Shock wave compression behavior of aluminum foam
Institute of Scientific and Technical Information of China (English)
程和法; 黄笑梅; 薛国宪; 韩福生
2003-01-01
The shock wave compression behavior of the open cell aluminum foam with relative density of 0. 396 was studied through planar impact experiments. Using polyvinylidene fluoride(PVDF) piezoelectric gauge technique, the stress histories and propagation velocities of shock wave in the aluminum foam were measured and analyzed. The results show that the amplitude of shock wave attenuates rapidly with increasing the propagation distance in the aluminum foam, and an exponential equation of the normalized peak stress vs propagation distance of shock wave is established, the attenuation factor in the equation is 0. 286. Furthermore, the Hugoniot relation, νs = 516.85+ 1.27νp,for the aluminum foam is determined by empirical fit to the experimental Hugoniot data.
Shock wave compression of condensed matter a primer
Forbes, Jerry W
2012-01-01
This book introduces the core concepts of the shock wave physics of condensed matter, taking a continuum mechanics approach to examine liquids and isotropic solids. The text primarily focuses on one-dimensional uniaxial compression in order to show the key features of condensed matter’s response to shock wave loading. The first four chapters are specifically designed to quickly familiarize physical scientists and engineers with how shock waves interact with other shock waves or material boundaries, as well as to allow readers to better understand shock wave literature, use basic data analysis techniques, and design simple 1-D shock wave experiments. This is achieved by first presenting the steady one-dimensional strain conservation laws using shock wave impedance matching, which insures conservation of mass, momentum and energy. Here, the initial emphasis is on the meaning of shock wave and mass velocities in a laboratory coordinate system. An overview of basic experimental techniques for measuring pressure...
Shock waves in tidally compressed stars by massive black holes
Brassart, M
2007-01-01
We study the case of a solar-type star penetrating deeply within the tidal radius of a massive black hole. We focus on the compression phase leading to a so-called pancake configuration of the star at the instant of maximal compression. The aim is to provide reliable estimates of the thermodynamical quantities involved in the pancake star, and to solve a controversy about whether or not thermonuclear reactions can be triggered in the core of a tidally compressed star. We have set up a one-dimensional hydrodynamical code based on the high-resolution shock-capturing Godunov-type approach in order to study the compression phase undergone by the star in the direction orthogonal to its orbital plane, taking into account the development of shock waves during that phase. We show the existence of two regimes of compression depending on whether shock waves develop after or before the instant of maximal compression. In both cases we confirm high compression and heating factors in the stellar core, able to trigger a the...
A study on compressive shock wave propagation in metallic foams
Wang, Zhihua; Zhang, Yifen; Ren, Huilan; Zhao, Longmao
2010-02-01
Metallic foam can dissipate a large amount of energy due to its relatively long stress plateau, which makes it widely applicable in the design of structural crashworthiness. However, in some experimental studies, stress enhancement has been observed when the specimens are subjected to intense impact loads, leading to severe damage to the objects being protected. This paper studies this phenomenon on a 2D mass-spring-bar model. With the model, a constitutive relationship of metal foam and corresponding loading and unloading criteria are presented; a nonlinear kinematics equilibrium equation is derived, where an explicit integration algorithm is used to calculate the characteristic of the compressive shock wave propagation within the metallic foam; the effect of heterogeneous distribution of foam microstructures on the shock wave features is also included. The results reveal that under low impact pulses, considerable energy is dissipated during the progressive collapse of foam cells, which then reduces the crush of objects. When the pulse is sufficiently high, on the other hand, stress enhancement may take place, especially in the heterogeneous foams, where high peak stresses usually occur. The characteristics of compressive shock wave propagation in the foam and the magnitude and location of the peak stress produced are strongly dependent on the mechanical properties of the foam material, amplitude and period of the pulse, as well as the homogeneity of the microstructures. This research provides valuable insight into the reliability of the metallic foams used as a protective structure.
A study on compressive shock wave propagation in metallic foams
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Metallic foam can dissipate a large amount of energy due to its relatively long stress plateau,which makes it widely applicable in the design of structural crashworthiness. However,in some experimental studies,stress enhancement has been observed when the specimens are subjected to intense impact loads,leading to severe damage to the objects being protected. This paper studies this phenomenon on a 2D mass-spring-bar model. With the model,a constitutive relationship of metal foam and corresponding loading and unloading criteria are presented; a nonlinear kinematics equilibrium equation is derived,where an explicit integra-tion algorithm is used to calculate the characteristic of the compressive shock wave propagation within the metallic foam; the effect of heterogeneous distribution of foam microstructures on the shock wave features is also included. The results reveal that under low impact pulses,considerable energy is dissipated during the progressive collapse of foam cells,which then reduces the crush of objects. When the pulse is sufficiently high,on the other hand,stress enhancement may take place,especially in the heterogeneous foams,where high peak stresses usually occur. The characteristics of compressive shock wave propagation in the foam and the magnitude and location of the peak stress produced are strongly dependent on the mechanical properties of the foam material,amplitude and period of the pulse,as well as the homogeneity of the microstructures. This research provides valuable insight into the reliability of the metallic foams used as a protective structure.
A Low-Dissipation Technique for Computing Dense Granular Compressible Flows with Shock Waves
Houim, Ryan W
2013-01-01
A low-dissipation numerical method was developed for solving kinetic theory-based granular multiphase models with volume fractions ranging from very dilute to very dense in highly compressible flows containing shock waves. The proposed numerical method takes advantage of particle incompressibility and allows computation of gas-phase and granular-phase hyperbolic fluxes to be decoupled while treating non-conservative terms consistent with their physical meaning. The technique converges under grid refinement even with very high volume fraction granular interfaces and is compatible with high-order numerical algorithms. The method can advect sharp granular interfaces that coincide with multi-species gaseous contacts without violating the pressure non-disturbing conditions. The method also reproduces features from multiphase shock tube problems, granular shocks, transmission angles of compaction waves, and shock wave and dust layer interactions. The proposed scheme is relatively straight-forward to implement and c...
Shock-wave compression of silica gel as a model material for comets
Arasuna, Akane; Okuno, Masayuki; Chen, Liliang; Mashimo, Tsutomu; Okudera, Hiroki; Mizukami, Tomoyuki; Arai, Shoji
2016-07-01
A shock-wave compression experiment using synthesized silica gel was investigated as a model for a comet impact event on the Earth's surface. The sample shocked at 20.7 GPa showed considerable structural changes, a release of water molecules, and the dehydration of silanol (Si-OH) that led to the formation of a new Si-O-Si network structure containing larger rings (e.g., six-membered ring of SiO4 tetrahedra). The high aftershock temperature at 20.7 GPa, which could be close to 800 °C, influenced the sample structure. However, some silanols, which were presumed to be the mutually hydrogen-bonded silanol group, remained at pressures >20.7 GPa. This type of silanol along with a small number of water molecules may remain even after shock compression at 30.9 GPa, although the intermediate structure of the sample recovered was similar to that of silica glass.
Polymorphic transition of tin under shock wave compression: Experimental results
Directory of Open Access Journals (Sweden)
Sinatti F.
2012-08-01
Full Text Available In this work, the β-bct polymorphic transition in tin is investigated by means of plate impact experiments. The Sn target surface is observed in a partially released state obtained thanks to a transparent lithium fluoride (LiF anvil. We report both measurements of interface velocity and temperature obtained using Photon Doppler Velocimetry and IR optical pyrometer on shock-loaded tin from 8 to 16 GPa. We show that the Mabire Model EOS associated to the SCG plasticity model provides an overall good estimate of the velocity profiles. However, depnding on the shock amplitude, its prediction of the temperature profile may be less satisfactory, hence underlining the need for future improvements in terms of phase transition kinetics description.
Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas
Energy Technology Data Exchange (ETDEWEB)
Roy S. Baty, F. Farassat, John A. Hargreaves
2007-05-25
Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.
Shock compression of nitrobenzene
Kozu, Naoshi; Arai, Mitsuru; Tamura, Masamitsu; Fujihisa, Hiroshi; Aoki, Katsutoshi; Yoshida, Masatake; Kondo, Ken-Ichi
1999-06-01
The Hugoniot (4 - 30 GPa) and the isotherm (1 - 7 GPa) of nitrobenzene have been investigated by shock and static compression experiments. Nitrobenzene has the most basic structure of nitro aromatic compounds, which are widely used as energetic materials, but nitrobenzene has been considered not to explode in spite of the fact its calculated heat of detonation is similar to TNT, about 1 kcal/g. Explosive plane-wave generators and diamond anvil cell were used for shock and static compression, respectively. The obtained Hugoniot consists of two linear lines, and the kink exists around 10 GPa. The upper line agrees well with the Hugoniot of detonation products calculated by KHT code, so it is expected that nitrobenzene detonates in that area. Nitrobenzene solidifies under 1 GPa of static compression, and the isotherm of solid nitrobenzene was obtained by X-ray diffraction technique. Comparing the Hugoniot and the isotherm, nitrobenzene is in liquid phase under experimented shock condition. From the expected phase diagram, shocked nitrobenzene seems to remain metastable liquid in solid phase region on that diagram.
Non-isentropic layers in matter behind shock and ramp compression waves
Khishchenko, Konstantin V
2014-01-01
According to the ideal fluid dynamics approach, the temperature and entropy values of a medium undergo a jump increase in the shock front as well as on contact interface between different materials after the shock wave propagation, but remain constant behind the shock front out of the contact interface. In the real condensed matter, the shock fronts and transition regions near the interfaces have finite thicknesses; therefore, the temperature field is disturbed around the interfaces. In this work, such disturbances are numerically analyzed for the problems of formation of the steady shock wave at impact and ramp loading of metals, reflection of the steady shock wave from a free surface, and the shock wave passing through the interface between two different materials. Theoretical analysis and computations show that the non-isentropic layers (the high-entropy ones with the increased temperature and the low-entropy ones with the decreased temperature) arise near the interfaces in the above problems of shock and ...
Simulation of systems for shock wave/compression waves damping in technological plants
Sumskoi, S. I.; Sverchkov, A. M.; Lisanov, M. V.; Egorov, A. F.
2016-09-01
At work of pipeline systems, flow velocity decrease can take place in the pipeline as a result of the pumps stop, the valves shutdown. As a result, compression waves appear in the pipeline systems. These waves can propagate in the pipeline system, leading to its destruction. This phenomenon is called water hammer (water hammer flow). The most dangerous situations occur when the flow is stopped quickly. Such urgent flow cutoff often takes place in an emergency situation when liquid hydrocarbons are being loaded into sea tankers. To prevent environment pollution it is necessary to stop the hydrocarbon loading urgently. The flow in this case is cut off within few seconds. To prevent an increase in pressure in a pipeline system during water hammer flow, special protective systems (pressure relief systems) are installed. The approaches to systems of protection against water hammer (pressure relief systems) modeling are described in this paper. A model of certain pressure relief system is considered. It is shown that in case of an increase in the intensity of hydrocarbons loading at a sea tanker, presence of the pressure relief system allows to organize safe mode of loading.
Failure wave motion of 3D-C/SiC composites subjected to shock compression
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The response and failure behavior of 3D-C/SiC composites subjected to shock compression have been experimentally studied.With the help of a one-stage light gas gun,the 3D-C/SiC composite samples,which are subjected to the plane shock compression by LY-12 aluminum flyer sheets with different speeds become available.Based on the analysis of observation for the curve of pressure vs time,which has been measured from the tests as well as from the samples,it is found that when the shock speed is larger than a critical value,the material of 3D-C/SiC will be comminuted and the failure surface will move from the shock plane to its inward direction in the waveform.
Jiang, Z
2005-01-01
The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.
Non-ideal compressible-fluid effects in oblique shock waves
Gori, G.; Vimercati, D.; Guardone, A.
2017-03-01
The non-monotone dependence of the speed of sound along adiabatic transformations is demonstrated to result in the admissibility of non-ideal increase of the flow Mach number across oblique shock waves, for pre-shock states in close proximity of the liquid-vapour saturation curve. This non-ideal behaviour is primarily associated with a less-than-unity value of the fundamental derivative of gasdynamics and, therefore, non-ideal shock waves are expected to be observed in flows of fluids with moderate molecular complexity. The simple yet qualitatively sound van der Waals model is used to confirm the present findings and to provide exemplary non-ideal shock waves.
Sundaramurthy, Aravind; Chandra, Namas
2014-01-01
Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1-3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68-1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is compared
Directory of Open Access Journals (Sweden)
Aravind eSundaramurthy
2014-12-01
Full Text Available Detonation of a high explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects even at farther distances, which is termed as primary blast injury, which is the theme of this work. The shock-blast profile is characterized with blast overpressure, positive time duration, and impulse as shock-blast wave parameters (SWPs. These parameters in turn are a function of field factors, such as the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (Chandra et al., 2011;Sundaramurthy et al., 2012;Skotak et al., 2013, the profile not only determines the survival of the animal but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, exact replication of shock profile (magnitude and shape can be related to field explosions and can be a standard in comparing results across different laboratories. 40 experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68 to 1209.68 mm, measurement location, and type of driver gas (nitrogen, helium. The relationships between SAPs and the resulting shock-blast profiles are characterized. Finally, shock-blast profiles of a TNT explosion from ConWep software is compared with the profiles obtained
Ockendon, Hilary
2016-01-01
Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications. New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises. Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science. Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...
Compression Waves and Phase Plots: Simulations
Orlikowski, Daniel
2011-01-01
Compression wave analysis started nearly 50 years ago with Fowles.[1] Coperthwaite and Williams [2] gave a method that helps identify simple and steady waves. We have been developing a method that gives describes the non-isentropic character of compression waves, in general.[3] One result of that work is a simple analysis tool. Our method helps clearly identify when a compression wave is a simple wave, a steady wave (shock), and when the compression wave is in transition. This affects the analysis of compression wave experiments and the resulting extraction of the high-pressure equation of state.
Shock compression of polyvinyl chloride
Neogi, Anupam; Mitra, Nilanjan
2016-04-01
This study presents shock compression simulation of atactic polyvinyl chloride (PVC) using ab-initio and classical molecular dynamics. The manuscript also identifies the limits of applicability of classical molecular dynamics based shock compression simulation for PVC. The mechanism of bond dissociation under shock loading and its progression is demonstrated in this manuscript using the density functional theory based molecular dynamics simulations. The rate of dissociation of different bonds at different shock velocities is also presented in this manuscript.
Energy Technology Data Exchange (ETDEWEB)
Shames, Alexander I.; Panich, Alexander M. [Department of Physics, Ben-Gurion University of the Negev, Be' er Sheva (Israel); Mogilyansky, Dmitry [Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be' er-Sheva (Israel); Sergeev, Nikolay A.; Olszewski, Marcin [Institute of Physics, University of Szczecin (Poland); Boudou, Jean-Paul [Laboratoire Aime Cotton, CNRS, Universite Paris-Sud et ENS Cachan, Orsay (France); Osipov, Vladimir Yu. [Ioffe Physical-Technical Institute, St. Petersburg (Russian Federation)
2015-11-15
We report on XRD, NMR, and EPR study of commercial micro- and nano-diamonds of the SSX series fabricated by a shock wave compression method. XRD data analysis shows that SSX samples consist of nanometer cubic diamond domains intermixing with stacking faults and twins. We show that as-received samples reveal a graphitic component, which may be removed by additional purification. Crushing the initial microdiamond powder into submicron and nanometer sizes does not result in noticeable variations of the XRD, NMR, and EPR parameters. This finding is explained by the fact that SSX diamonds are polycrystalline aggregates consisting of numerous nanocrystallites of ∝20-25 nm in size. Therefore, soft crushing of these aggregates diminishes their size, but leaves constituting nanocrystallites and their intrinsically facet surfaces mainly untreated. With that some modification of the outer nanocrystallite surface on crushing is observed. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Spall strength and ejecta production of gold under explosively driven shock wave compression
Energy Technology Data Exchange (ETDEWEB)
La Lone, B. M. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Stevens, G. D. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Turley, W. D. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Veeser, L. R. [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Holtkamp, D. B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2013-12-16
Explosively driven shock wave experiments were conducted to characterize the spall strength and ejecta production of high-purity cast gold samples. The samples were from 0.75 to 1.84 mm thick and 30 mm in diameter. Peak stresses up to 44 GPa in gold were generated using PBX-9501 high explosive. Sample free surface and ejecta velocities were recorded using photonic Doppler velocimetry techniques. Lithium niobate pins were used to quantify the time dependence of the ejecta density and the total ejected mass. An optical framing camera for time-resolved imaging and a single-image x-ray radiograph were used for additional characterization. Free surface velocities exhibited a range of spall strengths from 1.7 to 2.4 GPa (mean: 2.0 ±0.3 GPa). The pullback signals were faint, minimal ringing was observed in the velocity records, and the spall layer continued to decelerate after first pull back. These results suggest finite tensile strength was present for some time after the initial void formation. Ejecta were observed for every sample with a roughened free surface, and the ejecta density increased with increased surface roughness, which was different in every experiment. The total ejected mass is consistent with the missing mass model.
Bridgman's concern (shock compression science)
Graham, R. A.
1994-07-01
In 1956 P. W. Bridgman published a letter to the editor in the Journal of Applied Physics reporting results of electrical resistance measurements on iron under static high pressure. The work was undertaken to verify the existence of a polymorphic phase transition at 130 kbar (13 GPa) reported in the same journal and year by the Los Alamos authors, Bancroft, Peterson, and Minshall for high pressure, shock-compression loading. In his letter, Bridgman reported that he failed to find any evidence for the transition. Further, he raised some fundamental concerns as to the state of knowledge of shock-compression processes in solids. Later it was determined that Bridgman's static pressure scale was in error, and the shock observations became the basis for calibration of pressure values in static high pressure apparatuses. In spite of the error in pressure scales, Bridgman's concerns on descriptions of shock-compression processes were perceptive and have provided the basis for subsequent fundamental studies of shock-compressed solids. The present paper, written in response to receipt of the 1993 American Physical Society Shock-Compression Science Award, provides a brief contemporary assessment of those shock-compression issues which were the basis of Bridgman's 1956 concerns.
INTERFERENCE OF COUNTERPROPAGATING SHOCK WAVES
Directory of Open Access Journals (Sweden)
P. V. Bulat
2015-03-01
Full Text Available The subject of study. We examined the interaction of counterpropagating shock waves. The necessity of counterpropagating shock waves studying occurs at designing of high Mach number modern internal compression air intakes, Ramjets with subsonic and supersonic combustion, in asymmetrical supersonic nozzles and in some other cases. In a sense, this problem is a generalization of the case of an oblique shock reflection from the wall or from the plane of symmetry. With the renewed vigor, the interest to this problem emerged at the end of the 90s. This was due to the start of the programs for flight study at hypersonic speeds. The first experiments performed with air intakes, which realized the interaction of counterpropagating shock waves have shown that the change in flow velocity is accompanied by abrupt alteration of shock-wave structure, the occurrence of nonstationary and oscillatory phenomena. With an increase of flow velocity these phenomena undesirable for aircraft structure became more marked. The reason is that there are two fundamentally different modes of interaction of counterpropagating shock waves: a four-wave regular and a five-wave irregular. The transition from one mode to another can be nonstationary abrupt or gradual, it can also be accompanied by hysteresis. Main results. Criteria for the transition from regular reflection of counterpropagating shock waves to irregular are described: the criterion of von Neumann and the stationary Mach configuration criterion. We described areas in which the transition from one reflection type to another is possible only in abrupt way, as well as areas of possible gradual transition. Intensity dependences of the reflected shock waves from the intensity of interacting counterpropagating shocks were given. Qualitative pictures of shock-wave structures arising from the interaction of counterpropagating shock waves were shown. Calculation results of the intensity of outgoing gas
Design and Testing of CO_{2} Compression Using Supersonic Shock Wave Technology
Energy Technology Data Exchange (ETDEWEB)
Koopman, Aaron [Seattle Technology Center, Bellevue, WA (United States)
2015-06-01
This report summarizes work performed by Ramgen and subcontractors in pursuit of the design and construction of a 10 MW supersonic CO2 compressor and supporting facility. The compressor will demonstrate application of Ramgen’s supersonic compression technology at an industrial scale using CO2 in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aerodynamic tools. A summary of Ramgen's ISC Engine program activity is also included. This program will demonstrate the adaptation of Ramgen's supersonic compression and advanced vortex combustion technology to result in a highly efficient and cost effective alternative to traditional gas turbine engines. The build out of a 1.5 MW test facility to support the engine and associated subcomponent test program is summarized.
Sen, Srimoyee
2016-01-01
We study shock waves in relativistic chiral matter. We argue that the conventional Rankine- Hugoinot relations are modified due to the presence of chiral transport phenomena. We show that the entropy discontinuity in a weak shock wave is linearly proportional to the pressure discontinuity when the effect of chiral transport becomes sufficiently large. We also show that rarefaction shock waves, which do not exist in usual nonchiral fluids, can appear in chiral matter. These features are exemplified by shock propagation in dense neutrino matter in the hydrodynamic regime.
Haupt, G
1997-05-01
Extracorporeal shock waves have revolutionized urological stone treatment. Nowadays shock waves are widely used in orthopedics, too. This article reviews the applications of extracorporeal shock waves on bone and adjacent soft tissue. The osteoneogenetic effect of extracorporeal shock waves has been proven and can be used to treat pseudarthrosis with a success rate of around 75%. Shock waves have a positive effect in tennis and golfer's elbow, calcaneal spur, and the complex called "periarthritis humero-scapularis." The mechanism for this is not yet known, and results from large prospective and randomized studies are still lacking. However, the treatment has been performed many thousands of times. In patients in whom conservative treatment has failed surgery used to be the only choice, but its success rate barely exceeds that of shock wave therapy and surgery can still be done if shock wave therapy fails. Extracorporeal shock waves will have an impact on orthopedics comparable to its effect in urology. Scientific evaluations, professional certifications, quality assurance and reimbursement issues present great challenges.
Shock Wave Smearing by Passive Control
Institute of Scientific and Technical Information of China (English)
Piotr DOERFFER; Oskar SZULC; Rainer BOHNING
2006-01-01
Normal shock wave, terminating a local supersonic area on an airfoil, limits its performance and becomes a source of high speed impulsive noise. It is proposed to use passive control to disintegrate the shock wave. Details of the flow structure obtained by this method are studied numerically. A new boundary condition has been developed and the results of its application are verified against experiments in a nozzle flow. The method of shock wave disintegration has been confirmed and detailed analysis of the flow details is presented. The substitution of a shock wave by a gradual compression changes completely the source of the high speed impulsive noise and bears potential of its reduction.
Hartigan, P; Frank, A; Hansen, E; Yirak, K; Liao, A S; Graham, P; Wilde, B; Blue, B; Martinez, D; Rosen, P; Farley, D; Paguio, R
2016-01-01
Supersonic outflows from objects as varied as stellar jets, massive stars and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures and therefore a higher-excitation spectrum than an oblique one does. In this paper we summarize the results of a series of numerical simulations and laboratory experiments designed to quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and ...
2015-08-14
evaluate the compressive properties of the ZAPs ™ pre- and post-exposure to incident pressures of 172-241 kPa (25-35 psi) in several shock tube test...the photodetector and the ZAP ™ specimen. The high speed video is used to identify the first point in time that the striker impacts the test specimen...that were shock tube tested and not evaluated with the drop tower were used for the quasi-static tests. As previously stated, the ZAPs ™ do not have a
Shock wave reflection phenomena
Ben-dor, Gabi
2007-01-01
This book provides a comprehensive state-of-the-knowledge description of the shock wave reflection phenomena from a phenomenological point of view. The first part is a thorough introduction to oblique shock wave reflections, presenting the two major well-known reflection wave configurations, namely, regular (RR) and Mach (MR) reflections, the corresponding two- and three-shock theories, their analytical and graphical solution and the proposed transition boundaries between these two reflection-wave configurations. The second, third and fourth parts describe the reflection phenomena in steady, pseudo-steady and unsteady flows, respectively. Here, the possible specific types of reflection wave configurations are described, criteria for their formation and termination are presented and their governing equations are solved analytically and graphically and compared with experimental results. The resolution of the well-known von Neumann paradox and a detailed description of two new reflection-wave configurations - t...
New developments in the physical chemistry of shock compression.
Dlott, Dana D
2011-01-01
This review discusses new developments in shock compression science with a focus on molecular media. Some basic features of shock and detonation waves, nonlinear excitations that can produce extreme states of high temperature and high pressure, are described. Methods of generating and detecting shock waves are reviewed, especially those using tabletop lasers that can be interfaced with advanced molecular diagnostics. Newer compression methods such as shockless compression and precompression shock that generate states of cold dense molecular matter are discussed. Shock compression creates a metallic form of hydrogen, melts diamond, and makes water a superionic liquid with unique catalytic properties. Our understanding of detonations at the molecular level has improved a great deal as a result of advanced nonequilibrium molecular simulations. Experimental measurements of detailed molecular behavior behind a detonation front might be available soon using femtosecond lasers to produce nanoscale simulated detonation fronts.
Whistler Waves Associated with Weak Interplanetary Shocks
Velez, J. C. Ramirez; Blanco-Cano, X.; Aguilar-Rodriguez, E.; Russell, C. T.; Kajdic, P.; Jian,, L. K.; Luhmann, J. G.
2012-01-01
We analyze the properties of 98 weak interplanetary shocks measured by the dual STEREO spacecraft over approximately 3 years during the past solar minimum. We study the occurrence of whistler waves associated with these shocks, which on average are high beta shocks (0.2 whistler waves can extend up to 100,000 km in the upstream region but in most cases (88%) are contained in a distance within 30,000 km from the shock. This corresponds to a larger region with upstream whistlers associated with IP shocks than previously reported in the literature. The maximum amplitudes of the waves are observed next to the shock interface, and they decrease as the distance to the shock increases. In most cases the wave propagation direction becomes more aligned with the magnetic field as the distance to the shock increases. These two facts suggest that most of the waves in the upstream region are Landau damping as they move away from the shock. From the analysis we also conclude that it is likely that the generation mechanism of the upstream whistler waves is taking place at the shock interface. In the downstream region, the waves are irregularly polarized, and the fluctuations are very compressive; that is, the compressive component of the wave clearly dominates over the transverse one. The majority of waves in the downstream region (95%) propagate at oblique angles with respect to the ambient magnetic field (>60 deg.). The wave propagation with respect to the shock-normal direction has no preferred direction and varies similarly to the upstream case. It is possible that downstream fluctuations are generated by ion relaxation as suggested in previous hybrid simulation shocks.
Hartigan, P.; Foster, J.; Frank, A.; Hansen, E.; Yirak, K.; Liao, A. S.; Graham, P.; Wilde, B.; Blue, B.; Martinez, D.; Rosen, P.; Farley, D.; Paguio, R.
2016-06-01
Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed to quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. The experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.
Isothermal Shock Wave in Magnetogasdynamics
Directory of Open Access Journals (Sweden)
B. G. Verma
1983-01-01
Full Text Available The problem of propagation of a plane isothermal discontinuity (shock wave in a homogeneous semi-infinite body of a perfect gas, in the presence of amagnetic field have been solved. It has been shown that under certain definiteconditions, the density p at the wave front may be arbitrarily high for a singlecompression pulse. A certain class of solutions of the present problem for a nonhomogeneous semi-infinite body have been derived. Such solutions are expected to be of great importance in compression problems of plasma.
Density shock waves in confined microswimmers
Tsang, Alan Cheng Hou
2015-01-01
Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from `subsonic' with compression at the back to `supersonic' with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a non-trivial interplay between hydrodynamic interactions and geometric confinement, and is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechan...
Shock wave interactions with liquid sheets
Jeon, H.; Eliasson, V.
2017-04-01
Shock wave interactions with a liquid sheet are investigated by impacting planar liquid sheets of varying thicknesses with a planar shock wave. A square frame was designed to hold a rectangular liquid sheet, with a thickness of 5 or 10 mm, using plastic membranes and cotton wires to maintain the planar shape and minimize bulge. The flat liquid sheet, consisting of either water or a cornstarch and water mixture, was suspended in the test section of a shock tube. Incident shock waves with Mach numbers of M_s = 1.34 and 1.46 were considered. A schlieren technique with a high-speed camera was used to visualize the shock wave interaction with the liquid sheets. High-frequency pressure sensors were used to measure wave speed, overpressure, and impulse both upstream and downstream of the liquid sheet. Results showed that no transmitted shock wave could be observed through the liquid sheets, but compression waves induced by the shock-accelerated liquid coalesced into a shock wave farther downstream. A thicker liquid sheet resulted in a lower peak overpressure and impulse, and a cornstarch suspension sheet showed a higher attenuation factor compared to a water sheet.
Introduction to Shock Waves and Shock Wave Research
Energy Technology Data Exchange (ETDEWEB)
Anderson, William Wyatt [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-02-02
M-9 and a number of other organizations at LANL and elsewhere study materials in dynamic processes. Often, this is described as “shock wave research,” but in reality is broader than is implied by that term. Most of our work is focused on dynamic compression and associated phenomena, but you will find a wide variety of things we do that, while related, are not simple compression of materials, but involve a much richer variety of phenomena. This tutorial will introduce some of the underlying physics involved in this work, some of the more common types of phenomena we study, and common techniques. However, the list will not be exhaustive by any means.
Shock Waves in Dense Hard Disk Fluids
Sirmas, Nick; Barahona, Javier; Radulescu, Matei I
2011-01-01
Media composed of colliding hard disks (2D) or hard spheres (3D) serve as good approximations for the collective hydrodynamic description of gases, liquids and granular media. In the present study, the compressible hydrodynamics and shock dynamics are studied for a two-dimensional hard-disk medium at both the continuum and discrete particle level descriptions. For the continuum description, closed form analytical expressions for the inviscid hydrodynamic description, shock Hugoniot, isentropic exponent and shock jump conditions were obtained using the Helfand equation of state. The closed-form analytical solutions permitted us to gain physical insight on the role of the material's density on its compressibility, i.e. how the medium compresses under mechanical loadings and sustains wave motion. Furthermore, the predictions were found in excellent agreement with calculations using the Event Driven Molecular Dynamic method involving 30,000 particles over the entire range of compressibility spanning the dilute id...
Shock wave treatment in medicine
Indian Academy of Sciences (India)
S K Shrivastava; Kailash
2005-03-01
Extracorporeal shock wave therapy in orthopedics and traumatology is still a young therapy method. Since the last few years the development of shock wave therapy has progressed rapidly. Shock waves have changed the treatment of urolithiasis substantially. Today shock waves are the first choice to treat kidney and urethral stones. Urology has long been the only medical field for shock waves in medicine. Meanwhile shock waves have been used in orthopedics and traumatology to treat insertion tendinitis, avascular necrosis of the head of femur and other necrotic bone alterations. Another field of shock wave application is the treatment of tendons, ligaments and bones on horses in veterinary medicine. In the present paper we discuss the basic theory and application of shock waves and its history in medicine. The idea behind using shock wave therapy for orthopedic diseases is the stimulation of healing in tendons, surrounding tissue and bones. This is a completely different approach compared to urology where shock waves are used for disintegration.
Bubble Dynamics and Shock Waves
2013-01-01
This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa, M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz), shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...
Critical point anomalies include expansion shock waves
Energy Technology Data Exchange (ETDEWEB)
Nannan, N. R., E-mail: ryan.nannan@uvs.edu [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: p.colonna@tudelft.nl [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)
2014-02-15
From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.
Shock wave science and technology reference library
2009-01-01
This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily concerned with detonation waves or compression shock waves in reactive heterogeneous media, including mixtures of solid, liquid and gas phases. The topics involve a variety of energy release and control processes in such media - a contemporary research field that has found wide applications in propulsion and power, hazard prevention as well as military engineering. The six extensive chapters contained in this volume are: - Spray Detonation (SB Murray and PA Thibault) - Detonation of Gas-Particle Flow (F Zhang) - Slurry Detonation (DL Frost and F Zhang) - Detonation of Metalized Composite Explosives (MF Gogulya and MA Brazhnikov) - Shock-Induced Solid-Solid Reactions and Detonations (YA Gordopolov, SS Batsanov, and VS Trofimov) - Shock Ignition of Particles (SM Frolov and AV Fedorov) Each chapter is self-contained and can be read independently of the others, though, they are thematically interrelated. They offer a t...
Radiative Shock Waves In Emerging Shocks
Drake, R. Paul; Doss, F.; Visco, A.
2011-05-01
In laboratory experiments we produce radiative shock waves having dense, thin shells. These shocks are similar to shocks emerging from optically thick environments in astrophysics in that they are strongly radiative with optically thick shocked layers and optically thin or intermediate downstream layers through which radiation readily escapes. Examples include shocks breaking out of a Type II supernova (SN) and the radiative reverse shock during the early phases of the SN remnant produced by a red supergiant star. We produce these shocks by driving a low-Z plasma piston (Be) at > 100 km/s into Xe gas at 1.1 atm. pressure. The shocked Xe collapses to > 20 times its initial density. Measurements of structure by radiography and temperature by several methods confirm that the shock wave is strongly radiative. We observe small-scale perturbations in the post-shock layer, modulating the shock and material interfaces. We describe a variation of the Vishniac instability theory of decelerating shocks and an analysis of associated scaling relations to account for the growth of these perturbations, identify how they scale to astrophysical systems such as SN 1993J, and consider possible future experiments. Collaborators in this work have included H.F. Robey, J.P. Hughes, C.C. Kuranz, C.M. Huntington, S.H. Glenzer, T. Doeppner, D.H. Froula, M.J. Grosskopf, and D.C. Marion ________________________________ * Supported by the US DOE NNSA under the Predictive Sci. Academic Alliance Program by grant DE-FC52-08NA28616, the Stewardship Sci. Academic Alliances program by grant DE-FG52-04NA00064, and the Nat. Laser User Facility by grant DE-FG03-00SF22021.
Sachdev, PL
2004-01-01
Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...
Sandia computerized shock compression bibliographical database
Energy Technology Data Exchange (ETDEWEB)
Wilbeck, J.S.; Anderson, C.E.; Hokanson, J.C.; Asay, J.R.; Grady, D.E.; Graham, R.A.; Kipp, M.E.
1985-01-01
A searchable and updateable bibliographical database is being developed which will be designed, controlled, and evaluated by working technical experts in the field of shock-compression science. It will emphasize shock-compression properties in the stress region of a few tens of GPa and provide a broad and complete base of bibliographical information on the shock-compression behavior of materials. Through the operation of technical advisors, the database provides authoritative blbliographical and keyword data for use by both the inexperienced and expert user. In its current form, it consists of: (1) a library of journal articles, reports, books, and symposia papers in the areas of shock physics and shock mechanics; and (2) a computerized database system containing complete bibliographical information, exhaustive keyword descriptions, and author abstracts for each of the documents in the database library.
Oscillating nonlinear acoustic shock waves
DEFF Research Database (Denmark)
Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth
2016-01-01
We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....
Shock Wave-Boundary Layer Interaction in Forced Shock Oscillations
Institute of Scientific and Technical Information of China (English)
Piotr Doerffer; Oskar Szulc; Franco Magagnato
2003-01-01
The flow in transonic diffusers as well as in supersonic air intakes becomes often unsteady due to shock wave boundary layer interaction. The oscillations may be induced by natural separation unsteadiness or may be forced by boundary conditions. Significant improvement of CFD tools, increase of computer resources as well as development of experimental methods have again.drawn the attention of researchers to this topic.To investigate the problem forced oscillations of transonic turbulent flow in asymmetric two-dimensional Laval nozzle were considered. A viscous, perfect gas flow, was numerically simulated using the Reynolds-averaged compressible Navier-Stokes solver SPARC, employing a two-equation, eddy viscosity, turbulence closure in the URANS approach.For time-dependent and stationary flow simulations, Mach numbers upstream of the shock between 1.2 and 1.4 were considered. Comparison of computed and experimental data for steady states generally gave acceptable agreement. In the case of forced oscillations, a harmonic pressure variation was prescribed at the exit plane resulting in shock wave motion. Excitation frequencies between 0 Hz and 1024 Hz were investigated at the same pressure amplitude.The main result of the work carried out is the relation between the amplitude of the shock wave motion and the excitation frequency in the investigated range. Increasing excitation frequency resulted in decreasing amplitude of the shock movement. At high frequencies a natural mode of shock oscillation (of small amplitude) was observed which is not sensitive to forced excitement.
Isentropic compressive wave generator and method of making same
Barker, L.M.
An isentropic compressive wave generator and method of making same are disclosed. The wave generator comprises a disk or flat pillow member having component materials of different shock impedances formed in a configuration resulting in a smooth shock impedance gradient over the thickness thereof for interpositioning between an impactor member and a target specimen for producing a shock wave of a smooth predictable rise time. The method of making the pillow member comprises the reduction of the component materials to a powder form and forming the pillow member by sedimentation and compressive techniques.
Shock Wave Structure in Particulate Composites
Rauls, Michael; Ravichandran, Guruswami
2015-06-01
Shock wave experiments are conducted on a particulate composite consisting of a polymethyl methacrylate (PMMA) matrix reinforced by glass beads. Such a composite with an impedance mismatch of 4.3 closely mimics heterogeneous solids of interest such as concrete and energetic materials. The composite samples are prepared using a compression molding process. The structure and particle velocity rise times of the shocks are examined using forward ballistic experiments. Reverse ballistic experiments are used to track how the interface density influences velocity overshoot above the steady state particle velocity. The effects of particle size (0.1 to 1 mm) and volume fraction of glass beads (30-40%) on the structure of the leading shock wave are investigated. It is observed that the rise time increases with increasing particle size and scales linearly for the range of particle sizes considered here. Results from numerical simulations using CTH are compared with experimental results to gain insights into wave propagation in heterogeneous particulate composites.
Shock wave science and technology reference library
2009-01-01
This book is the second of several volumes on solids in the Shock Wave Science and Technology Reference Library. These volumes are primarily concerned with high-pressure shock waves in solid media, including detonation and high-velocity impact and penetration events. Of the four extensive chapters in this volume, the first two describe the reactive behavior of condensed phase explosives, - Condensed-Phase Explosives: Shock Initiation and Detonation Phenomena (SA Sheffield and R Engelke) - First Principles Molecular Simulations of Energetic Materials at High-Pressures (F Zhang, S Alavi, and TK Woo), and the remaining two discuss the inert, mechanical response of solid materials. - Combined Compression and Shear Plane Waves (ZP Tang and JB Aidun), and - Dynamic Fragmentation of Solids (D Grady). All chapters are each self-contained, and can be read independently of each other. They offer a timely reference, for beginners as well as professional scientists and engineers, on the foundations of detonation phenomen...
Transverse Diffraction at the LCLS: Shock-Compressed Silicon
McBride, E. E.; Krygier, A.; Harmand, M..; Konopkova, Z..; Liermann, H.-P.; Schropp, A.; Toleikis, S.; Pelka, A.; Roedel, M.; Spindloe, C.; Smith, R. F.; Galtier, E.; Lee, H. J.; Nagler, B.; Tschentscher, Th.; Wark, J. S.; Higginbotham, A.
2016-10-01
Despite being the subject of numerous shock compression studies, the behavior of silicon under dynamic loading is vigorously debated. The few studies that combine shock compression and X-ray diffraction have exclusively focused on ``normal'' X-ray geometry whereby X-rays are collected along the shock propagation direction, consequently sampling numerous strain states at once, greatly complicating both phase identification and studies of phase transition kinetics. Here, we present a novel setup performing in situ X-ray diffraction studies perpendicular to the shock propagation direction at the Matter at Extreme Conditions end station at LCLS. Combining the extremely bright microfocussed X-ray beam with a nanosecond drive laser, we unambiguously determine the character of each wave for the first time.
DIFFUSIVE SHOCK ACCELERATION AT COSMOLOGICAL SHOCK WAVES
Energy Technology Data Exchange (ETDEWEB)
Kang, Hyesung [Department of Earth Sciences, Pusan National University, Pusan 609-735 (Korea, Republic of); Ryu, Dongsu, E-mail: kang@uju.es.pusan.ac.kr, E-mail: ryu@canopus.cnu.ac.kr [Department of Astronomy and Space Science, Chungnam National University, Daejeon 305-764 (Korea, Republic of)
2013-02-10
We reexamine nonlinear diffusive shock acceleration (DSA) at cosmological shocks in the large-scale structure of the universe, incorporating wave-particle interactions that are expected to operate in collisionless shocks. Adopting simple phenomenological models for magnetic field amplification (MFA) by cosmic-ray (CR) streaming instabilities and Alfvenic drift, we perform kinetic DSA simulations for a wide range of sonic and Alfvenic Mach numbers and evaluate the CR injection fraction and acceleration efficiency. In our DSA model, the CR acceleration efficiency is determined mainly by the sonic Mach number M{sub s} , while the MFA factor depends on the Alfvenic Mach number and the degree of shock modification by CRs. We show that at strong CR modified shocks, if scattering centers drift with an effective Alfven speed in the amplified magnetic field, the CR energy spectrum is steepened and the acceleration efficiency is reduced significantly, compared to the cases without such effects. As a result, the postshock CR pressure saturates roughly at {approx}20% of the shock ram pressure for strong shocks with M{sub s} {approx}> 10. In the test-particle regime (M{sub s} {approx}< 3), it is expected that the magnetic field is not amplified and the Alfvenic drift effects are insignificant, although relevant plasma physical processes at low Mach number shocks remain largely uncertain.
30th International Symposium on Shock Waves
Sadot, Oren; Igra, Ozer
2017-01-01
These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference ...
Experimental investigation of shock wave - bubble interaction
Energy Technology Data Exchange (ETDEWEB)
Alizadeh, Mohsen
2010-04-09
expanded beam of a Q-switched laser pulse at wavelength of λ=532 nm and with pulse duration of ∼4 ns is focused at the center of a water tank using an aberration minimized lens design. Single cavitation bubbles are initiated via optical breakdown at this location which coincides with the position of which the shock wave is focused. The energy of the shock wave source has been altered in 8 steps. The pressure pulse amplitude of the impinging shock wave measured at the distance of about 1.8 mm above the focus location range from 24.4 MPa to 108.1 MPa. The lithotripter shock wave impact time is varied in three steps which provides the possibility of investigation of the bubble dynamics in both cases of collapsing and expanding cavities at the moment of the shock wave impingement. After the shock wave impact, the bubble spherical symmetry is broken and a liquid jet develops in the original direction of the shock propagation. The speed of the jet is increasing with the shock wave energy. Due to the energy transfer from the shock wave to the bubble, the forced cavity implosion is more violent in comparison to free oscillation. The pressure pulse amplitude released from the forced bubble collapse is amplified and the collapse time is reduced. These effects are discussed in chapter 5. Generally, when the bubble is collapsing at the time of the shock impact, the forced cavity collapse is more violent with a resultant of more pressure enhancement compared to the expanding bubbles at the moment of the shock arrival. The maximum pressure enhancement and reduction of bubble collapse time occur when the time interval between the moments of the shock impact and bubble collapse approaches the pulse duration of the compression part of the shock wave profile (i.e. ∼1 μs). For each specific shock wave arrival time, increasing the shock intensity leads to the fact that the bubble collapse takes place earlier relative to the moment of the shock impact and having more collapse pressure
Experimental investigation of shock wave - bubble interaction
Energy Technology Data Exchange (ETDEWEB)
Alizadeh, Mohsen
2010-04-09
expanded beam of a Q-switched laser pulse at wavelength of λ=532 nm and with pulse duration of ∼4 ns is focused at the center of a water tank using an aberration minimized lens design. Single cavitation bubbles are initiated via optical breakdown at this location which coincides with the position of which the shock wave is focused. The energy of the shock wave source has been altered in 8 steps. The pressure pulse amplitude of the impinging shock wave measured at the distance of about 1.8 mm above the focus location range from 24.4 MPa to 108.1 MPa. The lithotripter shock wave impact time is varied in three steps which provides the possibility of investigation of the bubble dynamics in both cases of collapsing and expanding cavities at the moment of the shock wave impingement. After the shock wave impact, the bubble spherical symmetry is broken and a liquid jet develops in the original direction of the shock propagation. The speed of the jet is increasing with the shock wave energy. Due to the energy transfer from the shock wave to the bubble, the forced cavity implosion is more violent in comparison to free oscillation. The pressure pulse amplitude released from the forced bubble collapse is amplified and the collapse time is reduced. These effects are discussed in chapter 5. Generally, when the bubble is collapsing at the time of the shock impact, the forced cavity collapse is more violent with a resultant of more pressure enhancement compared to the expanding bubbles at the moment of the shock arrival. The maximum pressure enhancement and reduction of bubble collapse time occur when the time interval between the moments of the shock impact and bubble collapse approaches the pulse duration of the compression part of the shock wave profile (i.e. ∼1 μs). For each specific shock wave arrival time, increasing the shock intensity leads to the fact that the bubble collapse takes place earlier relative to the moment of the shock impact and having more collapse pressure
Shock compression response of Ti+B reactive powder mixtures
Gonzales, M.; Gurumurthy, A.; Kennedy, G. B.; Gokhale, A. M.; Thadhani, N. N.
2014-05-01
The shock compression response of Ti+2B (1:2 Ti:B stoichiometric ratio) reactive powder mixtures at ~50% theoretical material density (TMD) is investigated for shock pressures up to 5 GPa to investigate the possible shock-induced chemical reactivity of this highly exothermic mixture. The shock adiabat is produced from instrumented parallel-plate gas-gun impact experiments on encapsulated powders using poly-vinylidene fluoride (PVDF) stress gauges to measure the input and propagated stresses and wave speed in the powder. The shock compression regime is probed from crush-up to full density and onward to assess the potential onset of a shock-induced chemical reaction event in the powder mixture. A series of two-dimensional continuum meso-scale simulations on validated simulated microstructures are performed to predict the shock compression response and identify the meso-scale mechanics that are essential for reaction. The suitability of the synthetic microstructural representations is evaluated by comparing the experimental and predicted pressure traces.
Shock compression of polyurethane foams
Directory of Open Access Journals (Sweden)
Stahl D.B.
2012-08-01
Full Text Available Several shock studies have been made on polyurethane materials, both fully dense and distended in the form of foams. However, there is a lack of shock data between the densities of 0.321 and 1.264g/cm3 (fully dense. We present here data obtained from two different types of shock experiments at densities of 0.35, 0.5, 0.68, 0.78, and 0.9g/cm3 in order to fill in the density deficiencies and make it easier to develop an unreacted equation of state (EOS for polyurethane as a function of density. A thermodynamically consistent EOS was developed, based on the Helmholtz free energy, and was used to predict the shock properties of polyurethane materials at densities from 1.264 to 0.348g/cm3. These estimates are compared to the available data. The data match quite close to the predictions and provide a basis for calculating polyurethane foam shock processes. Chemical reaction has been observed at relatively high pressure (21.7 GPa in fully dense polyurethane in an earlier study, and the equation of state presented here is representative of the unreacted polyurethane foam. Lowering the density is expected to drop the shock pressure for chemical reaction, yet there is not enough data to address the low density shock reaction thresholds in this study.
Flow behind concave shock waves
Mölder, S.
2017-03-01
Curved shock theory is introduced and applied to calculate the flow behind concave shock waves. For sonic conditions, three characterizing types of flow are identified, based on the orientation of the sonic line, and it is shown that, depending on the ratio of shock curvatures, a continuously curving shock can exist with Type III flow, where the sonic line intercepts the reflected characteristics from the shock, thus preventing the formation of a reflected shock. The necessary shock curvature ratio for a Type III sonic point does not exist for a hyperbolic shock so that it will revert to Mach reflection for all Mach numbers. A demonstration is provided, by CFD calculations, at Mach 1.2 and 3.
Flow behind concave shock waves
Mölder, S.
2017-09-01
Curved shock theory is introduced and applied to calculate the flow behind concave shock waves. For sonic conditions, three characterizing types of flow are identified, based on the orientation of the sonic line, and it is shown that, depending on the ratio of shock curvatures, a continuously curving shock can exist with Type III flow, where the sonic line intercepts the reflected characteristics from the shock, thus preventing the formation of a reflected shock. The necessary shock curvature ratio for a Type III sonic point does not exist for a hyperbolic shock so that it will revert to Mach reflection for all Mach numbers. A demonstration is provided, by CFD calculations, at Mach 1.2 and 3.
Simulations of shock wave propagation in heterogeneous solids
Hertzsch, Jan-Martin; Ivanov, Boris A.; Kenkmann, Thomas
2002-11-01
Studies of shock wave propagation in heterogeneous materials are important for the interpretation of impact deformation and impact metamorphism of natural rocks. Reflection, refraction, and interference of shock waves caused by inhomogeneities lead to localised concentrations of pressure, temperature, and deformation rate, and in some cases to phase transitions. We have simulated numerically the shock compression of complex media in selected geometries with the aim of modelling shock recovery experiments and have observed reversible phase transitions in the target, shock heating alone may not be sufficient for the formation of impact melt, but localised shear at material boundaries results in considerable temperature increase which makes partial melting possible.
Shock compression of simulated adobe
Braithwaite, C. H.; Church, P. D.; Gould, P. J.; Stewart, B.; Jardine, A. P.
2017-01-01
A series of plate impact experiments were conducted to investigate the shock response of a simulant for adobe, a traditional form of building material widely used around the world. Air dried bricks were sourced from the London brick company, dry machined and impacted at a range of velocities in a single stage gas gun. The shock Hugoniot was determined (Us =2.26up+0.37) as well as release information. The material was found to behave in a manner which was similar to that of loose sand and considerably less stiff than a weak porous sandstone. The effect of any cementing of the grains was examined by shocking powdered samples contained within a cell arrangement.
Shock Compression of Simulated Adobe
Braithwaite, C. H.; Church, P. D.; Gould, P. J.; Stewart, B.; Jardine, A. P.
2015-06-01
A series of plate impact experiments were conducted to investigate the shock response of a simulant for adobe, a traditional form of building material widely used around the world. Air dried bricks were sourced from the London brick company, dry machined and impacted at a range of velocities in a single stage gas gun. The shock Hugoniot was determined (Us = 2.26up + 0.33) as well as release information. The material was found to behave in a manner which was similar to that of loose sand and considerably less stiff than a weak porous sandstone. The effect of any cementing of the grains was examined by shocking powdered samples contained within a cell arrangement. The research was funded by DSTL through a WSTC contract.
Historical Background of Ultrahigh Pressure Shock Compression Experiments at LLNL: 1973 to 2000
Energy Technology Data Exchange (ETDEWEB)
Nellis, W.J.
2000-10-09
My purpose is to recount the historical development of ultrahigh pressure shock compression experiments at LLNL, which I experienced in the period 1973 to 2000. I used several experimental techniques: shock-impedance-match experiments using planar shock waves driven by nuclear explosives (NIMs), the Janus Laser, a railgun, and a two-stage light-gas gun.
Atomistic Molecular Dynamics Simulations of Shock Compressed Quartz
Farrow, Matthew R
2011-01-01
Atomistic non-equilibrium molecular dynamics (NEMD) simulations of shock wave compression of quartz have been performed using the so-called BKS semi-empirical potential of van Beest, Kramer and van Santen to construct the Hugoniot of quartz. Our scheme mimics the real world experimental set up by using a flyer-plate impactor to initiate the shock wave and is the first shock wave simulation that uses a geom- etry optimised system of a polar slab in a 3-dimensional system employing periodic boundary conditions. Our scheme also includes the relaxation of the surface dipole in the polar quartz slab which is an essential pre-requisite to a stable simulation. The original BKS potential is unsuited to shock wave calculations and so we propose a simple modification. With this modification, we find that our calculated Hugoniot is in good agreement with experimental shock wave data up to 25 GPa, but significantly diverges beyond this point. We conclude that our modified BKS potential is suitable for quartz under repres...
Shock waves in disordered media
Ghofraniha, N; Folli, V; DelRe, E; Conti, C
2012-01-01
We experimentally investigate the interplay between spatial shock waves and the degree of disorder during nonlinear optical propagation in a thermal defocusing medium. We characterize the way the shock point is affected by the amount of disorder and scales with wave amplitude. Evidence for the existence of a phase diagram in terms of nonlinearity and amount of randomness is reported. The results are in quantitative agreement with a theoretical approach based on the hydrodynamic approximation.
Compressive passive millimeter wave imager
Gopalsami, Nachappa; Liao, Shaolin; Elmer, Thomas W; Koehl, Eugene R; Heifetz, Alexander; Raptis, Apostolos C
2015-01-27
A compressive scanning approach for millimeter wave imaging and sensing. A Hadamard mask is positioned to receive millimeter waves from an object to be imaged. A subset of the full set of Hadamard acquisitions is sampled. The subset is used to reconstruct an image representing the object.
1998-01-01
We construct the simplest solution of the Einstein equations that incorporates a shock-wave into a standard Friedmann-Robertson-Walker metric whose equation of state accounts for the Hubble constant and the microwave background radiation temperature. This produces a new solution of the Einstein equations from which we are able to derive estimates for the shock position at present time. We show that the distance from the shock-wave to the center of the explosion at present time is comparable t...
Diffusive Shock Acceleration at Cosmological Shock Waves
Kang, Hyesung
2012-01-01
We reexamine nonlinear diffusive shock acceleration (DSA) at cosmological shocks in the large scale structure of the Universe, incorporating wave-particle interactions that are expected to operate in collisionless shocks. Adopting simple phenomenological models for magnetic field amplification (MFA) by cosmic-ray (CR) streaming instabilities and Alfv'enic drift, we perform kinetic DSA simulations for a wide range of sonic and Alfv'enic Mach numbers and evaluate the CR injection fraction and acceleration efficiency. In our DSA model the CR acceleration efficiency is determined mainly by the sonic Mach number Ms, while the MFA factor depends on the Alfv'enic Mach number and the degree of shock modification by CRs. We show that at strong CR modified shocks, if scattering centers drift with an effective Alfv'en speed in the amplified magnetic field, the CR energy spectrum is steepened and the acceleration efficiency is reduced significantly, compared to the cases without such effects. As a result, the postshock C...
Shock waves in polycrystalline iron.
Kadau, Kai; Germann, Timothy C; Lomdahl, Peter S; Albers, Robert C; Wark, Justin S; Higginbotham, Andrew; Holian, Brad Lee
2007-03-30
The propagation of shock waves through polycrystalline iron is explored by large-scale atomistic simulations. For large enough shock strengths the passage of the wave causes the body-centered-cubic phase to transform into a close-packed phase with most structure being isotropic hexagonal-close-packed (hcp) and, depending on shock strength and grain orientation, some fraction of face-centered-cubic (fcc) structure. The simulated shock Hugoniot is compared to experiments. By calculating the extended x-ray absorption fine structure (EXAFS) directly from the atomic configurations, a comparison to experimental EXAFS measurements of nanosecond-laser shocks shows that the experimental data is consistent with such a phase transformation. However, the atomistically simulated EXAFS spectra also show that an experimental distinction between the hcp or fcc phase is not possible based on the spectra alone.
Hugoniot Measurements of Silicon Shock Compressed to 25 Mbar
Henderson, B.; Polsin, D. N.; Boehly, T. R.; Gregor, M. C.; Hu, S. X.; Collins, G. W.; Rygg, J. R.; Fratanduono, D. E.; Celliers, P. M.
2016-10-01
We present results of laser-driven shock experiments that compressed silicon samples to 25 Mbar. Impedance matching to a quartz reference provided Hugoniot data. Since silicon is opaque, a quartz witness was placed adjacent to the silicon samples; this afforded the use of the unsteady wave correction to increase the precision of the transit-time measurements of shock velocity. Results are compared both SESAME tables and to quantum molecular dynamics calculations. This material is based upon work supported by the Department Of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Directional amorphization of boron carbide subjected to laser shock compression
Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; LaSalvia, Jerry C.; Wehrenberg, Christopher E.; Behler, Kristopher D.; Meyers, Marc A.
2016-10-01
Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45˜50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B4C.
Similarity solution of the shock wave propagation in water
Directory of Open Access Journals (Sweden)
Muller M.
2007-11-01
Full Text Available This paper presents the possibility of calculation of propagation of a shock wave generated during the bubble collapse in water including the dissipation effect. The used semi-empirical model is based on an assumption of similarity between the shock pressure time profiles in different shock wave positions. This assumption leads to a system of two ordinary differential equations for pressure jump and energy at the shock front. The NIST data are used for the compilation of the equation of state, which is applied to the calculation of the shock wave energy dissipation. The initial conditions for the system of equations are obtained from the modified method of characteristics in the combination with the differential equations of cavitation bubble dynamics, which considers viscous compressible liquid with the influence of surface tension. The initial energy of the shock wave is estimated from the energy between the energies of the bubble growth to the first and second maximum bubble radii.
Shock wave-droplet interaction
Habibi Khoshmehr, Hamed; Krechetnikov, Rouslan
2016-11-01
Disintegration of a liquid droplet under the action of a shock wave is experimentally investigated. The shock wave-pulse is electromagnetically generated by discharging a high voltage capacitor into a flat spiral coil, above which an isolated circular metal membrane is placed in a close proximity. The Lorentz force arising due to the eddy current induced in the membrane abruptly accelerates it away from the spiral coil thus generating a shock wave. The liquid droplet placed at the center of the membrane, where the maximum deflection occurs, is disintegrated in the process of interaction with the shock wave. The effects of droplet viscosity and surface tension on the droplet destruction are studied with high-speed photography. Water-glycerol solution at different concentrations is used for investigating the effect of viscosity and various concentrations of water-sugar and water-ethanol solution are used for studying the effect of surface tension. Here we report on how the metamorphoses, which a liquid drop undergoes in the process of interaction with a shock wave, are affected by varied viscosity and surface tension.
Interaction of a swept shock wave and a supersonic wake
He, G.; Zhao, Y. X.; Zhou, J.
2017-03-01
The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.
Interaction of a swept shock wave and a supersonic wake
He, G.; Zhao, Y. X.; Zhou, J.
2017-09-01
The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.
Planar shock wave sliding over a water layer
Rodriguez, V.; Jourdan, G.; Marty, A.; Allou, A.; Parisse, J.-D.
2016-08-01
In this work, we conduct experiments to study the interaction between a horizontal free water layer and a planar shock wave that is sliding over it. Experiments are performed at atmospheric pressure in a shock tube with a square cross section (200× 200 mm^2) for depths of 10, 20, and 30 mm; a 1500-mm-long water layer; and two incident planar shock waves having Mach numbers of 1.11 and 1.43. We record the pressure histories and high-speed visualizations to study the flow patterns, surface waves, and spray layers behind the shock wave. We observe two different flow patterns with ripples formed at the air-water interface for the weaker shock wave and the dispersion of a droplet mist for the stronger shock wave. From the pressure signals, we extract the delay time between the arrival of the compression wave into water and the shock wave in air at the same location. We show that the delay time evolves with the distance traveled over the water layer, the depth of the water layer, and the Mach number of the shock wave.
Effects of shock topology on temperature field in compressible turbulence
Ni, Qionglin
2015-01-01
Effects of two types of shock topology, namely, small-scale shocklet and large-scale shock wave, on the statistics of temperature in compressible turbulence were investigated by simulations. The shocklet and shock wave are caused by the solenoidal and compressive modes of driven forces, respectively. Hereafter, the related two flows are called as SFT and CFT, respectively. It shows that in SFT the temperature spectrum follows the k^-5/3 power law, and the temperature field has "ramp-cliff" structures. By contrast, in CFT the temperature spectrum obeys the k^-2 power law, and the temperature field is dominated by large-scale rarefaction and compression. The power-law exponents for the p.d.f. of large negative dilatation are -2.5 in SFT and -3.5 in CFT, close to theoretical values. For the isentropic assumption of thermodynamic variables, the derivation in SFT grows with the turbulent Mach number (Mt), and for same Mt, the variables in CFT are more anisentropic. The angle statistics shows that the temperature g...
Institute of Scientific and Technical Information of China (English)
王波; 陈东林; 周留成; 何卫锋
2014-01-01
纳秒脉冲、千兆瓦级激光辐照金属材料产生高压等离子体冲击波，作用于金属材料表面并向内传播，产生残余压应力场。但在单次冲击加载时，残余压应力场中心出现的残余压应力值小于加载边缘，应用理论分析和实验测试的方法解释了这一过程，并结合激光诱导冲击波Fabbro方程和TC4钛合金动态响应模型，建立了不同形式冲击波加载TC4钛合金的数值仿真模型，分析了冲击波压力、作用时间和加载形式对中心压应力缺失的影响。%The high pressure plasma shock wave induced by nanosecond pulse and 1 000 MW laser irradiation on the metal materials will propagate into the materials and impart residual compressive stresses. But when shock wave was singly loaded, the lower residual stress at the center of the loading zone compared to those away from the center will be induced. This process is proved by theorems and experiments. Moreover, the Fabbro equation of plasma shock wave and dynamic response of TC4 titanium alloy was calculated in the numerical model of different shock wave loading, the influence of the shock wave pressure, the actuation duration and the loading shape on residual stress drop at the center was discussed.
Shock compression experiments on Lithium Deuteride single crystals.
Energy Technology Data Exchange (ETDEWEB)
Knudson, Marcus D.; Desjarlais, Michael Paul; Lemke, Raymond W.
2014-10-01
S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between %7E200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to %7E900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.
Thermal relaxation in a dense liquid under shock compression
Tsai, D. H.; Trevino, S. F.
1981-11-01
We have studied by means of molecular dynamics the propagation of a planar shock wave in a dense, three-dimensional column of a simple modified Lennard-Jones liquid. The column is 49.37σ2 in cross section, and 238.5σ in length, where σ is the length parameter in the potential. The column contains approximately 10 000 atoms. It is initially in equilibrium at a density of 0.85σ-3 and temperature of 1.16ɛk, where ɛ is the energy parameter in the potential. Shock compression is effected by causing the column to move in the longitudinal direction with a velocity of - Up and to collide with its mirror image across a mirror located at the origin. From the motion of the atoms in response to this kind of excitation, we calculate the shock velocity and the shock-front structure in the liquid, as well as the profiles of mass density, stress distribution, and energy density behind the shock front. Our shock-front structure agrees well with that obtained from the Navier-Stokes equations, but we also find important differences between our shock profiles and those postulated or computed from the continuum theory. In particular, we find that in 4×10-11 s, the longest time of our calculations, the stress components did not relax to a hydrostatic condition, and the corresponding kinetic temperature profile showed a relaxation process similar to what we found earlier in a crystalline solid. We examine the atomistic mechanisms of the various relaxation processes, and discuss their implications on the shock compression of dense systems of solids and liquids as opposed to rarefield systems of gases.
Shock compression of [001] single crystal silicon
Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B. A.; Bringa, E. M.; Meyers, M. A.
2016-05-01
Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.
Compression ignition of hydrogen-containing mixtures in shock tubes
Medvedev, S. P.; Gelfand, B. E.; Khomik, S. V.; Agafonov, G. L.
2010-12-01
The state of the art of the problem of discrepancy between the values measured in shock tubes and calculated for the delay of ignition of hydrogen-containing systems has been analyzed. It is shown that in the low-temperature region the off-design appearance of reaction sites leads to the propagation of a flame in a mixture heated by a reflected shock wave. The parameter of the time of mixture combustion in a deflagration regime has been introduced and the use of it together with the calculated delay in self-ignition for delimitation and classification of thermal and gas-dynamic phenomena on compression ignition of hydrogen-containing mixtures in shock tubes has been suggested.
Shock Compression of Liquid Helium to 56 GPa (560) Kbar
Nellis, W. J.; Holmes, N. C.; Mitchell, A. C.; Trainor, R. J.; Governo, G. K.; Ross, M.; Young, D. A.
1985-01-01
Shock-wave data are presented for liquid helium which has been compressed to densities up to five times greater than the normal liquid. The helium was heated to temperatures up to 21,000 K, while the maximum pressure attained was 56 GPa. The properties of helium and hydrogen are important for modeling the giant planets Saturn and Jupiter where these elements are the major constituents. Conditions on Saturn are of particular interest because studies have suggested that this planet has an internal energy source which is associated with unmixing and gravitational separation the hydrogen-helium fluid at pressures below 1 TPa. The existence of this phase transition depends very sensitively on the hydrogen and helium equation of state. In the experiments, strong shock waves were generated by the impact of planar projectiles into cryogenic specimen holders.
Shock compression of liquid helium to 56 GPa (560 kbar)
Nellis, W. J.; Holmes, N. C.; Mitchell, A. C.; Governo, G. K.; Ross, M.; Young, D. A.; Trainor, R. J.
1984-01-01
Shock-wave data are presented for liquid helium which has been compressed to densities up to five times greater than the normal liquid. The helium was heated to temperatures up to 21,000 K, while the maximum pressure attained was 56 GPa. The properties of helium and hydrogen are important for modeling the giant planets Saturn and Jupiter where these elements are the major constituents. Conditions on Saturn are of particular interest because studies have suggested that this planet has an internal energy source which is associated with unmixing and gravitational separation of the hydrogen-helium fluid at pressures below 1 TPa. The existence of this phase transition depends very sensitively on the hydrogen and helium equation of state. In the experiments, strong shock waves were generated by the impact of planar projectiles into cryogenic specimen holders.
Cavitation inception following shock wave passage
Ohl, C.D.
2002-01-01
Cavitation bubble nucleation following the passage of an extracorporeal shock wave lithotripter pulse is investigated experimentally and numerically. In the experiments two configurations are considered: Free passage of the shock wave, and reflection of the shock wave from a rigid reflector. The nuc
Cavitation inception following shock wave passage
Ohl, C.D.
2002-01-01
Cavitation bubble nucleation following the passage of an extracorporeal shock wave lithotripter pulse is investigated experimentally and numerically. In the experiments two configurations are considered: Free passage of the shock wave, and reflection of the shock wave from a rigid reflector. The nuc
Numerical Study of Shock Waves Propagating in an Elbow : 1st Report, A Rectangular Elbow
1993-01-01
In this paper, the shock waves propagating in a rectangular elbow were investigated numerically in order to clarify how the transmitted shock wave past the elbow is stabilized to the uniform shock and the flow field induced by the shock. The computations were carried out by solving the two-dimensional compressible Navier-Stokes equations by means of the TVD finite difference method. The calculations were performed for three incident shock strengths and three Reynolds numbers of the flow, and ...
Kasimov, Aslan R.
2013-03-08
We propose the following model equation, ut+1/2(u2−uus)x=f(x,us) that predicts chaotic shock waves, similar to those in detonations in chemically reacting mixtures. The equation is given on the half line, x<0, and the shock is located at x=0 for any t≥0. Here, us(t) is the shock state and the source term f is taken to mimic the chemical energy release in detonations. This equation retains the essential physics needed to reproduce many properties of detonations in gaseous reactive mixtures: steady traveling wave solutions, instability of such solutions, and the onset of chaos. Our model is the first (to our knowledge) to describe chaos in shock waves by a scalar first-order partial differential equation. The chaos arises in the equation thanks to an interplay between the nonlinearity of the inviscid Burgers equation and a novel forcing term that is nonlocal in nature and has deep physical roots in reactive Euler equations.
On the Behaviour of Porcine Adipose and Skeletal Muscle Tissues under Shock Compression
2012-09-01
effect of shock wave compression on bacterial -loaded broths and emulsions [54] . . . . . . . . . . . . . . . . . . . . . . . 69 4.1 Air performance...pression on bacterial -loaded broths and emulsions [54] 69 terial broths. Their initial experiment involved shock-compression of samples to high pressures...when coated with a reflective silver pigment . In addition, dynamic testing involving spallation of a PMMA block with a rear surface coating of the
Nonstandard analysis and jump conditions for converging shock waves
Baty, Roy S.; Farassat, F.; Tucker, Don H.
2008-06-01
Nonstandard analysis is an area of modern mathematics that studies abstract number systems containing both infinitesimal and infinite numbers. This article applies nonstandard analysis to derive jump conditions for one-dimensional, converging shock waves in a compressible, inviscid, perfect gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. Predistributions of the Heaviside function and the Dirac delta measure are introduced to model the flow parameters across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the flow parameters.
Ionization Front and Shock Wave Structures in Microwave Propulsion
Takahashi, M.; Miyamoto, H.; Okuno, Y.; Ohnishi, N.
A two-dimensional finite-difference time domain code was coupled with compressible fluid calculation and a simple ionization model to reproduce microwave propagation and shock formation in atmospheric microwave discharge. Plasma filaments are driven toward the microwave source at the atmospheric pressure, and the distance between filaments is one-quarter of themicrowave wavelength as predicted in previous works. The strong shock wave is generated due to the high electron density and the large energy absorption. On the other hand, the plasma becomes diffusive at the lower pressure so that the shock wave weakens as a result of smaller energy absorption.
Effects of shock structure on temperature field in compressible turbulence
Ni, Qionglin; Chen, Shiyi
2014-11-01
Effects of shock structure on temperature in compressible turbulence were investigated. The small-scale shocklets and large-scale shock waves were appeared in the flows driven by solenoidal and compressive forcings, i.e. SFT & CFT, respectively. In SFT the temperature had Kolmogorov spectrum and ramp-cliff structures, while in CFT it obeyed Burgers spectrum and was dominated by large-scale rarefaction and compression. The power-law exponents for the p.d.f. of large negative dilatation were -2.5 in SFT and -3.5 in CFT, approximately corresponded to model results. The isentropic approximation of thermodynamic variables showed that in SFT, the isentropic derivation was reinforced when turbulent Mach number increased. At similar turbulent Mach number, the variables in CFT exhibited more anisentropic. It showed that the transport of temperature was increased by the small-scale viscous dissipation and the large-scale pressure-dilatation. The distribution of positive and negative components of pressure-dilatation confirmed the mechanism of negligible pressure-dilatation at small scales. Further, the positive skewness of p.d.f.s of pressure-dilatation implied that the conversion from kinetic to internal energy by compression was more intense than the opposite process by rarefaction.
Shock wave consolidated MgB 2 bulk samples
Matsuzawa, Hidenori; Tamaki, Hideyuki; Ohashi, Wataru; Kakimoto, Etsuji; Dohke, Kiyotaka; Atou, Toshiyuki; Fukuoka, Kiyoto; Kikuchi, Masae; Kawasaki, Masashi; Takano, Yoshihiko
2004-10-01
Commercially available MgB 2 powders were consolidated into bulk samples by two different shock wave consolidation methods: underwater shock consolidation method and gun method. Resistance vs. temperature of the samples was measured by the four-terminal method for pulsed currents of up to 3 A in self-field, as well as Vickers hardness, SEM micrographs of fraction surfaces, packing densities, and X-ray diffraction patterns. These results, in comparison with cold isostatic pressed samples, indicated that the underwater shock consolidated sample was superior in grain connectivity to the others. This is probably because the underwater shock consolidation generated most anisotropic and hence high frictional, compressive, intergrain forces.
Shock wave consolidated MgB{sub 2} bulk samples
Energy Technology Data Exchange (ETDEWEB)
Matsuzawa, Hidenori; Tamaki, Hideyuki; Ohashi, Wataru; Kakimoto, Etsuji; Dohke, Kiyotaka; Atou, Toshiyuki; Fukuoka, Kiyoto; Kikuchi, Masae; Kawasaki, Masashi; Takano, Yoshihiko
2004-10-01
Commercially available MgB{sub 2} powders were consolidated into bulk samples by two different shock wave consolidation methods: underwater shock consolidation method and gun method. Resistance vs. temperature of the samples was measured by the four-terminal method for pulsed currents of up to 3 A in self-field, as well as Vickers hardness, SEM micrographs of fraction surfaces, packing densities, and X-ray diffraction patterns. These results, in comparison with cold isostatic pressed samples, indicated that the underwater shock consolidated sample was superior in grain connectivity to the others. This is probably because the underwater shock consolidation generated most anisotropic and hence high frictional, compressive, intergrain forces.
29th International Symposium on Shock Waves
Ranjan, Devesh
2015-01-01
This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion, Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interes...
Burnett-Cattaneo continuum theory for shock waves.
Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon
2011-02-01
We model strong shock-wave propagation, both in the ideal gas and in the dense Lennard-Jones fluid, using a refinement of earlier work, which accounts for the cold compression in the early stages of the shock rise by a nonlinear, Burnett-like, strain-rate dependence of the thermal conductivity, and relaxation of kinetic-temperature components on the hot, compressed side of the shock front. The relaxation of the disequilibrium among the three components of the kinetic temperature, namely, the difference between the component in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, is accomplished at a much more quantitative level by a rigorous application of the Cattaneo-Maxwell relaxation equation to a reference solution, namely, the steady shock-wave solution of linear Navier-Stokes-Fourier theory, along with the nonlinear Burnett heat-flux term. Our new continuum theory is in nearly quantitative agreement with nonequilibrium molecular-dynamics simulations under strong shock-wave conditions, using relaxation parameters obtained from the reference solution.
Tracking the density evolution in counter-propagating shock waves using imaging X-ray scattering
Zastrau, U.; Gamboa, E. J.; Kraus, D.; Benage, J. F.; Drake, R. P.; Efthimion, P.; Falk, K.; Falcone, R. W.; Fletcher, L. B.; Galtier, E.; Gauthier, M.; Granados, E.; Hastings, J. B.; Heimann, P.; Hill, K.; Keiter, P. A.; Lu, J.; MacDonald, M. J.; Montgomery, D. S.; Nagler, B.; Pablant, N.; Schropp, A.; Tobias, B.; Gericke, D. O.; Glenzer, S. H.; Lee, H. J.
2016-07-01
We present results from time-resolved X-ray imaging and inelastic scattering on collective excitations. These data are then employed to infer the mass density evolution within laser-driven shock waves. In our experiments, thin carbon foils are first strongly compressed and then driven into a dense state by counter-propagating shock waves. The different measurements agree that the graphite sample is about twofold compressed when the shock waves collide, and a sharp increase in forward scattering indicates disassembly of the sample 1 ns thereafter. We can benchmark hydrodynamics simulations of colliding shock waves by the X-ray scattering methods employed.
The History of the APS Shock Compression of Condensed Matter Topical Group
Energy Technology Data Exchange (ETDEWEB)
Forbes, J W
2001-05-02
In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wave/high pressure sessions at APS general meetings in even numbered years.
Magnetic Fields inside Extremely Fast Shock Waves
Wiersma, J.
2007-01-01
The aim of my research on magnetic fields in extremely fast shock waves has been to predict the properties of shock waves that move almost with the speed of light. These shocks are created in the tenuous interstellar medium by catastrophic events such as the explosion of stars many times heavier
Magnetic Fields inside Extremely Fast Shock Waves
Wiersma, J.
2007-01-01
The aim of my research on magnetic fields in extremely fast shock waves has been to predict the properties of shock waves that move almost with the speed of light. These shocks are created in the tenuous interstellar medium by catastrophic events such as the explosion of stars many times heavier
Experimental methods of shock wave research
Seiler, Friedrich
2016-01-01
This comprehensive and carefully edited volume presents a variety of experimental methods used in Shock Waves research. In 14 self contained chapters this 9th volume of the “Shock Wave Science and Technology Reference Library” presents the experimental methods used in Shock Tubes, Shock Tunnels and Expansion Tubes facilities. Also described is their set-up and operation. The uses of an arc heated wind tunnel and a gun tunnel are also contained in this volume. Whenever possible, in addition to the technical description some typical scientific results obtained using such facilities are described. Additionally, this authoritative book includes techniques for measuring physical properties of blast waves and laser generated shock waves. Information about active shock wave laboratories at different locations around the world that are not described in the chapters herein is given in the Appendix, making this book useful for every researcher involved in shock/blast wave phenomena.
Effects of Surf Zone Sediment Properties on Shock Wave Behavior
2016-06-07
to be a first order factor. In addition, modeling predictions require the compressibility of the sediments at high and low pressures . The objective...sands in a test tank and initiate shock waves with a high energy laser system. The results will be used to validate numercal model predictions of
Stationary one-dimensional dispersive shock waves
Kartashov, Yaroslav V
2011-01-01
We address shock waves generated upon the interaction of tilted plane waves with negative refractive index defect in defocusing media with linear gain and two-photon absorption. We found that in contrast to conservative media where one-dimensional dispersive shock waves usually exist only as nonstationary objects expanding away from defect or generating beam, the competition between gain and two-photon absorption in dissipative medium results in the formation of localized stationary dispersive shock waves, whose transverse extent may considerably exceed that of the refractive index defect. One-dimensional dispersive shock waves are stable if the defect strength does not exceed certain critical value.
Detonation onset following shock wave focusing
Smirnov, N. N.; Penyazkov, O. G.; Sevrouk, K. L.; Nikitin, V. F.; Stamov, L. I.; Tyurenkova, V. V.
2017-06-01
The aim of the present paper is to study detonation initiation due to focusing of a shock wave reflected inside a cone. Both numerical and experimental investigations were conducted. Comparison of results made it possible to validate the developed 3-d transient mathematical model of chemically reacting gas mixture flows incorporating hydrogen - air mixtures. The results of theoretical and numerical experiments made it possible improving kinetic schemes and turbulence models. Several different flow scenarios were detected in reflection of shock waves all being dependent on incident shock wave intensity: reflecting of shock wave with lagging behind combustion zone, formation of detonation wave in reflection and focusing, and intermediate transient regimes.
SHOCK WAVE IN IONOSPHERE DURING EARTHQUAKE
Directory of Open Access Journals (Sweden)
V.V. Kuznetsov
2016-11-01
Full Text Available Fundamentally new model of the shock wave (SW generation in atmosphere and ionosphere during earthquake is proposed. The model proceeds from the idea of cooperative shock water crystallization in a cloud
Waves near interplanetary shocks observed by STEREO
Aguilar-Rodriguez, E.; Blanco-Cano, X.; Russell, C. T.; Luhmann, J. G.; Krauss-Varban, D.
2007-12-01
We investigate the properties of interplanetary shocks that form ahead of virtually all fast propagating coronal mass ejections (CMEs). Understanding the characteristics of these shocks and their surrounding regions is of great interest as they play a major role in the acceleration of solar energetic particles (SEPs). In this work we study low frequency waves upstream and downstream of interplanetary shocks (IP) observed by the twin spacecraft mission STEREO. In the upstream region waves can be generated by ion beams reflected or otherwise energized at the shock. Downstream the wave spectrum may be formed by both, waves generated locally and waves transmitted through the shock.The efficiency of wave generation and wave convection to the shock depends on the shock Mach number, and the angle between the IMF and the shock normal. Waves can disturb the shock and participate in ion acceleration processes. Multi-point STEREO measurements will allow us to study wave characteristics in different regions near IP shocks and determine the effects that these fluctuations have on particle energization.
History of the APS Topical Group on Shock Compression of Condensed Matter
Energy Technology Data Exchange (ETDEWEB)
Forbes, J W
2001-10-19
In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wavehigh pressure sessions at APS general meetings in even numbered years.
Corrugation of relativistic magnetized shock waves
Lemoine, M; Gremillet, L
2016-01-01
As a shock front interacts with turbulence, it develops corrugation which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating from downstream, outrunning the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provides a general analysis of the corrugation of relativistic magnetized fast shock waves resulting from their interaction with small amplitude disturbances. Transfer functions characterizing the linear response for each of the outgoing modes are calculated as a function of the magnetization of the upstream medium and as a function of the nature of the incoming wave. Interestingly, if the latter is an eigenmode of the upstream plasma, we find that there exists a resonance at which the (linear) response of the shock becomes large or even diverges. This result may have profound consequences on the phenomenology of astrophys...
Shock compression response of forsterite above 250 GPa.
Sekine, Toshimori; Ozaki, Norimasa; Miyanishi, Kohei; Asaumi, Yuto; Kimura, Tomoaki; Albertazzi, Bruno; Sato, Yuya; Sakawa, Youichi; Sano, Takayoshi; Sugita, Seiji; Matsui, Takafumi; Kodama, Ryosuke
2016-08-01
Forsterite (Mg2SiO4) is one of the major planetary materials, and its behavior under extreme conditions is important to understand the interior structure of large planets, such as super-Earths, and large-scale planetary impact events. Previous shock compression measurements of forsterite indicate that it may melt below 200 GPa, but these measurements did not go beyond 200 GPa. We report the shock response of forsterite above ~250 GPa, obtained using the laser shock wave technique. We simultaneously measured the Hugoniot and temperature of shocked forsterite and interpreted the results to suggest the following: (i) incongruent crystallization of MgO at 271 to 285 GPa, (ii) phase transition of MgO at 285 to 344 GPa, and (iii) remelting above ~470 to 500 GPa. These exothermic and endothermic reactions are seen to occur under extreme conditions of pressure and temperature. They indicate complex structural and chemical changes in the system MgO-SiO2 at extreme pressures and temperatures and will affect the way we understand the interior processes of large rocky planets as well as material transformation by impacts in the formation of planetary systems.
Vadyak, J.; Hoffman, J. D.; Bishop, A. R.
1978-01-01
The calculation procedure is based on the method of characteristics for steady three-dimensional flow. The bow shock wave and the internal shock wave system were computed using a discrete shock wave fitting procedure. The general structure of the computer program is discussed, and a brief description of each subroutine is given. All program input parameters are defined, and a brief discussion on interpretation of the output is provided. A number of sample cases, complete with data deck listings, are presented.
Complexity and Shock Wave Geometries
Stanford, Douglas
2014-01-01
In this paper we refine a conjecture relating the time-dependent size of an Einstein-Rosen bridge to the computational complexity of the of the dual quantum state. Our refinement states that the complexity is proportional to the spatial volume of the ERB. More precisely, up to an ambiguous numerical coefficient, we propose that the complexity is the regularized volume of the largest codimension one surface crossing the bridge, divided by $G_N l_{AdS}$. We test this conjecture against a wide variety of spherically symmetric shock wave geometries in different dimensions. We find detailed agreement.
EFFECT OF SHOCK WAVES ON RILL FORMATION
Institute of Scientific and Technical Information of China (English)
Keli ZHANG; Lifang LUO; Shuangcai LI
2004-01-01
Hydraulic mechanism of rill formation was studied theoretically and experimentally.It was assumed that the impact of varied boundary on overland flow results in fluctuating of water surface,and shock waves that may contribute to the formation of rills.Both theoretical derivation and laboratory experiments were used to compare the hydraulic characteristics of flows with and without shock waves.Results showed that shock waves can lead to an increase in flowdepth,flow velocity,and turbulence intensity.Consequently,flow shear stress or stream energy increase dramatically and rill headcuts may occur where shock waves converge.
The microphysics of collisionless shock waves
Marcowith, A; Bykov, A; Dieckman, M E; Drury, L O C; Lembege, B; Lemoine, M; Morlino, G; Murphy, G; Pelletier, G; Plotnikov, I; Reville, B; Riquelme, M; Sironi, L; Novo, A Stockem
2016-01-01
Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebul\\ae, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in-situ observations, analytical and numerical developments. A particular emphasize is made on the different instabilities triggered during the shock formation and in a...
The microphysics of collisionless shock waves
DEFF Research Database (Denmark)
Marcowith, Alexandre; Bret, Antoine; Bykov, Andrei
2016-01-01
galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space...... the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights...... in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics....
Discontinuity of Gas-dynamic Variables in the Center of the Compression Wave
Directory of Open Access Journals (Sweden)
Pavel Viktorovich Bulat
2014-12-01
Full Text Available The purpose of research-the study of the flow in the center of the centered isentropic compression waves. Gas-dynamic discontinuities cover shocks, shockwaves, interfaces and sliding surfaces and also the center of the centered compression wave one-dimensional and two-dimensional. For a long time there has been no analysis of the shockwave structures arising in the center of compression waves. At the same time, the problem of development of supersonic and hypersonic air inlets demands to consider the process of the stream isentropic compression. This problem is connected (three-dimensional case to the problem of arising inside the streams of hinged shocks as opposite to the usual discontinuities not resulted by interaction of supersonic streams, waves and discontinuities, but like from nowhere. This study sets the problem for study in the terms of the developed theory of the interference of gas-dynamic discontinuities of the area of existing solutions for the structures of possible types. We have obtained the relations describing the parameters in the center of the compression wave. We have considered the neutral polar of neither compression meeting the case when in the center of the compression wave there neither shocks nor depression waves. The analysis of properties of the centered compression wave adds to the theory of stationary gas-dynamic discontinuities. We have specified the borders of the shock structure existence area optimal for development of supersonic diffusers.
Physics of Collisionless Shocks Space Plasma Shock Waves
Balogh, André
2013-01-01
The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats both subcritical shocks, which dissipate flow energy by generating anomalous resistance or viscosity, and supercritical shocks. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecti...
Topics on shock waves and coronal seismology
Energy Technology Data Exchange (ETDEWEB)
Costa, A, E-mail: acosta@mail.oac.uncor.edu [Instituto de AstronomIa Teorica y Experimental, CONICET-Cordoba, Laprida 922, 5000 Cordoba (Argentina); Facultad de Ciencias Exactas, Fisica y Naturales, Universidad Nacional de Cordoba, Av. Velez Sarsfield 1611, 5000 Cordoba (Argentina)
2011-07-15
The usual strong and sudden energy release sources that necessarily lead to mode excitation suggest the importance of shocks and nonlinear waves in the corona. We discuss the importance of nonlinear waves as an alternative capable of accurately matching the observational cases of coronal seismology usually interpreted as linear waves. We present two case studies where we explore the goodness of the shock wave interpretation in magnetic structures of the low corona.
The microphysics of collisionless shock waves
DEFF Research Database (Denmark)
Marcowith, Alexandre; Bret, Antoine; Bykov, Andrei;
2016-01-01
Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active...... galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space....... It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments...
[Shock wave treatment for tennis elbow].
Rompe, J D; Theis, C; Maffulli, N
2005-06-01
Randomized controlled trials were evaluated to assess the effectiveness of extracorporeal shock wave treatment in the management of tennis elbow. Five trials had a mediocre methodology and four trials had a high-quality design. Well-designed randomized control trials have provided evidence of the effectiveness of shock wave intervention for tennis elbow.
Numerical simulation of converging shock waves
Yee, Seokjune; Abe, Kanji
We can achieve the high pressure and high temperature state of gas if the shock wave converges stably. In order to check the stability of the converging shock wave, we introduce two kinds of perturbed initial conditions. The Euler equations of conservation form are integrated by using explicit Non-Muscl TVD finite difference scheme.
Investigation on stability of electrohydrodynamic shock waves
Directory of Open Access Journals (Sweden)
A. M. Blokhin
1997-05-01
Full Text Available Well-posedness of a linear mixed problem on stability of electrohydrodynamic shock waves is investigated in the paper. Stability of shock waves for a hydrodynamic model of movement of a continuum with a volume electric charge is proved.
Chen, Ya-Zhou; Zhou, Liu-Cheng; He, Wei-Feng; Sun, Yu; Li, Ying-Hong; Jiao, Yang; Luo, Si-Hai
2017-01-01
Molecular dynamics simulations were used to study the plastic behavior of monocrystalline nickel under shock compression along the [100] and [110] orientations. The shock Hugoniot relation, local stress curve, and process of microstructure development were determined. Results showed the apparent anisotropic behavior of monocrystalline nickel under shock compression. The separation of elastic and plastic waves was also obvious. Plastic deformation was more severely altered along the [110] direction than the [100] direction. The main microstructure phase transformed from face-centered cubic to body-centered cubic and generated a large-scale and low-density stacking fault along the family of { 111 } crystal planes under shock compression along the [100] direction. By contrast, the main mechanism of plastic deformation in the [110] direction was the nucleation of the hexagonal, close-packed phase, which generated a high density of stacking faults along the [110] and [1̅10] directions.
Evolution Of Nonlinear Waves in Compressing Plasma
Energy Technology Data Exchange (ETDEWEB)
P.F. Schmit, I.Y. Dodin, and N.J. Fisch
2011-05-27
Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
Reflection of curved shock waves
Mölder, S.
2017-03-01
Shock curvatures are related to pressure gradients, streamline curvatures and vorticity in flows with planar and axial symmetry. Explicit expressions, in an influence coefficient format, are used to relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. Using higher order, von Neumann-type, compatibility conditions, curved shock theory is applied to calculate the flow near singly and doubly curved shocks on curved surfaces, in regular shock reflection and in Mach reflection. Theoretical curved shock shapes are in good agreement with computational fluid dynamics calculations and experiment.
Reflection of curved shock waves
Mölder, S.
2017-09-01
Shock curvatures are related to pressure gradients, streamline curvatures and vorticity in flows with planar and axial symmetry. Explicit expressions, in an influence coefficient format, are used to relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. Using higher order, von Neumann-type, compatibility conditions, curved shock theory is applied to calculate the flow near singly and doubly curved shocks on curved surfaces, in regular shock reflection and in Mach reflection. Theoretical curved shock shapes are in good agreement with computational fluid dynamics calculations and experiment.
Shock waves on complex networks
Mones, Enys; Vicsek, Tamás; Herrmann, Hans J
2014-01-01
Power grids, road maps, and river streams are examples of infrastructural networks which are highly vulnerable to external perturbations. An abrupt local change of load (voltage, traffic density, or water level) might propagate in a cascading way and affect a significant fraction of the network. Almost discontinuous perturbations can be modeled by shock waves which can eventually interfere constructively and endanger the normal functionality of the infrastructure. We study their dynamics by solving the Burgers equation under random perturbations on several real and artificial directed graphs. Even for graphs with a narrow distribution of node properties (e.g., degree or betweenness), a steady state is reached exhibiting a heterogeneous load distribution, having a difference of one order of magnitude between the highest and average loads. Unexpectedly we find for the European power grid and for finite Watts-Strogatz networks a broad pronounced bimodal distribution for the loads. To identify the most vulnerable...
Shock wave velocity and shock pressure for low density powders : A novel approach
Dijken, D.K.; Hosson, J.Th.M. De
1994-01-01
A novel approach is presented to predict the shock wave velocity as well as the shock wave pressure in powder materials. It is shown that the influence of the specific volume behind the shock wave on shock wave velocity and shock pressure decreases with decreasing initial powder density. The new mod
SHOCK-WAVE VELOCITY AND SHOCK PRESSURE FOR LOW-DENSITY POWDERS - A NOVEL-APPROACH
DIJKEN, DK; DEHOSSON, JTM
1994-01-01
A novel approach is presented to predict the shock wave velocity as well as the shock wave pressure in powder materials. It is shown that the influence of the specific volume behind the shock wave on shock wave velocity and shock pressure decreases with decreasing initial powder density. The new mod
Shock Wave Dynamics in Weakly Ionized Plasmas
Johnson, Joseph A., III
1999-01-01
An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.
28th International Symposium on Shock Waves
2012-01-01
The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.
Shock Wave Emissions of a Sonoluminescing Bubble
Holzfuss, J; Billó, M; Holzfuss, Joachim; Ruggeberg, Matthias; Billo, Andreas
1998-01-01
A single bubble in water is excited by a standing ultrasound wave. At high intensity the bubble starts to emit light. Together with the emitted light pulse, a shock wave is generated in the liquid at collapse time. The time-dependent velocity of the outward-travelling shock is measured with an imaging technique. The pressure in the shock and in the bubble is shown to have a lower limit of 5500 bars. Visualization of the shock and the bubble at different phases of the acoustic cycle reveals previously unobserved dynamics during stable and unstable sonoluminescence.
Overview of shock waves in medicine
Cleveland, Robin O.
2003-10-01
A brief overview of three applications of shock waves is presented. Shock wave lithotripsy (SWL) has been in clinical use for more than 20 years. In the United States it is used to treat more than 80% of kidney stone cases and has wide acceptance with patients because it is a noninvasive procedure. Despite SWLs enormous success there is no agreement on how shock waves comminute stones. There is also a general acceptance that shock waves lead to trauma to the soft tissue of the kidney. Yet there has been little forward progress in developing lithotripters which provide comminution with less side-effects, indeed the original machine is still considered the gold standard. The last decade has seen the advent of new shock wave devices for treating principally musculoskeletal indications, such as plantar fasciitis, tennis elbow, and bone fractures that do not heal. This is referred to as shock wave therapy (SWT). The mechanisms by which SWT works are even less well understood than SWL and the consequences of bioeffects have also not been studied in detail. Shock waves have also been shown to be effective at enhancing drug delivery into cells and assisting with gene transfection. [Work partially supported by NIH.
Shear Viscosity of Aluminium under Shock Compression
Institute of Scientific and Technical Information of China (English)
LIU Fu-Sheng; YANG Mei-Xia; LIU Qi-Wen; CHEN Jun-Xiang; JING Fu-Qian
2005-01-01
@@ Based on the Newtonian viscous fluid model and the analytic perturbation theory of Miller and Ahrens for the oscillatory damping of a sinusoidal shock front, a flyer-impact technique is developed to investigate the effecti veviscosity of shocked aluminium.
Shock wave structure in a lattice gas
Broadwell, James E.; Han, Donghee
2007-05-01
The motion and structure of shock and expansion waves in a simple particle system, a lattice gas and cellular automaton, are determined in an exact computation. Shock wave solutions, also exact, of a continuum description, a model Boltzmann equation, are compared with the lattice results. The comparison demonstrates that, as proved by Caprino et al. ["A derivation of the Broadwell equation," Commun. Math. Phys. 135, 443 (1991)] only when the lattice processes are stochastic is the model Boltzmann description accurate. In the strongest shock wave, the velocity distribution function is the bimodal function proposed by Mott-Smith.
Shock wave dynamics derivatives and related topics
Emanuel, George
2012-01-01
Working knowledge of the relations of various quantities and their derivatives across a shock wave is useful for any advanced research involving shock waves. Although these relations can be derived in principle by any diligent student of the subject, the derivations are often not trivial, and once derived, neither the approach nor the result can be confidently verified. Comprehensive and analytical, Shock Wave Dynamics: Derivatives and Related Topics includes not only the final results but also the methods, which are of great practical value as examples of mathematical procedure in this field.
Shock Wave Profiles in Glass Reinforced Polyester
Boteler, J. Michael; Rajendran, A. M.; Grove, David
1999-06-01
The promise of lightweight armor which is also structurally robust is of particular importance to the Army for future combat vehicles. Fiber reinforced organic matrix composites such as Glass Reinforced Polyester (GRP) are being considered for this purpose due to their lower density and promising dynamic response. The work discussed here extends the prior work of Boteler who studied the delamination strength of GRP and Dandekar and Beaulieu who investigated the compressive and tensile strengths of GRP. In a series of shock wave experiments, the wave profile was examined as a function of propagation distance in GRP. Uniaxial strain was achieved by plate impact in the ARL 102 mm bore single-stage light gas gun. Embedded polyvinylidene flouride (PVDF) stress-rate gauges provided a stress history at three unique locations in the GRP and particle velocity history was recorded with VISAR. The use of Lagrange gauges embedded in such a manner provides a means of calculating the constitutive relationships between specific volume, stress, and particle velocity uniquely with no prior assumptions of the form of constitutive relation. The Lagrangian analysis will be discussed and compared to Lagrangian hydrocode (EPIC) results employing a model to describe the viscoelastic response of the composite material in one-dimension.
Shock wave profiles in polymer matrix composite
Boteler, J. Michael; Rajendran, A. M.; Grove, David
2000-04-01
The promise of lightweight armor which is also structurally robust is of particular importance to the Army for future combat vehicles. Fiber reinforced organic matrix composites such as Polymer Matrix Composite (PMC) are being considered for this purpose due to their lower density and promising dynamic response. The work discussed here extends the prior work of Boteler who studied the delamination strength of PMC and Dandekar and Beaulieu who investigated the compressive and tensile strengths of PMC. In a series of shock wave experiments, the wave profile was examined as a function of propagation distance in PMC. Uniaxial strain was achieved by symmetric plate impact in the ARL 102 mm bore single-stage light gas gun. Embedded polyvinylidene flouride (PVDF) stress-rate gauges provided a stress history at three unique locations in the PMC and particle velocity history was recorded with VISAR. All stress data was compared to a Lagrangian hydrocode (EPIC) employing a model to describe the viscoelastic response of the composite material in one-dimension. The experimental stress histories displayed attenuation and loading properties in good agreement with model predictions. However, the unloading was observed to be markedly different than the hydrocode simulations. These results are discussed.
The microphysics of collisionless shock waves
Marcowith, A.; Bret, A.; Bykov, A.; Dieckman, M. E.; O'C Drury, L.; Lembège, B.; Lemoine, M.; Morlino, G.; Murphy, G.; Pelletier, G.; Plotnikov, I.; Reville, B.; Riquelme, M.; Sironi, L.; Stockem Novo, A.
2016-04-01
Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.
The microphysics of collisionless shock waves.
Marcowith, A; Bret, A; Bykov, A; Dieckman, M E; Drury, L O'C; Lembège, B; Lemoine, M; Morlino, G; Murphy, G; Pelletier, G; Plotnikov, I; Reville, B; Riquelme, M; Sironi, L; Novo, A Stockem
2016-04-01
Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.
ShockWave science and technology reference library
2007-01-01
This book is the first of several volumes on solids in the Shock Wave Science and Technology Reference Library. These volumes are primarily concerned with high-pressure shock waves in solid media, including detonation, high-velocity impact, and penetration. Of the eight chapters in this volume three chapters survey recent, exciting experimental advances in - ultra-short shock dynamics at the atomic and molecular scale (D.S. More, S.D. Mcgrane, and D.J. Funk), - Z accelerator for ICE and Shock compression (M.D. Knudson), and - failure waves in glass and ceramics (S.J. Bless and N.S. Brar). The subsequent four chapters are foundational, and cover the subjects of - equation of state (R. Menikoff), - elastic-plastic shock waves (R. Menikoff), - continuum plasticity (R. M. Brannon), and - numerical methods (D. J. Benson). The last chapter, but not the least, describes a tour de force illustration of today’s computing power in - modeling heterogeneous reactive solids at the grain scale (M.R. Baer). All chapters a...
Mechanism of laser-induced plasma shock wave evolution in air
Institute of Scientific and Technical Information of China (English)
Zhao Rui; Liang Zhong-Cheng; Han Bing; Zhang Hong-Chao; Xu Rong-Qing; Lu Jian; Ni Xiao-Wu
2009-01-01
A theoretical model is proposed to describe the mechanism of laser-induced plasma shock wave evolution in air. To verify the validity of the theoretical model, an optical beam deflection technique is employed to track the plasma shock wave evolution process. The theoretical model and the experimental signals are found to be in good agreement with each other. It is shown that the laser-induced plasma shock wave undergoes formation, increase and decay processes; the increase and the decay processes of the laser-induced plasma shock wave result from the overlapping of the compression wave and the rarefaction wave, respectively. In addition, the laser-induced plasma shock wave speed and pressure distributions, both a function of distance, are presented.
Photoacoustic shock wave emission and cavitation from structured optical fiber tips
Energy Technology Data Exchange (ETDEWEB)
Mohammadzadeh, M.; Gonzalez-Avila, S. R.; Ohl, C. D., E-mail: cdohl@ntu.edu.sg [School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Wan, Y. C.; Wang, X.; Zheng, H. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore)
2016-01-11
Photoacoustic waves generated at the tip of an optical fiber consist of a compressive shock wave followed by tensile diffraction waves. These tensile waves overlap along the fiber axis and form a cloud of cavitation bubbles. We demonstrate that shaping the fiber tip through micromachining alters the number and direction of the emitted waves and cavitation clouds. Shock wave emission and cavitation patterns from five distinctively shaped fiber tips have been studied experimentally and compared to a linear wave propagation model. In particular, multiple shock wave emission and generation of strong tension away from the fiber axis have been realized using modified fiber tips. These altered waveforms may be applied for novel microsurgery protocols, such as fiber-based histotripsy, by utilizing bubble-shock wave interaction.
Dynamic Shock Compression of Copper to Multi-Megabar Pressure
Haill, T. A.; Furnish, M. D.; Twyeffort, L. L.; Arrington, C. L.; Lemke, R. W.; Knudson, M. D.; Davis, J.-P.
2015-11-01
Copper is an important material for a variety of shock and high energy density applications and experiments. Copper is used as a standard reference material to determine the EOS properties of other materials. The high conductivity of copper makes it useful as an MHD driver layer in high current dynamic materials experiments on Sandia National Laboratories Z machine. Composite aluminum/copper flyer plates increase the dwell time in plate impact experiments by taking advantage of the slower wave speeds in copper. This presentation reports on recent efforts to reinstate a composite Al/Cu flyer capability on Z and to extend the range of equation-of-state shock compression data through the use of hyper-velocity composite flyers and symmetric planar impact with copper targets. We will present results from multi-dimensional ALEGRA MHD simulations, as well as experimental designs and methods of composite flyer fabrication. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Directory of Open Access Journals (Sweden)
A. A. Lubchich
2005-07-01
Full Text Available Characteristics of small amplitude plane waves within the medium separated by the plane discontinuity into two half spaces are analysed. The approximation of the ideal one-fluid magnetohydrodynamics (MHD is used. The discontinuities with the nonzero mass flux across them are mainly examined. These are fast or slow shock waves and rotational discontinuities. The dispersion equation for MHD waves within each of half space is obtained in the reference frame connected with the discontinuity surface. The solution of this equation permits one to determine the wave vectors versus the parameter c_{p}, which is the phase velocity of surface discontinuity oscillations. This value of c_{p} is common for all MHD waves and determined by an incident wave or by spontaneous oscillations of the discontinuity surface. The main purpose of the study is a detailed analysis of the dispersion equation solution. This analysis let us draw the following conclusions. (I For a given c_{p}, ahead or behind a discontinuity at most, one diverging wave can transform to a surface wave damping when moving away from the discontinuity. The surface wave can be a fast one or, in rare cases, a slow, magnetoacoustic one. The entropy and Alfvén waves always remain in a usual homogeneous mode. (II For certain values of c_{p} and parameters of the discontinuity behind the front of the fast shock wave, there can be four slow magnetoacoustic waves, satisfying the dispersion equation, and none of the fast magnetoacoustic waves. In this case, one of the four slow magnetoacoustic waves is incident on the fast shock wave from the side of a compressed medium. It is shown that its existence does not contradict the conditions of the evolutionarity of MHD shock waves. The four slow magnetoacoustic waves, satisfying the dispersion equation, can also exist from either side of a slow shock wave or rotational discontinuity. (III The
Dispersive shock waves with nonlocal nonlinearity
Barsi, Christopher; Sun, Can; Fleischer, Jason W
2007-01-01
We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.
Dispersive shock waves with nonlocal nonlinearity.
Barsi, Christopher; Wan, Wenjie; Sun, Can; Fleischer, Jason W
2007-10-15
We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.
Shock Wave Science and Technology Reference Library
2007-01-01
Shock waves in multiphase flows refers to a rich variety of phenomena of interest to physicists, chemists, and fluid dynamicists, as well as mechanical, biomedical and aeronautical engineers. This volume treats shock and expansion waves in (bullet) complex, bubbly liquids (L van Wijngaarden, Y Tomita, V Kedrinskii) and (bullet) cryogenic liquids (M Murakami) and examines the relationship of shock waves with (bullet) phase transitions (A Guha, CF Delale, G Schnerr, MEH van Dongen) (bullet) induced phase transitions (GEA Meier) as well as their interaction with (bullet) solid foams, textiles, porous and granular media (B Skews, DMJ Smeulders, MEH van Dongen, V Golub, O Mirova) All chapters are self-contained, so they can be read independently, although they are of course thematically interrelated. Taken together, they offer a timely reference on shock waves in multiphase flows, including new viewpoints and burgeoning developments. The book will appeal to beginners as well as professional scientists and engineer...
Medical and biomedical applications of shock waves
Loske, Achim M
2017-01-01
This book provides current, comprehensive, and clear explanations of the physics behind medical and biomedical applications of shock waves. Extracorporeal shock wave lithotripsy is one of the greatest medical advances of our time, and its techniques and clinical devices are continuously evolving. Further research continues to improve the understanding of calculi fragmentation and tissue-damaging mechanisms. Shock waves are also used in orthopedics and traumatology. Possible applications in oncology, cardiology, dentistry, gene therapy, cell transfection, transformation of fungi and bacteria, as well as the inactivation of microorganisms are promising approaches for clinical treatment, industrial applications and research. Medical and Biomedical Applications of Shock Waves is useful as a guide for students, technicians and researchers working in universities and laboratories. Chemists, biologists, physicians and veterinarians, involved in research or clinical practice will find useful advice, but also engineer...
Existence Regions of Shock Wave Triple Configurations
Bulat, Pavel V.; Chernyshev, Mikhail V.
2016-01-01
The aim of the research is to create the classification for shock wave triple configurations and their existence regions of various types: type 1, type 2, type 3. Analytical solutions for limit Mach numbers and passing shock intensity that define existence region of every type of triple configuration have been acquired. The ratios that conjugate…
The Boundary Layer Interaction with Shock Wave and Expansion Fan
Institute of Scientific and Technical Information of China (English)
MaratA.Goldfeld; RomanV.Nestoulia; 等
2000-01-01
The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented.They include the study of the shock wave and /or expansion fan action upon the boundary layer,boundary layer sepqartion and its relaxation.Complex events of paired interactions and the flow on compression convex-concave surfaces were studied.The posibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented.Different model configurations for wide range conditions were investigated.Comparison of results for different interactions was carried out.
Song, Yunfei; Yu, Guoyang; Jiang, Lilin; Zheng, Xianxu; Liu, Yuqiang; Yang, Yanqiang
2011-04-01
The shock wave driven by short laser pulse is used to study the damage of brittle material K9 glass. The damage morphology of K9 glass surface indicates that the material has experienced different loading modes, respectively, at the central area and the surrounding area of the shock wave. At the central area of shock wave, the wavefront is plane and has a uniform pressure distribution, the material mainly suffers a longitudinal shock pressure; but on the edge the shock wave, the wavefront is approximately spherical, besides longitudinal pressure, transverse tensile stress will emerge inside the material. In the latter case, the damage threshold of the material is much smaller than that in the case of compressing by longitudinal pressure only. According to the relationship between damage area and shock pressure, an experimental method is proposed to measure the damage threshold of materials under shock loading. The damage threshold of K9 glass under spherical shock wave is measured to be about 1.12 GPa; and the damage threshold under plane shock wave is estimated to be between 1.82 and 1.98 GPa. They are much bigger than the damage threshold under static pressure. This method could also be used to measure the damage threshold of other materials when loaded by dynamic pressure.
Study of interaction between shock wave and unsteady boundary layer
Institute of Scientific and Technical Information of China (English)
董志勇; 韩肇元
2003-01-01
This paper reports theoretical and experimental study of a new type of interaction of a moving shock wave with an unsteady boundary layer. This type of shock wave-boundary layer interaction describes a moving shock wave interaction with an unsteady boundary layer induced by another shock wave and a rarefaction wave. So it is different from the interaction of a stationary shock wave with steady boundary layer, also different from the interaction of a reflected moving shock wave at the end of a shock tube with unsteady boundary layer induced by an incident shock. Geometrical shock dynamics is used for the theoretical analysis of the shock wave-unsteady boundary layer interaction, and a double-driver shock tube with a rarefaction wave bursting diaphragm is used for the experimental investigation in this work.
On the Effects of Viscosity on the Shock Waves for a Hydrodynamical Case—Part I: Basic Mechanism
Directory of Open Access Journals (Sweden)
Huseyin Cavus
2013-01-01
Full Text Available The interaction of shock waves with viscosity is one of the central problems in the supersonic regime of compressible fluid flow. In this work, numerical solutions of unmagnetised fluid equations, with the viscous stress tensor, are investigated for a one-dimensional shock wave. In the algorithm developed the viscous stress terms are expressed in terms of the relevant Reynolds number. The algorithm concentrated on the compression rate, the entropy change, pressures, and Mach number ratios across the shock wave. The behaviour of solutions is obtained for the Reynolds and Mach numbers defining the medium and shock wave in the supersonic limits.
Extracorporeal shock wave lithotripsy in childhood
Energy Technology Data Exchange (ETDEWEB)
Kroovand, R.L.; Harrison, L.H.; McCullough, D.L.
1987-10-01
Extracorporeal shock wave lithotripsy is the treatment of choice for the majority of upper urinary calculi in adults. Technical limitations, including patient size and concerns over post-treatment stone fragment passage, have made the application of extracorporeal shock wave lithotripsy in children less clearly defined. We report the successful application of the Dornier lithotriptor in the management of 18 children (22 kidneys) with upper urinary calculi.
Shock-wave dynamics during oil-filled transformer explosions
Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Utkin, A. V.
2017-05-01
This paper presents a numerical and experimental study of the shock-wave processes evolving inside a closed vessel filled with mineral oil. Obtained experimental Hugoniot data for oil are compared with the corresponding data for water. It is found that compression of mineral oil and water can be described by approximately the same Hugoniot over a wide pressure range. Such similarity allows the use of water instead of mineral oil in the transformer explosion experiments and to describe the compression processes in both liquids using similar equations of state. The Kuznetsov equation of state for water is adopted for a numerical study of mineral oil compression. The features of the evolution of shock waves within mineral oil are analyzed using two-dimensional numerical simulations. Numerical results show that different energy sources may cause different scenarios of loading on the shell. The principal point is the phase transition taking place at relatively high temperatures for the case of high-power energy sources. In this case, a vapor-gaseous bubble emerges that qualitatively changes the dynamics of compression waves and the pattern of loads induced on the shell. Taking into account the features of the process together with the concept of water-oil similarity, the present work presents a new approach for experimental modeling of transformer shell destruction using an explosion with given characteristics in a water-filled shell.
Shock-wave dynamics during oil-filled transformer explosions
Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Utkin, A. V.
2016-08-01
This paper presents a numerical and experimental study of the shock-wave processes evolving inside a closed vessel filled with mineral oil. Obtained experimental Hugoniot data for oil are compared with the corresponding data for water. It is found that compression of mineral oil and water can be described by approximately the same Hugoniot over a wide pressure range. Such similarity allows the use of water instead of mineral oil in the transformer explosion experiments and to describe the compression processes in both liquids using similar equations of state. The Kuznetsov equation of state for water is adopted for a numerical study of mineral oil compression. The features of the evolution of shock waves within mineral oil are analyzed using two-dimensional numerical simulations. Numerical results show that different energy sources may cause different scenarios of loading on the shell. The principal point is the phase transition taking place at relatively high temperatures for the case of high-power energy sources. In this case, a vapor-gaseous bubble emerges that qualitatively changes the dynamics of compression waves and the pattern of loads induced on the shell. Taking into account the features of the process together with the concept of water-oil similarity, the present work presents a new approach for experimental modeling of transformer shell destruction using an explosion with given characteristics in a water-filled shell.
Shock Waves in Dense Hard Disk Fluids
Sirmas, Nick; Tudorache, Marion; Barahona, Javier; Radulescu, Matei I.
2011-01-01
Media composed of colliding hard disks (2D) or hard spheres (3D) serve as good approximations for the collective hydrodynamic description of gases, liquids and granular media. In the present study, the compressible hydrodynamics and shock dynamics are studied for a two-dimensional hard-disk medium at both the continuum and discrete particle level descriptions. For the continuum description, closed form analytical expressions for the inviscid hydrodynamic description, shock Hugoniot, isentropi...
Compression des fichiers son de type wave.
BAKLI, Meriem
2014-01-01
Ce travail de projet de fin d’étude s’intéresse à une étude comparative sur la compression d’un fichier son. La compression est l'action utilisée pour réduire la taille physique d'un bloc d'information.. Il existe plusieurs algorithmes pour la compression comme HUFFMAN, …etc. Nous avons fait la compression d’un fichier son de format WAVE non compressé à un fichier MP3 compressé avec différent format de codage, différent frame et quelque soit le fichier mono où stéréo. A partir ...
Experimental Investigation of Shock Wave Surfing
Parziale, N J; Hornung, H G; Shepherd, J E
2010-01-01
Shock wave surfing is investigated experimentally in GALCIT's Mach 4.0 Ludwieg Tube. Shock wave surfing occurs when a secondary free-body follows the bow shock formed by a primary free-body; an example of shock wave surfing occurs during meteorite breakup. The free-bodies in the current investigation are nylon spheres. During each run in the Ludwieg tube a high speed camera is used to capture a series of schlieren images; edge tracking software is used to measure the position of each sphere. Velocity and acceleration are had from processing the position data. The radius ratio and initial orientation of the two spheres are varied in the test matrix. The variation of sphere radius ratio and initial angle between the centers of gravity are shown to have a significant effect on the dynamics of the system.
A Study of the Weak Shock Wave Propagating over a Porous Wall/Cavity System
Institute of Scientific and Technical Information of China (English)
H.D.KIM; S.J.JUNG; T.AOKI; T.SETOGUCHI
2005-01-01
The present computational study addresses the attenuation of the shock wave propagating in a duct, using a porous wall/cavity system. In the present study, a weak shock wave propagating over the porous wall/cavity system is investigated with computational fluid dynamics. A total variation diminishing scheme is employed to solve the unsteady, two-dimensional, compressible, Navier-Stokes equations. The Mach number of an initial shock wave is changed in the range from 1.02 to 1.12. Several different types of porous wall/cavity systems are tested to investigate the passive control effects. The results show that wall pressure strongly fluctuates due to diffraction and reflection processes of the shock waves behind the incident shock wave. From the results, it is understood that for effective alleviation of tunnel impulse waves, the length of the perforated region should be sufficiently long.
THE INTERACTION BETWEEN SHOCK WAVES AND FOAM IN A SHOCK TUBE
Institute of Scientific and Technical Information of China (English)
施红辉; Kazuhiko Kawai; Motoyuki Itoh; 俞鸿儒; 姜宗林
2002-01-01
An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80 mm in inner diameter, 10 mm in wall thickness and 5 360 mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients α and β are quantitatively determined.
a Study of the Shock Sensitivity of PBX 9501 Damaged by Compressive Loading
Thompson, D. G.; Gustavsen, R. L.; Hooks, D. E.; Peterson, P. D.; DeLuca, R.; Stahl, D. B.; Hagelberg, S. I.; Alcon, R. R.
2007-12-01
We have studied the effects of damage caused by compressive loading on the shock sensitivity of the plastic bonded explosive PBX 9501. PBX 9501 consists of 95 wt. % HMX and 5 wt. % nitroplasticized Estane binder. The binder is a mixture of 49 wt. % Estane® 5703 (BF Goodrich), 49 wt. % Nitroplasticizer (a eutectic mixture of bis(2,2-dinitropropyl)formal and bis(2,2 dinitropropyl)acetal), and 2 wt. % Irganox® 1010 stabilizer. PBX 9501 cubes, 25.4 mm on a side, were compressed to various uniaxial loads in an Instron machine. After loading, 10×10 mm cross-sections, 3.5 mm thick, were taken from the center of each cube. These slices were then subjected to nearly identical 35 kbar shocks. Transmitted shock wave profiles were measured using interface velocimetry (VISAR). Comparison of shock wave growth is a measure of shock sensitivity. Results on four samples indicate little change in sensitivity caused by compressive loading.
Transmission of light waves through normal shocks.
Hariharan, S I; Johnson, D K
1995-11-20
We seek to characterize light waves transmitted through normal shock waves. The investigation is motivated by the need for a theory to support a shadowgraph experiment for flow in a convergent-divergent nozzle. In this experiment light beams are passed through the nozzle transverse to the direction of the flow in which a shock has formed in the vicinity of the throat. We present a formulation and an approximation that yield calculations of the intensity of transmitted waves. We also present experimental results to support the theory. The patterns predicted by the theory compare well with the patterns observed in experiments.
Plasma shock waves excited by THz radiation
Rudin, S.; Rupper, G.; Shur, M.
2016-10-01
The shock plasma waves in Si MOS, InGaAs and GaN HEMTs are launched at a relatively small THz power that is nearly independent of the THz input frequency for short channel (22 nm) devices and increases with frequency for longer (100 nm to 1 mm devices). Increasing the gate-to-channel separation leads to a gradual transition of the nonlinear waves from the shock waves to solitons. The mathematics of this transition is described by the Korteweg-de Vries equation that has the single propagating soliton solution.
Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation
Ridoux, J.; Lardjane, N.; Monasse, L.; Coulouvrat, F.
2017-09-01
Geometrical shock dynamics (GSD) is a simplified model for nonlinear shock-wave propagation, based on the decomposition of the shock front into elementary ray tubes. Assuming small changes in the ray tube area, and neglecting the effect of the post-shock flow, a simple relation linking the local curvature and velocity of the front, known as the A{-}M rule, is obtained. More recently, a new simplified model, referred to as the kinematic model, was proposed. This model is obtained by combining the three-dimensional Euler equations and the Rankine-Hugoniot relations at the front, which leads to an equation for the normal variation of the shock Mach number at the wave front. In the same way as GSD, the kinematic model is closed by neglecting the post-shock flow effects. Although each model's approach is different, we prove their structural equivalence: the kinematic model can be rewritten under the form of GSD with a specific A{-}M relation. Both models are then compared through a wide variety of examples including experimental data or Eulerian simulation results when available. Attention is drawn to the simple cases of compression ramps and diffraction over convex corners. The analysis is completed by the more complex cases of the diffraction over a cylinder, a sphere, a mound, and a trough.
Extracorporeal shock wave therapy for tendinopathies.
Seil, Romain; Wilmes, Philippe; Nührenbörger, Christian
2006-07-01
Shock waves, as applied in urology and gastroenterology, were introduced in the middle of the last decade in Germany to treat different pathologies of the musculoskeletal system, including epicondylitis of the elbow, plantar fasciitis, and calcifying and noncalcifying tendinitis of the rotator cuff. With the noninvasive nature of these waves and their seemingly low complication rate, extracorporeal shock wave therapy (ESWT) seemed a promising alternative to the established conservative and surgical options in the treatment of patients with chronically painful conditions. However, the apparent advantages of the method led to a rapid diffusion and even inflationary use of ESWT; prospective, randomized studies on the mechanisms and effects of shock waves on musculoskeletal tissues were urgently needed to define more accurate indications and optimize therapeutic outcome. This review covers recent international research in the field and presents actual indications and results in therapy of musculoskeletal conditions with ESWT.
Equation of State for Shock Compression of High Distension Solids
Grady, Dennis
2013-06-01
Shock Hugoniot data for full-density and porous compounds of boron carbide, silicon dioxide, tantalum pentoxide, uranium dioxide and playa alluvium are investigated for the purpose of equation-of-state representation of intense shock compression. Complications of multivalued Hugoniot behavior characteristic of highly distended solids are addressed through the application of enthalpy-based equations of state of the form originally proposed by Rice and Walsh in the late 1950's. Additivity of cold and thermal pressure intrinsic to the Mie-Gruneisen EOS framework is replaced by isobaric additive functions of the cold and thermal specific volume components in the enthalpy-based formulation. Additionally, experimental evidence supports acceleration of shock-induced phase transformation on the Hugoniot with increasing levels of initial distention for silicon dioxide, uranium dioxide and possibly boron carbide. Methods for addressing this experimentally observed facet of the shock compression are introduced into the EOS model.
Equation of state for shock compression of distended solids
Grady, Dennis; Fenton, Gregg; Vogler, Tracy
2014-05-01
Shock Hugoniot data for full-density and porous compounds of boron carbide, silicon dioxide, tantalum pentoxide, uranium dioxide and playa alluvium are investigated for the purpose of equation-of-state representation of intense shock compression. Complications of multivalued Hugoniot behavior characteristic of highly distended solids are addressed through the application of enthalpy-based equations of state of the form originally proposed by Rice and Walsh in the late 1950's. Additive measures of cold and thermal pressure intrinsic to the Mie-Gruneisen EOS framework is replaced by isobaric additive functions of the cold and thermal specific volume components in the enthalpy-based formulation. Additionally, experimental evidence reveals enhancement of shock-induced phase transformation on the Hugoniot with increasing levels of initial distension for silicon dioxide, uranium dioxide and possibly boron carbide. Methods for addressing this experimentally observed feature of the shock compression are incorporated into the EOS model.
Laser driven single shock compression of fluid deuterium from 45 to 220 GPa
Energy Technology Data Exchange (ETDEWEB)
Hicks, D; Boehly, T; Celliers, P; Eggert, J; Moon, S; Meyerhofer, D; Collins, G
2008-03-23
The compression {eta} of liquid deuterium between 45 and 220 GPa under laser-driven shock loading has been measured using impedance matching to an aluminum (Al) standard. An Al impedance match model derived from a best fit to absolute Hugoniot data has been used to quantify and minimize the systematic errors caused by uncertainties in the high-pressure Al equation of state. In deuterium below 100 GPa results show that {eta} {approx_equal} 4.2, in agreement with previous impedance match data from magnetically-driven flyer and convergent-explosive shock wave experiments; between 100 and 220 GPa {eta} reaches a maximum of {approx}5.0, less than the 6-fold compression observed on the earliest laser-shock experiments but greater than expected from simple extrapolations of lower pressure data. Previous laser-driven double-shock results are found to be in good agreement with these single-shock measurements over the entire range under study. Both sets of laser-shock data indicate that deuterium undergoes an abrupt increase in compression at around 110 GPa.
Shock wave loading of a magnetic guide
Kindt, L.
2011-10-01
velocities and a shock wave is created between the two velocity regions. In order to conserve number of particle, momentum and enthalpy the density of the atomic beam passing through the shock wave must increase. We have build such a shock wave in an atomic beam and observed the density increase due to this. As an extra feature having a subsonic beam on a downward slope adds an extra density increase due to gravitational compression. Loading ultra cold atoms into a 3D trap from the dense subsonic beam overcomes the problem with 2D cooling and thermal conductivity. This was done and evaporative cooling was applied creating an unprecedented large number rubidium BEC.
Pump and probe measurements of shock-compressed states
Nakamura, K G; Hironaka, Y; Kondo, K
2002-01-01
A pump and probe technique is used for time-resolved measurements of the microstructure of condensed matter under laser shock compression. Two types of experiment (picosecond x-ray diffraction and nanosecond Raman spectroscopy) are performed. The picosecond time-resolved x-ray diffraction results for laser-shocked Si(111) give the time evolution of the strain profiles in 60 ps intervals. Nanosecond time-resolved Raman spectroscopy for laser-shocked poly-tetrafluoroethylene shows transient bond scission of the polymer chain.
High-energy synchrotron X-ray radiography of shock-compressed materials
Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.
2015-06-01
This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.
The shock waves in decaying supersonic turbulence
Smith, M D; Zuev, J M; Smith, Michael D.; Low, Mordecai-Mark Mac; Zuev, Julia M.
2000-01-01
We here analyse numerical simulations of supersonic, hypersonic andmagnetohydrodynamic turbulence that is free to decay. Our goals are tounderstand the dynamics of the decay and the characteristic properties of theshock waves produced. This will be useful for interpretation of observations ofboth motions in molecular clouds and sources of non-thermal radiation. We find that decaying hypersonic turbulence possesses an exponential tail offast shocks and an exponential decay in time, i.e. the number of shocks isproportional to t exp (-ktv) for shock velocity jump v and mean initialwavenumber k. In contrast to the velocity gradients, the velocity ProbabilityDistribution Function remains Gaussian with a more complex decay law. The energy is dissipated not by fast shocks but by a large number of low Machnumber shocks. The power loss peaks near a low-speed turn-over in anexponential distribution. An analytical extension of the mapping closuretechnique is able to predict the basic decay features. Our analytic descrip...
A pneumatic driver for shock wave production
Leftwich, Megan; Mejila-Alvarez, R.; Prestridge, K.
2011-11-01
We are presenting a novel technique to generate shock waves in shock tube experiments. Typically this is done with a high pressure driver section that is separated from the low pressure driven section by a physical membrane. The membrane is burst at a specific pressure and a shock wave is formed. This process limits the repetition of experiments, and membrane particles must be removed from the shock tube after each experiment. The driver presented here does not contain a membrane. Instead, it uses a series of high pressure chambers and fast-acting pistons to create the pressure jump between the high pressure driver section and low pressure driven section. The entire system is controlled remotely and requires no insertion or cleanup of membranes between experiments. The system is designed to achieve shock waves exceeding Mach 3 with air as the working fluid (higher Mach numbers can be generated with other working fluids). It will allow high repetition rates, even in challenging experimental environments (such as a vertical shock tube configuration). We present results from the initial characterization of this driver system.
Reflection and Refraction of Acoustic Waves by a Shock Wave
Brillouin, J.
1957-01-01
The presence of sound waves in one or the other of the fluid regions on either side of a shock wave is made apparent, in the region under superpressure, by acoustic waves (reflected or refracted according to whether the incident waves lie in the region of superpressure or of subpressure) and by thermal waves. The characteristics of these waves are calculated for a plane, progressive, and uniform incident wave. In the case of refraction, the refracted acoustic wave can, according to the incidence, be plane, progressive, and uniform or take the form of an 'accompanying wave' which remains attached to the front of the shock while sliding parallel to it. In all cases, geometrical constructions permit determination of the kinematic characteristics of the reflected or refractive acoustic waves. The dynamic relationships show that the amplitude of the reflected wave is always less than that of the incident wave. The amplitude of the refracted wave, whatever its type, may in certain cases be greater than that of the incident wave.
SONIC SPEED AND SHOCK WAVE IN HIGH VELOCITY AERATED FLOWS FROM HIGH HEAD DISCHARGE STRUCTURES
Institute of Scientific and Technical Information of China (English)
Dong Zhi-yong
2003-01-01
The compressible characteristics in aerated flows at the high velocity of about 50m/s were analyzed. Based on the theory of compressible the relations between the sonic speed and shock wave in high-velocity aerated flow were theoretically deduced. And comparisons with measured data were made. The theoretical and experimental results show the sonic speed in aerated flow is merely of the order of several-dozen meters per second, and its minimum value is only 20m/s, which is far much less than that in water or air alone. So high subsonic flow, supersonic flow and transonic flow as well as compression wave, shock wave and expansion wave similarly to aerodnamics may be produced in high velocity aerated flow at the speed of the order of 50m/s. Hence the influences of these compressible characteristics on high head discharge structures can not be neglected, especially on super high dams over 200m high.
Determination of dynamic shear strength of 2024 aluminum alloy under shock compression
Directory of Open Access Journals (Sweden)
H. S. Zhang
2016-04-01
Full Text Available A series of plate impact shock-reshock and shock-release experiments were conducted by using an one-stage light gas gun to determine the critical shear strength of the 2024 aluminum alloy under shock compression levels ranging from 0.66 to 3.05 GPa in the present study. In the experiments, a dual flyer plate assembly, i.e., the 2024 aluminum alloy flyer backed either by a brass plate or a PMMA plate, was utilized to produce reshock or release wave. The stress profiles of uniaxial plane strain wave propagation in the 2024 aluminum alloy sample under different pre-compressed states were measured by the embedded stress gauges. The stress-strain data at corresponding states were then calculated by a Lagrangian analysis method named as path line method. The critical shear strengths at different stress levels were finally obtained by self-consistent method. The results show that, at the low shock compression level (0.66 to 3.05 GPa, the critical shear strength of the 2024 aluminum alloy cannot be ignored and increases with the increasing longitudinal stress, which may be attributed to rate-dependence and/or pressure dependent yield behavior of the 2024 aluminum alloy.
Propagation of shock waves through clouds
Zhou, Xin Xin
1990-10-01
The behavior of a shock wave propagating into a cloud consisting of an inert gas, water vapor and water droplets was investigated. This has particular application to sonic bangs propagating in the atmosphere. The finite different method of MacCormack is extended to solve the one and two dimensional, two phase flow problems in which mass, momentum and energy transfers are included. The FCT (Fluid Corrected Transport) technique developed by Boris and Book was used in the basic numerical scheme as a powerful corrective procedure. The results for the transmitted shock waves propagating in a one dimensional, semi infinite cloud obtained by the finite difference approach are in good agreement with previous results by Kao using the method characteristics. The advantage of the finite difference method is its adaptability to two and three dimensional problems. Shock wave propagation through a finite cloud and into an expansion with a 90 degree corner was investigated. It was found that the transfer processes between the two phases in two dimensional flow are much more complicated than in the one dimensional flow cases. This is mainly due to the vortex and expansion wave generated at the corner. In the case considered, further complications were generated by the reflected shock wave from the floor. Good agreement with experiment was found for one phase flow but experimental data for the two phase case is not yet available to validate the two phase calculations.
A $55 Shock Tube for Simulated Blast Waves
Courtney, Elijah; Courtney, Michael
2015-01-01
Shock tubes are commonly employed to test candidate armor materials, validate numerical models, and conduct simulated blast experiments in animal models. As DoD interests desire to field wearable sensors as blast dosimeters, shock tubes may also serve for calibration and testing of these devices. The high blast pressures needed for experimental testing of candidate armors are unnecessary to test these sensors. An inexpensive, efficient, and easily available way of testing these pressure sensors is desirable. It is known that releasing compressed gas suddenly can create a repeatable shock front, and the pressures can be finely tuned by changing the pressure to which the gas is compressed. A Crosman 0.177 caliber air pistol was used (without loading any pellets) to compress and release air in one end of a 24 inch long 3/4 inch diameter standard pipe nipple to simulate a blast wave at the other end of the tube. A variable number of pumps were used to vary the peak blast pressure. As expected, the trials where 10...
Hydrodynamic simulations of gaseous Argon shock compression experiments
Garcia, Daniel B.; Dattelbaum, Dana M.; Goodwin, Peter M.; Sheffield, Stephen A.; Morris, John S.; Gustavsen, Richard L.; Burkett, Michael W.
2017-01-01
The lack of published Ar gas shock data motivated an evaluation of the Ar Equation of State (EOS) in gas phase initial density regimes. In particular, these regimes include initial pressures in the range of 13.8 - 34.5 bar (0.025 - 0.056 g/ cm3) and initial shock velocities around 0.2 cm/μs. The objective of the numerical evaluation was to develop a physical understanding of the EOS behavior of shocked and subsequently multiply re-shocked Ar gas through Pagosa numerical simulations utilizing the SESAME equation of state. Pagosa is a Los Alamos National Laboratory 2-D and 3-D Eulerian continuum dynamics code capable of modeling high velocity compressible flow with multiple materials. The approach involved the use of gas gun experiments to evaluate the shock and multiple re-shock behavior of pressurized Ar gas to validate Pagosa simulations and the SESAME EOS. Additionally, the diagnostic capability within the experiments allowed for the EOS to be fully constrained with measured shock velocity, particle velocity and temperature. The simulations demonstrate excellent agreement with the experiments in the shock velocity/particle velocity space, and reasonable comparisons for the ionization temperatures.
State of the art extracorporeal shock wave lithotripsy
Energy Technology Data Exchange (ETDEWEB)
Kandel, L.B. (State Univ. of New York at Stony Brook, Stony Brook, NY (US)); Harrison, L.H.; McCullough, D.L. (Wake Forest Univ. Medical Center, Winston-Salem, NC (US))
1987-01-01
This book contains 16 chapters. Some of the topics that are covered are: Extracorporeal Shock Wave Lithotripsy Development; Laser-Generated Extracorporeal Shock Wave Lithotripter; Radiation Exposure during ESWL; Caliceal Calculi; and Pediatric ESWL.
Multiple scales of shock waves in dissipative laminate materials
Franco Navarro, Pedro; Benson, David J.; Nesterenko, Vitali F.
2016-09-01
The shock waves generated by a plate impact are numerically investigated in Al-W laminates with different mesostructures. The main characteristic time scales (and the corresponding spatial scales) related to the formation of the stationary shock are identified: the duration (width) of the leading front, the time (distance) from the impact required to establish a stationary profile, and the shock front width, identified as a time span (distance) from the initial state to the final quasiequilibrium state. It is demonstrated that the width of the leading front and the maximum strain rates are determined by the dispersive and the nonlinear parameters of the laminate and not by the dissipation, as is the case for uniform solids. The characteristic spatial scale of the leading front is related to the spatial scale observed on solitarylike waves, which are satisfactorily described by the Korteweg-de Vries (KdV) approximation, as well as the speed of the wave and the ratio of maximum to final strain. The dissipation affects the width of the transition distance (shock front width) where multiple loading-unloading cycles bring the laminate into the final quasiequilibrium state. This spatial scale is of the same order of magnitude as the distance to form stationary shock wave. The period of fast decaying oscillations is well described by the KdV approach and scales linearly with the cell size. The rate of the decay of the oscillations in the numerical calculations does not scale with the square of the cell size as expected from the dissipative KdV approach that assumes a constant viscosity. This is due to the different mechanisms of dissipation in high-amplitude compression pulses.
Shock formation in small-data solutions to 3D quasilinear wave equations
Speck, Jared
2016-01-01
In 1848 James Challis showed that smooth solutions to the compressible Euler equations can become multivalued, thus signifying the onset of a shock singularity. Today it is known that, for many hyperbolic systems, such singularities often develop. However, most shock-formation results have been proved only in one spatial dimension. Serge Alinhac's groundbreaking work on wave equations in the late 1990s was the first to treat more than one spatial dimension. In 2007, for the compressible Euler equations in vorticity-free regions, Demetrios Christodoulou remarkably sharpened Alinhac's results and gave a complete description of shock formation. In this monograph, Christodoulou's framework is extended to two classes of wave equations in three spatial dimensions. It is shown that if the nonlinear terms fail to satisfy the null condition, then for small data, shocks are the only possible singularities that can develop. Moreover, the author exhibits an open set of small data whose solutions form a shock, and he prov...
SPHERICAL SHOCK WAVES IN SOLIDS
Differential Equation of Self-Similar Motion; Application of the Theory of Self-Similar Motion to the Problem of Expansion of a Spherical...Self-Similar Solutions of the Problem of Cratering Due to Hypervelocity Impact, and Numerical Integration of the Differential Equation of Spherical...Aluminum, Blast Waves in Other Metals; and Consideration of the Non-Similar Aspects of the Blast Wave Problem ; Experimental Procedure and Results; Singular Point of Ordinary Differential Equations; Numerical Program-Fortran
The experimental study of interaction between shock wave and turbulence
Institute of Scientific and Technical Information of China (English)
ZHAO YuXin; YI ShiHe; HE Lin; CHENG ZhongYu; TIAN LiFeng
2007-01-01
The interaction between shock wave and turbulence has been studied in supersonic turbulent mix layer wind tunnel. The interaction between oblique shock wave and turbulent boundary layer and the influence of large vortex in mix layer on oblique shock wave have been observed by NPLS technique. From NPLS image, not only complex flow structure is observed but also time-dependent supersonic flow visualization is realized. The mechanism of interaction between shock wave and turbulence is discussed based on high quality NPLS image.
Institute of Scientific and Technical Information of China (English)
Wang Yi
2008-01-01
The zero dissipation limit of the compressible heat-conducting Navier-Stokes equations in the presence of the shock is investigated. It is shown that when the heat ε→ 0 (see (1.3)), if the solution of the corresponding Euler equations is piecewise smooth with shock wave satisfying the Lax entropy condition, then there exists a smooth solution to the Navier-Stokes equations, which converges to the piecewise smooth shock solution of the Euler equations away from the shock discontinuity at a rate of ε. The proof is given by a combination of the energy estimates and the matched asymptotic analysis introduced in [3].
Wave energy devices with compressible volumes.
Kurniawan, Adi; Greaves, Deborah; Chaplin, John
2014-12-08
We present an analysis of wave energy devices with air-filled compressible submerged volumes, where variability of volume is achieved by means of a horizontal surface free to move up and down relative to the body. An analysis of bodies without power take-off (PTO) systems is first presented to demonstrate the positive effects a compressible volume could have on the body response. Subsequently, two compressible device variations are analysed. In the first variation, the compressible volume is connected to a fixed volume via an air turbine for PTO. In the second variation, a water column separates the compressible volume from another volume, which is fitted with an air turbine open to the atmosphere. Both floating and bottom-fixed, axisymmetric, configurations are considered, and linear analysis is employed throughout. Advantages and disadvantages of each device are examined in detail. Some configurations with displaced volumes less than 2000 m(3) and with constant turbine coefficients are shown to be capable of achieving 80% of the theoretical maximum absorbed power over a wave period range of about 4 s.
Temperature kinetics during shock-wave consolidation of metallic powders
Energy Technology Data Exchange (ETDEWEB)
Schwarz, R.B.; Kasiraj, P.; Vreeland, T. Jr.
1985-01-01
Powders (60 ..mu..m diam) of constantan and pure copper were compressed statically into cylindrical greens (20.3 mm diam, 5.3 mm long) with a flat interface separating the two powders. A 20-mm propellant gun was used to accelerate a flyer of Lexan, copper, or aluminum, and generate in the green a shock wave with front parallel to the Cu/constantan interface. The voltages between opposite ends of the greens were measured as a function of time and for shock pressures between 1.3 and 9.4 GPa. When the shock wave arrives at the Cu/constantan interface, the voltage signal shows an abrupt increase, which lasts between 45 and 81 ns and leads to a peak temperature T/sub p/. After this, the hotter and cooler parts of the compact equilibrate and the temperature decreases to a value T/sub h/. With increasing shock pressure, T/sub h/ increases from 425 to 1215 K. The measurements of T/sub h/ are in excellent agreement with the temperatures calculated from the measured flyer velocity, the Hugoniot for copper powder, and thermodynamic data for the flyer and powders.
High Temperature Phenomena in Shock Waves
2012-01-01
The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...
1994-01-01
In this paper, the shock wave propagating in a rectangular elbow and the transient flow induced by the shock were investigated numerically in order to clarify how the transmitted shock wave past the elbow is stabilized to uniformity by the effects of area reduction and the rounded corner. Computations were carried out by solving the two-dimensional compressible Navier-Stokes equations by using the total variation diminishing (TVD) scheme. Calculations were performed for three kinds of area re...
Dynamic behaviors of a Zr-based bulk metallic glass under ramp wave and shock wave loading
Directory of Open Access Journals (Sweden)
Binqiang Luo
2015-06-01
Full Text Available Dynamic behaviors of Zr51Ti5Ni10Cu25Al9 bulk metallic glass were investigated using electric gun and magnetically driven isentropic compression device which provide shock and ramp wave loading respectively. Double-wave structure was observed under shock compression while three-wave structure was observed under ramp compression in 0 ∼ 18GPa. The HEL of Zr51Ti5Ni10Cu25Al9 is 8.97 ± 0.61GPa and IEL is 8.8 ± 0.3GPa, respectively. Strength of Zr51Ti5Ni10Cu25Al9 estimated from HEL is 5.0 ± 0.3GPa while the strength estimated from IEL is 3.6 ± 0.1GPa. Shock wave velocity versus particle velocity curve of Zr51Ti5Ni10Cu25Al9 under shock compression appears to be bilinear and a kink appears at about 18GPa. The Lagrangian sound speed versus particle velocity curve of Zr51Ti5Ni10Cu25Al9 under ramp wave compression exhibits two discontinuances and are divided to three regions: elastic, plastic-I and plastic-II. The first jump-down occurs at elastic-plastic transition and the second appears at about 17GPa. In elastic and plastic-I regions, Lagrangian sound speed increases linearly with particle velocity, respectively. Characteristic response of sound speed in plastic-I region disagree with shock result in the same pressure region(7GPa ∼ 18GPa, but is consistent with shock result at higher pressure(18-110GPa.
Schiffer, A.; Gardner, M. N.; Lynn, R. H.; Tagarielli, V. L.
2017-03-01
Experiments were conducted on an aqueous growth medium containing cultures of Escherichia coli (E. coli) XL1-Blue, to investigate, in a single experiment, the effect of two types of dynamic mechanical loading on cellular integrity. A bespoke shock tube was used to subject separate portions of a planktonic bacterial culture to two different loading sequences: (i) shock compression followed by cavitation, and (ii) shock compression followed by spray. The apparatus allows the generation of an adjustable loading shock wave of magnitude up to 300 MPa in a sterile laboratory environment. Cultures of E. coli were tested with this apparatus and the spread-plate technique was used to measure the survivability after mechanical loading. The loading sequence (ii) gave higher mortality than (i), suggesting that the bacteria are more vulnerable to shear deformation and cavitation than to hydrostatic compression. We present the results of preliminary experiments and suggestions for further experimental work; we discuss the potential applications of this technique to sterilize large volumes of fluid samples.
Investigation of surface acoustic waves in laser shock peened metals
Institute of Scientific and Technical Information of China (English)
Ling Yuan; Gang Yan; Zhonghua Shen; Hangwei Xu; Xiaowu Ni; Jian Lu
2008-01-01
Laser shock peening is a well-known method for extending the fatigue life of metal components by introducing near-surface compressive residual stress. The surface acoustic waves (SAWs) are dispersive when the near-surface properties of materials are changed. So the near-surface properties (such as the thickness of hardened layers, elastic properties, residual stresses, etc.) can be analyzed by the phase velocity dispersion. To study the propagation of SAWs in metal samples after peening, a more reasonable experimental method of broadband excitation and reception is introduced. The ultrasonic signals are excited by laser and received by polyvinylindene fluoride (PVDF) transducer. The SAW signals in aluminum alloy materials with different impact times by laser shock peening are detected. Signal spectrum and phase velocity dispersion curves of SAWs are analyzed. Moreover, reasons for dispersion are discussed.
Colloidal solitary waves with temperature dependent compressibility
Azmi, A.; Marchant, T. R.
2014-05-01
Spatial solitary waves which form in colloidal suspensions of dielectric nanoparticles are considered. The interactions, or compressibility, of the colloidal particles, is modelled using a series in the particle density, or packing fraction, where the virial, or series, coefficients depend on the type of particle interaction model. Both the theoretical hard disk and sphere repulsive models, and a model with temperature dependent compressibility, are considered. Experimental results show that particle interactions can be temperature dependent and either repulsive or attractive in nature, so we model the second virial coefficient using a physically realistic temperature power law. One- and two-dimensional semi-analytical colloidal solitary wave solutions are found. Trial functions, based on the form of the nonlinear Schrödinger equation soliton, are used, together with averaging, to develop the semi-analytical solutions. When the background packing fraction is low, the one-dimensional solitary waves have three solutions branches (with a bistable regime) while the two-dimensional solitary waves have two solution branches, with a single stable branch. The temperature dependent second virial coefficient results in changes to the solitary wave properties and the parameter space, in which multiple solutions branches occur. An excellent comparison is found between the semi-analytical and numerical solutions.
Propagation of Shock on NREL Phase VI Wind Turbine Airfoil under Compressible Flow
Directory of Open Access Journals (Sweden)
Mohammad A. Hossain
2013-01-01
Full Text Available The work is focused on numeric analysis of compressible flow around National Renewable Energy Laboratory (NREL phase VI wind turbine blade airfoil S809. Although wind turbine airfoils are low Reynolds number airfoils, a reasonable investigation of compressible flow under extreme condition might be helpful. A subsonic flow (mach no. M=0.8 has been considered for this analysis and the impacts of this flow under seven different angles of attack have been determined. The results show that shock takes place just after the mid span at the top surface and just before the mid span at the bottom surface at zero angle of attack. Slowly the shock waves translate their positions as angle of attack increases. A relative translation of the shock waves in upper and lower face of the airfoil are presented. Variation of Turbulent viscosity ratio and surface Y+ have also been determined. A k-ω SST turbulent model is considered and the commercial CFD code ANSYS FLUENT is used to find the pressure coefficient (Cp as well as the lift (CL and drag coefficients (CD. A graphical comparison of shock propagation has been shown with different angle of attack. Flow separation and stream function are also determined.
Numerical Study of Shock Waves Propagating in an Elbow : Effects of Elbow Angle
1995-01-01
In this paper, the shock wave propagating in an elbow and the transient flow induced by the shock were investigated numerically in order to clarify how the shock wave transmitted past the elbow is stabilized to uniformity by the effects of the elbow angle. Computations were carried out by solving the two-dimensional compressible Navier-Stokes equations using the total variation diminishing (TVD) scheme. Calculations were performed for six elbow angles between 5° to 120°, and the flow fields w...
Global Solutions of Shock Reflection by Wedges for the Nonlinear Wave Equation
Institute of Scientific and Technical Information of China (English)
Xuemei DENG; Wei XIANG
2011-01-01
When a plane shock hits a wedge head on,it experiences a reflection-diffraction process and then a self-similar reflected shock moves outward as the original shock moves forward in time.In this paper,shock reflection by large-angle wedges for compressible flow modeled by the nonlinear wave equation is studied and a global theory of existence,stability and regularity is established.Moreover,C0,1 is the optimal regularity for the solutions across the degenerate sonic boundary.
Holographic flow visualization of time-varying shock waves
Decker, A. J.
1981-01-01
Rapid-double-exposure, diffuse-illumination holography is evaluated analytically and experimentally as a flow visualization method for time-varying shock waves. Conditions are determined that minimize the distance (localization error) between the surface or curve of interference-fringe localization and the shock surface. Treated specifically are the cases of shock waves in a transonic compressor rotor for which there is laser anemometer data for comparison and shock waves in a flutter cascade.
Fluid dynamics of the shock wave reactor
Masse, Robert Kenneth
2000-10-01
High commercial incentives have driven conventional olefin production technologies to near their material limits, leaving the possibility of further efficiency improvements only in the development of entirely new techniques. One strategy known as the Shock Wave Reactor, which employs gas dynamic processes to circumvent limitations of conventional reactors, has been demonstrated effective at the University of Washington. Preheated hydrocarbon feedstock and a high enthalpy carrier gas (steam) are supersonically mixed at a temperature below that required for thermal cracking. Temperature recovery is then effected via shock recompression to initiate pyrolysis. The evolution to proof-of-concept and analysis of experiments employing ethane and propane feedstocks are presented. The Shock Wave Reactor's high enthalpy steam and ethane flows severely limit diagnostic capability in the proof-of-concept experiment. Thus, a preliminary blow down supersonic air tunnel of similar geometry has been constructed to investigate recompression stability and (especially) rapid supersonic mixing necessary for successful operation of the Shock Wave Reactor. The mixing capabilities of blade nozzle arrays are therefore studied in the air experiment and compared with analytical models. Mixing is visualized through Schlieren imaging and direct photography of condensation in carbon dioxide injection, and interpretation of visual data is supported by pressure measurement and flow sampling. The influence of convective Mach number is addressed. Additionally, thermal behavior of a blade nozzle array is analyzed for comparison to data obtained in the course of succeeding proof-of-concept experiments. Proof-of-concept is naturally succeeded by interest in industrial adaptation of the Shock Wave Reactor, particularly with regard to issues involving the scaling and refinement of the shock recompression. Hence, an additional, variable geometry air tunnel has been constructed to study the parameter
Shock-Induced Borehole Waves and Fracture Effects
Fan, H.; Smeulders, D.M.
2011-01-01
We perform wave experiments using a vertical shock tube setup. Shock waves are generated by the rupture of a thin membrane. In the test section, the incident pressure waves generate borehole-guided waves along water-saturated samples. The tube is equipped with side wall gages and a mobile pressure p
Shock-Induced Borehole Waves and Fracture Effects
Fan, H.; Smeulders, D.M.
2011-01-01
We perform wave experiments using a vertical shock tube setup. Shock waves are generated by the rupture of a thin membrane. In the test section, the incident pressure waves generate borehole-guided waves along water-saturated samples. The tube is equipped with side wall gages and a mobile pressure p
Stability of spherical converging shock wave
Energy Technology Data Exchange (ETDEWEB)
Murakami, M., E-mail: murakami-m@ile.osaka-u.ac.jp [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan); Sanz, J. [ETSI Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain); Iwamoto, Y. [Graduate School of Science and Engineering, Ehime University, Ehime 790-8577 (Japan)
2015-07-15
Based on Guderley's self-similar solution, stability of spherical converging shock wave is studied. A rigorous linear perturbation theory is developed, in which the growth rate of perturbation is given as a function of the spherical harmonic number ℓ and the specific heats ratio γ. Numerical calculation reveals the existence of a γ-dependent cut-off mode number ℓ{sub c}, such that all the eigenmode perturbations for ℓ > ℓ{sub c} are smeared out as the shock wave converges at the center. The analysis is applied to partially spherical geometries to give significant implication for different ignition schemes of inertial confinement fusion. Two-dimensional hydrodynamic simulations are performed to verify the theory.
Kwon, Ryun Young; Vourlidas, Angelos
2017-08-01
We investigate the three-dimensional (3D) characteristics of coronal shocks associated with Coronal Mass Ejections (CMEs), in terms of geometry, kinematics, and density compression ratio, employing a new method we have developed. The method uses multi-viewpoint observations from the STEREO-A, -B and SOHO coronagraphs. The 3D structure and kinematics of coronal shock waves and the driving CMEs are derived separately using a forward modeling method. We analyze two CMEs that are observed as halos by the three spacecraft, and the peak speeds are over 2000 km s-1. From the 3D modeling, we find (1) the coronal shock waves are spherical apparently enclosing the Sun, in which the angular widths are much wider than those of CMEs (92° and 252° versus 58° and 91°), indicating shock waves are propagating away from the CMEs in the azimuthal directions, and (2) the speeds of the shock waves around the CME noses are comparable to those of the CME noses, but the speeds at the lateral flanks seem to be limited to the local fast magnetosonic speed. Applying our new method, we determine electron densities in the shock sheaths, the downstream-upstream density ratios, and the Mach numbers. We find (1) the sheath electron densities decrease with height in general but have the maximum near the CME noses, (2) the density ratios and Mach numbers also seem to depend on the position angle from the CME nose to the far-flank but are more or less constant in time, while the sheath electron densities and speeds decrease with time, because of the reduced local Alfven speed with height, and (3) the shocks could be supercritical in a wider spatial range, and it lasts longer, than those of what have been reported in the past. We conclude that the shock wave associated with an energetic CME is a phenomenon that is becoming a non-driven (blast-type), nearly freely propagating wave at the flank from a driven (bow- and/or piston-type) wave near the CME nose.
Shock-Wave Boundary Layer Interactions
1986-02-01
proprietes de la couche limite subissent au cours de I’interaction; les methodes integrales ou aux differences finies qui permettent le calcul continu de...interesse par la recherche d’une plus ample information. CONTENTS Page PREFACE »’ INTRODUCTION 1 PART I: A PHYSICAL DESCRIPTION OF SHOCK-WAVE/BOUNDARY...References 105 109 PART II: METHODS OF CALCULATION GLOBAL METHODS 1.1 Introductory Remarks 109 1.2 Two-Dimensional Interactions HO 1.2.1
Shock Waves and the Origin of Life
1977-01-01
describes it, the visitors having a picnic on the virgin planet, left their refuse behind and the microbial resident of the primordial cookie crumb may be...upon dissolution in the primordial oceans, become available for further chemical evolution. Based on the availability of thunder shock-waves on the...replicating system has evolved, it could propagate without interruption, having the whole organic " soup " in the oceans as its food source. Indeed, one of the
Heating Cooling Flows with Weak Shock Waves
Mathews, W G; Brighenti, F
2006-01-01
The discovery of extended, approximately spherical weak shock waves in the hot intercluster gas in Perseus and Virgo has precipitated the notion that these waves may be the primary heating process that explains why so little gas cools to low temperatures. This type of heating has received additional support from recent gasdynamical models. We show here that outward propagating, dissipating waves deposit most of their energy near the center of the cluster atmosphere. Consequently, if the gas is heated by (intermittent) weak shocks for several Gyrs, the gas within 30-50 kpc is heated to temperatures that far exceed observed values. This heating can be avoided if dissipating shocks are sufficiently infrequent or weak so as not to be the primary source of global heating. Local PV and viscous heating associated with newly formed X-ray cavities are likely to be small, which is consistent with the low gas temperatures generally observed near the centers of groups and clusters where the cavities are located.
Zheng, J; Gu, Y J; Chen, Z Y; Chen, Q F
2010-08-01
Experimental equations of state on generation of nonideal xenon plasma by intense shock wave compression was presented in the ranges of pressure of 2-16 GPa and temperature of 31-50 kK, and the xenon plasma with the nonideal coupling parameter Γ range from 0.6-2.1 was generated. The shock wave was produced using the flyer plate impact and accelerated up to ∼6 km/s with a two-stage light gas gun. Gaseous specimens were shocked from two initial pressures of 0.80 and 4.72 MPa at room temperature. Time-resolved spectral radiation histories were recorded by using a multiwavelength channel pyrometer. The transient spectra with the wavelength range of 460-700 nm were recorded by using a spectrometer to evaluate the shock temperature. Shock velocity was measured and particle velocity was determined by the impedance matching methods. The equations of state of xenon plasma and ionization degree have been discussed in terms of the self-consistent fluid variational theory.
Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects.
Courtney, Amy C; Andrusiv, Lubov P; Courtney, Michael W
2012-04-01
This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.
Hugoniot equation of state of rock materials under shock compression.
Zhang, Q B; Braithwaite, C H; Zhao, J
2017-01-28
Two sets of shock compression tests (i.e. conventional and reverse impact) were conducted to determine the shock response of two rock materials using a plate impact facility. Embedded manganin stress gauges were used for the measurements of longitudinal stress and shock velocity. Photon Doppler velocimetry was used to capture the free surface velocity of the target. Experimental data were obtained on a fine-grained marble and a coarse-grained gabbro over a shock pressure range of approximately 1.5-12 GPa. Gabbro exhibited a linear Hugoniot equation of state (EOS) in the pressure-particle velocity (P-up) plane, while for marble a nonlinear response was observed. The EOS relations between shock velocity (US) and particle velocity (up) are linearly fitted as US = 2.62 + 3.319up and US = 5.4 85 + 1.038up for marble and gabbro, respectively.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.
Addressing the problem of uniform converging spherical shock wave in water
Nitishinskiy, M.; Efimov, S.; Yanuka, D.; Gurovich, V. Tz.; Krasik, Ya. E.
2016-10-01
Time-resolved parameters of plasma compressed by a shock wave generated by the underwater electrical explosion of a spherical wire array are presented. The plasma was preliminarily formed inside a capillary placed at the equatorial plane along the axis of the array. Temporal evolution analysis of Hα and C II spectral lines showed that the plasma density increases from its initial value of ˜3 × 1017 cm-3 up to ˜5.5 × 1017 cm-3 within 300 ± 25 ns. These results were found to be in agreement with those of the model that considers the adiabatic compression of the plasma by the converging capillary walls caused by interaction with the incident shock wave with a pressure of ˜3 × 109 Pa at a radius of 1.5 mm. The latter results coincide well with those of the 1D hydrodynamic modeling, which assumes uniformity of the converging shock wave.
THE INTERACTION BETWEEN SHOCK WAVES AND SOLID SPHERES ARRAYS IN A SHOCK TUBE
Institute of Scientific and Technical Information of China (English)
SHI Honghui; Kazuki YAMAMURA
2004-01-01
When a shock wave interacts with a group of solid spheres, non-linear aerodynamic behaviors come into effect. The complicated wave reflections such as the Mach reflection occur in the wave propagation process. The wave interactions with vortices behind each sphere's wake cause fluctuation in the pressure profiles of shock waves. This paper reports an experimental study for the aerodynamic processes involved in the interaction between shock waves and solid spheres. A schlieren photography was applied to visualize the various shock waves passing through solid spheres. Pressure measurements were performed along different downstream positions. The experiments were conducted in both rectangular and circular shock tubes. The data with respect to the effect of the sphere array,size, interval distance, incident Mach number, etc., on the shock wave attenuation were obtained.
The Shock Wave in the ionosphere during an Earthquake
Directory of Open Access Journals (Sweden)
Kuznetsov Vladimir
2016-01-01
Full Text Available Fundamentally new model of the shock wave (SW generation in atmosphere and ionosphere during earthquake is proposed. The model proceeds from the idea of cooperative shock water crystallization in a cloud.
Investigating Vaporization of Silica through Laser Driven Shock Wave Experiments
Kraus, R. G.; Swift, D. C.; Stewart, S. T.; Smith, R.; Bolme, C. A.; Spaulding, D. K.; Hicks, D.; Eggert, J.; Collins, G.
2010-12-01
Giant impacts melt and vaporize a significant amount of the bolide and target body. However, our ability to determine how much melt or vapor a given impact creates depends strongly on our understanding of the liquid-vapor phase boundary of geologic materials. Our current knowledge of the liquid-vapor equilibrium for one of the most important minerals, SiO2, is rather limited due to the difficulty of performing experiments in this area of phase space. In this study, we investigate the liquid-vapor coexistence region by shocking quartz into a supercritical fluid state and allowing it to adiabatically expand to a state on the liquid-vapor phase boundary. Although shock compression and release has been used to study the liquid-vapor equilibrium of metals [1], few attempts have been made at studying geologic materials by this method [2]. Shock waves were produced by direct ablation of the quartz sample using the Jupiter Laser Facility of Lawrence Livermore National Laboratory. Steady shock pressures of 120-360 GPa were produced in the quartz samples: high enough to force the quartz into a supercritical fluid state. As the shock wave propagates through the sample, we measure the shock velocity using a line imaging velocity interferometer system for any reflector (VISAR) and shock temperature using a streaked optical pyrometer (SOP). When the shock wave reaches the free surface of the sample, the material adiabatically expands. Upon breakout of the shock at the free surface, the SOP records a distinct drop in radiance due to the lower temperature of the expanded material. For a subset of experiments, a LiF window is positioned downrange of the expanding silica. When the expanding silica impacts the LiF window, the velocity at the interface between the expanding silica and LiF window is measured using the VISAR. From the shock velocity measurements, we accurately determine the shocked state in the quartz. The post-shock radiance measurements are used to constrain the
Turbulence generation by a shock wave interacting with a random density inhomogeneity field
Huete Ruiz de Lira, C.
2010-12-01
When a planar shock wave interacts with a random pattern of pre-shock density non-uniformities, it generates an anisotropic turbulent velocity/vorticity field. This turbulence plays an important role in the early stages of the mixing process in a compressed fluid. This situation emerges naturally in a shock interaction with weakly inhomogeneous deuterium-wicked foam targets in inertial confinement fusion and with density clumps/clouds in astrophysics. We present an exact small-amplitude linear theory describing such an interaction. It is based on the exact theory of time and space evolution of the perturbed quantities behind a corrugated shock front for a single-mode pre-shock non-uniformity. Appropriate mode averaging in two dimensions results in closed analytical expressions for the turbulent kinetic energy, degree of anisotropy of velocity and vorticity fields in the shocked fluid, shock amplification of the density non-uniformity and sonic energy flux radiated downstream. These explicit formulae are further simplified in the important asymptotic limits of weak/strong shocks and highly compressible fluids. A comparison with the related problem of a shock interacting with a pre-shock isotropic vorticity field is also presented.
The effects of vacancy on melting of Cu under hydrostatic and shock wave loading
Li, H.; Ni, S.
2009-12-01
Defects, ubiquitous in real solids, are relevant to high pressure melting under static and shock loading conditions as in the Earth’s interior and during planetary impact. A simplest type of defects is vacancy, and we investigate melt- ing of a representative metal (Cu) with pre-existing vacan- cies under hydrostatic and shock wave loading using molec- ular dynamics simulations. The equilibrium melting curve is established with the superheating-supercooling hysteresis method. During hydrostatic compression, the vacancy con- centration is reduced from its initial value and the vacancy effect on melting is minimized at high pressures. Shock wave loading is conducted along h100i at different initial vacancy concentrations. Considerable superheating occurs for initial vacancy concentration5%. Dur- ing shock loading, preexistent vacancies facilitate plasticity and other defect formation, and thus reduce melting temper- ature. Our results indicate that vacancy effect on melting should be considered for shock loading and for low hydro- static pressures. 1
Travelling Waves in Hall-MHD and the Ion-Acoustic Shock Structure
Hagstrom, George I
2013-01-01
Hall-MHD is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar travelling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also an entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, an...
Propagation of shock waves in a viscous medium
Energy Technology Data Exchange (ETDEWEB)
Yadav, Harish C; Anand, R K, E-mail: harish0chandra@gmail.com, E-mail: anand.rajkumar@rediffmail.com [Department of Physics, University of Allahabad, Allahabad-211002 (India)
2011-06-01
A theoretical model for entropy production in a viscous medium due to the propagation of shock waves has been developed. An exact general solution is achieved for plane, cylindrical and spherical symmetries of shock waves in viscous flow, which on numerical substitutions gives variations in the entropy production, temperature ratio and particle velocity in the shock transition region with the coefficient of viscosity, specific heat ratio, shock strength, initial density and initial pressure.
Shock Waves Science and Technology Library
2012-01-01
This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily concerned with the fundamental theory of detonation physics in gaseous and condensed phase reactive media. The detonation process involves complex chemical reaction and fluid dynamics, accompanied by intricate effects of heat, light, electricity and magnetism - a contemporary research field that has found wide applications in propulsion and power, hazard prevention as well as military engineering. The seven extensive chapters contained in this volume are: - Chemical Equilibrium Detonation (S. Bastea and LE Fried) - Steady One-Dimensional Detonations (A Higgins) - Detonation Instability (HD Ng and F Zhang) - Dynamic Parameters of Detonation (AA Vasiliev) - Multi-Scaled Cellular Detonation (D Desbordes and HN Presles) - Condensed Matter Detonation: Theory and Practice (C Tarver) - Theory of Detonation Shock Dynamics (JB Bdzil and DS Stewart) The chapters are thematically interrelated in a systematic descriptive appro...
Ultrafast ignition with relativistic shock waves induced by high power lasers
Institute of Scientific and Technical Information of China (English)
Shalom; Eliezer; Noaz; Nissim; Shirly; Vinikman; Pinhasi; Erez; Raicher; José; Maria; Martinez; Val
2014-01-01
In this paper we consider laser intensities greater than 1016 W cm-2where the ablation pressure is negligible in comparison with the radiation pressure.The radiation pressure is caused by the ponderomotive force acting mainly on the electrons that are separated from the ions to create a double layer(DL).This DL is accelerated into the target,like a piston that pushes the matter in such a way that a shock wave is created.Here we discuss two novel ideas.Firstly,the transition domain between the relativistic and non-relativistic laser-induced shock waves.Our solution is based on relativistic hydrodynamics also for the above transition domain.The relativistic shock wave parameters,such as compression,pressure,shock wave and particle flow velocities,sound velocity and rarefaction wave velocity in the compressed target,and temperature are calculated.Secondly,we would like to use this transition domain for shockwave-induced ultrafast ignition of a pre-compressed target.The laser parameters for these purposes are calculated and the main advantages of this scheme are described.If this scheme is successful a new source of energy in large quantities may become feasible.
Propagation of shock waves in a magneto viscous medium
Anand, R K; Mishra, Manoj K
2012-01-01
Recently the authors [Phys. Scr. 83 (2011) 065402] have studied the entropy production in a viscous medium due to the propagation of shock waves. In the present paper, a theoretical model has been developed for a more realistic problem that deals with the study of entropy production due to propagation of shock waves in a viscous medium under the effect of a static magnetic field, for the cases of plane, cylindrical and spherical symmetry of the shock. Exact solutions for the flow variables have been discovered and their numerical estimations in the shock transition region have been analyzed with respect to static magnetic field, shock symmetry, shock strength, and specific heat ratio.
Thermal Conductivity at the Interface of CHBr3/NaC1 under Shock Compression
Institute of Scientific and Technical Information of China (English)
杨嘉陵; 胡金彪; 谭华; 刘吉平
2001-01-01
A special experiment system has been proposed for studying the thermal physical property under shock compression. The optical radiation was recorded by a high time-resolution pyrometer. The ratio α of sample and window materials under shock compression was studied by using this experimental technique. The thermal conductivity of CHBr3 calculated from α under shock compression is about 103 times larger than that under normal conditions.
Shock Wave-Stimulated Periosteum for Cartilage Repair
2015-03-01
AD_________________ Award Number: W81XWH-10-1-0914 TITLE: Shock Wave-Stimulated Periosteum for Cartilage Repair PRINCIPAL INVESTIGATOR...30Sep2010 – 1Dec2014 4. TITLE AND SUBTITLE Shock Wave-Stimulated Periosteum for Cartilage Repair 5a. CONTRACT NUMBER W81XWH-10-1-0914 5b. GRANT NUMBER... shock wave (ESW)-stimulated periosteum improves cartilage repair when it is used as an autograft to fill a defect in the articular surface of goats. A
Extracorporeal Shock Wave Therapy for Nonunion of the Tibia
2010-03-01
Zoellner J, Nafe B. Shock wave therapy versus conventional surgery in the treatment of calcifying tendinitis of the shoulder. Clin Orrhop Relar Res. 200...I ;387:72-82. 26. Wang CJ, Yang KD, Wang FS. ct al. Shock wave therapy for culcific tendinitis of the shoulder: a prospective clinical study with...Selvi E, ct al. Extracorporeal shock wave therapy for chronic calcific tendinitis of the shoulder: single blind study. Ann Rheum Dis. 2(K13;62:248
Internal energy relaxation in shock wave structure
Josyula, Eswar; Suchyta, Casimir J.; Boyd, Iain D.; Vedula, Prakash
2013-12-01
The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, "Solution of the Boltzmann kinetic equation for high-speed flows," Comput. Math. Math. Phys. 46, 315-329 (2006); F. Cheremisin, "Solution of the Wang Chang-Uhlenbeck equation," Dokl. Phys. 47, 487-490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream.
Strong Antigravity. Life in the Shock Wave
Fabbrichesi, Marco E
1992-01-01
Strong anti-gravity is the vanishing to all orders in Newton's constant of the net force between two massive particles at rest. We study this phenomenon and show that it occurs in any effective theory of gravity which is obtained from a higher-dimensional model by compactification on a manifold with flat directions. We find the exact solution of the Einstein equations in the presence of a point-like source of strong anti-gravity by dimensional reduction of what is a shock-wave solution in the higher-dimensional model. (Latex file, no macros, figures not included)
Extracorporeal shock-wave lithotripsy of gallstones. Results and perspectives
Energy Technology Data Exchange (ETDEWEB)
Staritz, M.; Rambow, A.; Meyer zum Bueschenfelde, K.H.; Floth, A.; Hohenfellner, R.; Mildenberger, P.; Thelen, M.; Goebel, M.
1987-12-01
Recently extracorporeal shock-wave lithotripsy became a noteworthy alternative in the treatment of choledocolithiasis and cholecystolithiasis, in particular since the introduction of the second-generation shock-wave technique which allows to dispense with the positioning of the patient in the water bath required sofar and to place the patient on an examination table in freely movable way so as to position the gall stone to be disintegrated in the focus of the shock waves. Despite the beneficial treatment results, extracorporeal shock-wave lithotripsy still needs further improvement as a method especially in terms of the option of 'pulverizing' the stones. (orig./TRV)
Development on Adjustable Calibration Marker for Shock Wave Focus
Institute of Scientific and Technical Information of China (English)
Xi-zhao Sun; Zhi-wei Zhang
2005-01-01
@@ Shock wave lithotripsy (SWL) is a treatment of choice for upper urinary stones. However, this procedure is inappropriate for obese patients because the focus is often unable to reach the target owing to the limited focal distance in shock wave source. Although treating such patients in a blast path may increase the application length of shock wave source,it's difficult to find this path on the lithotripter monitor. For this reason, we invented an adjustable calibration marker in order to set an effective focus in the shock wave path.
Conical Emission from Shock Waves in Ne(1-20 AGeV)+U Collisions
Rau, Philip; Betz, Barbara; Petersen, Hannah; Bleicher, Marcus; Stöcker, Horst
2010-01-01
The formation and propagation of high-density compression waves, e.g. Mach shock waves, in cold nuclear matter is studied by simulating high-energy nucleus-nucleus collisions of Ne with U in the energy range from E_lab = 0.5 AGeV to 20 AGeV. In an ideal hydrodynamic approach, the high-density shock wave created by the small Ne nucleus passing through the heavy U nucleus is followed by a slower and more dilute Mach shock wave which causes conical emission of particles at the Mach cone angle. The conical emission originates from low-density regions with a small flow velocity comparable to the speed of sound. Moreover, it is shown that the angular distributions of emitted baryons clearly distinguish between a hydrodynamic approach and binary cascade processes used in the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) transport model.
Shock waves in dispersive Eulerian fluids
Hoefer, M A
2013-01-01
The long time behavior of an initial step resulting in a dispersive shock wave (DSW) for the one-dimensional isentropic Euler equations regularized by generic, third order dispersion is considered by use of Whitham averaging. Under modest assumptions, the jump conditions (DSW locus and speeds) for admissible, weak DSWs are characterized and found to depend only upon the sign of dispersion (convex or concave) and a general pressure law. Two mechanisms leading to the breakdown of this simple wave DSW theory for sufficiently large jumps are identified: a change in the sign of dispersion, leading to gradient catastrophe in the modulation equations, and the loss of genuine nonlinearity in the modulation equations. Large amplitude DSWs are constructed for several particular dispersive fluids with differing pressure laws modeled by the generalized nonlinear Schr\\"{o}dinger equation. These include superfluids (Bose-Einstein condensates and ultracold Fermions) and "optical fluids". Estimates of breaking times for smoo...
Observation and control of shock waves in individual nanoplasmas
Hickstein, Daniel D; Gaffney, Jim A; Foord, Mark E; Petrov, George M; Palm, Brett B; Keister, K Ellen; Ellis, Jennifer L; Ding, Chengyuan; Libby, Stephen B; Jimenez, Jose L; Kapteyn, Henry C; Murnane, Margaret M; Xiong, Wei
2014-01-01
In a novel experiment that images the momentum distribution of individual, isolated 100-nm-scale plasmas, we make the first experimental observation of shock waves in nanoplasmas. We demonstrate that the introduction of a heating pulse prior to the main laser pulse increases the intensity of the shock wave, producing a strong burst of quasi-monochromatic ions with an energy spread of less than 15%. Numerical hydrodynamic calculations confirm the appearance of accelerating shock waves, and provide a mechanism for the generation and control of these shock waves. This observation of distinct shock waves in dense plasmas enables the control, study, and exploitation of nanoscale shock phenomena with tabletop-scale lasers.
An overview of shock wave therapy in musculoskeletal disorders.
Wang, Ching-Jen
2003-04-01
Shock waves are high-energy acoustic waves generated under water with high voltage explosion and vaporization. Shock wave in urology (lithotripsy) is primarily used to disintegrate urolithiasis, whereas shock wave in orthopedics (orthotripsy) is not used to disintegrate tissues, rather to induce neovascularization, improve blood supply and tissue regeneration. The application of shock wave therapy in certain musculoskeletal disorders has been around for approximately 15 years, and the success rate in non-union of long bone fracture, calcifying tendonitis of the shoulder, lateral epicondylitis of the elbow and proximal plantar fasciitis ranged from 65% to 91%. The complications are low and negligible. Recently, shock wave therapy was extended to treat other conditions including avascular necrosis of femoral head, patellar tendonitis (jumper's knee), osteochondritis dessicans and non-calcifying tendonitis of the shoulder. Shock wave therapy is a novel therapeutic modality without the need of surgery and surgical risks as well as surgical pain. It is convenient and cost-effective. The exact mechanism of shock wave therapy remains unknown. Based on the results of animal studies in our laboratory, it appears that the mechanism of shock waves first stimulates the early expression of angiogenesis-related growth factors including eNOS (endothelial nitric oxide synthase), VEGF (vessel endothelial growth factor) and PCNA (proliferating cell nuclear antigen), then induces the ingrowth of neovascularization that improves blood supply and increases cell proliferation and eventual tissue regeneration to repair tendon or bone tissues. The rise of angiogenic markers occurred in as early as one week and only lasted for approximately 8 weeks, whereas the neovascularization was first noted in 4 weeks and persisted for 12 weeks or longer along with cell proliferation. These findings support the clinical observation that the effect of shock wave therapy appears to be dose-dependent and
Radial Shock Wave Devices Generate Cavitation.
Directory of Open Access Journals (Sweden)
Nikolaus B M Császár
Full Text Available Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues.We used laser fiber optic probe hydrophone (FOPH measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical Systems, Nyon, Switzerland; D-Actor 200; Storz Medical, Tägerwillen, Switzerland and a vibrating massage device (Vibracare; G5/General Physiotherapy, Inc., Earth City, MO, USA. To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans worms.FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device.The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices.Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biological alteration that "kick-starts" the healing response. Due to their different treatment indications and contra-indications rESWT devices cannot be equated to vibrating massage devices and should be used with due caution in clinical
Experimental particle acceleration by water evaporation induced by shock waves
Scolamacchia, T.; Alatorre Ibarguengoitia, M.; Scheu, B.; Dingwell, D. B.; Cimarelli, C.
2010-12-01
condensation front exhibited large accelerations, with velocity varying from few tens of m/s up to 479 (±0.5) m/s, at distances of 1.5 (±0.3) cm and in times of 0.1 ms. This process preceded the appearance of the Ar front. Our first results suggest that the evaporation of moisture induced by compression waves associated with the air shock is able to accelerate particles (ca.100s microns in size) efficiently, at short distances. This process could have broader implications in active volcanic areas where shock waves are generated, for the damage that may follow.
Shock Wave Diffraction Phenomena around Slotted Splitters
Directory of Open Access Journals (Sweden)
Francesca Gnani
2015-01-01
Full Text Available In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement.
Shock-wave therapy in scapularhumeral periarthritis
Directory of Open Access Journals (Sweden)
Bulakh О.А.
2014-12-01
Full Text Available The aim of the present study was to determine the effectiveness of extracorporeal shock wave therapy in treating shoulder-scapular periarthritis. Material and methods. Survey and treatment of 30 patients of 45-67 years old with the diagnosis: shoulder periarthritis (7 women and 23 men. Age of the disease ranged from 1 month to 5 years. All patients were conducted x-ray examination of the cervical spine and the shoulder joint (radiography and/or MRI. To determine the pain activity the Visual analogue scale was used, Dowborn's test, test WAM. Results. The characteristic feature of the shoulder periarthritis is positive Dowborn's symptom: when rotating the shoulder inside (internal rotation and the side of her moves up to 450-900 there was a pain in the shoulder joint (100% of patients. Conclusion. The appointment of a medical course of ESWT enhances functionality and adaptive responses in patients with shoulder-dorsal periartritom, and may be the method of choice of tactics therapy treatment of patients of this profile. The shock wave therapy is delayed effect. All patients received the ESWT, observed devolution of pain, to a minimum of 6 months to recommend re courses of therapy with a frequency of no more than 2 times a year.
Charge-Confining Gravitational Electrovacuum Shock Wave
Guendelman, Eduardo; Pacheva, Svetlana
2013-01-01
In previous publications we have extensively studied spherically symmetric solutions of gravity coupled to a non-standard type of non-linear electrodynamics containing a square root of the ordinary Maxwell Lagrangian (the latter is known to yield QCD-like confinement in flat space-time). A class of these solutions describe non-standard black holes of Reissner-Nordstroem-(anti-)-de-Sitter type with an additional constant radial vacuum electric field, in particular, a non-asymptotically flat Reissner-Nordstroem-type black hole. Here we study the ultra-relativistic boost (Aichelburg-Sexl-type) limit of the latter and show that, unlike the ordinary Reissner-Nordstroem case, we obtain a gravitational electrovacuum shock wave as a result of the persistence of the gauge field due to the "square-root" Maxwell Lagrangian term. Next, we show that this gravitational electrovacuum shock wave confines charged test particles (both massive and massless) within a finite distance from its front.
Sound Velocity and Release Behaviour of Shock-Compressed LY12 Al
Institute of Scientific and Technical Information of China (English)
YU Yu-Ying; TAN Hua; DAI Cheng-Da; HU Jian-Bo; CHEN Da-Nian
2005-01-01
@@ A velocity interferometer system for any reflector (VISAR) is used to measure the sound velocity of LY12 Al shock-compressed to peak pressures of 20, 32, 55 and 71 GPa. Unloading wave velocities from these pressures are obtained from the observed particle velocity profiles at the LY12 Al/LiF window interface; and the longitudinal,bulk and shear sound velocities at the initial Hugoniot state are well determined. The histories of stress, strain,density or volume, and particle velocity along the release paths are calculated by the impedance-matching method based on the unloading sound velocity data. It is revealed that the release behaviour of shocked LY12 Al departures obviously from the elastic perfectly-plastic response.
Smart structures for shock wave attenuation using ER inserts
Kim, Jaehwan; Kim, Jung-Yup; Choi, Seung-Bok; Kim, Kyung-Su
2001-08-01
This Paper demonstrates the possibility of shock wave attenuation propagating through a smart structure that incorporates ER insert. The wave transmission of ER inserted beam is theoretically derived using Mead & Markus model and the theoretical results are compared with the finite element analysis results. To experimentally verify the shock wave attenuation, ER insert in an aluminum plate is made and two piezoceramic disks are used as transmitter and receiver of the wave. The transmitter sends a sine pulse signal such that a component of shock wave travels through the plate structure and the receiver gets the transmitted wave signal. Wave propagation of the ER insert can be adjusted by changing the applied electric field on the ER insert. Details of the experiment are addressed and the possibility of shock wave attenuation is experimentally verified. This kind of smart structure can be used for warship and submarine hull structures to protect fragile and important equipment.
Shock wave propagation in semi-crystalline polyethylene: An atomic-scale investigation
Elder, Robert M.; O'Connor, Thomas C.; Yeh, In-Chul; Chantawansri, Tanya L.; Sirk, Timothy W.; Robbins, Mark O.; Andzelm, Jan W.
Highly oriented polyethylene (PE) fibers are used in protection applications, therefore elucidation of their response under high strain-rate impact events is vital. Although PE fibers can have high crystallinity (>95%), they also contain defects such as amorphous domains. Using molecular dynamics simulations, we investigate shock propagation through crystalline, amorphous, and semi-crystalline PE. We generate compressive shock waves of varying strength, quantify their dynamics, and characterize their effect on material properties at the atomic scale. In the semi-crystalline PE model, the differing density and molecular order of amorphous PE and crystalline PE result in differing shock impedances, which causes reflection and refraction of shock waves at interfaces between the phases. We quantify the properties (e.g. pressure, velocity) of the reflected and refracted waves, which differ from those of the incident wave, and compare with results from impedance matching. We also examine the reflection, absorption, and transmission of energy at the crystalline-amorphous interface. Depending on shock strength, amorphous defects can dissipate shock energy, which attenuates the shock and leads to effects such as localized heating.
Multiple structure of a laser-induced underwater shock wave
Tagawa, Yoshiyuki; Hayasaka, Keisuke; Kameda, Masaharu
2015-01-01
The structure of a laser-induced underwater shock wave is examined. Plasma formation, shock-wave expansion, and temporal evolution of shock pressure are observed simultaneously using a combined measurement system that obtains high-resolution nanosecond-order image sequences. In contrast to a well-known spherical-shock model, these detailed measurements reveal a non-spherically-symmteric distribution of pressure peak for a wide range of experimental parameters. The structure is determined to be a collection of multiple spherical shocks originated from elongated plasmas.
Shock waves in fluid-filled distensible tubes.
Rudinger, G
1980-02-01
Flow of a liquid through distensible tubes is of interest primarily in biological systems, and some properties of shock waves in such tubes are discussed. In shock-fixed coordinates, these flows are steady, and the shock is associated with an increase of pressure and cross-sectional area. Shock transition is analyzed for two flow models, namely, immediate flow separation, when the flow enters the shock zone, and no separation. Shock properties are expressed in terms of the speed index (ratio of the velocity of the shock to that of a small-amplitude wave) and dissipation (loss of total pressure). Examples are worked out for the thoracic aorta of an anesthetized dog, a perfectly elastic tube, and a partially collapsed tube. Appreciable differences in shock velocity and dissipation result if either flow separation or no separation is assumed.
Unfocused Extracorporeal Shock Waves Induce Anabolic Effects in Rat Bone
O.P. van der Jagt (Olav); T.M. Piscaer (Tom); W. Schaden (Wolfgang); J. Li; N. Kops (Nicole); H. Jahr (Holger); J.C. van der Linden (Jacqueline); J.H. Waarsing (Jan); J.A.N. Verhaar (Jan); M. de Jong (Marion); H.H. Weinans (Harrie)
2011-01-01
textabstractAbstract. BACKGROUND: Extracorporeal shock waves are known to stimulate the differentiation of mesenchymal stem cells toward osteoprogenitors and induce the expression of osteogenic-related growth hormones. The aim of this study was to investigate if and how extracorporeal shock waves af
Unfocused Extracorporeal Shock Waves Induce Anabolic Effects in Rat Bone
O.P. van der Jagt (Olav); T.M. Piscaer (Tom); W. Schaden (Wolfgang); J. Li; N. Kops (Nicole); H. Jahr (Holger); J.C. van der Linden (Jacqueline); J.H. Waarsing (Jan); J.A.N. Verhaar (Jan); M. de Jong (Marion); H.H. Weinans (Harrie)
2011-01-01
textabstractAbstract. BACKGROUND: Extracorporeal shock waves are known to stimulate the differentiation of mesenchymal stem cells toward osteoprogenitors and induce the expression of osteogenic-related growth hormones. The aim of this study was to investigate if and how extracorporeal shock waves
Extracorporeal shock wave lithotripsy of biliary and pancreatic stones
R. den Toom (Rene)
1993-01-01
textabstractThe aim of the study was to answer the following questions: Is extracorporeal shock wave lithotripsy for gallbladder stones a safe and effective therapy? (Chapter 2) Is simultaneous treatment with extracorporeal shock wave lithotripsy and the solvent methyl te.rt-butyl ether feasible, sa
Shock Mechanism Analysis and Simulation of High-Power Hydraulic Shock Wave Simulator
Directory of Open Access Journals (Sweden)
Xiaoqiu Xu
2017-01-01
Full Text Available The simulation of regular shock wave (e.g., half-sine can be achieved by the traditional rubber shock simulator, but the practical high-power shock wave characterized by steep prepeak and gentle postpeak is hard to be realized by the same. To tackle this disadvantage, a novel high-power hydraulic shock wave simulator based on the live firing muzzle shock principle was proposed in the current work. The influence of the typical shock characteristic parameters on the shock force wave was investigated via both theoretical deduction and software simulation. According to the obtained data compared with the results, in fact, it can be concluded that the developed hydraulic shock wave simulator can be applied to simulate the real condition of the shocking system. Further, the similarity evaluation of shock wave simulation was achieved based on the curvature distance, and the results stated that the simulation method was reasonable and the structural optimization based on software simulation is also beneficial to the increase of efficiency. Finally, the combination of theoretical analysis and simulation for the development of artillery recoil tester is a comprehensive approach in the design and structure optimization of the recoil system.
Biomechanical and Biochemical Cellular Response Due to Shock Waves
2008-12-01
using shock- wave-induced cavitation . Ultrasound in Medicine and Biology, 29, 1769-1776. Lew, H. L., J. H. Poole, S. Alvarez, and W. Moore, 2005...sheets of adipose derived stem cells to shock waves. A key guideline in the experimental design was to suppress cavitation . To this end we...shock-exposed cells and controls. We attribute this to the absence of cavitation . Time-resolved gene expression revealed that a large
Shock wave of vapor-liquid two-phase flow
Institute of Scientific and Technical Information of China (English)
Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN
2008-01-01
The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.
Dispersive shock waves in nematic liquid crystals
Smyth, Noel F.
2016-10-01
The propagation of coherent light with an initial step intensity profile in a nematic liquid crystal is studied using modulation theory. The propagation of light in a nematic liquid crystal is governed by a coupled system consisting of a nonlinear Schrödinger equation for the light beam and an elliptic equation for the medium response. In general, the intensity step breaks up into a dispersive shock wave, or undular bore, and an expansion fan. In the experimental parameter regime for which the nematic response is highly nonlocal, this nematic bore is found to differ substantially from the standard defocusing nonlinear Schrödinger equation structure due to the effect of the nonlocality of the nematic medium. It is found that the undular bore is of Korteweg-de Vries equation-type, consisting of bright waves, rather than of nonlinear Schrödinger equation-type, consisting of dark waves. In addition, ahead of this Korteweg-de Vries bore there can be a uniform wavetrain with a short front which brings the solution down to the initial level ahead. It is found that this uniform wavetrain does not exist if the initial jump is below a critical value. Analytical solutions for the various parts of the nematic bore are found, with emphasis on the role of the nonlocality of the nematic medium in shaping this structure. Excellent agreement between full numerical solutions of the governing nematicon equations and these analytical solutions is found.
The Configuration of Shock Wave Reflection for the TSD Equation
Institute of Scientific and Technical Information of China (English)
Li WANG
2013-01-01
In this paper,we mainly study the nonlinear wave configuration caused by shock wave reflection for the TSD (Transonic Small Disturbance) equation and specify the existence and nonexistence of various nonlinear wave configurations.We give a condition under which the solution of the RR (Regular reflection) for the TSD equation exists.We also prove that there exists no wave configuration of shock wave reflection for the TSD equation which consists of three or four shock waves.In phase space,we prove that the TSD equation has an IR (Irregular reflection) configuration containing a centered simple wave.Furthermore,we also prove the stability of RR configuration and the wave configuration containing a centered simple wave by solving a free boundary value problem of the TSD equation.
Plasma Shock Wave Modification Experiments in a Temperature Compensated Shock Tube
Vine, Frances J.; Mankowski, John J.; Saeks, Richard E.; Chow, Alan S.
2003-01-01
A number of researchers have observed that the intensity of a shock wave is reduced when it passes through a weakly ionized plasma. While there is little doubt that the intensity of a shock is reduced when it propagates through a weakly ionized plasma, the major question associated with the research is whether the reduction in shock wave intensity is due to the plasma or the concomitant heating of the flow by the plasma generator. The goal of this paper is to describe a temperature compensated experiment in a "large" diameter shock tube with an external heating source, used to control the temperature in the shock tube independently of the plasma density.
[Extracorporeal shock-wave therapy. Experimental basis, clinical application].
Rompe, J D; Küllmer, K; Vogel, J; Eckardt, A; Wahlmann, U; Eysel, P; Hopf, C; Kirkpatrick, C J; Bürger, R; Nafe, B
1997-03-01
The purpose of our studies was to investigate experimentally the dose-dependent effects of extracorporeal shock waves on tendon and bone and to unveil therapeutic possibilities in tendinopathies and pseudarthroses. In animal experiments, both positive and negative influences were exerted by shock waves, depending on the initial situation and on the power of the applied shock waves. In prospective clinical trials positive effects were found in the treatment of persistent tennis elbow, plantar fasciitis, calcifying tendinitis, and pseudarthrosis. Our data show that extracorporeal shock waves may provide analgesic, resorptive and osteo-inductive reactions with nearly no side effects. However, the high cost of apparatus and staff prevents a routine application. Extracorporeal shock waves thus remain a last alternative before the indication is made for an operative procedure.
THE EFFECTS OF AREA CONTRACTION ON SHOCK WAVE STRENGTH AND PEAK PRESSURE IN SHOCK TUBE
Directory of Open Access Journals (Sweden)
A. M. Mohsen
2012-06-01
Full Text Available This paper presents an experimental investigation into the effects of area contraction on shock wave strength and peak pressure in a shock tube. The shock tube is an important component of the short duration, high speed fluid flow test facility, available at the Universiti Tenaga Nasional (UNITEN, Malaysia. The area contraction was facilitated by positioning a bush adjacent to the primary diaphragm section, which separates the driver and driven sections. Experimental measurements were performed with and without the presence of the bush, at various diaphragm pressure ratios, which is the ratio of air pressure between the driver (high pressure and driven (low pressure sections. The instantaneous static pressure variations were measured at two locations close to the driven tube end wall, using high sensitivity pressure sensors, which allow the shock wave strength, shock wave speed and peak pressure to be analysed. The results reveal that the area contraction significantly reduces the shock wave strength, shock wave speed and peak pressure. At a diaphragm pressure ratio of 10, the shock wave strength decreases by 18%, the peak pressure decreases by 30% and the shock wave speed decreases by 8%.
SHOCKFIND - An algorithm to identify magnetohydrodynamic shock waves in turbulent clouds
Lehmann, Andrew; Wardle, Mark
2016-01-01
The formation of stars occurs in the dense molecular cloud phase of the interstellar medium. Observations and numerical simulations of molecular clouds have shown that supersonic magnetised turbulence plays a key role for the formation of stars. Simulations have also shown that a large fraction of the turbulent energy dissipates in shock waves. The three families of MHD shocks --- fast, intermediate and slow --- distinctly compress and heat up the molecular gas, and so provide an important probe of the physical conditions within a turbulent cloud. Here we introduce the publicly available algorithm, SHOCKFIND, to extract and characterise the mixture of shock families in MHD turbulence. The algorithm is applied to a 3-dimensional simulation of a magnetised turbulent molecular cloud, and we find that both fast and slow MHD shocks are present in the simulation. We give the first prediction of the mixture of turbulence-driven MHD shock families in this molecular cloud, and present their distinct distributions of s...
Viscous Shear Layers Formed by Non-Bifurcating Shock Waves in Shock-Tubes
Grogan, Kevin; Ihme, Matthias
2015-11-01
Shock-tubes are test apparatuses that are used extensively for chemical kinetic measurements. Under ideal conditions, shock-tubes provide a quiescent region behind a reflected shock wave where combustion may take place without complications arising from gas-dynamic effects. However, due to the reflected shock wave encountering a boundary layer, significant inhomogeneity may be introduced into the test region. The bifurcation of the reflected shock-wave is well-known to occur under certain conditions; however, a viscous shear layer may form behind a non-bifurcating reflected shock wave as well and may affect chemical kinetics and ignition of certain fuels. The focus of this talk is on the development of the viscous shear layer and the coupling to the ignition in the regime corresponding to the negative temperature conditions.
Institute of Scientific and Technical Information of China (English)
Tsukasa Irie; Tsuyoshi Yasunobu; Hideo Kashimura; Toshiaki Setoguchi; Kazuyasu Matsuo
2003-01-01
When the shock wave propagating in the straight circular tube reaches at the open end, the impulsive wave is generated by the emission of a shock wave from an open end, and unsteady pulse jet is formed near the open end behind the impulsive wave under the specific condition. The pulse jet transits to spherical shock wave with the increase in the strength of shock wave. The strength is dependent on the Mach number of shock wave, which attenuates by propagation distance from the open end. In this study, the mechanism of generating the unsteady pulse jet, the characteristics of the pressure distribution in the flow field and the emission of shock wave from straight circular tube which has the infinite flange at open end are analyzed numerically by the TVD method. Strength of spherical shock wave, relation of shock wave Mach number, distance decay of spherical shock wave and directional characteristics are clarified.
Extracorporeal shock wave therapy (ESWT) in urology
DEFF Research Database (Denmark)
Fojecki, Grzegorz Lukasz; Thiessen, Stefan; Osther, Palle Jörn Sloth
2017-01-01
PURPOSE: The objective was to evaluate high-level evidence studies of extracorporeal shock wave therapy (ESWT) for urological disorders. METHODS: We included randomized controlled trials reporting outcomes of ESWT in urology. Literature search on trials published in English using EMBASE, Medline...... and PubMed was carried out. The systematic review was performed according to PRISMA guidelines. RESULTS: We identified 10 trials on 3 urological indications. Two of 3 trials on Peyronie's disease (PD) involving 238 patients reported improvement in pain; however, no clinical significant changes in penile......i) responders in 2 of 4 trials and 3 of 4 trials, respectively. Three studies on chronic pelvic pain (CPP) engaging 200 men reported positive changes in National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI). There was considerable heterogeneity between trials both with regard...
Two-dimensional dispersive shock waves in dissipative optical media
Kartashov, Yaroslav V
2013-01-01
We study generation of two-dimensional dispersive shock waves and oblique dark solitons upon interaction of tilted plane waves with negative refractive index defects embedded into defocusing material with linear gain and two-photon absorption. Different evolution regimes are encountered including the formation of well-localized disturbances for input tilts below critical one, and generation of extended shock waves containing multiple intensity oscillations in the "upstream" region and gradually vanishing oblique dark solitons in "downstream" region for input tilts exceeding critical one. The generation of stable dispersive shock waves is possible only below certain critical defect strength.
Laser Accelerated Ions from a Shock Compressed Gas Foil
Helle, M H; Kaganovich, D; Chen, Y; Palastro, J P; Ting, A
2016-01-01
We present results of energetic laser-ion acceleration from a tailored, near solid density gas target. Colliding hydrodynamic shocks compress a pure hydrogen gas jet into a 70 {\\mu}m thick target prior to the arrival of the ultra-intense laser pulse. A density scan reveals the transition from a regime characterized by a wide angle, low energy beam to one of a more focused beam with a high energy halo. In the latter case, three dimensional simulations show the formation of a Z-pinch driven by the axial current resulting from laser wakefield accelerated electrons. Ions at the rear of the target are then accelerated by a combination of space charge fields from accelerated electrons and Coulombic repulsion as the pinch dissipates.
Small scales formation via Alfven wave propagation in compressible nonuniform media
Malara, F.; Primavera, L.; Veltri, P.
1995-01-01
In weakly dissipative media governed by the magnetohydrodynamics (MHD) equations, any efficient mechanism of energy dissipation requires the formation of small scales. The possibility to produce small scales has been studied by Malara et al. in the case of MHD disturbances propagating in an incompressible and inhomogeneous medium, for a strictly 2D geometry. We extend the work of Malara et al. to include both compressibility and the third component for vector quantities. Using numerical simulations we show that, when an Alfven wave propagates in a compressible nonuniform medium, the two dynamical effects responsible for the small scales formation in the incompressible case are still at work: energy pinching and phase-mixing. Moreover, the interaction between the initial Alfven wave and the inhomogeneity gives rise to the formation of compressible perturbations (fast and slow waves or a static entropy wave). Some of these compressive fluctuations are subject to the steepening of the wave front and become shock waves, which are extremely efficient in dissipating their energy, their dissipation being independent of the Reynolds number. A rough estimate of the typical times which the various dynamical processes take to produce small scales and then to dissipate the energy show that these times are consistent with those required to dissipate inside the solar corona the energy of Alfven waves of photospheric origin.
Jump relations for magnetrohydrodynamic shock waves in a dusty gas atmosphere
Anand, R K
2014-01-01
In this paper, jump relations for one dimensional magnetohydrodynamic (MHD) shock waves propagating in a dusty gas environment are expressed in a simple form in terms of dimensionless variables. The dusty gas is assumed to be a mixture of a perfect gas and spherically small solid particles, in which solid particles are continuously distributed. The jump relations across the MHD shock front for the pressure, the density and the velocity of mixture have been derived, respectively in terms of a compression ratio across the shock front in a gas-solid particle two-phase flow. The expressions for the speed of sound, adiabatic compressibility of mixture and the change-in-entropy across the MHD shock front have also been derived in terms of the compression ratio. Further, the handy forms of MHD shock jump relations have been obtained in terms of the initial volume fraction of small solid particles and the ratio of specific heats of the mixture, simultaneously for the two cases viz., (i) when the shock is strong and, ...
The influence of incident shock Mach number on radial incident shock wave focusing
Directory of Open Access Journals (Sweden)
Xin Chen
2016-04-01
Full Text Available Experiments and numerical simulations were carried out to investigate radial incident shock focusing on a test section where the planar incident shock wave was divided into two identical ones. A conventional shock tube was used to generate the planar shock. Incident shock Mach number of 1.51, 1.84 and 2.18 were tested. CCD camera was used to obtain the schlieren photos of the flow field. Third-order, three step strong-stability-preserving (SSP Runge-Kutta method, third-order weighed essential non-oscillation (WENO scheme and adaptive mesh refinement (AMR algorithm were adopted to simulate the complicated flow fields characterized by shock wave interaction. Good agreement between experimental and numerical results was observed. Complex shock wave configurations and interactions (such as shock reflection, shock-vortex interaction and shock focusing were observed in both the experiments and numerical results. Some new features were observed and discussed. The differences of structure of flow field and the variation trends of pressure were compared and analyzed under the condition of different Mach numbers while shock wave focusing.
Linear-mixing model for shock-compressed liquid deuterium
Energy Technology Data Exchange (ETDEWEB)
Ross, M. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)
1998-07-01
A model has been developed for the equation of state of deuterium that builds in the correct limiting behavior for the molecular fluid at low pressure and extends smoothly through dissociation to the very high-density monatomic-metallic fluid. The key assumption is that the Helmholtz free energy of the dissociating mixture is a function that can be approximated by the composition average of the free energy of the pure molecular and metallic hydrogen equations of state. The composition is determined by minimizing the free energy. In comparison to earlier studies this model leads to an enhancement of molecular dissociation and a lowering of shock temperatures and pressures. Calculations for shock-compressed liquid deuterium are in agreement with experiments to a pressure of 2.1 Mbar. At about 1 Mbar and 20thinsp000 K liquid deuterium is 90{percent} dissociated and is a nearly degenerate metal. The model predicts that molecular dissociation will lead to negative values of ({partial_derivative}P/{partial_derivative}T){sub V} in the range 4000 to 10thinsp000 K and volumes below 7 cc/mol. This feature suggests the formation of covalently bonded species in the partially dissociated mixture. {copyright} {ital 1998} {ital The American Physical Society}
Microstructure and Mechanical Properties After Shock Wave Loading of Cast CrMnNi TRIP Steel
Eckner, Ralf; Krüger, L.; Ullrich, C.; Rafaja, D.; Schlothauer, T.; Heide, G.
2016-10-01
The mechanical response of shock wave-prestrained high-alloy Cr16-Mn7-Ni6 TRIP steel was investigated under compressive and tensile loading at room temperature. Previous shock wave loading was carried out using a flyer-plate assembly with different amounts of explosives in order to achieve shock pressures of 0.3, 0.6, 0.9, and 1.2 Mbar. A significant increase in hardness and strength was observed as compared with the initial as-cast condition. In contrast, a slight decrease in strain hardening rates was measured together with a decrease in fracture elongation in the tensile test. Microstructural analyses of the shock-loaded samples were performed by light optical and scanning electron microscopy. The microstructure revealed a high density of deformation bands consisting of separated stacking faults, ɛ-martensite, or twins. Significant amounts of deformation-induced α'-martensite were only present at the highest shock pressure of 1.2 Mbar. The thickness of the deformation bands and the number of martensite nuclei at their intersections increased with increasing shock pressure. In all shock-loaded specimens, pronounced phase transformation occurred during subsequent mechanical testing. Consequently, the amount of the deformation-induced α'-martensite in the shock-loaded specimens was higher than in the unshocked as-cast samples.
The structure of radiative shock waves. III. The model grid for partially ionized hydrogen gas
Fadeyev, Y A; Fadeyev, Yu. A.
2001-01-01
The grid of the models of radiative shock waves propagating through partially ionized hydrogen gas with temperature 3000K <= T_1 <= 8000K and density 10^{-12} gm/cm^3 <= \\rho_1 <= 10^{-9}gm/cm^3 is computed for shock velocities 20 km/s <= U_1 <= 90 km/s. The fraction of the total energy of the shock wave irreversibly lost due to radiation flux ranges from 0.3 to 0.8 for 20 km/s <= U_1 <= 70 km/s. The postshock gas is compressed mostly due to radiative cooling in the hydrogen recombination zone and final compression ratios are within 1 <\\rho_N/\\rho_1 \\lesssim 10^2, depending mostly on the shock velocity U_1. The preshock gas temperature affects the shock wave structure due to the equilibrium ionization of the unperturbed hydrogen gas, since the rates of postshock relaxation processes are very sensitive to the number density of hydrogen ions ahead the discontinuous jump. Both the increase of the preshock gas temperature and the decrease of the preshock gas density lead to lower postsh...
Dispersive radiation induced by shock waves in passive resonators.
Malaguti, Stefania; Conforti, Matteo; Trillo, Stefano
2014-10-01
We show that passive Kerr resonators pumped close to zero dispersion wavelengths on the normal dispersion side can develop the resonant generation of linear waves driven by cavity (mixed dispersive-dissipative) shock waves. The resonance mechanism can be successfully described in the framework of the generalized Lugiato-Lefever equation with higher-order dispersive terms. Substantial differences with radiation from cavity solitons and purely dispersive shock waves dispersion are highlighted.
Shock wave diffraction and reflection around a dusty square cavity
Institute of Scientific and Technical Information of China (English)
王柏懿; 王超; 戚隆溪
2001-01-01
The diffraction and reflection of planar shock wave around a dusty square cavity is investigated nuerically, which is embedded in the flat bottom surface of a two-dimensional channel, and the induced gas-particle twophase flow. The wave patterns at different times are obtained for three different values of the particle diameter. The computational results show that the existence of particles affects appreciably the shock wave diffraction and cavity flow.
Observations and Interpretation of a Low Coronal Shock Wave Observed in the EUV by the SDO/AIA
Ma, Suli; Golub, Leon; Lin, Jun; Chen, Huadong; Grigis, Paolo; Testa, Paola; Long, David
2011-01-01
Taking advantage of both the high temporal and spatial resolution of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), we studied a limb coronal shock wave and its associated extreme ultraviolet (EUV) wave that occurred on 2010 June 13. Our main findings are (1) the shock wave appeared clearly only in the channels centered at 193 \\AA and 211 \\AA as a dome-like enhancement propagating ahead of its associated semi-spherical CME bubble; (2) the density compression of the shock is 1.56 according to radio data and the temperature of the shockis around 2.8 MK; (3) the shock wave first appeared at 05:38 UT, 2 minutes after the associated flare has started and 1 minute after its associated CME bubble appeared;(4) the top of the dome-like shock wave set out from about 1.23 R\\odot and the thickness of the shocked layer is ~ 2\\times10^4 km; (5) the speed of the shock wave is consistent with a slight decrease from about 600 km/s to 550 km/s; (6) the lateral expansion of the shock wave ...
Cosmological shock waves: clues to the formation history of haloes
Planelles, Susana
2012-01-01
Shock waves developed during the formation and evolution of cosmic structures encode crucial information on the hierarchical formation of the Universe. We analyze an Eulerian AMR hydro + N-body simulation in a $\\Lambda$CDM cosmology focused on the study of cosmological shock waves. The combination of a shock-capturing algorithm together with the use of a halo finder allows us to study the morphological structures of the shock patterns, the statistical properties of shocked cells, and the correlations between the cosmological shock waves appearing at different scales and the properties of the haloes harbouring them. The shocks in the simulation can be split into two broad classes: internal weak shocks related with evolutionary events within haloes, and external strong shocks associated with large-scale events. The shock distribution function contains information on the abundances and strength of the different shocks, and it can be fitted by a double power law with a break in the slope around a Mach number of 2...
Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions
Anderson, B. J.; Hamilton, D. C.
1993-01-01
AMPTE/CCE magnetic field and particle data are used to test the suggestion that increased hot proton temperature anisotropy resulting from convection during magnetospheric compression is responsible for the enhancement in Pc 1 emission via generation of electromagnetic ion cyclotron (EMIC) waves in the dayside outer equatorial magnetosphere. The relative increase in magnetic field is used to gauge the strength of the compression, and an image dipole model is used to estimate the motion of the plasma during compression. Proton data are used to analyze the evolution of the proton distribution and the corresponding changes in EMIC wave activity expected during the compression. It is suggested that enhancements in dynamic pressure pump the energetic proton distributions in the outer magnetosphere, driving EMIC waves. Waves are expected to be generated most readily close to the magnetopause, and transient pressure pulses may be associated with bursts of EMIC waves, which would be observed on the ground in association with ionospheric transient signatures.
Exact focusing of extracorporeal shock wave therapy for calcifying tendinopathy.
Haake, Michael; Deike, Barbara; Thon, Alexander; Schmitt, Jan
2002-04-01
A controlled prospective randomized study was designed to analyze the effect of extracorporeal shock wave therapy on calcifying tendinopathy of the shoulder focused on the calcified area or the origin of the supraspinatus tendon. Fifty patients were included in the study and were treated with a Storz Minilith Sl-1 shock wave generator. The first group of patients received 4000 impulses (positive energy flux density, 0.78 mJ/mm2) in two treatment sessions after receiving local anesthesia at the origin of the supraspinatus tendon. Patients in the second group received extracorporeal shock wave therapy at the calcified area. Follow-ups were done 12 weeks and 1 year after treatment by an independent observer. An increase of function and a reduction of pain occurred in both groups. Statistical analyses showed a significant superiority of extracorporeal shock wave application at the calcified area in the primary end point (Constant and Murley score). Therefore, exact fluoroscopic focusing of extracorporeal shock wave therapy at the calcific deposit for treatment of calcifying tendinopathy of the supraspinatus muscle is recommended. Based on these results, extracorporeal shock wave application should be focused fluoroscopically with appropriate shock wave generators.
Solitary Shock Waves near Phase Transition in Lipid Interfaces and Nerves
Shrivastava, Shamit; Schneider, Matthias
2014-01-01
This study shows that the stability of solitary waves excited in a lipid monolayer near a phase boundary requires positive curvature of the adiabats, a known necessary condition in shock compression science. It is further shown that the condition results in a threshold for excitation, saturation of the wave amplitude and the splitting of the wave at the phase boundaries. The observed phenomenon has far reaching consequences for dynamic biological processes and is hypothesized to be closely tied to the existence of both, the threshold and thermodynamic blockage of nerve pulse propagation.
Solitary shock waves and adiabatic phase transition in lipid interfaces and nerves.
Shrivastava, Shamit; Kang, Kevin Heeyong; Schneider, Matthias F
2015-01-01
This study shows that the stability of solitary waves excited in a lipid monolayer near a phase transition requires positive curvature of the adiabats, a known necessary condition in shock compression science. It is further shown that the condition results in a threshold for excitation, saturation of the wave's amplitude, and the splitting of the wave at the phase boundaries. Splitting in particular confirms that a hydrated lipid interface can undergo condensation on adiabatic heating, thus showing retrograde behavior. Finally, using the theoretical insights and state dependence of conduction velocity in nerves, the curvature of the adiabatic state diagram is shown to be closely tied to the thermodynamic blockage of nerve pulse propagation.
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.
Detecting shock waves in cosmological smoothed particle hydrodynamics simulations
Pfrommer, C; Ensslin, T A; Jubelgas, M; Pfrommer, Christoph; Springel, Volker; Ensslin, Torsten A.; Jubelgas, Martin
2006-01-01
We develop a formalism for the identification and accurate estimation of the strength of structure formation shocks during cosmological smoothed particle hydrodynamics simulations. Shocks not only play a decisive role for the thermalization of gas in virialising structures but also for the acceleration of relativistic cosmic rays (CRs) through diffusive shock acceleration. Our formalism is applicable both to ordinary non-relativistic thermal gas, and to plasmas composed of CRs and thermal gas. To this end, we derive an analytical solution to the one-dimensional Riemann shock tube problem for a composite plasma of CRs and thermal gas. We apply our methods to study the properties of structure formation shocks in high-resolution hydrodynamic simulations of the LCDM model. We find that most of the energy is dissipated in weak internal shocks with Mach numbers M~2 which are predominantly central flow shocks or merger shock waves traversing halo centres. Collapsed cosmological structures are surrounded by external ...
Shock Waves Propagation in Scope of the Nonlocal Theory of Dynamical Plasticity
Khantuleva, Tatyana A.
2004-07-01
From the point of view of the modern statistical mechanics the problems on shock compression of solids require a reformulation in terms of highly nonequilibrium effects arising inside the wave front. The self-organization during the multiscale and multistage momentum and energy exchange are originated by the correlation function. The theory of dynamic plasticity has been developed by the author on the base of the self-consistent nonlocal hydrodynamic approach had been applied to the shock wave propagation in solids. Nonlocal balance equations describe both the reversible wave type transport at the initial stage and the diffusive (dissipative) one in the end. The involved inverse influence of the mesoeffects on the wave propagation makes the formulation of problems self-consistent and involves a concept of the cybernetic control close-loop.
Shock Waves in a Bose-Einstein Condensate
Kulikov, Igor; Zak, Michail
2005-01-01
A paper presents a theoretical study of shock waves in a trapped Bose-Einstein condensate (BEC). The mathematical model of the BEC in this study is a nonlinear Schroedinger equation (NLSE) in which (1) the role of the wave function of a single particle in the traditional Schroedinger equation is played by a space- and time-dependent complex order parameter (x,t) proportional to the square root of the density of atoms and (2) the atoms engage in a repulsive interaction characterized by a potential proportional to | (x,t)|2. Equations that describe macroscopic perturbations of the BEC at zero temperature are derived from the NLSE and simplifying assumptions are made, leading to equations for the propagation of sound waves and the transformation of sound waves into shock waves. Equations for the speeds of shock waves and the relationships between jumps of velocity and density across shock fronts are derived. Similarities and differences between this theory and the classical theory of sound waves and shocks in ordinary gases are noted. The present theory is illustrated by solving the equations for the example of a shock wave propagating in a cigar-shaped BEC.
First experience with a modified Siemens Lithostar shock wave system.
Volmer, K D; Köhler, G; Folberth, W; Planz, K
1991-01-01
A Siemens Lithostar shock wave system was modified and investigated clinically. The modified system yields increased focal pressure and energy density. The first clinical experience in renal calculi shows a significant reduction in shock wave numbers per treatment. Higher energy output enables better treatment results for difficult stones such as staghorn and infections calculi. Despite the higher energy output more than 90% of treatments could be performed without anesthesia or analgesia. No significant side effects could be detected. The service life of the modified shock wave system increased by a factor of two.
Shock Wave Induced Separation Control by Streamwise Vortices
Institute of Scientific and Technical Information of China (English)
Ryszard SZWABA
2005-01-01
Control of shock wave and boundary layer interaction finds still a lot of attention. Methods of this interaction control have been especially investigated in recent decade. This research was mostly concerned with flows without separation. However, in many applications shock waves induce separation often leads to strong unsteady effects. In this context it is proposed to use streamwise vortices for the interaction control. The results of experimental investigations are presented here. The very promising results were obtained, meaning that the incipient separation was postponed and the separation size was reduced for the higher Mach numbers. The decrease of the RMS of average shock wave oscillation was also achieved.
Mechanical behaviors and damage constitutive model of ceramics under shock compression
Institute of Scientific and Technical Information of China (English)
Jianguo Ning; Huilan Ren; Ping Li
2008-01-01
One-stage light gas gun was utilized to study the dynamic mechanical properties of AD90 alumina subjected to the shock loading. Manganin gauges were adopted to obtain the stress-time histories. The velocity interferometer system for any reflector (VISAR) was used to obtain the free surface velocity profile and determine the Hugoniot elastic limit. The Hugoniot curves were fitted with the experimental data. From Hugoniot curves the compressive behaviors of AD90 alumina were found to change typically from elastic to "plastic". The dynamic mechanical behaviors for alumina under impact loadings were analyzed by using the path line principle of Lagrange analysis, including the nonlinear characteristics, the strain rate dependence, the dispersion and declination of shock wave in the material. A damage model applicable to ceramics subjected to dynamic compressive loading has been developed. The model was based on the damage micromechanics and wing crack nucleation and growth. The effects of parameters of both the micro-cracks nucleation and the initial crack size on the dynamic fracture strength were discussed. The results of the dynamic damage evolution model were compared with the experimental results and a good agreement was found.
Active Control of Unsteady Gasdynamics for Shock Compression and Turbulence Generation
2012-09-13
see Fig. 1). This study will address the first: unsteady shock wave motion in ducts. II . Background Unsteady shock wave motion through ducts has...simulations were run using the General Aerodynamic Simulation Program ( GASP ) 100 . GASP is a 3D CFD flow solver that was used to compute these...Part II three-dimensional problems. J. Fluid Mech. 1959, 5, 369-386. SHOCK WAVES IN ALL OF THE BELOW: 42Schardin, H. and Reichenbach, H. The
Configuration of Shock Waves in Two-Dimensional Overexpanded Jets
Institute of Scientific and Technical Information of China (English)
Masashi Kashitani; Yutaka Yamaguchi; Yoshiaki Miyazato; Mitsuharu Masuda; Kazuyasu Matsuo
2003-01-01
An experimental and analytical study has been carried out to obtain the clear understanding of a shock wave transition associated with a steady two-dimensional overexpanded flow. Two-dimensional inviscid theory with respect to a shock wave reflection is used in the present study on the characteristic of shock waves. The results obtained from the flow analysis are compared with those obtained from flow visualizations. It is shown that in the region of regular reflection, the angle of an incident shock wave becomes lower than that calculated by two shock theory with an increment in the ratio pe/pb of the nozzle exit pressure pe to the back pressure pb. It is indicated that the configuration of shock waves in overexpanded jets is influenced by the divergent angle at the nozzle exit. Also it is shown from the flow visualization that a series of shock waves move into the nozzle inside with a decrease in pressure ratio pe/pb, even if the pe/pb is under overexpanded conditions.
Effects of tandem and colliding shock waves on the initiation of triaminotrinitrobenzene
Tarver, Craig M.; Urtiew, Paul A.; Tao, William C.
1995-09-01
The shock initiation of the insensitive high-explosive LX-17, which contains 92.5% triaminotrinitrobenzene and 7.5% Kel-F binder, was studied under simulated accident conditions in which two shock waves interact producing locally high pressures and temperatures. Two experimental geometries were studied using embedded manganin pressure gauges to measure the increases in pressure due to exothermic reaction at various locations as functions of time. These pressure histories were compared to ignition and growth reactive flow model calculations to determine whether a second shock compression of reacting LX-17 caused unusually rapid reaction rates and thus more extreme hazards. One experiment used a tandem flyer plate of aluminum and steel separated by a gap to shock the LX-17 charge, allow it to rarify, and then reshock the damaged charge to even higher pressures. These experiments revealed no significant enhancement of the LX-17 reaction rates under this shock, rarefaction, and reshock loading. The second experiment used a grooved flyer plate to produce a subcritical shock wave in LX-17, which then diverged and collided, producing a Mach stem interaction at the charge axis. The threshold conditions under which the Mach stem grew to detonation were measured. The standard LX-17 ignition and growth model yielded excellent agreement with the pressure gauge records in the Mach stem interaction region. The formation of Mach stem interactions by nearly simultaneous multiple high-velocity impacts was identified as a serious shock initiation hazard for heterogeneous solid explosives.
Density profile in shock wave fronts of partially ionized xenon plasmas
Reinholz, H; Morozov, I; Mintsev, V; Zaparoghets, Y; Fortov, V; Wierling, A
2003-01-01
Results for the reflection coefficient of shock-compressed dense xenon plasmas at pressures of 1.6-20 GPa and temperatures around 30 000 K are interpreted. In addition to former experiments using laser beams with lambda = 1.06 mu m, measurements at lambda = 0.694 mu m have been performed recently. Reflectivities typical for metallic systems are found at high densities. Besides free carriers, the theoretical description also takes into account the influence of the neutral component of the plasma on the reflectivity. A consistent description of the measured reflectivities is achieved only if a finite width of the shock wave front is considered.
Numerical Study of Shock Waves Propagating in an Elbow : A Double Elbow
1999-01-01
In this paper, the attenuation and the nonuniformity regarding the strength and the shape of the shock wave front propagating through a double elbow were explored by numerical simulation. Computations were carried out by solving the two-dimensional compressible Navier-Stokes equations by using the total variation diminishing (TVD) scheme. Computations were performed for six types of elbow and two incident shock Mach numbers (M_s=1.3, 2.0). The flow field were numerically visualized by the pre...
Solar-flare-induced Forbush decreases - Dependence on shock wave geometry
Thomas, B. T.; Gall, R.
1984-01-01
It is argued that the principal mechanism for the association of Forbush decreases with the passage of a solar flare shock wave is prolonged containment of cosmic ray particles behind the flare compression region, which acts as a semipermeable obstacle to particle motion along the field lines, leading to additional adiabatic cooling of the particles. Liouville's theorem is used to calculate the instantaneous distribution function at 1 AU for each particle arriving at the earth. By averaging over a large number of individual estimates, a representative estimate of the omnidirectional phase space density and the corresponding particle intensity is obtained. The energy change of individual particles at the shocks is found to be small in comparison to the energy lost by adiabatic cooling of the cosmic rays between the shock wave and the sun. The effects of particle rigidity, diffusion coefficient, and flare longitude on the magnitude of the Forbush decrease are quantitatively investigated.
Whistler wave bursts upstream of the Uranian bow shock
Smith, Charles W.; Goldstein, Melvyn L.; Wong, Hung K.
1989-01-01
Observations of magnetic field wave bursts upstream of the Uranian bow shock are reported which were recorded prior to the inbound shock crossing. Three wave types are identified. One exhibits a broad spectral enhancement from a few millihertz to about 50 mHz and is seen from 17 to 10 hr prior to the inbound shock crossing. It is argued that these waves are whistler waves that have propagated upstream from the shock. A second wave type has a spacecraft frame frequency between 20 and 40 mHz, is seen only within or immediately upstream of the shock pedestal, is right-hand polarized in the spacecraft frame, and has a typical burst duration of 90 s. The third wave type has a spacecraft frame frequency of about 0.15 Hz, is seen exclusively within the shock pedestal, is left-hand polarized in the spacecraft frame, and has a burst duration lasting up to 4 min. It is argued that the low-frequency bursts are whistler waves with phase speed comparable to, but in excess of, the solar wind speed.
Molecular modeling of transmembrane delivery of paclitaxel by shock waves with nanobubbles
Lu, Xue-mei; Yuan, Bing; Zhang, Xian-ren; Yang, Kai; Ma, Yu-qiang
2017-01-01
The development of advanced delivery strategies for anticancer drugs that can permeate through cellular membranes is urgently required for biomedical applications. In this work, we investigated the dynamic transmembrane behavior of paclitaxel (PTX), a powerful anticancer drug, under the combined impact of shock waves and nanobubbles, by using atomistic molecular dynamics simulations. Our simulations show that the PTX molecule experiences complicated motion modes during the action process with the membrane, as a consequence of its interplay with the lipid bilayer and water, under the joint effect of the shock wave and nanobubble. Moreover, it was found that the transmembrane movement of PTX is closely associated with the conformation changes of PTX, as well as the structural changes of the membrane (e.g., compression and poration in membrane). The nanobubble collapse induced by the shock wave, the proper PTX location with respect to the nanobubble, and a suitable nanobubble size and shock impulse are all necessary for the delivery of PTX into the cell. This work provides a molecular understanding of the interaction mechanism between drug molecules and cell membranes under the influence of shock waves and nanobubbles, and paves the way for exploiting targeted drug delivery systems that combine nanobubbles and ultrasound.
Gasdynamic characteristics of toroidal shock and detonation wave converging
Institute of Scientific and Technical Information of China (English)
TENG; Honghui; JIANG; Zonglin
2005-01-01
The modified CCW relation is applied to analyzing the shock, detonation wave converging and the role of chemical reactions in the process. Results indicate that the shock wave is strengthened faster than the detonation wave in the converging at the same initial Mach number. Euler equations implemented with a detailed chemical reaction model are solved to simulate toroidal shock and detonation wave converging. Gasdynamic characteristics of the converging are investigated, including wave interaction patterns, observable discrepancies and physical phenomena behind them. By comparing wave diffractions, converging processes and pressure evolutions in the focusing area, the different effects of chemical reactions on diffracting and converging processes are discussed and the analytic conclusion is demonstrated through the observation of numerical simulations.
Shock wave profiles in the burnett approximation
Uribe; Velasco; Garcia-Colin; Diaz-Herrera
2000-11-01
This paper is devoted to a discussion of the profiles of shock waves using the full nonlinear Burnett equations of hydrodynamics as they appear from the Chapman-Enskog solution to the Boltzmann equation. The system considered is a dilute gas composed of rigid spheres. The numerical analysis is carried out by transforming the hydrodynamic equations into a set of four first-order equations in four dimensions. We compare the numerical solutions of the Burnett equations, obtained using Adam's method, with the well known direct simulation Monte Carlo method for different Mach numbers. An exhaustive mathematical analysis of the results offered here has been done mainly in connection with the existence of heteroclinic trajectories between the two stationary points located upflow and downflow. The main result of this study is that such a trajectory exists for the Burnett equations for Mach numbers greater than 1. Our numerical calculations suggest that heteroclinic trajectories exist up to a critical Mach number ( approximately 2.69) where local mathematical analysis and numerical computations reveal a saddle-node-Hopf bifurcation. This upper limit for the existence of heteroclinic trajectories deserves further clarification.
Shock wave driven microparticles for pharmaceutical applications
Menezes, V.; Takayama, K.; Gojani, A.; Hosseini, S. H. R.
2008-10-01
Ablation created by a Q-switched Nd:Yttrium Aluminum Garnet (Nd:YAG) laser beam focusing on a thin aluminum foil surface spontaneously generates a shock wave that propagates through the foil and deforms it at a high speed. This high-speed foil deformation can project dry micro- particles deposited on the anterior surface of the foil at high speeds such that the particles have sufficient momentum to penetrate soft targets. We used this method of particle acceleration to develop a drug delivery device to deliver DNA/drug coated microparticles into soft human-body targets for pharmaceutical applications. The device physics has been studied by observing the process of particle acceleration using a high-speed video camera in a shadowgraph system. Though the initial rate of foil deformation is over 5 km/s, the observed particle velocities are in the range of 900-400 m/s over a distance of 1.5-10 mm from the launch pad. The device has been tested by delivering microparticles into liver tissues of experimental rats and artificial soft human-body targets, modeled using gelatin. The penetration depths observed in the experimental targets are quite encouraging to develop a future clinical therapeutic device for treatments such as gene therapy, treatment of cancer and tumor cells, epidermal and mucosal immunizations etc.
Dispersive shock waves and modulation theory
El, G. A.; Hoefer, M. A.
2016-10-01
There is growing physical and mathematical interest in the hydrodynamics of dissipationless/dispersive media. Since G.B. Whitham's seminal publication fifty years ago that ushered in the mathematical study of dispersive hydrodynamics, there has been a significant body of work in this area. However, there has been no comprehensive survey of the field of dispersive hydrodynamics. Utilizing Whitham's averaging theory as the primary mathematical tool, we review the rich mathematical developments over the past fifty years with an emphasis on physical applications. The fundamental, large scale, coherent excitation in dispersive hydrodynamic systems is an expanding, oscillatory dispersive shock wave or DSW. Both the macroscopic and microscopic properties of DSWs are analyzed in detail within the context of the universal, integrable, and foundational models for uni-directional (Korteweg-de Vries equation) and bi-directional (Nonlinear Schrödinger equation) dispersive hydrodynamics. A DSW fitting procedure that does not rely upon integrable structure yet reveals important macroscopic DSW properties is described. DSW theory is then applied to a number of physical applications: superfluids, nonlinear optics, geophysics, and fluid dynamics. Finally, we survey some of the more recent developments including non-classical DSWs, DSW interactions, DSWs in perturbed and inhomogeneous environments, and two-dimensional, oblique DSWs.
Investigation on shock waves stability in relativistic gas dynamics
Directory of Open Access Journals (Sweden)
Alexander Blokhin
1993-05-01
Full Text Available This paper is devoted to investigation of the linearized mixed problem of shock waves stability in relativistic gas dynamics. The problem of symmetrization of relativistic gas dynamics equations is also discussed.
Shock Waves in the Treatment of Muscle Hypertonia and Dystonia
Directory of Open Access Journals (Sweden)
Laura Mori
2014-01-01
Full Text Available Since 1997, focused shock waves therapy (FSWT has been reported to be useful in the treatment of muscle hypertonia and dystonia. More recently, also radial shock wave therapy (RSWT has been successfully used to treat muscle hypertonia. The studies where FSWT and RSWT have been used to treat muscle hypertonia and dystonia are reviewed in this paper. The more consistent and long lasting results were obtained in the lower limb muscles of patients affected by cerebral palsy with both FSWT and RSWT and in the distal upper limb muscles of adult stroke patients using FSWT. The most probable mechanism of action is a direct effect of shock waves on muscle fibrosis and other nonreflex components of muscle hypertonia. However, we believe that up to now the biological effects of shock waves on muscle hypertonia and dystonia cannot be clearly separated from a placebo effect.
Aspects Regarding Shock Wave Mitigation Through Different Media
Directory of Open Access Journals (Sweden)
Pană Iuliana Florina
2015-12-01
Full Text Available The main application of underwater detonation since the Second World War is to destroy military ships. Nowadays, a lot of studies are performed in order to discover a controlled and safe application of shock waves through different media. The paper presents the results of a research on a bubble curtain behaviour subjected to shock waves generated by an underwater TNT blast. The main objective was to analyze the mitigation solution of underwater explosion effects by means of gas bubbles. Simulations using ANSYS AUTODYN and explicit dynamics procedures were performed on a 3D model, in order to better understand the physical process of formation and propagation of a shock wave in the biphasic medium which represents the purpose of many researchers. The numerical simulations were performed taking into account the interaction between a shock wave and the bubble curtain considering a random distribution in space and bubble dimensions.
Multi-layer protective armour for underwater shock wave mitigation
Directory of Open Access Journals (Sweden)
Ahmed Hawass
2015-12-01
The strain gauge data and displacement sensors results showed that the multi-layer plates have higher level of underwater shock wave mitigation than the triple aluminum plates with strain and deflection of nearly 50%.
High-speed imaging of dynamic shock wave reflection phenomena
CSIR Research Space (South Africa)
Naidoo, K
2010-09-01
Full Text Available Dynamic shock wave reflection generated by a rapidly pitching wedge in a steady supersonic free stream has been studied with numerical simulation previously. An experimental facility was developed for the investigation of these dynamic phenomena...
Particle imaging through planar shock waves and associated velocimetry errors
Elsinga, G.E.; Orlicz, G.C.
2015-01-01
When imaging particles through a shock wave, the resulting particle image appears blurred and at the wrong location, which is referred to as a position error. Particle image doublets are observed if only part of the light scattered by a particle is deflected or reflected by the shock. These optical
Grain Destruction in a Supernova Remnant Shock Wave
Raymond, John C.; Ghavamian, Parviz; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Gaetz, Terrance J.; Sankrit, Ravi
2014-01-01
Dust grains are sputtered away in the hot gas behind shock fronts in supernova remnants, gradually enriching the gas phase with refractory elements. We have measured emission in C IV (lambda)1550 from C atoms sputtered from dust in the gas behind a non-radiative shock wave in the northern Cygnus Loop. Overall, the intensity observed behind the shock agrees approximately with predictions from model calculations that match the Spitzer 24 micron and the X-ray intensity profiles. Thus these observations confirm the overall picture of dust destruction in SNR shocks and the sputtering rates used in models. However, there is a discrepancy in that the CIV intensity 10'' behind the shock is too high compared to the intensities at the shock and 25'' behind it. Variations in the density, hydrogen neutral fraction and the dust properties over parsec scales in the pre- shock medium limit our ability to test dust destruction models in detail.
Grain Destruction in a Supernova Remnant Shock Wave
Raymond, John C; Williams, Brian J; Blair, William P; Borkowski, Kazimierz J; Gaetz, Terrance J; Sankrit, Ravi
2013-01-01
Dust grains are sputtered away in the hot gas behind shock fronts in supernova remnants, gradually enriching the gas phase with refractory elements. We have measured emission in C IV $\\lambda$1550 from C atoms sputtered from dust in the gas behind a non-radiative shock wave in the northern Cygnus Loop. Overall, the intensity observed behind the shock agrees approximately with predictions from model calculations that match the Spitzer 24 micron and the X-ray intensity profiles. Thus these observations confirm the overall picture of dust destruction in SNR shocks and the sputtering rates used in models. However, there is a discrepancy in that the CIV intensity 10" behind the shock is too high compared to the intensities at the shock and 25" behind it. Variations in the density, hydrogen neutral fraction and the dust properties over parsec scales in the pre-shock medium limit our ability to test dust destruction models in detail.
Intensity improvement of shock waves induced by liquid electrical discharges
Liu, Yi; Li, Zhi-Yuan; Li, Xian-Dong; Liu, Si-Wei; Zhou, Gu-Yue; Lin, Fu-Chang
2017-04-01
When shock waves induced by pulsed electrical discharges in dielectric liquids are widely applied in industrial fields, it is necessary to improve the energy transfer efficiency from electrical energy to mechanical energy to improve the shock wave intensity. In order to investigate the effect of the plasma channel length created by the liquid electrical discharge on the shock wave intensity, a test stand of dielectric liquid pulsed electrical discharge is designed and constructed. The main capacitor is 3 μF, and the charging voltage is 0-30 kV. Based on the needle-needle electrode geometry with different gap distances, the intensities of shock waves corresponding to the electrical parameters, the relationship between the plasma channel length and the deposited energy, and the time-resolved observation of the plasma channel development by a high speed camera are presented and compared. The shock wave intensity is closely related to the power and energy dissipated into the plasma channel. The longer plasma channel and the quicker arc expansion can lead to a higher power and energy deposited into the plasma channel, which can activate a stronger shock wave.
ON INTERACTION OF SHOCK AND SOUND WAVE （I）
Institute of Scientific and Technical Information of China (English)
CHENSHUXING
1996-01-01
This paper studies the interaction of shock and gradient wave (sound wave) of solutions to the system of inviscid isentropic gas dynamics as a model for the corresponding problems for nonlinear hyperbolic systems. The problem can be reduced to a boundary value problem in a wedged dormain, By using the method of constructing asymptotic solutions and Newton'siteration process it is proved that if a weak shock hits a gradient wave, then the grandient wave will split into two gradient waves, while the shock continuses propagating. In this paper the author reduces the problem to a standard form and constructs asymptotic solution of the problem. The existence of the genuine solution will he given in the following paper.
Fractionated Repetitive Extracorporeal Shock Wave Therapy: A New Standard in Shock Wave Therapy?
Directory of Open Access Journals (Sweden)
Tobias Kisch
2015-01-01
Full Text Available Background. ESWT has proven clinical benefit in dermatology and plastic surgery. It promotes wound healing and improves tissue regeneration, connective tissue disorders, and inflammatory skin diseases. However, a single treatment session or long intervals between sessions may reduce the therapeutic effect. The present study investigated the effects of fractionated repetitive treatment in skin microcirculation. Methods. 32 rats were randomly assigned to two groups and received either fractionated repetitive high-energy ESWT every ten minutes or placebo shock wave treatment, applied to the dorsal lower leg. Microcirculatory effects were continuously assessed by combined laser Doppler imaging and photospectrometry. Results. In experimental group, cutaneous tissue oxygen saturation was increased 1 minute after the first application and until the end of the measuring period at 80 minutes after the second treatment (P<0.05. The third ESWT application boosted the effect to its highest extent. Cutaneous capillary blood flow showed a significant increase after the second application which was sustained for 20 minutes after the third application (P<0.05. Placebo group showed no statistically significant differences. Conclusions. Fractionated repetitive extracorporeal shock wave therapy (frESWT boosts and prolongs the effects on cutaneous hemodynamics. The results indicate that frESWT may provide greater benefits in the treatment of distinct soft tissue disorders compared with single-session ESWT.
PENETRATION OF A SHOCK WAVE IN A FLAME FRONT
Directory of Open Access Journals (Sweden)
Dan PANTAZOPOL
2009-09-01
Full Text Available The present paper deals with the interactions between a fully supersonic flame front, situated in a supersonic two-dimensional flow of an ideal homogeneous combustible gas mixture, and an incident shock wawe, which is penetrating in the space of the hot burnt gases. A possible configuration, which was named ,,simple penetration” is examined. For the anlysis of the interference phenomena, shock polar and shock-combustion polar are used. At the same time, the paper shows the possibility to produce similar but more complicated configurations, which may contain expansion fans and reflected shock waves.
Generation of Focused Shock Waves in Water for Biomedical Applications
Lukeš, Petr; Šunka, Pavel; Hoffer, Petr; Stelmashuk, Vitaliy; Beneš, Jiří; Poučková, Pavla; Zadinová, Marie; Zeman, Jan
The physical characteristics of focused two-successive (tandem) shock waves (FTSW) in water and their biological effects are presented. FTSW were generated by underwater multichannel electrical discharges in a highly conductive saline solution using two porous ceramic-coated cylindrical electrodes of different diameter and surface area. The primary cylindrical pressure wave generated at each composite electrode was focused by a metallic parabolic reflector to a common focal point to form two strong shock waves with a variable time delay between the waves. The pressure field and interaction between the first and the second shock waves at the focus were investigated using schlieren photography and polyvinylidene fluoride (PVDF) shock gauge sensors. The largest interaction was obtained for a time delay of 8-15 μs between the waves, producing an amplitude of the negative pressure phase of the second shock wave down to -80 MPa and a large number of cavitations at the focus. The biological effects of FTSW were demonstrated in vitro on damage to B16 melanoma cells, in vivo on targeted lesions in the thigh muscles of rabbits and on the growth delay of sarcoma tumors in Lewis rats treated in vivo by FTSW, compared to untreated controls.
Explosive-driven shock wave and vortex ring interaction with a propane flame
Giannuzzi, P. M.; Hargather, M. J.; Doig, G. C.
2016-11-01
Experiments were performed to analyze the interaction of an explosively driven shock wave and a propane flame. A 30 g explosive charge was detonated at one end of a 3-m-long, 0.6-m-diameter shock tube to produce a shock wave which propagated into the atmosphere. A propane flame source was positioned at various locations outside of the shock tube to investigate the effect of different strength shock waves. High-speed retroreflective shadowgraph imaging visualized the shock wave motion and flame response, while a synchronized color camera imaged the flame directly. The explosively driven shock tube was shown to produce a repeatable shock wave and vortex ring. Digital streak images show the shock wave and vortex ring propagation and expansion. The shadowgrams show that the shock wave extinguishes the propane flame by pushing it off of the fuel source. Even a weak shock wave was found to be capable of extinguishing the flame.
[Extracorporeal shock wave therapy in chronic prostatitis].
Kul'chavenya, E V; Shevchenko, S Yu; Brizhatyuk, E V
2016-04-01
Chronic prostatitis is a prevalent urologic disease, but treatment outcomes are not always satisfactory. As a rule, chronic prostatitis results in chronic pelvic pain syndrome, significantly reducing the patient's quality of life. Open pilot prospective non-comparative study was conducted to test the effectiveness of extracorporeal shock wave therapy (ESWT) using Aries (Dornier) machine in patients with chronic prostatitis (CP) of IIIb category. A total of 27 patients underwent ESWL as monotherapy, 2 times a week for a course of 6 sessions. Exposure settings: 5-6 energy level (by sensation), the frequency of 5 Hz, 2000 pulses per session; each patient received a total energy up to 12000 mJ. per procedure. Treatment results were evaluated using NIH-CPSI (National Institute of Health Chronic Prostatitis Symptom Index) upon completing the 3 week course of 6 treatments and at 1 month after ESWT. Immediately after the ESWT course positive trend was not significant: pain index decreased from 9.1 to 7.9, urinary symptom score remained almost unchanged (4.2 at baseline, 4.1 after treatment), quality of life index also showed a slight improvement, dropping from 7.2 points to 6.0. Total NIH-CPSI score decreased from 20.5 to 18.0. One month post-treatment pain significantly decreased to 3.2 points, the urinary symptom score fell to 2.7 points, the average quality of life score was 3.9 points. ESWT, performed on Aries (Dornier) machine, is highly effective as monotherapy in patients with category IIIb chronic prostatitis.
Plane shock wave structure in a dilute granular gas
Reddy, M. H. Lakshminarayana; Alam, Meheboob
2016-11-01
We analyse the early time evolution of the Riemann problem of planar shock wave structures for a dilute granular gas by solving Navier-Stokes equations numerically. The one-dimensional reduced Navier-Stokes equations for plane shock wave problem are solved numerically using a relaxation-type numerical scheme. The results on the shock structures in granular gases are presented for different Mach numbers and restitution coefficients. Based on our analysis on early time shock dynamics we conclude that the density and temperature profiles are "asymmetric"; the density maximum and the temperature maximum occur within the shock layer; the absolute magnitudes of longitudinal stress and heat flux which are initially zero at both end states attain maxima in a very short time and thereafter decrease with time.
Growth and decay of weak shock waves in magnetogasdynamics
Singh, L. P.; Singh, D. B.; Ram, S. D.
2016-11-01
The purpose of the present study is to investigate the problem of the propagation of weak shock waves in an inviscid, electrically conducting fluid under the influence of a magnetic field. The analysis assumes the following two cases: (1) a planar flow with a uniform transverse magnetic field and (2) cylindrically symmetric flow with a uniform axial or varying azimuthal magnetic field. A system of two coupled nonlinear transport equations, governing the strength of a shock wave and the first-order discontinuity induced behind it, are derived that admit a solution that agrees with the classical decay laws for a weak shock. An analytic expression for the determination of the shock formation distance is obtained. How the magnetic field strength, whether axial or azimuthal, influences the shock formation is also assessed.
Sundkvist, David; Krasnoselskikh, V; Bale, S D; Schwartz, S J; Soucek, J; Mozer, F
2012-01-13
Whistler wave trains are observed in the foot region of high Mach number quasiperpendicular shocks. The waves are oblique with respect to the ambient magnetic field as well as the shock normal. The Poynting flux of the waves is directed upstream in the shock normal frame starting from the ramp of the shock. This suggests that the waves are an integral part of the shock structure with the dispersive shock as the source of the waves. These observations lead to the conclusion that the shock ramp structure of supercritical high Mach number shocks is formed as a balance of dispersion and nonlinearity.
On Fermi acceleration and MHD-instabilities at ultra-relativistic magnetized shock waves
Pelletier, Guy; Marcowith, Alexandre
2008-01-01
Fermi acceleration can take place at ultra-relativistic shock waves if the upstream or downstream magnetic field has been remodeled so that most of the magnetic power lies on short spatial scales. The relevant conditions under which Fermi acceleration become efficient in the presence of both a coherent and a short scale turbulent magnetic field are addressed. Within the MHD approximation, this paper then studies the amplification of a pre-existing magnetic field through the streaming of cosmic rays upstream of a relativistic shock wave. The magnetic field is assumed to be perpendicular in the shock front frame, as generally expected in the limit of large shock Lorentz factor. In the MHD regime, compressive instabilities seeded by the net cosmic-ray charge in the shock precursor (as seen in the shock front frame) develop on the shortest spatial scales but saturate at a moderate level $\\delta B/B \\sim 1$, which is not sufficient for Fermi acceleration. As we argue, it is possible that other instabilities outsid...
Traveling waves in Hall-magnetohydrodynamics and the ion-acoustic shock structure
Energy Technology Data Exchange (ETDEWEB)
Hagstrom, George I.; Hameiri, Eliezer [Courant Institute of Mathematical Sciences, New York, New York 10012 (United States)
2014-02-15
Hall-magnetohydrodynamics (HMHD) is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar traveling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also an entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, and that the lowest order outer equations, which are the equations for traveling waves in inviscid Hall-MHD, are exactly integrable. We show that the inner and outer solutions match, which allows us to construct a family of uniformly valid continuous composite solutions that become discontinuous when the diffusivity vanishes.
Directory of Open Access Journals (Sweden)
Qian Wan
2015-04-01
Full Text Available Research on shock wave mitigation in channels has been a topic of much attention in the shock wave community. One approach to attenuate an incident shock wave is to use obstacles of various geometries arranged in different patterns. This work is inspired by the study from Chaudhuri et al. (2013, in which cylinders, squares and triangles placed in staggered and non-staggered subsequent columns were used to attenuate a planar incident shock wave. Here, we present numerical simulations using a different obstacle pattern. Instead of using a matrix of obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic spiral curve is investigated, which is motivated by our previous work on shock focusing using logarithmic spirals. Results show that obstacles placed along a logarithmic spiral can delay both the transmitted and the reflected shock wave. For different incident shock Mach numbers, away from the logarithmic spiral design Mach number, this shape is effective to either delay the transmitted or the reflected shock wave. Results also confirm that the degree of attenuation depends on the obstacle shape, effective flow area and obstacle arrangement, much like other obstacle configurations.
Attenuation of shock waves in copper and stainless steel
Energy Technology Data Exchange (ETDEWEB)
Harvey, W.B.
1986-06-01
By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs.
Laser Driven Compression to Investigate Shock-Induced Melting of Metals
Directory of Open Access Journals (Sweden)
Thibaut de Rességuier
2014-10-01
Full Text Available High pressure shock compression induces a large temperature increase due to the dissipation within the shock front. Hence, a solid sample subjected to intense shock loading can melt, partially or fully, either on compression or upon release from the shocked state. In particular, such melting is expected to be associated with specific damage and fragmentation processes following shock propagation. In this paper, we show that laser driven shock experiments can provide a procedure to investigate high pressure melting of metals at high strain rates, which is an issue of key interest for various engineering applications as well as for geophysics. After a short description of experimental and analytical tools, we briefly review some former results reported for tin, then we present more recent observations for aluminum and iron.
Characterization of the Shock Wave Structure in Water
Teitz, Emilie Maria
The scientific community is interested in furthering the understanding of shock wave structures in water, given its implications in a wide range of applications; from researching how shock waves penetrate unwanted body tissues to studying how humans respond to blast waves. Shock wave research on water has existed for over five decades. Previous studies have investigated the shock response of water at pressures ranging from 1 to 70 GPa using flyer plate experiments. This report differs from previously published experiments in that the water was loaded to shock pressures ranging from 0.36 to 0.70 GPa. The experiment also utilized tap water rather than distilled water as the test sample. Flyer plate experiments were conducted in the Shock Physics Laboratory at Marquette University to determine the structure of shock waves within water. A 12.7 mm bore gas gun fired a projectile made of copper, PMMA, or aluminum at a stationary target filled with tap water. Graphite break pins in a circuit determined the initial projectile velocity prior to coming into contact with the target. A Piezoelectric timing pin (PZT pin) at the front surface of the water sample determined the arrival of the leading wave and a Photon Doppler Velocimeter (PDV) measured particle velocity from the rear surface of the water sample. The experimental results were compared to simulated data from a Eulerian Hydrocode called CTH [1]. The experimental results differed from the simulated results with deviations believed to be from experimental equipment malfunctions. The main hypothesis being that the PZT pin false triggered, resulting in measured lower than expected shock velocities. The simulated results were compared to published data from various authors and was within range.
Non-classical dispersive shock waves in shallow water
Sprenger, Patrick; Hoefer, Mark
2016-11-01
A classical model for shallow water waves with strong surface tension is the Kawahara equation, which is the Korteweg-de Vries (KdV) including a fifth order derivative term. A particular problem of interest to these types of equations is step initial data, known as the Riemann problem, which results in a shock in finite time. Unlike classical shock waves, where a discontinuity is resolved by dissipation, the dispersive regularization results in the discontinuity resolved as a dispersive shock wave (DSW). When parameter choices result in non-convex dispersion, three distinct dynamic regimes are observed that can be characterized solely by the amplitude of the initial step. For small jumps, a perturbed KdV DSW with positive polarity and orientation is generated, accompanied by small amplitude radiation from an embedded solitary wave leading edge, termed a radiating DSW. For moderate jumps, a crossover regime is observed with waves propagating forward and backward from the sharp transition region. For sufficiently large jumps, a new type of DSW is observed we term a translating DSW were a partial, non-monotonic, negative solitary wave at the trailing edge is connected to an interior nonlinear periodic wave and exhibits features common to both dissipative and dispersive shock waves.
Geometry of fast magnetosonic rays, wavefronts and shock waves
Núñez, Manuel
2016-11-01
Fast magnetosonic waves in a two-dimensional plasma are studied in the geometrical optics approximation. The geometry of rays and wavefronts influences decisively the formation and ulterior evolution of shock waves. It is shown that the curvature of the curve where rays start and the angle between rays and wavefronts are the main parameters governing a wide variety of possible outcomes.
Equation-of-state model for shock compression of hot dense matter
Pain, J C
2007-01-01
A quantum equation-of-state model is presented and applied to the calculation of high-pressure shock Hugoniot curves beyond the asymptotic fourfold density, close to the maximum compression where quantum effects play a role. An analytical estimate for the maximum attainable compression is proposed. It gives a good agreement with the equation-of-state model.
Energy Technology Data Exchange (ETDEWEB)
Rouhani, M. R.; Akbarian, A.; Mohammadi, Z. [Department of Physics, Alzahra University, P. O. Box 1993891176, Tehran (Iran, Islamic Republic of)
2013-08-15
The behavior of quantum dust ion acoustic soliton and shocks in a plasma including inertialess quantum electrons and positrons, classical cold ions, and stationary negative dust grains are studied, using arbitrary amplitude approach. The effect of dissipation due to viscosity of ions is taken into account. The numerical analysis of Sagdeev potential for small value of quantum diffraction parameter (H) shows that for chosen plasma, only compressive solitons can exist and the existence domain of this type of solitons is decreased by increasing dust density (d). Additionally, the possibility of propagation of both subsonic and supersonic compressive solitons is investigated. It is shown that there is a critical dust density above which only supersonic solitons are observed. Moreover, increasing d leads to a reduction in the existence domain of compressive solitons and the possibility of propagation of rarefactive soliton is provided. So, rarefactive solitons are observed only due to the presence of dust particles in this model quantum plasma. Furthermore, numerical solution of governed equations for arbitrary amplitude shock waves has been investigated. It is shown that only compressive large amplitude shocks can propagate. Finally, the effects of plasma parameters on these structures are investigated. This research will be helpful in understanding the properties of dense astrophysical (i.e., white dwarfs and neutron stars) and laboratory dusty plasmas.
Distribution Regularity of Muzzle Shock-Wave Inside Protective Cover
Institute of Scientific and Technical Information of China (English)
WU Jun; LIU Jingbo; DU Yixin
2006-01-01
The injury of gunners caused by muzzle shock-wave has always been a great problem when firing inside the protective cover.The distribution regularity and personnel injury from the muzzle blast-wave were investigated by both test and numerical simulation.Through the inside firing test,the changes of overpressure and noise have been measured at different measuring points in the thin-wall cover structure with different open widths and shallow covering thickness.The distribution regularity of muzzle shock-wave with different firing port widths is calculated by ANSYS/LSDYNA software.The overpressure distribution curves of muzzle shock-wave inside the structure can be obtained by comparing the test results with the numerical results.Then,the influence of open width and shallow covering thickness is proposed to give a reference to the protective design under the condition of the inside firing with the same cannon caliber.
Turbulence generation by a shock wave interacting with a random density inhomogeneity field
de Lira, Cesar Huete Ruiz
2010-01-01
When a planar shock wave interacts with a random pattern of pre-shock density non-uniformities, it generates an anisotropic turbulent velocity/vorticity field. This turbulence plays an important role at the early stages of the mixing process in the compressed fluid. This situation emerges naturally in shock interaction with weakly inhomogeneous deuterium-wicked foam targets in Inertial Confinement Fusion (ICF) and with density clumps/clouds in astrophysics. We present an exact small-amplitude linear theory describing such interaction. It is based on the exact theory of time and space evolution of the perturbed quantities behind a corrugated shock front for a single-mode pre-shock non-uniformity. Appropriate mode averaging in 2D results in closed analytical expressions for the turbulent kinetic energy, degree of anisotropy of velocity and vorticity fields in the shocked fluid, shock amplification of the density non-uniformity, and sonic energy flux radiated downstream. These explicit formulas are further simpl...
Rogue and shock waves in nonlinear dispersive media
Resitori, Stefania; Baronio, Fabio
2016-01-01
This self-contained set of lectures addresses a gap in the literature by providing a systematic link between the theoretical foundations of the subject matter and cutting-edge applications in both geophysical fluid dynamics and nonlinear optics. Rogue and shock waves are phenomena that may occur in the propagation of waves in any nonlinear dispersive medium. Accordingly, they have been observed in disparate settings – as ocean waves, in nonlinear optics, in Bose-Einstein condensates, and in plasmas. Rogue and dispersive shock waves are both characterized by the development of extremes: for the former, the wave amplitude becomes unusually large, while for the latter, gradients reach extreme values. Both aspects strongly influence the statistical properties of the wave propagation and are thus considered together here in terms of their underlying theoretical treatment. This book offers a self-contained graduate-level text intended as both an introduction and reference guide for a new generation of scientists ...
Li, Yongqin; Wang, Hao; Cho, Jun Hwi; Quan, Weilun; Freeman, Gary; Bisera, Joe; Weil, Max Harry; Tang, Wanchun
2010-03-01
The current standard of manual chest compression during cardiopulmonary resuscitation requires pauses for rhythm analysis and shock delivery. However, interruptions of chest compression greatly decrease the likelihood of successful defibrillations, and significantly better outcomes are reported if this interruption is avoided. We therefore undertook a prospective randomized controlled animal study in an electrically induced ventricular fibrillation pig model to assess the effects of timing of defibrillation on the manual chest compression cycle on the defibrillation threshold. Prospective, randomized, controlled animal study. University-affiliated research laboratory. Yorkshire-X domestic pigs (Sus scrofa). In eight domestic male pigs weighing between 24 and 31 kg, ventricular fibrillation was electrically induced and untreated for 10 secs. Manual chest compression was then performed and continued for 25 secs with the protection of an isolation blanket. The depth and frequency of chest compressions were guided by a cardiopulmonary resuscitation prompter. Animals were randomized to receive a biphasic electrical shock in five different compression phases with a predetermined energy setting. A control phase was chosen at a constant 2 secs after discontinued chest compression. A grouped up-down defibrillation threshold testing protocol was used to compare the success rate at different coupling phases. After a recovery interval of 4 mins, the sequence was repeated for a total of 60 test shocks for each animal. No difference in coronary perfusion pressure before delivering of the shock was observed among the six study phases. The defibrillation success rate, however, was significantly higher when shocks were delivered in the upstroke phase of manual chest compression. Defibrillation efficacy is maximal when electrical shock is delivered during the upstroke phase of manual chest compression.
Solar Wind Compression Generation of Coincident EMIC and Whistler Mode Chorus and Hiss Waves
Halford, Alexa; Mann, Ian
2016-07-01
Electron radiation belt dynamics are controlled by the competition of multiple acceleration and loss mechanisms. Electromagnetic ion cyclotron (EMIC), chorus, and hiss waves have all been implicated as potential loss mechanisms of radiation belt electrons along with Chorus waves proposed as a mechanism for accelerating the lower energy source population to MeV energies. Understanding the relative importance of these waves as well as where and under what conditions they are generated is vital to predicting radiation belt dynamics. Although the size of the solar wind compression on 9 January 2014 event discussed here was modest, it has given us an opportunity to observe clearly how a magnetospheric compression can lead to the generation of EMIC, chorus, and hiss waves. The ICME generated shock encountered the Earth's magnetosphere on 9 January 2014 at ~20:11 UT, and the Van Allen Probes observe the coincident excitation of EMIC and Chorus waves outside the plasmasphere, and hiss weaves inside the plasmasphere. As the shock encountered the magnetosphere, an electric field impulse was observed to generate an increase in temperature anisotropy for both ions and electrons. This increased temperature anisotropy led to increased wave growth on both the ion and electron cyclotron branches. The simultaneous generation of multiple types of waves may lead to significant impacts on the acceleration and loss of radiation belt electrons, especially during geomagnetic compressions observed during the substorms, and the storm sudden commencement and main phases of geomagnetic storms, as well as during quiet time sudden impulse events. For example, the excitation of both EMIC and chorus waves at the same place, and at the same time, may complicate studies seeking a causal connection between specific individual plasma wave bursts and observations of particle precipitation into the atmosphere. During this relatively small event BARREL had three payloads in conjunction with the Van
Dynamics of a "Two-Phase" Bubble in Compression Waves
Khabeev, N. S.
2016-07-01
The behavior of a vapor envelope around a heated solid particle in a variable pressure field has been studied. Problems of this kind arise in propagation of shock waves in three-phase systems ″liquid-hot solid particles surrounded by vapor envelopes.″ The behavior of the system in the vicinity of the forward shock wave front on a linear rise in pressure in the system has been studied analytically. A simple formula describing the change in the radius of the vapor layer in time has been obtained.
Romain, J P; Dayma, G; Boustie, M; Resseguier, T D; Combis, P
2002-01-01
Low amplitude shock waves (from 1 to 300 bar) have been generated in gold layers deposited on a quartz substrate, by laser pulses at an incident fluence from 0.4 to 4.0 J cm sup - sup 2. The quartz was used as a pressure gauge for recording the induced shock profile. At a fluence <1.4 J cm sup - sup 2 , the shock pressure does not exceed 10 bar and the shock front is followed by a tension peak typical of an absorption in solid state. An analytical model of the compression-tension process has been developed, accounting for shock pressure and shock profile evolution as a function of irradiation conditions and material properties. From this model a mechanical interpretation is given to previous observations of spalling of the irradiated target surface.
A new numerical method for shock wave propagation based on geometrical shock dynamics
Schwendeman, D. W.
1993-05-01
In this paper, a new numerical method for calculating the motion of shock waves in two and three dimensions is presented. The numerical method is based on Whitham's theory of geometrical shock dynamics, which is an approximate theory that determines the motion of the leading shockfront explicitly. The numerical method uses a conservative finite difference discretization of the equations of geometrical shock dynamics. These equations are similar to those for steady supersonic potential flow, and thus the numerical method developed here is similar to ones developed for that context. Numerical results are presented for shock propagation in channels and for converging cylindrical and spherical shocks. The channel problem is used in part to compare this new numerical method with ones developed earlier. Converging cylindrical and spherical shocks arc calculated to analyze their stability.
Shock Compression and Recovery of Microorganism-Loaded Broths and AN Emulsion
Hazell, P. J.; Beveridge, C.; Groves, K.; Stennett, C.
2009-12-01
The microorganisms Escherichia coli, Enterococcus faecalis and Zygosaccharomyces bailii and an oil-based emulsion, have been subjected to shock compression using the flyer-plate technique to initial pressures of 0.8 GPa (in the suspension). In each experiment, a stainless steel capsule was used to contain the broths and allow for recovery without contamination. Where cavitation was mostly suppressed by virtue of simultaneous shock and dynamic compression, no kill was observed. By introducing an air gap behind the suspension, limited kill was measured in the yeast. Results also suggest that stable emulsification occurs in coarse oil-based emulsions that are subjected to shock.
Energy Technology Data Exchange (ETDEWEB)
Miyamoto, Mayu [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Imamura, Takeshi; Ando, Hiroki; Toda, Tomoaki; Nakamura, Masato [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Tokumaru, Munetoshi; Shiota, Daikou [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 484-8601 (Japan); Isobe, Hiroaki; Asai, Ayumi [Unit of Synergetic Studies for Space, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Häusler, Bernd [Institut für Raumfahrttechnik, Universität der Bundeswehr München, D-85577 Neubiberg (Germany); Pätzold, Martin [Rheinisches Institut für Umweltforschung, Department Planetenforschung, Universität zu Köln, Aachener Str. 209, D-50931 Köln (Germany); Nabatov, Alexander [The Institute of Radio Astronomy, National Academy of Science of Ukraine, Chervonoprapornaya, Str. 4, Kharkov 61002 (Ukraine)
2014-12-10
Radial variations of the amplitude and the energy flux of compressive waves in the solar corona were explored for the first time using a spacecraft radio occultation technique. By applying wavelet analysis to the frequency time series taken at heliocentric distances of 1.5-20.5 R{sub S} (solar radii), quasi-periodic density disturbances were detected at almost all distances. The period ranges from 100 to 2000 s. The amplitude of the fractional density fluctuation increases with distance and reaches ∼30% around 5 R{sub S} , implying that nonlinearity of the wave field is potentially important. We further estimate the wave energy flux on the assumption that the observed periodical fluctuations are manifestations of acoustic waves. The energy flux increases with distance below ∼6 R{sub S} and seems to saturate above this height, suggesting that the acoustic waves do not propagate from the low corona but are generated in the extended corona, probably through nonlinear dissipation of Alfvén waves. The compressive waves should eventually dissipate through shock generation to heat the corona.
DIFFUSIVE-DISPERSIVE TRAVELING WAVES AND KINETIC RELATIONS IV.COMPRESSIBLE EULER EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The authors consider the Euler equations for a compressible fluid in one space dimensionwhen the equation of state of the fluid does not fulfill standard convexity assumptions andviscosity and capillarity effects are taken into account. A typical example of nonconvex con-stitutive equation for fluids is Van der Waals' equation. The first order terms of these partialdifferential equations form a nonlinear system of mixed (hyperbolic-elliptic) type. For a class ofnonconvex equations of state, an existence theorem of traveling waves solutions with arbitrarylarge amplitude is established here. The authors distinguish between classical (compressive) andnonclassical (undercompressive) traveling waves. The latter do not fulfill Lax shock inequali-ties, and are characterized by the so-called kinetic relation, whose properties are investigatedin this paper.
Fortov, Vladimir E.
2007-04-01
The physical properties of hot dense matter over a broad domain of the phase diagram are of immediate interest in astrophysics, planetary physics, power engineering, controlled thermonuclear fusion, impulse technologies, enginery, and several special applications. The use of intense shock waves in dynamic physics and high-pressure chemistry has made the exotic high-energy-density states of matter a subject of laboratory experiments and enabled advancing by many orders of magnitude along the pressure scale to range into the megabars and even gigabars. The present report reviews the latest experimental research involving shock waves in nonideal plasmas under conditions of strong collective interparticle interaction. The results of investigations into the thermodynamic, transport, and optical properties of strongly compressed hot matter, as well as into its composition and conductivity, are discussed. Experimental techniques for high energy density cumulation, the drivers of intense shock waves, and methods for the fast diagnostics of high-energy plasma are considered. Also discussed are compression-stimulated physical effects: pressure-induced ionization, plasma phase transitions, the deformation of bound states, plasma blooming ('transparentization' of plasma), etc. Suggestions for future research are put forward.
Prandtl number effects in MRT lattice Boltzmann models for shocked and unshocked compressible fluids
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
This paper constructs a new multiple relaxation time lattice Boltzmann model which is not only for the shocked compressible fluids,but also for the unshocked compressible fluids.To make the model work for unshocked compressible fluids,a key step is to modify the collision operators of energy flux so that the viscous coefficient in momentum equation is consistent with that in energy equation even in the unshocked system.The unnecessity of the modification for systems under strong shock is analyzed.The model ...
Collisionless shock waves mediated by Weibel Instability
Naseri, Neda; Ruan, Panpan; Zhang, Xi; Khudik, Vladimir; Shvets, Gennady
2015-11-01
Relativistic collisionless shocks are common events in astrophysical environments. They are thought to be responsible for generating ultra-high energy particles via the Fermi acceleration mechanism. It has been conjectured that the formation of collisionless shocks is mediated by the Weibel instability that takes place when two initially cold, unmagnetized plasma shells counter-propagate into each other with relativistic drift velocities. Using a PIC code, VLPL, which is modified to suppress numerical Cherenkov instabilities, we study the shock formation and evolution for asymmetric colliding shells with different densities in their own proper reference frame. Plasma instabilities in the region between the shock and the precursor are also investigated using a moving-window simulation that advances the computational domain at the shock's speed. This method helps both to save computation time and avoid severe numerical Cherenkov instabilities, and it allows us to study the shock evolution in a longer time period. Project is supported by US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945.
A suppressor to prevent direct wave-induced cavitation in shock wave therapy devices
Matula, Thomas J.; Hilmo, Paul R.; Bailey, Michael R.
2005-07-01
Cavitation plays a varied but important role in lithotripsy. Cavitation facilitates stone comminution, but can also form an acoustic barrier that may shield stones from subsequent shock waves. In addition, cavitation damages tissue. Spark-gap lithotripters generate cavitation with both a direct and a focused wave. The direct wave propagates as a spherically diverging wave, arriving at the focus ahead of the focused shock wave. It can be modeled with the same waveform (but lower amplitude) as the focused wave. We show with both simulations and experiments that bubbles are forced to grow in response to the direct wave, and that these bubbles can still be large when the focused shock wave arrives. A baffle or ``suppressor'' that blocks the propagation of the direct wave is shown to significantly reduce the direct wave pressure amplitude, as well as direct wave-induced bubble growth. These results are applicable to spark-gap lithotripters and extracorporeal shock wave therapy devices, where cavitation from the direct wave may interfere with treatment. A simple direct-wave suppressor might therefore be used to improve the therapeutic efficacy of these devices.
Shock waves do more than just crush stones: extracorporeal shock wave therapy in plantar fasciitis.
Rajkumar, P; Schmitgen, G F
2002-12-01
Heel pain is a common orthopaedic problem, The cause of this clinical entity remains an enigma. The overall prognosis is good, however, and the symptoms generally settle well with time. There appears to be little evidence of the effectiveness of local steroid injections and dorsiflexion night splints. Extracorporeal shock wave therapy (ECSW) has been used in orthopaedics since the 1980s. With this, a new tool has become available for the treatment of plantar fasciitis, achillis tendinitis, shoulder pain and tendinosis of the elbow. In our pilot study we found good results with the use of ECSW therapy in resistant plantar fasciitis. Additional controlled studies are required to define the precise role of this new modality in the treatment of chronic plantar fasciitis.
Treatment of nonunions of long bone fractures with shock waves
Wang, Ching-Jen
2003-10-01
A prospective clinical study investigated the effectiveness of shock waves in the treatment of 72 patients with 72 nonunions of long bone fractures (41 femurs, 19 tibias, 7 humeri, 1 radius, 3 ulnas and 1 metatarsal). The doses of shock waves were 6000 impulses at 28 kV for the femur and tibia, 3000 impulses at 28 kV for the humerus, 2000 impulses at 24 kV for the radius and ulna, and 1000 impulses at 20 kV for the metatarsal. The results of treatment were assessed clinically, and fracture healing was assessed with plain x-rays and tomography. The rate of bony union was 40% at 3 months, 60.9% at 6 months and 80% at 12 months followup. Shock wave treatment was most successful in hypertrophic nonunions and nonunions with a defect and was least effective in atrophic nonunions. There were no systemic complications or device-related problems. Local complications included petechiae and hematoma formation that resolved spontaneously. In the author's experience, the results of the shock wave treatment were similar to the results of surgical treatment for chronic nonunions with no surgical risks. Shock wave treatment is a safe and effective alternative method in the treatment of chronic nonunions of long bones.
Effects of extracorporeal shock wave therapy on fracture nonunions.
Vulpiani, Maria C; Vetrano, Mario; Conforti, Federica; Minutolo, Lucia; Trischitta, Donatella; Furia, John P; Ferretti, Andrea
2012-09-01
The purpose of this study was to examine the effect of focused extracorporeal shock wave therapy (ESWT) on the treatment of nonunions. As part of a prospective study, we included 143 patients (average age, 41.4 years) with a diagnosis of nonunion (mean, 14.1 months; range, 6-84 months). High-energy shock wave treatment was applied using shock wave generator. The shock waves were applied in 3-5 sessions of 2500 to 3000 impulses each given at 0.25-0.84 mJ/mm(2), at intervals of 48-72 hours between sessions. A maximum of 3 cycles of treatment was given, at 3-month intervals. The patients were followed during a 12-month period until fracture healing or, in case of failure, until another therapy was adopted. Complete healing was observed in 80 of 143 cases (55.9%) at an average time of 7.6 months (range 2-24 months). Partial healing occurred in 41 cases (28.7%) and no healing was observed in 22 cases (15.4%). Patients with trophic nonunions had a better success rate than patients with atrophic nonunions (Pextracorporeal shock wave therapy is a safe and effective treatment for nonunion. ESWT is more effective for trophic nonunions than atrophic nonunions.
Radial extracorporeal shock wave treatment harms developing chicken embryos
Kiessling, Maren C.; Milz, Stefan; Frank, Hans-Georg; Korbel, Rüdiger; Schmitz, Christoph
2015-01-01
Radial extracorporeal shock wave treatment (rESWT) has became one of the best investigated treatment modalities for cellulite, including the abdomen as a treatment site. Notably, pregnancy is considered a contraindication for rESWT, and concerns have been raised about possible harm to the embryo when a woman treated with rESWT for cellulite is not aware of her pregnancy. Here we tested the hypothesis that rESWT may cause serious physical harm to embryos. To this end, chicken embryos were exposed in ovo to various doses of radial shock waves on either day 3 or day 4 of development, resembling the developmental stage of four- to six-week-old human embryos. We found a dose-dependent increase in the number of embryos that died after radial shock wave exposure on either day 3 or day 4 of development. Among the embryos that survived the shock wave exposure a few showed severe congenital defects such as missing eyes. Evidently, our data cannot directly be used to draw conclusions about potential harm to the embryo of a pregnant woman treated for cellulite with rESWT. However, to avoid any risks we strongly recommend applying radial shock waves in the treatment of cellulite only if a pregnancy is ruled out. PMID:25655309
Cylindrical sound wave generated by shock-vortex interaction
Ribner, H. S.
1985-01-01
The passage of a columnar vortex broadside through a shock is investigated. This has been suggested as a crude, but deterministic, model of the generation of 'shock noise' by the turbulence in supersonic jets. The vortex is decomposed by Fourier transform into plane sinusoidal shear waves disposed with radial symmetry. The plane sound waves produced by each shear wave/shock interaction are recombined in the Fourier integral. The waves possess an envelope that is essentially a growing cylindrical sound wave centered at the transmitted vortex. The pressure jump across the nominal radius R = ct attenuates with time as 1/(square root of R) and varies around the arc in an antisymmetric fashion resembling a quadrupole field. Very good agreement, except near the shock, is found with the antisymmetric component of reported interferometric measurements in a shock tube. Beyond the front r approximately equals R is a precursor of opposite sign, that decays like 1/R, generated by the 1/r potential flow around the vortex core. The present work is essentially an extension and update of an early approximate study at M = 1.25. It covers the range (R/core radius) = 10, 100, 1000, and 10,000 for M = 1.25 and (in part) for M = 1.29 and, for fixed (R/core radius) = 1000, the range M = 1.01 to infinity.
A study of reactant interfaces in Ni+Al particle systems during shock wave propagation
Austin, Ryan A.; McDowell, David L.; Horie, Yasuyuki; Benson, David J.
2007-06-01
Macro-scale responses of energetic materials during shock compression are influenced strongly by thermo-mechano-chemical processes occurring at the level of the microstructure. For example, it is believed that the propagation of chemical reactions in reactive particle systems is intimately linked to conditions at reactant interfaces such as surface temperature, phase changes, defect density, and mass mixing due to inelastic deformation. To provide explicit resolution of such interfacial conditions, numerical models are constructed. The finite element method is used to numerically solve the differential equations that govern the coupled thermomechanical response of micron-size particle mixtures of Ni and Al during shock wave propagation (interface chemistry is not yet modeled). The size and temperature distributions of contiguous reactant contact surfaces are quantified for a range of shock strengths. A parametric study of mixture attributes is undertaken to assess the sensitivity of the aforementioned distributions to variations of the microstructure.
Molecular beam brightening by shock-wave suppression
Segev, Yair; Akerman, Nitzan; Shagam, Yuval; Luski, Alon; Karpov, Michael; Narevicius, Julia; Narevicius, Edvardas
2016-01-01
Supersonic beams are a prevalent source of cold molecules utilized in the study of chemical reactions, atom interferometry, gas-surface interactions, precision spectroscopy, molecular cooling and more. The triumph of this method emanates from the high densities produced in relation to other methods, however beam density remains fundamentally limited by interference with shock waves reflected from collimating surfaces. Here we show experimentally that this shock interaction can be reduced or even eliminated by cryo-cooling the interacting surface. An increase in beam density of nearly an order of magnitude was measured at the lowest surface temperature, with no further fundamental limitation reached. Visualization of the shock waves by plasma discharge and reproduction with direct simulation Monte Carlo calculations both indicate that the suppression of the shock structure is partially caused by lowering the momentum flux of reflected particles, and significantly enhanced by the adsorption of particles to the ...
Coherent optical photons from shock waves in crystals.
Reed, Evan J; Soljacić, Marin; Gee, Richard; Joannopoulos, J D
2006-01-13
We predict that coherent electromagnetic radiation in the 1-100 THz frequency range can be generated in crystalline materials when subject to a shock wave or soliton-like propagating excitation. To our knowledge, this phenomenon represents a fundamentally new form of coherent optical radiation source that is distinct from lasers and free-electron lasers. The radiation is generated by the synchronized motion of large numbers of atoms when a shock wave propagates through a crystal. General analytical theory and NaCl molecular dynamics simulations demonstrate coherence lengths on the order of mm (around 20 THz) and potentially greater. The emission frequencies are determined by the shock speed and the lattice constants of the crystal and can potentially be used to determine atomic-scale properties of the shocked material.
TEMPERATURE MEASUREMENT OF REFLECTED SHOCK WAVE BY USING CHEMICAL INDICATOR
Institute of Scientific and Technical Information of China (English)
Cui Jiping; He Yuzhong; Wang Su; Wang Jing; Fan Bingcheng
2000-01-01
This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube,corresponding to the reservoir temperature of a shock tunnel,based on the chemical reaction of small amount of CF4 premixed in the test gas.The final product C2F4 is used as the temperature indicator,which is sampled and detected by a gas chromatography in the experiment.The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressure P1 and test time γas parameters in the temperature range 3300K＜T＜5600K,pressure range 5kPa＜P1＜12kPa andγ≈0.4ms.
Structures of Strong Shock Waves in Dense Plasmas
Institute of Scientific and Technical Information of China (English)
JIANG Zhong-He; HE Yong; HU Xi-Wei; LV Jian-Hong; HU Ye-Min
2007-01-01
@@ Structures of strong shock waves in dense plasmas are investigated via the steady-state Navier-Stokes equations and Poisson equation. The structures from fluid simulation agree with the ones from kinetic simulation. The effects of the transport coefficients on the structures are analysed. The enhancements of the electronic heat conduction and ionic viscosity both will broaden the width of the shock fronts, and decrease the electric fields in the fronts.
Propagation of exponential shock wave in an axisymmetric rotating non-ideal dusty gas
Nath, G.
2016-09-01
One-dimensional unsteady isothermal and adiabatic flow behind a strong exponential shock wave propagating in a rotational axisymmetric mixture of non-ideal gas and small solid particles, which has variable azimuthal and axial fluid velocities, is analyzed. The shock wave is driven out by a piston moving with time according to exponential law. The azimuthal and axial components of the fluid velocity in the ambient medium are assumed to be varying and obeying exponential laws. In the present work, small solid particles are considered as pseudo-fluid with the assumption that the equilibrium flow-conditions are maintained in the flow-field, and the viscous-stress and heat conduction of the mixture are negligible. Solutions are obtained in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector and compressibility. It is found that the assumption of zero temperature gradient brings a profound change in the density, axial component of vorticity vector and compressibility distributions as compared to that of the adiabatic case. To investigate the behavior of the flow variables and the influence on the shock wave propagation by the parameter of non-idealness of the gas overline{b} in the mixture as well as by the mass concentration of solid particles in the mixture Kp and by the ratio of the density of solid particles to the initial density of the gas G1 are worked out in detail. It is interesting to note that the shock strength increases with an increase in G1 ; whereas it decreases with an increase in overline{b} . Also, a comparison between the solutions in the cases of isothermal and adiabatic flows is made.
Nakamura, Kazutaka; Wakabayashi, Kunihiko; Konodo, Ken-Ichi
2001-06-01
Nanosecond time-resolved Raman spectroscopy has been performed to study polymer films, polytetrafluoroethylene (PTFE), under laser driven shock compression at laser power density of 4.0 GW/cm^2. The overtone-mode line of PTFE showed red shift (18 cm-1) at delay time of 9.3 ns due to the shock compression and corresponding pressure was estimated to be approximately 2.7 GPa by analyzing static and shock compression data. The estimated pressure was in good agreement with that estimated by ablation pressure in glass-confined geometry. A new vibrational line at 1900 cm-1 appeared only under shock compression and was assigned to the C=C streching in transient species such as a monomer (C_2F_4) produced by the shock-induced bond scission. Intensity of the new line increased with increasing delay time along propagation of the shock compression with a shock velocity of 2.5 km/s.
Shock wave propagation in soda lime glass using optical shadowgraphy
Indian Academy of Sciences (India)
PRASAD Y B S R; BARNWAL S; NAIK P A; YADAV Y; PATIDAR R; KAMATH M P; UPADHYAY A; BAGCHI S; KUMAR A; JOSHI A S; GUPTA P D
2016-07-01
Propagation of shock waves in soda lime glass, which is a transparent material, has been studied using the optical shadowgraphy technique. The time-resolved shock velocity information has been obtained (1) in single shot, using the chirped pulse shadowgraphy technique, with a temporal resolution of tens of picoseconds and (2) in multiple shots, using conventional snapshot approach, with a second harmonic probe pulse. Transient shock velocities of $(5–7) \\times 10^{6}$ cm/s have been obtained. The scaling of the shock velocity with intensity in the $2 \\times 10^{13}–10^{14}$ W/cm$^2$ range has been obtained. The shock velocity is observed to scale with laser intensity as $I^{0.38}$. The present experiments also show the presence of ionization tracks, generated probably due to X-ray hotspots from small-scale filamentation instabilities. The results and various issues involved in these experiments are discussed
On electromagnetic instabilities at ultra-relativistic shock waves
Lemoine, Martin
2009-01-01
(Abridged) This paper addresses the issue of magnetic field generation in a relativistic shock precursor through micro-instabilities. The level of magnetization of the upstream plasma turns out to be a crucial parameter, notably because the length scale of the shock precursor is limited by the Larmor rotation of the accelerated particles in the background magnetic field and the speed of the shock wave. We discuss in detail and calculate the growth rates of the following beam plasma instabilities seeded by the accelerated and reflected particle populations: for an unmagnetized shock, the Weibel and filamentation instabilities, as well as the Cerenkov resonant longitudinal and oblique modes; for a magnetized shock, in a generic oblique configuration, the Weibel instability and the resonant Cerenkov instabilities with Alfven, Whisler and extraordinary modes. All these instabilities are generated upstream, then they are transmitted downstream. The modes excited by Cerenkov resonant instabilities take on particula...
Observation of thermoacoustic shock waves in a resonance tube.
Biwa, Tetsushi; Sobata, Kazuya; Otake, Shota; Yazaki, Taichi
2014-09-01
This paper reports thermally induced shock waves observed in an acoustic resonance tube. Self-sustained oscillations of a gas column were created by imposing an axial temperature gradient on the short stack of plates installed in the resonance tube filled with air at atmospheric pressure. The tube length and axial position of the stack were examined so as to make the acoustic amplitude of the gas oscillations maximum. The periodic shock wave was observed when the acoustic pressure amplitude reached 8.3 kPa at the fundamental frequency. Measurements of the acoustic intensity show that the energy absorption in the stack region with the temperature gradient tends to prevent the nonlinear excitation of harmonic oscillations, which explains why the shock waves had been unfavorable in the resonance tube thermoacoustic systems.
Finite difference solutions to shocked acoustic waves
Walkington, N. J.; Eversman, W.
1983-01-01
The MacCormack, Lambda and split flux finite differencing schemes are used to solve a one dimensional acoustics problem. Two duct configurations were considered, a uniform duct and a converging-diverging nozzle. Asymptotic solutions for these two ducts are compared with the numerical solutions. When the acoustic amplitude and frequency are sufficiently high the acoustic signal shocks. This condition leads to a deterioration of the numerical solutions since viscous terms may be required if the shock is to be resolved. A continuous uniform duct solution is considered to demonstrate how the viscous terms modify the solution. These results are then compared with a shocked solution with and without viscous terms. Generally it is found that the most accurate solutions are those obtained using the minimum possible viscosity coefficients. All of the schemes considered give results accurate enough for acoustic power calculations with no one scheme performing significantly better than the others.
Detonation Initiation by Annular Jets and Shock Waves
2007-11-02
acquisition card and processed by a Labview program. 1. Diaphragm Selection for Shock Tube Several different diaphragms were used in the shock tube to vary...acquisition cards running in master-slave configuration and processed with a Labview program. Recording of the test section data acquisition system was...pa -1)E+ (-Y + 1) P5=1+ P2 I ½ -1+1 Pll + 2 - 1 + ( I + I)(M 2 (7) 1+7+1(2_ 1) Thus, the pressure ratio across the reflected shock wave can be found
Shock wave science and technology reference library. Vol. 4. Heterogeneous detonation
Energy Technology Data Exchange (ETDEWEB)
Zhang, Fan (ed.) [Defence Research and Development Canada, Suffield, AB (Canada)
2009-07-01
This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily concerned with detonation waves or compression shock waves in reactive heterogeneous media, including mixtures of solid, liquid and gas phases. The topics involve a variety of energy release and control processes in such media - a contemporary research field that has found wide applications in propulsion and power, hazard prevention as well as military engineering. The six extensive chapters contained in this volume are: - Spray Detonation (SB Murray and PA Thibault) - Detonation of Gas-Particle Flow (F Zhang) - Slurry Detonation (DL Frost and F Zhang) - Detonation of Metalized Composite Explosives (MF Gogulya and MA Brazhnikov) - Shock-Induced Solid-Solid Reactions and Detonations (YA Gordopolov, SS Batsanov, and VS Trofimov) - Shock Ignition of Particles (SM Frolov and AV Fedorov). Each chapter is self-contained and can be read independently of the others, though, they are thematically interrelated. They offer a timely reference, for graduate students as well as professional scientists and engineers, by laying out the foundations and discussing the latest developments including yet unresolved challenging problems. (orig.)
Introduction to compressible fluid flow
Oosthuizen, Patrick H
2013-01-01
IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices
An analysis of whistler waves at interplanetary shocks
Lengyel-Frey, D.; Farrell, W. M.; Stone, R. G.; Balogh, A.; Forsyth, R.
1994-01-01
We present an analysis of whistler wave magnetic and electric field amplitude ratios from which we compute wave propagation angles and energies of electrons in resonance with the waves. To do this analysis, we compute the theoretical dependence of ratios of wave components on the whistler wave propagation angle Theta for various combinations of orthogonal wave components. Ratios of wave components that would be observed by a spinning spacecraft are determined, and the effects of arbitrary inclinations of the spacecraft to the ambient magnetic field and to the whistler wave vector are studied. This analysis clearly demonstrates that B/E, the ratio of magnetic to electric field amplitudes, cannot be assumed to be the wave index of refraction, contrary to assumptions of some earlier studies. Therefore previous interpretations of whistler wave observations based on this assumption must be reinvestigated. B/E ratios derived using three orthogonal wave components can be used to unambiguously determine Theta. Using spin plane observations alone, a significant uncertainty occurs in the determination of Theta. Nevertheless, for whistler waves observed downstream of several interplanetary shocks by the Ulysses plasma wave experiment we find that Theta is highly oblique. We suggest that the analysis of wave amplitude ratios used in conjunction with traditional stability analyses provide a promising tool for determining which particle distributions and resonances are likely to be dominant contributors to wave growth.
NUMERICAL SIMULATION OF SHOCK WAVE DIFFRACTION OVER RIGHT ANGLE ON UNSTRUCTURED MESHES
Directory of Open Access Journals (Sweden)
P. V. Bulat
2016-03-01
Full Text Available Subject of Research. Numerical simulation results and investigation of shock wave diffraction of differentintensity on the flat right angleare presented. Method. The numerical model is based on the solution of unsteadyEuler equations for inviscid compressible gas. The finite volume method and explicit WENO-type difference scheme of the third-order of accuracyare used. Convective fluxesare calculated independently for each direction with the approximate Riemann solver(HLLC method. Time integration is performed with the Runge-Kutta method of the third order. Main Results. Flow structure and flowquantitative characteristicshave beendetermined. To visualize and interpret the results of numerical calculations theprocedure of identification and classification of gas-dynamic discontinuities has beenappliedbased on the use of dynamic compatibility conditions and methods of digital image processing. The results of calculations have beenpresented in the form of numerical shadow pictures, schlieren images and interferograms, and compared with the optical observations. Significantly better agreement with the experimental data has beendemonstrated as compared toconventionalnumerical methods. Application of numerical methods of high order accuracy has yielded a numerical solution which is free from non-physicaloscillations on the shock waves with minimal smearingoverdifference cells. Practical Relevance. The study of shock-wave phenomena is of interest for the solution of problems related to the impact of shock waves on the design elements, the operation of pulsed gas-dynamic devices, the use of shock waves in technological processes. Supersonic flows around angle configurations lead to interference and diffraction phenomena complicated by flow separation. These effects make complexthe calculation of such phenomena using conventional numericalmethods. The problem ofthe results interpretation is not less complicated one,as well, in particular, identification
Potential of shock waves to remove calculus and biofilm.
Müller, Philipp; Guggenheim, Bernhard; Attin, Thomas; Marlinghaus, Ernst; Schmidlin, Patrick R
2011-12-01
Effective calculus and biofilm removal is essential to treat periodontitis. Sonic and ultrasonic technologies are used in several scaler applications. This was the first feasibility study to assess the potential of a shock wave device to remove calculus and biofilms and to kill bacteria. Ten extracted teeth with visible subgingival calculus were treated with either shock waves for 1 min at an energy output of 0.4 mJ/mm(2) at 3 Hz or a magnetostrictive ultrasonic scaler at medium power setting for 1 min, which served as a control. Calculus was determined before and after treatment planimetrically using a custom-made software using a grey scale threshold. In a second experiment, multispecies biofilms were formed on saliva-preconditioned bovine enamel discs during 64.5 h. They were subsequently treated with shock waves or the ultrasonic scaler (N = 6/group) using identical settings. Biofilm detachment and bactericidal effects were then assessed. Limited efficiency of the shock wave therapy in terms of calculus removal was observed: only 5% of the calculus was removed as compared to 100% when ultrasound was used (P ≤ 0.0001). However, shock waves were able to significantly reduce adherent bacteria by three orders of magnitude (P ≤ 0.0001). The extent of biofilm removal by the ultrasonic device was statistically similar. Only limited bactericidal effects were observed using both methods. Within the limitations of this preliminary study, the shock wave device was not able to reliably remove calculus but had the potential to remove biofilms by three log steps. To increase the efficacy, technical improvements are still required. This novel noninvasive intervention, however, merits further investigation.
Lower hybrid waves at the shock front: a reassessment
Directory of Open Access Journals (Sweden)
S. N. Walker
2008-03-01
Full Text Available The primary process occurring at a collisionless shock is the redistribution of the bulk upstream energy into other degrees of freedom. One part of this process results in the acceleration of electrons at the shock front. Accelerated electrons are observed at the terrestrial and other planetary shocks, comets, and their effects are observed in astrophysical phenomena such as supernova remnants and jets in the form of X-ray bremsstrahlung radiation. One of the physical models for electron acceleration at supercritical shocks is based on low-hybrid turbulence due to the presence of reflected ions in the foot region. Since lower hybrid waves propagate almost perpendicular to the magnetic field they can be simultaneously in resonance with both the unmagnetised ions (ω=V_{i}k_{⊥} and magnetised electrons (ω=V_{e}k_{||}. In this paper, Cluster observations of the electric field are used to study the occurrence of lower hybrid waves in the front of the terrestrial bow shock. It is shown that the lower hybrid waves exist as isolated wave packets. However, the very low level of the observed lower hybrid turbulence is too small to impart significant energisation to the electron population.
A Study of Uranus' Bow Shock Motions Using Langmuir Waves
Xue, S.; Cairns, I. H.; Smith, C. W.; Gurnett, D. A.
1996-01-01
During the Voyager 2 flyby of Uranus, strong electron plasma oscillations (Langmuir waves) were detected by the plasma wave instrument in the 1.78-kHz channel on January 23-24, 1986, prior to the inbound bow shock crossing. Langmuir waves are excited by energetic electrons streaming away from the bow shock. The goal of this work is to estimate the location and motion of Uranus' bow shock using Langmuir wave data, together with the spacecraft positions and the measured interplanetary magnetic field. The following three remote sensing analyses were performed: the basic remote sensing method, the lag time method, and the trace-back method. Because the interplanetary magnetic field was highly variable, the first analysis encountered difficulties in obtaining a realistic estimation of Uranus' bow shock motion. In the lag time method developed here, time lags due to the solar wind's finite convection speed are taken into account when calculating the shock's standoff distance. In the new trace-back method, limits on the standoff distance are obtained as a function of time by reconstructing electron paths. Most of the results produced by the latter two analyses are consistent with predictions based on the standard theoretical model and the measured solar wind plasma parameters. Differences between our calculations and the theoretical model are discussed.
Liu, Shun; Xu, Jinglei; Yu, Kaikai
2017-06-01
This paper proposes an improved approach for extraction of pressure fields from velocity data, such as obtained by particle image velocimetry (PIV), especially for steady compressible flows with strong shocks. The principle of this approach is derived from Navier-Stokes equations, assuming adiabatic condition and neglecting viscosity of flow field boundaries measured by PIV. The computing method is based on MacCormack's technique in computational fluid dynamics. Thus, this approach is called the MacCormack method. Moreover, the MacCormack method is compared with several approaches proposed in previous literature, including the isentropic method, the spatial integration and the Poisson method. The effects of velocity error level and PIV spatial resolution on these approaches are also quantified by using artificial velocity data containing shock waves. The results demonstrate that the MacCormack method has higher reconstruction accuracy than other approaches, and its advantages become more remarkable with shock strengthening. Furthermore, the performance of the MacCormack method is also validated by using synthetic PIV images with an oblique shock wave, confirming the feasibility and advantage of this approach in real PIV experiments. This work is highly significant for the studies on aerospace engineering, especially the outer flow fields of supersonic aircraft and the internal flow fields of ramjets.
[Musculoskeletal shock wave therapy--current database of clinical research].
Rompe, J D; Buch, M; Gerdesmeyer, L; Haake, M; Loew, M; Maier, M; Heine, J
2002-01-01
During the past decade application of extracorporal shock waves became an established procedure for the treatment of various musculoskeletal diseases in Germany. Up to now the positive results of prospective randomised controlled trials have been published for the treatment of plantar fasciitis, lateral elbow epicondylitis (tennis elbow), and of calcifying tendinitis of the rotator cuff. Most recently, contradicting results of prospective randomised placebo-controlled trials with adequate sample size calculation have been reported. The goal of this review is to present information about the current clinical database on extracorporeal shock wave treatment (ESWT).
Numerical analysis of welded joint treated by explosion shock waves
Institute of Scientific and Technical Information of China (English)
GUAN Jianjun; CHEN Huaining
2007-01-01
This paper focuses on the simulation of welding residual stresses and the action of explosion shock waves on welding residual stresses. Firstly, the distributions of welding temperature field and residual stress on a butt joint were numerically simulated with the sequentially coupled method. Secondly, the effect of explosion shock waves, produced by plastic strip-like explosive, on welding residual stress distri-bution was predicted with coupled Lagrange-ALE algorithm.It was implicated that explosion treatment could effectively reduce welding residual stresses. The simulation work lays a foundation for the further research on the rule of explosion treatment's effect on welding residual stresses and the factors that may influence it.
Shock wave emission during the collapse of cavitation bubbles
Garen, W.; Hegedűs, F.; Kai, Y.; Koch, S.; Meyerer, B.; Neu, W.; Teubner, U.
2016-07-01
Shock wave emission induced by intense laser pulses is investigated experimentally. The present work focuses on the conditions of shock wave emission in glycerine and distilled water during the first bubble collapse. Experimental investigations are carried out in liquids as a function of temperature and viscosity. Comparison is made with the theoretical work of Poritsky (Proc 1st US Natl Congress Appl Mech 813-821, 1952) and Brennen (Cavitation and bubble dynamics, Oxford University Press 1995). To the best knowledge of the authors, this is the first experimental verification of those theories.
Shock wave fractionated noble gases in the early solar system
Ustinova, G. K.
2001-08-01
Many processes in the active star-forming regions are accompanied by strong shock waves, in acceleration by which the nuclear-active particles form the power-law energy spectrum of high rigidity: F(> E0) ˜ Eγ , with the spectral index γ ≤ 1.5-2. It must affect the production rates of spallogenic components of the isotopes, whose excitation functions depend on the shape of the energy spectrum of radiation. Thus, the isotopic signatures formed in the conditions of the strong shock wave propagation must be different from those formed in the calm environment. The early solar system incorporated all the presumed processes of the starforming stage, so that its matter had to conserve such isotopic anomalies. In previous works [1] the shock wave effects in generation of extinct radionu-clides and light elements Li, Be and B were considered. In the report some results for their evidence in the noble gas signatures are presented. Modelling the Kr isotope generation in spallation of Rb, Sr, Y and Zr with the nuclear-active particles, the energy spectrum of which was variable in the range of γ= 1.1-6.0, shows the different pace of growth of abundances of the dif-ferent Kr isotopes with decreasing . It leads to the quite diverse behaviour of the various Kr isotope ratios: the 78,80 Kr/83 Kr ratios increase, and the 82,84,86 Kr/83 Kr ratios decrease for the smaller γ. According to such criteria, for instance, the isotopically heavier SEP-Kr in the lunar ilmenites was pro-duced with the accelerated particles of the more rigid energy spectrum (γ ˜ 2) in comparison with the SW-Kr. Another important feature of the shock wave acceleration of particles is the enrichment of their specrtum with heavier ions in proportion to A/Z. Clearly, the shock wave fractionation of the noble gases, favouring the heavier isotopes, had to be inevitable. Such a fractionation depends on timing episodes of shock wave acceleration: after the n-th act of the ion acceleration their fractionation is
STUDY OF SWEPT SHOCK WAVE AND BOUNDARY LAYER INTERACTIONS
Institute of Scientific and Technical Information of China (English)
1998-01-01
This paper presents briefly the recent progress on study of swept shock wave/boundary layer interactions with emphasis on application of zonalanalysis and correlation analysis to them. Based on the zonal analysis an overall framework of complicated interaction flow structure including both surface flowfield and space flowfield is discussed. Based on correlation analysis the conical interactions induced by four families of shock wave generators have been discussedin detail. Some control parameter and physical mechanism of conical interaction have been revealed. Finally some aspects of the problem and the prospects for future work are suggested.
Bershader, D. (Editor); Hanson, R. (Editor)
1986-01-01
A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.
Energy Technology Data Exchange (ETDEWEB)
Griffond, J. [CEA Bruyeres-le-Chatel, 91 (France)
2009-08-15
The linear interaction analysis (LIA) is a theory aimed at predicting the evolution of a small perturbation field interaction with a shock wave. Despite its limited range of validity, it can be used for different applications among which 2 main kinds are of interest for us: the interaction of a shock wave with a perturbation of finite size (bubble, corrugated interface, etc.), and the interaction of shock wave with a statistically homogeneous turbulent mixture. The last configuration is of great interest for the development of turbulence models devoted to compressible mixing. (author)
Cosmic Rays Accelerated at Cosmological Shock Waves
Indian Academy of Sciences (India)
Renyi Ma; Dongsu Ryu; Hyesung Kang
2011-03-01
Based on hydrodynamic numerical simulations and diffusive shock acceleration model, we calculated the ratio of cosmic ray (CR) to thermal energy. We found that the CR fraction can be less than ∼ 0.1 in the intracluster medium, while it would be of order unity in the warm-hot intergalactic medium.
Shock wave fabricated ceramic-metal nozzles
Carton, E.P.; Stuivinga, M.E.C.; Keizers, H.L.J.; Verbeek, H.J.; Put, P.J. van der
1999-01-01
Shock compaction was used in the fabrication of high temperature ceramic-based materials. The materials' development was geared towards the fabrication of nozzles for rocket engines using solid propellants, for which the following metal-ceramic (cermet) materials were fabricated and tested: B4C-Ti (
Shock wave fabricated ceramic-metal nozzles
Carton, E.P.; Stuivinga, M.E.C.; Keizers, H.L.J.; Verbeek, H.J.; Put, P.J. van der
1999-01-01
Shock compaction was used in the fabrication of high temperature ceramic-based materials. The materials' development was geared towards the fabrication of nozzles for rocket engines using solid propellants, for which the following metal-ceramic (cermet) materials were fabricated and tested: B4C-Ti
Energy Technology Data Exchange (ETDEWEB)
Zylstra, A. B., E-mail: zylstra@mit.edu; Frenje, J. A.; Séguin, F. H.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Sinenian, N.; Sio, H. W. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Friedrich, S.; Bionta, R.; Atherton, J.; Barrios, M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others
2014-11-15
The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D{sup 3}He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D{sup 3}He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2× higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (ρR) and the shell center-of-mass radius (R{sub cm}) from the downshift of the shock-produced D{sup 3}He protons. The observed ρR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time (“short-coast”), while longer-coasting implosions have lower ρR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (∼800 ps) than in the short-coast (∼400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel ρR.
Compressed Sensing for Time-Frequency Gravitational Wave Data Analysis
Addesso, Paolo; Marano, Stefano; Matta, Vincenzo; Principe, Maria; Pinto, Innocenzo M
2016-01-01
The potential of compressed sensing for obtaining sparse time-frequency representations for gravitational wave data analysis is illustrated by comparison with existing methods, as regards i) shedding light on the fine structure of noise transients (glitches) in preparation of their classification, and ii) boosting the performance of waveform consistency tests in the detection of unmodeled transient gravitational wave signals using a network of detectors affected by unmodeled noise transient
Louis, Hélène; Odent, Vincent; Louvergneaux, Eric
2016-04-01
Shock waves are well-known nonlinear waves, displaying an abrupt discontinuity. Observation can be made in a lot of physical fields, as in water wave, plasma and nonlinear optics. Shock waves can either break or relax through either catastrophic or regularization phenomena. In this work, we restrain our study to dispersive shock waves. This regularization phenomenon implies the emission of dispersive waves. We demonstrate experimentally and numerically the generation of spatial dispersive shock waves in a nonlocal focusing media. The generation of dispersive shock wave in a focusing media is more problematic than in a defocusing one. Indeed, the modulational instability has to be frustrated to observe this phenomenon. In 2010, the dispersive shock wave was demonstrated experimentally in a focusing media with a partially coherent beam [1]. Another way is to use a nonlocal media [2]. The impact of nonlocality is more important than the modulational instability frustration. Here, we use nematic liquid crystals (NLC) as Kerr-like nonlocal medium. To achieve shock formation, we use the Riemann condition as initial spatial condition (edge at the beam entrance of the NLC cell). In these experimental conditions, we generate, experimentally and numerically, shock waves that relax through the emission of dispersive waves. Associated with this phenomenon, we evidence the emergence of a localized wave that travels through the transverse beam profile. The beam steepness, which is a good indicator of the shock formation, is maximal at the shock point position. This latter follows a power law versus the injected power as in [3]. Increasing the injected power, we found multiple shock points. We have good agreements between the numerical simulations and the experimental results. [1] W. Wan, D. V Dylov, C. Barsi, and J. W. Fleischer, Opt. Lett. 35, 2819 (2010). [2] G. Assanto, T. R. Marchant, and N. F. Smyth, Phys. Rev. A - At. Mol. Opt. Phys. 78, 1 (2008). [3] N. Ghofraniha, L. S
Excitation Waveform Design for Lamb Wave Pulse Compression.
Lin, Jing; Hua, Jiadong; Zeng, Liang; Luo, Zhi
2016-01-01
Most ultrasonic guided wave methods focus on tone burst excitation to reduce the effect of dispersion so as to facilitate signal interpretation. However, the resolution of the output cannot attain a very high value because time duration of the excitation waveform cannot be very small. To overcome this limitation, a pulse compression technique is introduced to Lamb wave propagation to achieve a δ-like correlation so as to obtain a high resolution for inspection. Ideal δ-like correlation is impossible as only a finite frequency bandwidth can propagate. The primary purpose of this paper is to design a proper excitation waveform for Lamb wave pulse compression, which shortens the correlation as close as possible to a δ function. To achieve this purpose, the performance of some typical signals is discussed in pulse compression, which include linear chirp (L-Chirp) signal, nonlinear chirp (NL-Chirp) signal, Barker code (BC), and Golay complementary code (GCC). In addition, how the excitation frequency range influences inspection resolution is investigated. A strategy for the frequency range determination is established subsequently. Finally, an experiment is carried out on an aluminum plate where these typical signals are used as excitations at different frequency ranges. The quantitative comparisons of the pulse compression responses validate the theoretical findings. By utilizing the experimental data, the improvement of pulse compression in resolution compared with tone burst excitation is also validated, and the robustness of the waveform design method to inaccuracies in the dispersion compensation is discussed as well.
NEW EXPRESSIONS OF PERIODIC WAVES AND A NOVEL PHENOMENON IN A COMPRESSIBLE HYPERELASTIC ROD
Institute of Scientific and Technical Information of China (English)
Liu Zhengrong; Zhang Bengong
2007-01-01
A In this paper, we employ both bifurcation method of dynamical systems and numerical exploration of differential equations to investigate the periodic waves of a general compressible hyperelastic rod equation ut + 3uux - uxxt - γ(2uxuxx + uuxxx) = 0,with parameter γ＜ 0. New expressions including explicit expressions and implicit expressions are obtained. Some previous results are extended. Specially, a new phenomenon is found: when the initial value tends to a certain number, the periodic shock wave suddenly changes into a smooth periodic wave. In dynamical systems, this represents that one of orbits can pass through the singular line. The coherency of numerical simulation and theoretical derivation implies the correctness of our results.
Scattering of sound waves by a compressible vortex
Colonius, Tim; Lele, Sanjiva K.; Moin, Parviz
1991-01-01
Scattering of plane sound waves by a compressible vortex is investigated by direct computation of the two-dimensional Navier-Stokes equations. Nonreflecting boundary conditions are utilized, and their accuracy is established by comparing results on different sized domains. Scattered waves are directly measured from the computations. The resulting amplitude and directivity pattern of the scattered waves is discussed, and compared to various theoretical predictions. For compact vortices (zero circulation), the scattered waves directly computed are in good agreement with predictions based on an acoustic analogy. Strong scattering at about + or - 30 degrees from the direction of incident wave propagation is observed. Back scattering is an order of magnitude smaller than forward scattering. For vortices with finite circulation refraction of the sound by the mean flow field outside the vortex core is found to be important in determining the amplitude and directivity of the scattered wave field.
Treanor, C. E.; Hall, J. G.
1982-10-01
The present conference on shock tubes and waves considers shock tube drivers, luminous shock tubes, shock tube temperature and pressure measurement, shock front distortion in real gases, nonlinear standing waves, transonic flow shock wave turbulent boundary interactions, wall roughness effects on reflected shock bifurcation, argon thermal conductivity, pattern generation in gaseous detonations, cylindrical resonators, shock tunnel-produced high gain lasers, fluid dynamic aspects of laser-metal interaction, and the ionization of argon gas behind reflected shock waves. Also discussed are the ionization relaxation of shock-heated plasmas and gases, discharge flow/shock tube studies of singlet oxygen, rotational and vibrational relaxation, chemiluminescence thermal and shock wave decomposition of hydrogen cyanide and hydrogen azide, shock wave structure in gas-particle mixtures at low Mach numbers, binary nucleation in a Ludwieg tube, shock liquefaction experiments, pipeline explosions, the shock wave ignition of pulverized coal, and shock-initiated methane combustion.
Early Detection of Rogue Waves Using Compressive Sensing
Bayindir, Cihan
2016-01-01
We discuss the possible usage of the compressive sampling for the early detection of rogue waves in a chaotic sea state. One of the promising techniques for the early detection of the oceanic rogue waves is to measure the triangular Fourier spectra which begin to appear at the early stages of their development. For the early detection of the rogue waves it is possible to treat such a spectrum as a sparse signal since we would mainly be interested in the high amplitude triangular region located at the central wavenumber. Therefore compressive sampling can be a very efficient tool for the rogue wave early warning systems. Compressed measurements can be acquired by remote sensing techniques such as coherent SAR which measure the ocean surface fluctuation or by insitu techniques such as spectra measuring tools mounted on a ship hull or bottom mounted pressure gauges. By employing a numerical approach we show that triangular Fourier spectra can be sensed by compressed measurements at the early stages of the develo...
High-resolution PIV measurements of a transitional shock wave-boundary layer interaction
Giepman, R. H. M.; Schrijer, F. F. J.; van Oudheusden, B. W.
2015-06-01
This study investigates the effects of boundary layer transition on an oblique shock wave reflection. The Mach number was 1.7, the unit Reynolds number was 35 × 106 m-1, and the pressure ratio over the interaction was 1.35. Particle image velocimetry is used as the main flow diagnostics tool, supported by oil-flow and Schlieren visualizations. At these conditions, the thickness of the laminar boundary layer is only 0.2 mm, and seeding proved to be problematic as practically no seeding was recorded in the lower 40 % of the boundary layer. The top 60 % could, however, still be resolved with good accuracy and is found to be in good agreement with the compressible Blasius solution. Due to the effects of turbulent mixing, the near-wall seeding deficiency disappears when the boundary layer transitions to a turbulent state. This allowed the seeding distribution to be used as an indicator for the state of the boundary layer, permitting to obtain an approximate intermittency distribution for the boundary layer transition region. This knowledge was then used for positioning the oblique shock wave in the laminar, transitional (50 % intermittency) or turbulent region of the boundary layer. Separation is only recorded for the laminar and transitional interactions. For the laminar interaction, a large separation bubble is found, with a streamwise length of 96. The incoming boundary layer is lifted over the separation bubble and remains in a laminar state up to the impingement point of the shock wave. After the shock, transition starts and a turbulent profile is reached approximately 80-90 downstream of the shock. Under the same shock conditions, the transitional interaction displays a smaller separation bubble (43), and transition is found to be accelerated over the separation bubble.
Fast Quantum Molecular Dynamics Simulations of Simple Organic Liquids under Shock Compression
Cawkwell, Marc; Niklasson, Anders; Manner, Virginia; McGrane, Shawn; Dattelbaum, Dana
2013-06-01
The responses of liquid formic acid, acrylonitrile, and nitromethane to shock compression have been studied using quantum-based molecular dynamics simulations with the self-consistent tight-binding code LATTE. Microcanonical Born-Oppenheimer trajectories with precise energy conservation were computed without relying on an iterative self-consistent field optimization of the electronic degrees of freedom at each time step via the Fast Quantum Mechanical Molecular Dynamics formalism. The input shock pressures required to initiate chemistry in our simulations agree very well with recent laser- and flyer-plate-driven shock compression experiments. On-the-fly analysis of the electronic structure of the liquids over hundreds of picoseconds after dynamic compression revealed that their reactivity is strongly correlated with the temperature and pressure dependence of their HOMO-LUMO gap.
Molecular dynamics simulations of microscopic structure of ultra strong shock waves in dense helium
Liu, Hao; Kang, Wei; Zhang, Qi; Zhang, Yin; Duan, Huilin; He, X. T.
2016-12-01
Hydrodynamic properties and structure of strong shock waves in classical dense helium are simulated using non-equilibrium molecular dynamics methods. The shock speed in the simulation reaches 100 km/s and the Mach number is over 250, which are close to the parameters of shock waves in the implosion process of inertial confinement fusion. The simulations show that the high-Mach-number shock waves in dense media have notable differences from weak shock waves or those in dilute gases. These results will provide useful information on the implosion process, especially the structure of strong shock wave front, which remains an open question in hydrodynamic simulations.
Response of ocean bottom dwellers exposed to underwater shock waves
Hosseini, S. H. R.; Kaiho, Kunio; Takayama, Kazuyoshi
2016-01-01
The paper reports results of experiments to estimate the mortality of ocean bottom dwellers, ostracoda, against underwater shock wave exposures. This study is motivated to verify the possible survival of ocean bottom dwellers, foraminifera, from the devastating underwater shock waves induced mass extinction of marine creatures which took place at giant asteroid impact events. Ocean bottom dwellers under study were ostracoda, the replacement of foraminifera, we readily sampled from ocean bottoms. An analogue experiment was performed on a laboratory scale to estimate the domain and boundary of over-pressures at which marine creatures' mortality occurs. Ostracods were exposed to underwater shock waves generated by the explosion of 100mg PETN pellets in a chamber at shock over-pressures ranging up to 44MPa. Pressure histories were measured simultaneously on 113 samples. We found that bottom dwellers were distinctively killed against overpressures of 12MPa and this value is much higher than the usual shock over-pressure threshold value for marine-creatures having lungs and balloons.
Bubbles with shock waves and ultrasound: a review.
Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong
2015-10-06
The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead.
Lithotripter shock wave interaction with a bubble near various biomaterials
Ohl, S. W.; Klaseboer, E.; Szeri, A. J.; Khoo, B. C.
2016-10-01
Following previous work on the dynamics of an oscillating bubble near a bio-material (Ohl et al 2009 Phys. Med. Biol. 54 6313-36) and the interaction of a bubble with a shockwave (Klaseboer et al 2007 J. Fluid Mech. 593 33-56), the present work concerns the interaction of a gas bubble with a traveling shock wave (such as from a lithotripter) in the vicinity of bio-materials such as fat, skin, muscle, cornea, cartilage, and bone. The bubble is situated in water (to represent a water-like biofluid). The bubble collapses are not spherically symmetric, but tend to feature a high speed jet. A few simulations are performed and compared with available experimental observations from Sankin and Zhong (2006 Phys. Rev. E 74 046304). The collapses of cavitation bubbles (created by laser in the experiment) near an elastic membrane when hit by a lithotripter shock wave are correctly captured by the simulation. This is followed by a more systematic study of the effects involved concerning shockwave bubble biomaterial interactions. If a subsequent rarefaction wave hits the collapsed bubble, it will re-expand to a very large size straining the bio-materials nearby before collapsing once again. It is noted that, for hard bio-material like bone, reflection of the shock wave at the bone—water interface can affect the bubble dynamics. Also the initial size of the bubble has a significant effect. Large bubbles (˜1 mm) will split into smaller bubbles, while small bubbles collapse with a high speed jet in the travel direction of the shock wave. The numerical model offers a computationally efficient way of understanding the complex phenomena involving the interplay of a bubble, a shock wave, and a nearby bio-material.
Visualizing a Dusty Plasma Shock Wave via Interacting Multiple-Model Mode Probabilities
Oxtoby, Neil P.; Ralph, Jason F.; Durniak, Céline; Samsonov, Dmitry
2011-01-01
Particles in a dusty plasma crystal disturbed by a shock wave are tracked using a three-mode interacting multiple model approach. Color-coded mode probabilities are used to visualize the shock wave propagation through the crystal.
Mundy, Christopher J; Curioni, Alessandro; Goldman, Nir; Will Kuo, I-F; Reed, Evan J; Fried, Laurence E; Ianuzzi, Marcella
2008-05-14
We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 kms (longitudinal stress>130 GPa), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond.
Bacterial survival following shock compression in the GigaPascal range
Hazael, Rachael; Fitzmaurice, Brianna C.; Foglia, Fabrizia; Appleby-Thomas, Gareth J.; McMillan, Paul F.
2017-09-01
The possibility that life can exist within previously unconsidered habitats is causing us to expand our understanding of potential planetary biospheres. Significant populations of living organisms have been identified at depths extending up to several km below the Earth's surface; whereas laboratory experiments have shown that microbial species can survive following exposure to GigaPascal (GPa) pressures. Understanding the degree to which simple organisms such as microbes survive such extreme pressurization under static compression conditions is being actively investigated. The survival of bacteria under dynamic shock compression is also of interest. Such studies are being partly driven to test the hypothesis of potential transport of biological organisms between planetary systems. Shock compression is also of interest for the potential modification and sterilization of foodstuffs and agricultural products. Here we report the survival of Shewanella oneidensis bacteria exposed to dynamic (shock) compression. The samples examined included: (a) a ;wild type; (WT) strain and (b) a ;pressure adapted; (PA) population obtained by culturing survivors from static compression experiments to 750 MPa. Following exposure to peak shock pressures of 1.5 and 2.5 GPa the proportion of survivors was established as the number of colony forming units (CFU) present after recovery to ambient conditions. The data were compared with previous results in which the same bacterial samples were exposed to static pressurization to the same pressures, for 15 minutes each. The results indicate that shock compression leads to survival of a significantly greater proportion of both WT and PA organisms. The significantly shorter duration of the pressure pulse during the shock experiments (2-3 μs) likely contributes to the increased survival of the microbial species. One reason for this can involve the crossover from deformable to rigid solid-like mechanical relaxational behavior that occurs for
Neogi, Anupam; Mitra, Nilanjan
2015-06-01
Atomistic molecular dynamics in conjunction with multi-scale shock technique is utilized to investigate shock wave response of bulk amorphous polyvinyl chloride. Dependence of chain length on physical and mechanical behaviour of polymeric material at ambient condition of temperature and pressure are well known but unknown for extreme conditions. Non-reactive force fields PCFF, COMPASS and PCFF+ were used to determine applicability of the force field for the study of the material subjected to shock loads. Several samples of PVC with various chain lengths were subjected to a range of shock compression from 1.5-10.0 km/s. Even though dependence of chain length was observed for lower shock strengths but was not for intense shock loads. The principle Hugoniot points, calculated by applying hydrostatic Rankine-Hugoniot equations and as well as multi-scale shock technique, were compared against LASL experimental shock data, demonstrating superior performance of PCFF+ force-field over PCFF and COMPASS. Shock induced melting characteristic and vibrational spectroscopic study were conducted and compared with experimental data to observe differences in response with relation to different force fields, chain length of the material for different shock intensities.
Suppression of spiral waves using intermittent local electric shock
Institute of Scientific and Technical Information of China (English)
Ma Jun; Ying He-Ping; Li Yan-Long
2007-01-01
In this paper, an intermittent local electric shock scheme is proposed to suppress stable spiral waves in the Barkley model by a weak electric shock (about 0.4 to 0.7) imposed on a random selected n × n grids (n = 1-5, compared with the original 256×256 lattice) and monitored synchronically the evolutions of the activator on the grids as the sampled signal of the activator steps out a given threshold (i.e., the electric shock works on the n × n grids if the activator u (≤) 0.4 or u (≥) 0.8). The numerical simulations show that a breakup of spiral is observed in the media state evolution to finally obtain homogeneous states if the electric shock with appropriate intensity is imposed.
Maximum intensity of rarefaction shock waves for dense gases
Guardone, A.; Zamfirescu, C.; Colonna, P.
2009-01-01
Modern thermodynamic models indicate that fluids consisting of complex molecules may display non-classical gasdynamic phenomena such as rarefaction shock waves (RSWs) in the vapour phase. Since the thermodynamic region in which non-classical phenomena are physically admissible is finite in terms of
Whistler waves associated with the Uranian bow shock - Outbound observations
Smith, Charles W.; Wong, Hung K.; Goldstein, Melvyn L.
1991-01-01
High-resolution magnetic field measurements from the first outbound crossing of the Uranian bowshock by the Voyager 2 spacecraft between January 27 and 30, 1986, are examined. Evidence is found of enhanced whistler wave activity in the vicinity of three shock crossings but little or no evidence of such activity elsewhere. Two wave events display two separate and simultaneous wave enhancements each. From an investigation of these events using high-resolution field data, it is concluded that they are analogous to those whistler waves upstream of the earth's bow shock that are driven by beams of electrons. An instability analysis is presented to show that a single electron beam with reasonable parameters can penetrate both of the upstream and downstream of a shock crossing. This event displays only one relatively broad spectral enhancement in the same frequency regime and is left-hand polarized in the spacecraft frame. It is argued that this event is the result of a gyrating proton distribution associated with the oblique shock.
Characterization and modification of cavitation pattern in shock wave lithotripsy
Arora, Manish; Ohl, Claus-Dieter; Liebler, Marko
2004-01-01
The temporal and spatial dynamics of cavitation bubble cloud growth and collapse in extracorporeal shock wave lithotripsy (ESWL) is studied experimentally. The first objective is obtaining reproducible cloud patterns experimentally and comparing them with FDTD-calculations. Second, we describe a met
Acoustic waves in shock tunnels and expansion tubes
Paull, A.; Stalker, R. J.
1992-01-01
It is shown that disturbances in shock and expansion tubes can be modelled as lateral acoustic waves. The ratio of sound speed across the driver-test gas interface is shown to govern the quantity of noise in the test gas. Frequency 'focusing' which is fundamental to centered unsteady expansions is discussed and displayed in centerline pitot pressure measurements.
Unfocused extracorporeal shock waves induce anabolic effects in osteoporotic rats
van der Jagt, Olav P.; Waarsing, Jan H.; Kops, Nicole; Schaden, Wolfgang; Jahr, Holger; Verhaar, Jan A. N.; Weinans, Harrie
2013-01-01
Unfocused extracorporeal shock waves (UESW) have been shown to have an anabolic effect on bone mass. Therefore we investigated the effects of UESW on bone in osteoporotic rats with and without anti-resorptive treatment. Twenty-week-old rats were ovariectomized (n=27). One group was treated with sali
Stenting and extracorporeal shock wave lithotripsy in chronic pancreatitis
DEFF Research Database (Denmark)
Holm, M; Matzen, Peter
2003-01-01
BACKGROUND: Early observational studies of endoscopic treatment and extracorporeal shock wave lithotripsy (ESWL) reported considerable or complete relief of pain in 50%-80% of patients with chronic pancreatitis. There is no consensus on the measurement of pain, making comparison of observational...
The gravitational shock wave of a massless particle
Hooft, G. 't; Dray, T
1985-01-01
The (spherical) gravitational shock wave due to a massless particle moving at the speed of light along the horizon of the Schwarzchild black hole is obtained. Special cases of our procedure yield previous results by Aichelburg and Sexl[1] for a photon in Minkowski vpace and by Penrose [2] for source
Admissibility region for rarefaction shock waves in dense gases
Zamfirescu, C.; Guardone, A.; Colonna, P.
2008-01-01
In the vapour phase and close to the liquid–vapour saturation curve, fluids made of complex molecules are expected to exhibit a thermodynamic region in which the fundamental derivative of gasdynamic Γ is negative. In this region, non-classical gasdynamic phenomena such as rarefaction shock waves are
Success of electromagnetic shock wave lithotripter as monotherapy ...
African Journals Online (AJOL)
K.S. Meitei
The success rate of ESWL for both non-staghorn and staghorn calculi with size above 2 cm is low, so other treatment ..... Conflict of interest. None declared. ... Bazeed M. Prediction of success rate after extracorporeal shock-wave lithotripsy of ...
THE FORMATION OF SHOCK WAVES OF THE EQUATIONS OF MAGNETOHYDRODYNAMICS
Institute of Scientific and Technical Information of China (English)
董黎明; 史一蓬
2001-01-01
The property of fluid field of one- dimensional magnetohydrodynamics (MHD)transverse flow after the appearance of singularity is discussed. By the method of iteration,the strong discontinuity (shock wave) and entropy solution are constructed and the estimations on the singularity of the solution near the point of blow- up are obtained.
The effects of extracorporeal shock wave therapy on frozen shoulder patients’ pain and functions
2015-01-01
[Purpose] The present study was conducted to examine the effects of extracorporeal shock wave therapy on frozen shoulder patients’ pain and functions. [Subjects] In the present study, 30 frozen shoulder patients were divided into two groups: an extracorporeal shock wave therapy group of 15 patients and a conservative physical therapy group of 15 patients. [Methods] Two times per week for six weeks, the extracorporeal shock wave therapy group underwent extracorporeal shock wave therapy, and th...
Regularized Moment Equations and Shock Waves for Rarefied Granular Gas
Reddy, Lakshminarayana; Alam, Meheboob
2016-11-01
It is well-known that the shock structures predicted by extended hydrodynamic models are more accurate than the standard Navier-Stokes model in the rarefied regime, but they fail to predict continuous shock structures when the Mach number exceeds a critical value. Regularization or parabolization is one method to obtain smooth shock profiles at all Mach numbers. Following a Chapman-Enskog-like method, we have derived the "regularized" version 10-moment equations ("R10" moment equations) for inelastic hard-spheres. In order to show the advantage of R10 moment equations over standard 10-moment equations, the R10 moment equations have been employed to solve the Riemann problem of plane shock waves for both molecular and granular gases. The numerical results are compared between the 10-moment and R10-moment models and it is found that the 10-moment model fails to produce continuous shock structures beyond an upstream Mach number of 1 . 34 , while the R10-moment model predicts smooth shock profiles beyond the upstream Mach number of 1 . 34 . The density and granular temperature profiles are found to be asymmetric, with their maxima occurring within the shock-layer.
Grain destruction in a supernova remnant shock wave
Energy Technology Data Exchange (ETDEWEB)
Raymond, John C.; Gaetz, Terrance J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ghavamian, Parviz [Department of Physics, Astronomy and Geosciences, Towson University, Towson, MD 21252 (United States); Williams, Brian J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Blair, William P. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Borkowski, Kazimierz J. [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Sankrit, Ravi, E-mail: jraymond@cfa.harvard.edu [SOFIA Science Center, NASA Ames Research Center, M/S 232-12, Moffett Field, CA 94035 (United States)
2013-12-01
Dust grains are sputtered away in the hot gas behind shock fronts in supernova remnants (SNRs), gradually enriching the gas phase with refractory elements. We have measured emission in C IV λ1550 from C atoms sputtered from dust in the gas behind a non-radiative shock wave in the northern Cygnus Loop. Overall, the intensity observed behind the shock agrees approximately with predictions from model calculations that match the Spitzer 24 μm and the X-ray intensity profiles. Thus, these observations confirm the overall picture of dust destruction in SNR shocks and the sputtering rates used in models. However, there is a discrepancy in that the C IV intensity 10'' behind the shock is too high compared with the intensities at the shock and 25'' behind it. Variations in the density, hydrogen neutral fraction, and the dust properties over parsec scales in the pre-shock medium limit our ability to test dust destruction models in detail.
A new compressibility modification k-ε turbulence model with shock unsteadiness effect
Institute of Scientific and Technical Information of China (English)
HAN XingSi; YE TaoHong; ZHU MinMing; CHEN YiLiang
2008-01-01
A new compressibility modification k-ε model, including shock unsteadiness effect and the previous compressibility modification of pressure dilatation and dilatational dissipation rate, was developed with a simple formulation for numerical simulation in supersonic complex turbulent flows. The shock unsteadiness effect was modeled by inhibiting turbulent kinetic energy production in the governing equations of turbulent kinetic energy and the turbulent kinetic energy dissipation rate. Sarkar's correction models were employed accounting for the dilatational compressibility effects in the new model.Two types of flows, the free supersonic mixing layers and complex supersonic flow with transverse injection were simulated with different flow conditions. Comparisons with experimental data of the free supersonic mixing layers showed that the new compressibility modification k-ε model significantly inhibited the excessive growth of turbulent kinetic energy and improved predictions. On the supersonic mixing layer flows, prediction results with the new model were in close agreement with experimental data, accurately predicting the decreasing trend of the mixing layer spreading rate with the increase of the convective Mach number. Due to the complicated flow field with flow separation, shock unsteadiness modification inhibited excessive growth of the turbulent kinetic energy in shock regions and wider shock regions are predicted, thereby significantly improving results of the flow with a strong separation forecast. The flow separation was stronger, which was the primary modification effect of the new model. Predictions accord with experimental results even in strong separation flows.
First-principles calculation of the reflectance of shock-compressed xenon
Energy Technology Data Exchange (ETDEWEB)
Norman, G. E.; Saitov, I. M., E-mail: saitovilnur@gmail.com; Stegailov, V. V. [Russian Academy of Sciences, Institute of High Temperatures (Russian Federation)
2015-05-15
Within electron density functional theory (DFT), the reflectance of radiation from shock-compressed xenon plasma is calculated. The dependence of the reflectance on the frequency of the incident radiation and on the plasma density is considered. The Fresnel formula is used. The expression for the longitudinal dielectric tensor in the long-wavelength limit is used to calculate the imaginary part of the dielectric function (DF). The real part of the DF is determined by the Kramers-Kronig transformation. The results are compared with experimental data. An approach is proposed to estimate the plasma frequency in shock-compressed xenon.
Shock and rarefaction waves in a hyperbolic model of incompressible materials
Directory of Open Access Journals (Sweden)
Tommaso Ruggeri
2013-01-01
Full Text Available The aim of the present paper is to investigate shock and rarefaction waves in a hyperbolic model of incompressible materials. To this aim, we use the so-called extended quasi-thermal-incompressible (EQTI model, recently proposed by Gouin & Ruggeri (H. Gouin, T. Ruggeri, Internat. J. Non-Linear Mech. 47 688–693 (2012. In particular, we use as constitutive equation a variant of the well-known Bousinnesq approximation in which the specific volume depends not only on the temperature but also on the pressure. The limit case of ideal incompressibility, namely when the thermal expansion coefficient and the compressibility factor vanish, is also considered.
Parallel implementation of geometrical shock dynamics for two dimensional converging shock waves
Qiu, Shi; Liu, Kuang; Eliasson, Veronica
2016-10-01
Geometrical shock dynamics (GSD) theory is an appealing method to predict the shock motion in the sense that it is more computationally efficient than solving the traditional Euler equations, especially for converging shock waves. However, to solve and optimize large scale configurations, the main bottleneck is the computational cost. Among the existing numerical GSD schemes, there is only one that has been implemented on parallel computers, with the purpose to analyze detonation waves. To extend the computational advantage of the GSD theory to more general applications such as converging shock waves, a numerical implementation using a spatial decomposition method has been coupled with a front tracking approach on parallel computers. In addition, an efficient tridiagonal system solver for massively parallel computers has been applied to resolve the most expensive function in this implementation, resulting in an efficiency of 0.93 while using 32 HPCC cores. Moreover, symmetric boundary conditions have been developed to further reduce the computational cost, achieving a speedup of 19.26 for a 12-sided polygonal converging shock.
Directory of Open Access Journals (Sweden)
AKM Zamanul Islam Bhuiyan
2013-01-01
Full Text Available Background: Renal calculi are frequent causes of ureteric colic. Extracorporeal shock wave lithotripsy is the most common treatment of these stones. It uses focused sound waves to break up stones externally. Objective: To compare the efficiency of slow and fast delivery rate of shock waves on stone fragmentation and treatment outcome in patients with renal calculi. Materials and Methods: This prospective study was done in the department of Urology, National Institute of Kidney diseases and Urology, Sher-e-Bangla Nagar, Dhaka from July 2006 to June 2007. Total 90 patients were treated using the Storz Medical Modulith ® SLX lithotripter. Patients were divided into Group A, Group B and Group C – each group having 30 subjects. Group A was selected for extracorporeal shockwave lithotripsy (ESWL by 60 shock waves per minute, Group B by 90 shock waves per minute and Group C by 120 shock waves per minute. Results: Complete clearance of stone was observed in 24 patients in Group A and 13 patients in both Group B and Group C in first session. In Group A only 3 patients needed second session but in Group B and Group C, 12 and 8 patients needed second session. In Group A only one patient needed third session but third session was required for 3 patients in Group B and 5 patients in Group C for complete clearance of stone. In Group A, subsequent sessions were performed under spinal anesthesia and in Group B under sedation and analgesia (p>0.001. Mean number of sessions for full clearance of stones in group A was 1.37 ± 0.85, in Group B was 1.8 ± 0.887 and in Group C was 2.0 ± 1.083. Significant difference was observed in term of sessions among groups (p>0.05. In first follow-up, complete clearance of stones was seen in 24 patients in Group A and 13 in both Group B and Group C. In second follow-up, 3 patients in Group A, 12 in Group B and 8 in Group C showed complete clearance of stones. It was observed that rate of stone clearance was higher in Group A
Evolution of perturbed accelerating relativistic shock waves
Palma, G; Vietri, M; Del Zanna, L
2008-01-01
We study the evolution of an accelerating hyperrelativistic shock under the presence of upstream inhomogeneities wrinkling the discontinuity surface. The investigation is conducted by means of numerical simulations using the PLUTO code for astrophysical fluid dynamics. The reliability and robustness of the code are demonstrated against well known results coming from the linear perturbation theory. We then follow the nonlinear evolution of two classes of perturbing upstream atmospheres and conclude that no lasting wrinkle can be preserved indefinitely by the flow. Finally we derive analytically a description of the geometrical effects of a turbulent upstream ambient on the discontinuity surface.
Incoherent shock waves in long-range optical turbulence
Xu, G.; Garnier, J.; Faccio, D.; Trillo, S.; Picozzi, A.
2016-10-01
Considering the nonlinear Schrödinger (NLS) equation as a representative model, we report a unified presentation of different forms of incoherent shock waves that emerge in the long-range interaction regime of a turbulent optical wave system. These incoherent singularities can develop either in the temporal domain through a highly noninstantaneous nonlinear response, or in the spatial domain through a highly nonlocal nonlinearity. In the temporal domain, genuine dispersive shock waves (DSW) develop in the spectral dynamics of the random waves, despite the fact that the causality condition inherent to the response function breaks the Hamiltonian structure of the NLS equation. Such spectral incoherent DSWs are described in detail by a family of singular integro-differential kinetic equations, e.g. Benjamin-Ono equation, which are derived from a nonequilibrium kinetic formulation based on the weak Langmuir turbulence equation. In the spatial domain, the system is shown to exhibit a large scale global collective behavior, so that it is the fluctuating field as a whole that develops a singularity, which is inherently an incoherent object made of random waves. Despite the Hamiltonian structure of the NLS equation, the regularization of such a collective incoherent shock does not require the formation of a DSW - the regularization is shown to occur by means of a different process of coherence degradation at the shock point. We show that the collective incoherent shock is responsible for an original mechanism of spontaneous nucleation of a phase-space hole in the spectrogram dynamics. The robustness of such a phase-space hole is interpreted in the light of incoherent dark soliton states, whose different exact solutions are derived in the framework of the long-range Vlasov formalism.
Bugbuster: Survivability of Living Bacteria Upon Shock Compression
Willis, M. J.; Ahrens, T. J.; Bertani, L. E.; Nash, C. Z.
2003-12-01
Survivability of bacteria during impact events has implications both for the transport of life between planets and development of organisms on Hadean Earth and other planets during the period of heavy bombardment which ended 3.5 Gyr before the present [1]. We envision that life existed within internal rock surfaces immersed in the early ocean. We performed shock recovery experiments on live E. coli bacteria to determine survival rate vs. shock pressure. Samples of 2x107 cells were suspended in ˜10-5 l of a buffer solution (TE: a 10:1 solution of Tris and EDTA), sealed into stainless steel chambers that are impacted by 1.5 mm thick flyer plates at 670-760 m s-1 using a 20 mm gun. Recovered liquid was mixed with a nutrient broth (LB: growth medium containing tryptone, yeast extract and NaCl) and spread on a Petrie dish containing agar (a polysaccharide growth medium extracted from marine algae Rhodophyceae). Recovered samples were cultured for ˜16 hours at 37° C. In addition, sample bacteria studied under an optical microscope with DAPI fluorescent stain to verify presence of bacteria in shock recovered samples. Initial and reverberated shock pressures in H2O varied from 0.2 to 2.0 and 2.4 to 14.9 GPa respectively. We modeled the bacteria cell walls with stilbene, ρ 0=1.16 g cm-3, US=2.866+1.588uP and the cell interiors as water. Upon initial loading the net strain imposed on E. coli that just caused non-survival for 10-6 s duration stress was 2.8. If this strain is characteristic of that tolerable by E. coli, we predict that shock stresses of 25 MPa, 25 kPa and 25 Pa are sustainable upon shock loading by 0.1 ms, 0.1 s and 100 s shock duration pulses. Such shock durations are induced by 2.5 m, 2.5 km and 2,500 km diameter silicate impactors. References: [1] Maher K.A. & Stevenson D.J., Nature, 331, pp.612-614, 1988
Compressive and Adaptive Millimeter-wave SAR
Mrozack, Alex; Marks, Daniel L; Richard, Jonathan; Everitt, Henry O; Brady, David J
2014-01-01
We apply adaptive sensing techniques to the problem of locating sparse metallic scatterers using high-resolution, frequency modulated continuous wave W-band RADAR. Using a single detector, a frequency stepped source, and a lateral translation stage, inverse synthetic aperture RADAR reconstruction techniques are used to search for one or two wire scatterers within a specified range, while an adaptive algorithm determined successive sampling locations. The two-dimensional location of each scatterer is thereby identified with sub-wavelength accuracy in as few as 1/4 the number of lateral steps required for a simple raster scan. The implications of applying this approach to more complex scattering geometries are explored in light of the various assumptions made.
Wang, Feng; Xu, Tao; Optical Team Collaboration
2016-10-01
Ramp-wave compression (RWC) experiment to balance the high compression pressure generation in aluminum and x-ray blanking effect in transparent window was demonstrated on Shen Guang-III prototype laser facility. A new target concept was proposed to develop a laser-driven shocks-RWC technique for studying material behavior under dynamic, high pressure conditions. As the ``little shocks'' in our experiment cannot be avoided, the effort to diminish the shock under a special level has been demonstrated with Al/Au/Al/LiF target. The highest pressure is about 500GPa after using the multilayer target design Al/Au/Al/LiF and about 1013W/cm2 laser pulse incident on the planer Al target, instantaneously affecting ablation layer located 500 μm away. As the x-ray generated by Al layer had been prevented by the Au layer, the width abrupt onset of strong absorption of an optical probe beam (λ = 532 nm) in LiF window may be the limitation for this kind if RWC experiment during the experiment time scale for 30 μm thick step. With the design laser shape and target structure of Al/Au/Al/LiF, 500GPa may be the highest pressure after balance the preheat effect and ablation efficiency for laser direct-drive experiment.
Molecular Cloud Formation Behind Shock Waves
Bergin, E A; Raymond, J C; Ballesteros-Paredes, J
2004-01-01
We examine the formation of molecular gas behind shocks in atomic gas using a chemical/dynamical model, particular emphasis is given to constraints the chemistry places on the dynamical evolution. The most important result of this study is to stress the importance of shielding the molecular gas from the destructive effects of UV radiation. For shock ram pressures comparable to or exceeding typical local ISM pressures, self-shielding controls the formation time of H2 but CO formation requires shielding of the interstellar radiation field by dust grains. We find that the molecular hydrogen fractional abundance can become significant well before CO forms. The timescale for (CO) molecular cloud formation is not set by H2 formation, but rather by the timescale for accumulating a sufficient column density or extinction, A_V > 0.7. The local ratio of atomic to molecular gas (4:1), coupled with short estimates for cloud lifetimes (3-5 Myr), suggests that the timescales for accumulating molecular clouds from atomic ma...
Temperature Measurements of Condensed Gaseous Hydrogen-Helium Mixtures under Multi-Shock Compression
Institute of Scientific and Technical Information of China (English)
GU Yun-Jun; CHEN Qi-Feng; CAI Ling-Cang; CHEN Zhi-Yun; ZHENG Jun
2009-01-01
Temperatures of multi-shock compressed gaseous hydrogen-helium mixtures with a mole component H2 :He=l:1.21 up to 7100 K are measured at pressures up to 10 G Pa by means of an instantaneous optical pyrometer. The gas mixtures are shocked from environmental temperature at the initial pressure 20 MPa. The measured second-shock temperature differs from the predictions of the non-dissociation modei by up to 40% and is in good agreement with that of the dissociation model, indicating that a considerable amount of molecular dissociation occurs.
Ye, Y. X.; Xuan, T.; Lian, Z. C.; Hua, X. J.; Fu, Y. H.
2015-12-01
In this paper, we propose one improved method to fabricate micro embossments on the metal surface through laser shock processing. One mapping layer with holes must be actively designed and produced on the metal surface, with which, laser-induced shock wave will be spatially modulated. Laser shock experiments were conducted. Then the surface morphologies, and metallographic microstructures were characterized. The forming process of the micro embossments was simulated with ABAQUS. The results show that under the spatially modulated shock loading, the surface material flows from the high-pressure zone to the low-pressure zone, which is responsible for forming the micro embossments. The shapes, sizes and arrangements of the micro embossments conform to those of the mapping holes. The hardnesses on the entire laser-shocked zones improve remarkably due to the plastic deformation at a high strain rate. The influences of the laser energy and mask pattern on the embossed structures are presented. Within certain limits, increasing laser energy is beneficial for making the embossment more convex. However, further excessively increasing the laser energy, the embossment will exhibit the height saturation due to the pressure rise within the closed mapping hole. The transverse sizes of the mapping holes also can influence the embossment heights significantly. Process parameters need to be chosen carefully to suppress the severe adiabatic compression of the gas within the mapping holes, and then avoid weakening the mechanical properties of the micro embossments. This method has a potential application in manufacturing protruded structures on the metal surface.
Plasmonic shock waves and solitons in a nanoring
Koshelev, K. L.; Kachorovskii, V. Yu.; Titov, M.; Shur, M. S.
2017-01-01
We apply the hydrodynamic theory of electron liquid to demonstrate that a circularly polarized radiation induces the diamagnetic, helicity-sensitive dc current in a ballistic nanoring. This current is dramatically enhanced in the vicinity of plasmonic resonances. The resulting magnetic moment of the nanoring represents a giant increase of the inverse Faraday effect. With increasing radiation intensity, linear plasmonic excitations evolve into the strongly nonlinear plasma shock waves. These excitations produce a series of the well-resolved peaks at the THz frequencies. We demonstrate that the plasmonic wave dispersion transforms the shock waves into solitons. The predicted effects should enable multiple applications in a wide frequency range (from the microwave to terahertz band) using optically controlled ultralow-loss electric, photonic, and magnetic devices.
Linear problem of the shock wave disturbance in a non-classical case
Semenko, Evgeny V.
2017-06-01
A linear problem of the shock wave disturbance for a special (non-classical) case, where both pre-shock and post-shock flows are subsonic, is considered. The phase transition for the van der Waals gas is an example of this problem. Isentropic solutions are constructed. In addition, the stability of the problem is investigated and the known result is approved: the only neutral stability case occurs here. A strictly algebraic representation of the solution in the plane of the Fourier transform is obtained. This representation allows the solution to be studied both analytically and numerically. In this way, any solution can be decomposed into a sum of acoustic and vorticity waves and into a sum of initial (generated by initial perturbations), transmitted (through the shock) and reflected (from the shock) waves. Thus, the wave incidence/refraction/reflection is investigated. A principal difference of the refraction/reflection from the classical case is found, namely, the waves generated by initial pre-shock perturbations not only pass through the shock (i.e., generate post-shock transmitted waves) but also are reflected from it (i.e., generate pre-shock reflected waves). In turn, the waves generated by the initial post-shock perturbation are not only reflected from the shock (generate post-shock reflected waves) but also pass through it (generate pre-shock transmitted waves).
Garilevich, B A; Andrianov, Yu V; Olefir, Yu V; Zubkov, A D; Rotov, A E
2006-01-01
The experimental studies the synchronous action of electric field microsecond range with amplitude within the range of 1-7 kV/sm and shock waves with pressure before 100 MPa on cells membrane permeability of the mouse's ascitic tumors in vitro have shown the intensification the efficiency of the forming the irreversible pores under synchronous action. Thereby, enabling the electric field in the compression phase of shock wave pulse which can essentially reduce the electric field intensity required for breakdown cell membrane. In usual condition at amplitude of electric field, specified above, electric breakdown membrane carries basically reversible nature. At the same time in the pressure field tension phase of shock-wave pulse reversible pores, created by electric field, can grow before sizes, under which wholeness membrane is not restored. Under simultaneous action on cellular suspension the shock wave and electric field with moderate intensity cells survival is reduced in 5 once in contrast with occuring at different time's action, and in 10 once in contrast with checking. The most sensitive to influence by under study fields are cells in phase of the syntheses DNA, preparation to fission and in phase of the mitosis. Thereby, continuation of the studies on use synchronous action shock waves and pulsed electric fields in complex treatment of the tumors introduces perspective.
Numerical solution of shock and ramp compression for general material properties
Energy Technology Data Exchange (ETDEWEB)
Swift, D C
2009-01-28
A general formulation was developed to represent material models for applications in dynamic loading. Numerical methods were devised to calculate response to shock and ramp compression, and ramp decompression, generalizing previous solutions for scalar equations of state. The numerical methods were found to be flexible and robust, and matched analytic results to a high accuracy. The basic ramp and shock solution methods were coupled to solve for composite deformation paths, such as shock-induced impacts, and shock interactions with a planar interface between different materials. These calculations capture much of the physics of typical material dynamics experiments, without requiring spatially-resolving simulations. Example calculations were made of loading histories in metals, illustrating the effects of plastic work on the temperatures induced in quasi-isentropic and shock-release experiments, and the effect of a phase transition.
Simulations of Shock Wave Interaction with a Particle Cloud
Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'
2016-11-01
Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.
Study of a tissue protecting system for clinical applications of underwater shock wave
Hosseini, S. H. R.; Takayama, Kazuyoshi
2005-04-01
Applications of underwater shock waves have been extended to various clinical therapies during the past two decades. Besides the successful contribution of extracorporeal shock waves, tissue damage especially to the vasculature has been reported. These side effects are believed to be due to the shock wave-tissue interaction and cavitation. In the present research in order to minimize shock wave induced damage a shock wave attenuating system was designed and studied. The attenuating system consisted of thin gas packed layers immersed in water, which could attenuate more than 90% of shock waves overpressure. Silver azide micro-pellets (10 mg) were ignited by irradiation of a pulsed Nd:YAG laser to generate shock waves. Pressure histories were measured with fiber optic probe and PVDF needle hydrophones. The strength of incident shock waves was changed by adjusting the distance between the pellets and the layers. The whole sequences of the shock wave attenuation due to the interaction of shock waves with the dissipating layers were quantitatively visualized by double exposure holographic interferometry and time resolved high speed photography. The attenuated shock had overpressure less than threshold damage of brain tissue evaluated from histological examination of the rat brain treated by shock waves.
Experimental research on dust lifting by propagating shock wave
Żydak, P.; Oleszczak, P.; Klemens, R.
2017-03-01
The aim of the presented work was to study the dust lifting process from a layer of dust behind a propagating shock wave. The experiments were conducted with the use of a shock tube and a specially constructed, five-channel laser optical device enabling measurements at five positions located in one vertical plane along the height of the tube. The system enabled measurements of the delay in lifting up of the dust from the layer, and the vertical velocity of the dust cloud was calculated from the dust concentration measurements. The research was carried out for various initial conditions and for three fractions of black coal dust. In the presented tests, three shock wave velocities: 450, 490 and 518 m/s and three dust layer thicknesses, equal to 1.0, 1.5 and 2.0 mm, were taken into consideration. On the grounds of the obtained experimental results, it was assumed that the vertical component of the lifted dust velocity is a function of the dust particle diameter, the velocity of the air flow in the channel, the layer thickness and the dust bulk density. It appeared, however, that lifting up of the dust from the thick layers, thicker than 1 mm, is a more complex process than that from thin layers and still requires further research. A possible explanation is that the shock wave action upon the thick layer results in its aggregation in the first stage of the dispersing process, which suppresses the dust lifting process.
Institute of Scientific and Technical Information of China (English)
ZHANG Li; GONG Zi-Zheng
2006-01-01
@@ We report new shock-compression data for polycrystalline (Mg, Fe)O up to 130 Gpa shock pressures corresponding to Earth's lowermost mantle conditions. Our data together with the existing shock-wave data of (Mg,Fe)O and its end-members MgO and FeO reveal that the Hugoniot curves of (Mg, Fe)O does not change with varying FeO content for their B1 phase (NaCl-structure) in the pressure-relative-volume plane. The evidence of the volume change within 3% at around 120 Gpa along the Hugoniot of (Mg0.6, Fe0.4)O is consistent with a structural transition from B1 phase (NaCl cubic) to B8 phase (NiAs-type hexagonal). Such a structural transition of (Mg, Fe)O, if indeed occurs, may in part contribute to the scattering of seismic waves and change in velocity gradient found in the lowermost mantle.
Simulation and Experimental Validation of Hypersonic Shock Wave Interaction
Directory of Open Access Journals (Sweden)
Li Jing
2013-12-01
Full Text Available The present paper examines the relevance of grid and simulation accuracy of hypersonic CFD in terms of hypersonic sharp double-cone flow. The flow grid and normal grid each adopted 250×100, 500×100, 1000×100, 500×200, 1000×200, 1000×400 and so on grids. When the normal grid was 100, the wall pressure and heat flux distribution obtained from flow grid 500 and 1000 were consistent, indicating that the solution of flow grid convergence was obtained. However, some difference was observed when the separation zone was compared with the experimental data. In increasing the normal grid number and adopting grid 500×200, the position of the separation point, wall pressure and heat flux peak was shown to be consistent with the experiment. When the grid was further encrypted, the calculation using grid 1000×200 and 1000×400 was equal to that using grid 500×200. The simulation of hypersonic sharp double-cone flow also showed that when the separation zone of the simulation was less than the experimental measurement, the wall pressure and heat flux peak moved forward. This is because the backwardness of the intersection of the separation shock and the first shock resulted in the forwardness of the intersection of the first shock and the second shock after interference, making the work region of the induction shock and boundary layer move forward. The key challenge in achieving the correct simulation of the hypersonic sharp double-cone flow is explained as follows: the algorithm can not only capture shock wave strength correctly and give the adverse pressure gradient formed by the interfering shock wave near the wall accurately. It can also prevent the numerical dissipation of the algorithm from affecting the simulation accuracy of the viscous boundary layer to ensure the correct prediction of the size of the separation zone.
Cathignol, D; Mestas, J L; Gomez, F; Lenz, P
1991-01-01
In an electrohydraulic generator, two underwater metal electrodes are connected with a capacitor charged to a high voltage. When the circuit is switched on, a plasma is generated reaching temperatures of thousands of K, resulting in a compressive pressure pulse. The formation of the plasma is a nonreproducible phenomenon inducing great variations of the pressure pulse. When the electrodes are immersed in an electrolyte instead of degassed water, the conditions of electrical discharge are dramatically modified. The latency time and the amplitude of the oscillations of the discharge current decrease as the conductivity of the electrolyte increases. For a conductivity of 7 omega.cm, there is no latency, and the critically damped discharge is achieved. The expanding pressure wave is increased by 10%, and the mean peak pressure value over 120 shocks at the second focus after focalization is increased by 50%. The relative standard deviation of the pressure value at the second focus is only 5%, while it is about 30% in ordinary water. The fragmentation efficiency is considerably increased because total fragmentation is obtained in 220 shocks instead of 450 shocks in ordinary water when standard stones are used, and in 131 shocks instead of 304 shocks when gallstones are used. Last, we show that the wear of the electrodes is reduced by a factor 8 when electrolyte is used. The improvement is supposed to have two causes: First, the energy is delivered into the medium in a shorter time, and, second, the center of the shock wave is always located at the same place. The decreased wear should make it possible to treat a much greater number of patients without changing electrodes, and the enhancement of the pressure should increase the efficiency of the fragmentation of the gallstones without aggravating the patient's pain.
Resistant tennis elbow: shock-wave therapy versus percutaneous tenotomy
2007-01-01
Fifty-six patients who suffered from chronic persistent tennis elbow of more than six months duration were randomly assigned to two active treatment groups. Group 1 (n = 29) received high-energy extracorporeal shock wave treatment (ESWT; 1,500 shocks) at 18 kV (0.22 mJ/mm2) without local anaesthesia; group 2 (n = 27) underwent percutaneous tenotomy of the common extensor origin. Both groups achieved improvement from the base line at three weeks, six weeks, 12 weeks and 12 months post-interven...
'Thunder' - Shock waves in pre-biological organic synthesis.
Bar-Nun, A.; Tauber, M. E.
1972-01-01
Theoretical study of the gasdynamics and chemistry of lightning-produced shock waves in a postulated primordial reducing atmosphere. It is shown that the conditions are similar to those encountered in a previously performed shock-tube experiment which resulted in 36% of the ammonia in the original mixture being converted into amino acids. The calculations give the (very large) energy rate of about 0.4 cal/sq cm/yr available for amino acid production, supporting previous hypotheses that 'thunder' could have been responsible for efficient large-scale production of organic molecules serving as precursors of life.
'Thunder' - Shock waves in pre-biological organic synthesis.
Bar-Nun, A.; Tauber, M. E.
1972-01-01
Theoretical study of the gasdynamics and chemistry of lightning-produced shock waves in a postulated primordial reducing atmosphere. It is shown that the conditions are similar to those encountered in a previously performed shock-tube experiment which resulted in 36% of the ammonia in the original mixture being converted into amino acids. The calculations give the (very large) energy rate of about 0.4 cal/sq cm/yr available for amino acid production, supporting previous hypotheses that 'thunder' could have been responsible for efficient large-scale production of organic molecules serving as precursors of life.
Shock wave propagation in cementitious materials at micro/meso scales
Nelms, M.; Rajendran, A. M.; Hodo, W.; Mohan, R.
2017-01-01
Shock wave response of heterogeneous materials like cement and concrete is greatly influenced by the constituents and their statistical distributions. The microstructure of cement is complex due to the presence of unhydrated water, nano/micro pores, and other hydrated and unhydrated products, such as the Calcium Silicate Hydrate (C-S-H) gel, tri-calcium silicate, di-calcium silicate etc. The evolved microstructures at different degrees of hydration are captured using a suite of software that explicitly modeled the chemical compositions of various constituents and their byproducts for a water/cement ratio of 0.4. An evolved microstructure of 50×50×50 micron3 volume of Portland cement product was modeled as a representative volume element (RVE) through a general purpose finite element code, ABAQUS®. The heterogeneity induced shock decay phenomenon under compression in this 50-micron size cube due to an OFHC Copper flyer plate impact is analyzed.
Dynamic Response of Stiffened Plates with Holes Subjected to Shock Waves and Fragments
Institute of Scientific and Technical Information of China (English)
刘彦; 张庆明; 黄风雷
2004-01-01
The power field of shock waves and fragments is analyzed and set up, and the damage modes of stiffened plates are put forward. According to the structural characters of the stiffened plates investigated and the properties of the shock waves and fragments, the experiments on the shock waves acting on the stiffened plates (penetrated and non-penetrated by fragments) are mainly conducted. The dynamic response rules of stiffened plates with holes under shock waves and fragments loading are obtained. The results show that the penetration of fragments into stiffened plates hardly affects their deformation produced by shock waves.
Second sound shock waves and critical velocities in liquid helium 2. Ph.D. Thesis
Turner, T. N.
1979-01-01
Large amplitude second-sound shock waves were generated and the experimental results compared to the theory of nonlinear second-sound. The structure and thickness of second-sound shock fronts are calculated and compared to experimental data. Theoretically it is shown that at T = 1.88 K, where the nonlinear wave steepening vanishes, the thickness of a very weak shock must diverge. In a region near this temperature, a finite-amplitude shock pulse evolves into an unusual double-shock configuration consisting of a front steepened, temperature raising shock followed by a temperature lowering shock. Double-shocks are experimentally verified. It is experimentally shown that very large second-sound shock waves initiate a breakdown in the superfluidity of helium 2, which is dramatically displayed as a limit to the maximum attainable shock strength. The value of the maximum shock-induced relative velocity represents a significant lower bound to the intrinsic critical velocity of helium 2.
Expanding pseudoaneurysm compressing the coronary arteries and causing cardiogenic shock.
Maliske, Seth M; Alshawabkeh, Laith; Schouweiler, Katie; Sigurdsson, Gardar
2015-01-01
A 37-year-old man who recently underwent aortic valve replacement after endocarditis presented with cardiogenic shock. A large expansile pseudoaneurysm was subsequently discovered using multiple imaging modalities. Although transesophageal echocardiography is important in diagnosing valve endocarditis, coronary CT angiography of prosthetic valves is feasible and image quality is good. In this case, coronary CT angiography allowed for better understanding of transesophageal echocardiography images and earlier diagnosis of coronary involvement as cause for left ventricular dysfunction.
Olsen, J.A.; Brunborg, C.; Steinberg, M.; Persse, D.; Sterz, F.; Lozano, M., Jr.; Westfall, M.; Travis, D.T.; Lerner, E.B.; Brouwer, M.A.; Wik, L.
2015-01-01
BACKGROUND: Shorter manual chest compression pauses prior to defibrillation attempts is reported to improve the defibrillation success rate. Mechanical load-distributing band (LDB-) CPR enables shocks without compression pause. We studied pre-shock pause and termination of ventricular
Shock-wave processing of C60 in hydrogen
Biennier, L.; Jayaram, V.; Suas-David, N.; Georges, R.; Singh, M. Kiran; Arunan, E.; Kassi, S.; Dartois, E.; Reddy, K. P. J.
2017-02-01
Context. Interstellar carbonaceous particles and molecules are subject to intense shocks in astrophysical environments. Shocks induce a rapid raise in temperature and density which strongly affects the chemical and physical properties of both the gas and solid phases of the interstellar matter. Aims: The shock-induced thermal processing of C60 particles in hydrogen has been investigated in the laboratory under controlled conditions up to 3900 K with the help of a material shock-tube. Methods: The solid residues generated by the exposure of a C60/H2 mixture to a millisecond shock wave were collected and analyzed using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman micro-spectroscopy, and infrared micro-spectroscopy. The gaseous products were analyzed by Gas Chromatography and Cavity Ring Down Spectroscopy. Results: Volatile end-products appear above reflected shock gas temperatures of 2540 K and reveal the substantial presence of small molecules with one or two C atoms. These observations confirm the role played by the C2 radical as a major product of C60 fragmentation and less expectedly highlight the existence of a single C atom loss channel. Molecules with more than two carbon atoms are not observed in the post-shock gas. The analysis of the solid component shows that C60 particles are rapidly converted into amorphous carbon with a number of aliphatic bridges. Conclusions: The absence of aromatic CH stretches on the IR spectra indicates that H atoms do not link directly to aromatic cycles. The fast thermal processing of C60 in H2 over the 800-3400 K temperature range leads to amorphous carbon. The analysis hints at a collapse of the cage with the formation of a few aliphatic connections. A low amount of hydrogen is incorporated into the carbon material. This work extends the range of applications of shock tubes to studies of astrophysical interest.
Wave motions in unbounded poroelastic solids infused with compressible fluids
Quiligotti, S; dell'Isola, F
2010-01-01
Looking at rational solid-fluid mixture theories in the context of their biomechanical perspectives, this work aims at proposing a two-scale constitutive theory of a poroelastic solid infused with an inviscid compressible fluid. The propagation of steady-state harmonic plane waves in unbounded media is investigated in both cases of unconstrained solid-fluid mixtures and fluid-saturated poroelastic solids. Relevant effects on the resulting characteristic speed of longitudinal and transverse elastic waves, due to the constitutive parameters introduced, are finally highlighted and discussed.
Nonlinear evolution of oblique waves on compressible shear layers
Goldstein, M. E.; Leib, S. J.
1989-01-01
The effects of critical-layer nonlinearity on spatially growing oblique instability waves on compressible shear layers between two parallel streams are considered. The analysis shows that mean temperature nonuniformities cause nonlinearity to occur at much smaller amplitudes than it does when the flow is isothermal. The nonlinear instability wave growth rate effects are described by an integrodifferential equation which bears some resemblance to the Landau equation, in that it involves a cubic-type nonlinearity. The numerical solutions to this equation are worked out and discussed in some detail. Inviscid solutions always end in a singularity at a finite downstream distance, but viscosity can eliminate this singularity for certain parameter ranges.
Compressive spectral method for the simulation of the water waves
Bayindir, Cihan
2015-01-01
In this paper an approach for decreasing the computational effort required for the spectral simulations of the water waves is introduced. Signals with majority of the components zero, are known as the sparse signals. Like majority of the signals in the nature it can be realized that water waves are sparse either in time or in the frequency domain. Using the sparsity property of the water waves in the time or in the frequency domain, the compressive sampling algorithm can be used as a tool for improving the performance of the spectral simulation of the water waves. The methodology offered in this paper depends on the idea of using a smaller number of spectral components compared to the classical spectral method with a high number of components. After performing the time integration with a smaller number of spectral components and using the compressive sampling technique, it is shown that the water wave field can be reconstructed with a significantly better efficiency compared to the classical spectral method w...
Exploring nonlocal observables in shock wave collisions
Ecker, Christian; Stanzer, Philipp; Stricker, Stefan A; van der Schee, Wilke
2016-01-01
We study the time evolution of 2-point functions and entanglement entropy in strongly anisotropic, inhomogeneous and time-dependent N=4 super Yang-Mills theory in the large N and large 't Hooft coupling limit using AdS/CFT. On the gravity side this amounts to calculating the length of geodesics and area of extremal surfaces in the dynamical background of two colliding gravitational shockwaves, which we do numerically. We discriminate between three classes of initial conditions corresponding to wide, intermediate and narrow shocks, and show that they exhibit different phenomenology with respect to the nonlocal observables that we determine. Our results permit to use (holographic) entanglement entropy as an order parameter to distinguish between the two phases of the cross-over from the transparency to the full-stopping scenario in dynamical Yang-Mills plasma formation, which is frequently used as a toy model for heavy ion collisions. The time evolution of entanglement entropy allows to discern four regimes: hi...
Ciolek, G E; Mouschovias, T C
2004-01-01
This is the second in a series of papers on the effects of dust on multifluid, MHD shock waves in weakly ionized molecular gas. We investigate the influence of dust on the critical shock speed, v_crit, above which C shocks cease to exist. Chernoff showed that v_crit cannot exceed the grain magnetosound speed, v_gms, if dust grains are dynamically well coupled to the magnetic field. We present numerical simulations of steady shocks where the grains may be well- or poorly coupled to the field. We use a time-dependent, multifluid MHD code that models the plasma as a system of interacting fluids: neutral particles, ions, electrons, and various ``dust fluids'' comprised of grains with different sizes and charges. Our simulations include grain inertia and grain charge fluctuations but to highlight the essential physics we assume adiabatic flow, single-size grains, and neglect the effects of chemistry. We show that the existence of a phase speed v_phi does not necessarily mean that C shocks will form for all shock s...
EKSTRAKORPOREAL ŞOK DALGA TEDAVİSİ/EXTRACORPOREAL SHOCK WAVE THERAPY
2014-01-01
Extracorporeal shock wave therapyExtracorporeal shock wave therapy (ESWT) is a therapy method which is applied acoustic pressure to thebody. Shock wave was first used in urology for renal stones in 1980s. Research has been started in orthopedicsin 1990s. Today it has been used for most of the diagnosis in different clinics. In this review it has summarizedthat the action mechanism, indications, contraindications, complications and current studies in the literatureabout extracorporeal shock wa...
Ion streaming instabilities with application to collisionless shock wave structure
Golden, K. I.; Linson, L. M.; Mani, S. A.
1973-01-01
The electromagnetic dispersion relation for two counterstreaming ion beams of arbitrary relative strength flowing parallel to a dc magnetic field is derived. The beams flow through a stationary electron background and the dispersion relation in the fluid approximation is unaffected by the electron thermal pressure. Magnetic effects on the ion beams are included, but the electrons are treated as a magnetized fluid. The dispersion relation is solved with a zero net current condition applied and the regions of instability in the k-U space (U is the relative velocity between the two ion beams) are presented. These results are extensions of Kovner's analysis for weak beams. The parameters are then chosen to be applicable for parallel shocks. It is found that unstable waves with zero group velocity in the shock frame can exist near the leading edge of the shock for upstream Alfven Mach numbers greater than 5.5.
MONOTONIC DERIVATIVE CORRECTION FOR CALCULATION OF SUPERSONIC FLOWS WITH SHOCK WAVES
Directory of Open Access Journals (Sweden)
P. V. Bulat
2015-07-01
Full Text Available Subject of Research. Numerical solution methods of gas dynamics problems based on exact and approximate solution of Riemann problem are considered. We have developed an approach to the solution of Euler equations describing flows of inviscid compressible gas based on finite volume method and finite difference schemes of various order of accuracy. Godunov scheme, Kolgan scheme, Roe scheme, Harten scheme and Chakravarthy-Osher scheme are used in calculations (order of accuracy of finite difference schemes varies from 1st to 3rd. Comparison of accuracy and efficiency of various finite difference schemes is demonstrated on the calculation example of inviscid compressible gas flow in Laval nozzle in the case of continuous acceleration of flow in the nozzle and in the case of nozzle shock wave presence. Conclusions about accuracy of various finite difference schemes and time required for calculations are made. Main Results. Comparative analysis of difference schemes for Euler equations integration has been carried out. These schemes are based on accurate and approximate solution for the problem of an arbitrary discontinuity breakdown. Calculation results show that monotonic derivative correction provides numerical solution uniformity in the breakdown neighbourhood. From the one hand, it prevents formation of new points of extremum, providing the monotonicity property, but from the other hand, causes smoothing of existing minimums and maximums and accuracy loss. Practical Relevance. Developed numerical calculation method gives the possibility to perform high accuracy calculations of flows with strong non-stationary shock and detonation waves. At the same time, there are no non-physical solution oscillations on the shock wave front.
Optical dispersive shock waves in defocusing colloidal media
An, X.; Marchant, T. R.; Smyth, N. F.
2017-03-01
The propagation of an optical dispersive shock wave, generated from a jump discontinuity in light intensity, in a defocusing colloidal medium is analysed. The equations governing nonlinear light propagation in a colloidal medium consist of a nonlinear Schrödinger equation for the beam and an algebraic equation for the medium response. In the limit of low light intensity, these equations reduce to a perturbed higher order nonlinear Schrödinger equation. Solutions for the leading and trailing edges of the colloidal dispersive shock wave are found using modulation theory. This is done for both the perturbed nonlinear Schrödinger equation and the full colloid equations for arbitrary light intensity. These results are compared with numerical solutions of the colloid equations.
Material measurement method based on femtosecond laser plasma shock wave
Zhong, Dong; Li, Zhongming
2017-03-01
The acoustic emission signal of laser plasma shock wave, which comes into being when femtosecond laser ablates pure Cu, Fe, and Al target material, has been detected by using the fiber Fabry-Perot (F-P) acoustic emission sensing probe. The spectrum characters of the acoustic emission signals for three kinds of materials have been analyzed and studied by using Fourier transform. The results show that the frequencies of the acoustic emission signals detected from the three kinds of materials are different. Meanwhile, the frequencies are almost identical for the same materials under different ablation energies and detection ranges. Certainly, the amplitudes of the spectral character of the three materials show a fixed pattern. The experimental results and methods suggest a potential application of the plasma shock wave on-line measurement based on the femtosecond laser ablating target by using the fiber F-P acoustic emission sensor probe.
Renal pelvic stones: choosing shock wave lithotripsy or percutaneous nephrolithotomy
Directory of Open Access Journals (Sweden)
Robert Marcovich
2003-06-01
Full Text Available Introduction of minimally invasive techniques has revolutionized the surgical management of renal calculi. Extracorporeal shock wave lithotripsy and percutaneous nephrolithotomy are now both well-established procedures. Each modality has advantages and disadvantages, and the application of each should be based on well-defined factors. These variables include stone factors such as number, size, and composition; factors related to the stone's environment, including the stone's location, spatial anatomy of the renal collecting system, presence of hydronephrosis, and other anatomic variables, such as the presence of calyceal diverticula and renal anomalies; and clinical or patient factors like morbid obesity, the presence of a solitary kidney, and renal insufficiency. The morbidity of each procedure in relation to its efficacy should be taken in to account. This article will review current knowledge and suggest an algorithm for the rational management of renal calculi with shock wave lithotripsy and percutaneous nephrolithotomy.
Shock Wave Attenuation Using Foam Obstacles: Does Geometry Matter?
Directory of Open Access Journals (Sweden)
Hongjoo Jeon
2015-06-01
Full Text Available A shock wave impact study on open and closed cell foam obstacles was completed to assess attenuation effects with respect to different front face geometries of the foam obstacles. Five different types of geometries were investigated, while keeping the mass of the foam obstacle constant. The front face, i.e., the side where the incident shock wave impacts, were cut in geometries with one, two, three or four convergent shapes, and the results were compared to a foam block with a flat front face. Results were obtained by pressure sensors located upstream and downstream of the foam obstacle, in addition to high-speed schlieren photography. Results from the experiments show no significant difference between the five geometries, nor the two types of foam.
Clusters of Galaxies Shock Waves and Cosmic Rays
Ryu, D; Ryu, Dongsu; Kang, Hyesung
2002-01-01
Recent observations of galaxy clusters in radio and X-ray indicate that cosmic rays and magnetic fields may be energetically important in the intracluster medium. According to the estimates based on theses observational studies, the combined pressure of these two components of the intracluster medium may range between $10% \\sim 100 %$ of gas pressure, although their total energy is probably time dependent. Hence, these non-thermal components may have influenced the formation and evolution of cosmic structures, and may provide unique and vital diagnostic information through various radiations emitted via their interactions with surrounding matter and cosmic background photons. We suggest that shock waves associated with cosmic structures, along with individual sources such as active galactic nuclei and radio galaxies, supply the cosmic rays and magnetic fields to the intracluster medium and to surrounding large scale structures. In order to study 1) the properties of cosmic shock waves emerging during the larg...
Simulation and Analysis of Converging Shock Wave Test Problems
Energy Technology Data Exchange (ETDEWEB)
Ramsey, Scott D. [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory
2012-06-21
Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the original problem, and minimally straining the general credibility of associated analysis and conclusions.
Shock-Wave Consolidation of Nanostructured Bismuth Telluride Powders
Beck, Jan; Alvarado, Manuel; Nemir, David; Nowell, Mathew; Murr, Lawrence; Prasad, Narasimha
2012-06-01
Nanostructured thermoelectric powders can be produced using a variety of techniques. However, it is very challenging to build a bulk material from these nanopowders without losing the nanostructure. In the present work, nanostructured powders of the bismuth telluride alloy system are obtained in kilogram quantities via a gas atomization process. These powders are characterized using a variety of methods including scanning electron microscopy, transition electron microscopy, and x-ray diffraction analysis. Then the powders are consolidated into a dense bulk material using a shock-wave consolidation technique whereby a nanopowder-containing tube is surrounded by explosives and then detonated. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth of other techniques. We describe the test setup and consolidation results.
Extracorporeal shock wave therapy in periodontics: A new paradigm.
Venkatesh Prabhuji, Munivenkatappa Lakshmaiah; Khaleelahmed, Shaeesta; Vasudevalu, Sujatha; Vinodhini, K
2014-05-01
The quest for exploring new frontiers in the field of medical science for efficient and improved treatment modalities has always been on a rise. Extracorporeal shock wave therapy (ESWT) has been enormously used in medical practice, principally, for the management of urolithiasis, cholelithiasis and also in various orthopedic and musculoskeletal disorders. The efficacy of ESWT in the stimulation of osteoblasts, fibroblasts, induction of neovascularization and increased expression of bone morphogenic proteins has been well documented in the literature. However, dentistry is no exception to this trend. The present article enlightens the various applications of ESWT in the field of dentistry and explores its prospective applications in the field of periodontics, and the possibility of incorporating the beneficial properties of shock waves in improving the treatment outcome.
Extracorporeal shock wave therapy in periodontics: A new paradigm
Directory of Open Access Journals (Sweden)
Munivenkatappa Lakshmaiah Venkatesh Prabhuji
2014-01-01
Full Text Available The quest for exploring new frontiers in the field of medical science for efficient and improved treatment modalities has always been on a rise. Extracorporeal shock wave therapy (ESWT has been enormously used in medical practice, principally, for the management of urolithiasis, cholelithiasis and also in various orthopedic and musculoskeletal disorders. The efficacy of ESWT in the stimulation of osteoblasts, fibroblasts, induction of neovascularization and increased expression of bone morphogenic proteins has been well documented in the literature. However, dentistry is no exception to this trend. The present article enlightens the various applications of ESWT in the field of dentistry and explores its prospective applications in the field of periodontics, and the possibility of incorporating the beneficial properties of shock waves in improving the treatment outcome.
Dark solitons, dispersive shock waves, and transverse instabilities
Hoefer, M A
2011-01-01
The nature of transverse instabilities to dark solitons and dispersive shock waves for the (2+1)-dimensional defocusing nonlinear Schrodinger equation / Gross-Pitaevskii (NLS / GP) equation is considered. Special attention is given to the small (shallow) amplitude regime, which limits to the Kadomtsev-Petviashvili (KP) equation. We study analytically and numerically the eigenvalues of the linearized NLS / GP equation. The dispersion relation for shallow solitons is obtained asymptotically beyond the KP limit. This yields 1) the maximum growth rate and associated wavenumber of unstable perturbations; and 2) the separatrix between convective and absolute instabilities. The latter result is used to study the transition between convective and absolute instabilities of oblique dispersive shock waves (DSWs). Stationary and nonstationary oblique DSWs are constructed analytically and investigated numerically by direct simulations of the NLS / GP equation. The instability properties of oblique DSWs are found to be dir...
Primordial gas cooling behind shock waves in merging halos
Vasiliev, E O; Shchekinov, Yu.A.
2006-01-01
We investigate thermal regime of the baryons behind shock waves arising in the process of virialization of dark matter halos. We find a fraction of the shocked gas cooled by radiation of HD molecules down to the temperature of the cosmic microwave background (CMB): this fraction increases sharply from about $f_{\\rm c}\\sim 10^{-3}$ for dark halos of $M=5\\times 10^7\\msun$ to $\\sim 0.1$ for halos with $M=10^8\\msun$ at $z=10$. We show, however, that further increase of the mass does not lead to a significant growth of $f_{\\rm c}$ -- the assymptotic value for $M\\gg 10^8\\msun$ is of 0.2. We estimate star formation rate associated with such shock waves, and show that it can be a small but not negligible fraction of the star formation connected with cooling by HI and H$_2$. We argue that extremely metal-poor low-mass stars in the Milky Way may have been formed from primordial gas behind such shocks.
On the propagation of sound waves in a stellar wind traversed by periodic strong shocks
Pijpers, F. P.
1994-01-01
It has been claimed that in stellar winds traversed by strong shocks the mechanism for driving the wind by sound wave pressure cannot operate because sound waves cannot propagate past the shocks. It is shown here that sound waves can propagate through shocks in one direction and that this is a sufficient condition for the sound wave pressure mechanism to work. A strong shock amplifies a sound wave passing through it and can drag the sound wave away from the star. It is immaterial for the soun...
Computational study of shock waves propagating through air-plastic-water interfaces
Del Razo, Mauricio J
2015-01-01
The following study is motivated by experimental studies in traumatic brain injury (TBI). Recent research has demonstrated that low intensity non-impact blast wave exposure frequently leads to mild traumatic brain injury (mTBI); however, the mechanisms connecting the blast waves and the mTBI remain unclear. Collaborators at the Seattle VA Hospital are doing experiments to understand how blast waves can produce mTBI. In order to gain insight that is hard to obtain by experimental means, we have developed conservative finite volume methods for interface-shock wave interaction to simulate these experiments. A 1D model of their experimental setup has been implemented using Euler equations for compressible fluids. These equations are coupled with a Tammann equation of state (EOS) that allows us to model compressible gas along with almost incompressible fluids or elastic solids. A hybrid HLLC-exact Eulerian-Lagrangian Riemann solver for Tammann EOS with a jump in the parameters has been developed. The model has sho...
Simulation of hypersonic shock wave - laminar boundary layer interactions
Kianvashrad, N.; Knight, D.
2017-06-01
The capability of the Navier-Stokes equations with a perfect gas model for simulation of hypersonic shock wave - laminar boundary layer interactions is assessed. The configuration is a hollow cylinder flare. The experimental data were obtained by Calspan-University of Buffalo (CUBRC) for total enthalpies ranging from 5.07 to 21.85 MJ/kg. Comparison of the computed and experimental surface pressure and heat transfer is performed and the computed §ow¦eld structure is analyzed.
Patient information leaflets for extracorporeal shock wave lithotripsy: questionnaire survey
Askari, A.; Shergill, I.
2012-01-01
Objectives To compare the level of information provided in extracorporeal shock wave lithotripsy (ESWL) patient information leaflets in the London and East of England Deaneries Design All trusts in the London and East of England Deanery who offer an ESWL service were contacted and leaflets were compared Setting London and East of England Deanery Participants Alan Askari, Iqbal Shergill Main outcome measures Examination of key information that was communicated to ESWL patients via leaflets Res...
Renal pelvic stones: choosing shock wave lithotripsy or percutaneous nephrolithotomy
Robert Marcovich; Smith, Arthur D.
2003-01-01
Introduction of minimally invasive techniques has revolutionized the surgical management of renal calculi. Extracorporeal shock wave lithotripsy and percutaneous nephrolithotomy are now both well-established procedures. Each modality has advantages and disadvantages, and the application of each should be based on well-defined factors. These variables include stone factors such as number, size, and composition; factors related to the stone's environment, including the stone's location, spatial...
Kidney changes after extracorporeal shock wave lithotripsy; MR evaluation
Energy Technology Data Exchange (ETDEWEB)
Yoshioka, Hiroyasu; Shindo, Hiroshi; Mabuchi, Nobuhisa; Kawakami, Akira; Fujii, Koichi; Hamada, Tatsumi; Ishida, Osamu; Umekawa, Toru; Kohri, Kenjiro (Kinki Univ., Osakasayama, Osaka (Japan). School of Medicine)
1991-02-01
MRI was performed before and after extracorporeal shock wave lithotripsy (ESWL) to determine the effects of ESWL on the kidney and perinephric tissues. Of the 40 kidneys studied, 24 showed one or more changes on MRI: loss of the corticomedullary junction (n=15), subcapsular fluid (n=14), subcapsular hematoma (n=1), thickening of bridging septa (n=8), high intensity area in the muscle (n=8). These relatively subtle changes detected on MRI may not be apparent with other imaging techniques. (author).
Shock wave therapy for chronic proximal plantar fasciitis.
Ogden, J A; Alvarez, R; Levitt, R; Cross, G L; Marlow, M
2001-06-01
Three hundred two patients with chronic heel pain caused by proximal plantar fasciitis were enrolled in a study to assess the treatment effects consequent to administration of electrohydraulicall-generated extracorporeal shock waves. Symptoms had been present from 6 months to 18 years. Each treated patient satisfied numerous inclusion and exclusion criteria before he or she was accepted into this study, which was approved by the Food and Drug Administration as a randomized, double-blind evaluation of the efficacy of shock wave therapy for this disorder. Overall, at the predetermined evaluation period 3 months after one treatment, 56% more of the treated patients had a successful result by all four of the evaluation criteria when compared with the patients treated with a placebo. This difference was significant and corroborated the fact that this difference in the results was specifically attributable to the shock wave treatment, rather than any natural improvement caused by the natural history of the condition. The current study showed that the directed application of electrohydraulic-generated shock waves to the insertion of the plantar fascia onto the calcaneus is a safe and effective nonsurgical method for treating chronic, recalcitrant heel pain syndrome that has been present for at least 6 months and has been refractory to other commonly used nonoperative therapies. This technology, when delivered using the OssaTron (High Medical Technology, Kreuz-lingen, Switzerland), has been approved by the Food and Drug Administration specifically for the treatment of chronic proximal plantar fasciitis. The results suggest that this therapeutic modality should be considered before any surgical options, and even may be preferable to cortisone injection, which has a recognized risk of rupture of the plantar fascia and recurrence of symptoms.
Plasmonic shock waves and solitons in a nanoring
2016-01-01
We apply the hydrodynamic theory of electron liquid to demonstrate that a circularly polarized radiation induces the diamagnetic, helicity-sensitive dc current in a ballistic nanoring. This current is dramatically enhanced in the vicinity of plasmonic resonances. The resulting magnetic moment of the nanoring represents a giant increase of the inverse Faraday effect. With increasing radiation intensity, linear plasmonic excitations evolve into the strongly non-linear plasma shock waves. These ...
Pediatric extracorporeal shock wave lithotripsy: Predicting successful outcomes.
McAdams, Sean; Shukla, Aseem R
2010-10-01
Extracorporeal shock wave lithotripsy (ESWL) is currently a first-line procedure of most upper urinary tract stones ionizing radiation, perhaps utilizing advancements in ultrasound and magnetic resonance imaging. This report provides a review of the current literature evaluating the patient attributes and stone factors that may be predictive of successful ESWL outcomes along with reviewing the role of pre-operative imaging and considerations for patient safety.
Triple-layer Absorptive Structures for Shock Wave Blast Protection
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Triple-layer absorptive structure is designed to reinforce a missile silo against shock wave blasts. An energy-absorbing layer and a cushion layer overlay the circular silo cover made of reinforced concrete. The dynamic stress analysis is performed by ABAQUS/Explicit. The mesoscopic structure of the energy absorbing layer is designed as an assembly of ductile tubes containing crushable cellular ceramics. Combined mesoscopic and macroscopic simulations indicate that the structure can enhance the survivability of a missile silo against blast waves.
On the compression of aluminium foam structures under shock
Townsend, D.; Parry, S.; Bourne, N. K.; Withers, P. J.; Wood, D. C.; Appleby-Thomas, G. J.; Hameed, A.
2017-01-01
Foam-based materials have an important role as both blast and impact mitigators, with their extended sub-surface structures providing multiple redundant routes for load management and distribution in the event of failure. In order to further elucidate underlying stress management mechanisms at high strain-rates, here, open cell and closed cell Aluminium were investigated via the plate-impact technique. These experiments allowed the material to be loaded under a macroscale one-dimensional state of strain. The nature of pore collapse was monitored via manganin stress gauges at the target rear surface, with resultant data related back to changes in microstructure via microstructural analysis of both un-impacted and recovered target material. Results indicated crushing of the open cell foam occurred without retarding the flyer plate and the observed shock pressures suggested the degree of compaction increased with impact velocity. The higher density closed cell foam caused significant deceleration of the flyer plate during passage through the specimen and significantly lower shock pressures were observed at the anvil compared to the open cell material.
The cooling of shock-compressed primordial gas
Johnson, J L; Johnson, Jarrett L.; Bromm, Volker
2006-01-01
We find that at redshifts z > 10, HD line cooling allows strongly-shocked primordial gas to cool to the temperature of the cosmic microwave background (CMB). This temperature is the minimum value attainable via radiative cooling. Provided that the abundance of HD, normalized to the total number density, exceeds a critical level of ~ 10^{-8}, the CMB temperature floor is reached in a time which is short compared to the Hubble time. We estimate the characteristic masses of stars formed out of shocked primordial gas in the wake of the first supernovae, and resulting from the mergers of dark matter haloes during hierarchical structure formation to be ~ 10 M_{solar}. In addition, we show that cooling by HD enables the primordial gas in relic H II regions to cool to temperatures considerably lower than those reached via H_2 cooling alone. We confirm that HD cooling is unimportant in cases where the primordial gas does not go through an ionized phase, as in the formation process of the very first stars in z ~ 20 min...
Nath, G.
2014-06-01
The propagation of spherical (or cylindrical) shock wave in an ideal gas with or without gravitational effects in the presence of a constant azimuthal magnetic field is investigated. Non-similarity solutions are obtained for isothermal flow between the shock and the piston. The numerical solutions are obtained using the Runge-Kutta method of the fourth order. The density of the gas is assumed to be varying and obeying an exponential law. The shock wave moves with variable velocity, and the total energy of the wave is non-constant and varies with time. The effects of variation of the Alfven-Mach number, gravitational parameter and time are obtained. It is investigated that the presence of gravitational field reduces the effect of the magnetic field. Also, the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and, therefore, the distance between the inner contact surface and the shock surface is reduced. The shock waves in conducting perfect gas can be important for description of shocks in supernova explosions, in the study of central part of star burst galaxies, nuclear explosion, rupture of a pressurized vessel and explosion in the ionosphere. Other potential applications of this study include analysis of data from exploding wire experiments and cylindrically symmetric hypersonic flow problems associated with meteors or re-entry vehicles etc. A comparison is made between the solutions in the cases of the gravitating and the non-gravitating medium with or without magnetic field. The obtained solutions are applicable for arbitrary values of time.
Stability of stagnation via an expanding accretion shock wave
Velikovich, A L; Taylor, B D; Giuliani, J L; Zalesak, S T; Iwamoto, Y
2016-01-01
Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Y. Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [H. Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); M. Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic...
Stability of stagnation via an expanding accretion shock wave
Velikovich, A. L.; Murakami, M.; Taylor, B. D.; Giuliani, J. L.; Zalesak, S. T.; Iwamoto, Y.
2016-05-01
Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.
Impact-driven shock waves and thermonuclear neutron generation
Energy Technology Data Exchange (ETDEWEB)
Gus' kov, S Yu; Demchenko, N N; Doskoch, I Ya; Rozanov, V B [P.N. Lebedev Physical Institute of Russian Academy of Sciences, Moscow (Russian Federation); Azechi, H; Murakami, M; Sakaiya, T; Watari, T [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Zmitrenko, N V, E-mail: guskov@sci.lebedev.r [Institute for Mathematical Modeling of Russian Academy of Sciences, Moscow (Russian Federation)
2009-09-15
Impact-driven shock waves, thermonuclear plasma and neutron yield were investigated. The results of 2D numerical simulations and Gekko/HIPER laser experiments on the collision of a laser-accelerated disk-projectile with a massive target, both containing (CD){sub n}-material, are discussed. A two-temperature model of the non-equilibrium plasma created by impact-driven shock waves due to the collision of a laser-accelerated planar projectile with a massive target was developed and used for analysis of the numerical and experimental results. The model defines the characteristics of shock waves and plasmas (including their lifetime) as well as neutron yields in both the colliding objects as functions of velocity, density and mass of the projectile-impactor just before collision. The neutron yield generated during the period of laser-driven acceleration of the impactor was also determined. Two effects were discovered that exert a substantial influence on the plasma parameters and neutron yield. The first of them relates to the formation of the pre-impact state of the impactor. It decreases the projectile density due to thermal expansion of its matter through a free boundary during the period of laser-driven acceleration. The other relates to the formation of impact-produced plasma. Predominant heating of the ion component of plasma leads to the existence of a non-equilibrium two-temperature plasma during the period of electron-ion relaxation.
Shoulder function after extracorporal shock wave therapy for calcific tendinitis.
Rompe, J D; Bürger, R; Hopf, C; Eysel, P
1998-01-01
We report a controlled, prospective study that explored the effect of extracorporal shock waves of low- versus high-energy density in patients with chronic shoulder pain and calcific tendinitis. We assigned at random 100 patients who had had calcific tendinitis for more than 12 months to 2 groups to receive shock wave therapy either of a low- or high-energy density. Group 1 received 1500 impulses of 0.06 mJ/mm2, whereas group 2 received 1500 impulses of 0.28 mJ/mm2. Unlike group 1, in which the shock wave application could be performed without local anesthesia, all patients in group 2 required brachial plexus anesthesia. The patients were reviewed at 6 and 24 weeks. Partial or complete disintegration of the calcareous deposit was observed in 50% of the patients in group 1 and 64% of the patients in group 2 (P < .01). According to the Constant score, ratings increased from 48 to 71 points in group 1 (P < .001) and from 53 to 88 in group 2 (P < .001) (out of a total possible 100 points), the end values of both groups differing significantly (P < .01). After 24 weeks, 52% of the patients in group 1 rated the results of treatment as good or excellent, compared with 68% in group 2 (P < .01). No improvement was reported by 24% versus 10%, respectively, at the 24-week follow-up.
Treatment of lateral epicondylitis of the elbow with shock waves.
Ko, J Y; Chen, H S; Chen, L M
2001-06-01
In a prospective clinical study, the effectiveness of shock wave treatment for lateral epicondylitis in 56 elbows in 53 patients (27 men and 26 women) with an average age of 46 years was investigated. Three patients received treatment for both elbows. Each elbow was treated with 1,000 impulses of shock waves at 14 kV. A 100-point scoring system was used for evaluation including 40 points for pain, 30 points for function, 20 points for strength, and 10 points for elbow motion. The intensity of pain was measured using a visual analogue scale from 0 to 10. The overall results were 13.2% excellent, 44.7% good, 36.8% acceptable, and 5.3 unchanged in 35 patients with 12 weeks followup; 30.8% excellent, 42.3% good, and 26.9% acceptable in 25 patients with 24 weeks followup. Considerable improvement was observed from 6 weeks to 6 months after the treatment. None of the patients' symptoms became worse. The results of nine patients who also received a second treatment were good in three patients, acceptable in five patients, and unchanged in one patient. There was no device-related problems, systemic, or local complications. Shock wave therapy may offer a new and safer nonoperative treatment for patients with lateral epidoncylitis of the elbow.
Stability of stagnation via an expanding accretion shock wave
Energy Technology Data Exchange (ETDEWEB)
Velikovich, A. L.; Giuliani, J. L. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Murakami, M. [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan); Taylor, B. D. [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC 20375 (United States); Zalesak, S. T. [Berkeley Research Associates, Beltsville, Maryland 20705 (United States); Iwamoto, Y. [Ehime University, Matsuyama, Ehime Pref. 790-8577 (Japan)
2016-05-15
Stagnation of a cold plasma streaming to the center or axis of symmetry via an expanding accretion shock wave is ubiquitous in inertial confinement fusion (ICF) and high-energy-density plasma physics, the examples ranging from plasma flows in x-ray-generating Z pinches [Maron et al., Phys. Rev. Lett. 111, 035001 (2013)] to the experiments in support of the recently suggested concept of impact ignition in ICF [Azechi et al., Phys. Rev. Lett. 102, 235002 (2009); Murakami et al., Nucl. Fusion 54, 054007 (2014)]. Some experimental evidence indicates that stagnation via an expanding shock wave is stable, but its stability has never been studied theoretically. We present such analysis for the stagnation that does not involve a rarefaction wave behind the expanding shock front and is described by the classic ideal-gas Noh solution in spherical and cylindrical geometry. In either case, the stagnated flow has been demonstrated to be stable, initial perturbations exhibiting a power-law, oscillatory or monotonic, decay with time for all the eigenmodes. This conclusion has been supported by our simulations done both on a Cartesian grid and on a curvilinear grid in spherical coordinates. Dispersion equation determining the eigenvalues of the problem and explicit formulas for the eigenfunction profiles corresponding to these eigenvalues are presented, making it possible to use the theory for hydrocode verification in two and three dimensions.
Convergence of shock waves between conical and parabolic boundaries
Yanuka, D.; Zinowits, H. E.; Antonov, O.; Efimov, S.; Virozub, A.; Krasik, Ya. E.
2016-07-01
Convergence of shock waves, generated by underwater electrical explosions of cylindrical wire arrays, between either parabolic or conical bounding walls is investigated. A high-current pulse with a peak of ˜550 kA and rise time of ˜300 ns was applied for the wire array explosion. Strong self-emission from an optical fiber placed at the origin of the implosion was used for estimating the time of flight of the shock wave. 2D hydrodynamic simulations coupled with the equations of state of water and copper showed that the pressure obtained in the vicinity of the implosion is ˜7 times higher in the case of parabolic walls. However, comparison with a spherical wire array explosion showed that the pressure in the implosion vicinity in that case is higher than the pressure in the current experiment with parabolic bounding walls because of strong shock wave reflections from the walls. It is shown that this drawback of the bounding walls can be significantly minimized by optimization of the wire array geometry.
How the Term "Shock Waves" Came Into Being
Fomin, N. A.
2016-07-01
The present paper considers the history of works on shock waves beginning from S. D. Poisson's publication in 1808. It expounds on the establishment of the Polytechnic School in Paris and its fellows and teachers — Gaspard Monge, Lazare Carnot, Joseph Louis Gay-Lussac, Simeon Denis Poisson, Henri Navier, Augustin Louis Cauchy, Joseph Liouville, Ademar de Saint-Venant, Henri Regnault, Pierre Dulong, Emile Jouguet, Pierre Duhem, and others. It also describes the participation in the development of the shock wave theory of young scientists from the universities of Cambridge, among which were George Airy, James Challis, Samuel Earnshaw, George Stokes, Lord Rayleigh, Lord Kelvin, and James Maxwell, as well as of scientists from the Göttingen University, Germany — Bernhard Riemann and Ernst Heinrich Weber. The pioneer works on shock waves of the Scottish engineer William Renkin, the French artillerist Pierre-Henri Hugoniot, German scientists August Toepler and Ernst Mach, and a Hungarian scientist Gyözö Zemplén are also considered.
Nath, G.; Vishwakarma, J. P.
2016-06-01
The propagation of a strong spherical shock wave in a dusty gas with or without self-gravitational effects is investigated in the case of isothermal and adiabatic flows. The dusty gas is assumed to be a mixture of small solid particles and perfect gas. The equilibrium flow conditions are assumed to be maintained, and the density of the mixture is assumed to be varying and obeying an exponential law. Non-similarity solutions are obtained and the effects of variations of the mass concentration of solid particles in the mixture and the ratio of the density of solid particles to the initial density of the gas, and the presence of self-gravitational field on the flow variables are investigated at given times. Our analysis reveals that after inclusion of gravitational field effects surprisingly the shock strength increases and remarkable differences are found in the distribution of flow variables. An increase in time also, increases the shock strength. Further, it is investigated that the consideration of isothermal flow increases the shock strength, and removes the singularity in the density distribution. Also, the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and therefore the distance between the inner contact surface and the shock surface is reduced. The shock waves in self-gravitating dusty gas can be important for description of shocks in supernova explosions, in the study of central part of star burst galaxies, star formation and shocks in stellar explosion, nuclear explosion, in industry, rupture of a pressurized vessel and explosion in the ionosphere. Other potential applications of this study include analysis of data from exploding wire experiments and cylindrically symmetric hypersonic flow problems associated with meteors or re-entry of vehicles etc. A comparison is made between the solutions in the cases of the gravitating and the non-gravitating media. The obtained solutions are applicable for
The effects of shock wave and quasi-traveling wave in the mechanical impact test
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
It is well-known that the numerical value is always larger than the measured value,amounting to many times,if we calculate the stress of the specimen in the impulse test using the NASTRAN and ANSYS (N-A) software.We believe that the impact induces shock wave or quasi-traveling wave in the specimen,which can qualitatively explain the discrepancy of the two values.In order to verify it,the Lax-Friedrichs (L-F) scheme is taken to simulate the transmission of shock wave and quasi-traveling wave in solid.Numerical results show that the action area of the stress wave is small and the action time is very short,so the resulting stress and actual work are not big.In addition,the distribution of the impact values obtained by the numerical simulation is in accordance with the trend of the measured impact values.
Unsteady flow with separation behind a shock wave diffracting over curved walls
Law, C.; Muritala, A. O.; Skews, B. W.
2014-05-01
The unsteady separation of the compressible flow field behind a diffracting shock wave was investigated along convex curved walls, using shock tube experimentation at large length and time scales, complemented by numerical computation. Tests were conducted at incident shock Mach numbers of 1.5 and 1.6 over a 100 mm radius wall over a dimensionless time range up to 6.45. The development of the near wall flow at 1.5 has been described in detail and is very similar to that observed for slightly lower 's at 1.6. Computations were performed at wall radii of 100 and 200 mm and for incident shock Mach numbers from 1.5 up to and including Mach 2.0. Comparing dimensionless times for different size walls shows that for a given value of the flow field is very similar for the various wall radii published to date and tested in this study. Previously published results that were examined alongside the results from this study had typical values of . At the later times presented here, flow features were observed that previously had only been observed at higher Mach numbers. The larger length scales allowed for a degree of Reynolds number independence in the results published here. The effect of turbulence on the numerical and experimental results could not be adequately examined due to limitations of the flow imaging system used and a number of questions remain unanswered.
Wang, Z.; Qi, Y.; Liu, H.; Zhang, P.; He, X.; Wang, J.
2016-09-01
Super-knock is one of the major obstacles for improving power density in advanced internal combustion engines (ICE). This work studied the mechanism of super-knock initiation using a rapid compression machine that simulated conditions relevant to ICEs and provided excellent optical accessibility. Based on the high-speed images and pressure traces of the stoichiometric iso-octane/oxygen/nitrogen combustion under high-temperature and high-pressure conditions, it was observed that detonation was first initiated in the near-wall region as a result of shock wave reflection. Before detonation was initiated, the speed of the combustion wave front was less than that of the Chapman-Jouguet (C-J) detonation speed (around 1840 m/s). In the immediate vicinity of the initiation, the detonation speed was much higher than that of the C-J detonation.
Shock Wave Propagation in Cementitious Materials at Micro/Meso Scales
2015-08-31
ABSTRACT 16. SECURITY CLASSIFICATION OF: Shock wave response of heterogeneous materials like cement and concrete is greatly influenced by the...2015 Approved for public release; distribution is unlimited. Shock Wave Propagation in Cementitious Materials at Micro/Meso Scales The views...Box 12211 Research Triangle Park, NC 27709-2211 shock propagation, micro and macro scales, finite element modeling REPORT DOCUMENTATION PAGE 11
Experimental Study on Shock Wave Structures in Constant-area Passage of Cold Spray Nozzle
Institute of Scientific and Technical Information of China (English)
Hiroshi KATANODA; Takeshi MATSUOKA; Kazuyasu MATSUO
2007-01-01
Cold spray is a technique to make a coating on a wide variety of mechanical or electric parts by spraying solid particles accelerated through a high-speed gas flow in a converging-diverging nozzle. In this study, pseudo-shock waves in a modeled cold spray nozzle as well as high-speed gas jets are visualized by schlieren technique. The schlieren photographs reveals the supersonic flow with shock train in the nozzle. Static pressure along the barrel wall is also measured. The location of the head of pseudo-shock wave and its pressure distribution along the nozzle wall are analytically explained by using a formula of pseudo-shock wave. The analytical results show that the supersonic flow accompanying shock wave in the nozzle should be treated as pseudo-shock wave instead of normal shock wave.
Jing Fu Qian
2002-01-01
Progress made in recent years on three topics that have been investigated at the Laboratory for Shock Wave and Detonation Physics Research are presented in this report. (1) A new equation of state (EOS) has been derived which can be used from a standard state to predict state variable change along an isobaric path. Good agreements between calculations for some representative metals using this new EOS and experiments have been found, covering a wide range from hundreds of MPa to hundreds of GPa and from ambient temperature to tens of thousands of GPa. (2) An empirical relation of Y/G = constant (Y is yield strength, G is shear modulus) at HT-HP has been reinvestigated and confirmed by shock wave experiment. 93W alloy was chosen as a model material. The advantage of this relation is that it is beneficial to formulate a kind of simplified constitutive equation for metallic solids under shock loading, and thus to faithfully describe the behaviours of shocked solids through hydrodynamic simulations. (3) An attempt...
Structural Modifications in Fused Silica Due to Laser Damage Induced Shock Compression
Energy Technology Data Exchange (ETDEWEB)
Kubota, A; Davila, L; Caturla, M J; Stolken, J S; Sadigh, B; Quong, A; Rubenchik, A; Feit, M D
2001-12-05
High power laser pulses can produce damage in high quality fused silica optics that can lead to its eventual obscuration and failure. Current models suggest the initiation of a plasma detonation due to absorbing initiators and defects, leading to the formation of shock waves. Recent experiments have found a densified layer at the bottom of damage sites, as evidence of the laser-damage model. We have studied the propagation of shock waves through fused silica using molecular dynamics. These simulations show drastic modifications in the structure and topology of the network, in agreement with experimental observations.
Comment on 'Multi-shock Compressions of Dense Hydrogen-Helium Mixture beyond 100 GPa'
Institute of Scientific and Technical Information of China (English)
TAN Hua; CHEN Qi-Feng
2008-01-01
@@ Zhang et al. reported[1] that they conducted lightgas gun experiments to study the behaviour of dense hydrogen/helium gas mixtures, and the optic radiations emanating from the multi-shock reverberations between the iron base-plate and the single crystal sapphire window were recorded successfully up to the 10th reflection, and 9 shock compression data points were thus obtained. Their gas mixture even reached a high pressure beyond 100 GPa. This comment put forward a few questions on their 'experimental data' reported in Fig. 4 in Ref. [1].
Jourdan, G.; Houas, L.
1996-06-01
Results of an experimental investigation on the Richtmyer-Meshkov instability of a He-CO2 interface are reported. A simultaneous three-directional laser absorption technique is used to follow, at a single abscissa, the evolution of the created mixing zone before and after the interaction with the reflected shock, during the same run. CO2 density profiles have been determined within both the incident and the compressed mixing zones. However, near the pure CO2, the wall boundary layer reflected shock interaction perturbs measurements and does not allow objective conclusions.
Shock Compression and Strain Rate Effect in Composites and Polymers
Energy Technology Data Exchange (ETDEWEB)
Brown, Eric [Los Alamos National Laboratory
2012-06-20
Polymers are increasingly being utilized as monolithic materials and composite matrices for structural applications historically reserved for metals. High strain and high strain-rate applications in aerospace, defense, and automotive industries have lead to interest in utilizing the ability of many polymers to withstand extensions to failure of several hundred percent, often without localization or necking and their strong rate dependence. A broad range of characterization techniques will be presented for semi-crystalline polymers and composites including elastic-plastic fracture, split Hopkinson pressure bar (SHPB), plate impact including soft-recovery and lateral gage measurements and Taylor Impact. Gas-launched, plate impact experiments have been performed on pedigreed PTFE 7C, mounted in momentum-trapped, shock assemblies, with impact pressures above and below the phase II to phase III crystalline transition to probe subtle changes in the crystallinity, microstructure, and mechanical response of PTFE. Observed strong anisotropy on the hugoniot and spall behavior of fiber-reinforced composites will be discussed. Polymers are known to exhibit a strong dependence of the yield stress on temperature and strain-rate that are often observed to be linear for temperature and logarithmic for strain-rate. Temperature and strain-rate dependence will be reviewed in terms of classic time-temperature superposition and an empirical mapping function for superposition between temperature and strain-rate. The recent extension of the new Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) technique to probe the dynamic tensile responses of polymers will be discussed, where more irregular deformation and stochastic-based damage and failure mechanisms than the stable plastic elongation and shear instabilities observed that in metals. The opportunity to use of Dyn-Ten-Ext to probe incipient damage at very high strain-rate by linking in situ and post mortem experimental observations with high
Extracorporeal shock wave treatment for chronic lateral epicondylitis (tennis elbow).
Ho, C
2007-01-01
(1) Electrohydraulic, electromagnetic, or piezoelectric devices are used to translate energy into acoustic waves during extracorporeal shock wave treatment (ESWT) for chronic lateral epicondylitis (CLE) of the elbow (elbow tendonitis or tennis elbow). These waves may help to accelerate the healing process via an unknown mechanism. (2) Results from randomized controlled trials have been conflicting. Half of the studies showed statistically significant improvement in pain in the treatment group, and half of the studies had data showing no benefit over placebo for any measured outcomes. (3) Limited evidence shows that ESWT is cheaper than arthroscopic surgery, open surgery, and other conservative therapies, such as steroid infiltrations and physiotherapy, that continue for more than six weeks. (4) The lack of convincing evidence regarding its effectiveness does not support the use of ESWT for CLE.
Studies of dissipative standing shock waves around black holes
Das, Santabrata; Mondal, Soumen
2009-01-01
We investigate the dynamical structure of advective accretion flow around stationary as well as rotating black holes. For a suitable choice of input parameters, such as, accretion rate ($\\dot {\\cal M}$) and angular momentum ($\\lambda$), global accretion solution may include a shock wave. The post shock flow is located at few tens of Schwarzchild radius and it is generally very hot and dense. This successfully mimics the so called Compton cloud which is believed to be responsible for emitting hard radiations. Due to the radiative loss, a significant energy from the accreting matter is removed and the shock moves forward towards the black hole in order to maintain the pressure balance across it. We identify the effective area of the parameter space ($\\dot {\\cal M} - \\lambda$) which allows accretion flows to have some energy dissipation at the shock $(\\Delta {\\cal E})$. As the dissipation is increased, the parameter space is reduced and finally disappears when the dissipation is reached its critical value. The d...
Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 GPa
Zheng, J.; Chen, Q. F.; Gu, Y. J.; Li, J. T.; Li, Z. G.; Li, C. J.; Chen, Z. Y.
2017-06-01
Multiple reverberation compression can achieve higher pressure, higher temperature, but lower entropy. It is available to provide an important validation for the elaborate and wider planetary models and simulate the inertial confinement fusion capsule implosion process. In the work, we have developed the thermodynamic and optical properties of helium from shock-adiabatic to quasi-isentropic compression by means of a multiple reverberation technique. By this technique, the initial dense gaseous helium was compressed to high pressure and high temperature and entered the warm dense matter (WDM) region. The experimental equation of state (EOS) of WDM helium in the pressure-density-temperature (P-ρ -T) range of 1 -150 GPa , 0.1 -1.1 g c m-3 , and 4600-24 000 K were measured. The optical radiations emanating from the WDM helium were recorded, and the particle velocity profiles detecting from the sample/window interface were obtained successfully up to 10 times compression. The optical radiation results imply that dense He has become rather opaque after the 2nd compression with a density of about 0.3 g c m-3 and a temperature of about 1 eV. The opaque states of helium under multiple compression were analyzed by the particle velocity measurements. The multiple compression technique could efficiently enhanced the density and the compressibility, and our multiple compression ratios (ηi=ρi/ρ0,i =1 -10 ) of helium are greatly improved from 3.5 to 43 based on initial precompressed density (ρ0) . For the relative compression ratio (ηi'=ρi/ρi -1) , it increases with pressure in the lower density regime and reversely decreases in the higher density regime, and a turning point occurs at the 3rd and 4th compression states under the different loading conditions. This nonmonotonic evolution of the compression is controlled by two factors, where the excitation of internal degrees of freedom results in the increasing compressibility and the repulsive interactions between the
Wave breaking and shock waves for a periodic shallow water equation.
Escher, Joachim
2007-09-15
This paper is devoted to the study of a recently derived periodic shallow water equation. We discuss in detail the blow-up scenario of strong solutions and present several conditions on the initial profile, which ensure the occurrence of wave breaking. We also present a family of global weak solutions, which may be viewed as global periodic shock waves to the equation under discussion.
Reflection of a converging cylindrical shock wave segment by a straight wedge
Gray, B.; Skews, B.
2017-01-01
As a converging cylindrical shock wave propagates over a wedge, the shock wave accelerates and the angle between the shock wave and the wedge decreases. This causes the conditions at the reflection point to move from what would be the irregular reflection domain for a straight shock wave into the regular reflection domain. This paper covers a largely qualitative study of the reflection of converging shock wave segments with Mach numbers between 1.2 and 2.1 by wedges inclined at angles between 15° and 60° from experimental and numerical results. The sonic condition conventionally used for predicting the type of reflection of straight shock waves was found to also be suitable for predicting the initial reflection of a curved shock wave. Initially regular reflections persisted until the shock was completely reflected by the wedge, whereas the triple point of initially irregular reflections was observed to return to the wedge surface, forming transitioned regular reflection. After the incident shock wave was completely reflected by the wedge, a shock wave focusing mechanism was observed to amplify the pressure on the surface of the wedge by a factor of up to 100 for low wedge angles.
Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.
He, Yi-Guang; Tang, Xiu-Zhang; Pu, Yi-Kang
2008-07-01
We model a shock wave in an ideal gas by combining the Burnett approximation and Holian's conjecture. We use the temperature in the direction of shock propagation rather than the average temperature in the Burnett transport coefficients. The shock wave profiles and shock thickness are compared with other theories. The results are found to agree better with the nonequilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) data than the Burnett equations and the modified Navier-Stokes theory.
Electrical Conductivity of ε-Iron under Shock Compression up to 208 G Pa
Institute of Scientific and Technical Information of China (English)
毕延; 谭华; 经福谦
2002-01-01
The electrical conductivity of shock-compressed iron was measured up to 208 GPa by using an improved design in experiment assembly in which the iron sample was encapsulated in a single-crystal sapphire cell. High-pressure shock compressions were generated by the plate impact technique with the two-stage light-gas gun. The measured conductivity ofiron varies from 1.45 × 104 Ω- 1 cm-1 at 101 GPa and 2010 K to 7.65 × 103 Ω-1 cm-1 at 208 GPa and 5220 K. After examining these data together with those reported, we found that the Bloch-Griineisen expression is still valid at high pressures and temperatures, even up to 208GPa and 5220K, at least for ε-iron, which is significant in the field of condensed matter physics and deep interior earth science.
Kinematics of ICMEs/shocks: blast wave reconstruction using type II emissions
Corona-Romero, P; Aguilar-Rodriguez, E; de-la-Luz, V; Mejia-Ambriz, J C
2015-01-01
We present a physical methodology to reconstruct the trajectory of interplanetary shocks using type II radio emission data. This technique calculates the shock trajectory assuming that the disturbance propagates as a blast wave in the interplanetary medium. We applied this Blast Wave Reconstruction (BWR) technique to analyze eight fast Earth-directed ICMEs/shocks associated with type II emissions. The technique deduces a shock trajectory that reproduces the type II frequency drifts, and calculates shock onset speed, shock transit time and shock speed at 1~AU. There were good agreements comparing the BWR results with the type II spectra, with data from coronagraph images, {\\it in situ} measurements, and interplanetary scintillation (IPS) observations. Perturbations on the type II data affect the accuracy of the BWR technique. This methodology could be applied to track interplanetary shocks causing TII emissions in real-time, to predict the shock arrival time and shock speed at 1~AU.
Fracture of nanoceramics with porous structure at shock wave loadings
Skripnyak, Vladimir; Skripnyak, Vladimir; Skripnyak, Vladimir
2012-03-01
Computer simulation techniques are used to investigate the deformation and damage processes taking place in brittle oxide nanostructured ceramics under intense dynamic loading. The pore structure is shown to substantially affect the size of the fragments and the strength of the ceramics. In porous nanostructured ceramics subjected to shock loading, deformation is localized in mesoscopic bands having characteristic orientations along, across, and at ~ 45° to the direction of propagation of the shock wave front. Clusters of nanopores cause the decreasing of the shear strength of nanostructured ceramics. The localized deformation bands may be transformed into mesoscopic cracks. A method is proposed for a theoretical estimation of the effective elastic moduli of ceramics with pore structure without resorting to well-known hypotheses for the relation between elastic moduli and porosity of the materials.
Resistant tennis elbow: shock-wave therapy versus percutaneous tenotomy.
Radwan, Yasser A; ElSobhi, Gamal; Badawy, Walid S; Reda, Ali; Khalid, Sherif
2008-10-01
Fifty-six patients who suffered from chronic persistent tennis elbow of more than six months duration were randomly assigned to two active treatment groups. Group 1 (n = 29) received high-energy extracorporeal shock wave treatment (ESWT; 1,500 shocks) at 18 kV (0.22 mJ/mm(2)) without local anaesthesia; group 2 (n = 27) underwent percutaneous tenotomy of the common extensor origin. Both groups achieved improvement from the base line at three weeks, six weeks, 12 weeks and 12 months post-intervention. The success rate (Roles and Maudsley score: excellent and good) at three months in the ESWT group was 65.5% and in the tenotomy group was 74.1%. ESWT appeared to be a useful noninvasive treatment method that reduced the necessity for surgical procedures.
The shock compression of microorganism-loaded broths and emulsions: Experiments and simulations
Hazell, P. J.; Beveridge, C.; Groves, K.; Appleby-Thomas, G.
2010-01-01
Abstract By carefully selecting flyer plate thickness and the geometry of a target capsule for bacterial broths and emulsions, we have successfully subjected the contents of the capsule to simultaneous shock and dynamic compression when subjected to a flyer-plate impact experiment. The capsules were designed to be recovered intact so that post experimental analysis could be done on the contents. ANSYS? AUTODYN hydrocode simulations were carried out to interrogate the deformation of...
Evolution of weak shock waves in non-ideal magnetogasdynamics
Nath, Triloki; Gupta, R. K.; Singh, L. P.
2017-04-01
The aim of this paper is to analyze the main features of weakly non-linear waves propagating in a compressible, inviscid, non-ideal gas with infinite electrical conductivity modelled by van der Waals equation of state permeated by transverse magnetic field. An asymptotic approach is used to derive the evolution equation, which characterizes the wave phenomena in a high frequency domain. The growth equation of an acceleration wave is derived as a special case. Further, we also discuss the propagation of disturbances in the form of sawtooth profile. The effect of magnetic field and van der Waals parameter on the decay of sawtooth profile is presented. A remarkable difference between planar and nonplanar flows in magnetic case and nonmagnetic case has been drawn. Also the variation in velocity profile between planar and nonplanar flows has been discussed.
Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading
Institute of Scientific and Technical Information of China (English)
SONG Hai-Feng; LIU Hai-Feng; ZHANG Guang-Cai; ZHAO Yan-Song
2009-01-01
We undertake a numerical simulation of shock experiments on tin reported in the literature,by using a multiphase equation of state (MEOS) and a multiphase Steinberg Guinan (MSG) constitutive model for tin in the β,γ and liquid phases.In the MSG model,the Bauschinger effect is considered to better describe the unloading behavior.The phase diagram and Hugoniot of tin are calculated by MEOS,and they agree well with the experimental data.Combined with the MEOS and MSG models,hydrodynamic computer simulations are successful in reproducing the measured velocity profile of the shock wave experiment.Moreover,by analyzing the mass fraction contour as well as stress and temperature profiles of each phase for tin,we further discuss the complex behavior of tin under shock-wave loading.
Potential applications of low-energy shock waves in functional urology.
Wang, Hung-Jen; Cheng, Jai-Hong; Chuang, Yao-Chi
2017-08-01
A shock wave, which carries energy and can propagate through a medium, is a type of continuous transmitted sonic wave with a frequency of 16 Hz-20 MHz. It is accompanied by processes involving rapid energy transformations. The energy associated with shock waves has been harnessed and used for various applications in medical science. High-energy extracorporeal shock wave therapy is the most successful application of shock waves, and has been used to disintegrate urolithiasis for 30 years. At lower energy levels, however, shock waves have enhanced expression of vascular endothelial growth factor, endothelial nitric oxide synthase, proliferating cell nuclear antigen, chemoattractant factors and recruitment of progenitor cells; shock waves have also improved tissue regeneration. Low-energy shock wave therapy has been used clinically with musculoskeletal disorders, ischemic cardiovascular disorders and erectile dysfunction, through the mechanisms of neovascularization, anti-inflammation and tissue regeneration. Furthermore, low-energy shock waves have been proposed to temporarily increase tissue permeability and facilitate intravesical drug delivery. The present review article provides information on the basics of shock wave physics, mechanisms of action on the biological system and potential applications in functional urology. © 2017 The Japanese Urological Association.
Shock Compression of Liquid Noble Gases to Multi-Mbar Pressures
Root, Seth
2011-10-01
The high pressure - high temperature behavior of noble gases is of considerable interest because of their use in z-pinch liners for fusion studies and for understanding astrophysical and planetary evolution. However, our understanding of the equation of state (EOS) of the noble gases at extreme conditions is limited. A prime example of this is the liquid xenon Hugoniot. Previous EOS models rapidly diverged on the Hugoniot above 1 Mbar because of differences in the treatment of the electronic contribution to the free energy. Similar divergences are observed for krypton EOS. Combining shock compression experiments and density functional theory (DFT) simulations, we can determine the thermo-physical behavior of matter under extreme conditions. The experimental and DFT results have been instrumental to recent developments in planetary astrophysics and inertial confinement fusion. Shock compression experiments are performed using Sandia's Z-Accelerator to determine the Hugoniot of liquid xenon and krypton in the Mbar regime. Under strong pressure, krypton and xenon undergo an insulator to metal transition. In the metallic state, the shock front becomes reflective allowing for a direct measurement of the sample's shock velocity using laser interferometry. The Hugoniot state is determined using a Monte Carlo analysis method that accounts for systematic error in the standards and for correlations. DFT simulations at these extreme conditions show good agreement with the experimental data - demonstrating the attention to detail required for dealing with elements with relativistic core states and d-state electrons. The results from shock compression experiments and DFT simulations are presented for liquid xenon to 840 GPa and for liquid krypton to 800 GPa, decidedly increasing the range of known behavior of both gases. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company