (FESEM). It was observed that the particle shapes and surface area of POFA and FA as well as chemical composition affects the density and compressive strength of the mortars. The increment in the percentages of POFA increased the silica/alumina (SiO 2 /Al 2 O 3 ) ratio and that resulted in reduction of the early compressive strength of the geopolymer and delayed the geopolymerization process

  5. Importance of Tensile Strength on the Shear Behavior of Discontinuities

    Science.gov (United States)

    Ghazvinian, A. H.; Azinfar, M. J.; Geranmayeh Vaneghi, R.

    2012-05-01

    In this study, the shear behavior of discontinuities possessing two different rock wall types with distinct separate compressive strengths was investigated. The designed profiles consisted of regular artificial joints molded by five types of plaster mortars, each representing a distinct uniaxial compressive strength. The compressive strengths of plaster specimens ranged from 5.9 to 19.5 MPa. These specimens were molded considering a regular triangular asperity profile and were designed so as to achieve joint walls with different strength material combinations. The results showed that the shear behavior of discontinuities possessing different joint wall compressive strengths (DDJCS) tested under constant normal load (CNL) conditions is the same as those possessing identical joint wall strengths, but the shear strength of DDJCS is governed by minor joint wall compressive strength. In addition, it was measured that the predicted values obtained by Barton's empirical criterion are greater than the experimental results. The finding indicates that there is a correlation between the joint roughness coefficient (JRC), normal stress, and mechanical strength. It was observed that the mode of failure of asperities is either pure tensile, pure shear, or a combination of both. Therefore, Barton's strength criterion, which considers the compressive strength of joint walls, was modified by substituting the compressive strength with the tensile strength. The validity of the modified criterion was examined by the comparison of the predicted shear values with the laboratory shear test results reported by Grasselli (Ph.D. thesis n.2404, Civil Engineering Department, EPFL, Lausanne, Switzerland, 2001). These comparisons infer that the modified criterion can predict the shear strength of joints more precisely.

  6. The effect of temperature on compressive and tensile strengths of commonly used luting cements: an in vitro study.

    Science.gov (United States)

    Patil, Suneel G; Sajjan, Mc Suresh; Patil, Rekha

    2015-02-01

    The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures.

  7. Compressive Strength Of Rice Husk Ash-Cement Sandcrete Blocks ...

    African Journals Online (AJOL)

    There is growing demand for alternative, low-cost building material in developing countries. The effect of partial substitution of ordinary Portland cement with Rice Husk Ash (RHA) on the compressive strength of hollow sandcrete block was investigated through laboratory experimental procedures. The specific gravity, initial ...

  8. [Compressive and bend strength of experimental admixed high copper alloys].

    Science.gov (United States)

    Sourai, P; Paximada, H; Lagouvardos, P; Douvitsas, G

    1988-01-01

    Mixed alloys for dental amalgams have been used mainly in the form of admixed alloys, where eutectic spheres are blend with conventional flakes. In the present study the compressive strength, bend strength and microstructure of two high-copper alloys (Tytin, Ana-2000) is compared with three experimental alloys prepared of the two high copper by mixing them in proportions of 3:1, 1:1 and 1:3 by weight. The results revealed that experimental alloys inherited high early and final strength values without any significant change in their microstructure.

  9. The Statistical Analysis of Relation between Compressive and Tensile/Flexural Strength of High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Kępniak M.

    2016-12-01

    Full Text Available This paper addresses the tensile and flexural strength of HPC (high performance concrete. The aim of the paper is to analyse the efficiency of models proposed in different codes. In particular, three design procedures from: the ACI 318 [1], Eurocode 2 [2] and the Model Code 2010 [3] are considered. The associations between design tensile strength of concrete obtained from these three codes and compressive strength are compared with experimental results of tensile strength and flexural strength by statistical tools. Experimental results of tensile strength were obtained in the splitting test. Based on this comparison, conclusions are drawn according to the fit between the design methods and the test data. The comparison shows that tensile strength and flexural strength of HPC depend on more influential factors and not only compressive strength.

  10. Influence of Curing Age and Mix Composition on Compressive Strength of Volcanic Ash Blended Cement Laterized Concrete

    Directory of Open Access Journals (Sweden)

    Babafemi A.J.

    2012-01-01

    Full Text Available This study investigates the influence of curing age and mix proportions on the compressive strength of volcanic ash (VA blended cement laterized concrete. A total of 288 cubes of 100mm dimensions were cast and cured in water for 3, 7, 28, 56, 90 and 120 days of hydration with cement replacement by VA and sand replacement by laterite both ranging from 0 to 30% respectively while a control mix of 28-day target strength of 25N/mm2 (using British Method was adopted. The results show that the compressive strength of the VA-blended cement laterized concrete increased with the increase in curing age but decreased as the VA and laterite (LAT contents increased. The optimum replacement level was 20%LAT/20%VA. At this level the compressive strength increased with curing age at a decreasing rate beyond 28 days. The target compressive strength of 25N/mm2 was achieved for this mixture at 90 days of curing. VA content and curing age was noted to have significant effect (α ≤ 0.5 on the compressive strength of the VA-blended cement laterized concrete.

  11. The influence of double nested layer waviness on compression strength of carbon fiber composite materials

    International Nuclear Information System (INIS)

    Khan, Z.M.

    1997-01-01

    As advanced composite materials having superior physical and mechanical properties are being developed, optimization of their production processes in eagerly being sought. One of the most common defect in production of structural composites is layer waviness. Layer waviness is more pronounced in thick section flat and cylindrical laminates that are extensively used in missile casings, submersibles and space platforms. Layer waviness undulates the entire layers of a multidirectional laminate in through-the-thickness direction leading to gross deterioration of its compression strength. This research investigates the influence of multiple layer waviness in a double nest formation on the compression strength of a composite laminate. Different wave fractions of wave 0 degree centigrade layer fabricated in IM/85510-7 carbon - epoxy composite laminate on a steel mold using single step fabrication procedure. The laminate was cured on a heated press according to specific curing cycle. Static compression testing was performed using NASA short block compression fixture on an MTS servo Hydraulic machine. The purpose of these tests was to determine the effects of multiple layer wave regions on the compression strength of composite laminate. The experimental and analytical results revealed that up to about 35% fraction of wave 0 degree layer exceeded 35%. This analysis indicated that the percentage of 0 degree wavy layer may be used to estimate the reduction in compression strength of a composite laminate under restricted conditions. (author)

  12. Effect of elevated temperature on the compressive strength of ...

    African Journals Online (AJOL)

    Based on results of tests, partial replacement of cement with 10 % PSMS is recommended for use in concrete production and resistance to elevated temperature. The studies show that at this replacement, the concrete compressive strength is not adversely affected when the elevated temperature reaches 500°C. Keywords: ...

  13. Influence of uncoated and coated plastic waste coarse aggregates to concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Purnomo Heru

    2017-01-01

    Full Text Available The use of plastic waste as coarse aggregates in concrete is part of efforts to reduce environmental pollution. In one hand the use of plastic as aggregates can provide lighter weight of the concrete than concrete using natural aggregates, but on the other hand bond between plastic coarse aggregates and hard matrix give low concrete compressive strength. Improvement of the bond between plastic coarse aggregate and hard matrix through a sand coating to plastic coarse aggregate whole surface is studied. Sand used to coat the plastic aggregates are Merapi volcanic sand which are taken in Magelang. Three mixtures of polypropylene (PP coarse plastic aggregates, Cimangkok river sand as fine aggregates, water and Portland Cement Composite with a water-cement ratio of 0.28, 0.3 and 0.35 are conducted. Compression test are performed on concrete cylindrical specimens with a diameter of 10 cm and a height of 20 cm. The results in general show that concrete specimens using plastic aggregates coated with sand have higher compressive strength compared to those of concrete specimens using plastic aggregates without sand coating. The bond improvement is indirectly indicated by the betterment of concrete compressive strength.

  14. The chemical composition and compression strengths of refractory ceramics, tested for 3 curing temperatures

    International Nuclear Information System (INIS)

    Wan Khairuddin bin Wan Ali

    1994-01-01

    An investigation was carried out to determine and compile the mechanical strength of a refractory ceramic made of ground fire bricks and refractory fire mortar. Three different compositions were studied for the compression strength and it was found that the composition with 50% fire bricks and 50% fire mortar gives the best mechanical strength. With this composition the maximum failure compression stress is 3.2 MPa. and the Young Modulus is 403.5 MPa. The investigation also shows that the curing temperatures and the composition percentages play an important role in determining the strength of the ceramic. The trend obtained from the investigation shows that there is the possibility that an optimum value of composition percentage exist

  15. The Effect of Alkaline Activator Ratio on the Compressive Strength of Fly Ash-Based Geopolymer Paste

    Science.gov (United States)

    Lăzărescu, A. V.; Szilagyi, H.; Baeră, C.; Ioani, A.

    2017-06-01

    Alkaline activation of fly ash is a particular procedure in which ash resulting from a power plant combined with a specific alkaline activator creates a solid material when dried at a certain temperature. In order to obtain desirable compressive strengths, the mix design of fly ash based geopolymer pastes should be explored comprehensively. To determine the preliminary compressive strength for fly ash based geopolymer paste using Romanian material source, various ratios of Na2SiO3 solution/ NaOH solution were produced, keeping the fly ash/alkaline activator ratio constant. All the mixes were then cured at 70 °C for 24 hours and tested at 2 and 7 days, respectively. The aim of this paper is to present the preliminary compressive strength results for producing fly ash based geopolymer paste using Romanian material sources, the effect of alkaline activators ratio on the compressive strength and studying the directions for future research.

  16. Compressive Strength of Steel Frames after Welding with Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Hadryś D.

    2016-03-01

    Full Text Available Low carbon steel weld structures generally exhibit a very linear stress-strain relationship. In the study of strength of materials, the compressive strength is the capacity of a material or structure to withstand loads tending to reduce size of structure. It is mainly measured by plotting applied force against deformation in a testing machine. Compressive strength is a main key value for design of welded structures.The main goal of that paper was analysing of plastic properties of frame welds which were made with various parameters of micro-jet cooling. New technology of micro-jet welding could be regarded as a new way to improve plastic properties of welds. It allows to obtain welds with better mechanical properties in comparison to ordinary welding method. Furthermore it is possible to steering of weld structure and properties of the weld. There were given main information about influence of various micro-jet gases on metallographic and properties of structure steel welds.

  17. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    OpenAIRE

    Solikin Mochamad; Setiawan Budi

    2017-01-01

    High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC) and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly ...

  18. Compressive and flexural strength of cement mortar stabilized with ...

    African Journals Online (AJOL)

    Mortar is a material with wide range of applications in the construction industry. However, plain mortar matrices are usually brittle and often cracks and fails more suddenly than reinforced mortars. In this study, the compressive and flexural strengths of cement mortar stabilized with Raffia Palm Fruit Peel (RPFP) as fibre were ...

  19. Effect of concrete strength gradation to the compressive strength of graded concrete, a numerical approach

    Science.gov (United States)

    Pratama, M. Mirza Abdillah; Aylie, Han; Gan, Buntara Sthenly; Umniati, B. Sri; Risdanareni, Puput; Fauziyah, Shifa

    2017-09-01

    Concrete casting, compacting method, and characteristic of the concrete material determine the performance of concrete as building element due to the material uniformity issue. Previous studies show that gradation in strength exists on building member by nature and negatively influence the load carrying capacity of the member. A pilot research had modeled the concrete gradation in strength with controllable variable and observed that the weakest material determines the strength of graded concrete through uniaxial compressive loading test. This research intends to confirm the recent finding by a numerical approach with extensive variables of strength disparity. The finite element analysis was conducted using the Strand7 nonlinear program. The results displayed that the increase of strength disparity in graded concrete models leads to the slight reduction of models strength. A substantial difference in displacement response is encountered on the models for the small disparity of concrete strength. However, the higher strength of concrete mix in the graded concrete models contributes to the rise of material stiffness that provides a beneficial purpose for serviceability of building members.

  20. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    OpenAIRE

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-01-01

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were...

  1. Structural strength of cancellous specimens from bovine femur under cyclic compression

    Directory of Open Access Journals (Sweden)

    Kaori Endo

    2016-01-01

    Full Text Available The incidence of osteoporotic fractures was estimated as nine million worldwide in 2000, with particular occurrence at the proximity of joints rich in cancellous bone. Although most of these fractures spontaneously heal, some fractures progressively collapse during the early post-fracture period. Prediction of bone fragility during progressive collapse following initial fracture is clinically important. However, the mechanism of collapse, especially the gradual loss of the height in the cancellous bone region, is not clearly proved. The strength of cancellous bone after yield stress is difficult to predict since structural and mechanical strength cannot be determined a priori. The purpose of this study was to identify whether the baseline structure and volume of cancellous bone contributed to the change in cancellous bone strength under cyclic loading. A total of fifteen cubic cancellous bone specimens were obtained from two 2-year-old bovines and divided into three groups by collection regions: femoral head, neck, and proximal metaphysis. Structural indices of each 5-mm cubic specimen were determined using micro-computed tomography. Specimens were then subjected to five cycles of uniaxial compressive loading at 0.05 mm/min with initial 20 N loading, 0.3 mm displacement, and then unloading to 0.2 mm with 0.1 mm displacement for five successive cycles. Elastic modulus and yield stress of cancellous bone decreased exponentially during five loading cycles. The decrease ratio of yield stress from baseline to fifth cycle was strongly correlated with bone volume fraction (BV/TV, r = 0.96, p < 0.01 and structural model index (SMI, r = − 0.81, p < 0.01. The decrease ratio of elastic modulus from baseline to fifth cycle was also correlated with BV/TV (r = 0.80, p < 0.01 and SMI (r = − 0.78, p < 0.01. These data indicate that structural deterioration of cancellous bone is associated with bone strength after yield stress. This study suggests that

  2. Calcium Lactate addition in Bioconcrete: Effect on Compressive strength and Water penetration

    Directory of Open Access Journals (Sweden)

    Irwan J.M

    2016-01-01

    Full Text Available This paper presents compressive strength and water penetration of bioconcrete with addition of calcium lactate. Bioconcrete has higher engineering concrete properties and durability compared to normal concrete but the natural production of calcium carbonate is limited to the calcium content in cement. Therefore, additional calcium is added as an additional calcium source to study the influence towards compressive strength and water penetration. The bacteria used in this research are Enterococcus faecalis and Bacillus sp. Calcium lactate was added into concrete mix in concentrations of 0.001mol/l, 0.005mol/l and 0.01mol/l of liquid used. The concentration of bacteria added into the mix is by partial replacement of water used in casting, which are 3% for Enterococcus faecalis and 5% for Bacillus sp. Both compressive strength and water penetration test used cubes of 150mm × 150mm × 150mm. The cubes were tested after 28 days. The result of compressive strength for control is 36 MPa while partial replacement of bacteria yields 38.2 MPa for 3% Enterococcus faecalis and 37.0 MPa for 5% Bacillus sp. Calcium lactate with 0.005 mol/L has the best performance with 42.8 MPa for Enterococcus faecalis and 39.6 MPa for Bacillus sp. Whereas for water penetration, the best concentration of calcium lactate which yielded the lowest water penetration is 0.01 mol/l for both Enterococcus faecalis and Bacillus sp which are 8.7 cm and 8 cm respectively. The addition of calcium lactate into bioconcrete is quite promising for improvement of concrete properties and durability.

  3. Mesoscopic Numerical Computation of Compressive Strength and Damage Mechanism of Rubber Concrete

    Directory of Open Access Journals (Sweden)

    Z. H. Xie

    2015-01-01

    Full Text Available Evaluations of both macroscopic and mesoscopic strengths of materials have been the topic of a great deal of recent research. This paper presents the results of a study, based on the Walraven equation of the production of a mesoscopic random aggregate structure containing various rubber contents and aggregate sizes. On a mesoscopic scale, the damage mechanism in the rubber concrete and the effects of the rubber content and aggregate-mortar interface on the rubber concrete’s compressive resistance property were studied. The results indicate that the random aggregate structural model very closely approximates the experimental results in terms of the fracture distribution and damage characteristics under uniaxial compression. The aggregate-mortar interface mechanical properties have a substantial impact on the test sample’s strength and fracture distribution. As the rubber content increases, the compressive strength and elastic modulus of the test sample decrease proportionally. This paper presents graphics of the entire process from fracture propagation to structural failure of the test piece by means of the mesoscopic finite-element method, which provides a theoretical reference for studying the damage mechanism in rubber concrete and performing parametric calculations.

  4. Effects of Elevated Temperature on Compressive Strength Of Concrete

    African Journals Online (AJOL)

    This study presents the results of investigation of the effects of elevated temperatures on the compressive strength of Grade 40 concrete. A total of thirty cube specimens were cast, cured in water at ambient temperature in the laboratory and subjected to various temperature regimes before testing. A concrete mix of 1:1:3 ...

  5. Effect of Soorh Metakaolin on Concrete Compressive Strength and Durability

    Directory of Open Access Journals (Sweden)

    A. Saand

    2017-12-01

    Full Text Available Concrete durability is a key aspect for forecasting the expected life time of concrete structures. In this paper, the effect of compressive strength and durability of concrete containing metakaolin developed from a local natural material (Soorh of Thatta Distict of Sindh, Pakistan is investigated. Soorh is calcined by an electric furnace at 8000C for 2 hours to produce metakaolin. One mix of ordinary concrete and five mixes of metakaolin concrete were prepared, where cement is replaced by developed metakaolin from 5% to 25% by weight, with 5% increment step. The concrete durability was tested for water penetration, carbonation depth and corrosion resistance. The obtained outcomes demonstrated that, 15% replacement level of local developed metakaolin presents considerable improvements in concrete properties. Moreover, a considerable linear relationship was established between compressive strength and concrete durability indicators like water penetration, carbonation depth and corrosion resistance.

  6. Improving the Bearing Strength of Sandy Loam Soil Compressed Earth Block Bricks Using Sugercane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    Ramadhan W. Salim

    2014-06-01

    Full Text Available The need for affordable and sustainable alternative construction materials to cement in developing countries cannot be underemphasized. Compressed Earth Bricks have gained acceptability as an affordable and sustainable construction material. There is however a need to boost its bearing capacity. Previous research show that Sugarcane Bagasse Ash as a soil stabilizer has yielded positive results. However, there is limited research on its effect on the mechanical property of Compressed Earth Brick. This current research investigated the effect of adding 3%, 5%, 8% and 10% Sugarcane Bagasse Ash on the compressive strength of compressed earth brick. The result showed improvement in its compressive strength by 65% with the addition of 10% Sugarcane Bagasse Ash.

  7. Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials

    International Nuclear Information System (INIS)

    Wongkeo, Watcharapong; Thongsanitgarn, Pailyn; Pimraksa, Kedsarin; Chaipanich, Arnon

    2012-01-01

    Highlights: ► Autoclaved aerated concrete were produced using coal bottom ash as a cement replacement material. ► Coal bottom ash was found to enhance concrete strengths. ► Thermal conductivity of concrete was not significantly affected. ► X-ray diffraction and thermal analysis show tobermorite formation. -- Abstract: The bottom ash (BA) from Mae Moh power plant, Lampang, Thailand was used as Portland cement replacement to produce lightweight concrete (LWC) by autoclave aerated concrete method. Portland cement type 1, river sand, bottom ash, aluminium powder and calcium hydroxide (Ca(OH) 2 ) were used in this study. BA was used to replace Portland cement at 0%, 10%, 20% and 30% by weight and aluminium powder was added at 0.2% by weight in order to produce the aerated concrete. Compressive strength, flexural and thermal conductivity tests were then carried out after the concrete were autoclaved for 6 h and left in air for 7 days. The results show that the compressive strength, flexural strength and thermal conductivity increased with increased BA content due to tobermorite formation. However, approximately, 20% increase in both compressive (up to 11.61 MPa) and flexural strengths (up to 3.16 MPa) was found for mixes with 30% BA content in comparison to just around 6% increase in the thermal conductivity. Thermogravimetry analysis shows C–S–H formation and X-ray diffraction confirm tobermorite formation in bottom ash lightweight concrete. The use of BA as a cement replacement, therefore, can be seen to have the benefit in enhancing strength of the aerated concrete while achieving comparatively low thermal conductivity when compared to the results of the control Portland cement concrete.

  8. The effects of shelf life on the compressive strength of resin-modified glass ionomer cement

    Science.gov (United States)

    Wajong, K. H.; Damiyanti, M.; Irawan, B.

    2017-08-01

    Resin-modified glass ionomer cement (RMGIC) is a restoration material composed of powder and liquid whose stability is affected by its shelf life. This is an issue that has not been taken into consideration by customers or sellers. To observe the effects of shelf life on the compressive strength of RMGIC, 30 cylindrical (d = 4mm and t = 6mm) specimens of RMGIC (Fuji II LC, GC, Tokyo, Japan) were divided into three groups with different storage times and their compressive strength was tested with a universal testing machine. Results were statistically analyzed with the one-way ANOVA test. There were significant differences (p<0.05) between the three groups of RMGIC. There is a decrease in the compressive strength value along with the duration of storage time.

  9. Temperature and moisture content effects on compressive strength parallel to the grain of paricá

    Directory of Open Access Journals (Sweden)

    Manuel Jesús Manríquez Figueroa

    Full Text Available The aim of this study is to evaluate the effect of the temperature and moisture content on the compressive strength parallel to the grain of paricá (Schizolobium amazonicum Huber ex. Ducke from cultivated forests. The experiments were carried out on 3 timber samples under different conditions: heated (HT, thermal treatment (TT and water saturated (WS. The HT sample consisted of 105 clear specimens assembled in 15 groups, the TT consisted of 90 clear specimens assembled in 15 groups and the WS consisted of 90 clear specimens assembled in 9 groups. The specimens from HT and WS samples were tested at a temperature range from 20 to 230 ºC and 20 to 100 ºC, respectively. The HT specimens were tested at ambient temperature, but after being submitted to thermal treatment. The HT, TT and WS samples present a decrease in the compressive strength, reaching 65%, 76% and 59% of the compressive strength at room temperature, respectively. The decrease in the compressive strength of the HT and WS samples can be associated to the thermal degradation of wood polymers and the moisture content. For the TT sample, the strength increased for a pre-heating temperature of up to 170 °C due to the reduction in the moisture content of the specimens.

  10. Optimum mix for fly ash geopolymer binder based on workability and compressive strength

    Science.gov (United States)

    Arafa, S. A.; Ali, A. Z. M.; Awal, A. S. M. A.; Loon, L. Y.

    2018-04-01

    The request of concrete is increasing every day for sustaining the necessity of development of structure. The production of OPC not only consumes big amount of natural resources and energy, but also emit significant quantity of CO2 to the atmosphere. Therefore, it is necessary to find alternatives like Geopolymer to make the concrete environment friendly. Geopolymer is an inorganic alumino-silicate compound, produced from fly ash. This paper describes the experimental work conducted by casting 40 geopolymer paste mixes, and was cured at 80°C for 24 h to evaluate the effect of various parameters affecting the workability and compressive strength. Alkaline solution to fly ash ratio and sodium hydroxide (NaOH) concentration were chosen as the key parameters of strength and workability. Laboratory investigation with different percentage of sodium hydroxide concentration and different alkaline liquid to fly ash ratio reveals that the optimum ratios are 10 M, AL/FA=0.5. It has generally been found that the workability decreased and the compressive strength increased with an increase in the concentration of sodium hydroxide solution. However, workability was increased and the compressive strength was decreased with the increase in the ratio of fly ash to alkaline solution.

  11. Influence of alkali-silica reaction and crack orientation on the uniaxial compressive strength of concrete cores from slab bridges

    DEFF Research Database (Denmark)

    Antonio Barbosa, Ricardo; Gustenhoff Hansen, Søren; Hansen, Kurt Kielsgaard

    2018-01-01

    ASR-damaged flat slab bridges in service. Furthermore, the influence of the ASR-induced crack orientation on the compressive strength and the Young’s modulus is investigated. Uniaxial compression tests, visual observations, and thin section examinations were performed on more than 100 cores drilled...... from the three severely ASR-damaged flat slab bridges. It was found that the orientation of ASR-induced cracks has a significant influence on the uniaxial compressive strength and the stress-strain relationship of the tested cores. The compressive strength in a direction parallel to ASR cracks can...

  12. EFFECT OF SODIUM HYDROXIDE CONCENTRATION ON FRESH PROPERTIES AND COMPRESSIVE STRENGTH OF SELF-COMPACTING GEOPOLYMER CONCRETE

    Directory of Open Access Journals (Sweden)

    FAREED AHMED MEMON

    2013-02-01

    Full Text Available This paper reports the results of the laboratory tests conducted to investigate the effect of sodium hydroxide concentration on the fresh properties and compressive strength of self-compacting geopolymer concrete (SCGC. The experiments were conducted by varying the concentration of sodium hydroxide from 8 M to 14 M. Test methods such as Slump flow, V-Funnel, L-box and J-Ring were used to assess the workability characteristics of SCGC. The test specimens were cured at 70°C for a period of 48 hours and then kept in room temperature until the day of testing. Compressive strength test was carried out at the ages of 1, 3, 7 and 28 days. Test results indicate that concentration variation of sodium hydroxide had least effect on the fresh properties of SCGC. With the increase in sodium hydroxide concentration, the workability of fresh concrete was slightly reduced; however, the corresponding compressive strength was increased. Concrete samples with sodium hydroxide concentration of 12 M produced maximum compressive strength.

  13. A study on the effect of nano silica on compressive strength of high volume fly ash mortars and concretes

    International Nuclear Information System (INIS)

    Shaikh, F.U.A.; Supit, S.W.M.; Sarker, P.K.

    2014-01-01

    Highlights: • The addition of NS compensates low early age compressive strength of HVFA system. • NS also contributes to later age compressive strength gain of HVFA system. • The XRD results confirm the reduction of CH in HVFA paste due to addition of NS. - Abstract: This paper presents the effect of nano silica (NS) on the compressive strength of mortars and concretes containing different high volume fly ash (HVFA) contents ranging from 40% to 70% (by weight) as partial replacement of cement. The compressive strength of mortars is measured at 7 and 28 days and that for concretes is measured at 3, 7, 28, 56 and 90 days. The effects of NS in microstructure development and pozzolanic reaction of pastes containing above HVFA contents are also studied through backscattered electron (BSE) image and X-ray diffraction (XRD) analysis. Results show that among different NS contents ranging from 1% to 6%, cement mortar containing 2% NS exhibited highest 7 and 28 days compressive strength. This NS content (2%) is then added to the HVFA mortars and concretes and the results show that the addition of 2% NS improved the early age (7 days) compressive strength of mortars containing 40% and 50% fly ash by 5% and 7%, respectively. However, this improvement is not observed at high fly ash contents beyond 50%. On the other hand, all HVFA mortars exhibited improvement in 28 days compressive strength due to addition of 2% NS and the most significant improvement is noticed in mortars containing more than 50% fly ash. In HVFA concretes, the improvement of early age (3 days) compressive strength is also noticed due to addition of 2% NS. The BSE and XRD analysis results also support the above findings

  14. Comparison of Elastic Modulus and Compressive Strength of Ariadent and Harvard Polycarboxylate Cement and Vitremer Resin Modified Glass Ionomer

    Directory of Open Access Journals (Sweden)

    Ahmadian Khoshemehr Leila

    2009-09-01

    Full Text Available Background: Luting agents are used to attach indirect restoration into or on the tooth. Poor mechanical properties of cement may be a cause of fracture of this layer and lead to caries and restoration removal. The purpose of this study was to compare the elastic modulus and compressive strength of Ariadent (A Poly and Harvard polycarboxylate (H Poly cements and Vitremer resin modified glass ionomer (RGl.Materials & Methods: In this experimental study 15 specimens were prepared form each experimental cement in Laboratory of Tehran Oil Refining Company. The cylindrical specimens were compressed in Instron machine after 24 hours. Elastic modulus and compressive strength were calculated from stress/strain curve of each specimen. One way ANOVA and Tukey tests were used for statistical analysis and P values<0.05 were considered to be statistically significant.Results: The mean elastic modulus and mean compressive strength were 2.2 GPa and 87.8MPa in H poly, 2.4 GPa and 56.5 MPa in A Poly, and 0.8GPa and 105.6 MPa in RGI, respectively. Statistical analysis showed that compressive strength and elastic modulus of both polycarboxylate cements were significantly different from hybrid ionomer (P<0.05, but the difference between elastic modulus of two types of polycarboxilate cements was not statistically significant. Compressive strength of two polycarboxilate cements were significantly different (P<0.05. Conclusion: An ideal lutting agent must have the best mechanical properties. Between the tested luttins RGl cement had the lowest elastic modulus and the highest compressive strength, but the A poly cement had the highest elastic modulus and the lowest compressive strength. Therefore none of them was the best.

  15. Effects of densified silica fume on microstructure and compressive strength of blended cement pastes

    International Nuclear Information System (INIS)

    Ji Yajun; Cahyadi, Jong Herman

    2003-01-01

    Some experimental investigations on the microstructure and compressive strength development of silica fume blended cement pastes are presented in this paper. The silica fume replacement varies from 0% to 20% by weight and the water/binder ratio (w/b) is 0.4. The pore structure by mercury intrusion porosimetry (MIP), the micromorphology by scanning electron microscopy (SEM) and the compressive strength at 3, 7, 14, 28, 56 and 90 days have been studied. The test results indicate that the improvements on both microstructure and mechanical properties of hardened cement pastes by silica fume replacement are not effective due to the agglomeration of silica fume particles. The unreacted silica fume remained in cement pastes, the threshold diameter was not reduced and the increase in compressive strength was insignificant up to 28 days. It is suggested that the proper measures should be taken to disperse silica fume agglomeration to make it more effective on improving the properties of materials

  16. Influence of aggregate characteristics on the compressive strength of normal weight concrete

    International Nuclear Information System (INIS)

    Qureshi, M.A.; Aslam, M.

    2015-01-01

    Experimental investigations on the properties of concrete have been performed around the globe and their correlation is interpreted in relevant design codes. The structural behavior of cement concrete significantly relies on the material resources, properties of the aggregates constituting the concrete and the local construction practice. These factors vary from place to place. Therefore, the compressive strength of concrete prepared from the aggregates available in one locality may not be directly applicable to the other areas. The purpose of this study is to evaluate the Influence of locally available coarse aggregates on the compressive strength of normal weight concrete (NWC) prepared under local environmental conditions of district Khairpur Mir's, Sindh, Pakistan. The coarse aggregates were collected from five different quarries in the vicinity of Khairpur Mir's, Pakistan. In total; 180 cubes were tested. 10 different batches were formed in order to arrange individual characterization of concrete. Each batch was contained of 18 cubes and each quarry contains 2 batches making a total of 36 cube with four different ratios for each quarry. Dry density and compressive strength of concrete was calculated and a comparison is provided as a guideline for the future construction work in the local community. (author)

  17. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Lee

    2015-03-01

    Full Text Available In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter. In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  18. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.

    Science.gov (United States)

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-03-27

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  19. Effects of CuO nanoparticles on compressive strength of self ...

    Indian Academy of Sciences (India)

    In the present study, the compressive strength, thermal properties and microstructure of self-compacting concrete with different amounts of CuO nanoparticles have been investigated. CuO nanoparticles with an average particle size of 15 nm were added to self-compacting concrete and various properties of the specimens ...

  20. Compressive Strength Properties of Natural Gas Hydrate Pellet by Continuous Extrusion from a Twin-Roll System

    Directory of Open Access Journals (Sweden)

    Yun-Hoo Lee

    2013-01-01

    Full Text Available This study investigates the compressive strength of natural gas hydrate (NGH pellet strip extruded from die holes of a twin-roll press for continuous pelletizing (TPCP. The lab-scale TPCP was newly developed, where NGH powder was continuously fed and extruded into strip-type pellet between twin rolls. The system was specifically designed for future expansion towards mass production of solid form NGH. It is shown that the compressive strength of NGH pellet strip heavily depends on parameters in the extrusion process, such as feeding pressure, pressure ratio, and rotational speed. The mechanism of TPCP, along with the compressive strength and density of pellets, is discussed in terms of its feasibility for producing NGH pellets in the future.

  1. Behaviour and strength assessment of masonry prisms

    Directory of Open Access Journals (Sweden)

    Nassif Nazeer Thaickavil

    2018-06-01

    Full Text Available This is a case study presenting the cracking behavior and assessment of the compressive strength of masonry prisms. The compressive strength of masonry was determined by performing laboratory tests on 192 masonry prism specimens corresponding to 3 specimens each in 64 groups. The variables considered in the experimental program are type of brick, strength of masonry and height-to-thickness (h/t ratio of the prism specimen. Pressed earth bricks and burnt clay bricks were used for the preparation of masonry prisms. A mathematical model is also proposed for the estimation of compressive strength of masonry prisms by performing a statistical multiple regression analysis on 232 data sets, which includes 64 test data from the present study and 168 test data published in the literature. The model was developed based on the regression analysis of test data of prisms made of a variety of masonry units namely clay bricks, pressed earth bricks, concrete blocks, calcium silicate bricks, stone blocks, perforated bricks and soft mud bricks. The proposed model not only accounts for the wide ranges of compressive strengths of masonry unit and mortar, but also accounts for the influence of volume fractions of masonry unit and mortar in addition to the height-to-thickness ratio. The predicted compressive strength of prisms using the proposed model is compared with 14 models available in published literature. The predicted strength was found to be in good agreement with the corresponding experimental data. Keywords: Prism strength, Stack bonded masonry, Running bonded masonry, Masonry unit strength, Cracking

  2. The variability of wood density and compression strength of Norway spruce

    Czech Academy of Sciences Publication Activity Database

    Horáček, Petr; Fajstavr, Marek; Stojanović, Marko

    2017-01-01

    Roč. 10, 1-2 (2017), s. 17-26 ISSN 1803-2451 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : Norway spruce * wood density * compression strength * variability Subject RIV: GK - Forestry OBOR OECD: Forestry

  3. Effects of Texture and Grain Size on the Yield Strength of ZK61 Alloy Rods Processed by Cyclic Extrusion and Compression.

    Science.gov (United States)

    Zhang, Lixin; Zhang, Wencong; Cao, Biao; Chen, Wenzhen; Duan, Junpeng; Cui, Guorong

    2017-10-26

    The ZK61 alloy rods with different grain sizes and crystallographic texture were successfully fabricated by cyclic extrusion and compression (CEC). Their room-temperature tension & compression yield strength displayed a significant dependence on grain size and texture, essentially attributed to {10-12} twinning. The texture variations were characterized by the angle θ between the c-axis of the grain and the extrusion direction (ED) during the process. The contour map of room-temperature yield strength as a function of grain size and the angle θ was obtained. It showed that both the tension yield strength and the compression yield strength of ZK61 alloy were fully consistent with the Hall-Patch relationship at a certain texture, but the change trends of the tension yield strength and the compression yield strength were completely opposite at the same grain size while texture altered. The friction stresses of different deformation modes calculated based on the texture confirmed the tension yield strength of the CECed ZK61 alloy rods, which was determined by both the basal slip and the tension twinning slip during the tension deformation at room temperature, while the compression yield strength was mainly determined by the basal slip during the compression deformation.

  4. Damage Behaviors and Compressive Strength of Toughened CFRP Laminates with Thin Plies Subjected to Transverse Impact Loadings

    Science.gov (United States)

    Yokozeki, Tomohiro; Aoki, Yuichiro; Ogasawara, Toshio

    It has been recognized that damage resistance and strength properties of CFRP laminates can be improved by using thin-ply prepregs. This study investigates the damage behaviors and compressive strength of CFRP laminates using thin-ply and standard prepregs subjected to out-of-plane impact loadings. CFRP laminates used for the evaluation are prepared using the standard prepregs, thin-ply prepregs, and combinations of the both. Weight-drop impact test and post-impact compression test of quasi-isotropic laminates are performed. It is shown that the damage behaviors are different between the thin-ply and the standard laminates, and the compression-after-impact strength is improved by using thin-ply prepregs. Effects of the use of thin-ply prepregs and the layout of thin-ply layers on the damage behaviors and compression-after-impact properties are discussed based on the experimental results.

  5. Optimum concrete compression strength using bio-enzyme

    Directory of Open Access Journals (Sweden)

    Bagio Tony Hartono

    2017-01-01

    Full Text Available To make concrete with high compressive strength and has a certain concrete specifications other than the main concrete materials are also needed concrete mix quality control and other added material is also in line with the current technology of concrete mix that produces concrete with specific characteristics. Addition of bio enzyme on five concrete mixture that will be compared with normal concrete in order to know the optimum level bio-enzyme in concrete to increase the strength of the concrete. Concrete with bio-enzyme 200 ml/m3, 400 ml/m3, 600 ml/m3, 800 ml/m3, 1000 ml/m3 and normal concrete. Refer to the crushing test result, its tends to the mathematical model using 4th degree polynomial regression (least quartic, as represent on the attached data series, which is for the design mix fc′ = 25 MPa generate optimum value for 33,98 MPa, on the bio-additive dosage of 509 ml bio enzymes.

  6. Damaging Effects of Dieldrex-20 on the Compressive Strength of ...

    African Journals Online (AJOL)

    Analysis of the results showed that as the percentage of aqueous solution of dilclrex-20 increases, the compressive strength of concrete decreases. This decrease is independent of concrete grade and age. It also showed that the 5 per cent aqueous solution of dieldrex-20 recommended dosage should be strictly adhered to ...

  7. THE EFFECT OF VOLUME VARIATION OF SILVER NANOPARTICLE SOLUTION TOWARDS THE POROSITY AND COMPRESSIVE STRENGTH OF MORTAR

    Directory of Open Access Journals (Sweden)

    W.S.B. Dwandaru

    2016-10-01

    Full Text Available As the world is growing rapidly, people need better building materials such as mortar. The aim of this research is to determine the effect of adding silver nanoparticle solution towards the porosity and compressive strength of mortar. This research was started by making silver nanoparticle solution from nitrate silver (AgNO3. The solution is then characterized using Uv-Vis spectrophotometer. 5 mM silver nanoparticle is added in the process of mortar production with volume variation of the silver nanoparticle solution. The porosity, compressive strength, and the content of mortar were determined by digital scale, universal testing machine, and X-ray diffraction, respectively. For silver nanoparticle solution volumes of (in mL 0, 5, 10, 15, 20, and 25 the porosity obtained are (in % 20.38, 19.48, 19.42, 18.9, 17.8, and 17.5, respectively. The best increase in compressive strength is obtained for (in MPa 29,068, 29,308, and 31,385, with nanoparticle solution volumes of (in mL 5, 10, and 15   Keywords: mortar, silver nanoparticle, compressive strength

  8. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.

    Science.gov (United States)

    Pujari-Palmer, Michael; Robo, Celine; Persson, Cecilia; Procter, Philip; Engqvist, Håkan

    2018-01-01

    still produce a significant improvement in screw pull-out force. When the correlation strength of all the tested models were compared both cement porosity and compressive strength accurately predicted pull-out force (R 2 =1.00, R 2 =0.808), though prediction accuracy depended upon the strength of the material surrounding the Sawbone. The correlations strength was low for bone with no, or weak, cortical fixation (R 2 =0.56, 0.36). Higher strength and lower porosity CPCs also produced greater pull-out force (1-1.5kN) than commercial CPC (0.2-0.5kN), but lower pull-out force than PMMA (2-3kN). The results of this study suggest that the likelihood of screw fixation failure may be reduced by selecting calcium phosphate cements with lower porosity and higher compressive strength, in patients with healthy bone mineral density and/or sufficient cortical thickness. This is of particular clinical relevance when fixation with metal plates is indicated, or where the augmentation volume is limited. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Strength of tensed and compressed concrete segments in crack spacing under short-term dynamic load

    Directory of Open Access Journals (Sweden)

    Galyautdinov Zaur

    2018-01-01

    Full Text Available Formation of model describing dynamic straining of reinforced concrete requires taking into account the basic aspects influencing the stress-strain state of structures. Strength of concrete segments in crack spacing is one of the crucial aspects that affect general strain behavior of reinforced concrete. Experimental results demonstrate significant change in strength of tensed and compressed concrete segments in crack spacing both under static and under dynamic loading. In this case, strength depends on tensile strain level and the slope angle of rebars towards the cracks direction. Existing theoretical and experimental studies estimate strength of concrete segments in crack spacing under static loading. The present work presents results of experimental and theoretical studies of dynamic strength of plates between cracks subjected to compression-tension. Experimental data was analyzed statistically; the dependences were suggested to describe dynamic strength of concrete segments depending on tensile strain level and slope angle of rebars to cracks direction.

  10. Influence of curing regimes on compressive strength of ultra high

    Indian Academy of Sciences (India)

    The present paper is aimed to identify an efficient curing regime for ultra high performance concrete (UHPC), to achieve a target compressive strength more than 150 MPa, using indigenous materials. The thermal regime plays a vital role due to the limited fineness of ingredients and low water/binder ratio. By activation of the ...

  11. Effects of Elevated Temperatures on the Compressive Strength Capacity of Concrete Cylinders Confined with FRP Sheets: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Sherif El-Gamal

    2015-01-01

    Full Text Available Due to their high strength, corrosion resistance, and durability, fiber reinforced polymers (FRP are very attractive for civil engineering applications. One of these applications is the strengthening of concrete columns with FRP sheets. The performance of this strengthening technique at elevated temperature is still questionable and needs more investigations. This research investigates the effects of exposure to high temperatures on the compressive strength of concrete cylinders wrapped with glass and carbon FRP sheets. Test specimens consisted of 30 unwrapped and 60 wrapped concrete cylinders. All specimens were exposed to temperatures of 100, 200, and 300°C for periods of 1, 2, and 3 hours. The compressive strengths of the unwrapped concrete cylinders were compared with their counterparts of the wrapped cylinders. For the unwrapped cylinders, test results showed that the elevated temperatures considered in this study had almost no effect on their compressive strength; however, the wrapped specimens were significantly affected, especially those wrapped with GFRP sheets. The compressive strength of the wrapped specimens decreased as the exposure period and the temperature level increased. After three hours of exposure to 300°C, a maximum compressive strength loss of about 25.3% and 37.9%, respectively, was recorded in the wrapped CFRP and GFRP specimens.

  12. Investigation of compressive strength of concrete with slag and silica fu

    International Nuclear Information System (INIS)

    Mostofinejad, D.; Mirtalee, K.; Sadeghi, M.

    2002-01-01

    Without doubt, concrete has special place in construction of different types of structures, and used as one of the most important materials in construction industry. Today, with development and modernization of human knowledge in construction industry, it is possible to reach h igh performance concrete . Mechanical properties and durability of high performance concrete is quite better than that of conventional concrete. In present, the use of supplementary cementitious materials, mainly silica fume, fly ash and blast furnace slag has become increasingly common for reasons of economy and technical benefits imparted by these materials. The aim of present research is investigation and comparison compressive strength of concrete specimens due to variation of water to cementitious materials ratio (W/C M), silica fume and slag percent and their proportions as cement replacement. Furthermore, it is intended to determine best combination of these materials with cement in concrete (optimum percent) to reach to maximum compressive strength. In the current study, specimens were made in 0.5,0.4 and 0.3 W/C M ratio contained 0,20,35 and 50 percent of slag as cement replacement, where in each slag replacement percent, 0, 5, 10 and 15 percent of of silica fume were used as cement replacement. Results of the current study show that the combination effect of slag and silica fume replacement in concrete leads to the maximum compressive strength in concrete; also there are some optimum percents for replacement of slag and silica fume to cement to get the best results

  13. Development of Compressive Failure Strength for Composite Laminate Using Regression Analysis Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Keon [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2016-10-15

    This paper provides the compressive failure strength value of composite laminate developed by using regression analysis method. Composite material in this document is a Carbon/Epoxy unidirection(UD) tape prepreg(Cycom G40-800/5276-1) cured at 350°F(177°C). The operating temperature is –60°F~+200°F(-55°C - +95°C). A total of 56 compression tests were conducted on specimens from eight (8) distinct laminates that were laid up by standard angle layers (0°, +45°, –45° and 90°). The ASTM-D-6484 standard was used for test method. The regression analysis was performed with the response variable being the laminate ultimate fracture strength and the regressor variables being two ply orientations (0° and ±45°)

  14. Development of Compressive Failure Strength for Composite Laminate Using Regression Analysis Method

    International Nuclear Information System (INIS)

    Lee, Myoung Keon; Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon

    2016-01-01

    This paper provides the compressive failure strength value of composite laminate developed by using regression analysis method. Composite material in this document is a Carbon/Epoxy unidirection(UD) tape prepreg(Cycom G40-800/5276-1) cured at 350°F(177°C). The operating temperature is –60°F~+200°F(-55°C - +95°C). A total of 56 compression tests were conducted on specimens from eight (8) distinct laminates that were laid up by standard angle layers (0°, +45°, –45° and 90°). The ASTM-D-6484 standard was used for test method. The regression analysis was performed with the response variable being the laminate ultimate fracture strength and the regressor variables being two ply orientations (0° and ±45°)

  15. Determination of the compressive yield strength for nano-grained YAG transparent ceramic by XRD analysis

    International Nuclear Information System (INIS)

    Wang, H.M.; Jiang, J.S.; Huang, Z.Y.; Chen, Y.; Liu, K.; Lu, Z.W.; Qi, J.Q.; Li, F.; He, D.W.; Lu, T.C.; Wang, Q.Y.

    2016-01-01

    Nano-grained ceramics have their unique mechanical characteristics that are not commonly found in their coarse-grained counterparts. In this study, nano-grained YAG transparent ceramics (NG-YAG) were prepared by low-temperature high-pressure technique (LTHP). The peak profile analysis of the X-ray diffraction was employed to investigate the compressive yield strength of NG-YAG. During the temperature at 450 °C, the residual micro-strain (RMS) increased with increasing loading pressure. However when the loading pressure was exceeded to 4.0 GPa the RMS exhibited a severe negative slop. The temperature effects on the compressive yield strength were also studied. It shows that the compressive yield strength of NG-YAG is 4.0 GPa and 5.0 GPa respectively at 450 °C and 350 °C. More importantly according to this investigation, a feasible technique to study the nano-grained ceramics is provided. - Graphical abstract: Fig. 2 shows the significant slope changes of calculated residual micro-strain (RMS) associated with five selected pressure-temperature conditions. Another the grain size estimated from Scherrer's formula, especially when it changes with the pressure-temperature condition is also plotted in Fig. 2. - Highlights: • Prepared the nano-grained YAG transparent ceramic by high pressure technique. • Obtained the compressive yield with different temperature. • Obtained the compressive yield of nano-grained YAG transparent ceramic.

  16. Improvement of the compressive strength of a cuttlefish bone-derived porous hydroxyapatite scaffold via polycaprolactone coating.

    Science.gov (United States)

    Kim, Beom-Su; Kang, Hyo Jin; Lee, Jun

    2013-10-01

    Cuttlefish bones (CBs) have emerged as attractive biomaterials because of their porous structure and components that can be converted into hydroxyapatite (HAp) via a hydrothermal reaction. However, their brittleness and low strength restrict their application in bone tissue engineering. Therefore, to improve the compressive strength of the scaffold following hydrothermal conversion to a HAp form of CB (CB-HAp), the scaffold was coated using a polycaprolactone (PCL) polymer at various concentrations. In this study, raw CB was successfully converted into HAp via a hydrothermal reaction. We then evaluated their surface properties and composition by scanning electron microscopy and X-ray diffraction analysis. The CB-HAp coated with PCL showed improved compressive performance and retained a microporous structure. The compressive strength was significantly increased upon coating with 5 and 10% PCL, by 2.09- and 3.30-fold, respectively, as compared with uncoated CB-HAp. However, coating with 10% PCL resulted in a reduction in porosity. Furthermore, an in vitro biological evaluation demonstrated that MG-63 cells adhered well, proliferated and were able to be differentiated on the PCL-coated CB-HAp scaffold, which was noncytotoxic. These results suggest that a simple coating method is useful to improve the compressive strength of CB-HAp for bone tissue engineering applications. Copyright © 2013 Wiley Periodicals, Inc.

  17. Prediction of compressibility parameters of the soils using artificial neural network.

    Science.gov (United States)

    Kurnaz, T Fikret; Dagdeviren, Ugur; Yildiz, Murat; Ozkan, Ozhan

    2016-01-01

    The compression index and recompression index are one of the important compressibility parameters to determine the settlement calculation for fine-grained soil layers. These parameters can be determined by carrying out laboratory oedometer test on undisturbed samples; however, the test is quite time-consuming and expensive. Therefore, many empirical formulas based on regression analysis have been presented to estimate the compressibility parameters using soil index properties. In this paper, an artificial neural network (ANN) model is suggested for prediction of compressibility parameters from basic soil properties. For this purpose, the input parameters are selected as the natural water content, initial void ratio, liquid limit and plasticity index. In this model, two output parameters, including compression index and recompression index, are predicted in a combined network structure. As the result of the study, proposed ANN model is successful for the prediction of the compression index, however the predicted recompression index values are not satisfying compared to the compression index.

  18. Strength properties and structure of a submicrocrystalline Al-Mg-Mn alloy under shock compression

    Science.gov (United States)

    Petrova, A. N.; Brodova, I. G.; Razorenov, S. V.

    2017-06-01

    The results of studying the strength of a submicrocrystalline aluminum A5083 alloy (chemical composition was 4.4Mg-0.6Mn-0.11Si-0.23Fe-0.03Cr-0.02Cu-0.06Ti wt % and Al base) under shockwave compression are presented. The submicrocrystalline structure of the alloy was produced in the process of dynamic channel-angular pressing at a strain rate of 104 s-1. The average size of crystallites in the alloy was 180-460 nm. Hugoniot elastic limit σHEL, dynamic yield stress σy, and the spall strength σSP of the submicrocrystalline alloy were determined based on the free-surface velocity profiles of samples during shock compression. It has been established that upon shock compression, the σHEL and σy of the submicrocrystalline alloy are higher than those of the coarse-grained alloy and σsp does not depend on the grain size. The maximum value of σHEL reached for the submicrocrystalline alloy is 0.66 GPa, which is greater than that in the coarse-crystalline alloy by 78%. The dynamic yield stress is σy = 0.31 GPa, which is higher than that of the coarse-crystalline alloy by 63%. The spall strength is σsp = 1.49 GPa. The evolution of the submicrocrystalline structure of the alloy during shock compression was studied. It has been established that a mixed nonequilibrium grain-subgrain structure with a fragment size of about 400 nm is retained after shock compression, and the dislocation density and the hardness of the alloy are increased.

  19. The Influence of GI and GII on the Compression After Impact Strength of Carbon Fiber/Epoxy Laminates and Sandwich Structure

    Science.gov (United States)

    Nettles, A. T.; Scharber, L. L.

    2017-01-01

    This study measured the compression after impact strength of IM7 carbon fiber laminates made from epoxy resins with various mode I and mode II toughness values to observe the effects of these toughness values on the resistance to damage formation and subsequent residual compression strength-carrying capabilities. Both monolithic laminates and sandwich structure were evaluated. A total of seven different epoxy resin systems were used ranging in approximate GI values of 245-665 J/sq m and approximate GII values of 840-2275 J/sq m. The results for resistance to impact damage formation showed that there was a direct correlation between GII and the planar size of damage, as measured by thermography. Subsequent residual compression strength testing suggested that GI had no influence on the measured values and most of the difference in compression strength was directly related to the size of damage. Thus, delamination growth assumed as an opening type of failure mechanism does not appear to be responsible for loss of compression strength in the specimens examined in this study.

  20. The influence of lay-up and thickness on composite impact damage and compression strength

    Science.gov (United States)

    Guynn, E. G.; Obrien, T. K.

    1985-01-01

    The effects of composite stacking sequence, thickness, and percentage of zero-degree plies on the size, shape, and distribution of delamination through the laminate thickness and on residual compression strength following impact were studied. Graphite/epoxy laminates were impacted with an 0.5 inch diameter aluminum sphere at a specific low or high velocity. Impact damage was measured nondestructively by ultrasonic C-scans and X-radiography and destructively by the deply technique, and compression strength tests were performed. It was found that differences in compression failure strain due to stacking sequence were small, while laminates with very low percentages of zero-degree plies had similar failure loads but higher failure strains than laminates with higher percentages of zero-degree plies. Failure strain did not correlate with planar impact damage area, and delaminations in impact regions were associated with matrix cracking.

  1. Influence of Palm Oil Fuel Ash and W/B Ratios on Compressive Strength, Water Permeability, and Chloride Resistance of Concrete

    Directory of Open Access Journals (Sweden)

    Wachilakorn Sanawung

    2017-01-01

    Full Text Available This research studies the effects of W/B ratios and palm oil fuel ash (POFA on compressive strength, water permeability, and chloride resistance of concrete. POFA was ground until the particles retained on sieve number 325 were less than 5% by weight. POFA was used to partially replace OPC at rates of 15, 25, and 35% by weight of binder. The water to binder (W/B ratios of concrete were 0.40 and 0.50. The compressive strength, water permeability, and chloride resistance of concrete were investigated up to 90 days. The results showed that POFA concrete with W/B ratio of 0.40 had the compressive strengths ranging from 45.8 to 55.9 MPa or 82–94% of OPC concrete at 90 days, while POFA concrete with W/B ratio of 0.50 had the compressive strengths of 33.9–41.9 MPa or 81–94% of OPC concrete. Furthermore, the compressive strength of concrete incorporation of ground POFA at 15% was the same as OPC concrete. The water permeability coefficient and the chloride ion penetration of POFA concrete were lower than OPC concrete when both types of concrete had the same compressive strengths. The findings also indicated that water permeability and chloride ion penetration of POFA concrete were significantly reduced compared to OPC concrete.

  2. Compressive Strength of EN AC-44200 Based Composite Materials Strengthened with α-Al2O3 Particles

    Directory of Open Access Journals (Sweden)

    Kurzawa A.

    2017-06-01

    Full Text Available The paper presents results of compressive strength investigations of EN AC-44200 based aluminum alloy composite materials reinforced with aluminum oxide particles at ambient and at temperatures of 100, 200 and 250°C. They were manufactured by squeeze casting of the porous preforms made of α-Al2O3 particles with liquid aluminum alloy EN AC-44200. The composite materials were reinforced with preforms characterized by the porosities of 90, 80, 70 and 60 vol. %, thus the alumina content in the composite materials was 10, 20, 30 and 40 vol.%. The results of the compressive strength of manufactured materials were presented and basing on the microscopic observations the effect of the volume content of strengthening alumina particles on the cracking mechanisms during compression at indicated temperatures were shown and discussed. The highest compressive strength of 470 MPa at ambient temperature showed composite materials strengthened with 40 vol.% of α-Al2O3 particles.

  3. Uniaxial Compressive Strength and Fracture Mode of Lake Ice at Moderate Strain Rates Based on a Digital Speckle Correlation Method for Deformation Measurement

    Directory of Open Access Journals (Sweden)

    Jijian Lian

    2017-05-01

    Full Text Available Better understanding of the complex mechanical properties of ice is the foundation to predict the ice fail process and avoid potential ice threats. In the present study, uniaxial compressive strength and fracture mode of natural lake ice are investigated over moderate strain-rate range of 0.4–10 s−1 at −5 °C and −10 °C. The digital speckle correlation method (DSCM is used for deformation measurement through constructing artificial speckle on ice sample surface in advance, and two dynamic load cells are employed to measure the dynamic load for monitoring the equilibrium of two ends’ forces under high-speed loading. The relationships between uniaxial compressive strength and strain-rate, temperature, loading direction, and air porosity are investigated, and the fracture mode of ice at moderate rates is also discussed. The experimental results show that there exists a significant difference between true strain-rate and nominal strain-rate derived from actuator displacement under dynamic loading conditions. Over the employed strain-rate range, the dynamic uniaxial compressive strength of lake ice shows positive strain-rate sensitivity and decreases with increasing temperature. Ice obtains greater strength values when it is with lower air porosity and loaded vertically. The fracture mode of ice seems to be a combination of splitting failure and crushing failure.

  4. Retention Strength after Compressive Cyclic Loading of Five Luting Agents Used in Implant-Supported Prostheses

    Directory of Open Access Journals (Sweden)

    Angel Alvarez-Arenal

    2016-01-01

    Full Text Available The purpose of this study was to evaluate and compare the retention strength of five cement types commonly used in implant-retained fixed partial dentures, before and after compressive cyclic loading. In five solid abutments screwed to 5 implant analogs, 50 metal Cr-Ni alloy copings were cemented with five luting agents: resin-modified glass ionomer (RmGI, resin composite (RC, glass ionomer (GI, resin urethane-based (RUB, and compomer cement (CC. Two tensile tests were conducted with a universal testing machine, one after the first luting of the copings and the other after 100,000 cycles of 100 N loading at 0.72 Hz. The one way ANOVA test was applied for the statistical analysis using the post hoc Tukey test when required. Before and after applying the compressive load, RmGI and RC cement types showed the greatest retention strength. After compressive loading, RUB cement showed the highest percentage loss of retention (64.45%. GI cement recorded the lowest retention strength (50.35 N and the resin composite cement recorded the highest (352.02 N. The type of cement influences the retention loss. The clinician should give preference to lower retention strength cement (RUB, CC, and GI if he envisages any complications and a high retention strength one (RmGI, RC for a specific clinical situation.

  5. Comparison of antimicrobial activities and compressive strength of alginate impression materials following disinfection procedure.

    Science.gov (United States)

    Alwahab, Zahraa

    2012-07-01

    This study investigated the effectiveness of disinfecting solution when incorporated into alginate powder instead of water against some microorganisms and on compressive strength of alginate. For measuring antimicrobial activity of alginate, 60 alginate specimens were prepared and divided into two groups: One with water incorporated in the mix (control) and the other with 0.2% chlorhexidine digluconate incorporated in the mix instead of water. The tested microorganisms were: gram +ve cocci, gram -ve bacilli and yeast (each group 10 samples). For measuring compressive strength, 20 specimens of alginate were divided into two groups: One with water incorporated in the mix (control) and the other with chlorhexidine incorporated in the mix. The statistical analysis of antimicrobial efficacy of alginate was performed with Mann-Whitney U-test, which revealed very high significant difference when comparing among groups (p 0.05). The incorporation of disinfecting agents into impression materials could serve an important role in dental laboratory infection control and it had no adverse effect on compressive strength of the hydrocolloid alginate. The risk of transmitting pathogenic microorganisms to dental laboratories via impression has been considered a topic of importance for a number of years.

  6. Effects of Calcined clay minerals and Silica fume on the compressive strength of concrete

    Directory of Open Access Journals (Sweden)

    Abolfazl Soltani

    2017-05-01

    Full Text Available Pozzolanic materials are well known as potential replacements for cement manufacturing in order to increase compressive strength and improve durability of concrete in different environments and leading to save energy particularly reducing global warming effect. The present study reveals the effect of calcined clay minerals as natural pozzolanic material, separately and in combination with and without silica fume. To achieve this aim, 15 mixed designs with a constant water to cementitious ratio of  0.38 is made. In six mixed designs only metakaolin, zeolite or silica fume  and in eight other designs metakaolin and silica fume or zeolite and silica fume have been combined. Mixes containing metakaolin or zeolite with ratio of 10 or 20 percent and silica fume with 7 or 10 percent show significant increasing in compressive strength and improving durability, being valuable replacement for cement (in percentages. In particular, the best practice is attributed to the age of 28 days for compressive strength the replacement of the composition is 10% zeolite with 7% of silica fume and for electrical resistance the replacement of the composition is 10% zeolite with 7% of silica fume.

  7. Reliability-Based Approach for the Determination of the Required Compressive Strength of Concrete in Mix Design

    OpenAIRE

    Okasha , Nader M

    2017-01-01

    International audience; Concrete is recognized as the second most consumed product in our modern life after water. The variability in concrete properties is inevitable. The concrete mix is designed for a compressive strength that is different from, typically higher than, the value specified by the structural designer. Ways to calculate the compressive strength to be used in the mix design are provided in building and structural codes. These ways are all based on criteria related purely and on...

  8. Characteristic compression strength of a brickwork masonry starting from the strength of its components. Experimental verification of analitycal equations of european codes

    Directory of Open Access Journals (Sweden)

    Rolando, A.

    2006-09-01

    Full Text Available In this paper the compression strength of a clay brickwork masonry bound with cement mortar is analyzed. The target is to obtain the characteristic compression strength of unreinforced brickwork masonry. This research try to test the validity of the analytical equations in European codes, comparing the experimental strength with the analytically obtained from the strength of its components (clay brick and cement mortar.En este artículo se analiza la resistencia a compresión de una fábrica de ladrillo cerámico, asentado con mortero de cemento.El objetivo es obtener la resistencia característica a compresión de la fábrica sin armar.La investigación comprueba la fiabilidad de las expresiones analíticas existentes en la normativa europea, comparando la resistencia obtenida experimentalmente con la obtenida analíticamente, a partir de la resistencia de sus componentes (ladrillo cerámico y mortero de cemento.

  9. An investigation on compression strength analysis of commercial aluminium tube to aluminium 2025 tube plate by using TIG welding process

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, S., E-mail: kannan.dgl201127@gmail.com [Department of Mechanical Engineering and Mining Machinery Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, India, 826004 (India); Senthil Kumaran, S., E-mail: sskumaran@ymail.com [Research and Development Center, Department of Mechanical Engineering, RVS Educational Trust' s Group of Institutions, RVS School of Engineering and Technology, Dindigul, Tamilnadu, India, 624005 (India); Kumaraswamidhas, L.A., E-mail: lakdhas1978@gmail.com [Department of Mechanical Engineering and Mining Machinery Engineering, Indian School of Mines University, Dhanbad, Jharkhand, India, 826004 (India)

    2016-05-05

    In this present study, Tungsten inert gas (TIG) welding was applied to weld the dissimilar materials and authenticate the mechanical and metallurgical properties of tube to tube plate made up of commercial aluminium and Al 2025 respectively using an Zirconiated tungsten electrode along with filler material aluminium ER 2219. In total, twenty five pieces has been subjected to compression strength and hardness value to evaluate the optimal joint strength. The three optimization technique has been used in this experiment. Taguchi L{sub 25} orthogonal array is used to identify the most influencing process parameter which affects the joint strength. ANOVA method is measured for both compression strength and hardness to calculate the percentage of contribution for each process parameter. Genetic algorithm is used to validate the results obtained from the both experimental value and optimization value. The micro structural study is depicted the welding joints characterization in between tube to tube plate joints. The radiograph test is conducted to prove the welds are non-defective and no flaws are found during the welding process. The mechanical property of compression strength and hardness has been measured to obtain the optimal joint strength of the welded sample was about 174.846 MPa and 131.364 Hv respectively. - Highlights: • Commercial Al tube and Al 2025 tube plate successfully welded by TIG welding. • Compression strength and hardness value proves to obtain optimal joint strength. • The maximum compression and hardness was achieved in various input parameters.

  10. An investigation on compression strength analysis of commercial aluminium tube to aluminium 2025 tube plate by using TIG welding process

    International Nuclear Information System (INIS)

    Kannan, S.; Senthil Kumaran, S.; Kumaraswamidhas, L.A.

    2016-01-01

    In this present study, Tungsten inert gas (TIG) welding was applied to weld the dissimilar materials and authenticate the mechanical and metallurgical properties of tube to tube plate made up of commercial aluminium and Al 2025 respectively using an Zirconiated tungsten electrode along with filler material aluminium ER 2219. In total, twenty five pieces has been subjected to compression strength and hardness value to evaluate the optimal joint strength. The three optimization technique has been used in this experiment. Taguchi L_2_5 orthogonal array is used to identify the most influencing process parameter which affects the joint strength. ANOVA method is measured for both compression strength and hardness to calculate the percentage of contribution for each process parameter. Genetic algorithm is used to validate the results obtained from the both experimental value and optimization value. The micro structural study is depicted the welding joints characterization in between tube to tube plate joints. The radiograph test is conducted to prove the welds are non-defective and no flaws are found during the welding process. The mechanical property of compression strength and hardness has been measured to obtain the optimal joint strength of the welded sample was about 174.846 MPa and 131.364 Hv respectively. - Highlights: • Commercial Al tube and Al 2025 tube plate successfully welded by TIG welding. • Compression strength and hardness value proves to obtain optimal joint strength. • The maximum compression and hardness was achieved in various input parameters.

  11. Effects of material properties and speed of compression on microbial survival and tensile strength in diclofenac tablet formulations.

    Science.gov (United States)

    Ayorinde, J O; Itiola, O A; Odeniyi, M A

    2013-03-01

    A work has been done to study the effects of material properties and compression speed on microbial survival and tensile strength in diclofenac tablet formulations. Tablets were produced from three formulations containing diclofenac and different excipients (DC, DL and DDCP). Two types of machines (Hydraulic hand press and single punch press), which compress the tablets at different speeds, were used. The compression properties of the tablets were analyzed using Heckel and Kawakita equations. A 3-dimensional plot was produced to determine the relationship between the tensile strength, compression speed and percentage survival of Bacillus subtilis in the diclofenac tablets. The mode of consolidation of diclofenac was found to depends on the excipient used in the formulation. DC deformed mainly by plastic flow with the lowest Py and Pk values. DL deformed plastically at the initial stage, followed by fragmentation at the later stage of compression, whereas DDCP deformed mainly by fragmentation with the highest Py and Pk values. The ranking of the percentage survival of B. subtilis in the formulations was DDCP > DL > DC, whereas the ranking of the tensile strength of the tablets was DDCP > DL > DC. Tablets produced on a hydraulic hand press with a lower compression speed had a lower percentage survival of microbial contaminants than those produced on a single punch press, which compressed the tablets at a much higher speed. The mode of consolidation of the materials and the speed at which tablet compression is carried out have effects on both the tensile strength of the tablets and the extent of destruction of microbial contaminants in diclofenac tablet formulations.

  12. Standard test method for compressive (crushing) strength of fired whiteware materials

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method covers two test procedures (A and B) for the determination of the compressive strength of fired whiteware materials. 1.2 Procedure A is generally applicable to whiteware products of low- to moderately high-strength levels (up to 150 000 psi or 1030 MPa). 1.3 Procedure B is specifically devised for testing of high-strength ceramics (over 100 000 psi or 690 MPa). 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  13. Nondestructive testing of the low-level radioactive waste drums for uni-axial compressive strength and free liquid content

    International Nuclear Information System (INIS)

    Yu Geping; Chang Mingyu; Wang Yeajeng; Chu, David S.L.; Ju Yihzen

    1992-01-01

    This paper summarizes the nondestructive test to determine the uni-axial compressive strength and free water content of solidified low level radioactive waste. The uni-axial compressive strength is determined by ultrasonic wave propagation speed, and the results are compared with those of compressive tests. Three methods of detecting the surface free water by ultrasonic testing are established, the ultrasonic wave speed, wave form and pulse height are used to determine the existence and amount of the surface free liquid. Possible difficulties are discussed. (author)

  14. Investigation of test methods for measuring compressive strength and modulus of two-dimensional carbon-carbon composites

    Science.gov (United States)

    Ohlhorst, Craig W.; Sawyer, James Wayne; Yamaki, Y. Robert

    1989-01-01

    An experimental evaluation has been conducted to ascertain the the usefulness of two techniques for measuring in-plane compressive failure strength and modulus in coated and uncoated carbon-carbon composites. The techniques involved testing specimens with potted ends as well as testing them in a novel clamping fixture; specimen shape, length, gage width, and thickness were the test parameters investigated for both coated and uncoated 0/90 deg and +/-45 deg laminates. It is found that specimen shape does not have a significant effect on the measured compressive properties. The potting of specimen ends results in slightly higher measured compressive strengths than those obtained with the new clamping fixture. Comparable modulus values are obtained by both techniques.

  15. Modeling of Hydration, Compressive Strength, and Carbonation of Portland-Limestone Cement (PLC Concrete

    Directory of Open Access Journals (Sweden)

    Xiao-Yong Wang

    2017-01-01

    Full Text Available Limestone is widely used in the construction industry to produce Portland limestone cement (PLC concrete. Systematic evaluations of hydration kinetics, compressive strength development, and carbonation resistance are crucial for the rational use of limestone. This study presents a hydration-based model for evaluating the influences of limestone on the strength and carbonation of concrete. First, the hydration model analyzes the dilution effect and the nucleation effect of limestone during the hydration of cement. The degree of cement hydration is calculated by considering concrete mixing proportions, binder properties, and curing conditions. Second, by using the gel–space ratio, the compressive strength of PLC concrete is evaluated. The interactions among water-to-binder ratio, limestone replacement ratio, and strength development are highlighted. Third, the carbonate material contents and porosity are calculated from the hydration model and are used as input parameters for the carbonation model. By considering concrete microstructures and environmental conditions, the carbon dioxide diffusivity and carbonation depth of PLC concrete are evaluated. The proposed model has been determined to be valid for concrete with various water-to-binder ratios, limestone contents, and curing periods.

  16. Experimental data on compressive strength and durability of sulfur concrete modified by styrene and bitumen.

    Science.gov (United States)

    Dehestani, M; Teimortashlu, E; Molaei, M; Ghomian, M; Firoozi, S; Aghili, S

    2017-08-01

    In this data article experimental data on the compressive strength, and the durability of styrene and bitumen modified sulfur concrete against acidic water and ignition are presented. The percent of the sulfur cement and the gradation of the aggregates used are according to the ACI 548.2R-93 and ASTM 3515 respectively. For the styrene modified sulfur concrete different percentages of styrene are used. Also for the bitumen modified sulfur concrete, different percentages of bitumen and the emulsifying agent (triton X-100) are utilized. From each batch three 10×10×10 cm cubic samples were casted. One of the samples was used for the compressive strength on the second day of casting, and one on the twenty-eighth day. Then the two samples were put under the high pressure flame of the burning liquid gas for thirty seconds and their ignition resistances were observed. The third sample was put into the acidic water and after twenty eight days immersion in water was dried in the ambient temperature. After drying its compressive strength has been evaluated.

  17. Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis

    Science.gov (United States)

    Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil

    2016-05-01

    This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.

  18. Characterization of compressive and short beam shear strength of bamboo opened cell foam core sandwich composites

    Energy Technology Data Exchange (ETDEWEB)

    Setyawan, Paryanto Dwi, E-mail: paryanto-ds@yahoo.com; Sugiman,; Saputra, Yudhi [Department of Mechanical Engineering, Faculty of Engineering, University of Mataram, Mataram, West Nusa Tenggara (Indonesia)

    2016-03-29

    The paper presents the compressive and the short beam shear strength of a sandwich composite with opened cell foam made of bamboo fiber as the core and plywood as the skins. The core thickness was varied from 10 mm to 40 mm keeping the volume fraction of fiber constant. Several test s were carried out including the core density, flatwise compressive and the short beam shear testing in three point bending. The results show that the density of bamboo opened cell foam is comparable with commercial plastic foam, such as polyurethane foam. The compressive strength tends to increase linearly with increasing the core thickness. The short beam shear failure load of the sandwich composite increases with the increase of core thickness, however on the contrary, the short beam shear strength which tends to sharply decrease from the thickness of 10 mm to 30 mm and then becomes flat.

  19. Compressive Strength and Modulus of Elasticity of Concrete with Cubed Waste Tire Rubbers as Coarse Aggregates

    Science.gov (United States)

    Haryanto, Y.; Hermanto, N. I. S.; Pamudji, G.; Wardana, K. P.

    2017-11-01

    One feasible solution to overcome the issue of tire disposal waste is the use of waste tire rubber to replace aggregate in concrete. We have conducted an experimental investigation on the effect of rubber tire waste aggregate in cuboid form on the compressive strength and modulus of elasticity of concrete. The test was performed on 72 cylindrical specimens with the height of 300 mm and diameter of 150 mm. We found that the workability of concrete with waste tire rubber aggregate has increased. The concrete density with waste tire rubber aggregate was decreased, and so was the compressive strength. The decrease of compressive strength is up to 64.34%. If the content of waste tire rubber aggregate is more than 40%, then the resulting concrete cannot be categorized as structural concrete. The modulus of elasticity decreased to 59.77%. The theoretical equation developed to determine the modulus of elasticity of concrete with rubber tire waste aggregate has an accuracy of 84.27%.

  20. Optimization of compressive strength in admixture-reinforced cement-based grouts

    Directory of Open Access Journals (Sweden)

    Sahin Zaimoglu, A.

    2007-12-01

    Full Text Available The Taguchi method was used in this study to optimize the unconfined (7-, 14- and 28-day compressive strength of cement-based grouts with bentonite, fly ash and silica fume admixtures. The experiments were designed using an L16 orthogonal array in which the three factors considered were bentonite (0%, 0.5%, 1.0% and 3%, fly ash (10%, 20%, 30% and 40% and silica fume (0%, 5%, 10% and 20% content. The experimental results, which were analyzed by ANOVA and the Taguchi method, showed that fly ash and silica fume content play a significant role in unconfined compressive strength. The optimum conditions were found to be: 0% bentonite, 10% fly ash, 20% silica fume and 28 days of curing time. The maximum unconfined compressive strength reached under the above optimum conditions was 17.1 MPa.En el presente trabajo se ha intentado optimizar, mediante el método de Taguchi, las resistencias a compresión (a las edades de 7, 14 y 28 días de lechadas de cemento reforzadas con bentonita, cenizas volantes y humo de sílice. Se diseñaron los experimentos de acuerdo con un arreglo ortogonal tipo L16 en el que se contemplaban tres factores: la bentonita (0, 0,5, 1 y 3%, las cenizas volantes (10, 20, 30 y 40% y el humo de sílice (0, 5, 10 y 20% (porcentajes en peso del sólido. Los datos obtenidos se analizaron con mediante ANOVA y el método de Taguchi. De acuerdo con los resultados experimentales, el contenido tanto de cenizas volantes como de humo de sílice desempeña un papel significativo en la resistencia a compresión. Por otra parte, las condiciones óptimas que se han identificado son: 0% bentonita, 10% cenizas volantes, 20% humo de sílice y 28 días de tiempo de curado. La resistencia a compresión máxima conseguida en las anteriores condiciones era de 17,1 MPa.

  1. Increasing the compressive strength of portland cement concrete using flat glass powder

    Energy Technology Data Exchange (ETDEWEB)

    Miranda Junior, Edson Jansen Pedrosa de; Bezerra, Helton de Jesus Costa Leite; Politi, Flavio Salgado; Paiva, Antonio Ernandes Macedo, E-mail: edson.jansen@ifma.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Maranha (IFMA), Sao Luis, MA (Brazil). Dept. de Mecanica e Materiais

    2014-08-15

    This paper analyzes the compressive strength of Portland cement concrete in response to the incorporation of 5%, 10% and 20% of flat glass powder in place of sand, at w/c (water/cement) ratios of 0.50, 0.55 and 0.58. A statistical analysis of variance (ANOVA) was performed after 7, 14 and 28 days of curing. The compressive strength test results indicate that the concrete containing a w/c ratio of 0.50 can be used for structural applications, regardless of the waste glass content, as can that with a w/c ratio of 0.55 containing 20% of waste glass. We suggest that the use of flat glass powder in place of sand in the above mentioned percentages is feasible for the production of an environmentally appropriate and structurally applicable concrete. However, the concrete's fluidity and void content must be taken into account. (author)

  2. Effects of different crumb rubber sizes on the flowability and compressive strength of hybrid fibre reinforced ECC

    Science.gov (United States)

    Khed, Veerendrakumar C.; Mohammed, Bashar S.; Fadhil Nuruddin, Muhd

    2018-04-01

    The different sizes of crumb rubber have been used to investigate the effects on flowability and the compressive strength of the hybrid fibre reinforced engineered cementitious composite. Two sizes of crumb rubber 30 mesh and 1 to 3mm were used in partial replacement with the fine aggregate up to 60%. The experimental study was carried out through mathematical and statistical analysis by response surface methodology (RSM) using the Design Expert software. The response models have been developed and the results were validated by analysis of variance (ANOVA). It was found that finer sized crumb rubber inclusion had produced better workability and higher compressive strength when compared to the larger size and it was concluded that crumb rubber has negative effect on compressive strength and positive effect on workability. The optimization results are found to an approximately good agreement with the experimental results.

  3. Estimate of compressive strength of an unidirectional composite lamina using cross-ply and angle-ply laminates

    Directory of Open Access Journals (Sweden)

    M. Scafè

    2014-07-01

    Full Text Available In this work has been estimated the compressive strength of a unidirectional lamina of a carbon/epoxy composite material, using the cross-ply and angle-ply laminates. Over the years various methods have been developed to deduce compressive properties of composite materials reinforced with long fibres. Each of these methods is characterized by a specific way of applying load to the specimen. The method chosen to perform the compression tests is the Wyoming Combined Loading Compression (CLC Test Method, described in ASTM D 6641 / D 6641M-09. This method presents many advantages, especially: the load application on the specimen (end load combined with shear load, the reproducibility of measurements and the experimental equipment quite simplified. Six different laminates were tested in compressive tests. They were realized by the same unidirectional prepreg, but with different stacking sequences: two cross-ply [0/90]ns, two angle-ply [0/90/±45]ns and two unidirectional laminates [0]ns and [90]ns. The estimate of the compressive strength of the unidirectional laminates at 0°, was done by an indirect analytical method, developed from the classical lamination theory, and which uses a multiplicative parameter known as Back-out Factor (BF. The BF is determined by using the experimental values obtained from compression tests.

  4. Effect of Sporosarcina Pasteurii on the strength properties of compressed earth specimens

    International Nuclear Information System (INIS)

    Bernat-Maso, E.; Gil, L.; Escrig, C.; Barbé, J.; Cortés, P.

    2018-01-01

    Microbial biodeposition of calcite induction for improving the performance of rammed earth is a research area that must be analysed in a representative environment. This analysis must consider the compaction force, particle size distribution and curing process as production variables. This paper investigates the effects of adding specific bacteria, Sporosarcina Pasteurii, into compressed earth cubes and the effect of production variables. Uniaxial compressive tests and direct shear tests have been conducted for 80 specimens. The results indicate that calcite precipitation interacts with the drying process of clay/silt resulting in reducing the compressive strength, the apparent cohesion and the friction angle. Finally, bacterial activity, which is more likely in samples cured in a high humidity environment, tends to reduce the dilatancy effect. [es

  5. Influence of Fly Ash on the Compressive Strength of Foamed Concrete at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Ahmad H.

    2014-01-01

    Full Text Available Foamed concrete is a lightweight concrete that is widely used in the construction industry recently. This study was carried out to investigate the influence of fly ash as a cement replacement material to the residual compressive strength of foamed concrete subjected to elevated temperature. For this study, the foamed concrete density was fixed at 1300 kg/m3 and the sand-cement ratio and water-cement was set at 1:2 and 0.45, respectively. The samples were prepared and tested at the age of 28 days. Based on the results, it has been found that with 25% inclusion of fly ash, the percentage of compressive strength loss was decreased by 3 – 50%.

  6. Compressive and tensile strength for concrete containing coal bottom ash

    Science.gov (United States)

    Maliki, A. I. F. Ahmad; Shahidan, S.; Ali, N.; Ramzi Hannan, N. I. R.; Zuki, S. S. Mohd; Ibrahim, M. H. W.; Azmi, M. A. Mohammad; Rahim, M. Abdul

    2017-11-01

    The increasing demand in the construction industry will lead to the depletion of materials used in construction sites such as sand. Due to this situation, coal bottom ash (CBA) was selected as a replacement for sand. CBA is a by-product of coal combustion from power plants. CBA has particles which are angular, irregular and porous with a rough surface texture. CBA also has the appearance and particle size distribution similar to river sand. Therefore, these properties of CBA make it attractive to be used as fine aggregate replacement in concrete. The objectives of this study were to determine the properties of CBA concrete and to evaluate the optimum percentage of CBA to be used in concrete as fine aggregate replacement. The CBA was collected at Tanjung Bin power plant. The mechanical experiment (compressive and tensile strength test) was conducted on CBA concrete. Before starting the mechanical experiment, cubic and cylindrical specimens with dimensions measuring 100 × 100 × 100 mm and 150 × 300 mm were produced based on the percentage of coal bottom ash in this study which is 0% as the control specimen. Meanwhile 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of CBA were used to replace the fine aggregates. The CBA concrete samples were cured for 7 days and 28 days respectively to maintain the rate of hydration and moisture. After the experimental work was done, it can be concluded that the optimum percentage of CBA as fine aggregate is 60% for a curing period of both 7 days and 28 days with the total compressive strength of 36.4 Mpa and 46.2 Mpa respectively. However, the optimum percentage for tensile strength is at 70% CBA for a curing period of both 7 days and 28 days with a tensile strength of 3.03 MPa and 3.63 MPa respectively.

  7. Behaviour of venous flow rates in intermittent sequential pneumatic compression of the legs using different compression strengths

    International Nuclear Information System (INIS)

    Fassmann-Glaser, I.

    1984-01-01

    A study with 25 patients was performed in order to find out whether intermittent, sequential, pneumatic leg compression is of value in the preventive management of thrombosis due to its effect on the venous flow rates. For this purpose, xenon 133 was injected into one of the foot veins and the flow rate in each case determined for the distance between instep and inguen using different compression strengths, with pressure being exerted on the ankle, calf and thigh. Increased flow rates were already measured at an average pressure value of 34.5 mmHg, while the maximum effect was achieved by exerting a pressure of 92.5 mmHg, which increased the flow rate by 366% as compared to the baseline value. The results point to a significant improvement of the venous flow rates due to intermittent, sequential, pneumatic leg compression and thus provide evidence to prove the value of this method in the prevention of hemostasis and thrombosis. (TRV) [de

  8. Improvement of compressive strength of segmentation of zeolites as absorber of Sr-90 liquid waste using coconut fibres

    International Nuclear Information System (INIS)

    Kasmudin; Kusnanto

    2002-01-01

    The use of the coconut fibres to increase compressive strength of segmentation of zeolites as absorber of Sr-90 liquid waste was studied. The purpose of this research was to find the optimum content and length of fibres that give maximum compressive strength. This research was done with mortar-zeolites specimen of cylinder 2,2 cm diameter and 4,4 cm high, the content of zeolites was 13% volume of specimen, weight ratio of water and cement 0,3, length of fibres 1,5 cm, 2 cm, 2,5 cm, and 3 cm (aspect ratio ± 60, ± 80, ± 100 and ± 120) with the fibres content of each fibre 0%, 0,5%, 0,10%, 0,25%, 0,50%, 0,75%, and 1,00%. Addition of fibres was done with a direction of orientation longitudinal to the specimen. The specimens were tested on 28 days old test specimens. The result showed that addition of coconut fibres until certain content would increase compressive strength. The optimum size of fibres with 92,313 N/MM 2 of compressive strength or increased 119,21% of no fibres specimen were 0,50% of volume and 3 cm in length

  9. Effect of Pelletized Coconut Fibre on the Compressive Strength of Foamed Concrete

    OpenAIRE

    Mohd Jaini Zainorizuan; Mokhatar Shahrul Niza; Mohd Yusof Ammar Saifuddin; Zulkiply Syurafarina; Abd Rahman Mohd Hadi

    2016-01-01

    Foamed concrete is a controlled low density ranging from 400kg/m3 to 1800kg/m3, and hence suitable for the construction of buildings and infrastructures. The uniqueness of foamed concrete is does not use aggregates in order to retain low density. Foamed concrete contains only cement, sand, water and foam agent. Therefore, the consumption of cement is higher in producing a good quality and strength of foamed concrete. Without the present of aggregates, the compressive strength of foamed concre...

  10. Effect of rice husk ash and fly ash on the compressive strength of high performance concrete

    Science.gov (United States)

    Van Lam, Tang; Bulgakov, Boris; Aleksandrova, Olga; Larsen, Oksana; Anh, Pham Ngoc

    2018-03-01

    The usage of industrial and agricultural wastes for building materials production plays an important role to improve the environment and economy by preserving nature materials and land resources, reducing land, water and air pollution as well as organizing and storing waste costs. This study mainly focuses on mathematical modeling dependence of the compressive strength of high performance concrete (HPC) at the ages of 3, 7 and 28 days on the amount of rice husk ash (RHA) and fly ash (FA), which are added to the concrete mixtures by using the Central composite rotatable design. The result of this study provides the second-order regression equation of objective function, the images of the surface expression and the corresponding contours of the objective function of the regression equation, as the optimal points of HPC compressive strength. These objective functions, which are the compressive strength values of HPC at the ages of 3, 7 and 28 days, depend on two input variables as: x1 (amount of RHA) and x2 (amount of FA). The Maple 13 program, solving the second-order regression equation, determines the optimum composition of the concrete mixture for obtaining high performance concrete and calculates the maximum value of the HPC compressive strength at the ages of 28 days. The results containMaxR28HPC = 76.716 MPa when RHA = 0.1251 and FA = 0.3119 by mass of Portland cement.

  11. Microbuckling compression failure of a radiation-induced wood/polymer composite

    International Nuclear Information System (INIS)

    Boey, F.Y.C.

    1990-01-01

    A wood/polymer composite was produced by impregnating Ramin wood with methyl methacrylate monomer and subsequently polymerizing it by gamma irradiation. To assess the improvement in compression strength of the wood caused by the polymer impregnation, a microbuckling compression failure mechanism was used to model the compression failure of the composite. Such a mechanism was found to predict a linear relationship between the compression strength and the percentage polymer impregnation (by weight). Uniaxial compression test results at 45(±5)% and 90(±5)% relative humidity levels, after being statistically analysed, showed that such a linear relationship was valid for up to 100% polymer impregnation. (author)

  12. Determination of composition of pozzolanic waste mixtures with optimized compressive strength

    Directory of Open Access Journals (Sweden)

    Nardi José Vidal

    2004-01-01

    Full Text Available The utilization of ceramic wastes with pozzolanic properties along with other compounds for obtaining new materials with cementating properties is an alternative for reducing the environmental pollution. The acceptance of these new products in the market demands minimal changes in mechanical properties according to its utilization. For a variable range of compositional intervals, attempts were made to establish limiting incorporation proportions that assure the achievement of minimum pre-established mechanical strength values in the final product. In this case minimum compressive strength value is 3,000 kPa. A simultaneous association of other properties is also possible.

  13. Relationship between splitting tensile and compressive strengths for self-compacting concrete containing nano- and micro silica

    Directory of Open Access Journals (Sweden)

    Jaber Ali

    2018-01-01

    Full Text Available This paper describes the relationship between splitting tensile strength and compressive strength of self-consolidating concrete using data collected from laboratory specimens tested at standard conditions. The results were then compared with some expressions published in international literature. The investigated variables included: type of cement, percentage of nanosilica and percentage of microsilica as a cement replacement by weight. In spite of concrete not being designed to resist direct tension the knowledge of tensile strength is needed to estimate the cracking load. In the absence of test results an estimate of the tensile strength may be obtained by using the relationship proposed. The verification of the proposed formula based on experimental data was estimated by means of the integral absolute error (IAE. The output of this study has provided a better understanding of the correlation between splitting and compressive strengths of SCCs and the effect of some related variables on the resultant behavior, which has therefore, helped to generate new expression with better accuracy.

  14. Experimental investigation and empirical modelling of FDM process for compressive strength improvement

    Directory of Open Access Journals (Sweden)

    Anoop K. Sood

    2012-01-01

    Full Text Available Fused deposition modelling (FDM is gaining distinct advantage in manufacturing industries because of its ability to manufacture parts with complex shapes without any tooling requirement and human interface. The properties of FDM built parts exhibit high dependence on process parameters and can be improved by setting parameters at suitable levels. Anisotropic and brittle nature of build part makes it important to study the effect of process parameters to the resistance to compressive loading for enhancing service life of functional parts. Hence, the present work focuses on extensive study to understand the effect of five important parameters such as layer thickness, part build orientation, raster angle, raster width and air gap on the compressive stress of test specimen. The study not only provides insight into complex dependency of compressive stress on process parameters but also develops a statistically validated predictive equation. The equation is used to find optimal parameter setting through quantum-behaved particle swarm optimization (QPSO. As FDM process is a highly complex one and process parameters influence the responses in a non linear manner, compressive stress is predicted using artificial neural network (ANN and is compared with predictive equation.

  15. Strength and compressibility of returned lunar soil.

    Science.gov (United States)

    Carrier, W. D., III; Bromwell, L. G.; Martin, R. T.

    1972-01-01

    Two oedometer and three direct shear tests have been performed in vacuum on a 200 g sample of lunar soil from Apollo 12 (12001, 119). The compressibility data have been used to calculate bulk density and shear wave velocity versus depth on the lunar surface. The shear wave velocity was found to increase approximately with the one-fourth power of the depth, and the results suggest that the Apollo 14 Active Seismic Experiment may not have detected the Fra Mauro formation at a depth of 8.5 m, but only naturally consolidated lunar soil. The shear data indicate that the strength of the lunar soil sample is about 65% that of a ground basalt simulant at the same void ratio.

  16. Comparison of the compressive strength of impregnated and nonimpregnated eucalyptus subjected to two different pressures and impregnation times

    Directory of Open Access Journals (Sweden)

    Waldemir Rodrigues

    2004-06-01

    Full Text Available The durability of wood is affected by several factors. For this reason, much research has been done on a variety of chemical compounds for impregnating wood, aimed at preserving it while simultaneously improving its properties. Recent studies of the properties of impregnated wood have demonstrated the possibility of substantially improving its mechanical characteristics. Thus, the purpose of this work was to compare the strength to parallel compression of wooden fibers (Eucalyptus grandis, both nonimpregnated and impregnated with a monocomponent resin, from the standpoint of pressure and impregnation time, aiming at its structural utilization. The results demonstrate that the compressive strength of impregnated test specimens is greater than that of nonimpregnated ones, indicating that monocomponent polyurethane resin can be considered suitable for impregnating wood, since it increases the compressive strength of eucalyptus.

  17. THE COMPRESSIVE AND FLEXURAL STRENGTHS OF SELF-COMPACTING CONCRETE USING RAW RICE HUSK ASH

    Directory of Open Access Journals (Sweden)

    MD NOR ATAN

    2011-12-01

    Full Text Available This study investigates the compressive and flexural strengths of self-compacting concrete incorporating raw rice husk ash, individually and in combination with other types of mineral additives, as partial cement replacement. The additives paired with raw rice husk ash were fine limestone powder, pulverized fuel ash and silica fumes. The mix design was based on the rational method where solid constituents were fixed while water and superplasticizer contents were adjusted to produce optimum viscosity and flowability. All mixes were designed to achieve SF1 class slump-flow with conformity criteria ≥ 520 mm and ≤ 700 mm. Test results show that 15% replacement of cement using raw rice husk ash produced grade 40 concrete. It was also revealed that 30% and 45% cement replacements using raw rice husk ash combined with limestone powder and raw rice husk ash combined with limestone powder and silica fume respectively, produced comparable compressive strength to normal concrete and improved flexural strengths.

  18. Compressive strength and hydrolytic stability of fly ash based geopolymers

    Directory of Open Access Journals (Sweden)

    Nikolić Irena

    2013-01-01

    Full Text Available The process of geopolymerization involves the reaction of solid aluminosilicate materials with highly alkaline silicate solution yielding an aluminosilicate inorganic polymer named geopolymer, which may be successfully applied in civil engineering as a replacement for cement. In this paper we have investigated the influence of synthesis parameters: solid to liquid ratio, NaOH concentration and the ratio of Na2SiO3/NaOH, on the mechanical properties and hydrolytic stability of fly ash based geopolymers in distilled water, sea water and simulated acid rain. The highest value of compressive strength was obtained using 10 mol dm-3 NaOH and at the Na2SiO3/NaOH ratio of 1.5. Moreover, the results have shown that mechanical properties of fly ash based geopolymers are in correlation with their hydrolytic stability. Factors that increase the compressive strength also increase the hydrolytic stability of fly ash based geopolymers. The best hydrolytic stability of fly ash based geopolymers was shown in sea water while the lowest stability was recorded in simulated acid rain. [Projekat Ministarstva nauke Republike Srbije, br. 172054 i Nanotechnology and Functional Materials Center, funded by the European FP7 project No. 245916

  19. Developing the elastic modulus measurement of asphalt concrete using the compressive strength test

    Science.gov (United States)

    Setiawan, Arief; Suparma, Latif Budi; Mulyono, Agus Taufik

    2017-11-01

    Elastic modulus is a fundamental property of an asphalt mixture. An analytical method of the elastic modulus is needed to determine the thickness of flexible pavement. It has a role as one of the input values on a stress-strain analysis in the finite element method. The aim of this study was to develop the measurement of the elastic modulus by using compressive strength testing. This research used a set of specimen mold tool and Delta Dimensi software to record strain changes occurring in the proving ring of compression machine and the specimens. The elastic modulus of the five types of aggregate gradation and 2 types of asphalt were measured at optimum asphalt content. Asphalt Cement 60/70 and Elastomer Modified Asphalt (EMA) were used as a binder. Manufacturing success indicators of the specimens used void-in-the-mix (VIM) 3-5 % criteria. The success rate of the specimen manufacturing was more than 76%. Thus, the procedure and the compressive strength test equipment could be used for the measurement of the elastic modulus. The aggregate gradation and asphalt types significantly affected the elastic modulus of the asphalt concrete.

  20. Research on the compressive strength of basic magnesium salts and cyanide slag solidified body

    Science.gov (United States)

    Tu, Yubo; Han, Peiwei; Ye, Shufeng; Wei, Lianqi; Zhang, Xiaomeng; Fu, Guoyan; Yu, Bo

    2018-02-01

    The solidification of cyanide slag by using basic magnesium salts could reduce pollution and protect the environment. Experiments were carried out to investigate the effects of age, mixing amount of cyanide slag, water cement ratio and molar ratio of MgO to MgSO4 on the compressive strength of basic magnesium salts and cyanide slag solidified body in the present paper. It was found that compressive strength of solidified body increased with the increase of age, and decreased with the increase of mixing amount of cyanide slag and water cement ratio. The molar ratio of MgO to MgSO4 should be controlled in the range from 9 to 11 when the mixing amount of cyanide slag was larger than 80 mass%.

  1. Aggregate effects on γ-ray shielding characteristics and compressive strength on concrete

    International Nuclear Information System (INIS)

    Oh, Jeong Hwan; Choi, Soo Seok; Mun, Young Bun; Lee, Jae Hyung; Choi, Hyun Kook

    2016-01-01

    We observed the γ-ray shielding characteristics and compressive strength of five types of concrete using general aggregates and high-weight aggregates. The aggregates were classified into fine aggregate and coarse aggregate according to the average size. The experimental results obtained an attenuation coefficient of 0.371 cm-1 from a concrete with the oxidizing slag sand (OSS) and oxidizing slag gravel (OSG) for a γ-ray of "1"3"7Cs, which is improved by 2% compared with a concrete with typical aggregates of sand and gravel. In the unit weight measurement, a concrete prepared by iron ore sand (IOS) and OSG had the highest value of 3,175 kg·m"-"3. Although the unit weight of the concrete with OSS and OSG was 3,052 kg·m"-"3, which was lower than the maximum unit weight condition by 123 kg·m"-"3, its attenuation coefficient was improved by 0.012 cm-1. The results of chemical analysis of aggregates revealed that the magnesium content in oxidizing slag was lower than that in iron ore, while the calcium content was higher. The concrete with oxidizing slag aggregates demonstrated enhanced γ-ray shielding performance due to a relatively high calcium content compared with the concrete with OSS and OSG in spite of a low unit weight. All sample concretes mixed with high-weight aggregates had higher compressive strength than the concrete with typical sand and gravel. When OSS and IOS were used, the highest compressive strength was 50.2 MPa, which was an improvement by 45% over general concrete, which was achieved after four weeks of curing

  2. Aggregate effects on γ-ray shielding characteristics and compressive strength on concrete

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jeong Hwan; Choi, Soo Seok [Jeju National University, Jeju (Korea, Republic of); Mun, Young Bun; Lee, Jae Hyung; Choi, Hyun Kook [Sungshin Cement Co., Ltd, Sejong (Korea, Republic of)

    2016-12-15

    We observed the γ-ray shielding characteristics and compressive strength of five types of concrete using general aggregates and high-weight aggregates. The aggregates were classified into fine aggregate and coarse aggregate according to the average size. The experimental results obtained an attenuation coefficient of 0.371 cm-1 from a concrete with the oxidizing slag sand (OSS) and oxidizing slag gravel (OSG) for a γ-ray of {sup 137}Cs, which is improved by 2% compared with a concrete with typical aggregates of sand and gravel. In the unit weight measurement, a concrete prepared by iron ore sand (IOS) and OSG had the highest value of 3,175 kg·m{sup -3}. Although the unit weight of the concrete with OSS and OSG was 3,052 kg·m{sup -3}, which was lower than the maximum unit weight condition by 123 kg·m{sup -3}, its attenuation coefficient was improved by 0.012 cm-1. The results of chemical analysis of aggregates revealed that the magnesium content in oxidizing slag was lower than that in iron ore, while the calcium content was higher. The concrete with oxidizing slag aggregates demonstrated enhanced γ-ray shielding performance due to a relatively high calcium content compared with the concrete with OSS and OSG in spite of a low unit weight. All sample concretes mixed with high-weight aggregates had higher compressive strength than the concrete with typical sand and gravel. When OSS and IOS were used, the highest compressive strength was 50.2 MPa, which was an improvement by 45% over general concrete, which was achieved after four weeks of curing.

  3. Permeability, porosity and compressive strength of self-compacting concrete

    Directory of Open Access Journals (Sweden)

    Valcuende, M.O.

    2005-12-01

    Full Text Available Most deterioration affecting the durability of self-compacting concrete structures is mediated by water penetration in the concrete, a condition related to its porous structure. The present study analyzes these two factors. To this end, two types of concrete were prepared, a self-compacting and a traditional vibrated concrete, with different W/C ratios and different types of cement. The results of low-pressure water testing to evaluate permeability and analyses to determine compressive strength and pore size distribution showed that self-compacting concrete has lower capillary porosity than traditional concrete, which would explain its greater resistance to water penetration. Such concrete likewise reached higher strength values, except where large proportions of lime powder with low sand equivalents were used in its manufacture, when lower strength was recorded. Lastly, the depth of water penetration and compressive strength were found to be linearly correlated. That correlation was seen to depend, in turn, on the type of concrete, since for any given strength level, self-compacting concrete was less permeable than the traditional material.

    En este trabajo experimental se estudia la penetración de agua en hormigones autocompactables, analizando al mismo tiempo su estructura porosa, pues gran parte de los procesos de deterioro que afectan a la durabilidad de las estructuras están condicionados por estos dos aspectos. Para ello se han fabricado dos tipos de hormigones, uno autocompactable y otro tradicional vibrado, con diferentes relaciones A/C y distintos tipos de cemento. Tras determinar la permeabilidad al agua bajo presión, la resistencia a compresión y las distribuciones de tamaño de poro, los resultados obtenidos ponen de manifiesto que los hormigones autocompactables presentan menor porosidad capilar que los tradicionales, lo que les confiere mejores prestaciones frente a la penetración de agua. Asimismo, dichos hormigones

  4. An Experimental Investigation On Minimum Compressive Strength Of Early Age Concrete To Prevent Frost Damage For Nuclear Power Plant Structures In Cold Climates

    International Nuclear Information System (INIS)

    Koh, Kyungtaek; Kim, Dogyeum; Park, Chunjin; Ryu, Gumsung; Park, Jungjun; Lee, Janghwa

    2013-01-01

    Concrete undergoing early frost damage in cold weather will experience significant loss of not only strength, but also of permeability and durability. Accordingly, concrete codes like ACI-306R prescribe a minimum compressive strength and duration of curing to prevent frost damage at an early age and secure the quality of concrete. Such minimum compressive strength and duration of curing are mostly defined based on the strength development of concrete. However, concrete subjected to frost damage at early age may not show a consistent relationship between its strength and durability. Especially, since durability of concrete is of utmost importance in nuclear power plant structures, this relationship should be imperatively clarified. Therefore, this study verifies the feasibility of the minimum compressive strength specified in the codes like ACI-306R by evaluating the strength development and the durability preventing the frost damage of early age concrete for nuclear power plant. The results indicate that the value of 5 MPa specified by the concrete standards like ACI-306R as the minimum compressive strength to prevent the early frost damage is reasonable in terms of the strength development, but seems to be inappropriate in the viewpoint of the resistance to chloride ion penetration and freeze-thaw. Consequently, it is recommended to propose a minimum compressive strength preventing early frost damage in terms of not only the strength development, but also in terms of the durability to secure the quality of concrete for nuclear power plants in cold climates

  5. An Experimental Investigation On Minimum Compressive Strength Of Early Age Concrete To Prevent Frost Damage For Nuclear Power Plant Structures In Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyungtaek; Kim, Dogyeum; Park, Chunjin; Ryu, Gumsung; Park, Jungjun; Lee, Janghwa [Korea Institute Construction Technology, Goyang (Korea, Republic of)

    2013-06-15

    Concrete undergoing early frost damage in cold weather will experience significant loss of not only strength, but also of permeability and durability. Accordingly, concrete codes like ACI-306R prescribe a minimum compressive strength and duration of curing to prevent frost damage at an early age and secure the quality of concrete. Such minimum compressive strength and duration of curing are mostly defined based on the strength development of concrete. However, concrete subjected to frost damage at early age may not show a consistent relationship between its strength and durability. Especially, since durability of concrete is of utmost importance in nuclear power plant structures, this relationship should be imperatively clarified. Therefore, this study verifies the feasibility of the minimum compressive strength specified in the codes like ACI-306R by evaluating the strength development and the durability preventing the frost damage of early age concrete for nuclear power plant. The results indicate that the value of 5 MPa specified by the concrete standards like ACI-306R as the minimum compressive strength to prevent the early frost damage is reasonable in terms of the strength development, but seems to be inappropriate in the viewpoint of the resistance to chloride ion penetration and freeze-thaw. Consequently, it is recommended to propose a minimum compressive strength preventing early frost damage in terms of not only the strength development, but also in terms of the durability to secure the quality of concrete for nuclear power plants in cold climates.

  6. Influence of Eco-Friendly Mineral Additives on Early Age Compressive Strength and Temperature Development of High-Performance Concrete

    Science.gov (United States)

    Kaszynska, Maria; Skibicki, Szymon

    2017-12-01

    High-performance concrete (HPC) which contains increased amount of both higher grade cement and pozzolanic additives generates more hydration heat than the ordinary concrete. Prolonged periods of elevated temperature influence the rate of hydration process in result affecting the development of early-age strength and subsequent mechanical properties. The purpose of the presented research is to determine the relationship between the kinetics of the heat generation process and the compressive strength of early-age high performance concrete. All mixes were based on the Portland Cement CEM I 52.5 with between 7.5% to 15% of the cement mass replaced by the silica fume or metakaolin. Two characteristic for HPC water/binder ratios of w/b = 0.2 and w/b = 0.3 were chosen. A superplasticizer was used to maintain a 20-50 mm slump. Compressive strength was determined at 8h, 24h, 3, 7 and 28 days on 10x10x10 cm specimens that were cured in a calorimeter in a constant temperature of T = 20°C. The temperature inside the concrete was monitored continuously for 7 days. The study determined that the early-age strength (t<24h) of concrete with reactive mineral additives is lower than concrete without them. This is clearly visible for concretes with metakaolin which had the lowest compressive strength in early stages of hardening. The amount of the superplasticizer significantly influenced the early-age compressive strength of concrete. Concretes with additives reached the maximum temperature later than the concretes without them.

  7. A methodological evaluation and predictive in silico investigation into the multi-functionality of arginine in directly compressed tablets.

    Science.gov (United States)

    ElShaer, Amr; Kaialy, Waseem; Akhtar, Noreen; Iyire, Affiong; Hussain, Tariq; Alany, Raid; Mohammed, Afzal R

    2015-10-01

    The acceleration of solid dosage form product development can be facilitated by the inclusion of excipients that exhibit poly-/multi-functionality with reduction of the time invested in multiple excipient optimisations. Because active pharmaceutical ingredients (APIs) and tablet excipients present diverse densification behaviours upon compaction, the involvement of these different powders during compaction makes the compaction process very complicated. The aim of this study was to assess the macrometric characteristics and distribution of surface charges of two powders: indomethacin (IND) and arginine (ARG); and evaluate their impact on the densification properties of the two powders. Response surface modelling (RSM) was employed to predict the effect of two independent variables; Compression pressure (F) and ARG percentage (R) in binary mixtures on the properties of resultant tablets. The study looked at three responses namely; porosity (P), tensile strength (S) and disintegration time (T). Micrometric studies showed that IND had a higher charge density (net charge to mass ratio) when compared to ARG; nonetheless, ARG demonstrated good compaction properties with high plasticity (Y=28.01MPa). Therefore, ARG as filler to IND tablets was associated with better mechanical properties of the tablets (tablet tensile strength (σ) increased from 0.2±0.05N/mm(2) to 2.85±0.36N/mm(2) upon adding ARG at molar ratio of 8:1 to IND). Moreover, tablets' disintegration time was shortened to reach few seconds in some of the formulations. RSM revealed tablet porosity to be affected by both compression pressure and ARG ratio for IND/ARG physical mixtures (PMs). Conversely, the tensile strength (σ) and disintegration time (T) for the PMs were influenced by the compression pressure, ARG ratio and their interactive term (FR); and a strong correlation was observed between the experimental results and the predicted data for tablet porosity. This work provides clear evidence of the

  8. Study on creep of fiber reinforced ultra-high strength concrete based on strength

    Science.gov (United States)

    Peng, Wenjun; Wang, Tao

    2018-04-01

    To complement the creep performance of ultra-high strength concrete, the long creep process of fiber reinforced concrete was studied in this paper. The long-term creep process and regularity of ultra-high strength concrete with 0.5% PVA fiber under the same axial compression were analyzed by using concrete strength (C80/C100/C120) as a variable. The results show that the creep coefficient of ultra-high strength concrete decreases with the increase of concrete strength. Compared with ACI209R (92), GL2000 models, it is found that the predicted value of ACI209R (92) are close to the experimental value, and the creep prediction model suitable for this experiment is proposed based on ACI209R (92).

  9. Fixation of waste materials in grouts. Part II. An empirical equation for estimating compressive strength for grouts from different wastes

    International Nuclear Information System (INIS)

    Tallent, O.K.; McDaniel, E.W.; Godsey, T.T.

    1986-04-01

    Compressive strength data for grouts prepared from three different nuclear waste materials have been correlated. The wastes include ORNL low-level waste (LLW) solution, Hanford Facility Waste (HFW) solution, and Hanford cladding removal waste (CRW) slurry. Data for the three wastes can be represented with a 0.96 coefficient of correlation by the following equation: S = -9.56 + 9.27 D/I + 18.11/C + 0.010 R, where S denotess 28-d compressive strength, in mPa; D designates Waste concentration, fraction of the original; I is ionic strength; C denotes Attapulgite-150 clay content of dry blend, in wt %; and R is the mix ratio, kg/m 3 . The equation may be used to estimate 28-d compressive strengths of grouts prepared within the compositional range of this investigation

  10. Compressive strength and magnetic properties of calcium silicate-zirconia-iron (III) oxide composite cements

    Science.gov (United States)

    Ridzwan, Hendrie Johann Muhamad; Shamsudin, Roslinda; Ismail, Hamisah; Yusof, Mohd Reusmaazran; Hamid, Muhammad Azmi Abdul; Awang, Rozidawati Binti

    2018-04-01

    In this study, ZrO2 microparticles and γ-Fe2O3 nanoparticles have been added into calcium silicate based cements. The purpose of this experiment was to investigate the compressive strength and magnetic properties of the prepared composite cement. Calcium silicate (CAS) powder was prepared by hydrothermal method. SiO2 and CaO obtained from rice husk ash and limestone respectively were autoclaved at 135 °C for 8 h and sintered at 950°C to obtain CAS powder. SiO2:CaO ratio was set at 45:55. CAS/ZrO2 sample were prepared with varying ZrO2 microparticles concentrations by 0-40 wt. %. Compressive strength value of CAS/ZrO2 cements range from 1.44 to 2.44 MPa. CAS/ZrO2/γ-Fe2O3 sample with 40 wt. % ZrO2 were prepared with varying γ-Fe2O3 nanoparticles concentrations (1-5 wt. %). The additions of γ-Fe2O3 nanoparticles showed up to twofold increase in the compressive strength of the cement. X-Ray diffraction (XRD) results confirm the formation of mixed phases in the produced composite cements. Vibrating sample magnetometer (VSM) analysis revealed that the ferromagnetic behaviour has been observed in CAS/ZrO2/γ-Fe2O3 composite cements.

  11. Compressive strength and microstructural characteristics of class C fly ash geopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaolu; Shi, Huisheng; Dick, Warren A [Key Laboratory of Advanced Civil Engineering Materials (Tongji University), Shanghai (China)

    2010-02-15

    Geopolymers prepared from a class C fly ash (CFA) and a mixed alkali activator of sodium hydroxide and sodium silicate solution were investigated. A high compressive strength was obtained when the modulus of the activator viz., molar ratio of SiO{sub 2}/Na{sub 2}O was 1.5, and the proper content of this activator as evaluated by the mass proportion of Na{sub 2}O to CFA was 10%. The compressive strength of these samples was 63.4 MPa when they were cured at 75{sup o}C for 8 h followed by curing at 23{sup o}C for 28 d. In FTIR spectroscopy, the main peaks at 1036 and 1400 cm{sup -1} have been attributed to asymmetric stretching of Al-O/Si-O bonds, while those at 747 cm{sup -1} are due to the Si-O-Si/Si-O-Al bending band. The main geopolymeric gel and calcium silicate hydrate (C-S-H) gel co-exist and bond some remaining unreacted CFA spheres as observed in XRD and SEM-EXDA. The presence of gismondine (zeolite) was also observed in the XRD pattern.

  12. Predicting the compressibility behaviour of tire shred samples for landfill applications.

    Science.gov (United States)

    Warith, M A; Rao, Sudhakar M

    2006-01-01

    Tire shreds have been used as an alternative to crushed stones (gravel) as drainage media in landfill leachate collection systems. The highly compressible nature of tire shreds (25-47% axial strain on vertical stress applications of 20-700 kPa) may reduce the thickness of the tire shred drainage layer to less than 300 mm (minimum design requirement) during the life of the municipal solid waste landfill. There hence exists a need to predict axial strains of tire shred samples in response to vertical stress applications so that the initial thickness of the tire shred drainage layer can be corrected for compression. The present study performs one-dimensional compressibility tests on four tire shred samples and compares the results with stress/strain curves from other studies. The stress/strain curves are developed into charts for choosing the correct initial thickness of tire shred layers that maintain the minimum thickness of 300 mm throughout the life of the landfill. The charts are developed for a range of vertical stresses based on the design height of municipal waste cell and bulk unit weight of municipal waste. Experimental results also showed that despite experiencing large axial strains, the average permeability of the tire shred sample consistently remained two to three orders of magnitude higher than the design performance criterion of 0.01cm/s for landfill drainage layers. Laboratory experiments, however, need to verify whether long-term chemical and bio-chemical reactions between landfill leachate and the tire shred layer will deteriorate their mechanical functions (hydraulic conductivity, compressibility, strength) beyond permissible limits for geotechnical applications.

  13. Compressive strength measurements of hybrid dental composites treated with dry heat and light emitting diodes (LED post cure treatment

    Directory of Open Access Journals (Sweden)

    Jenny Krisnawaty

    2014-11-01

    Full Text Available Hybrid composites are mostly used on large cavities as restorative dental materials, whether it is used directly or indirectly. The mechanical properties of composite resin shall increase if it is treated with post cure treatment. The aim of this study is to evaluate compressive strength differences between dry heat and Light Emitting Diodes (LED treatment on the hybrid dental composite. A quasi-experimental was applied on this research with a total of 30 samples that were divided into two groups. Each sample was tested using LLOYD Universal Testing Machine with 1 mm/min speed to evaluate the compressive strength. The compressive strength results were marked when the sample was broken. The results of two groups were then analyzed using t-test statistical calculation. The results of this study show that post cure treatment on hybrid composite using LED light box (194.138 MPa was lower than dry heat treatment (227.339 MPa, which was also significantly different from statistical analysis. It can be concluded that compressive strength of LED light box was lower than dry heat post-cure treatment on the hybrid composite resin.

  14. Estimate of compressive strength of an unidirectional composite lamina using cross-ply and angle-ply laminates

    OpenAIRE

    Scafè, M.; Raiteri, G.; Brentari, A.; Dlacic, R.; Troiani, E.; Falaschetti, M. P.; Besseghini, E.

    2014-01-01

    In this work has been estimated the compressive strength of a unidirectional lamina of a carbon/epoxy composite material, using the cross-ply and angle-ply laminates. Over the years various methods have been developed to deduce compressive properties of composite materials reinforced with long fibres. Each of these methods is characterized by a specific way of applying load to the specimen. The method chosen to perform the compression tests is the Wyoming Combined Loading Compr...

  15. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive

    Energy Technology Data Exchange (ETDEWEB)

    Nochaiya, Thanongsak [Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Sekine, Yoshika [Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Choopun, Supab [Applied Physics Research Laboratory, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Chaipanich, Arnon, E-mail: arnon.chaipanich@cmu.ac.th [Advanced Cement-Based Materials Research Unit, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-05-05

    Highlights: • Nano zinc oxide was used as an additive material. • Microstructure and phase characterization of pastes were characterized using SEM and XRD. • TGA and FTIR were also used to determine the hydration reaction. • Compressive strength of ZnO mixes was found to increase at 28 days. - Abstract: Zinc oxide nanoparticles as a nanophotocatalyst has great potential for self-cleaning applications in concrete structures, its effects on the cement hydration, setting time and compressive strength are also important when using it in practice. This paper reports the effects of zinc oxide nanoparticles, as an additive material, on properties of cement-based materials. Setting time, compressive strength and porosity of mortars were investigated. Microstructure and morphology of pastes were characterized using scanning electron microscope and X-ray diffraction (XRD), respectively. Moreover, thermal gravimetric analysis (TGA) and Fourier-transform infrared spectrometer (FTIR) were also used to determine the hydration reaction. The results show that Portland cement paste with additional ZnO was found to slightly increase the water requirement while the setting time presented prolongation period than the control mix. However, compressive strength of ZnO mixes was found to be higher than that of PC mix up to 15% (at 28 days) via filler effect. Microstructure, XRD and TGA results of ZnO pastes show less hydration products before 28 days but similar at 28 days. In addition, FTIR results confirmed the retardation when ZnO was partially added in Portland cement pastes.

  16. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive

    International Nuclear Information System (INIS)

    Nochaiya, Thanongsak; Sekine, Yoshika; Choopun, Supab; Chaipanich, Arnon

    2015-01-01

    Highlights: • Nano zinc oxide was used as an additive material. • Microstructure and phase characterization of pastes were characterized using SEM and XRD. • TGA and FTIR were also used to determine the hydration reaction. • Compressive strength of ZnO mixes was found to increase at 28 days. - Abstract: Zinc oxide nanoparticles as a nanophotocatalyst has great potential for self-cleaning applications in concrete structures, its effects on the cement hydration, setting time and compressive strength are also important when using it in practice. This paper reports the effects of zinc oxide nanoparticles, as an additive material, on properties of cement-based materials. Setting time, compressive strength and porosity of mortars were investigated. Microstructure and morphology of pastes were characterized using scanning electron microscope and X-ray diffraction (XRD), respectively. Moreover, thermal gravimetric analysis (TGA) and Fourier-transform infrared spectrometer (FTIR) were also used to determine the hydration reaction. The results show that Portland cement paste with additional ZnO was found to slightly increase the water requirement while the setting time presented prolongation period than the control mix. However, compressive strength of ZnO mixes was found to be higher than that of PC mix up to 15% (at 28 days) via filler effect. Microstructure, XRD and TGA results of ZnO pastes show less hydration products before 28 days but similar at 28 days. In addition, FTIR results confirmed the retardation when ZnO was partially added in Portland cement pastes

  17. Compressive behavior of pervious concretes and a quantification of the influence of random pore structure features

    International Nuclear Information System (INIS)

    Deo, Omkar; Neithalath, Narayanan

    2010-01-01

    Research highlights: → Identified the relevant pore structure features of pervious concretes, provided methodologies to extract those, and quantified the influence of these features on compressive response. → A model for stress-strain relationship of pervious concretes, and relationship between model parameters and parameters of the stress-strain relationship developed. → Statistical model for compressive strength as a function of pore structure features; and a stochastic model for the sensitivity of pore structure features in strength prediction. - Abstract: Properties of a random porous material such as pervious concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the material structure-compressive response relationships in pervious concretes. Several pervious concrete mixtures with different pore structure features are proportioned and subjected to static compression tests. The pore structure features such as pore area fractions, pore sizes, mean free spacing of the pores, specific surface area, and the three-dimensional pore distribution density are extracted using image analysis methods. The compressive stress-strain response of pervious concretes, a model to predict the stress-strain response, and its relationship to several of the pore structure features are outlined. Larger aggregate sizes and increase in paste volume fractions are observed to result in increased compressive strengths. The compressive response is found to be influenced by the pore sizes, their distributions and spacing. A statistical model is used to relate the compressive strength to the relevant pore structure features, which is then used as a base model in a Monte-Carlo simulation to evaluate the sensitivity of the predicted compressive strength to the model terms.

  18. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete.

    Science.gov (United States)

    Jurowski, Krystian; Grzeszczyk, Stefania

    2018-03-22

    In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete.

  19. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete

    Science.gov (United States)

    Jurowski, Krystian; Grzeszczyk, Stefania

    2018-01-01

    In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete. PMID:29565830

  20. Evaluation of shear-compressive strength properties for laminated GFRP composites in electromagnet system

    Science.gov (United States)

    Song, Jun Hee; Kim, Hak Kun; Kim, Sam Yeon

    2014-07-01

    Laminated fiber-reinforced composites can be applied to an insulating structure of a nuclear fusion device. It is necessary to investigate the interlaminar fracture characteristics of the laminated composites for the assurance of design and structural integrity. The three methods used to prepare the glass fiber reinforced plastic composites tested in this study were vacuum pressure impregnation, high pressure laminate (HPL), and prepreg laminate. We discuss the design criteria for safe application of composites and the shear-compressive test methods for evaluating mechanical properties of the material. Shear-compressive tests could be performed successfully using series-type test jigs that were inclined 0°, 30°, 45°, 60°, and 75° to the normal axis. Shear strength depends strongly on the applied compressive stress. The design range of allowable shear stress was extended by use of the appropriate composite fabrication method. HPL had the largest design range, and the allowable interlaminar shear stress was 0.254 times the compressive stress.

  1. Effect of palm oil fuel ash on compressive strength of palm oil boiler stone lightweight aggregate concrete

    Science.gov (United States)

    Muthusamy, K.; Zamri, N. A.; Kusbiantoro, A.; Lim, N. H. A. S.; Ariffin, M. A. Mohd

    2018-04-01

    Both palm oil fuel ash (POFA) and palm oil boiler stone (POBS) are by-products which has been continuously generated by local palm oil mill in large amount. Both by products is usually disposed as profitless waste and considered as nuisance to environment. The present research investigates the workability and compressive strength performance of lightweight aggregate concrete (LWAC) made of palm oil boiler stone (POBS) known as palm oil boiler stone lightweight aggregate concrete (POBS LWAC) containing various content of palm oil fuel ash. The control specimen that is POBS LWAC of grade 60 were produced using 100% OPC. Then, another 4 mixes were prepared by varying the POFA percentage from 10%, 20%, 30% and 40% by weight of cement. Fresh mixes were subjected to slump test to determine its workability before casted in form of cubes. Then, all specimens were subjected to water curing up to 28 days and then tested for its compressive strength. It was found out that utilizing of optimum amount of POFA in POBS LWAC would improve the workability and compressive strength of the concrete. However, inclusion of POFA more than optimum amount is not recommended as it will increase the water demand leading to lower workability and strength reduction.

  2. Influence of Molarity and Chemical Composition on the Development of Compressive Strength in POFA Based Geopolymer Mortar

    Directory of Open Access Journals (Sweden)

    S. M. Alamgir Kabir

    2015-01-01

    Full Text Available The investigation concerns the use of the optimum mix proportion of two locally available pozzolanic waste materials, namely, ground granulated blast furnace slag (GGBS and palm oil fuel ash (POFA, together with metakaolin (MK as binders. In addition, another local waste material, manufactured sand (M-sand, was used as a replacement for conventional sand in the development of green geopolymer mortar. Twenty-four mortar mixtures were designed with varying binder contents and alkaline activators. The oven dry curing was also kept consistent for all the mix proportions at a temperature of 65°C for 24 hours. The highest 28-day compressive strength of about 48 MPa was obtained for the mortar containing 20% of MK, 35% of GGBS, and 45% of POFA. The increment of MK beyond 20% leads to reduction of the compressive strength. The GGBS replacement beyond 35% also reduced the compressive strength. The entire specimen achieved average 80% of the 28-day strength at the age of 3 days. The density decreased with the increase of POFA percentage. The finding of this research by using the combination of MK, GGBS, and POFA as binders to wholly replace conventional ordinary Portland cement would lead to alternate eco-friendly geopolymer matrix.

  3. Effect of amorphous silica ash used as a partial replacement for cement on the compressive and flexural strengths cement mortar.

    Science.gov (United States)

    Usman, Aliyu; Ibrahim, Muhammad B.; Bala, Nura

    2018-04-01

    This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the compressive and flexural strength of mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 2.5 percent, 5 percent, 7.5 percent and 10 percent. These partial replacements were used to produce Cement-ASA mortar. ASA was found to contain all major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel plates) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days for the cement mortar

  4. Strength and Absorption Rate of Compressed Stabilized Earth Bricks (CSEBs Due to Different Mixture Ratios and Degree of Compaction

    Directory of Open Access Journals (Sweden)

    Abdullah Abd Halid

    2017-01-01

    Full Text Available Compressed Stabilized Earth Brick (CSEB is produced by compressing a mixture of water with three main materials such as Ordinary Portland Cement (OPC, soil, and sand. It becomes popularfor its good strength, better insulation properties, and a sustainable product due to its easy production with low carbon emission and less skilled labour required. Different types of local soils usedwill produce CSEB of different physical properties in terms of its strength, durability, and water absorption rate. This study focuses on laterite soil taken from the surrounding local area in Parit Raja, Johor, and CSEB samples are produced based on prototype brick size 100×50×30 mm. The investigations are based on four different degree of compactions (i.e. 1500, 2000, 2500, and 3000 Psi and three different mix proportion ratios of cement:sand:laterite soil (i.e. 1:1:9, 1:2:8, 1:3:7. A total of 144 CSEB samples have been tested at 7 and 28 days curing periods to determine the compressive strength (BS 3921:1985 and water absorption rate (MS 76:1972. It was found that maximum compressive strength of CSEB was 14.68 N/mm2 for mixture ratio of 1:3:7 at 2500 Psi compaction. Whereas, the minimum strengthis 6.87 N/mm2 for 1:1:9mixture ratio at 1500 Psi. Meanwhile, the lowest water absorption was 12.35% for mixture ratio of 1:2:8 at 3000 Psi; while the 1:1:9 mixture ratio at 1500 Psi gave the highest rate of 16.81%. This study affirms that the sand content in the mixture and the degree of compaction would affect the value of compressive strength and water absorption of CSEB.

  5. Determination of deformation and strength characteristics of artificial geomaterial having step-shaped discontinuities under uniaxial compression

    Science.gov (United States)

    Tsoy, PA

    2018-03-01

    In order to determine the empirical relationship between the linear dimensions of step-shaped macrocracks in geomaterials as well as deformation and strength characteristics of geomaterials (ultimate strength, modulus of deformation) under uniaxial compression, the artificial flat alabaster specimens with the through discontinuities have been manufactured and subjected to a series of the related physical tests.

  6. Influence of Random Inclusion of Coconut Fibres on the Short term Strength of Highly Compressible Clay

    Science.gov (United States)

    Ramani Sujatha, Evangelin; SaiSree, S.; Prabalini, C.; Aysha Farsana, Z.

    2017-07-01

    The choice of natural fibres for soil stabilization provides an economic, safe and eco-friendly alternative to improve the properties of soil. They are an important step forward toward sustainable development. An attempt was made to study the influence of the random addition of untreated coconut fibres on the short term strength of soil, its stress-strain behavior, compaction characteristics and index properties. The soil selected for the study is a highly compressible clay sample with a liquid limit of 52.5 % and plasticity index of 38 %. The soil has no organic content. The study reveals that the compaction curves tend to shift to the right side, indicating more plastic behavior with the addition of fibres. The addition of fibres also reorient the soil structure to a more dispersed fashion. A significant increase in the unconfined compressive strength is also observed. An increase of nearly 51 % in the unconfined compressive strength is observed at 0.75 % coir inclusion. The stress-strain behavior of the soil shows a shift toward more plastic behavior. The mode of failure of the soil specimen is by cracking and with fibre inclusion, length of the failure cracks is restrained as the fibre tends to hold the cracks together, resulting in shorter cracks, with significant bulging of the specimen at failure.

  7. Combined effect of nano-SiO2 and nano-Fe2O3 on compressive strength, flexural strength, porosity and electrical resistivity in cement mortars

    International Nuclear Information System (INIS)

    Sanjuán, M.A.; Argiz, C.; Gálvez, J.C.; Reyes, E.

    2018-01-01

    The compressive strength, flexural strength, porosity and electrical resistivity properties of cement mortars with nano-Fe2O3 and nano-SiO2 are studied. Amorphous silica is the main component of pozzolanic materials due to its reaction with calcium hydroxide formed from calcium silicate (C3S and C2S) hydration. The pozzolanic reaction rate is not only proportional to the amount of amorphous silica but also to the surface area available for reaction. Subsequently, fine nano-Fe2O3 and nano-SiO2 particles in mortars are expected to improve mortar performance. The experimental results showed that the compressive strength of mortars with nano-Fe2O3 and nano-SiO2 particles were lower than those obtained with the reference mortar at seven and 28 days. It was shown that the nano-particles were not able to enhance mechanical strength on every occasion. The continuous microstructural progress monitored by mercury intrusion porosimetry (MIP) measurements, pore-size distribution (PSD), total porosity and critical pore diameter also confirmed such results. [es

  8. Combined effect of nano-SiO2 and nano-Fe2O3 on compressive strength, flexural strength, porosity and electrical resistivity in cement mortars

    Directory of Open Access Journals (Sweden)

    M. A. Sanjuán

    2018-03-01

    Full Text Available The compressive strength, flexural strength, porosity and electrical resistivity properties of cement mortars with nano-Fe2O3 and nano-SiO2 are studied. Amorphous silica is the main component of pozzolanic materials due to its reaction with calcium hydroxide formed from calcium silicate (C3S and C2S hydration. The pozzolanic reaction rate is not only proportional to the amount of amorphous silica but also to the surface area available for reaction. Subsequently, fine nano-Fe2O3 and nano-SiO2 particles in mortars are expected to improve mortar performance. The experimental results showed that the compressive strength of mortars with nano-Fe2O3 and nano-SiO2 particles were lower than those obtained with the reference mortar at seven and 28 days. It was shown that the nano-particles were not able to enhance mechanical strength on every occasion. The continuous microstructural progress monitored by mercury intrusion porosimetry (MIP measurements, pore-size distribution (PSD, total porosity and critical pore diameter also confirmed such results.

  9. Microdamage in polycrystalline ceramics under dynamic compression and tension

    International Nuclear Information System (INIS)

    Zhang, K.S.; Zhang, D.; Feng, R.; Wu, M.S.

    2005-01-01

    In-grain microplasticity and intergranular microdamage in polycrystalline hexagonal-structure ceramics subjected to a sequence of dynamic compression and tension are studied computationally using the Voronoi polycrystal model, by which the topological heterogeneity and material anisotropy of the crystals are simulated explicitly. The constitutive modeling considers crystal plasticity by basal slip, intergranular shear damage during compression, and intergranular mode-I cracking during tension. The model parameters are calibrated with the available shock compression and spall strength data on polycrystalline α-6H silicon carbide. The numerical results show that microplasticity is a more plausible micromechanism for the inelastic response of the material under shock compression. On the other hand, the spallation behavior of the shocked material can be well predicted by intergranular mode-I microcracking during load reversal from dynamic compression to tension. The failure process and the resulting spall strength are, however, affected strongly by the intensity of local release heterogeneity induced by heterogeneous microplasticity, and by the grain-boundary shear damage during compression

  10. Uniaxial Compressive Strengths of Rocks Drilled at Gale Crater, Mars

    Science.gov (United States)

    Peters, G. H.; Carey, E. M.; Anderson, R. C.; Abbey, W. J.; Kinnett, R.; Watkins, J. A.; Schemel, M.; Lashore, M. O.; Chasek, M. D.; Green, W.; Beegle, L. W.; Vasavada, A. R.

    2018-01-01

    Measuring the physical properties of geological materials is important for understanding geologic history. Yet there has never been an instrument with the purpose of measuring mechanical properties of rocks sent to another planet. The Mars Science Laboratory (MSL) rover employs the Powder Acquisition Drill System (PADS), which provides direct mechanical interaction with Martian outcrops. While the objective of the drill system is not to make scientific measurements, the drill's performance is directly influenced by the mechanical properties of the rocks it drills into. We have developed a methodology that uses the drill to indicate the uniaxial compressive strengths of rocks through comparison with performance of an identically assembled drill system in terrestrial samples of comparable sedimentary class. During this investigation, we utilize engineering data collected on Mars to calculate the percussive energy needed to maintain a prescribed rate of penetration and correlate that to rock strength.

  11. Development of superhigh-strength mortars with compressive strength of 3000kgf/cm sup 2 or higher. 3000kgf/cm sup 2 ijo no asshuku kyodo wo motsu mortar no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ohama, Y; Izumura, K [Nihon University, Tokyo (Japan). Collete of Engineering; Hayashi, S [Onoda Cement Co. Ltd., Yamaguchi (Japan)

    1991-08-01

    This paper discusses the preparation factors and curing conditions of superhigh-strength mortar, and explains a method of manufacturing superhigh-strength mortar having still higher strength and its superhigh strength generating mechanism. A recommended cement material for the superhigh-strength mortar is a Portland cement mixed with a high-purity silica at 20% and silica fume at 20%. This was made to a water-cement material ratio of 15% and fine aggregate cement material ratio of 1.06, cured in an autoclave, and further heat-cured at 200{degree}C for one day to obtain a superhigh-strength mortar. The compression and bending strengths reach 2,200 kgf/cm{sup 2} and 180 kgf/cm{sup 2} respectively when used with silica sand, and 3000 kgf/cm{sup 2} and 220 kgf/cm{sup 2} or more when used with stainless steel grits. The heat curing at 200{degree}C for a day increases remarkably the compression strength of the superhigh-strength mortar regardless of the curing conditions before the heat curing. 7 refs., 11 figs., 1 tab.

  12. Studying of Compressive, Tensile and Flexural Strength of Concrete by Using Steel Fibers

    Directory of Open Access Journals (Sweden)

    Muslim Abdul-Ameer

    2016-12-01

    Full Text Available This research aims to study the effect of adding steel fibers on the mechanical properties of concrete. Steel fiber has a very significant effect on concrete because it delays the propagation of micro cracks that generate due to loading on concrete members such as beams and slabs, therefore ,it increases the strength of concrete. The steel fiber was used in this study as a percentage of the volume of concrete. Mix proportion was 1: 2:4 (cement: sand: gravel by volume for all mixes and using 0% as (control mix,0.1 %,0.2%,0.5 % and 1.0% of steel fibers, these ratios leads to increase the compressive, tensile ,and flexural strength of concrete, where the improvement in flexural strength was significant

  13. Compressive and flexural strength of concrete containing palm oil biomass clinker and polypropylene fibres

    Science.gov (United States)

    Ibrahim, M. H. Wan; Mangi, Sajjad Ali; Burhanudin, M. K.; Ridzuan, M. B.; Jamaluddin, N.; Shahidan, S.; Wong, YH; Faisal, SK; Fadzil, M. A.; Ramadhansyah, P. J.; Ayop, S. S.; Othman, N. H.

    2017-11-01

    This paper presents the effects of using palm oil biomass (POB) clinker with polypropylene (PP) fibres in concrete on its compressive and flexural strength performances. Due to infrastructural development works, the use of concrete in the construction industry has been increased. Simultaneously, it raises the demand natural sand, which causes depletion of natural resources. While considering the environmental and economic benefits, the utilization of industrial waste by-products in concrete will be the alternative solution of the problem. Among the waste products, one of such waste by-product is the palm oil biomass clinker, which is a waste product from burning processes of palm oil fibres. Therefore, it is important to utilize palm oil biomass clinker as partial replacement of fine aggregates in concrete. Considering the facts, an experimental study was conducted to find out the potential usage of palm oil fibres in concrete. In this study, total 48 number of specimens were cast to evaluate the compressive and flexural strength performances. Polypropylene fibre was added in concrete at the rate of 0.2%, 0.4% and 0.6%, and sand was replaced at a constant rate of 10% with palm oil biomass clinker. The flexural strength of concrete was noticed in the range of 2.25 MPa and 2.29 MPa, whereas, the higher value of flexural strength was recorded with 0.4% polypropylene fibre addition. Hence, these results show that the strength performances of concrete containing POB clinker could be improved with the addition of polypropylene fibre.

  14. Compressive strength evolution of thermally-stressed Saint Maximin limestone.

    Science.gov (United States)

    Farquharson, J.; Griffiths, L.; Baud, P.; Wadsworth, F. B.; Heap, M. J.

    2017-12-01

    The Saint Maximin quarry (Oise, France) opened in the early 1600s, and its limestone has been used extensively as masonry stone, particularly during the classical era of Parisian architecture from the 17th century onwards. Its widespread use has been due to a combination of its regional availability, its high workability, and its aesthetic appeal. Notable buildings completed using this material include sections of the Place de la Concorde and the Louvre in Paris. More recently, however, it has seen increasing use in the construction of large private residences throughout the United States as well as extensions to private institutions such as Stanford University. For any large building, fire hazard can be a substantial concern, especially in tectonically active areas where catastrophic fires may arise following large-magnitude earthquakes. Typically, house fires burn at temperatures of around 600 °C ( 1000 F). Given the ubiquity of this geomaterial as a building stone, it is important to ascertain the influence of heating on the strength of Saint Maximin limestone (SML), and in turn the structural stability of the buildings it is used in. We performed a series of compressive tests and permeability measurements on samples of SML to determine its strength evolution in response to heating to incrementally higher temperatures. We observe that the uniaxial compressive strength of SML decreases from >12 MPa at room temperature to 400 °C). We anticipate that this substantial weakening is in part a result of thermal microcracking, whereby changes in temperature induce thermal stresses due to a mismatch in thermal expansion between the constituent grains. This mechanism is compounded by the volumetric increase of quartz through its alpha - beta transition at 573 °C, and by the thermal decomposition of calcite. To track the formation of thermal microcracks, we monitor acoustic emissions, a common proxy for microcracking, during the heating of an SML sample. The

  15. Effect of mineral admixtures on kinetic property and compressive strength of self Compacting Concrete

    Science.gov (United States)

    Jagalur Mahalingasharma, Srishaila; Prakash, Parasivamurthy; Vishwanath, K. N.; Jawali, Veena

    2017-06-01

    This paper presents experimental investigations made on the influence of chemical, physical, morphological and mineralogical properties of mineral admixtures such as fly ash, ground granulate blast furnace slag, metakaoline and micro silica used as a replacement of cement in self compacting concrete on workability and compressive strength. Nineteen concrete mixes were cast by replacing with cement by fly ash or ground granulated blast furnace slag as binary blend at 30%, 40%, 50% and with addition of micro silica and metakaoline at 10% as a ternary blend with fly ash, ground granulated blast furnace slag and obtained results were compare with control mix. Water powder ratio 0.3 and super plasticizer dosage 1% of cementitious material was kept constant for all the mixes. The self compacting concrete tested for slump flow, V-funnel, L-Box, J-Ring, T50, and compressive strength on concrete cube were determined at age of 3, 7, 28, 56, 90 days.

  16. Non-Uniform Compressive Strength of Debonded Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Simonsen, Bo Cerup

    2005-01-01

    .(2005)., shows that the model is indeed able to predict the failure modes and the residual strength of damaged panels with accuracy sufficient for practical applications. This opens up for a number of important engineering applications, for example risk-based inspection and repair schemes....

  17. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and

  18. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    Science.gov (United States)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  19. Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength

    Directory of Open Access Journals (Sweden)

    Y. Luna-Galiano

    2016-09-01

    Full Text Available The main contribution of this paper relates to the development of a systematic study involving a set of parameters which could potentially have an impact on geopolymer properties: curing temperature, type of activating solution, alkali metal in solution, incorporation of slag (Ca source and type of slag used. The microstructures, degrees of reaction, porosities and compressive strengths of geopolymers have been evaluated. Geopolymers prepared with soluble silicate presented a more compacted and closed structure, a larger amount of gel, lower porosity and greater compressive strength than those prepared with hydroxides. On the other hand, Na-geopolymers were more porous but more resistant than K-geopolymers. Although there is an inverse relation between degree of reaction and porosity, between compressive strength and porosity it is not always inversely proportional and could, in some cases, be masked by changes produced in other influencing parameters.

  20. The influence of kind of coating additive on the compressive strength of RCA-based concrete prepared by triple-mixing method

    Science.gov (United States)

    Urban, K.; Sicakova, A.

    2017-10-01

    The paper deals with the use of alternative powder additives (fly ash and fine fraction of recycled concrete) to improve the recycled concrete aggregate and this occurs directly in the concrete mixing process. Specific mixing process (triple mixing method) is applied as it is favourable for this goal. Results of compressive strength after 2 and 28 days of hardening are given. Generally, using powder additives for coating the coarse recycled concrete aggregate in the first stage of triple mixing resulted in decrease of compressive strength, comparing the cement. There is no very important difference between samples based on recycled concrete aggregate and those based on natural aggregate as far as the cement is used for coating. When using both the fly ash and recycled concrete powder, the kind of aggregate causes more significant differences in compressive strength, with the values of those based on the recycled concrete aggregate being worse.

  1. Predicting the perceived sound quality of frequency-compressed speech.

    Directory of Open Access Journals (Sweden)

    Rainer Huber

    Full Text Available The performance of objective speech and audio quality measures for the prediction of the perceived quality of frequency-compressed speech in hearing aids is investigated in this paper. A number of existing quality measures have been applied to speech signals processed by a hearing aid, which compresses speech spectra along frequency in order to make information contained in higher frequencies audible for listeners with severe high-frequency hearing loss. Quality measures were compared with subjective ratings obtained from normal hearing and hearing impaired children and adults in an earlier study. High correlations were achieved with quality measures computed by quality models that are based on the auditory model of Dau et al., namely, the measure PSM, computed by the quality model PEMO-Q; the measure qc, computed by the quality model proposed by Hansen and Kollmeier; and the linear subcomponent of the HASQI. For the prediction of quality ratings by hearing impaired listeners, extensions of some models incorporating hearing loss were implemented and shown to achieve improved prediction accuracy. Results indicate that these objective quality measures can potentially serve as tools for assisting in initial setting of frequency compression parameters.

  2. Determining the Compressive, Flexural and Splitting Tensile Strength of Silica Fume Reinforced Lightweight Foamed Concrete

    OpenAIRE

    Mydin M.A.O.; Sani N. Md.; Mohd Yusoff M.A.; Ganesan S.

    2014-01-01

    This study investigated the performance of the properties of foamed concrete in replacing volumes of cement of 10%, 15% and 20% by weight. A control unit of foamed concrete mixture made with ordinary Portland cement (OPC) and 10%, 15% and 20% silica fume was prepared. Three mechanical property parameters were studied such as compressive strength, flexural strength and splitting tensile of foamed concrete with different percentages of silica fume. Silica fume is commonly used to increase the m...

  3. Influence of Nanolime and Curing Period on Unconfined Compressive Strength of Soil

    Directory of Open Access Journals (Sweden)

    Panbarasi Govindasamy

    2017-01-01

    Full Text Available This paper presents the improvement of the unconfined compressive strength (UCS of soil by mixing different percentages of nanolime and 5% lime with soil. The UCS of treated soil increased significantly over curing time with increasing percentage of nanolime. The optimum results were reached at only 0.5% nanolime admixtures which were much higher than 5% lime admixture. This may be due to higher ability of nanolime to flocculate and agglomerate the soil particles compared with the lime. In addition, the lime could fill only the micropores while nanolime could fill the micro- and nanopores as well. The strength gain is inversely proportional to the remolded moisture content and curing period. However, when the content of nanolime used is larger than 0.5%, nanolime particles are not uniformly dispersed. Therefore, a weak area in the form of voids is created, consequently the homogeneous hydrated microstructure cannot be formed, and finally the strength will decrease.

  4. Compressive strength performance of OPS lightweight aggregate concrete containing coal bottom ash as partial fine aggregate replacement

    Science.gov (United States)

    Muthusamy, K.; Mohamad Hafizuddin, R.; Mat Yahaya, F.; Sulaiman, M. A.; Syed Mohsin, S. M.; Tukimat, N. N.; Omar, R.; Chin, S. C.

    2018-04-01

    Concerns regarding the negative impact towards environment due to the increasing use of natural sand in construction industry and dumping of industrial solid wastes namely coal bottom ash (CBA) and oil palm shell (OPS) has resulted in the development of environmental friendly lightweight concrete. The present study investigates the effect of coal bottom ash as partial fine aggregate replacement towards workability and compressive strength of oil palm shell lightweight aggregate concrete (OPS LWAC). The fresh and mechanical properties of this concrete containing various percentage of coal bottom ash as partial fine aggregate replacement were investigated. The result was compared to OPS LWAC with 100 % sand as a control specimen. The concrete workability investigated by conducting slump test. All specimens were cast in form of cubes and water cured until the testing age. The compressive strength test was carried out at 7 and 28 days. The finding shows that integration of coal bottom ash at suitable proportion enhances the strength of oil palm shell lightweight aggregate concrete.

  5. The effect of shredding and test apparatus size on compressibility and strength parameters of degraded municipal solid waste.

    Science.gov (United States)

    Hossain, M S; Gabr, M A; Asce, F

    2009-09-01

    In many situations, MSW components are processed and shredded before use in laboratory experiments using conventional soil testing apparatus. However, shredding MSW material may affect the target property to be measured. The objective of this study is to contribute to the understanding of the effect of shredding of MSW on the measured compressibility and strength properties. It is hypothesized that measured properties can be correlated to an R-value, the ratio of waste particle size to apparatus size. Results from oedometer tests, conducted on 63.5 mm, 100 mm, 200 mm diameter apparatus, indicated the dependency of the compressibility parameters on R-value. The compressibility parameters are similar for the same R-value even though the apparatus size varies. The results using same apparatus size with variable R-values indicated that shredding of MSW mainly affects initial compression. Creep and biological strain rate of the tested MSW are not significantly affected by R-value. The shear strength is affected by shredding as the light-weight reinforcing materials are shredded into smaller pieces during specimen preparation. For example, the measured friction angles are 32 degrees and 27 degrees for maximum particle sizes of 50 mm and 25 mm, respectively. The larger MSW components in the specimen provide better reinforcing contribution. This conclusion is however dependent on comparing specimen at the same level of degradation since shear strength is also a function of extent of degradation.

  6. Predicting Flexural Strength of Concretes Incorporating River Gravel ...

    African Journals Online (AJOL)

    In most of these cases the cause of the collapse could be traced to the strength of the construction materials which is usually concrete. Secondly, experimental ... The flexural strength predictions were compared with predictions from an alternative model based on regression analysis. The results of the study show that for the ...

  7. In vitro comparison of DE-QCT parameters with the compressive strength of cancellous bone

    International Nuclear Information System (INIS)

    Oravez, W.T.; Robertson, D.D.

    1986-01-01

    Quantitative computed tomography (QCT) is used as a method for assessing bone mineral in patients with osteoporosis. The implication being that if the mass of bone mineral is low enough then the patient is at risk for developing symptoms, i.e., fracture. The authors performed an in vitro test which compared dual-energy-QCT (DE-QCT) parameters with compressive strength. The bone samples were placed in a water bath and CT scanned using a Siemens DR-3. Alternating x-ray pulses of 125 and 85 kVp were used to generate the dual energy images. Four images, high kVp, low kVp, monoenergenic, and calcium equivalent, were reconstructed from each scan. A specially constructed bone mineral calibration phantom, consisting of a polyethylene rod and varying tubes of K2HP04, was placed within the water bath along with the specimens. Comparisons will be made between the various DE parameters and their relationship to the compressive strength of cancellous bone. The critical effect of trabecular bone orientation will also be discussed

  8. Influence of the waste glass in the axial compressive strength of Portland cement concrete

    International Nuclear Information System (INIS)

    Miranda Junior, E.J.P.; Paiva, A.E.M.

    2012-01-01

    In this work, was studied the influence of the incorporation of waste glass, coming from the stage of thinning and polishing of a company of thermal glass treatments, in the axial compressive strength of Portland cement concrete. The coarse and ground aggregates used was crushed stone and sand, respectively. For production of the concrete, percentages of glass residues of 5%, 10% and 20% had been used in substitution to the sand, and relations water/cement (a/c) 0,50, 0,55 and 0,58. The cure of the test bodies was carried through in 7, 14 and 28 days. The statistics analysis of the results was carried out through of the analysis of variance for each one of the cure times. From the results of the compressive strength of the concrete, it could be observed that the concrete has structural application for the relation a/c 0,5, independently of waste glass percentage used, and for the relation a/c 0,55 with 20% of waste glass. (author)

  9. Spectrum Fatigue Lifetime and Residual Strength for Fiberglass Laminates; TOPICAL

    International Nuclear Information System (INIS)

    WAHL, NEIL K.; MANDELL, JOHN F.; SAMBORSKY, DANIEL D.

    2002-01-01

    This report addresses the effects of spectrum loading on lifetime and residual strength of a typical fiberglass laminate configuration used in wind turbine blade construction. Over 1100 tests have been run on laboratory specimens under a variety of load sequences. Repeated block loading at two or more load levels, either tensile-tensile, compressive-compressive, or reversing, as well as more random standard spectra have been studied. Data have been obtained for residual strength at various stages of the lifetime. Several lifetime prediction theories have been applied to the results. The repeated block loading data show lifetimes that are usually shorter than predicted by the most widely used linear damage accumulation theory, Miner's sum. Actual lifetimes are in the range of 10 to 20 percent of predicted lifetime in many cases. Linear and nonlinear residual strength models tend to fit the data better than Miner's sum, with the nonlinear providing a better fit of the two. Direct tests of residual strength at various fractions of the lifetime are consistent with the residual strength models. Load sequencing effects are found to be insignificant. The more a spectrum deviates from constant amplitude, the more sensitive predictions are to the damage law used. The nonlinear model provided improved correlation with test data for a modified standard wind turbine spectrum. When a single, relatively high load cycle was removed, all models provided similar, though somewhat non-conservative correlation with the experimental results. Predictions for the full spectrum, including tensile and compressive loads were slightly non-conservative relative to the experimental data, and accurately captured the trend with varying maximum load. The nonlinear residual strength based prediction with a power law S-N curve extrapolation provided the best fit to the data in most cases. The selection of the constant amplitude fatigue regression model becomes important at the lower stress, higher

  10. The application of sparse linear prediction dictionary to compressive sensing in speech signals

    Directory of Open Access Journals (Sweden)

    YOU Hanxu

    2016-04-01

    Full Text Available Appling compressive sensing (CS,which theoretically guarantees that signal sampling and signal compression can be achieved simultaneously,into audio and speech signal processing is one of the most popular research topics in recent years.In this paper,K-SVD algorithm was employed to learn a sparse linear prediction dictionary regarding as the sparse basis of underlying speech signals.Compressed signals was obtained by applying random Gaussian matrix to sample original speech frames.Orthogonal matching pursuit (OMP and compressive sampling matching pursuit (CoSaMP were adopted to recovery original signals from compressed one.Numbers of experiments were carried out to investigate the impact of speech frames length,compression ratios,sparse basis and reconstruction algorithms on CS performance.Results show that sparse linear prediction dictionary can advance the performance of speech signals reconstruction compared with discrete cosine transform (DCT matrix.

  11. Analysis of compressive fracture in rock using statistical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Blair, S.C.

    1994-12-01

    Fracture of rock in compression is analyzed using a field-theory model, and the processes of crack coalescence and fracture formation and the effect of grain-scale heterogeneities on macroscopic behavior of rock are studied. The model is based on observations of fracture in laboratory compression tests, and incorporates assumptions developed using fracture mechanics analysis of rock fracture. The model represents grains as discrete sites, and uses superposition of continuum and crack-interaction stresses to create cracks at these sites. The sites are also used to introduce local heterogeneity. Clusters of cracked sites can be analyzed using percolation theory. Stress-strain curves for simulated uniaxial tests were analyzed by studying the location of cracked sites, and partitioning of strain energy for selected intervals. Results show that the model implicitly predicts both development of shear-type fracture surfaces and a strength-vs-size relation that are similar to those observed for real rocks. Results of a parameter-sensitivity analysis indicate that heterogeneity in the local stresses, attributed to the shape and loading of individual grains, has a first-order effect on strength, and that increasing local stress heterogeneity lowers compressive strength following an inverse power law. Peak strength decreased with increasing lattice size and decreasing mean site strength, and was independent of site-strength distribution. A model for rock fracture based on a nearest-neighbor algorithm for stress redistribution is also presented and used to simulate laboratory compression tests, with promising results.

  12. Research on strength attenuation law of concrete in freezing - thawing environment

    Science.gov (United States)

    Xiao, qianhui; Cao, zhiyuan; Li, qiang

    2018-03-01

    By rapid freezing and thawing method, the experiments of concrete have been 300 freeze-thaw cycles specimens in the water. The cubic compression strength value under different freeze-thaw cycles was measured. By analyzing the test results, the water-binder ratio of the concrete under freeze-thaw environments, fly ash and air entraining agent is selected dosage recommendations. The exponential attenuation prediction model and life prediction model of compression strength of concrete under freezing-thawing cycles considering the factors of water-binder ratio, fly ash content and air-entraining agent dosage were established. The model provides the basis for predicting the durability life of concrete under freezing-thawing environment. It also provides experimental basis and references for further research on concrete structures with antifreeze requirements.

  13. Prediction of peak back compressive forces as a function of lifting speed and compressive forces at lift origin and destination - a pilot study.

    Science.gov (United States)

    Greenland, Kasey O; Merryweather, Andrew S; Bloswick, Donald S

    2011-09-01

    To determine the feasibility of predicting static and dynamic peak back-compressive forces based on (1) static back compressive force values at the lift origin and destination and (2) lifting speed. Ten male subjects performed symmetric mid-sagittal floor-to-shoulder, floor-to-waist, and waist-to-shoulder lifts at three different speeds (slow, medium, and fast), and with two different loads (light and heavy). Two-dimensional kinematics and kinetics were captured. Linear regression analyses were used to develop prediction equations, the amount of predictability, and significance for static and dynamic peak back-compressive forces based on a static origin and destination average (SODA) back-compressive force. Static and dynamic peak back-compressive forces were highly predicted by the SODA, with R(2) values ranging from 0.830 to 0.947. Slopes were significantly different between slow and fast lifting speeds (p assessments at the origin and destination of a lifting task. This could be valuable for enhancing job design and analysis in the workplace and for large-scale studies where a full analysis of each lifting task is not feasible.

  14. Reaction kinetics, reaction products and compressive strength of ternary activators activated slag designed by Taguchi method

    NARCIS (Netherlands)

    Yuan, B.; Yu, Q.L.; Brouwers, H.J.H.

    2015-01-01

    This study investigates the reaction kinetics, the reaction products and the compressive strength of slag activated by ternary activators, namely waterglass, sodium hydroxide and sodium carbonate. Nine mixtures are designed by the Taguchi method considering the factors of sodium carbonate content

  15. An in vitro study to compare the transverse strength of thermopressed and conventional compression-molded polymethylmethacrylate polymers.

    Science.gov (United States)

    Raut, Anjana; Rao, Polsani Laxman; Vikas, B V J; Ravindranath, T; Paradkar, Archana; Malakondaiah, G

    2013-01-01

    Acrylic resins have been in the center stage of Prosthodontics for more than half a century. The flexural fatigue failure of denture base materials is the primary mode of clinical failure. Hence there is a need for superior physical and mechanical properties. This in vitro study compared the transverse strength of specimens of thermopressed injection-molded and conventional compression-molded polymethylmethacrylate polymers and examined the morphology and microstructure of fractured acrylic specimens. The following denture base resins were examined: Brecrystal (Thermopressed injection-molded, modified polymethylmethacrylate) and Pyrax (compression molded, control group). Specimens of each material were tested according to the American Society for Testing and Materials standard D790-03 for flexural strength testing of reinforced plastics and subsequently examined under SEM. The data was analyzed with Student unpaired t test. Flexural strength of Brecrystal (82.08 ± 1.27 MPa) was significantly higher than Pyrax (72.76 ± 0.97 MPa). The tested denture base materials fulfilled the requirements regarding flexural strength (>65 MPa). The scanning electron microscopy image of Brecrystal revealed a ductile fracture with crazing. The fracture pattern of control group specimens exhibited poorly defined crystallographic planes with a high degree of disorganization. Flexural strength of Brecrystal was significantly higher than the control group. Brecrystal showed a higher mean transverse strength value of 82.08 ± 1.27 MPa and a more homogenous pattern at microscopic level. Based on flexural strength properties and handling characteristics, Brecrystal may prove to be an useful alternative to conventional denture base resins.

  16. An in vitro study to compare the transverse strength of thermopressed and conventional compression-molded polymethylmethacrylate polymers

    Directory of Open Access Journals (Sweden)

    Anjana Raut

    2013-01-01

    Full Text Available Statement of Problem: Acrylic resins have been in the center stage of Prosthodontics for more than half a century. The flexural fatigue failure of denture base materials is the primary mode of clinical failure. Hence there is a need for superior physical and mechanical properties. Purpose: This in vitro study compared the transverse strength of specimens of thermopressed injection-molded and conventional compression-molded polymethylmethacrylate polymers and examined the morphology and microstructure of fractured acrylic specimens. Materials and Methods: The following denture base resins were examined: Brecrystal (Thermopressed injection-molded, modified polymethylmethacrylate and Pyrax (compression molded, control group. Specimens of each material were tested according to the American Society for Testing and Materials standard D790-03 for flexural strength testing of reinforced plastics and subsequently examined under SEM. The data was analyzed with Student unpaired t test. Results: Flexural strength of Brecrystal (82.08 ± 1.27 MPa was significantly higher than Pyrax (72.76 ± 0.97 MPa. The tested denture base materials fulfilled the requirements regarding flexural strength (>65 MPa. The scanning electron microscopy image of Brecrystal revealed a ductile fracture with crazing. The fracture pattern of control group specimens exhibited poorly defined crystallographic planes with a high degree of disorganization. Conclusion: Flexural strength of Brecrystal was significantly higher than the control group. Brecrystal showed a higher mean transverse strength value of 82.08 ± 1.27 MPa and a more homogenous pattern at microscopic level. Based on flexural strength properties and handling characteristics, Brecrystal may prove to be an useful alternative to conventional denture base resins.

  17. Experimental Study on the Compressive Strength of Big Mobility Concrete with Nondestructive Testing Method

    Directory of Open Access Journals (Sweden)

    Huai-Shuai Shang

    2012-01-01

    Full Text Available An experimental study of C20, C25, C30, C40, and C50 big mobility concrete cubes that came from laboratory and construction site was completed. Nondestructive testing (NDT was carried out using impact rebound hammer (IRH techniques to establish a correlation between the compressive strengths and the rebound number. The local curve for measuring strength of the regression method is set up and its superiority is proved. The rebound method presented is simple, quick, and reliable and covers wide ranges of concrete strengths. The rebound method can be easily applied to concrete specimens as well as existing concrete structures. The final results were compared with previous ones from the literature and also with actual results obtained from samples extracted from existing structures.

  18. Early age compressive strength, porosity, and sorptivity of concrete using peat water to produce and cure concrete

    Science.gov (United States)

    Olivia, Monita; Ismeddiyanto, Wibisono, Gunawan; Sitompul, Iskandar R.

    2017-09-01

    Construction in peatland has faced scarce water sources for mixing and curing concrete. It is known that peat water has high organic content and low pH that can be harmful to concrete in the environment. In some remote areas in Riau Province, contractors used peat water directly without sufficient treatments to comply with SKSNI requirements of concrete mixing water. This paper presents a study of compressive strength, porosity and sorptivity of Ordinary Portland Cement (OPC) and blended OPC-Palm Oil Fuel Ash (OPC-POFA) concrete. The specimens were mixed using natural water and peat water, then some of them were cured in fresh water and peat water. Six mixtures were investigated using a variation of cement, mixing water and curing water. Tap water is used as control mixing and curing water for all specimens. The compressive strength, porosity and sorptivity were calculated at seven and 28 days. Results indicate that the use of peat water will cause low compressive strength, high porosity and sorptivity for both OPC and OPC-POFA concrete. Using peat water and curing the specimens in tap water could improve the early strength, porosity and sorptivity of OPC concrete; however, it has an adverse effect on OPC-POFA specimens. The properties of early age concrete of both types (OPC and OPC-POFA) using peat water were as good as those with tap water. Therefore, it is suggested that peat water should be considered as mixing and curing water for concrete where tap water resources are scarce. Investigation of its long-term properties, as well as extending the observed age of concrete is recommended before any use of peat water.

  19. Influence of variables on the consolidation and unconfined compressive strength of crushed salt: Technical report

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Senseny, P.E.; Mellegard, K.D.

    1987-01-01

    Eight hydrostatic compression creep tests were performed on crushed salt specimens fabricated from Avery Island dome salt. Following the creep test, each specimen was tested in unconfined compression. The experiments were performed to assess the influence of the following four variables on the consolidation and unconfined strength of crushed salt: grain size distribution, temperature, time, and moisture content. The experiment design comprised a half-fraction factorial matrix at two levels. The levels of each variable investigated were grain size distribution, uniform-graded and well-graded (coefficient of uniformity of 1 and 8); temperature 25 0 C and 100 0 C; time, 3.5 x 10 3 s and 950 x 10 3 s (approximately 60 minutes and 11 days, respectively); and moisture content, dry and wet (85% relative humidity for 24 hours). The hydrostatic creep stress was 10 MPa. The unconfined compression tests were performed at an axial strain rate of 1 x 10 -5 s -1 . Results show that the variables time and moisture content have the greatest influence on creep consolidation, while grain size distribution and, to a somewhat lesser degree, temperature have the greatest influence on total consolidation. Time and moisture content and the confounded two-factor interactions between either grain size distribution and time or temperature and moisture content have the greatest influence on unconfined strength. 7 refs., 7 figs., 11 tabs

  20. Compression of thick laminated composite beams with initial impact-like damage

    Science.gov (United States)

    Breivik, N. L.; Guerdal, Z.; Griffin, O. H., Jr.

    1992-01-01

    While the study of compression after impact of laminated composites has been under consideration for many years, the complexity of the damage initiated by low velocity impact has not lent itself to simple predictive models for compression strength. The damage modes due to non-penetrating, low velocity impact by large diameter objects can be simulated using quasi-static three-point bending. The resulting damage modes are less coupled and more easily characterized than actual impact damage modes. This study includes the compression testing of specimens with well documented initial damage states obtained from three-point bend testing. Compression strengths and failure modes were obtained for quasi-isotropic stacking sequences from 0.24 to 1.1 inches thick with both grouped and interspersed ply stacking. Initial damage prior to compression testing was divided into four classifications based on the type, extent, and location of the damage. These classifications are multiple through-thickness delaminations, isolated delamination, damage near the surface, and matrix cracks. Specimens from each classification were compared to specimens tested without initial damage in order to determine the effects of the initial damage on the final compression strength and failure modes. A finite element analysis was used to aid in the understanding and explanation of the experimental results.

  1. Haemodynamic Performance of Low Strength Below Knee Graduated Elastic Compression Stockings in Health, Venous Disease, and Lymphoedema.

    Science.gov (United States)

    Lattimer, C R; Kalodiki, E; Azzam, M; Geroulakos, G

    2016-07-01

    To test the in vivo haemodynamic performance of graduated elastic compression (GEC) stockings using air-plethysmography (APG) in healthy volunteers (controls) and patients with varicose veins (VVs), post-thrombotic syndrome (PTS), or lymphoedema. Responsiveness data were used to determine which group benefited the most from GEC. There were 12 patients per group compared using no compression, knee-length Class 1 (18-21 mmHg) compression, and Class 2 (23-32 mmHg) compression. Stocking/leg interface pressures (mmHg) were measured supine in two places using an air-sensor transducer. Stocking performance parameters, investigated before and after GEC, included the standard APG tests (working venous volume [wVV], venous filling index [VFI], venous drainage index [VDI], ejection fraction [EF]) and the occlusion plethysmography tests (incremental pressure causing the maximal increase in calf volume [IPMIV], outflow fraction [OF]). Results were expressed as median and interquartile range. Significant graduated compression was achieved in all four groups with higher interface pressures at the ankle. Only the VVs patients had a significant reduction in their wVV (without: 133 [109-146] vs. class1: 93 [74-113] mL) and the VFI (without: 4.6 [3-7.1] vs. class1: 3.1 [1.9-5] mL/s), both at p <.05. The IPMIV improved significantly in all groups except in the PTS group (p <.05). The OF improved only in the controls (without: 43 [38-51] vs. class1: 50 [48-53] %) and the VVs patients (without: 47 [39-58] vs. class1: 56 [50-64] %), both at p <.05. There were no significant differences in the VDI or the EF with GEC. Compression dose-response relationships were not observed. Patients with varicose veins improved the most, whereas those with PTS improved the least. Performance seemed to depend more on disease pathophysiology than compression strength. However, the lack of responsiveness to compression strength may be related to the low external pressures used. Stocking performance tests

  2. Feasibility of monitoring the strength of HTGR core support graphite. Part II

    International Nuclear Information System (INIS)

    Morgan, W.C.; Becker, F.L.

    1979-08-01

    The results reported establish the technical feasibility of a method for monitoring the strength of HTGR core support structures in situ. Correlations have been established between the velocity of an ultrasonic pulse and the compressive strength of four different grades of graphite. For some grades of graphite, one or more of the correlations are practically independent of oxidation profile in samples having cylindrical geometry (as in the core support posts). For other grades of graphite, and for other sample geometries, the oxidation-depth profile must be known in order to reliably predict the effect of oxidation on compressive strength

  3. Influence of Curing Humidity on the Compressive Strength of Gypsum-Cemented Similar Materials

    Directory of Open Access Journals (Sweden)

    Weiming Guan

    2016-01-01

    Full Text Available The analogous simulation experiment is widely used in geotechnical and mining engineering. However, systematic errors derived from unified standard curing procedure have been underestimated to some extent. In this study, 140 gypsum-cemented similar material specimens were chosen to study their curing procedure with different relative humidity, which is 10%–15%, 40%, 60%, and 80%, respectively. SEM microstructures and XRD spectra were adopted to detect the correlation between microstructures and macroscopic mechanical strength during curing. Our results indicated that the needle-like phases of similar materials began to develop in the early stage of the hydration process through intersecting with each other and eventually transformed into mat-like phases. Increase of humidity may inhibit the development of needle-like phases; thus the compressive strength changes more smoothly, and the time required for the material strength to reach the peak value will be prolonged. The peak strength decreases along with the increase of humidity while the humidity is higher than 40%; however, the reverse tendency was observed if the humidity was lower than 40%. Finally, we noticed that the material strength usually reaches the peak value when the water content continuously reduces and tends towards stability. Based on the above observation, a curing method determination model and experimental strength predication method for gypsum-cemented similar materials were proposed.

  4. Investigations on the ultimate compressive strength of composite plates with geometrical imperfections

    DEFF Research Database (Denmark)

    Misirlis, K.; Downes, J.; Dow, R.S.

    2009-01-01

    with initial geometric imperfections. This paper presents the validation of finite element models against a series of plate tests that were performed within this framework and parametric studies that were carried out to identify the effects of geometric imperfections on the ultimate compressive strength......A series of studies has been performed within the MARSTRUCT Network of Excellence on Marine Structures in order to investigate the buckling response of glass fibre reinforced polymer plates. These studies include the fabrication, testing and finite element analysis of a large number of plates...

  5. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil

    OpenAIRE

    Gao, Lei; Hu, Guohui; Xu, Nan; Fu, Junyi; Xiang, Chao; Yang, Chen

    2015-01-01

    In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0...

  6. Strength and Compressibility Characteristics of Reconstituted Organic Soil at Khulna Region of Bangladesh

    OpenAIRE

    Tahia Rabbee; Islam M. Rafizul

    2012-01-01

    This study depicts the experimental investigations into the effect of organic content on the shear strength and compressibility parameters of reconstituted soil. To these attempts, disturbed soil samples were collected from two selected locations of Khulna region. The reconstituted soil having organic content of 5-35 % were prepared in the laboratory to mix at various proportions of inorganic and organic soil at the water content equal to 1.25 times of liquid limits of collected samples .The ...

  7. Influence of uncoated and coated plastic waste coarse aggregates to concrete compressive strength

    OpenAIRE

    Purnomo Heru; Pamudji Gandjar; Satim Madsuri

    2017-01-01

    The use of plastic waste as coarse aggregates in concrete is part of efforts to reduce environmental pollution. In one hand the use of plastic as aggregates can provide lighter weight of the concrete than concrete using natural aggregates, but on the other hand bond between plastic coarse aggregates and hard matrix give low concrete compressive strength. Improvement of the bond between plastic coarse aggregate and hard matrix through a sand coating to plastic coarse aggregate whole surface is...

  8. Prediction of the strength of concrete radiation shielding based on LS-SVM

    International Nuclear Information System (INIS)

    Juncai, Xu; Qingwen, Ren; Zhenzhong, Shen

    2015-01-01

    Highlights: • LS-SVM was introduced for prediction of the strength of RSC. • A model for prediction of the strength of RSC was implemented. • The grid search algorithm was used to optimize the parameters of the LS-SVM. • The performance of LS-SVM in predicting the strength of RSC was evaluated. - Abstract: Radiation-shielding concrete (RSC) and conventional concrete differ in strength because of their distinct constituents. Predicting the strength of RSC with different constituents plays a vital role in radiation shielding (RS) engineering design. In this study, a model to predict the strength of RSC is established using a least squares-support vector machine (LS-SVM) through grid search algorithm. The algorithm is used to optimize the parameters of the LS-SVM on the basis of traditional prediction methods for conventional concrete. The predicted results of the LS-SVM model are compared with the experimental data. The results of the prediction are stable and consistent with the experimental results. In addition, the studied parameters exhibit significant effects on the simulation results. Therefore, the proposed method can be applied in predicting the strength of RSC, and the predicted results can be adopted as an important reference for RS engineering design

  9. Effect of shear strength on Hugoniot-compression curve and the equation of state of tungsten (W)

    Energy Technology Data Exchange (ETDEWEB)

    Mashimo, Tsutomu, E-mail: mashimo@gpo.kumamoto-u.ac.jp; Liu, Xun [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Kodama, Masao [Sojo University, Kumamoto 860-0082 (Japan); Zaretsky, Eugene [Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Katayama, Masahide [Itochu Techno-Solutions Corporation, Tokyo 100-6080 (Japan); Nagayama, Kunihiko [Kyushu University, Fukuoka 812-8581 (Japan)

    2016-01-21

    The Hugoniot data for highly dense polycrystalline tungsten were obtained for pressures above 200 GPa, and the equation of state (EOS) was determined taking into account shear strength effects. For this study, we have made some improvements in measurement system and analyses of the shock wave data. Symmetric-impact Hugoniot measurements were performed using the high-time resolution streak camera system equipped on a one-stage powder gun and two-stage light gas gun, where the effects of tilting and bowing of flyer plate on the Hugoniot data were carefully considered. The shock velocity–particle velocity (U{sub S}–U{sub P}) Hugoniot relation in the plastic regime was determined to be U{sub S} = 4.137 + 1.242U{sub P} km/s (U{sub P} < 2 km/s). Ultrasonic and Velocity Interferometer System for Any Reflector measurements were also performed in this study. The zero-intercept value of the U{sub S}–U{sub P} Hugoniot relation was found to be slightly larger than the ultrasonic bulk sound velocity (4.023 km/s). The hypothetical hydrostatic isothermal U{sub s}–U{sub p} Hugoniot curve, which corresponds to the hydrostatic isothermal compression curve derived from the Hugoniot data using the strength data, converged to the bulk sound velocity, clearly showing shear strength dependence in the Hugoniot data. The EOS for tungsten is derived from the hydrostatic isothermal compression curve using the strength data.

  10. Effect of shear strength on Hugoniot-compression curve and the equation of state of tungsten (W)

    International Nuclear Information System (INIS)

    Mashimo, Tsutomu; Liu, Xun; Kodama, Masao; Zaretsky, Eugene; Katayama, Masahide; Nagayama, Kunihiko

    2016-01-01

    The Hugoniot data for highly dense polycrystalline tungsten were obtained for pressures above 200 GPa, and the equation of state (EOS) was determined taking into account shear strength effects. For this study, we have made some improvements in measurement system and analyses of the shock wave data. Symmetric-impact Hugoniot measurements were performed using the high-time resolution streak camera system equipped on a one-stage powder gun and two-stage light gas gun, where the effects of tilting and bowing of flyer plate on the Hugoniot data were carefully considered. The shock velocity–particle velocity (U S –U P ) Hugoniot relation in the plastic regime was determined to be U S  = 4.137 + 1.242U P km/s (U P  < 2 km/s). Ultrasonic and Velocity Interferometer System for Any Reflector measurements were also performed in this study. The zero-intercept value of the U S –U P Hugoniot relation was found to be slightly larger than the ultrasonic bulk sound velocity (4.023 km/s). The hypothetical hydrostatic isothermal U s –U p Hugoniot curve, which corresponds to the hydrostatic isothermal compression curve derived from the Hugoniot data using the strength data, converged to the bulk sound velocity, clearly showing shear strength dependence in the Hugoniot data. The EOS for tungsten is derived from the hydrostatic isothermal compression curve using the strength data

  11. Effect on Compressive Strength of Concrete Using Treated Waste Water for Mixing and Curing of Concrete

    Directory of Open Access Journals (Sweden)

    Humaira Kanwal

    2018-04-01

    Full Text Available Effective utilization of the available resources is imperative approach to achieve the apex of productivity. The modern world is focusing on the conditioning, sustainability and recycling of the assets by imparting innovative techniques and methodologies. Keeping this in view, an experimental study was conducted to evaluate the strength of concrete made with treated waste water for structural use. In this study ninetysix cylinders of four mixes with coarse aggregates in combination with FW (Fresh Water, WW (Wastewater, TWW (Treated Wastewater and TS (Treated Sewagewere prepared. The workability of fresh concrete was checked before pouring of cylinders. The test cylinders were left for 7, 14, 21 and 28 days for curing. After curing, the compressive strength was measured on hardened concrete cylinders accordingly. Test results showed that workability of all the four mixes were between 25-50mm but ultimate compressive strength of concrete with WW was decreased and with TWW, TS at the age of 28 days do not change significantly. This research will open a new wicket in the horizon of recycling of construction materials. The conditioning and cyclic utilization will reduce the cost of the construction and building materials as well as minimize the use of natural resources. This novelty and calculating approach will save our natural assets and resources.

  12. Spectral Interpolation on 3 x 3 Stencils for Prediction and Compression

    Energy Technology Data Exchange (ETDEWEB)

    Ibarria, L; Lindstrom, P; Rossignac, J

    2007-06-25

    Many scientific, imaging, and geospatial applications produce large high-precision scalar fields sampled on a regular grid. Lossless compression of such data is commonly done using predictive coding, in which weighted combinations of previously coded samples known to both encoder and decoder are used to predict subsequent nearby samples. In hierarchical, incremental, or selective transmission, the spatial pattern of the known neighbors is often irregular and varies from one sample to the next, which precludes prediction based on a single stencil and fixed set of weights. To handle such situations and make the best use of available neighboring samples, we propose a local spectral predictor that offers optimal prediction by tailoring the weights to each configuration of known nearby samples. These weights may be precomputed and stored in a small lookup table. We show through several applications that predictive coding using our spectral predictor improves compression for various sources of high-precision data.

  13. The strength of compressed structures with CFRP materials reinforcement when exceeding the cross-section size

    Science.gov (United States)

    Polskoy, Petr; Mailyan, Dmitry; Georgiev, Sergey; Muradyan, Viktor

    2018-03-01

    The increase of high-rise construction volume or «High-Rise Construction» requires the use of high-strength concrete and that leads to the reduction in section size of structures and to the decrease in material consumption. First of all, it refers to the compressed elements for which, when the transverse dimensions are reduced, their flexibility and deformation increase but the load bearing capacity decreases. Growth in construction also leads to the increase of repair and restoration works or to the strengthening of structures. The most effective method of their strengthening in buildings of «High-Rise Construction» is the use of composite materials which reduces the weight of reinforcement elements and labour costs on execution of works. In this article the results of experimental research on strength and deformation of short compressed reinforced concrete structures, reinforced with external carbon fiber reinforcement, are presented. Their flexibility is λh=10, and the cross-section dimensions ratio b/h is 2, that is 1,5 times more, than recommended by standards in Russia. The following research was being done for three kinds of strained and deformed conditions with different variants of composite reinforcement. The results of the experiment proved the real efficiency of composite reinforcement of the compressed elements with sides ratio equal to 2, increasing the bearing capacity of pillars till 1,5 times. These results can be used for designing the buildings of different number of storeys.

  14. An Invitro Comparative Evaluation of Compressive Strength and Antibacterial Activity of Conventional GIC and Hydroxyapatite Reinforced GIC in Different Storage Media.

    Science.gov (United States)

    Bali, Praveen; Prabhakar, Attiguppe Ramasetty; Basappa, Nadig

    2015-07-01

    GIC is the most commonly used restorative material in pediatric dentistry since it has got various advantages like fluoride release, anticariogenic property and chemical adhesion to tooth but a major disadvantage is its contraindication in posterior teeth because of poor mechanical properties. The purpose of this study is a modest attempt to explore the influence of the addition of 8% hydroxyapatite to conventional GIC on its compressive strength when immersed in different storage media and antibacterial activity. One hundred and twenty six pellets of the specific dimension of 6 x 4 mm were prepared and divided into 6 groups and were immersed in deionized water, artificial saliva, lactic acid solution respectively for three hours everyday over 30 days test period. The compressive strength was measured by using a universal testing machine (AG-50kNG) at cross head of 1mm(2)/min and strength was determined after 1 day, 7 days, 30 days respectively and the antibacterial activity evaluated against Streptococcus mutans strain in brain heart infusion broth using serial dilution method. Group wise comparisons were made by one-way ANOVA followed by post-hoc Tukey's test, Intergroup comparison was done with Mann-Whitney test. GIC±HAp showed significantly greater antibacterial activity against Streptococcus mutans when compared to GIC group. There was no statistically significant change in the compressive strength among the groups except for group 3 and group 6 when immersed in lactic acid had shown significant difference at the end of 24 hours. The addition of 8% hydroxyapatite to GIC showed marked increased in the antibacterial activity of the conventional GIC against caries initiating organism without much increase in the compressive strength of the GIC when immersed in the different storage media.

  15. Degradation of the compressive strength of unstiffened/stiffened steel plates due to both-sides randomly distributed corrosion wastage

    Directory of Open Access Journals (Sweden)

    Zorareh Hadj Mohammad

    Full Text Available The paper addresses the problem of the influence of randomly distributed corrosion wastage on the collapse strength and behaviour of unstiffened/stiffened steel plates in longitudinal compression. A series of elastic-plastic large deflection finite element analyses is performed on both-sides randomly corroded steel plates and stiffened plates. The effects of general corrosion are introduced into the finite element models using a novel random thickness surface model. Buckling strength, post-buckling behaviour, ultimate strength and post-ultimate behaviour of the models are investigated as results of both-sides random corrosion.

  16. Study on the compressive strength of fly ash based geo polymer concrete

    Science.gov (United States)

    Anand Khanna, Pawan; Kelkar, Durga; Papal, Mahesh; Sekar, S. K.

    2017-11-01

    Introduction of the alternative materials for complete replacement of cement in ordinary concrete will play an important role to control greenhouse gas and its effect. The 100% replacement of binder with fly ash (in integration with potassium hydroxide (koh) and potassium silicate (k2sio3) solutions) in concrete gives a significant alternative to conventional cement concrete. This paper focuses on the effect of alkaline solutions koh and k2sio3 on strength properties of fly ash based geo polymer concrete (fgpc); compared the strength at different molarities of alkaline activator koh at different curing temperature. Fly ash based geo polymer concrete was produced from low calcium fly ash, triggered by addition of koh and k2sio3 solution and by assimilation of superplasticizer for suitable workability. The molarities of potassium hydroxide as 8m, 10m and 12m molarities were used at various curing temperatures such as 60°c, 70 °c and 80°c. Results showed that for given proportion to get maximum compressive strength the optimum molarity of alkaline solution is 12m and optimum curing temperature is 70 °c.

  17. SHEAR STRENGTH, COLLAPSIBILITY AND COMPRESSIBILITY CHARACTERISTICS OF COMPACTED BAIJI DUNE SOILS

    Directory of Open Access Journals (Sweden)

    ABBAS JAWAD AL-TAIE

    2017-03-01

    Full Text Available Baiji city is a vital industrial centre in Iraq since it has the biggest oil refinery. Therefore, Baiji has become an attractive site for strategic construction projects. Dune sand covers about 220 km2 of the area of Baiji city. However, few researches had attempted to study its behaviour. In this study laboratory tests were conducted to determine the shear strength, collapsibility and compressibility of the dune sand at its natural and compacted status. The effect of dry unit weight, moisture content, relative density and soaking on mechanical properties of dune soil was investigated. The results demonstrated that dry and soaked dune specimens tested at their in-situ condition exhibited similar volume changes during shear and identical friction angles. The results of shear tests of both of compacted soaked and unsoaked samples were identical. The collapse potential of dune soil is inversely proportional with the relative density. The minimum axial strain is observed when the samples are compacted to modified effort. The compression index of the compacted specimens is affected by moulding water content, while the rebound index is less sensitive.

  18. Multicriteria decision-making analysis based methodology for predicting carbonate rocks' uniaxial compressive strength

    Directory of Open Access Journals (Sweden)

    Ersoy Hakan

    2012-10-01

    Full Text Available

    ABSTRACT

    Uniaxial compressive strength (UCS deals with materials' to ability to withstand axially-directed pushing forces and especially considered to be rock materials' most important mechanical properties. However, the UCS test is an expensive, very time-consuming test to perform in the laboratory and requires high-quality core samples having regular geometry. Empirical equations were thus proposed for predicting UCS as a function of rocks' index properties. Analytical hierarchy process and multiple regression analysis based methodology were used (as opposed to traditional linear regression methods on data-sets obtained from carbonate rocks in NE Turkey. Limestone samples ranging from Devonian to late Cretaceous ages were chosen; travertine-onyx samples were selected from morphological environments considering their surface environmental conditions Test results from experiments carried out on about 250 carbonate rock samples were used in deriving the model. While the hierarchy model focused on determining the most important index properties affecting on UCS, regression analysis established meaningful relationships between UCS and index properties; 0. 85 and 0. 83 positive coefficient correlations between the variables were determined by regression analysis. The methodology provided an appropriate alternative to quantitative estimation of UCS and avoided the need for tedious and time consuming laboratory testing


    RESUMEN

    La resistencia a la compresión uniaxial (RCU trata con la capacidad de los materiales para soportar fuerzas empujantes dirigidas axialmente y, especialmente, es considerada ser uno de las más importantes propiedades mecánicas de

  19. Ultimate uniaxial compressive strength of stiffened panel with opening under lateral pressure

    Directory of Open Access Journals (Sweden)

    Chang-Li Yu

    2015-03-01

    Full Text Available This paper concentrated on the ultimate uniaxial compressive strength of stiffened panel with opening under lateral load and also studied the design-oriented formulae. For this purpose, three series of well executed experiments on longitudinal stiffened panel with rectangular opening subjected to the combined load have been selected as test models. The finite element analysis package, ABAQUS, is used for simulation with considering the large elasticplastic deflection behavior of stiffened panels. The feasibility of the numerical procedure is verified by a good agreement of experimental results and numerical results. More cases studies are executed employing nonlinear finite element method to analyze the influence of design variables on the ultimate strength of stiffened panel with opening under combined pressure. Based on data, two design formulae corresponding to different opening types are fitted, and accuracy of them is illustrated to demonstrate that they could be applied to basic design of practical engineering structure.

  20. receive signal strength prediction in the gsm band using wavelet

    African Journals Online (AJOL)

    user

    strength was measured on a Mobile Equipment (ME). One-dimensional ... used to predict the fading phenomenon of the GSM receive signal strength measured. Wavelet ... radio wavelength. The prediction is ... realized by reusing frequency in a dense or complex .... NETWORK SIGNAL PRO software, down loaded from.

  1. Prediction of Peak Back Compressive Forces as a Function of Lifting Speed and Compressive Forces at Lift Origin and Destination - A Pilot Study

    Directory of Open Access Journals (Sweden)

    Kasey O. Greenland

    2011-09-01

    Conclusion: SODA under-predict both static and dynamic peak back-compressive force values. Peak values are highly predictable and could be readily determined using back-compressive force assessments at the origin and destination of a lifting task. This could be valuable for enhancing job design and analysis in the workplace and for large-scale studies where a full analysis of each lifting task is not feasible.

  2. Optimization and influence of parameter affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate: using full factorial design approach

    Science.gov (United States)

    Krishnan, Thulasirajan; Purushothaman, Revathi

    2017-07-01

    There are several parameters that influence the properties of geopolymer concrete, which contains recycled concrete aggregate as the coarse aggregate. In the present study, the vital parameters affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate are analyzedby varying four parameters with two levels using full factorial design in statistical software Minitab® 17. The objective of the present work is to gain an idea on the optimization, main parameter effects, their interactions and the predicted response of the model generated using factorial design. The parameters such as molarity of sodium hydroxide (8M and 12M), curing time (6hrs and 24 hrs), curing temperature (60°C and 90°C) and percentage of recycled concrete aggregate (0% and 100%) are considered. The results show that the curing time, molarity of sodium hydroxide and curing temperature were the orderly significant parameters and the percentage of Recycled concrete aggregate (RCA) was statistically insignificant in the production of geopolymer concrete. Thus, it may be noticeable that the RCA content had negligible effect on the compressive strength of geopolymer concrete. The expected responses from the generated model showed a satisfactory and rational agreement to the experimental data with the R2 value of 97.70%. Thus, geopolymer concrete comprising recycled concrete aggregate can solve the major social and environmental concerns such as the depletion of the naturally available aggregate sources and disposal of construction and demolition waste into the landfill.

  3. The influence of using accelerator addition on High strength self-compacting concrete (HSSCC) in case of enhancement early compressive strength and filling ability parameters

    Science.gov (United States)

    Wibowo; Fadillah, Y.

    2018-03-01

    Efficiency in a construction works is a very important thing. Concrete with ease of workmanship and rapid achievement of service strength will to determine the level of efficiency. In this research, we studied the optimization of accelerator usage in achieving performance on compressive strength of concrete in function of time. The addition of variation of 0.3% - 2.3% to the weight of cement gives a positive impact of the rapid achievement of hardened concrete, however the speed of increasing of concrete strength achievement in term of time influence present increasing value of filling ability parameter of self-compacting concrete. The right composition of accelerator aligned with range of the values standard of filling ability parameters of HSSCC will be an advantage guidance for producers in the ready-mix concrete industry.

  4. Confined compressive strength model of rock for drilling optimization

    Directory of Open Access Journals (Sweden)

    Xiangchao Shi

    2015-03-01

    Full Text Available The confined compressive strength (CCS plays a vital role in drilling optimization. On the basis of Jizba's experimental results, a new CCS model considering the effects of the porosity and nonlinear characteristics with increasing confining pressure has been developed. Because the confining pressure plays a fundamental role in determining the CCS of bottom-hole rock and because the theory of Terzaghi's effective stress principle is founded upon soil mechanics, which is not suitable for calculating the confining pressure in rock mechanics, the double effective stress theory, which treats the porosity as a weighting factor of the formation pore pressure, is adopted in this study. The new CCS model combined with the mechanical specific energy equation is employed to optimize the drilling parameters in two practical wells located in Sichuan basin, China, and the calculated results show that they can be used to identify the inefficient drilling situations of underbalanced drilling (UBD and overbalanced drilling (OBD.

  5. Improvement of linerboard compressive strength by hot-pressing and addition of recovered lignin from spent pulping liquor

    Directory of Open Access Journals (Sweden)

    Saidan Motasem N.

    2015-01-01

    Full Text Available This paper evaluates the effect of addition of precipitated lignin, from spent pulping black liquor, to a wet single-ply linerboard handsheet followed by hot-pressing at different temperatures, on the improvement of its compressive strength. Linerboard handsheets for testing the effect of lignin addition were prepared so that the lignin-modified sheets would have the same basis weights as the control handsheets. Both the commercial and the black liquor lignin were added as a powder to wet handsheets after couching from the handsheet mold. The experiments and testing of the physical and strength properties of dried handsheets were conducted according to TAPPI test methods. The results revealed that the addition of the recovered lignin (at pH of 2 to the wet handsheet followed by hot-pressing at 150°C increased the compressive strength of linerboard handsheets by 10% to 20% above that for handsheets made without the addition of lignin. The same results were achieved using purchased lignin. However, with a 16% addition to linerboard, purchased lignin would be too expensive. These results indicate that inclusion of kraft lignin in linerboard sheets could be proved as an attractive option to reduce linerboard basis weight.

  6. Occupational-Specific Strength Predicts Astronaut-Related Task Performance in a Weighted Suit.

    Science.gov (United States)

    Taylor, Andrew; Kotarsky, Christopher J; Bond, Colin W; Hackney, Kyle J

    2018-01-01

    Future space missions beyond low Earth orbit will require deconditioned astronauts to perform occupationally relevant tasks within a planetary spacesuit. The prediction of time-to-completion (TTC) of astronaut tasks will be critical for crew safety, autonomous operations, and mission success. This exploratory study determined if the addition of task-specific strength testing to current standard lower body testing would enhance the prediction of TTC in a 1-G test battery. Eight healthy participants completed NASA lower body strength tests, occupationally specific strength tests, and performed six task simulations (hand drilling, construction wrenching, incline walking, collecting weighted samples, and dragging an unresponsive crewmember to safety) in a 48-kg weighted suit. The TTC for each task was recorded and summed to obtain a total TTC for the test battery. Linear regression was used to predict total TTC with two models: 1) NASA lower body strength tests; and 2) NASA lower body strength tests + occupationally specific strength tests. Total TTC of the test battery ranged from 20.2-44.5 min. The lower body strength test alone accounted for 61% of the variability in total TTC. The addition of hand drilling and wrenching strength tests accounted for 99% of the variability in total TTC. Adding occupationally specific strength tests (hand drilling and wrenching) to standard lower body strength tests successfully predicted total TTC in a performance test battery within a weighted suit. Future research should couple these strength tests with higher fidelity task simulations to determine the utility and efficacy of task performance prediction.Taylor A, Kotarsky CJ, Bond CW, Hackney KJ. Occupational-specific strength predicts astronaut-related task performance in a weighted suit. Aerosp Med Hum Perform. 2018; 89(1):58-62.

  7. Adaptive compressive learning for prediction of protein-protein interactions from primary sequence.

    Science.gov (United States)

    Zhang, Ya-Nan; Pan, Xiao-Yong; Huang, Yan; Shen, Hong-Bin

    2011-08-21

    Protein-protein interactions (PPIs) play an important role in biological processes. Although much effort has been devoted to the identification of novel PPIs by integrating experimental biological knowledge, there are still many difficulties because of lacking enough protein structural and functional information. It is highly desired to develop methods based only on amino acid sequences for predicting PPIs. However, sequence-based predictors are often struggling with the high-dimensionality causing over-fitting and high computational complexity problems, as well as the redundancy of sequential feature vectors. In this paper, a novel computational approach based on compressed sensing theory is proposed to predict yeast Saccharomyces cerevisiae PPIs from primary sequence and has achieved promising results. The key advantage of the proposed compressed sensing algorithm is that it can compress the original high-dimensional protein sequential feature vector into a much lower but more condensed space taking the sparsity property of the original signal into account. What makes compressed sensing much more attractive in protein sequence analysis is its compressed signal can be reconstructed from far fewer measurements than what is usually considered necessary in traditional Nyquist sampling theory. Experimental results demonstrate that proposed compressed sensing method is powerful for analyzing noisy biological data and reducing redundancy in feature vectors. The proposed method represents a new strategy of dealing with high-dimensional protein discrete model and has great potentiality to be extended to deal with many other complicated biological systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Predicting the fidelity of JPEG2000 compressed CT images using DICOM header information

    International Nuclear Information System (INIS)

    Kim, Kil Joong; Kim, Bohyoung; Lee, Hyunna; Choi, Hosik; Jeon, Jong-June; Ahn, Jeong-Hwan; Lee, Kyoung Ho

    2011-01-01

    Purpose: To propose multiple logistic regression (MLR) and artificial neural network (ANN) models constructed using digital imaging and communications in medicine (DICOM) header information in predicting the fidelity of Joint Photographic Experts Group (JPEG) 2000 compressed abdomen computed tomography (CT) images. Methods: Our institutional review board approved this study and waived informed patient consent. Using a JPEG2000 algorithm, 360 abdomen CT images were compressed reversibly (n = 48, as negative control) or irreversibly (n = 312) to one of different compression ratios (CRs) ranging from 4:1 to 10:1. Five radiologists independently determined whether the original and compressed images were distinguishable or indistinguishable. The 312 irreversibly compressed images were divided randomly into training (n = 156) and testing (n = 156) sets. The MLR and ANN models were constructed regarding the DICOM header information as independent variables and the pooled radiologists' responses as dependent variable. As independent variables, we selected the CR (DICOM tag number: 0028, 2112), effective tube current-time product (0018, 9332), section thickness (0018, 0050), and field of view (0018, 0090) among the DICOM tags. Using the training set, an optimal subset of independent variables was determined by backward stepwise selection in a four-fold cross-validation scheme. The MLR and ANN models were constructed with the determined independent variables using the training set. The models were then evaluated on the testing set by using receiver-operating-characteristic (ROC) analysis regarding the radiologists' pooled responses as the reference standard and by measuring Spearman rank correlation between the model prediction and the number of radiologists who rated the two images as distinguishable. Results: The CR and section thickness were determined as the optimal independent variables. The areas under the ROC curve for the MLR and ANN predictions were 0.91 (95% CI; 0

  9. Haptic Data Processing for Teleoperation Systems: Prediction, Compression and Error Correction

    OpenAIRE

    Lee, Jae-young

    2013-01-01

    This thesis explores haptic data processing methods for teleoperation systems, including prediction, compression, and error correction. In the proposed haptic data prediction method, unreliable network conditions, such as time-varying delay and packet loss, are detected by a transport layer protocol. Given the information from the transport layer, a Bayesian approach is introduced to predict position and force data in haptic teleoperation systems. Stability of the proposed method within stoch...

  10. Comparative analysis of compressive strength tests at age of 28 and 90 days and density of products using chemical additives in cementing radioactive waste

    International Nuclear Information System (INIS)

    Vieira, Vanessa Mota; Tello, Cledola Cassia Oliveira de

    2013-01-01

    In this research it has been studied the effects of chemical additives (admixtures) in the cementation process of radioactive wastes, which are used to improve the properties of waste cementation process, both of the paste and of the solidified product. However there are a large variety of these materials that are frequently changed or taken out of the market, then it is essential to know the commercially available materials and their effects. The tests were carried out with a solution simulating the evaporator concentrate waste coming from PWR nuclear reactors. It was cemented using two formulations, A and B, incorporating higher or lower amount of waste, respectively. It was added chemical admixtures from two manufacturers (S and H), which were: accelerators, set retarders and superplasticizers. The experiments were organized by a factorial design 2 3 . The measured parameters were the viscosity, the setting time, the paste and product density and the compressive strength. In this study we performed comparative analyzes of the results of compressive strength at age of 28 and 90 days and between the densities of the samples at the same ages.The compressive strength test at age of 28 days is considered a parameter essential issues related to security handling, transport and storage of cemented waste product. The results showed that the addition of accelerators improved the compressive strength of the cemented product, but presented lower values density products. (author)

  11. An Investigation of the Uniaxial Compressive Strength of a Cemented Hydraulic Backfill Made of Alluvial Sand

    Directory of Open Access Journals (Sweden)

    Guangsheng Liu

    2017-01-01

    Full Text Available Backfill is commonly used in underground mines. The quality control of the backfill is a key step to ensure it meets the designed strength requirement. This is done through sample collection from the underground environment, followed by uniaxial compression tests to obtain the Uniaxial Compressive Strength (UCS in the laboratory. When the cylindrical cemented backfill samples are axially loaded to failure, several failure modes can be observed and mainly classified into diagonal shear failure and axial split failure. To date, the UCS obtained by these two failure modes are considered to be the same with no distinction between them. In this paper, an analysis of the UCS results obtained on a cemented hydraulic backfill made of alluvial sand at a Canadian underground mine over the course of more than three years is presented. The results show that the UCS values obtained by diagonal shear failure are generally higher than those obtained by axial split failure for samples with the same recipe and curing time. This highlights the importance of making a distinction between the UCS values obtained by the two different modes of failure. Their difference in failure mechanism is explained. Further investigations on the sources of the data dispersion tend to indicate that the UCS obtained by laboratory tests following the current practice may not be representative of the in-situ strength distribution in the underground stopes due to segregation in cemented hydraulic backfill.

  12. Effect of Microwave Disinfection on Compressive and Tensile Strengths of Dental Stones

    Directory of Open Access Journals (Sweden)

    Mahmood Robati Anaraki

    2013-03-01

    Full Text Available Background and aims. Although microwave irradiation has been used for disinfection of dental stone casts, there are concerns regarding mechanical damage to casts during the process. The aim of this study was to evaluate the effect of microwave irradiation on the compressive strength (CS and diametral tensile strength (DTS of stone casts. Materials and methods. In this in vitro study, 80 cylindrical type III and IV stone models (20 × 40 mm were prepared and divided into 8 groups of 10. The DTS and CS of the specimens were measured by a mechanical testing machine at a crosshead speed of 0.5 cm/min after 7 times of frequent wetting, irradiating at an energy level of 600 W for 3 minutes and cooling. Data were analyzed by Student’s t-test. Results. Microwave irradiation significantly increased DTS of type III and IV to 5.23 ± 0.64 and 8.17 ± 0.94, respectively (P < 0.01. Conclusion. According to the results, microwave disinfection increases DTS of type III and IV stone casts without any effects on their CS.

  13. Potential Flow Model for Compressible Stratified Rayleigh-Taylor Instability

    Science.gov (United States)

    Rydquist, Grant; Reckinger, Scott; Owkes, Mark; Wieland, Scott

    2017-11-01

    The Rayleigh-Taylor Instability (RTI) is an instability that occurs when a heavy fluid lies on top of a lighter fluid in a gravitational field, or a gravity-like acceleration. It occurs in many fluid flows of a highly compressive nature. In this study potential flow analysis (PFA) is used to model the early stages of RTI growth for compressible fluids. In the localized region near the bubble tip, the effects of vorticity are negligible, so PFA is applicable, as opposed to later stages where the induced velocity due to vortices generated from the growth of the instability dominate the flow. The incompressible PFA is extended for compressibility effects by applying the growth rate and the associated perturbation spatial decay from compressible linear stability theory. The PFA model predicts theoretical values for a bubble terminal velocity for single-mode compressible RTI, dependent upon the Atwood (A) and Mach (M) numbers, which is a parameter that measures both the strength of the stratification and intrinsic compressibility. The theoretical bubble terminal velocities are compared against numerical simulations. The PFA model correctly predicts the M dependence at high A, but the model must be further extended to include additional physics to capture the behavior at low A. Undergraduate Scholars Program - Montana State University.

  14. Experimental Study on Unconfined Compressive Strength of Organic Polymer Reinforced Sand

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2018-01-01

    Full Text Available The natural sand is loose in structure with a small cohesive force. Organic polymer can be used to reinforce this sand. To assess the effectiveness of organic polymer as soil stabilizer (PSS, a series of unconfined compressive strength tests have been performed on reinforced sand. The focus of this study was to determine a curing method and a mix design to stabilize sand. The curing time, PSS concentration, and sand density were considered as variables in this study. The reinforcement mechanism was analyzed with images of scanning electron microscope (SEM. The results indicated that the strength of stabilized sand increased with the increase in the curing time, concentration, and sand density. The strength plateaus are at about curing time of 48 h. The UCS of samples with density of 1.4 g/cm3 at 10%, 20%, 30%, 40%, and 50% PSS concentration are 62.34 kPa, 120.83 kPa, 169.22 kPa, 201.94 kPa, and 245.28 kPa, respectively. The UCS of samples with PSS concentration of 30% at 1.4 g/cm3, 1.5 g/cm3, and 1.6 g/cm3 density are 169.22 kPa, 238.6 kPa 5, and 281.69 kPa, respectively. The chemical reaction between PSS and sand particle is at its microlevel, which improves the sand strength by bonding its particles together and filling the pore spaces. In comparison with the traditional reinforcement methods, PSS has the advantages of time saving, lower cost, and better environment protection. The research results can be useful for practical engineering applications, especially for reinforcement of foundation, embankment, and landfill.

  15. From Imitation to Prediction, Data Compression vs Recurrent Neural Networks for Natural Language Processing

    Directory of Open Access Journals (Sweden)

    Juan Andres Laura

    2018-03-01

    Full Text Available In recent studies Recurrent Neural Networks were used for generative processes and their surprising performance can be explained by their ability to create good predictions. In addition, Data Compression is also based on prediction. What the problem comes down to is whether a data compressor could be used to perform as well as recurrent neural networks in the natural language processing tasks of sentiment analysis and automatic text generation. If this is possible, then the problem comes down to determining if a compression algorithm is even more intelligent than a neural network in such tasks. In our journey, a fundamental difference between a Data Compression Algorithm and Recurrent Neural Networks has been discovered.

  16. Influence of Compacting Rate on the Properties of Compressed Earth Blocks

    Directory of Open Access Journals (Sweden)

    Humphrey Danso

    2016-01-01

    Full Text Available Compaction of blocks contributes significantly to the strength properties of compressed earth blocks. This paper investigates the influence of compacting rates on the properties of compressed earth blocks. Experiments were conducted to determine the density, compressive strength, splitting tensile strength, and erosion properties of compressed earth blocks produced with different rates of compacting speed. The study concludes that although the low rate of compaction achieved slightly better performance characteristics, there is no statistically significant difference between the soil blocks produced with low compacting rate and high compacting rate. The study demonstrates that there is not much influence on the properties of compressed earth blocks produced with low and high compacting rates. It was further found that there are strong linear correlations between the compressive strength test and density, and density and the erosion. However, a weak linear correlation was found between tensile strength and compressive strength, and tensile strength and density.

  17. Residual Strength Prediction of Debond Damaged Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian

    followed by debond growth. The developed theoretical procedure is an extension of the Crack Surface Displacement method, here denoted the Crack Surface Displacement Extrapolation method. The method is first developed in 2D and then extended to 3D by use of a number of realistic assumptions...... for the considered configurations. Comparison of the theoretical predictions to two series of large-scale experiments with loadings (uniform and non-uniform in-plane compression) comparable with real life loading scenarios for sandwich ships shows that the model is indeed able to predict the failure modes...

  18. Compression response of tri-axially braided textile composites

    Science.gov (United States)

    Song, Shunjun

    2007-12-01

    results presented in the thesis provide a means to assess the compressive strength of 2DTBC and its dependence on various microstructural parameters. The essential features (for example, fiber kinking) of 2DTBC under compressive loading are captured accurately and the results are validated by the compression experiments. Due to the requirement of large computational resources for the unit cell studies, simplified models that use less computer resources but sacrifice some accuracy are presented for use in engineering design. A combination of the simplified models is shown to provide a good prediction of the salient features (peak strength and plateau strength) of these materials under compression loading. The incorporation of matrix strain rate effects, a study of the effect of the bias tow angle and the inclusion of viscoelastic/viscoplastic behavior for the study of fatigue are suggested as extensions to this work.

  19. The effects of aging on compressive strength of low-level radioactive waste form samples

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Neilson, R.M. Jr.

    1996-06-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program, funded by the US Nuclear Regulatory Commission (NRC), is (a) studying the degradation effects in organic ion-exchange resins caused by radiation, (b) examining the adequacy of test procedures recommended in the Branch Technical Position on Waste Form to meet the requirements of 10 CFR 61 using solidified ion-exchange resins, (c) obtaining performance information on solidified ion-exchange resins in a disposal environment, and (d) determining the condition of liners used to dispose ion-exchange resins. Compressive tests were performed periodically over a 12-year period as part of the Technical Position testing. Results of that compressive testing are presented and discussed. During the study, both portland type I-II cement and Dow vinyl ester-styrene waste form samples were tested. This testing was designed to examine the effects of aging caused by self-irradiation on the compressive strength of the waste forms. Also presented is a brief summary of the results of waste form characterization, which has been conducted in 1986, using tests recommended in the Technical Position on Waste Form. The aging test results are compared to the results of those earlier tests. 14 refs., 52 figs., 5 tabs

  20. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Uswatta, Suren P.; Okeke, Israel U. [Department of Bioengineering, The University of Toledo, Toledo, OH 43614 (United States); Jayasuriya, Ambalangodage C., E-mail: a.jayasuriya@utoledo.edu [Department of Bioengineering, The University of Toledo, Toledo, OH 43614 (United States); Department of Orthopaedic Surgery, The University of Toledo, Toledo, OH 43614 (United States)

    2016-12-01

    In this study we have fabricated porous injectable spherical scaffolds using chitosan biopolymer, sodium tripolyphosphate (TPP) and nano-hydroxyapatite (nHA). TPP was primarily used as an ionic crosslinker to crosslink nHA/chitosan droplets. We hypothesized that incorporating nHA into chitosan could support osteoconduction by emulating the mineralized cortical bone structure, and improve the Ultimate Compressive Strength (UCS) of the scaffolds. We prepared chitosan solutions with 0.5%, 1% and 2% (w/v) nHA concentration and used simple coacervation and lyophilization techniques to obtain spherical scaffolds. Lyophilized spherical scaffolds had a mean diameter of 1.33 mm (n = 25). Further, portion from each group lyophilized scaffolds were soaked and dried to obtain Lyophilized Soaked and Dried (LSD) scaffolds. LSD scaffolds had a mean diameter of 0.93 mm (n = 25) which is promising property for the injectability. Scanning Electron Microscopy images showed porous surface morphology and interconnected pore structures inside the scaffolds. Lyophilized and LSD scaffolds had surface pores < 10 and 2 μm, respectively. 2% nHA/chitosan LSD scaffolds exhibited UCS of 8.59 MPa compared to UCS of 2% nHA/chitosan lyophilized scaffolds at 3.93 MPa. Standardize UCS values were 79.98 MPa and 357 MPa for 2% nHA/chitosan lyophilized and LSD particles respectively. One-way ANOVA results showed a significant increase (p < 0.001) in UCS of 1% and 2% nHA/chitosan lyophilized scaffolds compared to 0% and 0.5% nHA/chitosan lyophilized scaffolds. Moreover, 2% nHA LSD scaffolds had significantly increased (p < 0.005) their mean UCS by 120% compared to 2% nHA lyophilized scaffolds. In a drawback, all scaffolds have lost their mechanical properties by 95% on the 2nd day when fully immersed in phosphate buffered saline. Additionally live and dead cell assay showed no cytotoxicity and excellent osteoblast attachment to both lyophilized and LSD scaffolds at the end of 14th day of in vitro

  1. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration

    International Nuclear Information System (INIS)

    Uswatta, Suren P.; Okeke, Israel U.; Jayasuriya, Ambalangodage C.

    2016-01-01

    In this study we have fabricated porous injectable spherical scaffolds using chitosan biopolymer, sodium tripolyphosphate (TPP) and nano-hydroxyapatite (nHA). TPP was primarily used as an ionic crosslinker to crosslink nHA/chitosan droplets. We hypothesized that incorporating nHA into chitosan could support osteoconduction by emulating the mineralized cortical bone structure, and improve the Ultimate Compressive Strength (UCS) of the scaffolds. We prepared chitosan solutions with 0.5%, 1% and 2% (w/v) nHA concentration and used simple coacervation and lyophilization techniques to obtain spherical scaffolds. Lyophilized spherical scaffolds had a mean diameter of 1.33 mm (n = 25). Further, portion from each group lyophilized scaffolds were soaked and dried to obtain Lyophilized Soaked and Dried (LSD) scaffolds. LSD scaffolds had a mean diameter of 0.93 mm (n = 25) which is promising property for the injectability. Scanning Electron Microscopy images showed porous surface morphology and interconnected pore structures inside the scaffolds. Lyophilized and LSD scaffolds had surface pores < 10 and 2 μm, respectively. 2% nHA/chitosan LSD scaffolds exhibited UCS of 8.59 MPa compared to UCS of 2% nHA/chitosan lyophilized scaffolds at 3.93 MPa. Standardize UCS values were 79.98 MPa and 357 MPa for 2% nHA/chitosan lyophilized and LSD particles respectively. One-way ANOVA results showed a significant increase (p < 0.001) in UCS of 1% and 2% nHA/chitosan lyophilized scaffolds compared to 0% and 0.5% nHA/chitosan lyophilized scaffolds. Moreover, 2% nHA LSD scaffolds had significantly increased (p < 0.005) their mean UCS by 120% compared to 2% nHA lyophilized scaffolds. In a drawback, all scaffolds have lost their mechanical properties by 95% on the 2nd day when fully immersed in phosphate buffered saline. Additionally live and dead cell assay showed no cytotoxicity and excellent osteoblast attachment to both lyophilized and LSD scaffolds at the end of 14th day of in vitro

  2. ALKALI-ACTIVATION KINETICS OF PHOSPHORUS SLAG CEMENT USING COMPRESSIVE STRENGTH DATA

    Directory of Open Access Journals (Sweden)

    Hojjatollah Maghsoodloorad

    2015-09-01

    Full Text Available In this research, through compressive strength data, the order and kinetics of alkali-activation of phosphorus slag activated with two compound activators of NaOH + Na2CO3 and Na2CO3 + Ca(OH2, has been evaluated. The kinetics and order of alkali activation is a key factor to forecasting the mechanical behavior of alkali activated cement at different curing time and temperatures without carrying out experimental tests. The apparent activation energy was obtained as 35.6 kJ.mol-1 and 60.7 kJ.mol-1 for the two activators, respectively. Investigations proved that the alkali-activation kinetics of phosphorus slag resembles chemical reactions of second order. Moreover, the order of alkali-activation of phosphorus slag does not depend on the type of activator.

  3. Optimum Mix for Pervious Geopolymer Concrete (GEOCRETE Based on Water Permeability and Compressive Strength

    Directory of Open Access Journals (Sweden)

    Abdulsalam Arafa Salaheddin

    2017-01-01

    Full Text Available The production of ordinary Portland cement (OPC consumes considerable natural resources and energy, and it also affects the emission of a significant quantity of CO2 in the atmosphere. This pervious geopolymer concrete study aims to explore an alternative binder without OPC. Pervious geopolymer concretes were prepared from fly ash (FA, sodium silicate (NaSiO3, sodium hydroxide (NaOH solution, and coarse aggregate (CA. The effects of pervious geopolymer concrete parameters that affect water permeability and compressive strength are evaluated. The FA to CA ratios of 1:6, 1:7,1:8, and 1:9 by weight, CA sizes of 5–10, 10–14, and 14–20 mm, constant NaSiO3/NaOH ratio of 2.5, alkaline liquid to fly ash (AL/FA ratios of 0.4, 0.5, and 0.6, and NaOH concentrations of 8, 10, and 12 M were the pervious geopolymer concrete mix proportions. The curing temperature of 80 °C for 24 h was used. The results showed that a pervious geopolymer concrete with CA of 10 mm achieved water permeability of 2.3 cm/s and compressive strength of 20 MPa with AL/FA ratio of 0.5, NaOH concentration of 10 M, and FA:CA of 1:7. GEOCRETE is indicated to have better engineering properties than does pervious concrete that is made of ordinary Portland cement.

  4. Development of ultra-lightweight slurries with high compressive strength for use in oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Suzart, J. Walter P. [Halliburton Company, Houston, TX (United States); Farias, A.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Ribeiro, Danilo; Fernandes, Thiago; Santos, Reened [Halliburton Energy Services Aberdeen, Scotland (United Kingdom)

    2008-07-01

    Formations with low fracture gradients or depleted reservoirs often lead to difficult oil well cementing operations. Commonly employed cement slurries (14.0 to 15.8 lb/gal), generate an equivalent circulating density (ECD) higher than the fracture gradient and ultimately lead to formation damage, lost circulation and a decreased top of cement. Given the high price of oil, companies are investing in those and other wells that are difficult to explore. Naturally, lightweight cement slurries are used to reduce the ECD (10.0 to 14.0 lb/gal), using additives to trap water and stabilize the slurry. However, when the density reaches 11.0 lb/gal, the increase in water content may cause a change in characteristics. The focus of this study is extreme cases where it is necessary to employ ultra-lightweight cement slurries (5.5 to 10.0 lb/gal). Foamed slurries have been widely used, and the objective is to set an alternative by developing cement slurries containing uncompressible microspheres, aiming for a density of 7.5 lb/gal as well as high compressive strength. Another benefit in contrast to preparing foamed cement slurries is that there is no requirement for special equipment in the field. Routine laboratory tests such as fluid-loss control, sedimentation, thickening time, free water, compressive strength, and rheology (at room and high temperatures) were performed. Thus, it was concluded that the proposed cement slurries can be used in oil wells. (author)

  5. Effects of humeral head compression taping on the isokinetic strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis

    OpenAIRE

    Kim, Moon-Hwan; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to examine the effects of humeral head compression taping (HHCT) on the strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis. [Subjects and Methods] Twenty patients with rotator cuff tendinitis were recruited. The shoulder external rotator strength was measured using a Biodex isokinetic dynamometer system. A paired t-test was performed to evaluate within-group differences in the strength of the shoulder external rota...

  6. Aging and Curing Temperature Effects on Compressive Strength of Mortar Containing Lime Stone Quarry Dust and Industrial Granite Sludge

    Directory of Open Access Journals (Sweden)

    Muhammad Nasir Amin

    2017-06-01

    Full Text Available In this study, the researchers investigated the potential use of locally available waste materials from the lime stone quarry and the granite industry as a partial replacement of cement. Quarry sites and granite industry in the eastern province of Saudi Arabia produces tons of powder wastes in the form of quarry dust (QD and granite sludge (GS, respectively, causing serious environmental problems along with frequent dust storms in the area. According to ASTM C109, identical 50-mm3 specimens were cast throughout this study to evaluate the compressive strength development of mortars (7, 28 and 91 days containing these waste materials. Experimental variables included different percentage replacement of cement with waste materials (GS, QD, fineness of GS, various curing temperatures (20, 40 and 60 °C as local normal and hot environmental temperatures and curing moisture (continuously moist and partially moist followed by air curing. Finally, the results of mortar containing waste materials were compared to corresponding results of control mortar (CM and mortar containing fly ash (FA. The test results indicated that under normal curing (20 °C, moist cured, the compressive strength of mortar containing the different percentage of waste materials (QD, GS, FA and their combinations remained lower than that of CM at all ages. However, the compressive strength of mortar containing waste materials slightly increased with increased fineness of GS and significantly increased under high curing temperatures. It was recommended that more fineness of GS be achieved to use its high percentage replacement with cement (30% or more incorporating local environmental conditions.

  7. Compressive strength and hydration of wastepaper sludge ash-ground granulated blastfurnace slag blended pastes

    International Nuclear Information System (INIS)

    Bai, J.; Chaipanich, A.; Kinuthia, J.M.; O'Farrell, M.; Sabir, B.B.; Wild, S.; Lewis, M.H.

    2003-01-01

    Compressive strength and hydration characteristics of wastepaper sludge ash-ground granulated blastfurnace slag (WSA-GGBS) blended pastes were investigated at a water to binder (w/b) ratio of 0.5. The strength results are compared to those of normal Portland cement (PC) paste and relative strengths are reported. Early relative strengths (1 day) of WSA-GGBS pastes were very low but a marked gain in relative strength occurred between 1 and 7 days and this increased further after 28 and 90 days. For the 50% WSA-50% GGBS blended paste, the strength achieved at 90 days was nearly 50% of that of the PC control paste. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric (TG) analysis were carried out to identify the mineral components in the WSA and the hydration products of WSA and WSA-GGBS pastes. The principal crystalline components in the WSA are gehlenite, calcium oxide, bredigite and α'-C 2 S (stabilised with Al and Mg) together with small amounts of anorthite and calcium carbonate and traces of calcium hydroxide and quartz. The α'-C 2 S and bredigite, which phase separate from liquid phase that forms a glass on cooling, are difficult to distinguish by XRD. The hydration products identified in WSA paste are CH, C 4 AH 13 , C 3 A.0.5CC-bar.0.5CH.H 11.5 and C-S-H gel plus possible evidence of small amounts of C 2 ASH 8 and C 3 A.3CS-bar.H 32 . Based upon the findings, a hydration mechanism is presented, and a model is proposed to explain the observed strength development

  8. Strength of mortar containing rubber tire particle

    Science.gov (United States)

    Jusoh, M. A.; Abdullah, S. R.; Adnan, S. H.

    2018-04-01

    The main focus in this investigation is to determine the strength consist compressive and tensile strength of mortar containing rubber tire particle. In fact, from the previous study, the strength of mortar containing waste rubber tire in mortar has a slightly decreases compare to normal mortar. In this study, rubber tire particle was replacing on volume of fine aggregate with 6%. 9% and 12%. The sample were indicated M0 (0%), M6 (6%), M9 (9%) and M12 (12%). In this study, two different size of sample used with cube 100mm x 100mm x 100mm for compressive strength and 40mm x 40mm x 160mm for flexural strength. Morphology test was conducted by using Scanning electron microscopic (SEM) were done after testing compressive strength test. The concrete sample were cured for day 3, 7 and 28 before testing. Results compressive strength and flexural strength of rubber mortar shown improved compare to normal mortar.

  9. Stress analysis of shear/compression test

    International Nuclear Information System (INIS)

    Nishijima, S.; Okada, T.; Ueno, S.

    1997-01-01

    Stress analysis has been made on the glass fiber reinforced plastics (GFRP) subjected to the combined shear and compression stresses by means of finite element method. The two types of experimental set up were analyzed, that is parallel and series method where the specimen were compressed by tilted jigs which enable to apply the combined stresses, to the specimen. Modified Tsai-Hill criterion was employed to judge the failure under the combined stresses that is the shear strength under the compressive stress. The different failure envelopes were obtained between the two set ups. In the parallel system the shear strength once increased with compressive stress then decreased. On the contrary in the series system the shear strength decreased monotonicly with compressive stress. The difference is caused by the different stress distribution due to the different constraint conditions. The basic parameters which control the failure under the combined stresses will be discussed

  10. Fracture Energy of High-Strength Concrete in Compression

    DEFF Research Database (Denmark)

    Dahl, H.; Brincker, Rune

    1989-01-01

    is essential for understanding the fracture mechanism of concrete in compression. In this paper a series of tests is reported, carried out for the purpose of studying the fracture mechanical properties of concrete in compression. Including the measurement and study of the descending branch, a new experimental...

  11. A proposal of parameter determination method in the residual strength degradation model for the prediction of fatigue life (I)

    International Nuclear Information System (INIS)

    Kim, Sang Tae; Jang, Seong Soo

    2001-01-01

    The static and fatigue tests have been carried out to verify the validity of a generalized residual strength degradation model. And a new method of parameter determination in the model is verified experimentally to account for the effect of tension-compression fatigue loading of spheroidal graphite cast iron. It is shown that the correlation between the experimental results and the theoretical prediction on the statistical distribution of fatigue life by using the proposed method is very reasonable. Furthermore, it is found that the correlation between the theoretical prediction and the experimental results of fatigue life in case of tension-tension fatigue data in composite material appears to be reasonable. Therefore, the proposed method is more adjustable in the determination of the parameter than maximum likelihood method and minimization technique

  12. A finite element study on the effects of toughness and permanent out-of-plane deformation on post-impact compressive strength

    OpenAIRE

    Bull, Daniel; Spearing, Simon; Sinclair, Ian

    2015-01-01

    This study applies mechanisms observed from previous work (the undamaged cone, toughness and extent of permanent out-of-plane deformation) to parametrically study their effects on residual compression after impact (CAI) strength using finite element models. Based on previous experimental work, tougher material systems exhibited up to 30% greater CAI strength for a given damage area. Based on this, it is necessary to understand what other parameters, beyond damage area, contribute to a loss in...

  13. Measurements of the tensile and compressive properties of micro-concrete used in the Winfrith missile impact experiments

    International Nuclear Information System (INIS)

    Wilson, P.A.

    1982-10-01

    Tests to determine the tensile and compressive properties of a micro-concrete mix are described. The material is a nominally 40MPa ultimate compressive strength concrete used in impact tests with scale models in the prediction of responses in prototype concrete structures. Compressive tests were intended to give complete stress-strain relationships beyond initial failure. Tensile properties were measured by the Brazilian splitting technique and direct tension dog-bone specimens for comparison reasons. (U.K.)

  14. Effect of roughness and material strength on the mechanical properties of fracture replicas

    International Nuclear Information System (INIS)

    Wibowo, J.; Amadei, B.; Sture, S.

    1995-08-01

    This report presents the results of 11 rotary shear tests conducted on replicas of three hollow cylinders of natural fractures with JRC values of 7.7, 9.4 and 12.0. The JRC values were determined from the results of laser profilometer measurements. The replicas were created from gypsum cement. By varying the water-to-gypsum cement ratio from 30 to 45%, fracture replicas with different values of compressive strength (JCS) were created. The rotary shear experiments were performed under constant normal (nominal) stresses ranging between 0.2 and 1.6 MPa. In this report, the shear test results are compared with predictions using Barton's empirical peak shear strength equation. observations during the experiments indicate that only certain parts of the fracture profiles influence fracture shear strength and dilatancy. Under relatively low applied normal stresses, the JCS does not seem to have a significant effect on shear behavior. As an alternative, a new procedure for predicting the shear behavior of fractures was developed. The approach is based on basic fracture properties such as fracture surface profile data and the compressive strength, modulus of elasticity, and Poisson's ratio of the fracture walls. Comparison between predictions and actual shear test results shows that the alternative procedure is a reliable method

  15. Effect of compressibility on the hypervelocity penetration

    Science.gov (United States)

    Song, W. J.; Chen, X. W.; Chen, P.

    2018-02-01

    We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.

  16. Improving the standard of the standard for glass ionomers: an alternative to the compressive fracture strength test for consideration?

    LENUS (Irish Health Repository)

    Dowling, Adam H

    2012-03-01

    Three strength tests (compressive, three point flexure and biaxial) were performed on three glass ionomer (GI) restoratives to assess the most appropriate methodology in terms of validity and reliability. The influence of mixing induced variability on the data sets generated were eliminated by using encapsulated GIs.

  17. Predicting bending strength of fire-retardant-treated plywood from screw-withdrawal tests

    Science.gov (United States)

    J. E. Winandy; P. K. Lebow; W. Nelson

    This report describes the development of a test method and predictive model to estimate the residual bending strength of fire-retardant-treated plywood roof sheathing from measurement of screw-withdrawal force. The preferred test methodology is described in detail. Models were developed to predict loss in mean and lower prediction bounds for plywood bending strength as...

  18. Lossless medical image compression using geometry-adaptive partitioning and least square-based prediction.

    Science.gov (United States)

    Song, Xiaoying; Huang, Qijun; Chang, Sheng; He, Jin; Wang, Hao

    2018-06-01

    To improve the compression rates for lossless compression of medical images, an efficient algorithm, based on irregular segmentation and region-based prediction, is proposed in this paper. Considering that the first step of a region-based compression algorithm is segmentation, this paper proposes a hybrid method by combining geometry-adaptive partitioning and quadtree partitioning to achieve adaptive irregular segmentation for medical images. Then, least square (LS)-based predictors are adaptively designed for each region (regular subblock or irregular subregion). The proposed adaptive algorithm not only exploits spatial correlation between pixels but it utilizes local structure similarity, resulting in efficient compression performance. Experimental results show that the average compression performance of the proposed algorithm is 10.48, 4.86, 3.58, and 0.10% better than that of JPEG 2000, CALIC, EDP, and JPEG-LS, respectively. Graphical abstract ᅟ.

  19. Prediction of the residual strength of clay using functional networks

    Directory of Open Access Journals (Sweden)

    S.Z. Khan

    2016-01-01

    Full Text Available Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of stability of slopes or landslides. This effect is more pronounced in sensitive clays which show large changes in shear strength from peak to residual states. This study analyses the prediction of the residual strength of clay based on a new prediction model, functional networks (FN using data available in the literature. The performance of FN was compared with support vector machine (SVM and artificial neural network (ANN based on statistical parameters like correlation coefficient (R, Nash--Sutcliff coefficient of efficiency (E, absolute average error (AAE, maximum average error (MAE and root mean square error (RMSE. Based on R and E parameters, FN is found to be a better prediction tool than ANN for the given data. However, the R and E values for FN are less than SVM. A prediction equation is presented that can be used by practicing geotechnical engineers. A sensitivity analysis is carried out to ascertain the importance of various inputs in the prediction of the output.

  20. Influence of Temperature on Workability and Compressive Strength of Ordinary Concrete with High Calcium Fly Ash

    Directory of Open Access Journals (Sweden)

    Gołaszewski Jacek

    2017-06-01

    Full Text Available The rheological properties of fresh ordinary concrete are closely affected by temperature and time. The paper presents the study of consistency of fresh concrete mixtures made with Portland cement and cement with calcareous fly ash. Two types of admixtures were used. It was proven that the temperature has a clear effect on workability and compressive strength concrete. Influence on workability can be reduced by selecting the appropriate superplasticizer and cement.

  1. Modeling and Optimization of Compressive Strength of Hollow Sandcrete Block with Rice Husk Ash Admixture

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available The paper presents the report of an investigation into the model development and optimization of the compressive strength of 55/45 to 70/30 cement/Rice Husk Ash (RHA in hollow sandcrete block. The low cost and local availability potential of RHA, a pozzolanic material gasps for exploitation. The study applies the Scheffe\\'s optimization approach to obtain a mathematical model of the form f(xi1 ,xi2 ,xi3 xi4 , where x are proportions of the concrete components, viz: cement, RHA, sand and water. Scheffe\\'s i experimental design techniques are followed to mould various hollow block samples measuring 450mm x 225mm x 150mm and tested for 28 days strength. The task involved experimentation and design, applying the second order polynomial characterization process of the simplex lattice method. The model adequacy is checked using the control factors. Finally, a software is prepared to handle the design computation process to take the desired property of the mix, and generate the optimal mix ratios. Reversibly, any mix ratios can be desired and the attainable strength obtained.

  2. STRENGTH OF NANOMODIFIED HIGH-STRENGTH LIGHTWEIGHT CONCRETES

    Directory of Open Access Journals (Sweden)

    NOZEMTСEV Alexandr Sergeevich

    2013-02-01

    Full Text Available The paper presents the results of research aimed at development of nanomodified high-strength lightweight concrete for construction. The developed concretes are of low average density and high ultimate compressive strength. It is shown that to produce this type of concrete one need to use hollow glass and aluminosilicate microspheres. To increase the durability of adhesion between cement stone and fine filler the authors offer to use complex nanodimensinal modifier based on iron hydroxide sol and silica sol as a surface nanomodifier for hollow microspheres. It is hypothesized that the proposed modifier has complex effect on the activity of the cement hydration and, at the same time increases bond strength between filler and cement-mineral matrix. The compositions for energy-efficient nanomodified high-strength lightweight concrete which density is 1300…1500 kg/m³ and compressive strength is 40…65 MPa have been developed. The approaches to the design of high-strength lightweight concrete with density of less than 2000 kg/m³ are formulated. It is noted that the proposed concretes possess dense homogeneous structure and moderate mobility. Thus, they allow processing by vibration during production. The economic and practical implications for realization of high-strength lightweight concrete in industrial production have been justified.

  3. Diffusion-Weighted Imaging for Predicting New Compression Fractures Following Percutaneous Vertebroplasty

    International Nuclear Information System (INIS)

    Sugimoto, T.

    2008-01-01

    Background: Percutaneous vertebroplasty (PVP) is a technique that structurally stabilizes a fractured vertebral body. However, some patients return to the hospital due to recurrent back pain following PVP, and such pain is sometimes caused by new compression fractures. Purpose: To investigate whether the apparent diffusion coefficient (ADC) of adjacent vertebral bodies as assessed by diffusion-weighted imaging before PVP could predict the onset of new compression fractures following PVP. Material and Methods: 25 patients with osteoporotic compression fractures who underwent PVP were enrolled in this study. ADC was measured for 49 vertebral bodies immediately above and below each vertebral body injected with bone cement before and after PVP. By measuring ADC for each adjacent vertebral body, ADC was compared between vertebral bodies with a new compression fracture within 1 month and those without new compression fractures. In addition, the mean ADC of adjacent vertebral bodies per patient was calculated. Results: Mean preoperative ADC for the six adjacent vertebral bodies with new compression fractures was 0.55x10 -3 mm 2 /s (range 0.36-1.01x10 -3 mm 2 /s), and for the 43 adjacent vertebral bodies without new compression fractures 0.20x10 -3 mm 2 /s (range 0-0.98x10 -3 mm 2 /s) (P -3 mm 2 /s (range 0.21-1.01x10 -3 mm 2 /s), and that for the 19 patients without new compression fractures 0.17x10 -3 mm 2 /s (range 0.01-0.43x10 -3 mm 2 /s) (P<0.001). Conclusion: The ADC of adjacent vertebral bodies as assessed by diffusion-weighted imaging before PVP might be one of the predictors for new compression fractures following PVP

  4. Study of Compressive Strength of Concrete with Coal Power Plant Fly Ash as Partial Replacement of Cement and Fine Aggregate

    Directory of Open Access Journals (Sweden)

    FAREED AHMED MEMON

    2010-10-01

    Full Text Available This research study comprises of concrete cubes made with Ordinary Portland Cement and with different configurations of fly ash by replacing cement and fine aggregate. To achieve the aim of this study, total 81 concrete cubes were cast. Among 81 cubes, 9 cubes were made with normal concrete, 36 cubes were made by replacing 25%, 50%, 75% and 100% of fine aggregate with fly ash and 36 cubes were made by replacing 10%, 25%, 50%, and 75% of cement with fly ash. The cubes were 6\\" x 6\\" in cross-section, and the mix design was aimed for 5000 psi. After proper curing of all 81 cubes, they were tested at 3, 7 and 28 days curing age. The cubes were tested in Forney Universal Testing Machine. By analyzing the test results of all the concrete cubes, the following main findings have been drawn. The compressive strength of concrete cubes made by replacing 100 % fine aggregate by fly ash was higher than the concrete cubes made with Ordinary Portland Cement at all 3, 7 and 28 days curing ages. On the other hand, the compressive strength of concrete cubes made by replacing 10 % and 25 % cement by fly ash was slightly lower than the concrete cubes made with Ordinary Portland Cement at all curing ages, whereas, the compressive strength of concrete cubes made by replacing 50 % and 75 % of cement by fly ash were quite lower than the concrete cubes made with Ordinary Portland Cement at all curing ages.

  5. Prediction of the compression ratio for municipal solid waste using decision tree.

    Science.gov (United States)

    Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed

    2014-01-01

    The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.

  6. Strength degradation of oxidized graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheon

    2010-01-01

    Air-ingress events caused by large pipe breaks are important accidents considered in the design of Very High Temperature Gas-Cooled Reactors (VHTRs). A main safety concern for this type of event is the possibility of core collapse following the failure of the graphite support column, which can be oxidized by ingressed air. In this study, the main target is to predict the strength of the oxidized graphite support column. Through compression tests for fresh and oxidized graphite columns, the compressive strength of IG-110 was obtained. The buckling strength of the IG-110 column is expressed using the following empirical straight-line formula: σ cr,buckling =91.34-1.01(L/r). Graphite oxidation in Zone 1 is volume reaction and that in Zone 3 is surface reaction. We notice that the ultimate strength of the graphite column oxidized in Zones 1 and 3 only depends on the slenderness ratio and bulk density. Its strength degradation oxidized in Zone 1 is expressed in the following nondimensional form: σ/σ 0 =exp(-kd), k=0.114. We found that the strength degradation of a graphite column, oxidized in Zone 3, follows the above buckling empirical formula as the slenderness of the column changes. (author)

  7. Repeatability and Reproducibility of Compression Strength Measurements Conducted According to ASTM E9

    Science.gov (United States)

    Luecke, William E.; Ma, Li; Graham, Stephen M.; Adler, Matthew A.

    2010-01-01

    Ten commercial laboratories participated in an interlaboratory study to establish the repeatability and reproducibility of compression strength tests conducted according to ASTM International Standard Test Method E9. The test employed a cylindrical aluminum AA2024-T351 test specimen. Participants measured elastic modulus and 0.2 % offset yield strength, YS(0.2 % offset), using an extensometer attached to the specimen. The repeatability and reproducibility of the yield strength measurement, expressed as coefficient of variations were cv(sub r)= 0.011 and cv(sub R)= 0.020 The reproducibility of the test across the laboratories was among the best that has been reported for uniaxial tests. The reported data indicated that using diametrically opposed extensometers, instead of a single extensometer doubled the precision of the test method. Laboratories that did not lubricate the ends of the specimen measured yield stresses and elastic moduli that were smaller than those measured in laboratories that lubricated the specimen ends. A finite element analysis of the test specimen deformation for frictionless and perfect friction could not explain the discrepancy, however. The modulus measured from stress-strain data were reanalyzed using a technique that finds the optimal fit range, and applies several quality checks to the data. The error in modulus measurements from stress-strain curves generally increased as the fit range decreased to less than 40 % of the stress range.

  8. Effect of mix proportion of high density concrete on compressive strength, density and radiation absorption

    International Nuclear Information System (INIS)

    Noor Azreen Masenwat; Mohamad Pauzi Ismail; Suhairy Sani; Ismail Mustapha; Nasharuddin Isa; Mohamad Haniza Mahmud; Mohammad Shahrizan Samsu

    2014-01-01

    To prevent radiation leaks at nuclear reactors, high-density concrete is used as an absorbent material for radiation from spreading into the environment. High-density concrete is a mixture of cement, sand, aggregate (usually high-density minerals) and water. In this research, hematite stone is used because of its mineral density higher than the granite used in conventional concrete mixing. Mix concrete in this study were divided into part 1 and part 2. In part 1, the concrete mixture is designed with the same ratio of 1: 2: 4 but differentiated in terms of water-cement ratio (0.60, 0.65, 0.70, 0.75, 0.80 ). Whereas, in part 2, the concrete mixture is designed to vary the ratio of 1: 1: 2, 1: 1.5: 3, 1: 2: 3, 1: 3: 6, 1: 2: 6 with water-cement ratio (0.7, 0.8, 0.85, 0.9). In each section, the division has also performed in a mixture of sand and fine sand hematite. Then, the physical characteristics of the density and the compressive strength of the mixture of part 1 and part 2 is measured. Comparisons were also made in terms of absorption of radiation by Cs-137 and Co-60 source for each mix. This paper describes and discusses the relationship between the concrete mixture ratio, the relationship with the water-cement ratio, compressive strength, density, different mixture of sand and fine sand hematite. (author)

  9. Assessment of myocardial bridge by cardiac CT: Intracoronary transluminal attenuation gradient derived from diastolic phase predicts systolic compression

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Meng Meng; Zhang, Yang; Li, Yue Hua; Li, Wen Bin; Li, Ming Hua; Zhang, Jiayin [Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shangha (China)

    2017-08-01

    To study the predictive value of transluminal attenuation gradient (TAG) derived from diastolic phase of coronary computed tomography angiography (CCTA) for identifying systolic compression of myocardial bridge (MB). Consecutive patients diagnosed with MB based on CCTA findings and without obstructive coronary artery disease were retrospectively enrolled. In total, 143 patients with 144 MBs were included in the study. Patients were classified into three groups: without systolic compression, with systolic compression < 50%, and with systolic compression ≥ 50%. TAG was defined as the linear regression coefficient between intraluminal attenuation in Hounsfield units (HU) and length from the vessel ostium. Other indices such as the length and depth of the MB were also recorded. TAG was the lowest in MB patients with systolic compression ≥ 50% (-19.9 ± 8.7 HU/10 mm). Receiver operating characteristic curve analysis was performed to determine the optimal cutoff values for identifying systolic compression ≥ 50%. The result indicated an optimal cutoff value of TAG as -18.8 HU/10 mm (area under curve = 0.778, p < 0.001), which yielded higher sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy (54.1, 80.5, 72.8, and 75.0%, respectively). In addition, the TAG of MB with diastolic compression was significantly lower than the TAG of MB without diastolic compression (-21.4 ± 4.8 HU/10 mm vs. -12.7 ± 8 HU/10 mm, p < 0.001). TAG was a better predictor of MB with systolic compression ≥ 50%, compared to the length or depth of the MB. The TAG of MB with persistent diastolic compression was significantly lower than the TAG without diastolic compression.

  10. Effect of hydrated lime on compressive strength mortar of fly ash laterite soil geopolymer mortar

    Science.gov (United States)

    Wangsa, F. A.; Tjaronge, M. W.; Djamaluddin, A. R.; Muhiddin, A. B.

    2017-11-01

    This paper explored the suitability of fly ash, hydrated lime, and laterite soil with several activator (sodium hydroxide and sodium tiosulfate) to produce geopolymer mortar. Furthermore, the heat that released by hydrated lime was used instead of oven curing. In order to produce geopolymer mortar without oven curing, three variations of curing condition has been applied. Based on the result, all the curing condition showed that the hardener mortar can be produced and exhibited the increasing of compressive strength of geopolymer mortar from 3 days to 7 days without oven curing.

  11. In situ oxide dispersion strengthened tungsten alloys with high compressive strength and high strain-to-failure

    International Nuclear Information System (INIS)

    Huang, Lin; Jiang, Lin; Topping, Troy D.; Dai, Chen; Wang, Xin; Carpenter, Ryan; Haines, Christopher; Schoenung, Julie M.

    2017-01-01

    In this work a novel process methodology to concurrently improve the compressive strength (2078 MPa at a strain rate of 5 × 10"−"4 s"−"1) and strain-to-failure (over 40%) of bulk tungsten materials has been described. The process involves the in situ formation of intragranular tungsten oxide nanoparticles, facilitated by the application of a pressure of 1 GPa at a low sintering temperature of 1200 °C during spark plasma sintering (SPS). The results show that the application of a high pressure of 1 GPa during SPS significantly accelerates the densification process. Concurrently, the second phase oxide nanoparticles with an average grain size of 108 nm, which are distributed within the interiors of the W grains, simultaneously provide strengthening and plasticity by inhibiting grain growth, and generating, blocking, and storing dislocations. - Graphical abstract: In this work a novel process methodology to concurrently improve the compressive strength (2078 MPa at a strain rate of 5 × 10"−"4 s"−"1) and strain-to-failure (over 40%) of bulk W materials has been described. The process involves the in situ formation of intragranular tungsten oxide nanoparticles, facilitated by the application of a pressure of 1 GPa at a low sintering temperature of 1200 °C during spark plasma sintering (SPS).

  12. Enhancement and prediction of modulus of elasticity of palm kernel shell concrete

    International Nuclear Information System (INIS)

    Alengaram, U. Johnson; Mahmud, Hilmi; Jumaat, Mohd Zamin

    2011-01-01

    Research highlights: → Micro-pores of size 16-24 μm were found on the outer surface of palm kernel shell. → Infilling of pores by mineral admixtures was evident. → Sand content influenced both modulus of elasticity and compressive strength. → Proposed equation predicts modulus of elasticity within ±1.5 kN/mm 2 of test results. -- Abstract: This paper presents results of an investigation conducted to enhance and predict the modulus of elasticity (MOE) of palm kernel shell concrete (PKSC). Scanning electron microscopic (SEM) analysis on palm kernel shell (PKS) was conducted. Further, the effect of varying sand and PKS contents and mineral admixtures (silica fume and fly ash) on compressive strength and MOE was investigated. The variables include water-to-binder (w/b) and sand-to-cement (s/c) ratios. Nine concrete mixes were prepared, and tests on static and dynamic moduli of elasticity and compressive strength were conducted. The SEM result showed presence of large number of micro-pores on PKS. The mineral admixtures uniformly filled the micro-pores on the outer surface of PKS. Further, the increase in sand content coupled with reduction in PKS content enhanced the compressive strength and static MOE: The highest MOE recorded in this investigation, 11 kN/mm 2 , was twice that previously published. Moreover, the proposed equation based on CEB/FIP code formula appears to predict the MOE close to the experimental values.

  13. Evaluation of critical resolved shear strength and deformation mode in proton-irradiated austenitic stainless steel using micro-compression tests

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyung-Ha; Ko, Eunsol; Kwon, Junhyun; Hwang, Seong Sik [Nuclear Materials Safety Research Division, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Shin, Chansun, E-mail: c.shin@mju.ac.kr [Department of Materials Science and Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Youngin, Gyeonggi-do, 449-728 (Korea, Republic of)

    2016-03-15

    Micro-compression tests were applied to evaluate the changes in the strength and deformation mode of proton-irradiated commercial austenitic stainless steel. Proton irradiation generated small dots at low dose levels and Frank loops at high dose levels. The increase in critical resolved shear stresses (CRSS) was measured from micro-compression of pillars and the Schmid factor calculated from the measured loading direction. The magnitudes of the CRSS increase were in good agreement with the values calculated from the barrier hardening model using the measured size and density of radiation defects. The deformation mode changed upon increasing the irradiation dose level. At a low radiation dose level, work hardening and smooth flow behavior were observed. Increasing the dose level resulted in the flow behavior changing to a distinct heterogeneous flow, yielding a few large strain bursts in the stress–strain curves. The change in the deformation mode was related to the formation and propagation of defect-free slip bands. The effect of the orientation of the pillar or loading direction on the strengths is discussed.

  14. Effect of heat bed temperature of 3D bioprinter to hardness and compressive strength of scaffold bovine hydroxyapatite

    Science.gov (United States)

    Triyono, Joko; Pratama, Aditya; Sukanto, Heru; Nugroho, Yohanes; Wijayanta, Agung Tri

    2018-02-01

    This study aimed to investigate the effect of heat bed temperature of 3D bioprinter toward compressive strength and hardness bovine bone hydroxyapatite scaffold for bone filler applications. BHA-glycerin mixed with a ratio of 1:1, and keep it for 24 hours. After the homogenization process acquired, bio-Ink with shaped slurry will be used as a material for a 3D printer. The printing process with a temperature variation have performed by setting up heat bed temperature. After printing process was completed, the 3D scaffold was detained on the heat bed for 10 minutes before being picked up. The test results in this study had the lowest hardness value of 9.82±0.62 VHN and the highest number of 24.32±0.99 VHN. The compressive strength testing had the lowest value of 1.62±0.16 MPa with the highest number of 5.67±0.39 MPa. Pore observation using a scanning electron microscope. The result shows that the size of the pores were not much different, that was ±100-200 µm. This observation also indicated that the pore form was square pores.

  15. Axial compression behavior of concrete masonry wallettes strengthened with cement mortar overlays

    Directory of Open Access Journals (Sweden)

    F. L. De Oliveira

    Full Text Available This paper presents the results of a series of axial compression tests on concrete block wallettes coated with cement mortar overlays. Different types of mortars and combinations with steel welded meshes and fibers were tested. The experimental results were discussed based on different theoretical approaches: analytical and Finite Element Method models. The main conclusions are: a the application of mortar overlays increases the wall strength, but not in a uniform manner; b the strengthening efficiency of wallettes loaded in axial compression is not proportional to the overlay mortar strength because it can be affected by the failure mechanisms of the wall; c steel mesh reinforced overlays in combination with high strength mortar show better efficiency, because the steel mesh mitigates the damage effects in the block wall and in the overlays themselves; d simplified theoretical methods of analysis as described in this paper can give satisfactory predictions of masonry wall behavior up to a certain level.

  16. Laboratory Investigation on Compressive Strength and Micro-structural Features of Foamed Concrete with Addition of Wood Ash and Silica Fume as a Cement Replacement

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-01-01

    Full Text Available Wood Ash (WA and Silica Fume (SF exhibit good cementation properties and have great potential as supplementary binder materials for the concrete production industry. This study will focus on enhancing the micro-structural formation and compressive strength of foamed concrete with the addition of WA and SF. A total of 3 mixes were prepared with the addition of WA and SF at various cement replacement levels by total binder weight. For this particular study, the combination of WA (5%, 10%, and 15% by binder weight and SF (5%, 10%, and 15% by binder weight were utilized as supplementary binder materials to produce foamed concrete mixes. As was made evident from micrographs obtained in the study, the improvement observed in the compressive strength of the foamed concrete was due to a significant densification in the microstructure of the cement paste matrix in the presence of WA and SF hybrid supplementary binders. Experimental results indicated that the combination of 15% SF and 5% WA by binder weight had a more substantial influence on the compressive strength of foamed concrete compared to the control mix. Furthermore, the addition of WA and SF significantly prolonged the setting times of the blended cement paste of the foamed concrete.

  17. Effects of the addition of nanoparticulate calcium carbonate on setting time, dimensional change, compressive strength, solubility and pH of MTA.

    Science.gov (United States)

    Bernardi, A; Bortoluzzi, E A; Felippe, W T; Felippe, M C S; Wan, W S; Teixeira, C S

    2017-01-01

    To evaluate nanoparticulate calcium carbonate (NPCC) using transmission electron microscopy and the effects of NPCC addition to MTA in regard to the setting time, dimensional change, compressive strength, solubility and pH. The experimental groups were G1 (MTA), G2 (MTA with 5% NPCC) and G3 (MTA with 10% NPCC). The tests followed ISO and ADA standards. The specimens in the dimensional change and compressive strength tests were measured immediately after setting, after 24 h and after 30 days. In the solubility test, rings filled with cement were weighed after setting and after 30 days. The pH was measured after 24 h and 30 days. The data were analysed with the ANOVA, Tukey's and Kruskal-Wallis tests (α = 5%). The setting time was reduced (P  G2 > G3). The solubility test revealed a difference amongst the groups when the specimens were hydrated: G2 > G1 > G3 and dehydrated: G3 > G2 > G1. The pH of the groups was similar at 24 h with higher values in each group after 30 days (P calcium carbonate had a cubic morphology with few impurities. The addition of nanoparticulate calcium carbonate to MTA accelerated the setting time, decreased compressive strength and, after 30 days, resulted in lower dimensional change (G2), higher solubility and a higher pH. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  18. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  19. A study on the compressive and tensile strength of foamed concrete containing pulverized bone as a partial replacement of cement

    International Nuclear Information System (INIS)

    Falade, F.

    2013-01-01

    In this study, structural properties of foamed aerated concrete with and without pulverized bone were investigated. These properties are workability, plastic and testing densities, compressive strength, and tensile strength at the design density of 1600kg/m/sub 3/. The tensile strength was evaluated by subjecting 150 x 150 x750mm unreinforced foamed concrete beams to flexural test and 150x300mm cylinder specimens were subjected to splitting test. 150mm cube specimens were used for the determination of both the compressive strength and the testing density of the foamed aerated concrete. The plastic density was investigated using a container of known volume, and its workability determined using the slump test. The pulverized bone content was varied from 0 to 20% at interval of 5%. The specimens without the pulverized bone served as the control. At the designed density of 1600 kg/m/sub 3/, the results for the control specimens at 28-day curing age are 15.43 and 13.89N/mm/sub 2/ for air-and water-cured specimens respectively. The modulus of rupture and splitting tensile strength are 2.53 and 1.63N/mm/sub 2/ respectively. The results for specimens with pulverized bone did not differ significantly from the specimens without pulverized bone. From the results of this investigation, it can be concluded that foamed aerated concrete used for this study has potential for structural applications. Also pulverized bone can be used to reduce (partially replace) the quantity of cement used in aerated concrete production; thus ridding our environment of potentially harmful wastes, as well as reduce the consumption of non-renewable resources. (author)

  20. Characteristics of structural loess strength and preliminary framework for joint strength formula

    OpenAIRE

    Rong-jian Li; Jun-ding Liu; Rui Yan; Wen Zheng; Sheng-jun Shao

    2014-01-01

    The strength of structural loess consists of the shear strength and tensile strength. In this study, the stress path, the failure envelope of principal stress (Kf line), and the strength failure envelope of structurally intact loess and remolded loess were analyzed through three kinds of tests: the tensile strength test, the uniaxial compressive strength test, and the conventional triaxial shear strength test. Then, in order to describe the tensile strength and shear strength of structural lo...

  1. Predicted VO2max and effectiveness of external chest compression by Chinese nurses.

    Science.gov (United States)

    Ho, Leo S T; Jones, Alice Y M; Rainer, Timothy H

    2017-08-01

    The aims of this study were to assess the influence of sex and body position on external chest compression (ECC) to a manikin by Chinese nurses and to determine the relationship between rescuer's predicted VO2max and ECC depth. A total of 40 nurses performed ECC on a manikin for 5 min in the standing (S) and bed-mount kneeling (K) position, then completed a Chester step-test, in 3 separate days. The rate and depth of compressions and oxygen consumption during ECC were measured. Mean compression rate recorded was above 100/min in both positions throughout ECC. Mean compression depth for male participants was more than 38 mm for 5 min in the K-position but only 3 min in the S-position. Female participants achieved this compression depth for less than 90 s in the K-position but not at all in the S-position. Irrespective of sex, the K-position appears to facilitate effective ECC. The relationship between aerobic fitness of female nurses and their ability to perform effective cardiopulmonary resuscitation warrants further investigation.

  2. Soft computing methods for estimating the uniaxial compressive strength of intact rock from index tests

    Czech Academy of Sciences Publication Activity Database

    Mishra, A. Deepak; Srigyan, M.; Basu, A.; Rokade, P. J.

    2015-01-01

    Roč. 80, December 2015 (2015), s. 418-424 ISSN 1365-1609 Institutional support: RVO:68145535 Keywords : uniaxial compressive strength * rock indices * fuzzy inference system * artificial neural network * adaptive neuro-fuzzy inference system Subject RIV: DH - Mining, incl. Coal Mining Impact factor: 2.010, year: 2015 http://ac.els-cdn.com/S1365160915300708/1-s2.0-S1365160915300708-main.pdf?_tid=318a7cec-8929-11e5-a3b8-00000aacb35f&acdnat=1447324752_2a9d947b573773f88da353a16f850eac

  3. Effects of humeral head compression taping on the isokinetic strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis.

    Science.gov (United States)

    Kim, Moon-Hwan; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to examine the effects of humeral head compression taping (HHCT) on the strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis. [Subjects and Methods] Twenty patients with rotator cuff tendinitis were recruited. The shoulder external rotator strength was measured using a Biodex isokinetic dynamometer system. A paired t-test was performed to evaluate within-group differences in the strength of the shoulder external rotator muscle. [Results] Significantly higher shoulder external rotator peak torque and peak torque per body weight were found in the HHCT condition than in the no-taping condition. [Conclusion] HHCT may effectively increase the shoulder external rotator muscle strength in patients with rotator cuff tendinitis.

  4. Application of Geostatistical Modelling to Study the Exploration Adequacy of Uniaxial Compressive Strength of Intact Rock alongthe Behesht-Abad Tunnel Route

    Directory of Open Access Journals (Sweden)

    Mohammad Doustmohammadi

    2014-12-01

    Full Text Available Uniaxial compressive strength (UCS is one of the most significant factors on the stability of underground excavation projects. Most of the time, this factor can be obtained by exploratory boreholes evaluation. Due to the large distance between exploratory boreholes in the majority of geotechnical projects, the application of geostatistical methods has increased as an estimator of rock mass properties. The present paper ties the estimation of UCS values of intact rock to the distance between boreholes of the Behesht-Abad tunnel in central Iran, using SGEMS geostatistical program. Variography showed that UCS estimation of intact rock using geostatistical methods is reasonable. The model establishment and validation was done after assessment that the model was trustworthy. Cross validation proved the high accuracy (98% and reliability of the model to estimate uniaxial compressive strength. The UCS values were then estimated along the tunnel axis. Moreover, using geostatistical estimation led to better identification of the pros and cons of geotechnical explorations in each location of tunnel route.

  5. Compression of laminated composite beams with initial damage

    Science.gov (United States)

    Breivik, Nicole L.; Gurdal, Zafer; Griffin, O. H., Jr.

    1993-01-01

    The effect of isolated damage modes on the compressive strength and failure characteristics of laminated composite test specimens were evaluated experimentally and numerically. In addition to specimens without initial damage, specimens with three types of initial damage were considered: (1) specimens with short delaminations distributed evenly through the specimen thickness, (2) specimens with few long delaminations, and (3) specimens with local fiber damage in the surface plies under the three-point bend contact point. It was found that specimens with short multiple delamination experienced the greatest reduction in compression strength compared to the undamaged specimens. Single delaminations far from the specimen surface had little effect on the final compression strength, and moderate strength reduction was observed for specimens with localized surface ply damage.

  6. Strength and Permeability Evolution of Compressed Bentonite in Response to Salinity and Temperature Changes

    Science.gov (United States)

    Winnard, B. R.; Mitchell, T. M.; Browning, J.; Cuss, R. J.; Norris, S.; Meredith, P. G.

    2017-12-01

    Deep geological repositories are the preferred solution to dispose of radioactive waste; design concepts for these disposal facilities include compacted, saturated bentonite as a buffer between waste canister and host rock. Bentonite is favoured for its high swelling capacity, low permeability, and radionuclide retention properties. However, its thermo-hydro-mechanical tolerances must be thoroughly tested to ensure adequate long term performance. Climate variations are likely to induce periods of permafrost, and consequently, changes in groundwater salinity at depth. We performed laboratory experiments investigating effects of temperature and salinity change on uniaxial compressive strength (UCS), and permeability of compacted MX-80 bentonite cylinders. These specimens (moisture content = 22.9±0.1%, dry density = 1.66±0.02 g.cm-3) were compacted with deionised water, and a range of wt% NaCl, CaCl2, or KCl, to compare the effects of compaction fluid. Samples of compressed bentonite were cooled to -20 °C, and heated to 90 ºC, a possible temperature forecast for a repository dependent on factors such as geographical location, waste type, and facility design. Tests were all performed at room temperature, however in situ temperature tests are planned. The UCS of samples that experienced freeze thaw, and 40 ºC treatment failed at 6.5 MPa, with 4% strain, maintaining the same values as untreated bentonite compacted with deionised water. Samples compacted with saline solutions also yielded similar strengths, of 7 MPa, and failed at 4%. However, the 90 ºC, regardless of compaction fluid, failed at 15-18 MPa, at just 2% strain. In all experiments, the spread of strain accommodated varied inconsistently, however, peak stress was uniform. Further experiments into heterogeneity are needed to understand the responsible mechanisms. To obtain permeability, we utilised the pore pressure oscillation (PPO) technique with argon as the pore fluid. We also tested water as the pore

  7. Effect of High-Temperature Curing Methods on the Compressive Strength Development of Concrete Containing High Volumes of Ground Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Wonsuk Jung

    2017-01-01

    Full Text Available This paper investigates the effect of the high-temperature curing methods on the compressive strength of concrete containing high volumes of ground granulated blast-furnace slag (GGBS. GGBS was used to replace Portland cement at a replacement ratio of 60% by binder mass. The high-temperature curing parameters used in this study were the delay period, temperature rise, peak temperature (PT, peak period, and temperature down. Test results demonstrate that the compressive strength of the samples with PTs of 65°C and 75°C was about 88% higher than that of the samples with a PT of 55°C after 1 day. According to this investigation, there might be optimum high-temperature curing conditions for preparing a concrete containing high volumes of GGBS, and incorporating GGBS into precast concrete mixes can be a very effective tool in increasing the applicability of this by-product.

  8. Axial compressive strength of human vertebrae trabecular bones classified as normal, osteopenic and osteoporotic by quantitative ultrasonometry of calcaneus

    Directory of Open Access Journals (Sweden)

    Reinaldo Cesar

    2017-06-01

    Full Text Available Abstract Introduction Biomechanical assessment of trabecular bone microarchitecture contributes to the evaluation of fractures risk associated with osteoporosis and plays a crucial role in planning preventive strategies. One of the most widely clinical technics used for osteoporosis diagnosis by health professionals is bone dual-energy X-ray absorptiometry (DEXA. However, doubts about its accuracy motivate the introduction of congruent technical analysis such as calcaneal ultrasonometry (Quantitative Ultrasonometry - QUS. Methods Correlations between Bone Quality Index (BQI, determined by calcaneal ultrasonometry of thirty (30 individuals classified as normal, osteopenic and osteoporotic, and elastic modulus (E and ultimate compressive strength (UCS from axial compression tests of ninety (90 proof bodies from human vertebrae trabecular bone, which were extracted from cadavers in the twelfth thoracic region (T12, first and fourth lumbar (L1 and L4. Results Analysis of variance (ANOVA showed significant differences for E (p = 0.001, for UCS (p = 0.0001 and BQI. Spearman’s rank correlation coefficient (rho between BQI and E (r = 0.499 and BQI and UCS (r = 0.508 were moderate. Discussion Calcaneal ultrasonometry technique allowed a moderate estimate of bone mechanical strength and fracture risk associated with osteoporosis in human vertebrae.

  9. Bone scintigraphy predicts the risk of spinal cord compression in hormone-refractory prostate cancer

    International Nuclear Information System (INIS)

    Soerdjbalie-Maikoe, Vidija; Pelger, Rob C.M.; Nijeholt, Guus A.B. Lycklama; Arndt, Jan-Willem; Zwinderman, Aeilko H.; Bril, Herman; Papapoulos, Socrates E.; Hamdy, Neveen A.T.

    2004-01-01

    In prostate cancer, confirmation of metastatic involvement of the skeleton has traditionally been achieved by bone scintigraphy, although the widespread availability of prostate-specific antigen (PSA) measurements has tended to eliminate the need for this investigation. The potential of bone scintigraphy to predict skeletal-related events, particularly spinal cord compression, after the onset of hormone refractoriness has never been investigated. The aim of this study was to establish whether a new method of evaluating bone scintigraphy would offer a better predictive value for this complication of the metastatic process than is achieved with currently available grading methods. We studied 84 patients with hormone-refractory prostate cancer who had undergone bone scintigraphy at the time of hormone escape. Tumour grading and parameters of tumour load (PSA and alkaline phosphatase activity) were available in all patients. The incidence of spinal cord compression was documented and all patients were followed up until death. Bone scintigraphy was evaluated by the conventional Soloway grading and by an additional analysis determining total or partial involvement of individual vertebrae. In contrast to the Soloway method, the new method was able to predict spinal cord compression at various spinal levels. Our data suggest that there is still a place for bone scintigraphy in the management of hormone-refractory prostate cancer. (orig.)

  10. Strength Characteristics of Groundnut Leaf/Stem Ash (GLSA) Concrete

    Science.gov (United States)

    Oseni, O. W.; Audu, M. T.

    2016-09-01

    The compressive strength properties of concrete are substantial factors in the design and construction of concrete structures. Compressive strength directly affects the degree to which the concrete can be able to carry a load over time. These changes are complemented by deflections, cracks etc., in the structural elements of concrete. This research investigated the effect of groundnut leaf/stem ash (GLSA) on the compressive strength of concrete at 0%, 5 %, 10 % and 15 % replacements of cement. The effect of the water-cement ratio on properties such as the compressive strength, slump, flow and workability properties of groundnut leaf/stem ash (GLSA) mixes with OPC were evaluated to determine whether they are acceptable for use in concrete structural elements. A normal concrete mix with cement at 100 % (i.e., GLSA at 0%) with concrete grade C25 that can attain an average strength of 25 N/mm2 at 28 days was used as a control at design water-cement ratios of 0.65 and grading of (0.5-32) mm from fine to coarse aggregates was tested for: (1) compressive strength, and the (2) slump and flow Test. The results and observations showed that the concrete mixes from GLSA at 5 - 15 % ratios exhibit: pozzolanic properties and GLSA could be used as a partial replacement for cement at these percentage mix ratios compared with the control concrete; an increase in the water-cement ratio showed a significant decrease in the compressive strength and an increase in workability. Therefore, it is important that all concrete mixes exude an acceptably designed water-cement ratio for compressive strength characteristics for use in structures, water-cement ratio is a significant factor.

  11. On the characterisation of the dynamic compressive behaviour of silicon carbides subjected to isentropic compression experiments

    Directory of Open Access Journals (Sweden)

    Zinszner Jean-Luc

    2015-01-01

    Full Text Available Ceramic materials are commonly used as protective materials particularly due to their very high hardness and compressive strength. However, the microstructure of a ceramic has a great influence on its compressive strength and on its ballistic efficiency. To study the influence of microstructural parameters on the dynamic compressive behaviour of silicon carbides, isentropic compression experiments have been performed on two silicon carbide grades using a high pulsed power generator called GEPI. Contrary to plate impact experiments, the use of the GEPI device and of the lagrangian analysis allows determining the whole loading path. The two SiC grades studied present different Hugoniot elastic limit (HEL due to their different microstructures. For these materials, the experimental technique allowed evaluating the evolution of the equivalent stress during the dynamic compression. It has been observed that these two grades present a work hardening more or less pronounced after the HEL. The densification of the material seems to have more influence on the HEL than the grain size.

  12. Multi-Scale Modeling for Predicting the Stiffness and Strength of Hollow-Structured Metal Foams with Structural Hierarchy

    Directory of Open Access Journals (Sweden)

    Yong Yi

    2018-03-01

    Full Text Available This work was inspired by previous experiments which managed to establish an optimal template-dealloying route to prepare ultralow density metal foams. In this study, we propose a new analytical–numerical model of hollow-structured metal foams with structural hierarchy to predict its stiffness and strength. The two-level model comprises a main backbone and a secondary nanoporous structure. The main backbone is composed of hollow sphere-packing architecture, while the secondary one is constructed of a bicontinuous nanoporous network proposed to describe the nanoscale interactions in the shell. Firstly, two nanoporous models with different geometries are generated by Voronoi tessellation, then the scaling laws of the mechanical properties are determined as a function of relative density by finite volume simulation. Furthermore, the scaling laws are applied to identify the uniaxial compression behavior of metal foams. It is shown that the thickness and relative density highly influence the Young’s modulus and yield strength, and vacancy defect determines the foams being self-supported. The present study provides not only new insights into the mechanical behaviors of both nanoporous metals and metal foams, but also a practical guide for their fabrication and application.

  13. Improved critical current densities and compressive strength in porous superconducting structures containing calcium

    International Nuclear Information System (INIS)

    Walsh, D; Hall, S R; Wimbush, S C

    2008-01-01

    Templated control of crystallization by biopolymers is a new technique in the synthesis of high temperature superconducting phases. By controlling the way YBa 2 Cu 3 O 7-δ (Y123) materials crystallize and are organized in three dimensions, the critical current density can be improved. In this work, we present the results of doping superconducting sponges with calcium ions, which result in higher critical current densities (J c ) and improved compressive strength compared to that of commercially available Y123, in spite of minor reductions in T c . Y123 synthesis using the biopolymer dextran achieves not only an extremely effective oxygenation of the superconductor but also an in situ template-directing of the crystal morphology producing high J c , homogeneous superconducting structures with nano-scale crystallinity

  14. Prediction of Rowing Ergometer Performance from Functional Anaerobic Power, Strength and Anthropometric Components

    Directory of Open Access Journals (Sweden)

    Akça Firat

    2014-07-01

    Full Text Available The aim of this research was to develop different regression models to predict 2000 m rowing ergometer performance with the use of anthropometric, anaerobic and strength variables and to determine how precisely the prediction models constituted by different variables predict performance, when conducted together in the same equation or individually. 38 male collegiate rowers (20.17 ± 1.22 years participated in this study. Anthropometric, strength, 2000 m maximal rowing ergometer and rowing anaerobic power tests were applied. Multiple linear regression procedures were employed in SPSS 16 to constitute five different regression formulas using a different group of variables. The reliability of the regression models was expressed by R2 and the standard error of estimate (SEE. Relationships of all parameters with performance were investigated through Pearson correlation coefficients. The prediction model using a combination of anaerobic, strength and anthropometric variables was found to be the most reliable equation to predict 2000 m rowing ergometer performance (R2 = 0.92, SEE= 3.11 s. Besides, the equation that used rowing anaerobic and strength test results also provided a reliable prediction (R2 = 0.85, SEE= 4.27 s. As a conclusion, it seems clear that physiological determinants which are affected by anaerobic energy pathways should also get involved in the processes and models used for performance prediction and talent identification in rowing.

  15. Experimental investigation of the strength and failure behavior of layered sandstone under uniaxial compression and Brazilian testing

    Science.gov (United States)

    Yin, Peng-Fei; Yang, Sheng-Qi

    2018-05-01

    As a typical inherently anisotropic rock, layered sandstones can differ from each other in several aspects, including grain size, type of material, type of cementation, and degree of compaction. An experimental study is essential to obtain and convictive evidence to characterize the mechanical behavior of such rock. In this paper, the mechanical behavior of a layered sandstone from Xuzhou, China, is investigated under uniaxial compression and Brazilian test conditions. The loading tests are conducted on 7 sets of bedding inclinations, which are defined as the angle between the bedding plane and horizontal direction. The uniaxial compression strength (UCS) and elastic modulus values show an undulatory variation when the bedding inclination increases. The overall trend of the UCS and elastic modulus values with bedding inclination is decreasing. The BTS value decreases with respect to the bedding inclination and the overall trend of it is approximating a linear variation. The 3D digital high-speed camera images reveal that the failure and fracture of a specimen are related to the surface deformation. Layered sandstone tested under uniaxial compression does not show a typical failure mode, although shear slip along the bedding plane occurs at high bedding inclinations. Strain gauge readings during the Brazilian tests indicate that the normal stress on the bedding plane transforms from compression to tension as the bedding inclination increases. The stress parallel to the bedding plane in a rock material transforms from tension to compression and agrees well with the fracture patterns; "central fractures" occur at bedding inclinations of 0°-75°, "layer activation" occurs at high bedding inclinations of 75°-90°, and a combination of the two occurs at 75°.

  16. Environmental effects on the compressive properties - Thermosetting vs. thermoplastic composites

    Science.gov (United States)

    Haque, A.; Jeelani, S.

    1992-01-01

    The influence of moisture and temperature on the compressive properties of graphite/epoxy and APC-2 materials systems was investigated to assess the viability of using APC-2 instead of graphite/epoxy. Data obtained indicate that the moisture absorption rate of T-300/epoxy is higher than that of APC-2. Thick plate with smaller surface area absorbs less moisture than thin plate with larger surface area. The compressive strength and modulus of APC-2 are higher than those of T-300/epoxy composite, and APC-2 sustains higher compressive strength in the presence of moisture. The compressive strength and modulus decrease with the increase of temperature in the range of 23-100 C. The compression failure was in the form of delamination, interlaminar shear, and end brooming.

  17. Fast and predictable video compression in software design and implementation of an H.261 codec

    Science.gov (United States)

    Geske, Dagmar; Hess, Robert

    1998-09-01

    The use of software codecs for video compression becomes commonplace in several videoconferencing applications. In order to reduce conflicts with other applications used at the same time, mechanisms for resource reservation on endsystems need to determine an upper bound for computing time used by the codec. This leads to the demand for predictable execution times of compression/decompression. Since compression schemes as H.261 inherently depend on the motion contained in the video, an adaptive admission control is required. This paper presents a data driven approach based on dynamical reduction of the number of processed macroblocks in peak situations. Besides the absolute speed is a point of interest. The question, whether and how software compression of high quality video is feasible on today's desktop computers, is examined.

  18. Analysis of Environmental Impact for Concrete Using LCA by Varying the Recycling Components, the Compressive Strength and the Admixture Material Mixing

    Directory of Open Access Journals (Sweden)

    Taehyoung Kim

    2016-04-01

    Full Text Available Concrete is a type of construction material in which cement, aggregate, and admixture materials are mixed. When cement is produced, large amounts of substances that impact the environment are emitted during limestone extraction and clinker manufacturing. Additionally, the extraction of natural aggregate causes soil erosion and ecosystem destruction. Furthermore, in the process of transporting raw materials such as cement and aggregate to a concrete production company, and producing concrete in a batch plant, substances with an environmental impact are emitted into the air and water system due to energy use. Considering the fact that the process of producing concrete causes various environmental impacts, an assessment of various environmental impact categories is needed. This study used a life cycle assessment (LCA to evaluate the environmental impacts of concrete in terms of its global warming potential, acidification potential, eutrophication potential, ozone depletion potential, photochemical ozone creation potential, and abiotic depletion potential (GWP, AP, EP, ODP, POCP, ADP. The tendency was that the higher the strength of concrete, the higher the GWP, POCP, and ADP indices became, whereas the AP and EP indices became slightly lower. As the admixture mixing ratio of concrete increased, the GWP, AP, ODP, ADP, and POCP decreased, but EP index showed a tendency to increase slightly. Moreover, as the recycled aggregate mixing ratio of concrete increased, the AP, EP, ODP, and ADP decreased, while GWP and POCP increased. The GWP and POCP per unit compressed strength (1 MPa of high strength concrete were found to be about 13% lower than that for its normal strength concrete counterpart. Furthermore, in the case of AP, EP, ODP, and ADP per unit compressed strength (1 MPa, high-strength concrete was found to be about 10%~25% lower than its normal strength counterpart. Among all the environmental impact categories, ordinary cement was found to have

  19. Compressive Strength of Longitudinally Stiffened GRP Panels

    DEFF Research Database (Denmark)

    Böhme, J.; Noury, P.; Riber, Hans Jørgen

    1996-01-01

    A structural analysis of a cross stiffened orthotropic GRP panel subjected to uniaxial compressive loads is carried out. Analytical solutions to the buckling of such structures are proposed and validated by a finite element analysis. Both analytical and finite element approaches confirm an identi...

  20. Strength Characteristics of Groundnut Leaf/Stem Ash (GLSA Concrete

    Directory of Open Access Journals (Sweden)

    Oseni O. W.

    2016-09-01

    Full Text Available The compressive strength properties of concrete are substantial factors in the design and construction of concrete structures. Compressive strength directly affects the degree to which the concrete can be able to carry a load over time. These changes are complemented by deflections, cracks etc., in the structural elements of concrete. This research investigated the effect of groundnut leaf/stem ash (GLSA on the compressive strength of concrete at 0%, 5 %, 10 % and 15 % replacements of cement. The effect of the water-cement ratio on properties such as the compressive strength, slump, flow and workability properties of groundnut leaf/stem ash (GLSA mixes with OPC were evaluated to determine whether they are acceptable for use in concrete structural elements. A normal concrete mix with cement at 100 % (i.e., GLSA at 0% with concrete grade C25 that can attain an average strength of 25 N/mm2 at 28 days was used as a control at design water-cement ratios of 0.65 and grading of (0.5-32 mm from fine to coarse aggregates was tested for: (1 compressive strength, and the (2 slump and flow Test. The results and observations showed that the concrete mixes from GLSA at 5 – 15 % ratios exhibit: pozzolanic properties and GLSA could be used as a partial replacement for cement at these percentage mix ratios compared with the control concrete; an increase in the water-cement ratio showed a significant decrease in the compressive strength and an increase in workability. Therefore, it is important that all concrete mixes exude an acceptably designed water-cement ratio for compressive strength characteristics for use in structures, water-cement ratio is a significant factor.

  1. Loss of shear strength in polycrystalline tungsten under shock compression

    International Nuclear Information System (INIS)

    Dandekar, D.P.

    1976-01-01

    A reexamination of existing data on shock compression of polycrystalline tungsten at room temperature indicates that tungsten may be an exception to the common belief that metals do not behave like elastic-isotropic solids under shock compression

  2. Compressive Strength of EN AC-44200 Based Composite Materials Strengthened with α-Al2O3 Particles

    OpenAIRE

    Kurzawa A.; Kaczmar J. W.

    2017-01-01

    The paper presents results of compressive strength investigations of EN AC-44200 based aluminum alloy composite materials reinforced with aluminum oxide particles at ambient and at temperatures of 100, 200 and 250°C. They were manufactured by squeeze casting of the porous preforms made of α-Al2O3 particles with liquid aluminum alloy EN AC-44200. The composite materials were reinforced with preforms characterized by the porosities of 90, 80, 70 and 60 vol. %, thus the alumina content in the co...

  3. Risk of vertebral compression fractures in multiple myeloma patients

    OpenAIRE

    Anitha, D.; Thomas, Baum; Jan, Kirschke S.; Subburaj, Karupppasamy

    2017-01-01

    Abstract The purpose of this study was to develop and validate a finite element (FE) model to predict vertebral bone strength in vitro using multidetector computed tomography (MDCT) images in multiple myeloma (MM) patients, to serve as a complementing tool to assess fracture risk. In addition, it also aims to differentiate MM patients with and without vertebral compression fractures (VCFs) by performing FE analysis on vertebra segments (T1?L5) obtained from in vivo routine MDCT imaging scans....

  4. Post-Buckling Strength of Uniformly Compressed Plates

    NARCIS (Netherlands)

    Bakker, M.C.M.; Rosmanit, M.; Hofmeyer, H.; Camotim, D; Silvestre, N; Dinis, P.B.

    2006-01-01

    In this paper it is discussed how existing analytical and semi-analytical formulas for describing the elastic-post-buckling behavior of uniformly compressed square plates with initial imperfections, for loads up to three times the buckling load can be simplified and improved. For loads larger than

  5. On the compressive behavior of an FDM Steward Platform part

    Directory of Open Access Journals (Sweden)

    Nectarios Vidakis

    2017-10-01

    Full Text Available Acrylonitrile–butadiene–styrene (ABS is commonly used material in the fused deposition modeling (FDM process. In this work, ABS and ABS plus parts were built with different building parameters and they were tested according to the ASTM D695 standard. Compression strength results were compared to stock ABS material values. The fracture surfaces of selected specimens were examined under a Scanning Electron Microscope (SEM, to determine the failure mode of the filament strands. Following this a Steward Platform part was tested under compression in a tensile testing machine. The experimental results were employed to develop a finite element model of the Steward Platform part, in order to determine the maximum force the part can withstand. The Finite Element Model results were in good agreement with the values measured in the Steward Platform part compressive tests, demonstrating that the model developed is reliable. In these experiments, it was found that ABS parts build with a larger layer thickness showed lower compressive strength, which ABS plus did not show. ABS specimens on average developed about half the compressive strength of the ABS plus specimens, while the ABS plus specimens showed lower compressive strength values than stock ABS material.

  6. Effect of insulating concrete forms in concrete compresive strength

    Science.gov (United States)

    Martinez Jerez, Silvio R.

    The subject presented in this thesis is the effect of Insulating Concrete Forms (ICF's) on concrete compressive strength. This work seeks to identify if concrete cured in ICF's has an effect in compressive strength due to the thermal insulation provided by the forms. Modern construction is moving to energy efficient buildings and ICF's is becoming more popular in new developments. The thesis used a concrete mixture and a mortar mixture to investigate the effects of ICF's on concrete compressive strength. After the experimentations were performed, it was concluded that the ICF's do affect concrete strength. It was found that the forms increase concrete strength without the need for additional curing water. An increase of 50% in strength at 56 days was obtained. It was concluded that the longer concrete cures inside ICF's, the higher strength it reaches, and that ICF's effect on concrete strength is proportional to volume of concrete.

  7. Isoscalar compression modes in relativistic random phase approximation

    International Nuclear Information System (INIS)

    Ma, Zhong-yu; Van Giai, Nguyen.; Wandelt, A.; Vretenar, D.; Ring, P.

    2001-01-01

    Monopole and dipole compression modes in nuclei are analyzed in the framework of a fully consistent relativistic random phase approximation (RRPA), based on effective mean-field Lagrangians with nonlinear meson self-interaction terms. The large effect of Dirac sea states on isoscalar strength distribution functions is illustrated for the monopole mode. The main contribution of Fermi and Dirac sea pair states arises through the exchange of the scalar meson. The effect of vector meson exchange is much smaller. For the monopole mode, RRPA results are compared with constrained relativistic mean-field calculations. A comparison between experimental and calculated energies of isoscalar giant monopole resonances points to a value of 250-270 MeV for the nuclear matter incompressibility. A large discrepancy remains between theoretical predictions and experimental data for the dipole compression mode

  8. Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions

    Science.gov (United States)

    Feng, Xiaowei; Zhang, Nong; Zheng, Xigui; Pan, Dongjiang

    2015-01-01

    Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE) testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three-dimensional damage source

  9. Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions.

    Directory of Open Access Journals (Sweden)

    Xiaowei Feng

    Full Text Available Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three

  10. Effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures

    Science.gov (United States)

    Andy W.C. Lee; Zhongli Hong; Douglas R. Phillips; Chung-Yun Hse

    1987-01-01

    This study investigated the effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures made from six wood species: southern pine, white oak, southern red oak, yellow-poplar, sweetgum, and hickory. Cement/wood ratios varied from 13/1 to 4/1. Wood storage conditions consisted of air-...

  11. Improving the prediction of the final part geometry in high strength steels U drawing by means of advanced material and friction models

    Science.gov (United States)

    de Argandoña, Eneko Saenz; Mendiguren, Joseba; Otero, Irune; Mugarra, Endika; Otegi, Nagore; Galdos, Lander

    2018-05-01

    Steel has been used in vehicles from the automotive industry's inception. Different steel grades are continually being developed in order to satisfy new fuel economy requirements. For example, advanced high strength steel grades (AHSS) are widely used due to their good strength/weight ratio. Because each steel grade has a different microstructure composition and hardness, they show different behaviors when they are subjected to different strain paths. Similarly, the friction behavior when using different contact pressures is considerably altered. In the present paper, four different steel grades, ZSt380, DP600, DP780 and Fortiform 1050 materials are deeply characterized using uniaxial and cyclic tension-compression tests. Coefficient of friction (COF) is also obtained using strip drawing tests. These results have been used to calibrate mixed kinematic-hardening material models as well as pressure dependent friction models. Finally, the geometrical accuracy of the different material and friction models has been evaluated by comparing the numerical predictions with experimental demonstrators obtained using a U-Drawing tester.

  12. An efficient numerical target strength prediction model: Validation against analysis solutions

    NARCIS (Netherlands)

    Fillinger, L.; Nijhof, M.J.J.; Jong, C.A.F. de

    2014-01-01

    A decade ago, TNO developed RASP (Rapid Acoustic Signature Prediction), a numerical model for the prediction of the target strength of immersed underwater objects. The model is based on Kirchhoff diffraction theory. It is currently being improved to model refraction, angle dependent reflection and

  13. Compressible turbulent flows: aspects of prediction and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, R. [TU Muenchen, Garching (Germany). Fachgebiet Stroemungsmechanik

    2007-03-15

    Compressible turbulent flows are an important element of high-speed flight. Boundary layers developing along fuselage and wings of an aircraft and along engine compressor and turbine blades are compressible and mostly turbulent. The high-speed flow around rockets and through rocket nozzles involves compressible turbulence and flow separation. Turbulent mixing and combustion in scramjet engines is another example where compressibility dominates the flow physics. Although compressible turbulent flows have attracted researchers since the fifties of the last century, they are not completely understood. Especially interactions between compressible turbulence and combustion lead to challenging, yet unsolved problems. Direct numerical simulation (DNS) and large-eddy simulation (LES) represent modern powerful research tools which allow to mimic such flows in great detail and to analyze underlying physical mechanisms, even those which cannot be accessed by the experiment. The present lecture provides a short description of these tools and some of their numerical characteristics. It then describes DNS and LES results of fully-developed channel and pipe flow and highlights effects of compressibility on the turbulence structure. The analysis of pressure fluctuations in such flows with isothermal cooled walls leads to the conclusion that the pressure-strain correlation tensor decreases in the wall layer and that the turbulence anisotropy increases, since the mean density falls off relative to the incompressible flow case. Similar increases in turbulence anisotropy due to compressibility are observed in inert and reacting temporal mixing layers. The nature of the pressure fluctuations is however two-facetted. While inert compressible mixing layers reveal wave-propagation effects in the pressure and density fluctuations, compressible reacting mixing layers seem to generate pressure fluctuations that are controlled by the time-rate of change of heat release and mean density

  14. Compressive behaviour of hybrid fiber-reinforced reactive powder concrete after high temperature

    International Nuclear Information System (INIS)

    Zheng, Wenzhong; Li, Haiyan; Wang, Ying

    2012-01-01

    Highlights: ► We complete the high temperature test and compression test of RPC after 20–900 °C. ► The presence of steel fiber and polypropylene fiber can prevent RPC from spalling. ► Compressive strength increases first and then decreases with elevated temperatures. ► Microstructure deterioration is the root cause of macro-properties recession. ► Equations to express the compressive strength change with temperature are proposed. -- Abstract: This study focuses on the compressive properties and microstructures of reactive powder concrete (RPC) mixed with steel fiber and polypropylene fiber after exposure to 20–900 °C. The volume dosage of steel fiber and polypropylene fiber is (2%, 0.1%), (2%, 0.2%) and (1%, 0.2%). The effects of heating temperature, fiber content and specimen size on the compressive properties are analyzed. The microstructures of RPC exposed to different high temperatures are studied by scanning electron microscope (SEM). The results indicate that the compressive strength of hybrid fiber-reinforced RPC increases at first, then decreases with the increasing temperature, and the basic reason for the degradation of macro-mechanical properties is the deterioration of RPC microstructure. Based on the experimental results, equations to express the relationships of the compressive strength with the heating temperatures are established. Compared with normal-strength and high-strength concrete, the hybrid fiber-reinforced RPC has excellent capacity in resistance to high temperature.

  15. An Ensemble Learning for Predicting Breakdown Field Strength of Polyimide Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Hai Guo

    2015-01-01

    Full Text Available Using the method of Stochastic Gradient Boosting, ten SMO-SVR are constructed into a strong prediction model (SGBS model that is efficient in predicting the breakdown field strength. Adopting the method of in situ polymerization, thirty-two samples of nanocomposite films with different percentage compositions, components, and thicknesses are prepared. Then, the breakdown field strength is tested by using voltage test equipment. From the test results, the correlation coefficient (CC, the mean absolute error (MAE, the root mean squared error (RMSE, the relative absolute error (RAE, and the root relative squared error (RRSE are 0.9664, 14.2598, 19.684, 22.26%, and 25.01% with SGBS model. The result indicates that the predicted values fit well with the measured ones. Comparisons between models such as linear regression, BP, GRNN, SVR, and SMO-SVR have also been made under the same conditions. They show that CC of the SGBS model is higher than those of other models. Nevertheless, the MAE, RMSE, RAE, and RRSE of the SGBS model are lower than those of other models. This demonstrates that the SGBS model is better than other models in predicting the breakdown field strength of polyimide nanocomposite films.

  16. Effect of Hybrid Fibers on the Mechanical Properties of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Hamid H. Hussein, Saeed K. Rejeb Hayder T. Abd

    2014-04-01

    Full Text Available In this study, high strength concrete of 75 MPa compressive strength was investigated. The experimental program was designed to study the effect of fibers and hybrid fibers (steel and polypropylene fibers on the fresh (workability and wet density and hardened properties (compressive strength, splitting strength, flexural strength and dry density of high strength concrete. Results show that decreases in slump flow of all concrete mixtures containing steel, polypropylene and hybrid fibers compared with control mix (0% fiber. Hybrid high strength concrete with steel and polypropylene fibers showed superior compressive, splitting, flexural strengths over the others concrete without or with single fibers content. The test results indicate that the maximum increase in compressive and flexural strengths are obtains with the hybridization ratio (70%steel + 30% polypropylene and were equal to 14.54% and 23.34% respectively, compared with the control mix. While, the maximum increase in splitting tensile strength with (100% steel fiber + 0 polypropylene is 21.19%. 

  17. Evaluation of polymerization shrinkage, polymerization shrinkage stress, wear resistance, and compressive strength of a silorane-based composite: A finite element analysis study

    Directory of Open Access Journals (Sweden)

    Suresh Mitthra

    2017-01-01

    Full Text Available Background: Understanding the mechanical properties is important in predicting the clinical behavior of composites. Finite element analysis (FEA evaluates properties of materials replicating clinical scenario. Aim: This study evaluated polymerization shrinkage and stress, wear resistance (WR, and compressive strength (CS of silorane in comparison with two methacrylate resins. Settings and Design: This study design was a numerical study using FEA. Materials and Methods: Three-dimensional (3D models of maxillary premolar with Class I cavities (2 mm depth, 4 mm length, and 2.5 mm width created and restored with silorane, nanohybrid, and microhybrid; Groups I, II, and III, respectively. Loads of 200–600 N were applied. Polymerization shrinkage was first determined by displacement produced in the X, Y, and Z planes. Maximum stress distribution due to shrinkage was calculated using AN SYS software. 3D cube models of composite resins were simulated with varying filler particle size. Similar loads were applied. WR and compressive stress were calculated: K W L/H and load/cross-sectional area, respectively. Statistical analysis done using one-way ANOVA, Kruskal–Wallis, and Tukey's honestly significant difference test (P < 0.05. Results: Polymerization shrinkage (0.99% and shrinkage stress (233.21 Mpa of silorane were less compared to microhybrid (2.14% and 472.43 Mpa and nanohybrid (2.32% and 464.88 Mpa. Silorane (7.92×/1011 μm/mm3 and nanohybrid (7.79×/1011 showed superior WR than microhybrid (1.113×/1017. There was no significant difference in compressive stress among the groups. Conclusion: Silorane exhibited less polymerization shrinkage and shrinkage stress compared to methacrylates. Silorane and nanohybrid showed greater WR compared to microhybrid. CS of all groups was similar.

  18. Compressive strength of glass ionomer cements using different specimen dimensions Resistência à compressão de cimentos de ionômero de vidro utilizando-se diferentes tamanhos de corpos-de-prova

    Directory of Open Access Journals (Sweden)

    André Mallmann

    2007-09-01

    Full Text Available The purpose of this study was to evaluate the compressive strength of two glass ionomer cements, a conventional one (Vitro Fil® - DFL and a resin-modified material (Vitro Fil LC® - DFL, using two test specimen dimensions: One with 6 mm in height and 4 mm in diameter and the other with 12 mm in height and 6 mm in diameter, according to the ISO 7489:1986 specification and the ANSI/ADA Specification No. 66 for Dental Glass Ionomer Cement, respectively. Ten specimens were fabricated with each material and for each size, in a total of 40 specimens. They were stored in distilled water for 24 hours and then subjected to a compressive strength test in a universal testing machine (EMIC, at a crosshead speed of 0.5 mm/min. The data were statistically analyzed using the Kruskal-Wallis test (5%. Mean compressive strength values (MPa were: 54.00 ± 6.6 and 105.10 ± 17.3 for the 12 mm x 6 mm sample using Vitro Fil and Vitro Fil LC, respectively, and 46.00 ± 3.8 and 91.10 ± 8.2 for the 6 mm x 4 mm sample using Vitro Fil and Vitro Fil LC, respectively. The resin-modified glass ionomer cement obtained the best results, irrespective of specimen dimensions. For both glass ionomer materials, the 12 mm x 6 mm matrix led to higher compressive strength results than the 6 mm x 4 mm matrix. A higher variability in results was observed when the glass ionomer cements were used in the larger matrices.Este estudo teve como objetivo avaliar a resistência à compressão de dois cimentos de ionômero de vidro, um convencional (Vitro Fil® - DFL e outro modificado por resina (Vitro Fil LC® - DFL, utilizando-se dois tamanhos de amostras: uma com 6 mm de altura e 4 mm de diâmetro e outra com 12 mm de altura e 6 mm de diâmetro, seguindo-se a especificação 7489:1986 da ISO e a especificação n. 66 da ANSI/ADA para Cimento Dental de Ionômero de Vidro, respectivamente. Foram confeccionados 10 corpos-de-prova (CP de cada material para cada tamanho de amostra, totalizando

  19. Formulating the strength factor α for improved predictability of radiation hardening

    Energy Technology Data Exchange (ETDEWEB)

    Tan, L., E-mail: tanl@ornl.gov; Busby, J.T.

    2015-10-15

    Analytical equations were developed to calculate the strength factors of precipitates, Frank loops, and cavities in austenitic alloys, which strongly depend on barrier type, size, geometry and density, as well as temperature. Calculated strength factors were successfully used to estimate radiation hardening using the broadly employed dispersed barrier-hardening model, leading to good agreement with experimentally measured hardening in neutron-irradiated type 304 and 316 stainless steel variants. The formulated strength factor provides a route for more reliable hardening predictions and can be easily incorporated into component simulations and design.

  20. The Effect of Variation of Molarity of Alkali Activator and Fine Aggregate Content on the Compressive Strength of the Fly Ash: Palm Oil Fuel Ash Based Geopolymer Mortar

    Directory of Open Access Journals (Sweden)

    Iftekhair Ibnul Bashar

    2014-01-01

    Full Text Available The effect of molarity of alkali activator, manufactured sand (M-sand, and quarry dust (QD on the compressive strength of palm oil fuel ash (POFA and fly ash (FA based geopolymer mortar was investigated and reported. The variable investigated includes the quantities of replacement levels of M-sand, QD, and conventional mining sand (N-sand in two concentrated alkaline solutions; the contents of alkaline solution, water, POFA/FA ratio, and curing condition remained constant. The results show that an average of 76% of the 28-day compressive strength was found at the age of 3 days. The rate of strength development from 3 to 7 days was found between 12 and 16% and it was found much less beyond this period. The addition of 100% M-sand and QD shows insignificant strength reduction compared to mixtures with 100% N-sand. The particle angularity and texture of fine aggregates played a significant role in the strength development due to the filling and packing ability. The rough texture and surface of QD enables stronger bond between the paste and the fine aggregate. The concentration of alkaline solution increased the reaction rate and thus enhanced the development of early age strength. The use of M-sand and QD in the development of geopolymer concrete is recommended as the strength variation between these waste materials and conventional sand is not high.

  1. Compression Behavior of High Performance Polymeric Fibers

    National Research Council Canada - National Science Library

    Kumar, Satish

    2003-01-01

    Hydrogen bonding has proven to be effective in improving the compressive strength of rigid-rod polymeric fibers without resulting in a decrease in tensile strength while covalent crosslinking results in brittle fibers...

  2. Theoretical predictions for alpha particle spectroscopic strengths

    International Nuclear Information System (INIS)

    Draayer, J.P.

    1975-01-01

    Multinucleon transfers induced in heavy-ion reactions of the type ( 6 Li,d) furnish a selective probe with which to study the interplay between rotational and clustering phenomena so characteristic of the structure of the light sd-shell nuclei. For these nuclei, theoretical predictions for inter-band as well as intra-band transfer strengths can be made using recently tabulated results for angular momentum dependent SU 3 inclusion R 3 relative spectroscopic strengths and angular momentum independent SU 6 inclusion SU 3 coefficients of fractional parentage. The pure SU 3 (oscillator)-SU 4 (supermultiplet) symmetry limit agrees well with results obtained using available eigenfunctions determined in large shell model calculations. In particular, the scalar nature of a transferred ''alpha''-cluster insures that the effect of spatial symmetry admixtures in the initial and final states of the target and residual nuclei are minimized. Sum rule quantities provide a measure of the probable effects of symmetry breaking. Strength variations within a band are expected; transfers to core excited states are often favored. Results extracted from exact finite range DWBA analyses of ( 6 Li,d) data on 16 , 18 O, 20 , 21 , 22 Ne, 24 , 25 Mg show some anomalies in our understanding of the structure and/or reaction mechanisms. (18 figures) (U.S.)

  3. The influence of poly(acrylic) acid number average molecular weight and concentration in solution on the compressive fracture strength and modulus of a glass-ionomer restorative.

    LENUS (Irish Health Repository)

    Dowling, Adam H

    2011-06-01

    The aim was to investigate the influence of number average molecular weight and concentration of the poly(acrylic) acid (PAA) liquid constituent of a GI restorative on the compressive fracture strength (σ) and modulus (E).

  4. Determining the Compressive, Flexural and Splitting Tensile Strength of Silica Fume Reinforced Lightweight Foamed Concrete

    Directory of Open Access Journals (Sweden)

    Mydin M.A.O.

    2014-01-01

    Full Text Available This study investigated the performance of the properties of foamed concrete in replacing volumes of cement of 10%, 15% and 20% by weight. A control unit of foamed concrete mixture made with ordinary Portland cement (OPC and 10%, 15% and 20% silica fume was prepared. Three mechanical property parameters were studied such as compressive strength, flexural strength and splitting tensile of foamed concrete with different percentages of silica fume. Silica fume is commonly used to increase the mechanical properties of concrete materials and it is also chosen due to certain economic reasons. The foamed concrete used in this study was cured at a relative humidity of 70% and a temperature of ±28°C. The improvement of mechanical properties was due to a significant densification in the microstructure of the cement paste matrix in the presence of silica fume hybrid supplementary binder as observed from micrographs obtained in the study. The overall results showed that there is a potential to utilize silica fume in foamed concrete, as there was a noticeable enhancement of thermal and mechanical properties with the addition of silica fume.

  5. Strength and Drying Shrinkage of Alkali-Activated Slag Paste and Mortar

    Directory of Open Access Journals (Sweden)

    Mao-chieh Chi

    2012-01-01

    Full Text Available The aim of this study is to investigate the strengths and drying shrinkage of alkali-activated slag paste and mortar. Compressive strength, tensile strength, and drying shrinkage of alkali-activated slag paste and mortar were measured with various liquid/slag ratios, sand/slag ratios, curing ages, and curing temperatures. Experimental results show that the higher compressive strength and tensile strength have been observed in the higher curing temperature. At the age of 56 days, AAS mortars show higher compressive strength than Portland cement mortars and AAS mortars with liquid/slag ratio of 0.54 have the highest tensile strength in all AAS mortars. In addition, AAS pastes of the drying shrinkage are higher than AAS mortars. Meanwhile, higher drying shrinkage was observed in AAS mortars than that observed comparable Portland cement mortars.

  6. Evaluation of compressive strength and water absorption of soil-cement bricks manufactured with addition of pet (polyethylene terephthalate wastes

    Directory of Open Access Journals (Sweden)

    João Alexandre Paschoalin Filho

    2016-04-01

    Full Text Available This paper presents the evaluation of compressive strength of soil-cement bricks obtained by the inclusion in their mixture of PET flakes through mineral water bottles grinding. The Polyethylene Terephthalate (PET has been characterized by its difficulty of disaggregation in nature, requiring a long period for this. On the other hand, with the increase in civil construction activities the demand for raw material also increases, causing considerable environmental impacts. In this context, the objective of this research is to propose a simple methodology, preventing its dumping and accumulation in irregular areas, and reducing the demand of raw materials by the civil construction industry. The results showed that compressive strengths obtained were lower than recommended by NBR 8491 (Associação Brasileira de Normas Técnicas [ABNT], 2012b at seven days of curing time. However, they may be used as an alternative solution in masonry works in order to not submit themselves to great loads or structural functions. The studied bricks also presented water absorption near to recommended values by NBR 8491 (ABNT, 2012b. Manufacturing costs were also determined for this brick, comparing it with the costs of other brick types. Each brick withdrew from circulation approximately 300 g of PET waste. Thus, for an area of 1 m2 the studied bricks can promote the withdrawal of approximately 180 beverage bottles of 2 L capacity.

  7. Creep-rupture strength prediction of an epoxy composite under tension

    Czech Academy of Sciences Publication Activity Database

    Krastev, R.K.; Zachariev, G.; Hristova, J.; Minster, Jiří

    2009-01-01

    Roč. 13, č. 2 (2009), s. 207-214 ISSN 1385-2000 Institutional research plan: CEZ:AV0Z20710524 Keywords : materials testing * creep * strength prediction Subject RIV: JI - Composite Materials Impact factor: 1.051, year: 2009

  8. Strength properties of concrete at elevated temperatures

    International Nuclear Information System (INIS)

    Freskakis, G.N.; Burrow, R.C.; Debbas, E.B.

    1979-01-01

    A study is presented concerning the compressive strength, modulus of elasticity, and stress-strain relationships of concrete at elevated temperatures. A review of published results provides information for the development of upper and lower bound relationships for compressive strength and the modulus of elasticity and establishes exposure conditions for a lower bound thermal response. The relationships developed from the literature review are confirmed by the results of a verification test program. The strength and elasticity relationships provide a basis for the development of design stress-strain curves for concrete exposed to elevated temperatures

  9. A comparative evaluation of compressive strength of Portland cement with zinc oxide eugenol and Polymer-reinforced cement: an in vitro analysis.

    Science.gov (United States)

    Prakasam, S; Bharadwaj, Prakasam; Loganathan, S C; Prasanth, B Krishna

    2014-01-01

    The purpose of this study is to evaluate the ultimate compressive strength of 50% and 25% Portland cement mixed with Polymer-reinforced zinc oxide eugenol and zinc oxide eugenol cement after 1 hour, 24 hours, and 7 days. One hundred and eighty samples were selected. The samples were made cylindrical of size 6 × 8 mm and were divided into six groups as follows with each group consisting of 10 samples. Group 1: Polymer-reinforced zinc oxide eugenol with 50% Portland cement (PMZNPC 50%) Group 2: Polymer-reinforced zinc oxide eugenol with 25% Portland cement (PMZNPC 25%) Group 3: Polymer-reinforced zinc oxide eugenol with 0% Portland cement (PMZNPC 0%) Group 4: Zinc oxide eugenol with 50% Portland cement (ZNPC 50%) Group 5: Zinc oxide eugenol with 25% Portland cement (ZNPC 25%) Group 6: Zinc oxide eugenol with 0% Portland cement (ZNPC 0%) These samples were further subdivided based on time interval and were tested at 1 hour, 24 hours and at 7 th day. After each period of time all the specimens were tested by vertical CVR loaded frame with capacity of 5 tones/0473-10kan National Physical laboratory, New Delhi and the results were statistically analyzed using ANOVA and Scheffe test. Polymer-reinforced cement with 50% Portland cement, Zinc oxide with 50% Portland cement, Polymer-reinforced cement with 25% Portland cement and Zinc oxide with 25% Portland cement exhibited higher compressive strength when compared to Zinc oxide with 0% Portland cement and Polymer-reinforced cement with 0% Portland cement, at different periods of time. The difference between these two groups were statistically significant (P Portland cement in Zinc oxide eugenol and Polymer-modified zinc oxide cement can be used as core build up material and permanent filling material. It is concluded that 50% and 25% Portland cement in zinc oxide eugenol and polymer-modified zinc oxide eugenol results in higher compressive strength and hence can be used as permanent filling material and core built

  10. Dynamic compressive properties and failure mechanism of glass fiber reinforced silica hydrogel

    International Nuclear Information System (INIS)

    Yang Jie; Li Shukui; Yan Lili; Huo Dongmei; Wang Fuchi

    2010-01-01

    The dynamic compressive properties of glass fiber reinforced silica (GFRS) hydrogel were investigated using a spilt Hopkinson pressure bar. Failure mechanism of GFRS hydrogel was studied by scanning electron microscopy (SEM). Result showed that dynamic compressive stresses were much higher than the quasi-static compressive stresses at the same strain. The dynamic compressive strength was directly proportional to the strain rate with same sample dimensions. The dynamic compressive strength was directly proportional to the sample basal area at same strain rate. Dynamic compressive failure strain was small. At high strain rates, glass fibers broke down and separated from the matrix, pores shrank rapidly. Failure resulted from the increase of lateral tensile stress in hydrogel under dynamic compression.

  11. Performance predictions of a focused ion beam from a laser cooled and compressed atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Haaf, G. ten; Wouters, S. H. W.; Vredenbregt, E. J. D.; Mutsaers, P. H. A. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Geer, S. B. van der [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2014-12-28

    Focused ion beams are indispensable tools in the semiconductor industry because of their ability to image and modify structures at the nanometer length scale. Here, we report on performance predictions of a new type of focused ion beam based on photo-ionization of a laser cooled and compressed atomic beam. Particle tracing simulations are performed to investigate the effects of disorder-induced heating after ionization in a large electric field. They lead to a constraint on this electric field strength which is used as input for an analytical model which predicts the minimum attainable spot size as a function of, amongst others, the flux density of the atomic beam, the temperature of this beam, and the total current. At low currents (I < 10 pA), the spot size will be limited by a combination of spherical aberration and brightness, while at higher currents, this is a combination of chromatic aberration and brightness. It is expected that a nanometer size spot is possible at a current of 1 pA. The analytical model was verified with particle tracing simulations of a complete focused ion beam setup. A genetic algorithm was used to find the optimum acceleration electric field as a function of the current. At low currents, the result agrees well with the analytical model, while at higher currents, the spot sizes found are even lower due to effects that are not taken into account in the analytical model.

  12. Measurements and predictions of strain pole figures for uniaxially compressed stainless steel

    International Nuclear Information System (INIS)

    Larsson, C.; Clausen, B.; Holden, T.M.; Bourke, M.A.M.

    2004-01-01

    Strain pole figures representative of residual intergranular strains were determined from an -2.98% uniaxially compressed austenitic stainless steel sample. The measurements were made using neutron diffraction on the recently commissioned Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory, USA. The measurements were compared with predictions from an elasto-plastic self-consistent model and found to be in good agreement

  13. Measurements and predictions of strain pole figures for uniaxially compressed stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, C. [Division of Engineering Materials, Department of Mechanical Engineering, Linkoeping University, 58183 Linkoeping (Sweden)]. E-mail: clarsson@cfl.rr.com; Clausen, B. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Holden, T.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, M.A.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2004-09-15

    Strain pole figures representative of residual intergranular strains were determined from an -2.98% uniaxially compressed austenitic stainless steel sample. The measurements were made using neutron diffraction on the recently commissioned Spectrometer for Materials Research at Temperature and Stress (SMARTS) at Los Alamos National Laboratory, USA. The measurements were compared with predictions from an elasto-plastic self-consistent model and found to be in good agreement.

  14. Artificial neural networks for prediction of percentage of water ...

    Indian Academy of Sciences (India)

    have high compressive strengths in comparison with con- crete specimens ... presenting suitable model based on artificial neural networks. (ANNs) to ... by experimental ones to evaluate the software power for pre- dicting the ..... Figure 7. Correlation of measured and predicted percentage of water absorption values of.

  15. An exponential material model for prediction of the flow curves of several AZ series magnesium alloys in tension and compression

    International Nuclear Information System (INIS)

    Fereshteh-Saniee, F.; Barati, F.; Badnava, H.; Fallah Nejad, Kh.

    2012-01-01

    Highlights: ► The exponential model can represent flow behaviors of AZ series Mg alloys very well. ► Strain rate sensitivities of AZ series Mg alloys in compression are nearly the same. ► Effect of zinc element on tensile activation energy is higher than on compressive one. ► Activation energies of AZ80 and AZ81 in tension were greater than in compression. ► Tensile and compressive rate sensitivities of AZ80 are not close to each other. -- Abstract: This paper is concerned with flow behaviors of several magnesium alloys, such as AZ31, AZ80 and AZ81, in tension and compression. The experiments were performed at elevated temperatures and for various strain rates. In order to eliminate the effect of inhomogeneous deformation in tensile and compression tests, the Bridgeman’s and numerical correction factors were respectively employed. A two-section exponential mathematical model was also utilized for prediction of flow stresses of different magnesium alloys in tension and compression. Moreover, based on the compressive flow model proposed, the peak stress and the relevant true strain could be estimated. The true stress and strain of the necking point can also be predicted using the corresponding relations. It was found that the flow behaviors estimated by the exponential flow model were encouragingly in very good agreement with experimental findings.

  16. Effects of augmented trunk stabilization with external compression support on shoulder and scapular muscle activity and maximum strength during isometric shoulder abduction.

    Science.gov (United States)

    Jang, Hyun-jeong; Kim, Suhn-yeop; Oh, Duck-won

    2015-04-01

    The aim of the present study was to investigate the effects of augmented trunk stabilization with external compression support (ECS) on the electromyography (EMG) activity of shoulder and scapular muscles and shoulder abductor strength during isometric shoulder abduction. Twenty-six women volunteered for the study. Surface EMG was used to monitor the activity of the upper trapezius (UT), lower trapezius (LT), serratus anterior (SA), and middle deltoid (MD), and shoulder abductor strength was measured using a dynamometer during three experimental conditions: (1) no external support (condition-1), (2) pelvic support (condition-2), and (3) pelvic and thoracic supports (condition-3) in an active therapeutic movement device. EMG activities were significantly lower for UT and higher for MD during condition 3 than during condition 1 (p strength was significantly higher during condition 3 than during condition 1 (p isometric shoulder abduction and increasing shoulder abductor strength. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Solidification/stabilization of ASR fly ash using Thiomer material: Optimization of compressive strength and heavy metals leaching.

    Science.gov (United States)

    Baek, Jin Woong; Choi, Angelo Earvin Sy; Park, Hung Suck

    2017-12-01

    Optimization studies of a novel and eco-friendly construction material, Thiomer, was investigated in the solidification/stabilization of automobile shredded residue (ASR) fly ash. A D-optimal mixture design was used to evaluate and optimize maximum compressive strength and heavy metals leaching by varying Thiomer (20-40wt%), ASR fly ash (30-50wt%) and sand (20-40wt%). The analysis of variance was utilized to determine the level of significance of each process parameters and interactions. The microstructure of the solidified materials was taken from a field emission-scanning electron microscopy and energy dispersive X-ray spectroscopy that confirmed successful Thiomer solidified ASR fly ash due to reduced pores and gaps in comparison with an untreated ASR fly ash. The X-ray diffraction detected the enclosed materials on the ASR fly ash primarily contained sulfur associated crystalline complexes. Results indicated the optimal conditions of 30wt% Thiomer, 30wt% ASR fly ash and 40wt% sand reached a compressive strength of 54.9MPa. For the optimum results in heavy metals leaching, 0.0078mg/LPb, 0.0260mg/L Cr, 0.0007mg/LCd, 0.0020mg/L Cu, 0.1027mg/L Fe, 0.0046mg/L Ni and 0.0920mg/L Zn were leached out, being environmentally safe due to being substantially lower than the Korean standard leaching requirements. The results also showed that Thiomer has superiority over the commonly used Portland cement asa binding material which confirmed its potential usage as an innovative approach to simultaneously synthesize durable concrete and satisfactorily pass strict environmental regulations by heavy metals leaching. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Microstructure Evolution and Flow Stress Model of a 20Mn5 Hollow Steel Ingot during Hot Compression.

    Science.gov (United States)

    Liu, Min; Ma, Qing-Xian; Luo, Jian-Bin

    2018-03-21

    20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft due to its good performance of strength, toughness and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under high temperature were not studied. In this study, the hot compression experiments under temperatures of 850-1200 °C and strain rates of 0.01/s-1/s are conducted using Gleeble thermal and mechanical simulation machine. And the flow stress curves and microstructure after hot compression are obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 hollow steel ingot.

  19. Apparent stress-strain relationships in experimental equipment where magnetorheological fluids operate under compression mode

    International Nuclear Information System (INIS)

    Mazlan, S A; Ekreem, N B; Olabi, A G

    2008-01-01

    This paper presents an experimental investigation of two different magnetorheological (MR) fluids, namely, water-based and hydrocarbon-based MR fluids in compression mode under various applied currents. Finite element method magnetics was used to predict the magnetic field distribution inside the MR fluids generated by a coil. A test rig was constructed where the MR fluid was sandwiched between two flat surfaces. During the compression, the upper surface was moved towards the lower surface in a vertical direction. Stress-strain relationships were obtained for arrangements of equipment where each type of fluid was involved, using compression test equipment. The apparent compressive stress was found to be increased with the increase in magnetic field strength. In addition, the apparent compressive stress of the water-based MR fluid showed a response to the compressive strain of greater magnitude. However, during the compression process, the hydrocarbon-based MR fluid appeared to show a unique behaviour where an abrupt pressure drop was discovered in a region where the apparent compressive stress would be expected to increase steadily. The conclusion is drawn that the apparent compressive stress of MR fluids is influenced strongly by the nature of the carrier fluid and by the magnitude of the applied current

  20. Effects of stacking sequence on impact damage resistance and residual strength for quasi-isotropic laminates

    Science.gov (United States)

    Dost, Ernest F.; Ilcewicz, Larry B.; Avery, William B.; Coxon, Brian R.

    1991-01-01

    Residual strength of an impacted composite laminate is dependent on details of the damage state. Stacking sequence was varied to judge its effect on damage caused by low-velocity impact. This was done for quasi-isotropic layups of a toughened composite material. Experimental observations on changes in the impact damage state and postimpact compressive performance were presented for seven different laminate stacking sequences. The applicability and limitations of analysis compared to experimental results were also discussed. Postimpact compressive behavior was found to be a strong function of the laminate stacking sequence. This relationship was found to depend on thickness, stacking sequence, size, and location of sublaminates that comprise the impact damage state. The postimpact strength for specimens with a relatively symmetric distribution of damage through the laminate thickness was accurately predicted by models that accounted for sublaminate stability and in-plane stress redistribution. An asymmetric distribution of damage in some laminate stacking sequences tended to alter specimen stability. Geometrically nonlinear finite element analysis was used to predict this behavior.

  1. Compressive strength of concrete by partial replacement of cement with metakaolin

    Science.gov (United States)

    Ganesh, Y. S. V.; Durgaiyya, P.; Shivanarayana, Ch.; Prasad, D. S. V.

    2017-07-01

    Metakaolin or calcined kaolin, other type of pozzolan, produced by calcination has the capability to replace silica fume as an alternative material. Supplementary cementitious materials have been widely used all over the world in concrete due to their economic and environmental benefits; hence, they have drawn much attention in recent years. Mineral admixtures such as fly ash, rice husk ash, silica fume etc. are more commonly used SCMs. They help in obtaining both higher performance and economy. Metakaolin is also one of such non - conventional material, which can be utilized beneficially in the construction industry. This paper presents the results of an experimental investigations carried out to find the suitability of metakaolin in production of concrete. In the present work, the results of a study carried out to investigate the effects of Metakaolin on compressive strength of concrete are presented. The referral concrete M30 was made using 43 grade OPC and the other mixes were prepared by replacing part of OPC with Metakaolin. The replacement levels were 5%, 10%, 15% and 20%(by weight) for Metakaolin. The various results, which indicate the effect of replacement of cement by metakalion on concrete, are presented in this paper to draw useful conclusions.

  2. Influence of the mechanical properties of lime mortar on the strength of brick masonry

    OpenAIRE

    PAVIA, SARA

    2013-01-01

    PUBLISHED This paper aims at improving the quality of lime mortar masonry by understanding the mechanics of mortars and masonry and their interaction. It investigates how the mortar?s compressive and flexural strengths impact the compressive and bond strength of clay brick masonry bound with calcium lime (CL) and natural hydraulic lime (NHL) mortars. It concludes that the strength of the bond has a greater impact on the compressive strength of masonry than the mortar?s st...

  3. A practical method for estimating maximum shear modulus of cemented sands using unconfined compressive strength

    Science.gov (United States)

    Choo, Hyunwook; Nam, Hongyeop; Lee, Woojin

    2017-12-01

    The composition of naturally cemented deposits is very complicated; thus, estimating the maximum shear modulus (Gmax, or shear modulus at very small strains) of cemented sands using the previous empirical formulas is very difficult. The purpose of this experimental investigation is to evaluate the effects of particle size and cement type on the Gmax and unconfined compressive strength (qucs) of cemented sands, with the ultimate goal of estimating Gmax of cemented sands using qucs. Two sands were artificially cemented using Portland cement or gypsum under varying cement contents (2%-9%) and relative densities (30%-80%). Unconfined compression tests and bender element tests were performed, and the results from previous studies of two cemented sands were incorporated in this study. The results of this study demonstrate that the effect of particle size on the qucs and Gmax of four cemented sands is insignificant, and the variation of qucs and Gmax can be captured by the ratio between volume of void and volume of cement. qucs and Gmax of sand cemented with Portland cement are greater than those of sand cemented with gypsum. However, the relationship between qucs and Gmax of the cemented sand is not affected by the void ratio, cement type and cement content, revealing that Gmax of the complex naturally cemented soils with unknown in-situ void ratio, cement type and cement content can be estimated using qucs.

  4. Comparison of low-strength compression stockings with bandages for the treatment of recalcitrant venous ulcers.

    Science.gov (United States)

    Brizzio, Eugenio; Amsler, Felix; Lun, Bertrand; Blättler, Werner

    2010-02-01

    To compare the proportion and rate of healing, pain, and quality of life of low-strength medical compression stockings (MCS) with traditional bandages applied for the treatment of recalcitrant venous leg ulcers. A single-center, randomized, open-label study was performed with consecutive patients. Sigvaris prototype MCS providing 15 mm Hg-25 mm Hg at the ankle were compared with multi-layer short-stretch bandages. In both groups, pads were placed above incompetent perforating veins in the ulcer area. The initial static pressure between the dressing-covered ulcer and the pad was 29 mm Hg and 49 mm Hg with MCS and bandages, respectively. Dynamic pressure measurements showed no difference. Compression was maintained day and night and changed every week. The primary endpoint was healing within 90 days. Secondary endpoints were healing within 180 days, time to healing, pain (weekly Likert scales), and monthly quality of life (ChronIc Venous Insufficiency Quality of Life [CIVIQ] questionnaire). Of 74 patients screened, 60 fulfilled the selection criteria and 55 completed the study; 28 in the MCS and 27 in the bandage group. Ulcers were recurrent (48%), long lasting (mean, 27 months), and large (mean, 13 cm2). All but one patient had deep venous reflux and/or incompetent perforating veins in addition to trunk varices. Characteristics of patients and ulcers were evenly distributed (exception: more edema in the MCS group; P = .019). Healing within 90 days was observed in 36% with MCS and in 48% with bandages (P = .350). Healing within 180 days was documented in 50% with MCS and in 67% with bandages (P = .210). Time to healing was identical. Pain scored 44 and 46 initially (on a scale in which 100 referred to maximum and 0 to no pain) and decreased within the first week to 20 and 28 in the MCS and bandage groups, respectively (P ulcers only. Our study illustrates the difficulty of bringing large and long-standing venous ulcers to heal. The effect of compression with MCS was

  5. Predicting active school travel: The role of planned behavior and habit strength

    Science.gov (United States)

    2012-01-01

    Background Despite strong support for predictive validity of the theory of planned behavior (TPB) substantial variance in both intention and behavior is unaccounted for by the model’s predictors. The present study tested the extent to which habit strength augments the predictive validity of the TPB in relation to a currently under-researched behavior that has important health implications, namely children’s active school travel. Method Participants (N = 126 children aged 8–9 years; 59 % males) were sampled from five elementary schools in the west of Scotland and completed questionnaire measures of all TPB constructs in relation to walking to school and both walking and car/bus use habit. Over the subsequent week, commuting steps on school journeys were measured objectively using an accelerometer. Hierarchical multiple regressions were used to test the predictive utility of the TPB and habit strength in relation to both intention and subsequent behavior. Results The TPB accounted for 41 % and 10 % of the variance in intention and objectively measured behavior, respectively. Together, walking habit and car/bus habit significantly increased the proportion of explained variance in both intention and behavior by 6 %. Perceived behavioral control and both walking and car/bus habit independently predicted intention. Intention and car/bus habit independently predicted behavior. Conclusions The TPB significantly predicts children’s active school travel. However, habit strength augments the predictive validity of the model. The results indicate that school travel is controlled by both intentional and habitual processes. In practice, interventions could usefully decrease the habitual use of motorized transport for travel to school and increase children’s intention to walk (via increases in perceived behavioral control and walking habit, and decreases in car/bus habit). Further research is needed to identify effective strategies for changing these

  6. Effect of municipal solid waste ash on comprehensive strength ...

    African Journals Online (AJOL)

    The blocks were moulded in a CINVA-Ram machine by replacing 0%, 2%, 5% and 10% of municipal solid waste ash (MSW ash) as a stabilizing agent. The compressive strengths of individual blocks were obtained after curing for 7, 14 and 28 days. The 2%MSW ash replacement gave the highest compressive strength and ...

  7. Insights into the effects of tensile and compressive loadings on human femur bone.

    Science.gov (United States)

    Havaldar, Raviraj; Pilli, S C; Putti, B B

    2014-01-01

    Fragile fractures are most likely manifestations of fatigue damage that develop under repetitive loading conditions. Numerous microcracks disperse throughout the bone with the tensile and compressive loads. In this study, tensile and compressive load tests are performed on specimens of both the genders within 19 to 83 years of age and the failure strength is estimated. Fifty five human femur cortical samples are tested. They are divided into various age groups ranging from 19-83 years. Mechanical tests are performed on an Instron 3366 universal testing machine, according to American Society for Testing and Materials International (ASTM) standards. The results show that stress induced in the bone tissue depends on age and gender. It is observed that both tensile and compression strengths reduces as age advances. Compressive strength is more than tensile strength in both the genders. The compression and tensile strength of human femur cortical bone is estimated for both male and female subjecting in the age group of 19-83 years. The fracture toughness increases till 35 years in male and 30 years in female and reduces there after. Mechanical properties of bone are age and gender dependent.

  8. Compressive properties of silica aerogel at 295, 76, and 20K

    International Nuclear Information System (INIS)

    Arvidson, J.M.; Scull, L.L.

    1986-01-01

    Specimens of silica aerogel were tested in compression at 295, 76, and 20 K in a helium gas environment. The properties reported include Young's modulus, the proportional limit, and yield strength. Compressive stress-versus-strain curves at these temperatures are also given. A test apparatus was developed specifically to determine the compressive properties of low strength materials. To measure specimen strain a concentric, overlapping-cylinder, capacitance extensometer was developed. This frictionless device has the capability to conduct variable temperature tests at any temperature from 1.8 to 295 K. Results from the compression tests indicate that at low temperatures the material is not only stronger, but tougher. During 295-K compression tests, the samples fractured and, in some cases, crumbled. After 76- or 20-K compression tests, the specimens remained intact

  9. Warped Linear Prediction of Physical Model Excitations with Applications in Audio Compression and Instrument Synthesis

    Science.gov (United States)

    Glass, Alexis; Fukudome, Kimitoshi

    2004-12-01

    A sound recording of a plucked string instrument is encoded and resynthesized using two stages of prediction. In the first stage of prediction, a simple physical model of a plucked string is estimated and the instrument excitation is obtained. The second stage of prediction compensates for the simplicity of the model in the first stage by encoding either the instrument excitation or the model error using warped linear prediction. These two methods of compensation are compared with each other, and to the case of single-stage warped linear prediction, adjustments are introduced, and their applications to instrument synthesis and MPEG4's audio compression within the structured audio format are discussed.

  10. Application of a two-dimensional model for predicting the pressure-flow and compression properties during column packing scale-up.

    Science.gov (United States)

    McCue, Justin T; Cecchini, Douglas; Chu, Cathy; Liu, Wei-Han; Spann, Andrew

    2007-03-23

    A two-dimensional model was formulated to describe the pressure-flow behavior of compressible stationary phases for protein chromatography at different temperatures and column scales. The model was based on the assumption of elastic deformation of the solid phase and steady-state Darcy flow. Using a single fitted value for the empirical modulus parameters, the model was applied to describe the pressure-flow behavior of several adsorbents packed using both fluid flow and mechanical compression. Simulations were in agreement with experimental data and accurately predicted the pressure-flow and compression behavior of three adsorbents over a range of column scales and operating temperatures. Use of the described theoretical model potentially improves the accuracy of the column scale-up process, allowing the use of limited laboratory scale data to predict column performance in large scale applications.

  11. A method for predicting the impact velocity of a projectile fired from a compressed air gun facility

    International Nuclear Information System (INIS)

    Attwood, G.J.

    1988-03-01

    This report describes the development and use of a method for calculating the velocity at impact of a projectile fired from a compressed air gun. The method is based on a simple but effective approach which has been incorporated into a computer program. The method was developed principally for use with the Horizontal Impact Facility at AEE Winfrith but has been adapted so that it can be applied to any compressed air gun of a similar design. The method has been verified by comparison of predicted velocities with test data and the program is currently being used in a predictive manner to specify test conditions for the Horizontal Impact Facility at Winfrith. (author)

  12. An acoustic method for predicting relative strengths of cohesive sediment deposits

    Science.gov (United States)

    Reed, A. H.; Sanders, W. M.

    2017-12-01

    Cohesive sediment dynamics are fundamentally determined by sediment mineralogy, organic matter composition, ionic strength of water, and currents. These factors work to bind the cohesive sediments and to determine depositional rates. Once deposited the sediments exhibit a nonlinear response to stress and they develop increases in shear strength. Shear strength is critically important in resuspension, transport, creep, and failure predictions. Typically, shear strength is determined by point measurements, both indirectly from free-fall penetrometers or directly on cores with a shear vane. These values are then used to interpolate over larger areas. However, the remote determination of these properties would provide continuos coverage, yet it has proven difficult with sonar systems. Recently, findings from an acoustic study on cohesive sediments in a laboratory setting suggests that cohesive sediments may be differentiated using parametric acoustics; this method pulses two primary frequencies into the sediment and the resultant difference frequency is used to determine the degree of acoustic nonlinearity within the sediment. In this study, two marine clay species, kaolinite and montmorillonite, and two biopolymers, guar gum and xanthan gum were mixed to make nine different samples. The samples were evaluated in a parametric acoustic measurement tank. From the parametric acoustic measurements, the quadratic nonlinearity coefficient (beta) was determined. beta was correlated with the cation exchange capacity (CEC), an indicator of shear strength. The results indicate that increased acoustic nonlinearity correlates with increased CEC. From this work, laboratory measurements indicate that this correlation may be used evaluate geotechnical properties of cohesive sediments and may provide a means to predict sediment weakness in subaqueous environments.

  13. Compressive Properties and Anti-Erosion Characteristics of Foam Concrete in Road Engineering

    Science.gov (United States)

    Li, Jinzhu; Huang, Hongxiang; Wang, Wenjun; Ding, Yifan

    2018-01-01

    To analyse the compression properties and anti-erosion characteristics of foam concrete, one dimensional compression tests were carried out using ring specimens of foam concrete, and unconfined compression tests were carried out using foam concrete specimens cured in different conditions. The results of one dimensional compression tests show that the compression curve of foam concrete has two critical points and three stages, which has significant difference with ordinary geotechnical materials such as soil. Based on the compression curve the compression modulus of each stage were determined. The results of erosion tests show that sea water has a slight influence on the long-term strength of foam concrete, while the sulphate solution has a significant influence on the long-term strength of foam concrete, which needs to pay more attention.

  14. Monitoring biocalcification potential of Lysinibacillus sp. isolated from alluvial soils for improved compressive strength of concrete.

    Science.gov (United States)

    Vashisht, Rajneesh; Attri, Sampan; Sharma, Deepak; Shukla, Abhilash; Goel, Gunjan

    2018-03-01

    The present study reports the potential of newly isolated calcite precipitating bacteria isolated from alluvial soil to improve the strength and durability of concrete. A total of sixteen samples of alluvial soil and sewage were collected from the different locations of province Solan (India). For isolation, enrichment culture technique was used to enrich calcite precipitating strains in Urea broth. After enrichment, fourteen distinct bacterial strains were obtained on Urea agar. Based on qualitative and quantitative screening for urease activity, five isolates were obtained possessing higher calcite formation and urease activities (38-77 μmhos/cm) as compared with standard strain of Bacillus megaterium MTCC 1684 (77 μmhos/cm). An isolate I13 identified as Lysinibacillus sp. was selected for self healing property in the concrete mix of M20. An improved compressive strength of 1.5 fold was observed in concrete samples amended with Lysinibacillus sp. over the concrete amended with B. megaterium MTCC 1684 after 28 days of curing. The higher calcite precipitation activity was indicated in Lysinibacillus sp. by FE-SEM micrographs and EDX analysis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Correlation development between indentation parameters and uniaxial compressive strength for Colombian sandstones

    International Nuclear Information System (INIS)

    Mateus, Jefferson; Saavedra, Nestor Fernando; Calderon Carrillo, Zuly; Mateus, Darwin

    2007-01-01

    A new way to characterize the perforated formation strength has been implemented using the indentation test. This test can be performed on irregular cuttings mounted in acrylic resins forming a disc. The test consists of applying load on each sample by means of a flat and indenter. A graph of the load applied VS penetration of the indenter is developed, and the modules of the test, denominated indentation modulus (IM) and Critical Transition Force (CTF) are obtained (Ringstad et al., 1998). Based on the success of previous studies we developed correlations between indentation and mechanical properties for some Colombian sandstone. These correlations were obtained using o set of 248 indentation tests and separate compression fasts on parallel sandstone samples from the same depth. This analysis includes Barco Formation, Mirador Formation, and Tambor Formation. For the correlations, IM-UCS and CTF-UCS, the correlation coefficient is 0.81 and 0.70 respectively. The use of the correlations and the indentation test is helpful for in-situ calibration of the geomechanical models since the indentation test can be performed in real time thus reducing costs and time associated with delayed conventional characterization

  16. Influence of cactus mucilage and marine brown algae extract on the compressive strength and durability of concrete

    Directory of Open Access Journals (Sweden)

    Hernández, E. F.

    2016-03-01

    Full Text Available This paper presents the mechanical performance and durability of concrete with water/cement (w/c ratios of 0.30 and 0.60 containing cactus mucilage and brown marine seaweed extract solutions (at 0.5° Brix concentrations. Cylindrical specimens (100 mm x 200 mm were cast and moist-cured for 0 and 28 days. Compressive strength, rapid chloride permeability, and chloride diffusion tests were conducted to evaluate all of the concrete mixes at the ages of 60 and 120 days. In addition, accelerated carbonation tests were carried out on specimens at the age of 180 days by exposure to 23 °C, 60% RH and at 4.4% CO2 for 120 days. The compressive strength results showed that only one concrete mix with admixtures increased in strength compared to the control. Regarding the rapid chloride permeability, chloride diffusion and carbonation, the results indicated that the durability of concretes containing organic additions was enhanced compared to the control.Este trabajo presenta el comportamiento mecánico y de durabilidad de concretos con relaciones agua/cemento de 0.30 y 0.60, conteniendo soluciones de mucílago de nopal y extracto de algas marinas cafés (0.5 °Brix de concentración. Especímenes cilíndricos (100 mm x 200 mm fueron elaborados y curados en húmedo por 0 y 28 días. Se evaluó la resistencia a la compresión, permeabilidad rápida y difusión de cloruros a los 60 y 120 días de edad. Adicionalmente, se realizaron pruebas de carbonatación acelerada en especímenes con 180 días de edad, expuestos a 23 °C, 60% HR y 4.4% de CO2 por 120 días. Los resultados de resistencia a la compresión muestran que únicamente una mezcla de concreto con adición orgánica incrementó su resistencia con respecto al control. Con respecto a la permeabilidad rápida a cloruros, difusión de cloruros y carbonatación, los resultados indican que la durabilidad de los concretos que contenían adiciones orgánicas fue mejorada con respecto al control.

  17. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  18. Low-Complexity Lossless and Near-Lossless Data Compression Technique for Multispectral Imagery

    Science.gov (United States)

    Xie, Hua; Klimesh, Matthew A.

    2009-01-01

    This work extends the lossless data compression technique described in Fast Lossless Compression of Multispectral- Image Data, (NPO-42517) NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26. The original technique was extended to include a near-lossless compression option, allowing substantially smaller compressed file sizes when a small amount of distortion can be tolerated. Near-lossless compression is obtained by including a quantization step prior to encoding of prediction residuals. The original technique uses lossless predictive compression and is designed for use on multispectral imagery. A lossless predictive data compression algorithm compresses a digitized signal one sample at a time as follows: First, a sample value is predicted from previously encoded samples. The difference between the actual sample value and the prediction is called the prediction residual. The prediction residual is encoded into the compressed file. The decompressor can form the same predicted sample and can decode the prediction residual from the compressed file, and so can reconstruct the original sample. A lossless predictive compression algorithm can generally be converted to a near-lossless compression algorithm by quantizing the prediction residuals prior to encoding them. In this case, since the reconstructed sample values will not be identical to the original sample values, the encoder must determine the values that will be reconstructed and use these values for predicting later sample values. The technique described here uses this method, starting with the original technique, to allow near-lossless compression. The extension to allow near-lossless compression adds the ability to achieve much more compression when small amounts of distortion are tolerable, while retaining the low complexity and good overall compression effectiveness of the original algorithm.

  19. Color image lossy compression based on blind evaluation and prediction of noise characteristics

    Science.gov (United States)

    Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Egiazarian, Karen O.; Lepisto, Leena

    2011-03-01

    The paper deals with JPEG adaptive lossy compression of color images formed by digital cameras. Adaptation to noise characteristics and blur estimated for each given image is carried out. The dominant factor degrading image quality is determined in a blind manner. Characteristics of this dominant factor are then estimated. Finally, a scaling factor that determines quantization steps for default JPEG table is adaptively set (selected). Within this general framework, two possible strategies are considered. A first one presumes blind estimation for an image after all operations in digital image processing chain just before compressing a given raster image. A second strategy is based on prediction of noise and blur parameters from analysis of RAW image under quite general assumptions concerning characteristics parameters of transformations an image will be subject to at further processing stages. The advantages of both strategies are discussed. The first strategy provides more accurate estimation and larger benefit in image compression ratio (CR) compared to super-high quality (SHQ) mode. However, it is more complicated and requires more resources. The second strategy is simpler but less beneficial. The proposed approaches are tested for quite many real life color images acquired by digital cameras and shown to provide more than two time increase of average CR compared to SHQ mode without introducing visible distortions with respect to SHQ compressed images.

  20. Graphite oxidation and structural strength of graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheno; Kim, Eung Soo; Oh, Chang H.

    2009-01-01

    The air-ingress event by a large pipe break is an important accident considered in design of very high-temperature gas-cooled reactors (VHTR). Core-collapse prediction is a main safety issue. Structural failure model are technically required. The objective of this study is to develop structural failure model for the supporting graphite material in the lower plenum of the GT-MHR (gas-turbine-modular high temperature reactor). Graphite support column is important for VHTR structural integrity. Graphite support columns are under the axial load. Critical strength of graphite column is related to slenderness ratio and bulk density. Through compression tests for fresh and oxidized graphite columns we show that compressive strength of IG-110 was 79.46 MPa. And, the buckling strength of IG-110 column was expressed by the empirical formula: σ 0 =σ straight-line - C L/r, σ straight-line =91.31 MPa, C=1.01. The results of uniform and non-uniform oxidation tests show that the strength degradation of oxidized graphite column is expressed in the following non-dimensional form: σ/σ 0 =exp(-kd), k=0.111. Also, from the results of the uniform oxidation test with a complicated-shape column, we found out that the above non-dimensional equation obtained from the uniform oxidation test is applicable to a uniform oxidation case with a complicated-shape column. (author)

  1. A study of the properties of tablets made of directly compressible maltose.

    Science.gov (United States)

    Muzíková, J; Balhárková, J

    2008-01-01

    The paper deals with the study of the strength and disintegration time of tablets made of directly compressible maltose Advantose 100. It studies the differences of the effects of two types of lubricants, magnesium stearate and sodium stearylfumarate, on the above-mentioned properties, and it also tests the mixtures of the substance with microcrystalline cellulose Vivapur 102 in a ratio of 1:1 and with ascorbic and acetylsalicylic acids. The compacts are obtained by using three compression forces, excepting mixtures with active ingredients, where one compression force is used. In the compression forces of 6 and 8 kN, no statistically significant difference was found in the intervention of the lubricants into the strength of the compacts made of Advantose 100, only in the compression force of 10 kN Pruv decreased the strength more than stearate. The mixture of Advantose 100 and Vivapur 102 yielded the strongest tablets, an addition of Pruv to it decreased the strength of compacts more than stearate. The periods of disintegration time of Advantose compacts as well as those of the mixture of dry binders were longer with an addition of Pruv. The compacts with acetylsalicylic acid possessed higher strength and a longer period of disintegration than those with ascorbic acid. There was no statistically significant difference within the type of the lubricant employed, both in the case of Advantose 100 and its mixture with Vivapur 102, between the values of strength of the compacts with acetylsalicylic acid.

  2. Uniaxial compression tests on diesel contaminated frozen silty soil specimens

    International Nuclear Information System (INIS)

    Chenaf, D.; Stampli, N.; Bathurst, R.; Chapuis, R.P.

    1999-01-01

    Results of a uniaxial, unconfined compression test on artificial diesel-contaminated and uncontaminated frozen silty soils are discussed. The testing program involved 59 specimens. The results show that for the same fluid content, diesel contamination reduced the strength of the frozen specimens by increasing the unfrozen water content. For example, in specimens containing 50 per cent diesel oil of the fluid content by weight the maximum strength was reduced by 95 per cent compared to the strength of an uncontaminated specimen. Diesel contamination was also shown to contribute to the slippage between soil particles by acting as a lubricant, thus accelerating the loss of compressive strength.13 refs., 18 figs

  3. Novel prediction- and subblock-based algorithm for fractal image compression

    International Nuclear Information System (INIS)

    Chung, K.-L.; Hsu, C.-H.

    2006-01-01

    Fractal encoding is the most consuming part in fractal image compression. In this paper, a novel two-phase prediction- and subblock-based fractal encoding algorithm is presented. Initially the original gray image is partitioned into a set of variable-size blocks according to the S-tree- and interpolation-based decomposition principle. In the first phase, each current block of variable-size range block tries to find the best matched domain block based on the proposed prediction-based search strategy which utilizes the relevant neighboring variable-size domain blocks. The first phase leads to a significant computation-saving effect. If the domain block found within the predicted search space is unacceptable, in the second phase, a subblock strategy is employed to partition the current variable-size range block into smaller blocks to improve the image quality. Experimental results show that our proposed prediction- and subblock-based fractal encoding algorithm outperforms the conventional full search algorithm and the recently published spatial-correlation-based algorithm by Truong et al. in terms of encoding time and image quality. In addition, the performance comparison among our proposed algorithm and the other two algorithms, the no search-based algorithm and the quadtree-based algorithm, are also investigated

  4. Ordinary Cannulated Compression Screws or Headless Cannulated Compression Screws? A Synthetic Bone Biomechanical Research in the Internal Fixation of Vertical Femoral Neck Fracture

    Directory of Open Access Journals (Sweden)

    Baokun Zhang

    2018-01-01

    Full Text Available Purpose. The purpose of this study is to verify whether the headless cannulated compression screw (HCCS has higher biomechanical stability than the ordinary cannulated compression screw (OCCS in the treatment of vertical femoral neck fractures. Materials and Methods. 30 synthetic femur models were equally divided into 2 groups, with 50°, 60°, and 70° Pauwels angle of femoral neck fracture, under 3D printed guiding plates and C-arm fluoroscopic guidance. The femur molds were fixed with three parallel OCCSs as OCCS group and three parallel HCCSs as HCCS group. All specimens were tested for compressive strength and maximum load to failure with a loading rate of 2 mm/min. Results. The result showed that there was no significant difference with the compressive strength in the Pauwels angle of 50° and 60°. However, we observed that the maximum load to failure with the Pauwels angle of 50°, 60°, and 70° and the compressive strength with 70° of HCCS group showed better performance than the OCCS group. Conclusion. HCCS performs with better biomechanical stability than OCCS in the treatment of vertical femoral neck fracture, especially with the Pauwels angle of 70°.

  5. Deformation behaviors of three-dimensional graphene honeycombs under out-of-plane compression: Atomistic simulations and predictive modeling

    Science.gov (United States)

    Meng, Fanchao; Chen, Cheng; Hu, Dianyin; Song, Jun

    2017-12-01

    Combining atomistic simulations and continuum modeling, a comprehensive study of the out-of-plane compressive deformation behaviors of equilateral three-dimensional (3D) graphene honeycombs was performed. It was demonstrated that under out-of-plane compression, the honeycomb exhibits two critical deformation events, i.e., elastic mechanical instability (including elastic buckling and structural transformation) and inelastic structural collapse. The above events were shown to be strongly dependent on the honeycomb cell size and affected by the local atomic bonding at the cell junction. By treating the 3D graphene honeycomb as a continuum cellular solid, and accounting for the structural heterogeneity and constraint at the junction, a set of analytical models were developed to accurately predict the threshold stresses corresponding to the onset of those deformation events. The present study elucidates key structure-property relationships of 3D graphene honeycombs under out-of-plane compression, and provides a comprehensive theoretical framework to predictively analyze their deformation responses, and more generally, offers critical new knowledge for the rational bottom-up design of 3D networks of two-dimensional nanomaterials.

  6. Comparative experimental study of dynamic compressive strength of mortar with glass and basalt fibres

    Directory of Open Access Journals (Sweden)

    Kruszka Leopold

    2015-01-01

    Full Text Available Specimen reinforced with glass and basalt fibers were prepared using Standard Portland cement (CEM I, 52.5 R as prescribed by EN 197-1 and standard sand, in accordance with EN 196-1. From this cementitious mixture, a reference cement mortar without fibers was first prepared. Compressive strength, modulus of elasticity, and mod of fracture were determined for all specimens. Static and dynamic properties were investigated using Instron testing machine and split Hopkinson pressure bar, respectively. Content of the glass fibers in the mortar does not influence the fracture stress at static loading conditions in a clearly observed way. Moreover at dynamic range 5% content of the fiber results in a significant drop of fracture stress. Analysis of the basalt fibers influence on the fracture stress shows that optimal content of this reinforcement is equal to 3% for both static and dynamic loading conditions. Further increase of the fiber share gives the opposite effect, i.e. drop of the fracture stress.

  7. Comparative experimental study of dynamic compressive strength of mortar with glass and basalt fibres

    Science.gov (United States)

    Kruszka, Leopold; Moćko, Wojciech; Fenu, Luigi; Cadoni, Ezio

    2015-09-01

    Specimen reinforced with glass and basalt fibers were prepared using Standard Portland cement (CEM I, 52.5 R as prescribed by EN 197-1) and standard sand, in accordance with EN 196-1. From this cementitious mixture, a reference cement mortar without fibers was first prepared. Compressive strength, modulus of elasticity, and mod of fracture were determined for all specimens. Static and dynamic properties were investigated using Instron testing machine and split Hopkinson pressure bar, respectively. Content of the glass fibers in the mortar does not influence the fracture stress at static loading conditions in a clearly observed way. Moreover at dynamic range 5% content of the fiber results in a significant drop of fracture stress. Analysis of the basalt fibers influence on the fracture stress shows that optimal content of this reinforcement is equal to 3% for both static and dynamic loading conditions. Further increase of the fiber share gives the opposite effect, i.e. drop of the fracture stress.

  8. Neutron irradiation of sapphire for compressive strengthening. II. Physical properties changes

    Energy Technology Data Exchange (ETDEWEB)

    Regan, Thomas M. E-mail: thomas_regan@uml.edu; Harris, Daniel C. E-mail: harrisdc@navair.navy.mil; Blodgett, David W.; Baldwin, Kevin C.; Miragliotta, Joseph A.; Thomas, Michael E.; Linevsky, Milton J.; Giles, John W.; Kennedy, Thomas A.; Fatemi, Mohammad; Black, David R.; Lagerloef, K. Peter D

    2002-01-01

    Irradiation of sapphire with fast neutrons (0.8-10 MeV) at a fluence of 10{sup 22}/m{sup 2} increased the c-axis compressive strength and the c-plane biaxial flexure strength at 600 deg. C by a factor of {approx}2.5. Both effects are attributed to inhibition of r-plane twin propagation by damage clusters resulting from neutron impact. The a-plane biaxial flexure strength and four-point flexure strength in the c- and m-directions decreased by 10-23% at 600 deg. C after neutron irradiation. Neutron irradiation had little or no effect on thermal conductivity, infrared absorption, elastic constants, hardness, and fracture toughness. A featureless electron paramagnetic resonance signal at g=2.02 was correlated with the strength increase: This signal grew in amplitude with increasing neutron irradiation, which also increased the compressive strength. Annealing conditions that reversed the strengthening also annihilated the g=2.02 signal. A signal associated with a paramagnetic center containing two Al nuclei was not correlated with strength. Ultraviolet and visible color centers also were not correlated with strength in that they could be removed by annealing at temperatures that were too low to reverse the compressive strengthening effect of neutron irradiation.

  9. Hip external rotation strength predicts hop performance after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Kline, Paul W; Burnham, Jeremy; Yonz, Michael; Johnson, Darren; Ireland, Mary Lloyd; Noehren, Brian

    2018-04-01

    Quadriceps strength and single-leg hop performance are commonly evaluated prior to return to sport after anterior cruciate ligament reconstruction (ACLR). However, few studies have documented potential hip strength deficits after ACLR, or ascertained the relative contribution of quadriceps and hip strength to hop performance. Patients cleared for return to sports drills after ACLR were compared to a control group. Participants' peak isometric knee extension, hip abduction, hip extension, and hip external rotation (HER) strength were measured. Participants also performed single-leg hops, timed hops, triple hops, and crossover hops. Between-limb comparisons for the ACLR to control limb and the non-operative limb were made using independent two-sample and paired sample t tests. Pearson's correlations and stepwise multiple linear regression were used to determine the relationships and predictive ability of limb strength, graft type, sex, and limb dominance to hop performance. Sixty-five subjects, 20 ACLR [11F, age 22.8 (15-45) years, 8.3 ± 2 months post-op, mass 70.47 ± 12.95 kg, height 1.71 ± 0.08 m, Tegner 5.5 (3-9)] and 45 controls [22F, age 25.8 (15-45) years, mass 74.0 ± 15.2 kg, height 1.74 ± 0.1 m, Tegner 6 (3-7)], were tested. Knee extension (4.4 ± 1.5 vs 5.4 ± 1.8 N/kg, p = 0.02), HER (1.4 ± 0.4 vs 1.7 ± 0.5 N/kg, p = 0.04), single-leg hop (146 ± 37 vs 182 ± 38% limb length, p hop (417 ± 106 vs 519 ± 102% limb length, p hop (3.3 ± 2.0 vs 2.3 ± 0.6 s, p hop (364 ± 107 vs 446 ± 123% limb length, p = 0.01) were significantly impaired in the operative versus control subject limbs. Similar deficits existed between the operative and non-operative limbs. Knee extension and HER strength were significantly correlated with each of the hop tests, but only HER significantly predicted hop performance. After ACLR, patients have persistent HER strength, knee extension strength, and hop test deficits in the

  10. Empirical Strengths of Concrete Roof Slabs After 34 Years Service ...

    African Journals Online (AJOL)

    The results were compared with those from standard compressive strength machine in the laboratory, and subjected to statistical analysis. The final results showed that the lowest slab compressive strength was 14 N/mm2 below the minimum concrete grade of 25N/mm2; and percentage defective was 29.5% more than the ...

  11. Resistência à compressão do solo-cimento com substituição parcial do cimento Portland por resíduo cerâmico moído Compressive strength of soil-cement with partial replacement of the Portland cement by crushed ceramic waste

    Directory of Open Access Journals (Sweden)

    Rivanildo Dallacort

    2002-12-01

    Full Text Available Neste trabalho, apresenta-se o estudo experimental da resistência à compressão do solo-cimento, com substituição parcial do cimento Portland por resíduo cerâmico moído. Para tanto, foram ensaiados 81 espécimenes cilíndricos desse material à compressão, em que parte do cimento foi substituída por material cerâmico moído. Realizou-se uma programação fatorial, na qual três variáveis foram selecionadas para estudo: o teor de material ligante (cimento + resíduo cerâmico, a umidade do solo e o teor de resíduo cerâmico adicionado. É apresentado um estudo estatístico através de análise de variância da massa específica do material e da resistência a compressão. Tal estudo permitiu concluir-se que substituições de 25 e 57% do teor de cimento por material cerâmico podem produzir blocos de solo-cimento com resistências superiores a 2 MPa, com teor de material ligante de 6 e 8%, respectivamente.In this paper, an experimental study of the compressive strength of soil-cement with partial replacement of the Portland cement by crushed ceramic waste is presented and discussed. For this, eighty-one cylindrical specimens of soil-cement were tested, where part of cement percentage was replaced by crushed ceramic waste. The experiment was conducted in factorial design and three variables were selected and studied: the binding material content (cement + ceramic waste, soil moisture content and the ratio of ceramic waste. A statistical study using variance analysis of the specific mass and compressive strength of the material is presented. This study concluded that replacement ratios of 25 and 57% of the Portland cement by crushed ceramic material can be used to fabricate soil-cement bricks with strength higher than 2 MPa, for a binding material content of 6 and 8% respectively.

  12. Effect of process variables on the calorific value and compressive strength of the briquettes made from high moisture Empty Fruit Bunches (EFB)

    Science.gov (United States)

    Helwani, Z.; Fatra, W.; Arifin, L.; Othman, M. R.; Syapsan

    2018-04-01

    In this study, the manual hydraulic press was designed to prepare the briquettes from selected biomass waste. Each biomass was sun-dried and milled into small particle sizes before mixing with crude glycerol that used as a biomass binder. The effects of applied pressure levels of 100, 110, 120 bars, the particle size of 60, 80 and 100 mesh and the binder composition on the density, compressive strength and calorific heating value of the prepared briquettes were investigated using response surface methodology (RSM). Results showed that the briquettes have an average inside diameter, average outside diameter, and height of 12, 38, and 25-30 mm, respectively. The density of the briquettes increased with increasing the applied pressure, was in the range of 623-923 kg/m3. The densest briquettes were obtained at 80 mesh of particle size, 53:47 binder composition ratio and 110 bars of pressurizing. The heating value of the briquette reached up to 28.99 MJ/kg obtained on the particle size of 80 mesh, 53:47 binder composition, and 110 bars and the best compressive strength of 6.991 kg/cm2 obtained at a particle size of 100 mesh, 60:40 binder composition, and 120 bars. Process conditions influence the calorific value significantly.

  13. The effect of tensile and compressive loading on the hierarchical strength of idealized tropocollagen-hydroxyapatite biomaterials as a function of the chemical environment

    International Nuclear Information System (INIS)

    Dubey, Devendra K; Tomar, Vikas

    2009-01-01

    Hard biomaterials such as bone, dentin and nacre have primarily a polypeptide phase (e.g. tropocollagen (TC)) and a mineral phase (e.g. hydroxyapatite (HAP) or aragonite) arranged in a staggered manner. It has been observed that the mechanical behaviour of such materials changes with the chemical environment and the direction of applied loading. In the presented investigation, explicit three-dimensional molecular dynamics (MD) simulations based analyses are performed on idealized TC-HAP composite biomaterial systems to understand the effects of tensile and compressive loadings in three different chemical environments: (1) unsolvated, (2) solvated with water and (3) calcinated and solvated with water. The MD analyses are performed on two interfacial supercells corresponding to the lowest structural level (level n) of TC-HAP interactions and on two other supercells with HAP supercells arranged in a staggered manner (level n+1) in a TC matrix. The supercells at level n+1 are formed by arranging level n interfacial supercells in a staggered manner. Analyses show that at level n, the presence of water molecules results in greater stability of TC molecules and TC-HAP interfaces during mechanical deformation. In addition, water also acts as a lubricant between adjacent TC molecules. Under the application of shear stress dominated loading, water molecules act to strengthen the TC-HAP interfacial strength in a manner similar to the action of glue. An overall effect of the observed mechanisms is that, in a staggered arrangement, tensile strength increases in the presence of water and calcinated water environments. On the other hand, corresponding compressive strength decreases under similar circumstances. Fundamentally, supercells with primarily normal load transfer at the TC-HAP interfaces are stronger in tensile shear loading. On the other hand, supercells with primarily tangential or shear load transfer at the TC-HAP interfaces are stronger in compressive shear loading. A

  14. Characterization of the constitutive behavior of municipal solid waste considering particle compressibility.

    Science.gov (United States)

    Lü, Xilin; Zhai, Xinle; Huang, Maosong

    2017-11-01

    This paper presents a characterization of the mechanical behavior of municipal solid waste (MSW) under consolidated drained and undrained triaxial conditions. The constitutive model was established based on a deviatoric hardening plasticity model. A power form function and incremental hyperbolic form function were proposed to describe the shear strength and the hardening role of MSW. The stress ratio that corresponds to the zero dilatancy was not fixed but depended on mean stress, making the Rowe's rule be able to describe the stress-dilatancy of MSW. A pore water pressure reduction coefficient, which attributed to the compressibility of a particle and the solid matrix, was introduced to the effective stress formulation to modify the Terzaghi's principle. The effects of particle compressibility and solid matrix compressibility on the undrained behavior of MSW were analyzed by parametric analysis, and the changing characteristic of stress-path, stress-strain, and pore-water pressure were obtained. The applicability of the proposed model on MSW under drained and undrained conditions was verified by model predictions of three triaxial tests. The comparison between model simulations and experiments indicated that the proposed model can capture the observed different characteristics of MSW response from normal soil, such as nonlinear shear strength, pressure dependent stress dilatancy, and the reduced value of pore water pressure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Compressibility of tableting materials and properties of tablets with glyceryl behenate

    Directory of Open Access Journals (Sweden)

    Mužíková Jitka

    2015-03-01

    Full Text Available The paper studies the compressibility of directly compressible tableting materials with dry binders, spray-dried lactose and microcrystalline cellulose, and glyceryl dibehenate at various concentrations. Compressibility was evaluated by means of the energy profile of compression and tensile strength of tablets. Release rate of the active ingredient, salicylic acid, from the tablets was also examined. In the case of microcrystalline cellulose, a higher concentration of glyceryl dibehenate increased the strength of tablets, while this did not occur in the case of spray-dried lactose. Increasing concentration of glyceryl dibehenate prolonged the release of salicylic acid; however, no statistically significant difference was found compared to the type of the dry binder used

  16. Degree of Left Renal Vein Compression Predicts Nutcracker Syndrome

    Directory of Open Access Journals (Sweden)

    Patrick T. Hangge

    2018-05-01

    Full Text Available Nutcracker syndrome (NS refers to symptomatic compression of the left renal vein (LRV between the abdominal aorta and superior mesenteric artery with potential symptoms including hematuria, proteinuria, left flank pain, and renal venous hypertension. No consensus diagnostic criteria exist to guide endovascular treatment. We aimed to evaluate the specificity of LRV compression to NS symptoms through a retrospective study including 33 NS and 103 control patients. The size of the patent lumen at point of compression and normal portions of the LRV were measured for all patients. Multiple logistic regression analyses (MLR assessing impact of compression, body mass index (BMI, age, and gender on the likelihood of each symptom with NS were obtained. NS patients presented most commonly with abdominal pain (72.7%, followed by hematuria (57.6%, proteinuria (39.4%, and left flank pain (30.3%. These symptoms were more commonly seen than in the control group at 10.6, 11.7, 6.8, and 1.9%, respectively. The degree of LRV compression for NS was 74.5% and 25.2% for controls (p < 0.0001. Higher compression led to more hematuria (p < 0.0013, abdominal pain (p < 0.006, and more proteinuria (p < 0.002. Furthermore, the average BMI of NS patients was 21.4 and 27.2 for controls (p < 0.001 and a low BMI led to more abdominal pain (p < 0.005. These results demonstrate a strong correlation between the degree of LRV compression on imaging in diagnosing NS.

  17. In vitro/in silico investigation of failure criteria to predict flexural strength of composite resins.

    Science.gov (United States)

    Yamaguchi, Satoshi; Mehdawi, Idris Mohamed; Sakai, Takahiko; Abe, Tomohiro; Inoue, Sayuri; Imazato, Satoshi

    2018-01-30

    The aim of this study was to investigate a failure criterion to predict flexural strengths of composite resins (CR) by three-dimensional finite element analysis (3D-FEA). Models of flexural strength for test specimens of CR and rods comprising a three-point loading were designed. Calculation of Young's moduli and Poisson's ratios of CR were conducted using a modified McGee-McCullough model. Using the experimental CR, flexural strengths were measured by three-point bending tests with crosshead speed 1.0 mm/min and compared with the values determined by in silico analysis. The flexural strengths of experimental CR calculated using the maximum principal strain significantly correlated with those obtained in silico amongst the four types of failure criteria applied. The in silico analytical model established in this study was found to be effective to predict the flexural strengths of CR incorporating various silica filler contents by maximum principal strain.

  18. Study on compressive strength of self compacting mortar cubes under normal & electric oven curing methods

    Science.gov (United States)

    Prasanna Venkatesh, G. J.; Vivek, S. S.; Dhinakaran, G.

    2017-07-01

    In the majority of civil engineering applications, the basic building blocks were the masonry units. Those masonry units were developed as a monolithic structure by plastering process with the help of binding agents namely mud, lime, cement and their combinations. In recent advancements, the mortar study plays an important role in crack repairs, structural rehabilitation, retrofitting, pointing and plastering operations. The rheology of mortar includes flowable, passing and filling properties which were analogous with the behaviour of self compacting concrete. In self compacting (SC) mortar cubes, the cement was replaced by mineral admixtures namely silica fume (SF) from 5% to 20% (with an increment of 5%), metakaolin (MK) from 10% to 30% (with an increment of 10%) and ground granulated blast furnace slag (GGBS) from 25% to 75% (with an increment of 25%). The ratio between cement and fine aggregate was kept constant as 1: 2 for all normal and self compacting mortar mixes. The accelerated curing namely electric oven curing with the differential temperature of 128°C for the period of 4 hours was adopted. It was found that the compressive strength obtained from the normal and electric oven method of curing was higher for self compacting mortar cubes than normal mortar cube. The cement replacement by 15% SF, 20% MK and 25%GGBS obtained higher strength under both curing conditions.

  19. strength properties of shea-butter nuts under compressive loading

    African Journals Online (AJOL)

    NIJOTECH

    Compression tests were performed on heat-treated Shea-butter nuts to study the effects of ... the only source of vegetable oil. It was also .... the longitudinal axis, while in the lateral loading position ... Multiple Range Test (DMRT) was used to.

  20. Predicting the tensile strength of A UD basalt/ epoxy composite used for the confinement of concrete structures

    Science.gov (United States)

    Ciniņa, I.; Zīle, O.; Andersons, J.

    2013-01-01

    The principal aim of the present research was to predict the strength of UD basalt fiber/epoxy matrix composites in tension along the reinforcement direction. Tension tests on single basalt fibers were performed to determine the functional form of their strength distribution and to evaluate the parameters of the distribution. Also, microbond tests were carried out to assess the interfacial shear strength of the fibers and polymer matrix. UD composite specimens were produced and tested for the longitudinal tensile strength. The predicted strength of the composite was found to exceed the experimental values by ca. 20%, which can be explained by imperfections in the fiber alignment, impregnation, and adhesion in the composite specimens.

  1. A comparative evaluation of compressive strength of Portland cement with zinc oxide eugenol and Polymer-reinforced cement: An in vitro analysis

    OpenAIRE

    S Prakasam; Prakasam Bharadwaj; S C Loganathan; B Krishna Prasanth

    2014-01-01

    Objective: The purpose of this study is to evaluate the ultimate compressive strength of 50% and 25% Portland cement mixed with Polymer-reinforced zinc oxide eugenol and zinc oxide eugenol cement after 1 hour, 24 hours, and 7 days. Materials and Methods: One hundred and eighty samples were selected. The samples were made cylindrical of size 6 × 8 mm and were divided into six groups as follows with each group consisting of 10 samples. Group 1: Polymer-reinforced zinc oxide eugenol with...

  2. THE EFFICACY OF ANGLE-MATCHED ISOKINETIC KNEE FLEXOR AND EXTENSOR STRENGTH PARAMETERS IN PREDICTING AGILITY TEST PERFORMANCE.

    Science.gov (United States)

    Greig, Matt; Naylor, James

    2017-10-01

    Agility is a fundamental performance element in many sports, but poses a high risk of injury. Hierarchical modelling has shown that eccentric hamstring strength is the primary determinant of agility performance. The purpose of this study was to investigate the relationship between knee flexor and extensor strength parameters and a battery of agility tests. Controlled laboratory study. Nineteen recreational intermittent games players completed an agility battery and isokinetic testing of the eccentric knee flexors (eccH) and concentric knee extensors (conQ) at 60, 180 and 300°·s -1 . Peak torque and the angle at which peak torque occurred were calculated for eccH and conQ at each speed. Dynamic control ratios (eccH:conQ) and fast:slow ratios (300:60) were calculated using peak torque values, and again using angle-matched data, for eccH and conQ. The agility test battery differentiated linear vs directional changes and prescriptive vs reactive tasks. Linear regression showed that eccH parameters were generally a better predictor of agility performance than conQ parameters. Stepwise regression showed that only angle-matched strength ratios contributed to the prediction of each agility test. Trdaitionally calculated strength ratios using peak torque values failed to predict performance. Angle-matched strength parameters were able to account for 80% of the variation in T-test performance, 70% of deceleration distance, 55% of 10m sprint performance, and 44% of reactive change of direction speed. Traditionally calculated strength ratios failed to predict agility performance, whereas angle-matched strength ratios had better predictive ability and featured in a predictive stepwise model for each agility task. 2c.

  3. Impact damage and residual strength analysis of composite panels with bonded stiffeners. [for primary aircraft structures

    Science.gov (United States)

    Madan, Ram C.; Shuart, Mark J.

    1990-01-01

    Blade-stiffened, compression-loaded cover panels were designed, manufactured, analyzed, and tested. All panels were fabricated from IM6/1808I interleafed graphite-epoxy. An orthotropic blade stiffener and an orthotropic skin were selected to satisfy the design requirements for an advanced aircraft configuration. All specimens were impact damaged prior to testing. Experimental results were obtained for three- and five-stiffener panels. Analytical results described interlaminar forces caused by impact and predicted specimen residual strength. The analytical results compared reasonably with the experimental results for residual strength of the specimens.

  4. Experimental Study and Shear Strength Prediction for Reactive Powder Concrete Beams

    Directory of Open Access Journals (Sweden)

    Maha M.S. Ridha

    2018-06-01

    Full Text Available Eighteen reactive powder concrete (RPC beams subjected to monotonic loading were tested to quantify the effect of a novel cementitious matrix materials on the shear behavior of longitudinally reinforced RPC beams without web reinforcement. The main test variables were the ratio of the shear span-to- effective depth (a/d, the ratio of the longitudinal reinforcement (ρw, the percentage of steel fibers volume fractions (Vf and the percentage of silica fume powder (SF. A massive experimental program was implemented with monitoring the concrete strain, the deflection and the cracking width and pattern for each RPC beam during the test at all the stages of the loading until failure. The findings of this paper showed that the addition of micro steel fibers (Lf/Df = 13/0.2 into the RPC mixture did not dramatically influence the initial diagonal cracking load whereas it improved the ultimate load capacity, ductility and absorbed energy. The shear design equations proposed by Ashour et al. and Bunni for high strength fiber reinforced concrete (HSFRC beams have been modified in this paper to predict the shear strength of slender RPC beams without web reinforcement and with a/d ≥ 2.5. The predictions of the modified equations are compared with Equations of Shine et al., Kwak et al. and Khuntia et al. Both of the modified equations in this paper gave satisfied predictions for the shear strength of the tested RPC beams with COV of 7.9% and 10%. Keywords: Beams, Ductility, Crack width, Absorbed energy, Reactive powder concrete, Steel fibers

  5. Compressive Strength and Physical Properties Behavior of Cement Mortars with addition of Cement Klin Dust

    Directory of Open Access Journals (Sweden)

    Auday A Mehatlaf

    2017-12-01

    Full Text Available Cement Klin Dust (CKD was the waste of almost cement industry factories, so that in this paper utilization of CKD as filler in cement and/or concrete was the main objective. CKD from the Karbala cement factory had been used and analysis to know the chemical composition of the oxides was done. In this paper cement mortars with different weight percentages of CKD (0,5,10,20,30,40 had been prepared. Physical properties such as density and porosity were done in different age curing (3, 7, 28 day. In addition, mechanical properties included the coefficient of thermal conductivity and compressive strength had also observed with different age (3,7, and 28 for all prepared specimens. From the obtained the experimental results and their discussion, it was clear that the addition (20% of CKD had the good results in cement mortars.  

  6. EXPERIMENTAL TESTS OF VANADIUM STRENGTH MODELS AT HIGH PRESSURES AND STRAIN RATES

    Energy Technology Data Exchange (ETDEWEB)

    Park, H; Barton, N R; Becker, R C; Bernier, J V; Cavallo, R M; Lorenz, K T; Pollaine, S M; Remington, B A; Rudd, R E

    2010-03-02

    Experimental results showing significant reductions from classical in the Rayleigh-Taylor (RT) instability growth rate due to high pressure material strength or effective lattice viscosity in metal foils are presented. On the Omega Laser in the Laboratory for Laser Energetics, University of Rochester, target samples of polycrystalline vanadium are compressed and accelerated quasi-isentropically at {approx}1 Mbar pressures, while maintaining the samples in the solid-state. Comparison of the results with constitutive models for solid state strength under these conditions show that the measured RT growth is substantially lower than predictions using existing models that work well at low pressures and long time scales. High pressure, high strain rate data can be explained by the enhanced strength due to a phonon drag mechanism, creating a high effective lattice viscosity.

  7. Plastic cap evolution law derived from induced transverse isotropy in dilatational triaxial compression.

    Energy Technology Data Exchange (ETDEWEB)

    Macon, David James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brannon, Rebecca Moss [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strack, Otto Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    Mechanical testing of porous materials generates physical data that contain contributions from more than one underlying physical phenomenon. All that is measurable is the "ensemble" hardening modulus. This thesis is concerned with the phenomenon of dilatation in triaxial compression of porous media, which has been modeled very accurately in the literature for monotonic loading using models that predict dilatation under triaxial compression (TXC) by presuming that dilatation causes the cap to move outwards. These existing models, however, predict a counter-intuitive (and never validated) increase in hydrostatic compression strength. This work explores an alternative approach for modeling TXC dilatation based on allowing induced elastic anisotropy (which makes the material both less stiff and less strong in the lateral direction) with no increase in hydrostatic strength. Induced elastic anisotropy is introduced through the use of a distortion operator. This operator is a fourth-order tensor consisting of a combination of the undeformed stiffness and deformed compliance and has the same eigenprojectors as the elastic compliance. In the undeformed state, the distortion operator is equal to the fourth-order identity. Through the use of the distortion operator, an evolved stress tensor is introduced. When the evolved stress tensor is substituted into an isotropic yield function, a new anisotropic yield function results. In the case of the von Mises isotropic yield function (which contains only deviatoric components), it is shown that the distortion operator introduces a dilatational contribution without requiring an increase in hydrostatic strength. In the thesis, an introduction and literature review of the cap function is given. A transversely isotropic compliance is presented, based on a linear combination of natural bases constructed about a transverse-symmetry axis. Using a probabilistic distribution of cracks constructed for the case of transverse isotropy, a

  8. 33 Effects of Sodium Chloride Solutions on Compressive Strength ...

    African Journals Online (AJOL)

    Arc. Usman A. Jalam

    strength increase at 3 and 7 days over control cubes; at 28 days concrete cubes containing 5%. RHA cured in NaCl solutions recorded higher strength loss compared to control cubes. Keywords: ... chloride in mixing water reported it to cause.

  9. The Usability of Noise Level from Rock Cutting for the Prediction of Physico-Mechanical Properties of Rocks

    Science.gov (United States)

    Delibalta, M. S.; Kahraman, S.; Comakli, R.

    2015-11-01

    Because the indirect tests are easier and cheaper than the direct tests, the prediction of rock properties from the indirect testing methods is important especially for the preliminary investigations. In this study, the predictability of the physico-mechanical rock properties from the noise level measured during cutting rock with diamond saw was investigated. Noise measurement test, uniaxial compressive strength (UCS) test, Brazilian tensile strength (BTS) test, point load strength (Is) test, density test, and porosity test were carried out on 54 different rock types in the laboratory. The results were statistically analyzed to derive estimation equations. Strong correlations between the noise level and the mechanical rock properties were found. The relations follow power functions. Increasing rock strength increases the noise level. Density and porosity also correlated strongly with the noise level. The relations follow linear functions. Increasing density increases the noise level while increasing porosity decreases the noise level. The developed equations are valid for the rocks with a compressive strength below 150 MPa. Concluding remark is that the physico-mechanical rock properties can reliably be estimated from the noise level measured during cutting the rock with diamond saw.

  10. Conventional compressive strength parallel to the grain and mechanical resistance of wood against pin penetration and microdrilling established by in-situ semidestructive devices

    Czech Academy of Sciences Publication Activity Database

    Kloiber, Michal; Drdácký, Miloš; Tippner, J.; Hrivnák, J.

    2015-01-01

    Roč. 48, č. 10 (2015), s. 3217-3229 ISSN 1359-5997 R&D Projects: GA MK(CZ) DF11P01OVV001; GA MŠk(CZ) LO1219 Keywords : compressive strength * density * in situ testing * non-destructive testing (NDT) * small size loading jack * wood Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.453, year: 2015 http://link.springer.com/article/10.1617/s11527-014-0392-6

  11. Novel Predictive Model of the Debonding Strength for Masonry Members Retrofitted with FRP

    Directory of Open Access Journals (Sweden)

    Iman Mansouri

    2016-11-01

    Full Text Available Strengthening of masonry members using externally bonded (EB fiber-reinforced polymer (FRP composites has become a famous structural strengthening method over the past decade due to the popular advantages of FRP composites, including their high strength-to-weight ratio and excellent corrosion resistance. In this study, gene expression programming (GEP, as a novel tool, has been used to predict the debonding strength of retrofitted masonry members. The predictions of the new debonding resistance model, as well as several other models, are evaluated by comparing their estimates with experimental results of a large test database. The results indicate that the new model has the best efficiency among the models examined and represents an improvement to other models. The root mean square errors (RMSE of the best empirical Kashyap model in training and test data were, respectively, reduced by 51.7% and 41.3% using the GEP model in estimating debonding strength.

  12. Prediction of Splitting Tensile Strength of Concrete Containing Zeolite and Diatomite by ANN

    Directory of Open Access Journals (Sweden)

    E. Gülbandılar

    2017-01-01

    Full Text Available This study was designed to investigate with two different artificial neural network (ANN prediction model for the behavior of concrete containing zeolite and diatomite. For purpose of constructing this model, 7 different mixes with 63 specimens of the 28, 56 and 90 days splitting tensile strength experimental results of concrete containing zeolite, diatomite, both zeolite and diatomite used in training and testing for ANN systems was gathered from the tests. The data used in the ANN models are arranged in a format of seven input parameters that cover the age of samples, Portland cement, zeolite, diatomite, aggregate, water and hyper plasticizer and an output parameter which is splitting tensile strength of concrete. In the model, the training and testing results have shown that two different ANN systems have strong potential as a feasible tool for predicting 28, 56 and 90 days the splitting tensile strength of concrete containing zeolite and diatomite.

  13. Compressive deformation of liquid phase-sintered porous silicon carbide ceramics

    Directory of Open Access Journals (Sweden)

    Taro Shimonosono

    2014-12-01

    Full Text Available Porous silicon carbide ceramics were fabricated by liquid phase sintering with 1 wt% Al2O3–1 wt% Y2O3 additives during hot-pressing at 1400–1900 °C. The longitudinal strain at compressive fracture increased at a higher porosity and was larger than the lateral strain. The compressive Young's modulus and the strain at fracture depended on the measured direction, and increased with the decreased specific surface area due to the formation of grain boundary. However, the compressive strength and the fracture energy were not sensitive to the measured direction. The compressive strength of a porous SiC compact increased with increasing grain boundary area. According to the theoretical modeling of the strength–grain boundary area relation, it is interpreted that the grain boundary of a porous SiC compact is fractured by shear deformation rather than by compressive deformation.

  14. Network Traffic Prediction Based on Deep Belief Network and Spatiotemporal Compressive Sensing in Wireless Mesh Backbone Networks

    Directory of Open Access Journals (Sweden)

    Laisen Nie

    2018-01-01

    Full Text Available Wireless mesh network is prevalent for providing a decentralized access for users and other intelligent devices. Meanwhile, it can be employed as the infrastructure of the last few miles connectivity for various network applications, for example, Internet of Things (IoT and mobile networks. For a wireless mesh backbone network, it has obtained extensive attention because of its large capacity and low cost. Network traffic prediction is important for network planning and routing configurations that are implemented to improve the quality of service for users. This paper proposes a network traffic prediction method based on a deep learning architecture and the Spatiotemporal Compressive Sensing method. The proposed method first adopts discrete wavelet transform to extract the low-pass component of network traffic that describes the long-range dependence of itself. Then, a prediction model is built by learning a deep architecture based on the deep belief network from the extracted low-pass component. Otherwise, for the remaining high-pass component that expresses the gusty and irregular fluctuations of network traffic, the Spatiotemporal Compressive Sensing method is adopted to predict it. Based on the predictors of two components, we can obtain a predictor of network traffic. From the simulation, the proposed prediction method outperforms three existing methods.

  15. Micro-Mechanical Analysis About Kink Band in Carbon Fiber/Epoxy Composites Under Longitudinal Compression

    Science.gov (United States)

    Zhang, Mi; Guan, Zhidong; Wang, Xiaodong; Du, Shanyi

    2017-10-01

    Kink band is a typical phenomenon for composites under longitudinal compression. In this paper, theoretical analysis and finite element simulation were conducted to analyze kink angle as well as compressive strength of composites. Kink angle was considered to be an important character throughout longitudinal compression process. Three factors including plastic matrix, initial fiber misalignment and rotation due to loading were considered for theoretical analysis. Besides, the relationship between kink angle and fiber volume fraction was improved and optimized by theoretical derivation. In addition, finite element models considering fiber stochastic strength and Drucker-Prager constitutive model for matrix were conducted in ABAQUS to analyze kink band formation process, which corresponded with the experimental results. Through simulation, the loading and failure procedure can be evidently divided into three stages: elastic stage, softening stage, and fiber break stage. It also shows that kink band is a result of fiber misalignment and plastic matrix. Different values of initial fiber misalignment angle, wavelength and fiber volume fraction were considered to explore the effects on compressive strength and kink angle. Results show that compressive strength increases with the decreasing of initial fiber misalignment angle, the decreasing of initial fiber misalignment wavelength and the increasing of fiber volume fraction, while kink angle decreases in these situations. Orthogonal array in statistics was also built to distinguish the effect degree of these factors. It indicates that initial fiber misalignment angle has the largest impact on compressive strength and kink angle.

  16. Two divergent paths: compression vs. non-compression in deep venous thrombosis and post thrombotic syndrome

    Directory of Open Access Journals (Sweden)

    Eduardo Simões Da Matta

    Full Text Available Abstract Use of compression therapy to reduce the incidence of postthrombotic syndrome among patients with deep venous thrombosis is a controversial subject and there is no consensus on use of elastic versus inelastic compression, or on the levels and duration of compression. Inelastic devices with a higher static stiffness index, combine relatively small and comfortable pressure at rest with pressure while standing strong enough to restore the “valve mechanism” generated by plantar flexion and dorsiflexion of the foot. Since the static stiffness index is dependent on the rigidity of the compression system and the muscle strength within the bandaged area, improvement of muscle mass with muscle-strengthening programs and endurance training should be encouraged. Therefore, in the acute phase of deep venous thrombosis events, anticoagulation combined with inelastic compression therapy can reduce the extension of the thrombus. Notwithstanding, prospective studies evaluating the effectiveness of inelastic therapy in deep venous thrombosis and post-thrombotic syndrome are needed.

  17. A compression and shear loading test of concrete filled steel bearing wall

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Sekimoto, Hisashi; Fukihara, Masaaki; Nakanishi, Kazuo; Hara, Kiyoshi.

    1991-01-01

    Concrete-filled steel bearing walls called SC structure which are the composite structure of concrete and steel plates have larger load-carrying capacity and higher ductility as compared with conventional RC structures, and their construction method enables the rationalization of construction procedures at sites and the shortening of construction period. Accordingly, the SC structures have become to be applied to the inner concrete structures of PWR nuclear power plants, and subsequently, it is planned to apply them to the auxiliary buildings of nuclear power plants. The purpose of this study is to establish a rational design method for the SC structures which can be applied to the auxiliary buildings of nuclear power plants. In this study, the buckling strength of surface plates and the ultimate strength of the SC structure were evaluated with the results of the compression and shear tests which have been carried out. The outline of the study and the tests, the results of the compression test and the shear test and their evaluation are reported. Stud bolts were effective for preventing the buckling of surface plates. The occurrence of buckling can be predicted analytically. (K.I.)

  18. Study of the stress-strain state of compressed concrete elements with composite reinforcement

    Directory of Open Access Journals (Sweden)

    Bondarenko Yurii

    2017-01-01

    Full Text Available The efficiency analysis of the application of glass composite reinforcement in compressed concrete elements as a load-carrying component has been performed. The results of experimental studies of the deformation-strength characteristics of this reinforcement on compression and compressed concrete cylinders reinforced by this reinforcement are presented. The results of tests and mechanisms of sample destruction have been analyzed. The numerical analysis of the stress-strain state has been performed for axial compression of concrete elements with glasscomposite reinforcement. The influence of the reinforcement percentage on the stressed state of a concrete compressed element with the noted reinforcement is estimated. On the basis of the obtained results, it is established that the glass-composite reinforcement has positive effect on the strength of the compressed concrete elements. That is, when calculating the load-bearing capacity of such structures, the function of composite reinforcement on compression should not be neglected.

  19. Springback Prediction and Compensation for a High Strength Steel Side Impact Beam

    International Nuclear Information System (INIS)

    Dutton, Trevor; Edwards, Richard; Blowey, Andrew

    2005-01-01

    Prediction of formability for sheet metal pressings has advanced to a high state of confidence in recent years. The major challenge is now to predict springback and, moreover, to assist in the design of tooling to correctly compensate for springback. This is particularly the case for materials now being routinely considered for automotive production, such as aluminium and ultra high strength steels, which are prone to greater degrees of springback than traditional mild steels. This paper presents a case study based on the tool design for an ultra high strength steel side impact beam. The forming and springback simulations, carried out using eta/DYNAFORM (based on the LS-DYNA solver), are reported and compared to measurements from the prototype panels. The analysis parameters used in the simulation are presented, and the sensitivity of the results to variation in physical properties is also reviewed. The process of compensating the tools based on the analysis prediction is described; finally, an automated springback compensation method is also applied and the results compared with the final tool design

  20. An Applied Method for Predicting the Load-Carrying Capacity in Compression of Thin-Wall Composite Structures with Impact Damage

    Science.gov (United States)

    Mitrofanov, O.; Pavelko, I.; Varickis, S.; Vagele, A.

    2018-03-01

    The necessity for considering both strength criteria and postbuckling effects in calculating the load-carrying capacity in compression of thin-wall composite structures with impact damage is substantiated. An original applied method ensuring solution of these problems with an accuracy sufficient for practical design tasks is developed. The main advantage of the method is its applicability in terms of computing resources and the set of initial data required. The results of application of the method to solution of the problem of compression of fragments of thin-wall honeycomb panel damaged by impacts of various energies are presented. After a comparison of calculation results with experimental data, a working algorithm for calculating the reduction in the load-carrying capacity of a composite object with impact damage is adopted.