WorldWideScience

Sample records for compression ratio experiments

  1. Alvar engine. An engine with variable compression ratio. Experiments and tests

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, Olof

    1998-09-01

    This report is focused on tests with Variable Compression Ratio (VCR) engines, according to the Alvar engine principle. Variable compression ratio means an engine design where it is possible to change the nominal compression ratio. The purpose is to increase the fuel efficiency at part load by increasing the compression ratio. At maximum load, and maybe supercharging with for example turbocharger, it is not possible to keep a high compression ratio because of the knock phenomena. Knock is a shock wave caused by self-ignition of the fuel-air mix. If knock occurs, the engine will be exposed to a destructive load. Because of the reasons mentioned it would be an advantage if it would be possible to change the compression ratio continuously when the load changes. The Alvar engine provides a solution for variable compression ratio based on well-known engine components. This paper provides information about efficiency and emission characteristics from tests with two Alvar engines. Results from tests with a phase shift mechanism (for automatic compression ratio control) for the Alvar engine are also reviewed Examination paper. 5 refs, 23 figs, 2 tabs, 5 appendices

  2. Envera Variable Compression Ratio Engine

    Energy Technology Data Exchange (ETDEWEB)

    Charles Mendler

    2011-03-15

    Aggressive engine downsizing, variable compression ratio and use of the Atkinson cycle are being combined to improve fuel economy by up to 40 percent relative to port fuel injected gasoline engines, while maintaining full engine power. Approach Engine downsizing is viewed by US and foreign automobile manufacturers as one of the best options for improving fuel economy. While this strategy has already demonstrated a degree of success, downsizing and fuel economy gains are currently limited. With new variable compression ratio technology however, the degree of engine downsizing and fuel economy improvement can be greatly increased. A small variable compression ratio (VCR) engine has the potential to return significantly higher vehicle fuel economy while also providing high power. Affordability and potential for near term commercialization are key attributes of the Envera VCR engine. VCR Technology To meet torque and power requirements, a smaller engine needs to do more work per stroke. This is typically accomplished by boosting the incoming charge with either a turbo or supercharger so that more energy is present in the cylinder per stroke to do the work. With current production engines the degree of engine boosting (which correlates to downsizing) is limited by detonation (combustion knock) at high boost levels. Additionally, the turbo or supercharger needs to be responsive and efficient while providing the needed boost. VCR technology eliminates the limitation of engine knock at high load levels by reducing compression ratio to {approx}9:1 (or whatever level is appropriate) when high boost pressures are needed. By reducing the compression ratio during high load demand periods there is increased volume in the cylinder at top dead center (TDC) which allows more charge (or energy) to be present in the cylinder without increasing the peak pressure. Cylinder pressure is thus kept below the level at which the engine would begin to knock. When loads on the engine are low

  3. Eccentric crank variable compression ratio mechanism

    Science.gov (United States)

    Lawrence, Keith Edward [Kobe, JP; Moser, William Elliott [Peoria, IL; Roozenboom, Stephan Donald [Washington, IL; Knox, Kevin Jay [Peoria, IL

    2008-05-13

    A variable compression ratio mechanism for an internal combustion engine that has an engine block and a crankshaft is disclosed. The variable compression ratio mechanism has a plurality of eccentric disks configured to support the crankshaft. Each of the plurality of eccentric disks has at least one cylindrical portion annularly surrounded by the engine block. The variable compression ratio mechanism also has at least one actuator configured to rotate the plurality of eccentric disks.

  4. Experiments with automata compression

    NARCIS (Netherlands)

    Daciuk, J.; Yu, S; Daley, M; Eramian, M G

    2001-01-01

    Several compression methods of finite-state automata are presented and evaluated. Most compression methods used here are already described in the literature. However, their impact on the size of automata has not been described yet. We fill that gap, presenting results of experiments carried out on

  5. High-speed and high-ratio referential genome compression.

    Science.gov (United States)

    Liu, Yuansheng; Peng, Hui; Wong, Limsoon; Li, Jinyan

    2017-11-01

    The rapidly increasing number of genomes generated by high-throughput sequencing platforms and assembly algorithms is accompanied by problems in data storage, compression and communication. Traditional compression algorithms are unable to meet the demand of high compression ratio due to the intrinsic challenging features of DNA sequences such as small alphabet size, frequent repeats and palindromes. Reference-based lossless compression, by which only the differences between two similar genomes are stored, is a promising approach with high compression ratio. We present a high-performance referential genome compression algorithm named HiRGC. It is based on a 2-bit encoding scheme and an advanced greedy-matching search on a hash table. We compare the performance of HiRGC with four state-of-the-art compression methods on a benchmark dataset of eight human genomes. HiRGC takes compress about 21 gigabytes of each set of the seven target genomes into 96-260 megabytes, achieving compression ratios of 217 to 82 times. This performance is at least 1.9 times better than the best competing algorithm on its best case. Our compression speed is also at least 2.9 times faster. HiRGC is stable and robust to deal with different reference genomes. In contrast, the competing methods' performance varies widely on different reference genomes. More experiments on 100 human genomes from the 1000 Genome Project and on genomes of several other species again demonstrate that HiRGC's performance is consistently excellent. The C ++ and Java source codes of our algorithm are freely available for academic and non-commercial use. They can be downloaded from https://github.com/yuansliu/HiRGC. jinyan.li@uts.edu.au. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Limiting density ratios in piston-driven compressions

    International Nuclear Information System (INIS)

    Lee, S.

    1985-07-01

    By using global energy and pressure balance applied to a shock model it is shown that for a piston-driven fast compression, the maximum compression ratio is not dependent on the absolute magnitude of the piston power, but rather on the power pulse shape. Specific cases are considered and a maximum density compression ratio of 27 is obtained for a square-pulse power compressing a spherical pellet with specific heat ratio of 5/3. Double pulsing enhances the density compression ratio to 1750 in the case of linearly rising compression pulses. Using this method further enhancement by multiple pulsing becomes obvious. (author)

  7. BENEFITS AND CHALLENGES OF VARIABLE COMPRESSION RATIO AT DIESEL ENGINES

    OpenAIRE

    Radivoje B Pešić; Saša T Milojević; Stevan P Veinović

    2010-01-01

    The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minim...

  8. Determination of Optimum Compression Ratio: A Tribological Aspect

    Directory of Open Access Journals (Sweden)

    L. Yüksek

    2013-12-01

    Full Text Available Internal combustion engines are the primary energy conversion machines both in industry and transportation. Modern technologies are being implemented to engines to fulfill today's low fuel consumption demand. Friction energy consumed by the rubbing parts of the engines are becoming an important parameter for higher fuel efficiency. Rate of friction loss is primarily affected by sliding speed and the load acting upon rubbing surfaces. Compression ratio is the main parameter that increases the peak cylinder pressure and hence normal load on components. Aim of this study is to investigate the effect of compression ratio on total friction loss of a diesel engine. A variable compression ratio diesel engine was operated at four different compression ratios which were "12.96", "15:59", "18:03", "20:17". Brake power and speed was kept constant at predefined value while measuring the in- cylinder pressure. Friction mean effective pressure ( FMEP data were obtained from the in cylinder pressure curves for each compression ratio. Ratio of friction power to indicated power of the engine was increased from 22.83% to 37.06% with varying compression ratio from 12.96 to 20:17. Considering the thermal efficiency , FMEP and maximum in- cylinder pressure optimum compression ratio interval of the test engine was determined as 18.8 ÷ 19.6.

  9. Density ratios in compressions driven by radiation pressure

    International Nuclear Information System (INIS)

    Lee, S.

    1988-01-01

    It has been suggested that in the cannonball scheme of laser compression the pellet may be considered to be compressed by the 'brute force' of the radiation pressure. For such a radiation-driven compression, an energy balance method is applied to give an equation fixing the radius compression ratio K which is a key parameter for such intense compressions. A shock model is used to yield specific results. For a square-pulse driving power compressing a spherical pellet with a specific heat ratio of 5/3, a density compression ratio Γ of 27 is computed. Double (stepped) pulsing with linearly rising power enhances Γ to 1750. The value of Γ is not dependent on the absolute magnitude of the piston power, as long as this is large enough. Further enhancement of compression by multiple (stepped) pulsing becomes obvious. The enhanced compression increases the energy gain factor G for a 100 μm DT pellet driven by radiation power of 10 16 W from 6 for a square pulse power with 0.5 MJ absorbed energy to 90 for a double (stepped) linearly rising pulse with absorbed energy of 0.4 MJ assuming perfect coupling efficiency. (author)

  10. Tamanu oil. An alternative fuel for variable compression ratio engine

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Mohan T. [SASTRA Univ., Thanjavur, Tamilnadu (India). Dept. of Mechanical Engineering; Kandasamy, Murugumohan Kumar K. [Pavendar Bharathidasan College of Engineering and Technology, Trichy, Tamilnadu (India). Dept. of Mechanical Engineering

    2012-11-01

    Biodiesel can be produced from vegetable oils and also from waste fats. Biodiesel is a monoalkyl- ester of long chain fatty acids derived from renewable feedstock such as vegetable oils by transesterification process. The esterified cotton seed oil, pungam oil, rice bran oil, and tamanu oil are chosen as the alternative fuels. Among these oils, tamanu oil is considered for the first time as an alternative fuel. An experiment is conducted to obtain the operating characteristics of the variable compression ratio (VCR) engine run by chosen esterified oils, and the results are compared with esterified tamanu oil. From the comparison of results, it is inferred that the engine performance is improved with significant reduction in emissions for the chosen oils without any engine modification. The effective compression ratio can be fixed based on the experimental results obtained in the engine since the findings of the present research work infer that the biodiesel obtained from tamanu oil is a promising alternative fuel for direct-injection four-stroke VCR engine. (orig.)

  11. BENEFITS AND CHALLENGES OF VARIABLE COMPRESSION RATIO AT DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić

    2010-01-01

    Full Text Available The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minimal value must be chosen that can achieve a reliable self-ignition when starting the engine in cold start conditions. In diesel engines, variable compression ratio provides control of peak cylinder pressure, improves cold start ability and low load operation, enabling the multi-fuel capability, increase of fuel economy and reduction of emissions. This paper contains both theoretical and experimental investigation of the impact that automatic variable compression ratios has on working process parameters in experimental diesel engine. Alternative methods of implementing variable compression ratio are illustrated and critically examined.

  12. Transformer ratio enhancement experiment

    International Nuclear Information System (INIS)

    Gai, W.; Power, J. G.; Kanareykin, A.; Neasheva, E.; Altmark, A.

    2004-01-01

    Recently, a multibunch scheme for efficient acceleration based on dielectric wakefield accelerator technology was outlined in J.G. Power, W. Gai, A. Kanareykin, X. Sun. PAC 2001 Proceedings, pp. 114-116, 2002. In this paper we present an experimental program for the design, development and demonstration of an Enhanced Transformer Ratio Dielectric Wakefield Accelerator (ETR-DWA). The principal goal is to increase the transformer ratio R, the parameter that characterizes the energy transfer efficiency from the accelerating structure to the accelerated electron beam. We present here an experimental design of a 13.625 GHz dielectric loaded accelerating structure, a laser multisplitter producing a ramped bunch train, and simulations of the bunch train parameters required. Experimental results of the accelerating structure bench testing and ramped pulsed train generation with the laser multisplitter are shown as well. Using beam dynamic simulations, we also obtain the focusing FODO lattice parameters

  13. Idealized Compression Ratio for a Screw Briquetting Press

    Directory of Open Access Journals (Sweden)

    Peter Biath

    2012-01-01

    Full Text Available This paper deals with issues in determining the ideal compression ratio for a screw briquetting press. First, the principles of operation and a basic description of the main parts of a screw briquetting press are introduced. The next section describes the pressing space by means of 3D software. The pressing space was created using a Boolean subtract function. The final section of the paper measures the partial volumes of the pressing chamber in CATIA V5 by function of measuring. The measured values are substituted into the formula for the compression ratio, and the resulting evaluations are presented in the diagram in the conclusion of this paper.

  14. The Compressed Baryonic Matter experiment

    Directory of Open Access Journals (Sweden)

    Seddiki Sélim

    2014-04-01

    Full Text Available The Compressed Baryonic Matter (CBM experiment is a next-generation fixed-target detector which will operate at the future Facility for Antiproton and Ion Research (FAIR in Darmstadt. The goal of this experiment is to explore the QCD phase diagram in the region of high net baryon densities using high-energy nucleus-nucleus collisions. Its research program includes the study of the equation-of-state of nuclear matter at high baryon densities, the search for the deconfinement and chiral phase transitions and the search for the QCD critical point. The CBM detector is designed to measure both bulk observables with a large acceptance and rare diagnostic probes such as charm particles, multi-strange hyperons, and low mass vector mesons in their di-leptonic decay. The physics program of CBM will be summarized, followed by an overview of the detector concept, a selection of the expected physics performance, and the status of preparation of the experiment.

  15. A Study on the Effects of Compression Ratio, Engine Speed and Equivalence Ratio on HCCI Combustion of DME

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper

    2007-01-01

    An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio was...

  16. Combustion engine variable compression ratio apparatus and method

    Science.gov (United States)

    Lawrence,; Keith, E [Peoria, IL; Strawbridge, Bryan E [Dunlap, IL; Dutart, Charles H [Washington, IL

    2006-06-06

    An apparatus and method for varying a compression ratio of an engine having a block and a head mounted thereto. The apparatus and method includes a cylinder having a block portion and a head portion, a piston linearly movable in the block portion of the cylinder, a cylinder plug linearly movable in the head portion of the cylinder, and a valve located in the cylinder plug and operable to provide controlled fluid communication with the block portion of the cylinder.

  17. Hige Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Heywood, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jo, Young Suk [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lewis, Raymond [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Bromberg, Leslie [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Heywood, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-01-29

    The overall objective of this project was to quantify the potential for improving the performance and efficiency of gasoline engine technology by use of alcohols to suppress knock. Knock-free operation is obtained by direct injection of a second “anti-knock” fuel such as ethanol, which suppresses knock when, with gasoline fuel, knock would occur. Suppressing knock enables increased turbocharging, engine downsizing, and use of higher compression ratios throughout the engine’s operating map. This project combined engine testing and simulation to define knock onset conditions, with different mixtures of gasoline and alcohol, and with this information quantify the potential for improving the efficiency of turbocharged gasoline spark-ignition engines, and the on-vehicle fuel consumption reductions that could then be realized. The more focused objectives of this project were therefore to: Determine engine efficiency with aggressive turbocharging and downsizing and high compression ratio (up to a compression ratio of 13.5:1) over the engine’s operating range; Determine the knock limits of a turbocharged and downsized engine as a function of engine speed and load; Determine the amount of the knock-suppressing alcohol fuel consumed, through the use of various alcohol-gasoline and alcohol-water gasoline blends, for different driving cycles, relative to the gasoline consumed; Determine implications of using alcohol-boosted engines, with their higher efficiency operation, in both light-duty and medium-duty vehicle sectors.

  18. THE EFFECT OF VARIABLE COMPRESSION RATIO ON FUEL CONSUMPTION IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Yakup SEKMEN

    2002-02-01

    Full Text Available Due to lack of energy sources in the world, we are obliged to use our current energy sources in the most efficient way. Therefore, in the automotive industry, research works to manufacture more economic cars in terms of fuelconsumption and environmental friendly cars, at the same time satisfying the required performance have been intensively increasing. Some positive results have been obtained by the studies, aimed to change the compression ratio according to the operating conditions of engine. In spark ignition engines in order to improve the combustion efficiency, fuel economy and exhaust emission in the partial loads, the compression ratio must be increased; but, under the high load and low speed conditions to prevent probable knock and hard running compression ratio must be decreased slightly. In this paper, various research works on the variable compression ratio with spark ignition engines, the effects on fuel economy, power output and thermal efficiency have been investigated. According to the results of the experiments performed with engines having variable compression ratio under the partial and mid-load conditions, an increase in engine power, a decrease in fuel consumption, particularly in partial loads up to 30 percent of fuel economy, and also severe reductions of some exhaust emission values were determined.

  19. A Study on the Effects of Compression Ratio, Engine Speed and Equivalence Ratio on HCCI Combustion of DME

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper

    2007-01-01

    An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio...... was adjusted in steps to find suitable regions of operation, and the effect of engine speed was studied at 1000, 2000 and 3000 RPM. It was found that leaner excess air ratios require higher compression ratios to achieve satisfactory combustion. Engine speed also affects operation significantly....

  20. Compression experiments on the TOSKA tokamak

    International Nuclear Information System (INIS)

    Cima, G.; McGuire, K.M.; Robinson, D.C.; Wootton, A.J.

    1980-10-01

    Results from minor radius compression experiments on a tokamak plasma in TOSCA are reported. The compression is achieved by increasing the toroidal field up to twice its initial value in 200μs. Measurements show that particles and magnetic flux are conserved. When the initial energy confinement time is comparable with the compression time, energy gains are greater than for an adiabatic change of state. The total beta value increases. Central beta values approximately 3% are measured when a small major radius compression is superimposed on a minor radius compression. Magnetic field fluctuations are affected: both the amplitude and period decrease. Starting from low energy confinement times, approximately 200μs, increases in confinement times up to approximately 1 ms are measured. The increase in plasma energy results from a large reduction in the power losses during the compression. When the initial energy confinement time is much longer than the compression time, the parameter changes are those expected for an adiabatic change of state. (author)

  1. THE EFFECTS OF INCREASE THE COMPRESSION RATIO ON PERFORMANCE OF A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Adnan PARLAK

    2003-02-01

    Full Text Available An optimisation of the Diesel cycle has been performed for power output and thermal efficiency with respect to compression ratio for various extreme temperature ratio. The relation between compression ratio and extreme temperature ratio, which gives optimum performance is derived. As the compression ratio of the diesel engine is increased in comparison to the optimum value of the engine, it is shown that the performance of the engine is decreased. The experimental study agrees with these results. In this study, compression ratio of a single cylinder pre-combustion chamber variable compression ratio Ricardo E6 type engine with the optimum compression ratio of 18.20 was increased to 19.60. As a results of this increase, specific fuel consumption was increased about 8 % and brake thermal efficiency was decreased about 7.5 %.

  2. Results of subscale MTF compression experiments

    Science.gov (United States)

    Howard, Stephen; Mossman, A.; Donaldson, M.; Fusion Team, General

    2016-10-01

    In magnetized target fusion (MTF) a magnetized plasma torus is compressed in a time shorter than its own energy confinement time, thereby heating to fusion conditions. Understanding plasma behavior and scaling laws is needed to advance toward a reactor-scale demonstration. General Fusion is conducting a sequence of subscale experiments of compact toroid (CT) plasmas being compressed by chemically driven implosion of an aluminum liner, providing data on several key questions. CT plasmas are formed by a coaxial Marshall gun, with magnetic fields supported by internal plasma currents and eddy currents in the wall. Configurations that have been compressed so far include decaying and sustained spheromaks and an ST that is formed into a pre-existing toroidal field. Diagnostics measure B, ne, visible and x-ray emission, Ti and Te. Before compression the CT has an energy of 10kJ magnetic, 1 kJ thermal, with Te of 100 - 200 eV, ne 5x1020 m-3. Plasma was stable during a compression factor R0/R >3 on best shots. A reactor scale demonstration would require 10x higher initial B and ne but similar Te. Liner improvements have minimized ripple, tearing and ejection of micro-debris. Plasma facing surfaces have included plasma-sprayed tungsten, bare Cu and Al, and gettering with Ti and Li.

  3. Plasma crowbars in cylindrical flux compression experiments

    International Nuclear Information System (INIS)

    Suter, L.J.

    1979-01-01

    We have done a series of one- and two-dimensional calculations of hard-core Z-pinch flux compression experiments in order to study the effect of a plasma on these systems. These calculations show that including a plasma can reduce the amount of flux lost during the compression. Flux losses to the outer wall of such experiments can be greatly reduced by a plasma conducting sheath which forms along the wall. This conducting sheath consists of a cold, dense high β, unmagnetized plasma which has enough pressure to balance a large field gradient. Flux which is lost into the center conductor is not effectively stopped by this plasma sheath until late in the implosion, at which time a layer similar to the one formed at the outer wall is created. Two-dimensionl simulations show that flux losses due to arching along the sliding contact of the experiment can be effectively stopped by the formation of a plasma conducting sheath

  4. Binary rf pulse compression experiment at SLAC

    International Nuclear Information System (INIS)

    Lavine, T.L.; Spalek, G.; Farkas, Z.D.; Menegat, A.; Miller, R.H.; Nantista, C.; Wilson, P.B.

    1990-06-01

    Using rf pulse compression it will be possible to boost the 50- to 100-MW output expected from high-power microwave tubes operating in the 10- to 20-GHz frequency range, to the 300- to 1000-MW level required by the next generation of high-gradient linacs for linear for linear colliders. A high-power X-band three-stage binary rf pulse compressor has been implemented and operated at the Stanford Linear Accelerator Center (SLAC). In each of three successive stages, the rf pulse-length is compressed by half, and the peak power is approximately doubled. The experimental results presented here have been obtained at low-power (1-kW) and high-power (15-MW) input levels in initial testing with a TWT and a klystron. Rf pulses initially 770 nsec long have been compressed to 60 nsec. Peak power gains of 1.8 per stage, and 5.5 for three stages, have been measured. This corresponds to a peak power compression efficiency of about 90% per stage, or about 70% for three stages, consistent with the individual component losses. The principle of operation of a binary pulse compressor (BPC) is described in detail elsewhere. We recently have implemented and operated at SLAC a high-power (high-vacuum) three-stage X-band BPC. First results from the high-power three-stage BPC experiment are reported here

  5. THE EFFECT OF COMPRESSION RATIO VARIATIONS ON THE ENGINE PERFORMANCE PARAMETRES IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Yakup SEKMEN

    2005-01-01

    Full Text Available Performance of the spark ignition engines may be increased by changing the geometrical compression ratio according to the amount of charging in cylinders. The designed geometrical compression ratio can be realized as an effective compression ratio under the full load and full open throttle conditions since the effective compression ratio changes with the amount of charging into the cylinder in spark ignition engines. So, this condition of the spark ignition engines forces designers to change their geometrical compression ratio according to the amount of charging into the cylinder for improvement of performance and fuel economy. In order to improve the combustion efficiency, fuel economy, power output, exhaust emissions at partial loads, compression ratio must be increased; but, under high load and low speed conditions to prevent probable knock and hard running the compression ratio must be decreased gradually. In this paper, relation of the performance parameters to compression ratio such as power, torque, specific fuel consumption, cylindir pressure, exhaust gas temperature, combustion chamber surface area/volume ratio, thermal efficiency, spark timing etc. in spark ignition engines have been investigated and using of engines with variable compression ratio is suggested to fuel economy and more clear environment.

  6. The FRX-C/LSM compression experiment

    International Nuclear Information System (INIS)

    Rej, D.J.; Siemon, R.E.; Taggart, D.P.

    1989-01-01

    After two years of preparation, hardware for high-power FRC compression heating studies is now being installed onto FRX-C/LSM. FRCs will be formed and translated out of the θ-pinch source, and into a compressor where the external B-field will be increased from 0.4 to 2 T in 55 μs. The compressed FRC can then be translated into a third stage for further study. A principal experimental goal is to study FRC confinement at the high energy density, n(T/sub e/ + T/sub i/) ≤ 1.0 /times/ 10 22 keV/m 3 , associated with the large external field. Experiments are scheduled to begin in April. 11 refs., 5 figs

  7. High aspect ratio spheromak experiments

    International Nuclear Information System (INIS)

    Robertson, S.; Schmid, P.

    1987-05-01

    The Reversatron RFP (R/a = 50cm/8cm) has been operated as an ohmically heated spheromak of high aspect ratio. We find that the dynamo can drive the toroidal field upward at rates as high as 10 6 G/sec. Discharges can be initiated and ramped upward from seed fields as low as 50 G. Small toroidal bias fields of either polarity (-0.2 < F < 0.2) do not significantly affect operation. 5 refs., 3 figs

  8. Effect Of Compression Ratio On The Performance Of Diesel Engine At Different Loads.

    OpenAIRE

    Abhishek Reddy G; Nirmal Pratap Singh

    2015-01-01

    Variable compression ratio (VCR) technology has long been recognized as a method for improving the automobile engine performance, efficiency, fuel economy with reduced emission. The main feature of the VCR engine is to operate at different compression ratio, by changing the combustion chamber volume, depending on the vehicle performance needs .The need to improve the performance characteristics of the IC Engine has necessitated the present research. Increasing the compression rati...

  9. The Compressed Baryonic Matter Experiment at FAIR

    International Nuclear Information System (INIS)

    Heuser, Johann M.

    2013-01-01

    The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryon densities. The experiment is being laid out for nuclear collision rates from 0.1 to 10 MHz to access a unique wide spectrum of probes, including rarest particles like hadrons containing charm quarks, or multi-strange hyperons. The physics programme will be performed with ion beams of energies up to 45 GeV/nucleon. Those will be delivered by the SIS-300 synchrotron at the completed FAIR accelerator complex. Parts of the research programme can already be addressed with the SIS-100 synchrotron at the start of FAIR operation in 2018. The initial energy range of up to 11 GeV/nucleon for heavy nuclei, 14 GeV/nucleon for light nuclei, and 29 GeV for protons, allows addressing the equation of state of compressed nuclear matter, the properties of hadrons in a dense medium, the production and propagation of charm near the production threshold, and exploring the third, strange dimension of the nuclide chart. In this article we summarize the CBM physics programme, the preparation of the detector, and give an outline of the recently begun construction of the Facility for Antiproton and Ion Research

  10. The influence of Compression Ratio to Performance of Four Stroke Engine Use of Arak Bali as a Fuel

    Directory of Open Access Journals (Sweden)

    I Dewa Made Krishna Muku

    2012-11-01

    Full Text Available Arak bali is alternative fuel as ethanol. Ethanol has octane number 108. Octane number which was higher can over come adetonation, and can work at higher compression ratio. This experiment has done to now how the effect of compression ratiovariation to the performance four strokes engine by arak bali fuel. This research was done by changing the compressionratio that is 8,8 : 1, 8,9 : 1, 9 : 1 and 9,3 : 1. The change was done by reducing combustion chamber by scrap the cylinderhead. The result, for the used arak bali fuel to the vehicle is, if engine compression ratio to increase can be influence ofengine performance to be increase and engine fuel consumption to be decrease. For premium is, if engine compression ratioto increase to influence of engine performance to be decrease and engine fuel consumption to be increase.

  11. Evaluation of compression ratio using JPEG 2000 on diagnostic images in dentistry

    International Nuclear Information System (INIS)

    Jung, Gi Hun; Han, Won Jeong; Yoo, Dong Soo; Kim, Eun Kyung; Choi, Soon Chul

    2005-01-01

    To find out the proper compression ratios without degrading image quality and affecting lesion detectability on diagnostic images used in dentistry compressed with JPEG 2000 algorithm. Sixty Digora peri apical images, sixty panoramic computed radiographic (CR) images, sixty computed tomography (CT) images, and sixty magnetic resonance (MR) images were compressed into JPEG 2000 with ratios of 10 levels from 5:1 to 50:1. To evaluate the lesion detectability, the images were graded with 5 levels (1 : definitely absent ; 2 : probably absent ; 3 : equivocal ; 4 : probably present ; 5 : definitely present), and then receiver operating characteristic analysis was performed using the original image as a gold standard. Also to evaluate subjectively the image quality, the images were graded with 5 levels (1 : definitely unacceptable ; 2 : probably unacceptable ; 3 : equivocal ; 4 : probably acceptable ; 5 : definitely acceptable), and then paired t-test was performed. In Digora, CR panoramic and CT images, compressed images up to ratios of 15:1 showed nearly the same lesion detectability as original images, and in MR images, compressed images did up to ratios of 25:1. In Digora and CR panoramic images, compressed images up to ratios of 5:1 showed little difference between the original and reconstructed images in subjective assessment of image quality. In CT images, compressed images did up to ratios of 10:1 and in MR images up to ratios of 15:1. We considered compression ratios up to 5:1 in Digora and CR panoramic images, up to 10:1 in CT images, up to 15:1 in MR images as clinically applicable compression ratios.

  12. Compression measurement in laser driven implosion experiments

    International Nuclear Information System (INIS)

    Attwood, D.T.; Cambell, E.M.; Ceglio, N.M.; Lane, S.L.; Larsen, J.T.; Matthews, D.M.

    1981-01-01

    This paper discusses the measurement of compression in the context of the Inertial Confinement Fusion Programs' transition from thin-walled exploding pusher targets, to thicker walled targets which are designed to lead the way towards ablative type implosions which will result in higher fuel density and pR at burn time. These experiments promote desirable reactor conditions but pose diagnostic problems because of reduced multi-kilovolt x-ray and reaction product emissions, as well as increasingly more difficult transport problems for these emissions as they pass through the thicker pR pusher conditions. Solutions to these problems, pointing the way toward higher energy twodimensional x-ray images, new reaction product imaging ideas and the use of seed gases for both x-ray spectroscopic and nuclear activation techniques are identified

  13. Effect of raw material ratios on the compressive strength of magnesium potassium phosphate chemically bonded ceramics

    International Nuclear Information System (INIS)

    Wang, Ai-juan; Yuan, Zhi-long; Zhang, Jiao; Liu, Lin-tao; Li, Jun-ming; Liu, Zheng

    2013-01-01

    The compressive strength of magnesium potassium phosphate chemically bonded ceramics is important in biomedical field. In this work, the compressive strength of magnesium potassium phosphate chemically bonded ceramics was investigated with different liquid-to-solid and MgO-to-KH 2 PO 4 ratios. X-ray diffractometer was applied to characterize its phase composition. The microstructure was imaged using a scanning electron microscope. The results showed that the compressive strength of the chemically bonded ceramics increased with the decrease of liquid-to-solid ratio due to the change of the packing density and the crystallinity of hydrated product. However, with the increase of MgO-to-KH 2 PO 4 weight ratio, its compressive strength increased firstly and then decreased. The low compressive strength in lower MgO-to-KH 2 PO 4 ratio might be explained by the existence of the weak phase KH 2 PO 4 . However, the low value of compressive strength with the higher MgO-to-KH 2 PO 4 ratio might be caused by lack of the joined phase in the hydrated product. Besides, it has been found that the microstructures were different in these two cases by the scanning electron microscope. Colloidal structure appeared for the samples with lower liquid-to-solid and higher MgO-to-KH 2 PO 4 ratios possibly because of the existence of amorphous hydrated products. The optimization of both liquid-to-solid and MgO-to-KH 2 PO 4 ratios was important to improve the compressive strength of magnesium potassium phosphate chemically bonded ceramics. - Highlights: • High packing density and amorphous hydrated phase improved the compressive strength. • Residual KH 2 PO 4 and poor bonding phase lower the compressive strength. • MPCBC fabricated with optimized parameters had the highest compressive strength

  14. The Compressed Baryonic Matter experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Höhne Claudia

    2018-01-01

    Full Text Available The CBM experiment will investigate highly compressed baryonic matter created in A+A collisions at the new FAIR research center. With a beam energy range up to 11 AGeV for the heaviest nuclei at the SIS 100 accelerator, CBM will investigate the QCD phase diagram in the intermediate range, i.e. at moderate temperatures but high net-baryon densities. This intermediate range of the QCD phase diagram is of particular interest, because a first order phase transition ending in a critical point and possibly new highdensity phases of strongly interacting matter are expected. In this range of the QCD phase diagram only exploratory measurements have been performed so far. CBM, as a next generation, high-luminosity experiment, will substantially improve our knowledge of matter created in this region of the QCD phase diagram and characterize its properties by measuring rare probes such as multi-strange hyperons, dileptons or charm, but also with event-by-event fluctuations of conserved quantities, and collective flow of identified particles. The experimental preparations with special focus on hadronic observables and strangeness is presented in terms of detector development, feasibility studies and fast track reconstruction. Preparations are progressing well such that CBM will be ready with FAIR start. As quite some detectors are ready before, they will be used as upgrades or extensions of already running experiments allowing for a rich physics program prior to FAIR start.

  15. The Compressed Baryonic Matter Experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Heuser J.M.

    2011-04-01

    Full Text Available The Compressed Baryonic Matter (CBM experiment is being planned at the international research centre FAIR, under realization next to the GSI laboratory in Darmstadt, Germany. Its physics programme addresses the QCD phase diagram in the region of highest net baryon densities. Of particular interest are the expected first order phase transition from partonic to hadronic matter, ending in a critical point, and modifications of hadron properties in the dense medium as a signal of chiral symmetry restoration. Laid out as a fixed-target experiment at the synchrotrons SIS-100/SIS-300, providing magnetic bending power of 100 and 300 T/m, the CBM detector will record both proton-nucleus and nucleus-nucleus collisions at beam energies up to 45A GeV. Hadronic, leptonic and photonic observables have to be measured with large acceptance. The nuclear interaction rates will reach up to 10 MHz to measure extremely rare probes like charm near threshold. Two versions of the experiment are being studied, optimized for either electron-hadron or muon identification, combined with silicon detector based charged-particle tracking and micro-vertex detection. The research programme will start at SIS-100 with ion beams between 2 and 11A GeV, and protons up to energies of 29 GeV using the HADES detector and an initial configuration of the CBM experiment. The CBM physics requires the development of novel detector systems, trigger and data acquisition concepts as well as innovative real-time reconstruction techniques. Progress with feasibility studies of the experiment and the development of its detector systems are discussed.

  16. Effect of compression ratio on performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas

    International Nuclear Information System (INIS)

    Bora, Bhaskor J.; Saha, Ujjwal K.; Chatterjee, Soumya; Veer, Vijay

    2014-01-01

    Highlights: • Maximum brake thermal efficiency of 20.04% was obtained in dual fuel mode. • Compression ratio of 18 produced the maximum brake thermal efficiency. • Maximum replacement of diesel was found to be 79.46% at a compression ratio of 18. • CO gets reduced by 26.22% with the increase of compression ratio from 16 to18. • HC gets reduced by 41.97% with the increase of compression ratio from 16 to18. - Abstract: The energy consumption of the world is increasing at a staggering rate due to population explosion. The extensive use of energy has led to fossil fuel depletion and the rise in pollution. Renewable energy holds the key solution to these aforementioned problems. Biogas, one such renewable fuel, can be used in a diesel engine under dual fuel mode for the generation of power. This work attempts to unfold the effect of compression ratio on the performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas. For this investigation, a 3.5 kW single cylinder, direct injection, water cooled, variable compression ratio diesel engine is converted into a biogas run dual fuel diesel engine by connecting a venturi gas mixer at the inlet manifold. Experiments have been conducted at various compression ratios (18, 17.5, 17 and 16) and under different loading conditions fixing the standard injection timing at 23° before top dead centre. At 100% load, the brake thermal efficiencies of the dual fuel mode are found to be 20.04%, 18.25%, 17.07% and 16.42% at compression ratios of 18, 17.5, 17 and 16, respectively, whereas at the same load, the diesel mode shows an efficiency of 27.76% at a compression ratio of 17.5. The maximum replacement of the precious fossil fuel is found to be 79.46%, 76.1%, 74% and 72% at compression ratios of 18, 17.5, 17 and 16, respectively at 100% load. For the dual fuel mode, on an average, there is a reduction in carbon monoxide as well as hydrocarbon emission by 26.22% and 41.97% when compression

  17. Prediction of the compression ratio for municipal solid waste using decision tree.

    Science.gov (United States)

    Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed

    2014-01-01

    The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.

  18. Particular mechanism for continuously varying the compression ratio for an internal combustion engine

    Science.gov (United States)

    Raţiu, S.; Cătălinoiu, R.; Alexa, V.; Miklos, I.; Cioată, V.

    2018-01-01

    Variable compression ratio (VCR) is a technology to adjust the compression ratio of an internal combustion engine while the engine is in operation. The paper proposes the presentation of a particular mechanism allowing the position of the top dead centre to be changed, while the position of the bottom dead centre remains fixed. The kinematics of the mechanism is studied and its trajectories are graphically represented for different positions of operation.

  19. Recoil Experiments Using a Compressed Air Cannon

    Science.gov (United States)

    Taylor, Brett

    2006-01-01

    Ping-Pong vacuum cannons, potato guns, and compressed air cannons are popular and dramatic demonstrations for lecture and lab. Students enjoy them for the spectacle, but they can also be used effectively to teach physics. Recently we have used a student-built compressed air cannon as a laboratory activity to investigate impulse, conservation of…

  20. An analysis of the efficacy of bag-valve-mask ventilation and chest compression during different compression-ventilation ratios in manikin-simulated paediatric resuscitation.

    Science.gov (United States)

    Kinney, S B; Tibballs, J

    2000-01-01

    The ideal chest compression and ventilation ratio for children during performance of cardiopulmonary resuscitation (CPR) has not been determined. The efficacy of chest compression and ventilation during compression ventilation ratios of 5:1, 10:2 and 15:2 was examined. Eighteen nurses, working in pairs, were instructed to provide chest compression and bag-valve-mask ventilation for 1 min with each ratio in random on a child-sized manikin. The subjects had been previously taught paediatric CPR within the last 3 or 5 months. The efficacy of ventilation was assessed by measurement of the expired tidal volume and the number of breaths provided. The rate of chest compression was guided by a metronome set at 100/min. The efficacy of chest compressions was assessed by measurement of the rate and depth of compression. There was no significant difference in the mean tidal volume or the percentage of effective chest compressions delivered for each compression-ventilation ratio. The number of breaths delivered was greatest with the ratio of 5:1. The percentage of effective chest compressions was equal with all three methods but the number of effective chest compressions was greatest with a ratio of 5:1. This study supports the use of a compression-ventilation ratio of 5:1 during two-rescuer paediatric cardiopulmonary resuscitation.

  1. LSP Simulations of the Neutralized Drift Compression Experiment

    CERN Document Server

    Thoma, Carsten H; Gilson, Erik P; Henestroza, Enrique; Roy, Prabir K; Welch, Dale; Yu, Simon

    2005-01-01

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory involves the longitudinal compression of a singly-stripped K ion beam with a mean energy of 250 keV in a meter long plasma. We present simulation results of compression of the NDCX beam using the PIC code LSP. The NDCX beam encounters an acceleration gap with a time-dependent voltage that decelerates the front and accelerates the tail of a 500 ns pulse which is to be compressed 110 cm downstream. The simulations model both ideal and experimental voltage waveforms. Results show good longitudinal compression without significant emittance growth.

  2. Compressed baryonic matter experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Jürgen Eschke

    2012-02-01

    Full Text Available The Compressed Baryonic Matter (CBM experiment is being planned at the Facility for Antiproton and Ion Research (FAIR, under realization next to the GSI laboratory in Darmstadt, Germany. Its physics programme addresses the QCD phase diagram in the region of highest net baryon densities. Of particular interest are the expected first order phase transition from partonic to hadronic matter, ending in a critical point, and modifcations of hadron properties in the dense medium as a signal of chiral symmetry restoration. Laid out as a fixed-target experiment at the synchrotrons SIS-100/SIS-300, providing magnetic bending power of 100 and 300 T/Fm, the CBM detector will record both proton-nucleus and nucleus-nucleus collisions at beam energies up to 45 AGeV. Hadronic, leptonic and photonic observables will be measured in a large acceptance. The nuclear interaction rates will reach up to 10 MHz to measure extremely rare probes like charm near threshold. This requires the development of novel detector systems, trigger and data acquisition concepts as well as in- novative real-time reconstruction techniques. A key observable of the physics program is a precise measurement of lowmass vector mesons and charmonium in their leptonic decay channel. In CBM, electrons will be identified using a gaseous RICH detector combined with several TRD detectors positioned after a system of silicon tracking stations which are located inside a magnetic dipole field. The concept of the RICH detector, results on R & D as well as feasibility studies and invariant mass distributions of charmonium will be discussed.

  3. Compressible gas flow through idealized cracks of large aspect ratio

    International Nuclear Information System (INIS)

    Chivers, T.C.; Skinner, J.; Williams, M.E.

    1975-07-01

    Gas flow through large aspect ratio idealized cracks is considered, where isothermal conditions with choking at exit are assumed in the theoretical analysis. For smooth wall cracks, comparisons are made between experimentally determined flowrates and those predicted, and good agreement is shown. This is followed by consideration of flow through a notional crack to examine the influence of width and surface roughness. By considering flow as simply proportional to Wsup(n), the treatment shows 'n' to reduce with W increasing, but surface roughness increases 'n' over the value appropriate to smooth conditions. From these observations it is concluded that further work is required to determine:- (i) real crack geometry and its influence on any leak-before-break philosophy, and (ii) the influence of real surface roughness on flowrate. (author)

  4. The compressed baryonic matter experiment at FAIR

    International Nuclear Information System (INIS)

    Senger, Peter

    2015-01-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At top RHIC and LHC energies, the QCD phase diagram is studied at very high temperatures and very low net-baryon densities. These conditions presumably existed in the early universe about a microsecond after the big bang. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure such as a critical point, a first order phase transition between hadronic and partonic matter, or new phases like quarkyonic matter. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at neutron star core densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure rare diagnostic probes such as multi-strange hyperons, charmed particles and vector mesons decaying into lepton pairs with unprecedented precision and statistics. Most of these particles will be studied for the first time in the FAIR energy range. In order to achieve the required precision, the measurements will be performed at very high reaction rates of 100 kHz to 10 MHz. This requires very fast and radiation-hard detectors, and a novel data read-out and analysis concept based on free streaming front-end electronics and a high-performance computing cluster for online event selection. The layout, the physics performance, and the status of the proposed CBM experimental facility

  5. Combustion and Emission Characteristics of Variable Compression Ignition Engine Fueled with Jatropha curcas Ethyl Ester Blends at Different Compression Ratio

    Directory of Open Access Journals (Sweden)

    Rajneesh Kumar

    2014-01-01

    Full Text Available Engine performance and emission characteristics of unmodified biodiesel fueled diesel engines are highly influenced by their ignition and combustion behavior. In this study, emission and combustion characteristics were studied when the engine operated using the different blends (B10, B20, B30, and B40 and normal diesel fuel (B0 as well as when varying the compression ratio from 16.5 : 1 to 17.5 : 1 to 18.5 : 1. The change of compression ratio from 16.5 : 1 to 18.5 : 1 resulted in 27.1%, 27.29%, 26.38%, 28.48%, and 34.68% increase in cylinder pressure for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions. Higher peak heat release rate increased by 23.19%, 14.03%, 26.32%, 21.87%, and 25.53% for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions, when compression ratio was increased from16.5 : 1 to 18.5 : 1. The delay period decreased by 21.26%, CO emission reduced by 14.28%, and NOx emission increased by 22.84% for B40 blends at 75% of rated load conditions, when compression ratio was increased from 16.5 : 1 to 18.5 : 1. It is concluded that Jatropha oil ester can be used as fuel in diesel engine by blending it with diesel fuel.

  6. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    Science.gov (United States)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  7. Effects of particle exhaust on neutral compression ratios in DIII-D

    International Nuclear Information System (INIS)

    Colchin, R.J.; Maingi, R.; Wade, M.R.; Allen, S.L.; Greenfield, C.M.

    1998-08-01

    In this paper, neutral particles in DIII-D are studied via their compression in the plenum and via particle exhaust. The compression of gas in the plena is examined in terms of the magnetic field configuration and wall conditions. DIII-D compression ratios are observed in the range from 1 to ≥ 1,000. Particle control ultimately depends on the exhaust of neutrals via plenum or wall pumping. Wall pumping or outgassing is calculated by means of a detailed particle balance throughout individual discharges, and its effect on particle control is discussed. It is demonstrated that particle control through wall conditioning leads to lower normalized densities. A two-region model shows that the gas compression ratio (C div = divertor plenum neutral pressure/torus neutral pressure) can be interpreted in relation to gas flows in the torus and divertor including the pumping speed of the plenum cryopumps, plasma pumping, and the pumping or outgassing of the walls

  8. Application of Compressive Sensing to Gravitational Microlensing Experiments

    Science.gov (United States)

    Korde-Patel, Asmita; Barry, Richard K.; Mohsenin, Tinoosh

    2016-01-01

    Compressive Sensing is an emerging technology for data compression and simultaneous data acquisition. This is an enabling technique for significant reduction in data bandwidth, and transmission power and hence, can greatly benefit spaceflight instruments. We apply this process to detect exoplanets via gravitational microlensing. We experiment with various impact parameters that describe microlensing curves to determine the effectiveness and uncertainty caused by Compressive Sensing. Finally, we describe implications for spaceflight missions.

  9. Energetic and exergetic analyses of a variable compression ratio spark ignition gas engine

    International Nuclear Information System (INIS)

    Javaheri, A.; Esfahanian, V.; Salavati-Zadeh, A.; Darzi, M.

    2014-01-01

    Highlights: • Effects of CR and λ on CNG SI ICE 1st and 2nd law analyses are experimentally studied. • The performance of pure methane and a real CNG are observed and compared. • The ratio of actual to Otto cycle thermal efficiencies is 0.78 for all cases. • At least 25.5% of destructed availability is due to combustion irreversibility. • With decrease in methane content, CNG shows more combustion irreversibility. - Abstract: Considering the significance of obtaining higher efficiencies from internal combustion engines (ICE) along with the growing role of natural gas as a fuel, the present work is set to explore the effects of compression ratio (CR hereafter) and air/fuel equivalence ratio (AFER hereafter) on the energy and exergy potentials in a gas-fueled spark ignition internal combustion engine. Experiments are carried out using a single cylinder, port injection, water cooled, variable compression ratio (VCR hereafter), spark ignition engine at a constant engine speed of 2000 rpm. The study involves CRs of 12, 14 and 16 and 10 AFERs between 0.8 and 1.25. Pure methane is utilized for the analysis. In addition, a natural gas blend with the minimum methane content among Iranian gas sources is also tested in order to investigate the effect of real natural gas on findings. The energy analysis involves input fuel power, indicated power and losses due to high temperature of exhaust gases and their unburned content, blow-by and heat loss. The exergy analysis is carried out for availability input and piston, exhaust, and losses availabilities along with destructed entropy. The analysis indicates an increase in the ratio of thermo-mechanical exhaust availability to fuel availability by CR with a maximum near stoichiometry, whereas it is shown that chemical exhaust exergy is not dependent on CR and reduces with AFER. In addition, it is indicated that the ratio of actual cycle to Otto cycle thermal efficiencies is about constant (about 0.784) with changing CR

  10. Thermodynamic analysis of a variable compression ratio diesel engine running with palm oil methyl ester

    International Nuclear Information System (INIS)

    Debnath, Biplab K.; Sahoo, Niranjan; Saha, Ujjwal K.

    2013-01-01

    Highlights: ► Energy and exergy analysis of palm oil methyl ester (POME) run diesel engine. ► Engine was run at various compression ratios (CRs) and injection timings (ITs). ► POME can recover around 26% of the energy supplied by the fuel. ► CR rise and IT change cause shaft energy per unit fuel supply to increase. ► CR of 18 and IT of 20°BTDC reduce more entropy generation. - Abstract: The present work is set to explore the effect of compression ratio (CR) and injection timing (IT) on energy and exergy potential of a palm oil methyl ester (POME) run diesel engine. Experiments are carried out in a single cylinder, direct injection, water cooled variable compression ratio diesel engine at a constant peed of 1500 rpm under a full load of 4.24 bar brake mean effective pressure (BMEP). The study involves four different CRs of 16, 17, 17.5 and 18; and three different ITs of 20°, 23° and 28°BTDC. Here, the CR of 17.5 and IT of 23°BTDC are the standard ones. The energy analysis performed for the experimental data includes shaft power, energy input through fuel, output by cooling water and exhaust, uncounted loss per unit time. Side by side, the effects of varying CR and IT on peak pressure, peak heat release rate, brake thermal efficiency and exhaust gas temperature are also studied. The exergy analysis is carried out for availability input, shaft, cooling water and exhaust availability, availability destruction and entropy generation. It shows that higher values of CR increase the shaft availability and cooling water availability, however, they decrease the exhaust flow availability. The retardation and advancement of IT give similar results. The exergy analysis also shows that with the increase of CR, the injection retardation and advancement increase the shaft availability and exergy efficiency, while it reduces the exergy destruction. The entropy generation is also reduced for the similar CR and IT modifications.

  11. A Fast Faraday Cup for the Neutralized Drift Compression Experiment

    CERN Document Server

    Sefkow, Adam; Coleman, Joshua E; Davidson, Ronald C; Efthimion, Philip; Eylon, Shmuel; Gilson, Erik P; Greenway, Wayne; Henestroza, Enrique; Kwan, Joe W; Roy, Prabir K; Vanecek, David; Waldron, William; Welch, Dale; Yu, Simon

    2005-01-01

    Heavy ion drivers for high energy density physics applications and inertial fusion energy use space-charge-dominated beams which require longitudinal bunch compression in order to achieve sufficiently high beam intensity at the target. The Neutralized Drift Compression Experiment-1A (NDCX-1A) at Lawrence Berkeley National Laboratory (LBNL) is used to determine the effective limits of neutralized drift compression. NDCX-1A investigates the physics of longitudinal drift compression of an intense ion beam, achieved by imposing an initial velocity tilt on the drifting beam and neutralizing the beam's space-charge with background plasma. Accurately measuring the longitudinal compression of the beam pulse with high resolution is critical for NDCX-1A, and an understanding of the accessible parameter space is modeled using the LSP particle-in-cell (PIC) code. The design and preliminary experimental results for an ion beam probe which measures the total beam current at the focal plane as a function of time are summari...

  12. Image compression software for the SOHO LASCO and EIT experiments

    Science.gov (United States)

    Grunes, Mitchell R.; Howard, Russell A.; Hoppel, Karl; Mango, Stephen A.; Wang, Dennis

    1994-01-01

    This paper describes the lossless and lossy image compression algorithms to be used on board the Solar Heliospheric Observatory (SOHO) in conjunction with the Large Angle Spectrometric Coronograph and Extreme Ultraviolet Imaging Telescope experiments. It also shows preliminary results obtained using similar prior imagery and discusses the lossy compression artifacts which will result. This paper is in part intended for the use of SOHO investigators who need to understand the results of SOHO compression in order to better allocate the transmission bits which they have been allocated.

  13. Commissioning Results of the Upgraded Neutralized Drift Compression Experiment

    International Nuclear Information System (INIS)

    Lidia, S.M.; Roy, P.K.; Seidl, P.A.; Waldron, W.L.; Gilson, E.P.

    2009-01-01

    Recent changes to the NDCX beamline offer the promise of higher charge compressed bunches (>15nC), with correspondingly large intensities (>500kW/cm 2 ), delivered to the target plane for ion-beam driven warm dense matter experiments. We report on commissioning results of the upgraded NDCX beamline that includes a new induction bunching module with approximately twice the volt-seconds and greater tuning flexibility, combined with a longer neutralized drift compression channel.

  14. Investigations of effects of pilot injection with change in level of compression ratio in a common rail diesel engine

    Directory of Open Access Journals (Sweden)

    Gajarlawar Nilesh

    2013-01-01

    Full Text Available These day diesel engines are gaining lots of attention as prime movers for various source of transportation. It offers better drive ability, very good low end torque and importantly the lower CO2 emission. Diesel engines are bridging the gap between gasoline and diesel engines. Better noise vibration and harshness levels of gasoline engine are realized to great extent in diesel engine, thanks to common rail direct injection system. Common rail injection system is now well known entity. Its unique advantage is flexible in operation. In common rail injection system, number of injection prior and after main injection at different injection pressure is possible. Due to multiple injections, gain in emission reduction as well as noise has been already experienced and demonstrated by researcher in the past. However, stringent emission norms for diesel engine equipped vehicle demands for further lower emission of oxides of nitrogen (NOx and particulate matter (PM. In the present paper, authors attempted to study the effect of multiple injections in combination with two level of compression ratio. The aim was to study the combustion behavior with the reduced compression ratio which is going to be tried out as low temperature combustion concept in near future. The results were compared with the current level of compression ratio. Experiments were carried out in 2.2L cubic capacity engine with two levels of compression ratios. Pilot injection separation and quantities were varied keeping the main injection, rail pressure, boost pressure and EGR rate constant. Cylinder pressure traces and gross heat release rates were measured and analyzed to understand the combustion behavior.

  15. On the characterisation of the dynamic compressive behaviour of silicon carbides subjected to isentropic compression experiments

    Directory of Open Access Journals (Sweden)

    Zinszner Jean-Luc

    2015-01-01

    Full Text Available Ceramic materials are commonly used as protective materials particularly due to their very high hardness and compressive strength. However, the microstructure of a ceramic has a great influence on its compressive strength and on its ballistic efficiency. To study the influence of microstructural parameters on the dynamic compressive behaviour of silicon carbides, isentropic compression experiments have been performed on two silicon carbide grades using a high pulsed power generator called GEPI. Contrary to plate impact experiments, the use of the GEPI device and of the lagrangian analysis allows determining the whole loading path. The two SiC grades studied present different Hugoniot elastic limit (HEL due to their different microstructures. For these materials, the experimental technique allowed evaluating the evolution of the equivalent stress during the dynamic compression. It has been observed that these two grades present a work hardening more or less pronounced after the HEL. The densification of the material seems to have more influence on the HEL than the grain size.

  16. Potential for using a tyre pyrolysis oil-biodiesel blend in a diesel engine at different compression ratios

    International Nuclear Information System (INIS)

    Sharma, Abhishek; Murugan, S.

    2015-01-01

    Highlights: • The possibility of operating a compression ignition engine with a non petroleum diesel fuel. • A possible solution to replace certain amount of biodiesel by tyre pyrolysis oil in a biodiesel fueled diesel engine. • The optimum compression ratio for engine fueled with biodiesel-tyre pyrolysis oil blend. - Abstract: This study is aimed at investigating effects of varying the compression ratio at optimum injection timing and nozzle opening pressure on the behaviour of a diesel engine, using a non-petroleum fuel, i.e. a blend of 80% biodiesel, and 20% oil obtained from pyrolysis of waste tyres. The engine was subjected to one lower (16.5) and one higher (18.5) compression ratio in addition to the standard compression ratio of 17.5. At the higher compression ratio of 18.5 and full load, shorter ignition delay, maximum cylinder pressure and higher heat release rate were found for the blend, compared to those of the original compression ratio. The increase in the compression ratio from 17.5 to 18.5 for the blend improved the brake thermal efficiency by about 8% compared to that of the original compression ratio at full load. The experimental results indicated that for the blend at a higher compression ratio of 18.5, the brake specific carbon monoxide (BSCO), brake specific hydrocarbon emission (BSHC) and smoke opacity were reduced by about 10.5%, 32%, and 17.4% respectively, than those of the original compression ratio at full load

  17. Finite Element Analysis of Increasing Column Section and CFRP Reinforcement Method under Different Axial Compression Ratio

    Science.gov (United States)

    Jinghai, Zhou; Tianbei, Kang; Fengchi, Wang; Xindong, Wang

    2017-11-01

    Eight less stirrups in the core area frame joints are simulated by ABAQUS finite element numerical software. The composite reinforcement method is strengthened with carbon fiber and increasing column section, the axial compression ratio of reinforced specimens is 0.3, 0.45 and 0.6 respectively. The results of the load-displacement curve, ductility and stiffness are analyzed, and it is found that the different axial compression ratio has great influence on the bearing capacity of increasing column section strengthening method, and has little influence on carbon fiber reinforcement method. The different strengthening schemes improve the ultimate bearing capacity and ductility of frame joints in a certain extent, composite reinforcement joints strengthening method to improve the most significant, followed by increasing column section, reinforcement method of carbon fiber reinforced joints to increase the minimum.

  18. Analysis of Large-Strain Extrusion Machining with Different Chip Compression Ratios

    Directory of Open Access Journals (Sweden)

    Wen Jun Deng

    2012-01-01

    Full Text Available Large-Strain Extrusion Machining (LSEM is a novel-introduced process for deforming materials to very high plastic strains to produce ultra-fine nanostructured materials. Before the technique can be exploited, it is important to understand the deformation behavior of the workpiece and its relationship to the machining parameters and friction conditions. This paper reports finite-element method (FEM analysis of the LSEM process to understand the evolution of temperature field, effective strain, and strain rate under different chip compression ratios. The cutting and thrust forces are also analyzed with respect to time. The results show that LSEM can produce very high strains by changing in the value of chip compression ratio, thereby enabling the production of nanostructured materials. The shape of the chip produced by LSEM can also be geometrically well constrained.

  19. Compressibility and resiliency properties of wilton type woven carpets produced with different fiber blend ratio

    Science.gov (United States)

    Osman, B.; Esin, S.; Sıdıka Ziba, O.

    2017-10-01

    Carpet is a textile structure that composed of three components: warp (stuffer and chain warp), weft and pile yarns. These textile products are used for areas which will stand up to the use of home, hotel, work place etc. Furthermore, the capable of carpets are related to it’s especially pile performance during use in various areas. During usage, carpets made from various type of raw materials of pile yarn also acts differently that these differentiate determines carpet performance, as well.This study was focused on the compression and resilience behaviour of carpet composed of 100% viscose and 100% acrylic pile yarns and blended pile yarns of blend ratios, 80%/20%, 50%/50% and 20%/80% viscose/acrylic. During the yarn production process, all spinning conditions were kept constant in order to eliminate the yarn production parameters. Five different types of wilton face to face carpet samples were produced from these yarns at the same pile height and pile density on Van de Wiele carpet weaving machine at 110 picks/min machine speed and 1/1 V carpet construction. Compressibility properties of carpets were examined whether blend ratio was statistically significant on carpet resilience or not. The behaviour of pile yarns under pressure is important that leads to understand the growth characteristic which is exposed to decrease and increase loadings during usage of carpet made from these yarns. Results indicated that blend ratio of pile yarns have significance effect on compression behaviour of carpet samples.

  20. A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio

    International Nuclear Information System (INIS)

    Benajes, Jesús; Pastor, José V.; García, Antonio; Boronat, Vicente

    2016-01-01

    Highlights: • RCCI with CR 12.75 reaches up to 80% load fulfilling mechanical limits. • Ultra-low levels in NOx and soot emissions are obtained in the whole engine map. • Ultra-high levels of CO and uHC have been measured overall at low load. • RCCI improves fuel consumption from 25% to 80% engine loads comparing with CDC. - Abstract: Reactivity Controlled Compression Ignition concept offers an ultra-low nitrogen oxide and soot emissions with a high thermal efficiency. This work investigates the capabilities of this low temperature combustion concept to work on the whole map of a medium duty engine proposing strategies to solve its main challenges. In this sense, an extension to high loads of the concept without exceeding mechanical stress as well as a mitigation of carbon oxide and unburned hydrocarbons emissions at low load together with a fuel consumption penalty have been identified as main Reactivity Controlled Compression Ignition drawbacks. For this purpose, a single cylinder engine derived from commercial four cylinders medium-duty engine with an adapted compression ratio of 12.75 is used. Commercial 95 octane gasoline was used as a low reactivity fuel and commercial diesel as a high reactivity fuel. Thus, the study consists of two different parts. Firstly, the work is focused on the development and evaluation of an engine map trying to achieve the maximum possible load without exceeding a pressure rise rate of 15 bar/CAD. The second part holds on improving fuel consumption and carbon oxide and unburned hydrocarbons emissions at low load. Results suggest that it is possible to achieve up to 80% of nominal conventional diesel combustion engine load without overpassing the constraints of pressure rise rate (below 15 bar/CAD) and maximum pressure peak (below 190 bar) while obtaining ultra-low levels of nitrogen oxide and soot emissions. Regarding low load challenges, it has developed a particular methodology sweeping the gasoline-diesel blend together

  1. Studying the effect of compression ratio on an engine fueled with waste oil produced biodiesel/diesel fuel

    Directory of Open Access Journals (Sweden)

    Mohammed EL_Kassaby

    2013-03-01

    Full Text Available Wasted cooking oil from restaurants was used to produce neat (pure biodiesel through transesterification, and then used to prepare biodiesel/diesel blends. The effect of blending ratio and compression ratio on a diesel engine performance has been investigated. Emission and combustion characteristics was studded when the engine operated using the different blends (B10, B20, B30, and B50 and normal diesel fuel (B0 as well as when varying the compression ratio from 14 to 16 to 18. The result shows that the engine torque for all blends increases as the compression ratio increases. The bsfc for all blends decreases as the compression ratio increases and at all compression ratios bsfc remains higher for the higher blends as the biodiesel percent increase. The change of compression ratio from 14 to 18 resulted in, 18.39%, 27.48%, 18.5%, and 19.82% increase in brake thermal efficiency in case of B10, B20, B30, and B50 respectively. On an average, the CO2 emission increased by 14.28%, the HC emission reduced by 52%, CO emission reduced by 37.5% and NOx emission increased by 36.84% when compression ratio was increased from 14 to 18. In spite of the slightly higher viscosity and lower volatility of biodiesel, the ignition delay seems to be lower for biodiesel than for diesel. On average, the delay period decreased by 13.95% when compression ratio was increased from 14 to 18. From this study, increasing the compression ratio had more benefits with biodiesel than that with pure diesel.

  2. Analysis of spastic gait in cervical myelopathy: Linking compression ratio to spatiotemporal and pedobarographic parameters.

    Science.gov (United States)

    Nagai, Taro; Takahashi, Yasuhito; Endo, Kenji; Ikegami, Ryo; Ueno, Ryuichi; Yamamoto, Kengo

    2018-01-01

    Gait dysfunction associated with spasticity and hyperreflexia is a primary symptom in patients with compression of cervical spinal cord. The objective of this study was to link maximum compression ratio (CR) to spatiotemporal/pedobarographic parameters. Quantitative gait analysis was performed by using a pedobarograph in 75 elderly males with a wide range of cervical compression severity. CR values were characterized on T1-weighted magnetic resonance imaging (MRI). Statistical significances in gait analysis parameters (speed, cadence, stride length, step with, and toe-out angle) were evaluated among different CR groups by the non-parametric Kruskal-Wallis test followed by the Mann-Whitney U test using Bonferroni correction. The Spearman test was performed to verify correlations between CR and gait parameters. The Kruskal-Wallis test revealed significant decline in gait speed and stride length and significant increase in toe-out angle with progression of cervical compression myelopathy. The post-hoc Mann-Whitney U test showed significant differences in these parameters between the control group (0.45test revealed that CR was significantly correlated with speed, cadence, stride length, and toe-out angle. Gait speed, stride length, and toe-out angle can serve as useful indexes for evaluating progressive gait abnormality in cervical myelopathy. Our findings suggest that CR≤0.25 is associated with significantly poorer gait performance. Nevertheless, future prospective studies are needed to determine a potential benefit from decompressive surgery in such severe compression patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Fast optics for the Rutherford laser compression experiments

    International Nuclear Information System (INIS)

    Micholas, D.J.

    1976-12-01

    The compression chamber optical system proposed for the Rutherford Laboratory Laser compression experiments is described. The system corrects for longitudinal spherical aberration giving a final spot size approximately 15 μm. This could theoretically be improved. The two laser beams are focused via a pair of F/1.2 aspheric lenses onto a double-pass 'clam shell' aspheric mirror system. An analysis of the lens and mirror system is given and compared with an alternative ellipsoidal system already developed. The problems of manufacturing aspheric lenses to operate at 1.06 μm are outlined and an alternative novel approach to this design given. (author)

  4. Experiences with delta compression of data produced by DIII

    International Nuclear Information System (INIS)

    Henline, P.A.

    1986-01-01

    The amount of data collected for each tokamak experimental shot is rapidly increasing. This is caused by many factors, including more diagnostic experiments, reduced cost of electronics hardware (especially memory), and longer plasma duration. The design goal for the DIII-D tokamak is 25 Mbytes of data per shot. In order to store the shot data as one logical unit, the delta compression algorithm, as it was implemented at ORNL by E. Blair, is being used. Statistics on compression factors, times, and general usage will be presented for actual DIII data. Data for 8-, 10-, and 12-bit digitizers will be highlighted since this hardware is common to most sites

  5. The VELOCE pulsed power generator for isentropic compression experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Tommy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Asay, James Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Chantrenne, Sophie J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Hickman, Randall John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Willis, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Shay, Andrew W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Grine-Jones, Suzi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Hall, Clint Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Baer, Melvin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center

    2007-12-01

    Veloce is a medium-voltage, high-current, compact pulsed power generator developed for isentropic and shock compression experiments. Because of its increased availability and ease of operation, Veloce is well suited for studying isentropic compression experiments (ICE) in much greater detail than previously allowed with larger pulsed power machines such as the Z accelerator. Since the compact pulsed power technology used for dynamic material experiments has not been previously used, it is necessary to examine several key issues to ensure that accurate results are obtained. In the present experiments, issues such as panel and sample preparation, uniformity of loading, and edge effects were extensively examined. In addition, magnetohydrodynamic (MHD) simulations using the ALEGRA code were performed to interpret the experimental results and to design improved sample/panel configurations. Examples of recent ICE studies on aluminum are presented.

  6. Theoretical models for describing longitudinal bunch compression in the neutralized drift compression experiment

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2006-09-01

    Full Text Available Heavy ion drivers for warm dense matter and heavy ion fusion applications use intense charge bunches which must undergo transverse and longitudinal compression in order to meet the requisite high current densities and short pulse durations desired at the target. The neutralized drift compression experiment (NDCX at the Lawrence Berkeley National Laboratory is used to study the longitudinal neutralized drift compression of a space-charge-dominated ion beam, which occurs due to an imposed longitudinal velocity tilt and subsequent neutralization of the beam’s space charge by background plasma. Reduced theoretical models have been used in order to describe the realistic propagation of an intense charge bunch through the NDCX device. A warm-fluid model is presented as a tractable computational tool for investigating the nonideal effects associated with the experimental acceleration gap geometry and voltage waveform of the induction module, which acts as a means to pulse shape both the velocity and line density profiles. Self-similar drift compression solutions can be realized in order to transversely focus the entire charge bunch to the same focal plane in upcoming simultaneous transverse and longitudinal focusing experiments. A kinetic formalism based on the Vlasov equation has been employed in order to show that the peaks in the experimental current profiles are a result of the fact that only the central portion of the beam contributes effectively to the main compressed pulse. Significant portions of the charge bunch reside in the nonlinearly compressing part of the ion beam because of deviations between the experimental and ideal velocity tilts. Those regions form a pedestal of current around the central peak, thereby decreasing the amount of achievable longitudinal compression and increasing the pulse durations achieved at the focal plane. A hybrid fluid-Vlasov model which retains the advantages of both the fluid and kinetic approaches has been

  7. Experimental investigation of hydrogen energy share improvement in a compression ignition engine using water injection and compression ratio reduction

    International Nuclear Information System (INIS)

    Chintala, V.; Subramanian, K.A.

    2016-01-01

    Highlights: • Energy efficiency (EE) increased with increase in hydrogen (H_2) energy share. • H_2 energy share increased from 19% to 79% with combined CR reduction and water. • In-cylinder temperature decreased significantly with water addition and CR reduction. • HC, CO, smoke and NO_x emissions with water and CR are lower than base diesel. - Abstract: This study deals with the effect of water addition on enhancement of maximum hydrogen energy share in a compression ignition engine (7.4 kW rated power at 1500 rpm) under dual fuel mode. The specific water consumption (SWC) was varied from 130 to 480 g/kW h in step of 70 g/kW h using manifold and port injection methods. Subsequently, the combined effect of reduction of compression ratio (CR) of the engine (from 19.5:1 (base) to 16.5:1 and 15.4:1) along with water addition on further enhancement of hydrogen energy share is investigated. The hydrogen energy share was limited to 18.8% with conventional dual fuel mode due to knocking. However, the energy share increased to 66.5% with water addition (maximum SWC: 480 g/kW h), and 79% with combined control strategies (SWC of 340 g/kW h and CR reduction to 16.5:1). Thermal efficiency of the engine under water added dual fuel mode is higher than base diesel mode (single fuel mode), but it is lower than the conventional dual fuel mode without water. The efficiency of the engine with reduced CR and water addition is lower than the conventional dual fuel mode, however at the CR of 16.5:1 and SWC of 340 g/kW h, the efficiency is comparable with base diesel mode efficiency. Hydrocarbon, carbon monoxide, smoke, and oxides of nitrogen emissions of the engine with water addition (340 g/kW h) and CR reduction (to 16.5:1) decreased significantly as compared to base diesel mode, but slightly higher than conventional dual fuel mode.

  8. Speech perception at positive signal-to-noise ratios using adaptive adjustment of time compression.

    Science.gov (United States)

    Schlueter, Anne; Brand, Thomas; Lemke, Ulrike; Nitzschner, Stefan; Kollmeier, Birger; Holube, Inga

    2015-11-01

    Positive signal-to-noise ratios (SNRs) characterize listening situations most relevant for hearing-impaired listeners in daily life and should therefore be considered when evaluating hearing aid algorithms. For this, a speech-in-noise test was developed and evaluated, in which the background noise is presented at fixed positive SNRs and the speech rate (i.e., the time compression of the speech material) is adaptively adjusted. In total, 29 younger and 12 older normal-hearing, as well as 24 older hearing-impaired listeners took part in repeated measurements. Younger normal-hearing and older hearing-impaired listeners conducted one of two adaptive methods which differed in adaptive procedure and step size. Analysis of the measurements with regard to list length and estimation strategy for thresholds resulted in a practical method measuring the time compression for 50% recognition. This method uses time-compression adjustment and step sizes according to Versfeld and Dreschler [(2002). J. Acoust. Soc. Am. 111, 401-408], with sentence scoring, lists of 30 sentences, and a maximum likelihood method for threshold estimation. Evaluation of the procedure showed that older participants obtained higher test-retest reliability compared to younger participants. Depending on the group of listeners, one or two lists are required for training prior to data collection.

  9. Magnetic Compression Experiment at General Fusion with Simulation Results

    Science.gov (United States)

    Dunlea, Carl; Khalzov, Ivan; Hirose, Akira; Xiao, Chijin; Fusion Team, General

    2017-10-01

    The magnetic compression experiment at GF was a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. External coil currents keep the CT off the outer wall (levitation) and then rapidly compress it inwards. The optimal external coil configuration greatly improved both the levitated CT lifetime and the rate of shots with good compressional flux conservation. As confirmed by spectrometer data, the improved levitation field profile reduced plasma impurity levels by suppressing the interaction between plasma and the insulating outer wall during the formation process. We developed an energy and toroidal flux conserving finite element axisymmetric MHD code to study CT formation and compression. The Braginskii MHD equations with anisotropic heat conduction were implemented. To simulate plasma / insulating wall interaction, we couple the vacuum field solution in the insulating region to the full MHD solution in the remainder of the domain. We see good agreement between simulation and experiment results. Partly funded by NSERC and MITACS Accelerate.

  10. Optimal Chest Compression Rate and Compression to Ventilation Ratio in Delivery Room Resuscitation: Evidence from Newborn Piglets and Neonatal Manikins

    Science.gov (United States)

    Solevåg, Anne Lee; Schmölzer, Georg M.

    2017-01-01

    Cardiopulmonary resuscitation (CPR) duration until return of spontaneous circulation (ROSC) influences survival and neurologic outcomes after delivery room (DR) CPR. High quality chest compressions (CC) improve cerebral and myocardial perfusion. Improved myocardial perfusion increases the likelihood of a faster ROSC. Thus, optimizing CC quality may improve outcomes both by preserving cerebral blood flow during CPR and by reducing the recovery time. CC quality is determined by rate, CC to ventilation (C:V) ratio, and applied force, which are influenced by the CC provider. Thus, provider performance should be taken into account. Neonatal resuscitation guidelines recommend a 3:1 C:V ratio. CCs should be delivered at a rate of 90/min synchronized with ventilations at a rate of 30/min to achieve a total of 120 events/min. Despite a lack of scientific evidence supporting this, the investigation of alternative CC interventions in human neonates is ethically challenging. Also, the infrequent occurrence of extensive CPR measures in the DR make randomized controlled trials difficult to perform. Thus, many biomechanical aspects of CC have been investigated in animal and manikin models. Despite mathematical and physiological rationales that higher rates and uninterrupted CC improve CPR hemodynamics, studies indicate that provider fatigue is more pronounced when CC are performed continuously compared to when a pause is inserted after every third CC as currently recommended. A higher rate (e.g., 120/min) is also more fatiguing, which affects CC quality. In post-transitional piglets with asphyxia-induced cardiac arrest, there was no benefit of performing continuous CC at a rate of 90/min. Not only rate but duty cycle, i.e., the duration of CC/total cycle time, is a known determinant of CC effectiveness. However, duty cycle cannot be controlled with manual CC. Mechanical/automated CC in neonatal CPR has not been explored, and feedback systems are under-investigated in this

  11. EFFECT OF COMPRESSION RATIO ON ENERGY AND EMISSION OF VCR DIESEL ENGINE FUELLED WITH DUAL BLENDS OF BIODIESEL

    Directory of Open Access Journals (Sweden)

    R. D. EKNATH

    2014-10-01

    Full Text Available In recent 10 years biodiesel fuel was studied extensively as an alternative fuel. Most of researchers reported performance and emission of biodiesel and their blends with constant compression ratio. Also all the research was conducted with use of single biodiesel and its blend. Few reports are observed with the use of variable compression ratio and blends of more than one biodiesel. Main aim of the present study is to analyse the effect of compression ratio on the performance and emission of dual blends of biodiesel. In the present study Blends of Jatropha and Karanja with Diesel fuel was tested on single cylinder VCR DI diesel engine for compression ratio 16 and 18. High density of biodiesel fuel causes longer delay period for Jatropha fuel was observed compare with Karanja fuel. However blending of two biodiesel K20J40D results in to low mean gas temperature which is the main reason for low NOx emission.

  12. Influence of Compression Ratio on the Performance and Emission Characteristics of Annona Methyl Ester Operated DI Diesel Engine

    Directory of Open Access Journals (Sweden)

    Senthil Ramalingam

    2014-09-01

    Full Text Available This study aims to find the optimum performance and emission characteristics of single cylinder variable compression ratio (VCR engine with different blends of Annona methyl ester (AME as fuel. The performance parameters such as specific fuel consumption (SFC, brake thermal efficiency (BTE, and emission levels of HC, CO, Smoke, and NOx were compared with the diesel fuel. It is found that, at compression ratio of 17: 1 for A20 blended fuel (20% AME + 80% Diesel shows better performance and lower emission level which is very close to neat diesel fuel. The engine was operated with different values of compression ratio (15, 16, and 17 to find out best possible combination for operating engine with blends of AME. It is also found that the increase of compression ratio increases the BTE and reduces SFC and has lower emission without any engine in design modifications.

  13. Experience with compressed air system of Dhruva and Cirus

    International Nuclear Information System (INIS)

    Shelar, V.G.; Patil, U.D.; Singh, V.K.; Zope, A.K.; Kharpate, A.V.

    2006-01-01

    Dhruva and Cirus reactors have independent compressed air plants with provision for sharing. Dhruva has the reciprocating oil free air compressors where as Cirus has oil lubricated compressors. Over the years, several improvements have been done in the equipments to combat various problems, among these noise mitigation in Dhruva and measures to extend life of compressors in Cirus and also incidence of discharge header catching fire are interesting. This paper details these experiences. (author)

  14. Compressible Convection Experiment using Xenon Gas in a Centrifuge

    Science.gov (United States)

    Menaut, R.; Alboussiere, T.; Corre, Y.; Huguet, L.; Labrosse, S.; Deguen, R.; Moulin, M.

    2017-12-01

    We present here an experiment especially designed to study compressible convection in the lab. For significant compressible convection effects, the parameters of the experiment have to be optimized: we use xenon gaz in a cubic cell. This cell is placed in a centrifuge to artificially increase the apparent gravity and heated from below. With these choices, we are able to reach a dissipation number close to Earth's outer core value. We will present our results for different heating fluxes and rotation rates. We success to observe an adiabatic gradient of 3K/cm in the cell. Studies of pressure and temperature fluctuations lead us to think that the convection takes place under the form of a single roll in the cell for high heating flux. Moreover, these fluctuations show that the flow is geostrophic due to the high rotation speed. This important role of rotation, via Coriolis force effects, in our experimental setup leads us to develop a 2D quasigeostrophic compressible model in the anelastic liquid approximation. We test numerically this model with the finite element solver FreeFem++ and compare its results with our experimental data. In conclusion, we will present our project for the next experiment in which the cubic cell will be replace by a annulus cell. We will discuss the new expected effects due to this geometry as Rossby waves and zonal flows.

  15. Performance and exhaust emission characteristics of variable compression ratio diesel engine fuelled with esters of crude rice bran oil.

    Science.gov (United States)

    Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu

    2016-01-01

    As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio.

  16. Class B Fire-Extinguishing Performance Evaluation of a Compressed Air Foam System at Different Air-to-Aqueous Foam Solution Mixing Ratios

    Directory of Open Access Journals (Sweden)

    Dong-Ho Rie

    2016-06-01

    Full Text Available The purpose of this research is to evaluate the fire-extinguishing performance of a compressed air foam system at different mixing ratios of pressurized air. In this system, compressed air is injected into an aqueous solution of foam and then discharged. The experimental device uses an exclusive fire-extinguishing technology with compressed air foam that is produced based on the Canada National Laboratory and UL (Underwriters Laboratories 162 standards, with a 20-unit oil fire model (Class B applied as the fire extinguisher. Compressed air is injected through the air mixture, and results with different air-to-aqueous solution foam ratios of 1:4, 1:7, and 1:10 are studied. In addition, comparison experiments between synthetic surfactant foam and a foam type which forms an aqueous film are carried out at an air-to-aqueous solution foam ratio of 1:4. From the experimental results, at identical discharging flows, it was found that the fire-extinguishing effect of the aqueous film-forming foam is greatest at an air-to-aqueous solution foam ratio of 1:7 and weakest at 1:10. Moreover, the fire-extinguishing effect of the aqueous film-forming foam in the comparison experiments between the aqueous film-forming foam and the synthetic surfactant foam is greatest.

  17. Experimental evaluation of the effect of compression ratio on performance and emission of SI engine fuelled with gasoline and n-butanol blend at different loads

    Directory of Open Access Journals (Sweden)

    Rinu Thomas

    2016-09-01

    Full Text Available Never ending demand for efficient and less polluting engines have always inspired newer technologies. Extensive study has been done on variable compression ratio, a promising in-cylinder technology, in the recent past. The present work is an experimental investigation to examine the variation of different parameters such as brake thermal efficiency, exhaust gas temperature and emissions with respect to change in compression ratio in a single-cylinder carbureted SI engine at different loads with two different fuels. Experiments were conducted at three different compression ratios (CR = 7:1, 8.5:1 and 10:1. The fuels used in this study are pure gasoline and 20% n-butanol blend (B20 in gasoline. The results showed that brake thermal efficiency increases with CR at all loads. Further, the experimental results showed the scope of improving the part-load efficiency of SI engine by adopting the concept of variable compression ratio (VCR technology, especially when fuels with better anti-knock characteristics are used. The uncertainty analysis of the experiments based on the specifications of the equipment used is also tabulated.

  18. The Effect of Alkaline Activator Ratio on the Compressive Strength of Fly Ash-Based Geopolymer Paste

    Science.gov (United States)

    Lăzărescu, A. V.; Szilagyi, H.; Baeră, C.; Ioani, A.

    2017-06-01

    Alkaline activation of fly ash is a particular procedure in which ash resulting from a power plant combined with a specific alkaline activator creates a solid material when dried at a certain temperature. In order to obtain desirable compressive strengths, the mix design of fly ash based geopolymer pastes should be explored comprehensively. To determine the preliminary compressive strength for fly ash based geopolymer paste using Romanian material source, various ratios of Na2SiO3 solution/ NaOH solution were produced, keeping the fly ash/alkaline activator ratio constant. All the mixes were then cured at 70 °C for 24 hours and tested at 2 and 7 days, respectively. The aim of this paper is to present the preliminary compressive strength results for producing fly ash based geopolymer paste using Romanian material sources, the effect of alkaline activators ratio on the compressive strength and studying the directions for future research.

  19. Shock compression experiments on Lithium Deuteride single crystals.

    Energy Technology Data Exchange (ETDEWEB)

    Knudson, Marcus D.; Desjarlais, Michael Paul; Lemke, Raymond W.

    2014-10-01

    S hock compression exper iments in the few hundred GPa (multi - Mabr) regime were performed on Lithium Deuteride (LiD) single crystals . This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17 - 32 km/s. Measurements included pressure, density, and temperature between %7E200 - 600 GPa along the Principal Hugoniot - the locus of end states achievable through compression by large amplitude shock waves - as well as pressure and density of re - shock states up to %7E900 GPa . The experimental measurements are compared with recent density functional theory calculations as well as a new tabular equation of state developed at Los Alamos National Labs.

  20. Modeling the Plasma Flow in the Inner Heliosheath with a Spatially Varying Compression Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaou, G. [Swedish Institute of Space Physics, Kiruna (Sweden); Livadiotis, G. [Southwest Research Institute, San Antonio, Texas (United States)

    2017-03-20

    We examine a semi-analytical non-magnetic model of the termination shock location previously developed by Exarhos and Moussas. In their study, the plasma flow beyond the shock is considered incompressible and irrotational, thus the flow potential is analytically derived from the Laplace equation. Here we examine the characteristics of the downstream flow in the heliosheath in order to resolve several inconsistencies existing in the Exarhos and Moussas model. In particular, the model is modified in order to be consistent with the Rankine–Hugoniot jump conditions and the geometry of the termination shock. It is shown that a shock compression ratio varying along the latitude can lead to physically correct results. We describe the new model and present several simplified examples for a nearly spherical, strong termination shock. Under those simplifications, the upstream plasma is nearly adiabatic for large (∼100 AU) heliosheath thickness.

  1. Efficiency and exhaust gas analysis of variable compression ratio spark ignition engine fuelled with alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Seshaiah, N. [Mechanical Engineering Department, M.I.T.S, Madanapalle, Angallu-517325, A.P. (India)

    2010-07-01

    Considering energy crises and pollution problems today, investigations have been concentrated on decreasing fuel consumption by using alternative fuels and on lowering the concentration of toxic components in combustion products. In the present work, the variable compression ratio spark ignition engine designed to run on gasoline has been tested with pure gasoline, LPG (Isobutene), and gasoline blended with ethanol 10%, 15%, 25% and 35% by volume. Also, the gasoline mixed with kerosene at 15%, 25% and 35% by volume without any engine modifications has been tested and presented the result. Brake thermal and volumetric efficiency variation with brake load is compared and presented. CO and CO2 emissions have been also compared for all tested fuels.

  2. Compression ratio of municipal solid waste simulation using artificial neural network and adaptive neurofuzzy system

    Directory of Open Access Journals (Sweden)

    Maryam Mokhtari

    2014-07-01

    Full Text Available The compression ratio of Municipal Solid Waste (MSW is an essential parameter for evaluation of waste settlement. Since it is relatively time-consuming to determine compression ratio from oedometer tests and there exist difficulties associated with working on waste materials, it will be useful to develop models based on waste physical properties. Therefore, present research attempts to develop proper prediction models using ANFIS and ANN models. The compression ratio was modeled as a function of the physical properties of waste including dry unit weight, water content, and biodegradable organic content. A reliable experimental database of oedometer tests, taken from the literature, was employed to train and test the ANN and ANFIS models. The performance of the developed models was investigated according to different statistical criteria (i.e. correlation coefficient, root mean squared error, and mean absolute error recommended by researchers. The final models have demonstrated the correlation coefficients higher than 90% and low error values; so, they have capability for acceptable prediction of municipal solid waste compression ratio. Furthermore, the values of performance measures obtained for ANN and ANFIS models indicate that the ANFIS model performs better than ANN model.   Resumen El índice de compresión de residuos sólidos es un parámetro esencial para la evaluación del asentamiento de un basurero municipal. Debido al desgaste de tiempo para determinar el índice de compresión a partir de pruebas edométricas y debido a las dificultades asociadas al trabajo con materiales desechados es necesario desarrollar modelos basados en las propiedades físicas de los desechos solidos. Además, la presente investigación pretende  desarrollar modelos de predicción apropiados a partir de los esquemas ANFIS y ANN. El índice de comprensión se modeló como una función de propiedades físicas de desechos que incluyen el peso seco de una

  3. The density compression ratio of shock fronts associated with coronal mass ejections

    Directory of Open Access Journals (Sweden)

    Kwon Ryun-Young

    2018-01-01

    Full Text Available We present a new method to extract the three-dimensional electron density profile and density compression ratio of shock fronts associated with coronal mass ejections (CMEs observed in white light coronagraph images. We demonstrate the method with two examples of fast halo CMEs (∼2000 km s−1 observed on 2011 March 7 and 2014 February 25. Our method uses the ellipsoid model to derive the three-dimensional geometry and kinematics of the fronts. The density profiles of the sheaths are modeled with double-Gaussian functions with four free parameters, and the electrons are distributed within thin shells behind the front. The modeled densities are integrated along the lines of sight to be compared with the observed brightness in COR2-A, and a χ2 approach is used to obtain the optimal parameters for the Gaussian profiles. The upstream densities are obtained from both the inversion of the brightness in a pre-event image and an empirical model. Then the density ratio and Alfvénic Mach number are derived. We find that the density compression peaks around the CME nose, and decreases at larger position angles. The behavior is consistent with a driven shock at the nose and a freely propagating shock wave at the CME flanks. Interestingly, we find that the supercritical region extends over a large area of the shock and lasts longer (several tens of minutes than past reports. It follows that CME shocks are capable of accelerating energetic particles in the corona over extended spatial and temporal scales and are likely responsible for the wide longitudinal distribution of these particles in the inner heliosphere. Our results also demonstrate the power of multi-viewpoint coronagraphic observations and forward modeling in remotely deriving key shock properties in an otherwise inaccessible regime.

  4. Chest Compressions during Sustained Inflations Improve Recovery When Compared to a 3:1 Compression:Ventilation Ratio during Cardiopulmonary Resuscitation in a Neonatal Porcine Model of Asphyxia.

    Science.gov (United States)

    Li, Elliott S; Görens, Immanuel; Cheung, Po-Yin; Lee, Tze-Fun; Lu, Min; O'Reilly, Megan; Schmölzer, Georg M

    2017-01-01

    Recently, sustained inflations (SI) during chest compression (CC) (CC+SI) have been suggested as an alternative to the current approach during neonatal resuscitation. No previous study compared CC+SI using CC rates of 90/min to the current 3:1 compression:ventilation ratio (C:V). To determine whether CC+SI versus a 3:1 C:V reduces the time to the return of spontaneous circulation (ROSC) and improves hemodynamic recovery in newborn piglets with asphyxia-induced bradycardia. Term newborn piglets were anesthetized, intubated, instrumented, and exposed to 45-min normocapnic hypoxia followed by asphyxia. Cardiopulmonary resuscitation (CPR) was initiated when the heart rate decreased to 25% of baseline. Piglets were randomized into 3 groups: CC during SI at a rate of 90 CC/min (SI+CC 90, n = 8), a 3:1 C:V using 90 CC and 30 inflations (3:1, n = 8), or a sham group (n = 6). Cardiac function, carotid blood flow, cerebral oxygenation, and respiratory parameters were continuously recorded throughout the experiment. CC+SI significantly reduced the median (IQR) time of ROSC, i.e., 34 s (28-156 s) versus 210 s (72-300 s) in the 3:1 group (p = 0.048). CC+SI also significantly reduced the requirement for 100% oxygen, improved respiratory parameters, and resulted in a similar hemodynamic recovery. CC+SI during CPR significantly improved ROSC in a porcine model of neonatal resuscitation. This is of considerable clinical relevance because improved respiratory and hemodynamic parameters potentially minimize morbidity and mortality in newborn infants. © 2017 S. Karger AG, Basel.

  5. 3:1 compression to ventilation ratio versus continuous chest compression with asynchronous ventilation in a porcine model of neonatal resuscitation.

    Science.gov (United States)

    Schmölzer, Georg M; O'Reilly, Megan; Labossiere, Joseph; Lee, Tze-Fun; Cowan, Shaun; Nicoll, Jessica; Bigam, David L; Cheung, Po-Yin

    2014-02-01

    In contrast to the resuscitation guidelines of children and adults, guidelines on neonatal resuscitation recommend synchronized 90 chest compressions with 30 manual inflations (3:1) per minute in newborn infants. The study aimed to determine if chest compression with asynchronous ventilation improves the recovery of bradycardic asphyxiated newborn piglets compared to 3:1 Compression:Ventilation cardiopulmonary resuscitation (CPR). Term newborn piglets (n=8/group) were anesthetized, intubated, instrumented and exposed to 45-min normocapnic hypoxia followed by asphyxia. Protocolized resuscitation was initiated when heart rate decreased to 25% of baseline. Piglets were randomized to receive resuscitation with either 3:1 compressions to ventilations (3:1C:V CPR group) or chest compressions with asynchronous ventilations (CCaV) or sham. Continuous respiratory parameters (Respironics NM3(®)), cardiac output, mean systemic and pulmonary artery pressures, and regional blood flows were measured. Piglets in 3:1C:V CPR and CCaV CPR groups had similar time to return of spontaneous circulation, survival rates, hemodynamic and respiratory parameters during CPR. The systemic and regional hemodynamic recovery in the subsequent 4h was similar in both groups and significantly lower compared to sham-operated piglets. Newborn piglets resuscitated by CCaV had similar return of spontaneous circulation, survival, and hemodynamic recovery compared to those piglets resuscitated by 3:1 Compression:Ventilation ratio. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Compression of TPC data in the ALICE experiment

    International Nuclear Information System (INIS)

    Nicolaucig, A.; Mattavelli, M.; Carrato, S.

    2002-01-01

    In this paper two algorithms for the compression of the data generated by the Time Projection Chamber (TPC) detector of the ALICE experiment at CERN are described. The first algorithm is based on a lossless source code modeling technique, i.e. the original TPC signal information can be reconstructed without errors at the decompression stage. The source model exploits the temporal correlation that is present in the TPC data to reduce the entropy of the source. The second algorithm is based on a source model which is lossy if samples of the TPC signal are considered one by one. Conversely, the source model is lossless or quasi-lossless if some physical quantities that are of main interest for the experiment are considered. These quantities are the area and the location of the center of mass of each TPC signal pulse. Obviously entropy coding is applied to the set of events defined by the two source models to reduce the bit rate to the corresponding source entropy. Using TPC simulated data according to the expected ALICE TPC performance, the lossless and the lossy compression algorithms achieve a data reduction, respectively, to 49.2% and in the range of 34.2% down to 23.7% of the original data rate. The number of operations per input symbol required to implement the compression stage for both algorithms is relatively low, so that a real-time implementation embedded in the TPC data acquisition chain using low-cost integrated electronics is a realistic option to effectively reduce the data storing cost of ALICE experiment

  7. Optimizing beam transport in rapidly compressing beams on the neutralized drift compression experiment – II

    Directory of Open Access Journals (Sweden)

    Anton D. Stepanov

    2018-03-01

    Full Text Available The Neutralized Drift Compression Experiment-II (NDCX-II is an induction linac that generates intense pulses of 1.2 MeV helium ions for heating matter to extreme conditions. Here, we present recent results on optimizing beam transport. The NDCX-II beamline includes a 1-m-long drift section downstream of the last transport solenoid, which is filled with charge-neutralizing plasma that enables rapid longitudinal compression of an intense ion beam against space-charge forces. The transport section on NDCX-II consists of 28 solenoids. Finding optimal field settings for a group of solenoids requires knowledge of the envelope parameters of the beam. Imaging the beam on the scintillator gives the radius of the beam, but the envelope angle is not measured directly. We demonstrate how the parameters of the beam envelope (radius, envelop angle, and emittance can be reconstructed from a series of images taken by varying the B-field strengths of a solenoid upstream of the scintillator. We use this technique to evaluate emittance at several points in the NDCX-II beamline and for optimizing the trajectory of the beam at the entry of the plasma-filled drift section. Keywords: Charged-particle beams, Induction accelerators, Beam dynamics, Beam emittance, Ion beam diagnostics, PACS Codes: 41.75.-i, 41.85.Ja, 52.59.Sa, 52.59.Wd, 29.27.Eg

  8. Initial Results on Neutralized Drift Compression Experiments (NDCX-IA) for High Intensity Ion Beam

    CERN Document Server

    Roy, Prabir K; Baca, David; Bieniosek, Frank; Coleman, Joshua E; Davidson, Ronald C; Efthimion, Philip; Eylon, Shmuel; Gilson, Erik P; Grant Logan, B; Greenway, Wayne; Henestroza, Enrique; Kaganovich, Igor D; Leitner, Matthaeus; Rose, David; Sefkow, Adam; Sharp, William M; Shuman, Derek; Thoma, Carsten H; Vanecek, David; Waldron, William; Welch, Dale; Yu, Simon

    2005-01-01

    Ion beam neutralization and compression experiments are designed to determine the feasibility of using compressed high intensity ion beams for high energy density physics (HEDP) experiments and for inertial fusion power. To quantitatively ascertain the various mechanisms and methods for beam compression, the Neutralized Drift Compression Experiment (NDCX) facility is being constructed at Lawrence Berkeley National Laboratory (LBNL). In the first compression experiment, a 260 KeV, 25 mA, K+ ion beam of centimeters size is radially compressed to a mm size spot by neutralization in a meter-long plasma column and beam peak current is longitudinally compressed by an induction velocity tilt core. Instrumentation, preliminary results of the experiments, and practical limits of compression are presented. These include parameters such as emittance, degree of neutralization, velocity tilt time profile, and accuracy of measurements (fast and spatially high resolution diagnostic) are discussed.

  9. Study by the Prandtl-Glauert method of compressibility effects and critical Mach number for ellipsoids of various aspect ratios and thickness ratios

    Science.gov (United States)

    Hess, Robert V; Gardner, Clifford S

    1947-01-01

    By using the Prandtl-Glauert method that is valid for three-dimensional flow problems, the value of the maximum incremental velocity for compressible flow about thin ellipsoids at zero angle of attack is calculated as a function of the Mach number for various aspect ratios and thickness ratios. The critical Mach numbers of the various ellipsoids are also determined. The results indicate an increase in critical Mach number with decrease in aspect ratio which is large enough to explain experimental results on low-aspect-ratio wings at zero lift.

  10. The 4-parameter Compressible Packing Model (CPM) including a critical cavity size ratio

    Science.gov (United States)

    Roquier, Gerard

    2017-06-01

    The 4-parameter Compressible Packing Model (CPM) has been developed to predict the packing density of mixtures constituted by bidisperse spherical particles. The four parameters are: the wall effect and the loosening effect coefficients, the compaction index and a critical cavity size ratio. The two geometrical interactions have been studied theoretically on the basis of a spherical cell centered on a secondary class bead. For the loosening effect, a critical cavity size ratio, below which a fine particle can be inserted into a small cavity created by touching coarser particles, is introduced. This is the only parameter which requires adaptation to extend the model to other types of particles. The 4-parameter CPM demonstrates its efficiency on frictionless glass beads (300 values), spherical particles numerically simulated (20 values), round natural particles (125 values) and crushed particles (335 values) with correlation coefficients equal to respectively 99.0%, 98.7%, 97.8%, 96.4% and mean deviations equal to respectively 0.007, 0.006, 0.007, 0.010.

  11. Optimal Chest Compression Rate and Compression to Ventilation Ratio in Delivery Room Resuscitation: Evidence from Newborn Piglets and Neonatal Manikins

    OpenAIRE

    Solev?g, Anne Lee; Schm?lzer, Georg M.

    2017-01-01

    Cardiopulmonary resuscitation (CPR) duration until return of spontaneous circulation (ROSC) influences survival and neurologic outcomes after delivery room (DR) CPR. High quality chest compressions (CC) improve cerebral and myocardial perfusion. Improved myocardial perfusion increases the likelihood of a faster ROSC. Thus, optimizing CC quality may improve outcomes both by preserving cerebral blood flow during CPR and by reducing the recovery time. CC quality is determined by rate, CC to vent...

  12. Effect of one-rescuer compression/ventilation ratios on cardiopulmonary resuscitation in infant, pediatric, and adult manikins.

    Science.gov (United States)

    Srikantan, Shoba Krishnan; Berg, Robert A; Cox, Tim; Tice, Lisa; Nadkarni, Vinay M

    2005-05-01

    Optimal chest compression to ventilation ratio (C:V) for one-rescuer cardiopulmonary resuscitation (CPR) is not known, with current American Heart Association recommendations 3:1 for newborns, 5:1 for children, and 15:2 for adults. C:V ratios influence effectiveness of CPR, but memorizing different ratios is educationally cumbersome. We hypothesized that a 10:2 ratio might provide adequate universal application for all age arrest victims. Clinical study. Tertiary care children's hospital. Thirty-five health care providers. Thirty-five health care providers performed 5-min epochs of one-rescuer CPR at C:V ratios of 3:1, 5:1, 10:2, and 15:2 in random order on infant, pediatric, and adult manikins. Compressions were paced at 100/min by metronome. The number of effective compressions and ventilations delivered per minute was recorded by a trained basic life support instructor. Subjective assessments of fatigue (self-report) and exertion (change in rescuer pulse rate compared with baseline) were assessed. Analysis was by repeated measures analysis of variance and paired Student's t-test. Effective infant compressions per minute did not differ by C:V ratio, but ventilations per minute were greater at 3:1 vs. 5:1, 10:2, and 15:2 (p 15:2 (p educational value and technique retention.

  13. Digitized hand-wrist radiographs: comparison of subjective and software-derived image quality at various compression ratios.

    Science.gov (United States)

    McCord, Layne K; Scarfe, William C; Naylor, Rachel H; Scheetz, James P; Silveira, Anibal; Gillespie, Kevin R

    2007-05-01

    The objectives of this study were to compare the effect of JPEG 2000 compression of hand-wrist radiographs on observer image quality qualitative assessment and to compare with a software-derived quantitative image quality index. Fifteen hand-wrist radiographs were digitized and saved as TIFF and JPEG 2000 images at 4 levels of compression (20:1, 40:1, 60:1, and 80:1). The images, including rereads, were viewed by 13 orthodontic residents who determined the image quality rating on a scale of 1 to 5. A quantitative analysis was also performed by using a readily available software based on the human visual system (Image Quality Measure Computer Program, version 6.2, Mitre, Bedford, Mass). ANOVA was used to determine the optimal compression level (P quality. When we used quantitative indexes, the JPEG 2000 images had lower quality at all compression ratios compared with the original TIFF images. There was excellent correlation (R2 >0.92) between qualitative and quantitative indexes. Image Quality Measure indexes are more sensitive than subjective image quality assessments in quantifying image degradation with compression. There is potential for this software-based quantitative method in determining the optimal compression ratio for any image without the use of subjective raters.

  14. STUDY OF ALTERNATIVE FUELS AND EFFECTS OF COMPRESSION RATIO ON THERMAL EFFICIENCY AND ENGINE POWER

    Directory of Open Access Journals (Sweden)

    Sarjito Sarjito

    2017-01-01

    Full Text Available This paper was a case study during the sabatical program at Kingston University London in February 2007. It has been studied by team of motorsport automotive department Kingston University London and it has been elaborated as a final project on Master Program. This study takes into account some of the issues surrounding the debate about alcohol fuels in Motorsport and the wider automotive sector and is primarily concerned to add data where there seems to be little existing research since Motorsport is a secretive business. Motorsport plays an important part in the automotive industry and is a sport enjoyed worldwide. Racing practice is regarded as using the best available resources and technology as it requires optimal performance. The racing arena gives engineers the opportunity to test valuable technological solutions to prove their merits. Therefore, racing is the natural starting point for introducing new technological solutions to the public and could lead to the wholesale conversion to renewable fuels to meet our automotive energy needs. Alcohol has unique properties that make superior in many ways to ordinary gasoline. The higher knock resistance allows for higher compression ratios to be utilized resulting in higher power outputs and thermal efficiency. The efficient use of energy is of growing concern in all spheres of life and the automotive sector needs to be front runner in these efforts.

  15. An Approach Toward Synthesis of Bridgmanite in Dynamic Compression Experiments

    Science.gov (United States)

    Reppart, J. J.

    2015-12-01

    Bridgmanite occurs in heavily shocked meteorites and provides a useful constraint on pressure-temperature conditions during shock-metamorphism. Its occurrence also provides constraints on the shock release path. Shock-release and shock duration are important parameters in estimating the size of impactors that generate the observed shock metamorphic record. Thus, it is timely to examine if bridgmanite can be synthesized in dynamic compression experiments with the goal of establishing a correlation between shock duration and grainsize. Up to now only one high pressure polymorph of an Mg-silicate has been synthesized AND recovered in a shock experiment (wadsleyite). Therefore, it is not given that shock synthesis of bridgmanite is possible. This project started recently, so we present an outline of shock experiment designs and potentially results from the first experiments. FUNDING ACKNOWLEDGMENT UNLV HiPSEC: This research was sponsored (or sponsored in part) by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement #DE-NA0001982. HPCAT: "[Portions of this work were]/[This work was] performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357."

  16. Salary Compression: A Time-Series Ratio Analysis of ARL Position Classifications

    Science.gov (United States)

    Seaman, Scott

    2007-01-01

    Although salary compression has previously been identified in such professional schools as engineering, business, and computer science, there is now evidence of salary compression among Association of Research Libraries members. Using salary data from the "ARL Annual Salary Survey", this study analyzes average annual salaries from 1994-1995…

  17. Bayesian model calibration of ramp compression experiments on Z

    Science.gov (United States)

    Brown, Justin; Hund, Lauren

    2017-06-01

    Bayesian model calibration (BMC) is a statistical framework to estimate inputs for a computational model in the presence of multiple uncertainties, making it well suited to dynamic experiments which must be coupled with numerical simulations to interpret the results. Often, dynamic experiments are diagnosed using velocimetry and this output can be modeled using a hydrocode. Several calibration issues unique to this type of scenario including the functional nature of the output, uncertainty of nuisance parameters within the simulation, and model discrepancy identifiability are addressed, and a novel BMC process is proposed. As a proof of concept, we examine experiments conducted on Sandia National Laboratories' Z-machine which ramp compressed tantalum to peak stresses of 250 GPa. The proposed BMC framework is used to calibrate the cold curve of Ta (with uncertainty), and we conclude that the procedure results in simple, fast, and valid inferences. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Plans for longitudinal and transverse neutralized beam compression experiments, and initial results from solenoid transport experiments

    International Nuclear Information System (INIS)

    Seidl, P.A.; Armijo, J.; Baca, D.; Bieniosek, F.M.; Coleman, J.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Grote, D.; Haber, I.; Henestroza, E.; Kaganovich, I.; Leitner, M.; Logan, B.G.; Molvik, A.W.; Rose, D.V.; Roy, P.K.; Sefkow, A.B.; Sharp, W.M.; Vay, J.L.; Waldron, W.L.; Welch, D.R.; Yu, S.S.

    2007-01-01

    This paper presents plans for neutralized drift compression experiments, precursors to future target heating experiments. The target-physics objective is to study warm dense matter (WDM) using short-duration (∼1 ns) ion beams that enter the targets at energies just above that at which dE/dx is maximal. High intensity on target is to be achieved by a combination of longitudinal compression and transverse focusing. This work will build upon recent success in longitudinal compression, where the ion beam was compressed lengthwise by a factor of more than 50 by first applying a linear head-to-tail velocity tilt to the beam, and then allowing the beam to drift through a dense, neutralizing background plasma. Studies on a novel pulse line ion accelerator were also carried out. It is planned to demonstrate simultaneous transverse focusing and longitudinal compression in a series of future experiments, thereby achieving conditions suitable for future WDM target experiments. Future experiments may use solenoids for transverse focusing of un-neutralized ion beams during acceleration. Recent results are reported in the transport of a high-perveance heavy ion beam in a solenoid transport channel. The principal objectives of this solenoid transport experiment are to match and transport a space-charge-dominated ion beam, and to study associated electron-cloud and gas effects that may limit the beam quality in a solenoid transport system. Ideally, the beam will establish a Brillouin-flow condition (rotation at one-half the cyclotron frequency). Other mechanisms that potentially degrade beam quality are being studied, such as focusing-field aberrations, beam halo, and separation of lattice focusing elements

  19. Stiffness and Poisson ratio in longitudinal compression of fiber yarns in meso-FE modelling of composite reinforcement forming

    Science.gov (United States)

    Wang, D.; Naouar, N.; Vidal-Salle, E.; Boisse, P.

    2018-05-01

    In meso-scale finite element modeling, the yarns of the reinforcement are considered to be solids made of a continuous material in contact with their neighbors. The present paper consider the mechanical behavior of these yarns that can happen for some loadings of the reinforcement. The yarns present a specific mechanical behavior when under longitudinal compression because they are made up of a large number of fibers, Local buckling of the fibers causes the compressive stiffness of the continuous material representing the yarn to be much weaker than when under tension. In addition, longitudinal compression causes an important transverse expansion. It is shown that the transverse expansion can be depicted by a Poisson ratio that remained roughly constant when the yarn length and the compression strain varied. Buckling of the fibers significantly increases the transverse dimensions of the yarn which leads to a large Poisson ratio (up to 12 for a yarn analyzed in the present study). Meso-scale finite element simulations of reinforcements with binder yarns submitted to longitudinal compression showed that these improvements led to results in good agreement with micro-CT analyses.

  20. Strength and Absorption Rate of Compressed Stabilized Earth Bricks (CSEBs Due to Different Mixture Ratios and Degree of Compaction

    Directory of Open Access Journals (Sweden)

    Abdullah Abd Halid

    2017-01-01

    Full Text Available Compressed Stabilized Earth Brick (CSEB is produced by compressing a mixture of water with three main materials such as Ordinary Portland Cement (OPC, soil, and sand. It becomes popularfor its good strength, better insulation properties, and a sustainable product due to its easy production with low carbon emission and less skilled labour required. Different types of local soils usedwill produce CSEB of different physical properties in terms of its strength, durability, and water absorption rate. This study focuses on laterite soil taken from the surrounding local area in Parit Raja, Johor, and CSEB samples are produced based on prototype brick size 100×50×30 mm. The investigations are based on four different degree of compactions (i.e. 1500, 2000, 2500, and 3000 Psi and three different mix proportion ratios of cement:sand:laterite soil (i.e. 1:1:9, 1:2:8, 1:3:7. A total of 144 CSEB samples have been tested at 7 and 28 days curing periods to determine the compressive strength (BS 3921:1985 and water absorption rate (MS 76:1972. It was found that maximum compressive strength of CSEB was 14.68 N/mm2 for mixture ratio of 1:3:7 at 2500 Psi compaction. Whereas, the minimum strengthis 6.87 N/mm2 for 1:1:9mixture ratio at 1500 Psi. Meanwhile, the lowest water absorption was 12.35% for mixture ratio of 1:2:8 at 3000 Psi; while the 1:1:9 mixture ratio at 1500 Psi gave the highest rate of 16.81%. This study affirms that the sand content in the mixture and the degree of compaction would affect the value of compressive strength and water absorption of CSEB.

  1. Introducing errors in progress ratios determined from experience curves

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.

    2008-01-01

    Progress ratios (PRs) derived from historical data in experience curves are used for forecasting development of many technologies as a means to model endogenous technical change in for instance climate–economy models. These forecasts are highly sensitive to uncertainties in the progress ratio. As a

  2. Basic life support with four different compression/ventilation ratios in a pig model: the need for ventilation.

    Science.gov (United States)

    Kill, Clemens; Torossian, Alexander; Freisburger, Christian; Dworok, Sebastian; Massmann, Martin; Nohl, Thorsten; Henning, Ronald; Wallot, Pascal; Gockel, Andreas; Steinfeldt, Thorsten; Graf, Jürgen; Eberhart, Leopold; Wulf, Hinnerk

    2009-09-01

    During cardiac arrest the paramount goal of basic life support (BLS) is the oxygenation of vital organs. Current recommendations are to combine chest compressions with ventilation in a fixed ratio of 30:2; however the optimum compression/ventilation ratio is still debatable. In our study we compared four different compression/ventilation ratios and documented their effects on the return of spontaneous circulation (ROSC), gas exchange, cerebral tissue oxygenation and haemodynamics in a pig model. Study was performed on 32 pigs under general anaesthesia with endotracheal intubation. Arterial and central venous lines were inserted. For continuous cerebral tissue oxygenation a Licox PtiO(2) probe was implanted. After 3 min of cardiac arrest (ventricular fibrillation) animals were randomized to a compression/ventilation-ratio 30:2, 100:5, 100:2 or compressions-only. Subsequently 10 min BLS, Advanced Life Support (ALS) was performed (100%O(2), 3 defibrillations, 1mg adrenaline i.v.). Data were analyzed with 2-factorial ANOVA. ROSC was achieved in 4/8 (30:2), 5/8 (100:5), 2/8 (100:2) and 0/8 (compr-only) pigs. During BLS, PaCO(2) increased to 55 mm Hg (30:2), 68 mm Hg (100:5; p=0.0001), 66 mm Hg (100:2; p=0.002) and 72 mm Hg (compr-only; p<0.0001). PaO(2) decreased to 58 mmg (30:2), 40 mm Hg (100:5; p=0.15), 43 mm Hg (100:2; p=0.04) and 26 mm Hg (compr-only; p<0.0001). PtiO(2) baseline values were 12.7, 12.0, 11.1 and 10.0 mm Hg and decreased to 8.1 mm Hg (30:2), 4.1 mm Hg (100:5; p=0.08), 4.3 mm Hg (100:2; p=0.04), and 4.5 mm Hg (compr-only; p=0.69). During BLS, a compression/ventilation-ratio of 100:5 seems to be equivalent to 30:2, while ratios of 100:2 or compressions-only detoriate peripheral arterial oxygenation and reduce the chance for ROSC.

  3. The effect on quality of chest compressions and exhaustion of a compression--ventilation ratio of 30:2 versus 15:2 during cardiopulmonary resuscitation--a randomised trial

    NARCIS (Netherlands)

    Deschilder, Koen; de Vos, Rien; Stockman, Willem

    2007-01-01

    Recent cardio pulmonary resuscitation (CPR) guidelines changed the compression:ventilation ratio in 30:2. To compare the quality of chest compressions and exhaustion using the ratio 30:2 versus 15:2. A prospective, randomised crossover design was used. Subjects were recruited from the H.-Hart

  4. Simulation research on the effect of cooled EGR, supercharging and compression ratio on downsized SI engine knock

    Science.gov (United States)

    Shu, Gequn; Pan, Jiaying; Wei, Haiqiao; Shi, Ning

    2013-03-01

    Knock in spark-ignition(SI) engines severely limits engine performance and thermal efficiency. The researches on knock of downsized SI engine have mainly focused on structural design, performance optimization and advanced combustion modes, however there is little for simulation study on the effect of cooled exhaust gas recirculation(EGR) combined with downsizing technologies on SI engine performance. On the basis of mean pressure and oscillating pressure during combustion process, the effect of different levels of cooled EGR ratio, supercharging and compression ratio on engine dynamic and knock characteristic is researched with three-dimensional KIVA-3V program coupled with pressure wave equation. The cylinder pressure, combustion temperature, ignition delay timing, combustion duration, maximum mean pressure, and maximum oscillating pressure at different initial conditions are discussed and analyzed to investigate potential approaches to inhibiting engine knock while improving power output. The calculation results of the effect of just cooled EGR on knock characteristic show that appropriate levels of cooled EGR ratio can effectively suppress cylinder high-frequency pressure oscillations without obvious decrease in mean pressure. Analysis of the synergistic effect of cooled EGR, supercharging and compression ratio on knock characteristic indicates that under the condition of high supercharging and compression ratio, several times more cooled EGR ratio than that under the original condition is necessarily utilized to suppress knock occurrence effectively. The proposed method of synergistic effect of cooled EGR and downsizing technologies on knock characteristic, analyzed from the aspects of mean pressure and oscillating pressure, is an effective way to study downsized SI engine knock and provides knock inhibition approaches in practical engineering.

  5. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II),a novel pulse-compressing ion accelerator

    International Nuclear Information System (INIS)

    Friedman, A.; Barnard, J.J.; Cohen, R.H.; Grote, D.P.; Lund, S.M.; Sharp, W.M.; Faltens, A.; Henestroza, E.; Jung, J.-Y.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.D.

    2009-01-01

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at ∼1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of ∼50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  6. Planned Enhanced Wakefield Transformer Ratio Experiment at Argonne Wakefield Accelerator

    CERN Document Server

    Kanareykin, Alex; Gai, Wei; Jing, Chunguang; Konecny, Richard; Power, John G

    2005-01-01

    In this paper, we present a preliminary experimental study of a wakefield accelerating scheme that uses a carefully spaced and current ramped electron pulse train to produce wakefields that increases the transformer ratio much higher than 2. A dielectric structure was designed and fabricated to operate at 13.625 GHz with dielectric constant of 15.7. The structure will be initially excited by two beams with first and second beam charge ratio of 1:3. The expected transformer ratio is 3 and the setup can be easily extend to 4 pulses which leads to a transformer ratio of more than 6. The dielectric structure cold test results show the tube is within the specification. A set of laser splitters was also tested to produce ramped bunch train of 2 - 4 pulses. Overall design of the experiment and initial results will be presented.

  7. Demonstrating the Performance and Emission Characteristics of a Variable Compression Ratio, Alvar-Cycle Engine

    OpenAIRE

    Erlandsson, Olof; Lundholm, Gunnar; Söderberg, Fredrik; Johansson, Bengt; Wong, Victor W.

    1998-01-01

    This paper is a direct continuation of a previous study that addressed the performance and design of a variable compression engine, the Alvar-Cycle Engine [1]. The earlier study was presented at the SAE International Conference and Exposition in Detroit during February 23- 26, 1998 as SAE paper 981027. In the present paper test results from a single cylinder prototype are reviewed and compared with a similar conventional engine. Efficiency and emissions are shown as fu...

  8. Effect of compression ratio, equivalence ratio and engine speed on the performance and emission characteristics of a spark ignition engine using hydrogen as a fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, M.A.R. [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2004-12-01

    The present energy situation has stimulated active research interest in non-petroleum and non-polluting fuels, particularly for transportation, power generation, and agricultural sectors. Researchers have found that hydrogen presents the best and an unprecedented solution to the energy crises and pollution problems, due to its superior combustion qualities and availability. This paper discusses analytically and provides data on the effect of compression ratio, equivalence ratio and engine speed on the engine performance, emissions and pre-ignition limits of a spark ignition engine operating on hydrogen fuel. These data are important in order to understand the interaction between engine performance and emission parameters, which will help engine designers when designing for hydrogen. (author)

  9. Chest compression during sustained inflation versus 3:1 chest compression:ventilation ratio during neonatal cardiopulmonary resuscitation: a randomised feasibility trial.

    Science.gov (United States)

    Schmölzer, Georg M; O Reilly, Megan; Fray, Caroline; van Os, Sylvia; Cheung, Po-Yin

    2017-10-07

    Current neonatal resuscitation guidelines recommend 3:1 compression:ventilation (C:V) ratio. Recently, animal studies reported that continuous chest compressions (CC) during a sustained inflation (SI) significantly improved return of spontaneous circulation (ROSC). The approach of CC during SI (CC+SI) has not been examined in the delivery room during neonatal resuscitation. It is a feasibility study to compare CC+SI versus 3:1 C:V ratio during neonatal resuscitation in the delivery room. We hypothesised that during neonatal resuscitation, CC+SI will reduce the time to ROSC. Our aim was to examine if CC+SI reduces ROSC compared with 3:1 C:V CPR in preterm infants rate of 90/min during an SI with a duration of 20 s (CC+SI). After 20 s, the SI was interrupted for 1 s and the next SI was started for another 20 s until ROSC. Infants in the '3:1 group' received CC using 3:1 C:V ratio until ROSC. Overall the mean (SD) time to ROSC was significantly shorter in the CC+SI group with 31 (9) s compared with 138 (72) s in the 3:1 C:V group (p=0.011). CC+SI is feasible in the delivery room. Clinicaltrials.gov NCT02083705, pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Numerical analysis of knock during HCCI in a high compression ratio methanol engine based on LES with detailed chemical kinetics

    International Nuclear Information System (INIS)

    Zhen, Xudong; Wang, Yang

    2015-01-01

    Highlights: • Knock during HCCI in a high compression ratio methanol engine was modeled. • A detailed methanol mechanism was used to simulate the knocking combustion. • Compared with the SI engines, the HCCI knocking combustion burnt faster. • The reaction rate of HCO had two obvious peaks, one was positive, and another was negative. • Compared with the SI engines, the values of the reaction rates of CH 2 O, H 2 O 2 , and HO 2 were higher, and it had negative peaks. - Abstract: In this study, knock during HCCI (homogeneous charge compression ignition) was studied based on LES (large eddy simulation) with methanol chemical kinetics (84-reaction, 21-species) in a high compression ratio methanol engine. The non-knocking and knocking combustion of SI (spark ignition) and HCCI engines were compared. The results showed that the auto-ignition spots were initially occurred near the combustion chamber wall. The knocking combustion burnt faster during HCCI than SI methanol engine. The HCO reaction rate was different from SI engine, it had two obvious peaks, one was positive peak, and another was negative peak. Compared with the SI methanol engine, in addition to the concentration of HCO, the concentrations of the other intermediate products and species such as CO, OH, CH 2 O, H 2 O 2 , HO 2 were increased significantly; the reaction rates of CH 2 O, H 2 O 2 , and HO 2 had negative peaks, and whose values were several times higher than SI methanol engine

  11. Technique for Selecting Optimum Fan Compression Ratio based on the Effective Power Plant Parameters

    Directory of Open Access Journals (Sweden)

    I. I. Kondrashov

    2016-01-01

    Full Text Available Nowadays, civilian aircrafts occupy the major share of global aviation industry market. As to medium and long - haul aircrafts, turbofans with separate exhaust streams are widely used. Here, fuel efficiency is the main criterion of this engine. The paper presents the research results of the mutual influence of fan pressure ratio and bypass ratio on the effective specific fuel consumption. Shows the increasing bypass ratio to be a rational step for reducing the fuel consumption. Also considers the basic features of engines with a high bypass ratio. Among the other working process parameters, fan pressure ratio and bypass ratio are the most relevant for consideration as they are the most structural variables at a given level of technical excellence. The paper presents the dependence of the nacelle drag coefficient on the engine bypass ratio. For computation were adopted the projected parameters of prospective turbofans to be used in the power plant of the 180-seat medium-haul aircraft. Computation of the engine cycle was performed in Mathcad using these data, with fan pressure ratio and bypass ratio being varied. The combustion chamber gas temperature, the overall pressure ratio and engine thrust remained constant. Pressure loss coefficients, the efficiency of the engine components and the amount of air taken for cooling also remained constant. The optimal parameters corresponding to the minimum effective specific fuel consumption were found as the result of computation. The paper gives recommendations for adjusting optimal parameters, depending on the considered external factors, such as weight of engine and required fuel reserve. The obtained data can be used to estimate parameters of future turbofan engines with high bypass ratio.

  12. Neutron scattering experiments of the ionic crystal deformed plastically with uniaxial compression under high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, Yoshinori; Minakawa, Nobuaki; Aizawa, Kazuya; Ozawa, Kunio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-04-01

    As an aim of huge growth of alkali halide (AH) single crystal, a mosaic structure of small size AH single crystal deformed plastically with uniaxial compression under high temperature was evaluated due to its neutron irradiation experiment. Using TAS-2 installed at JRR-3M guide hole of Japan Atomic Energy Research Institute, locking curve at a representative face factor of the specimen was measured to observe the mosaic structure accompanied with expansion of the crystal due to compression. As a result, though the specimen before compression could be supposed to be divided to some parts already, the locking curve under 10 sec. of compression time showed already some fracture to divisions to suppose finer degradation of the crystal, and division of the locking curve at 600 sec. of compression time could be observed onto its 220 face. And, every compressed specimens showed some changes of crystallization method from standard sample. (G.K.)

  13. Neutralized drift compression experiments with a high-intensity ion beam

    International Nuclear Information System (INIS)

    Roy, P.K.; Yu, S.S.; Waldron, W.L.; Anders, A.; Baca, D.; Barnard, J.J.; Bieniosek, F.M.; Coleman, J.; Davidson, R.C.; Efthimion, P.C.; Eylon, S.; Friedman, A.; Gilson, E.P.; Greenway, W.G.; Henestroza, E.; Kaganovich, I.; Leitner, M.; Logan, B.G.; Sefkow, A.B.; Seidl, P.A.; Sharp, W.M.; Thoma, C.; Welch, D.R.

    2007-01-01

    To create high-energy density matter and fusion conditions, high-power drivers, such as lasers, ion beams, and X-ray drivers, may be employed to heat targets with short pulses compared to hydro-motion. Both high-energy density physics and ion-driven inertial fusion require the simultaneous transverse and longitudinal compression of an ion beam to achieve high intensities. We have previously studied the effects of plasma neutralization for transverse beam compression. The scaled experiment, the Neutralized Transport Experiment (NTX), demonstrated that an initially un-neutralized beam can be compressed transversely to ∼1 mm radius when charge neutralization by background plasma electrons is provided. Here, we report longitudinal compression of a velocity-tailored, intense, neutralized 25 mA K + beam at 300 keV. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhances the beam peak current by a factor of 50 and produces a pulse duration of about 3 ns. The physics of longitudinal compression, experimental procedure, and the results of the compression experiments are presented

  14. Comparison of Different Compression to Ventilation Ratios (2: 1, 3: 1, and 4: 1) during Cardiopulmonary Resuscitation in a Porcine Model of Neonatal Asphyxia.

    Science.gov (United States)

    Pasquin, Matteo P; Cheung, Po-Yin; Patel, Sparsh; Lu, Min; Lee, Tze-Fun; Wagner, Michael; O'Reilly, Megan; Schmölzer, Georg M

    2018-04-12

    High-quality chest compression is essential during neonatal cardiopulmonary resuscitation (CPR). However, the optimal compression to ventilation ratio (C:V) that should be used during neonatal CPR to optimize coronary and cerebral perfusion while providing adequate ventilation remains unknown. We hypothesized that different C:V ratios (e.g., 2: 1 or 4: 1) will reduce the time to return of spontaneous circulation (ROSC) in severely asphyxiated piglets. Thirty-one newborn piglets (1-4 days old) were anesthetized, intubated, instrumented, and exposed to 50-min normocapnic hypoxia followed by asphyxia. Piglets were randomized into 4 groups: 2: 1 (n = 8), 3: 1 (n = 8), 4: 1 (n = 8) C:V ratio, or a sham group (n = 7). Cardiac function, carotid blood flow, cerebral oxygenation, and respiratory parameters were continuously recorded throughout the experiment. Thirty-one piglets were included in the study, and there was no difference in the duration of asphyxia or the degree of asphyxiation (as indicated by pH, PaCO2, and lactate) among the different groups. The median (IQR) time to ROSC was similar between the groups with 127 (82-210), 96 (88-126), and 119 (83-256) s in the 2: 1, 3: 1, and 4: 1 C:V ratio groups, respectively (p = 0.67 between groups). Similarly, there was no difference in 100% oxygen requirement or epinephrine administration between the experimental groups. Different C:V ratios resulted in similar ROSC, mortality, oxygen, and epinephrine administration during resuscitation in a porcine model of neonatal asphyxia. © 2018 S. Karger AG, Basel.

  15. Kaner biodiesel production through hybrid reactor and its performance testing on a CI engine at different compression ratios

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Yadav

    2017-06-01

    Full Text Available The present study deals with development of a hybrid reactor for biodiesel production based on the combined hydrodynamic cavitation and mechanical stirring processes. Biodiesel were produced using Kaner Seed Oil (KSO. The experimental results show that hybrid reactor produces 95% biodiesel yield within 45 min for 0.75% of catalyst and 6:1 M ratio which is significantly higher as compared to mechanical stirring or hydrodynamic cavitation alone. Thus biodiesel production process in hybrid reactor is cheap (high yield, efficient (time saving and environmentally friendly (lower% of catalyst. Performance study on engine shows that an increase in compression ratios (from 16 to 18 improves the engine performance using biodiesel blends as compared to petroleum diesel.

  16. Effect of Variable Compression Ratio on Performance of a Diesel Engine Fueled with Karanja Biodiesel and its Blends

    Science.gov (United States)

    Mishra, Rahul Kumar; soota, Tarun, Dr.; singh, Ranjeet

    2017-08-01

    Rapid exploration and lavish consumption of underground petroleum resources have led to the scarcity of underground fossil fuels moreover the toxic emissions from such fuels are pernicious which have increased the health hazards around the world. So the aim was to find an alternative fuel which would meet the requirements of petroleum or fossil fuels. Biodiesel is a clean, renewable and bio-degradable fuel having several advantages, one of the most important of which is being its eco-friendly and better knocking characteristics than diesel fuel. In this work the performance of Karanja oil was analyzed on a four stroke, single cylinder, water cooled, variable compression ratio diesel engine. The fuel used was 5% - 25% karanja oil methyl ester by volume in diesel. The results such obtained are compared with standard diesel fuel. Several properties i.e. Brake Thermal Efficiency, Brake Specific Fuel Consumptions, Exhaust Gas Temperature are determined at all operating conditions & at variable compression ratio 17 and 17.5.

  17. Specimen aspect ratio and progressive field strain development of sandstone under uniaxial compression by three-dimensional digital image correlation

    Directory of Open Access Journals (Sweden)

    H. Munoz

    2017-08-01

    Full Text Available The complete stress–strain characteristics of sandstone specimens were investigated in a series of quasi-static monotonic uniaxial compression tests. Strain patterns development during pre- and post-peak behaviours in specimens with different aspect ratios was also examined. Peak stress, post-peak portion of stress–strain, brittleness, characteristics of progressive localisation and field strain patterns development were affected at different extents by specimen aspect ratio. Strain patterns of the rocks were obtained by applying three-dimensional (3D digital image correlation (DIC technique. Unlike conventional strain measurement using strain gauges attached to specimen, 3D DIC allowed not only measuring large strains, but more importantly, mapping the development of field strain throughout the compression test, i.e. in pre- and post-peak regimes. Field strain development in the surface of rock specimen suggests that strain starts localising progressively and develops at a lower rate in pre-peak regime. However, in post-peak regime, strains increase at different rates as local deformations take place at different extents in the vicinity and outside the localised zone. The extent of localised strains together with the rate of strain localisation is associated with the increase in rate of strength degradation. Strain localisation and local inelastic unloading outside the localised zone both feature post-peak regime.

  18. Viscoelastic behavior of basaltic ash from Stromboli volcano inferred from intermittent compression experiments

    Science.gov (United States)

    Kurokawa, A. K.; Miwa, T.; Okumura, S.; Uesugi, K.

    2017-12-01

    After ash-dominated Strombolian eruption, considerable amount of ash falls back to the volcanic conduit forming a dense near-surface region compacted by weights of its own and other fallback clasts (Patrick et al., 2007). Gas accumulation below this dense cap causes a substantial increase in pressure within the conduit, causing the volcanic activity to shift to the preliminary stages of a forthcoming eruption (Del Bello et al., 2015). Under such conditions, rheology of the fallback ash plays an important role because it controls whether the fallback ash can be the cap. However, little attention has been given to the point. We examined the rheology of ash collected at Stromboli volcano via intermittent compression experiments changing temperature and compression time/rate. The ash deformed at a constant rate during compression process, and then it was compressed without any deformation during rest process. The compression and rest processes repeated during each experiment to see rheological variations with progression of compaction. Viscoelastic changes during the experiment were estimated by Maxwell model. The results show that both elasticity and viscosity increases with decreasing porosity. On the other hand, the elasticity shows strong rate-dependence in the both compression and rest processes while the viscosity dominantly depends on the temperature, although the compression rate also affects the viscosity in the case of the compression process. Thus, the ash behaves either elastically or viscously depending on experimental process, temperature, and compression rate/time. The viscoelastic characteristics can be explained by magnitude relationships between the characteristic relaxation times and times for compression and rest processes. This indicates that the balance of the time scales is key to determining the rheological characteristics and whether the ash behaves elastically or viscously may control cyclic Strombolian eruptions.

  19. modified water-cement ratio law for compressive strength of rice

    African Journals Online (AJOL)

    user

    various types of structures due to its structural stability and strength [1]. ... value of water-cement ratio results in greater pore spaces in .... as well as removing the excess water on the surface of the soil particles. ... and aggregate impact value.

  20. Modified water-cement ratio law for compressive strength of rice ...

    African Journals Online (AJOL)

    This work examines the modification of age long water – cement ratio law of Ordinary Portland Cement (OPC) concrete to cater for concrete with Rice Husk Ash (RHA). Chemical analysis of RHA produced under controlled temperature of 600°C was carried out. A total of one hundred and fifty (150) RHA concrete cubes at ...

  1. Effect of compression ratio, nozzle opening pressure, engine load, and butanol addition on nanoparticle emissions from a non-road diesel engine.

    Science.gov (United States)

    Maurya, Rakesh Kumar; Saxena, Mohit Raj; Rai, Piyush; Bhardwaj, Aashish

    2018-05-01

    Currently, diesel engines are more preferred over gasoline engines due to their higher torque output and fuel economy. However, diesel engines confront major challenge of meeting the future stringent emission norms (especially soot particle emissions) while maintaining the same fuel economy. In this study, nanosize range soot particle emission characteristics of a stationary (non-road) diesel engine have been experimentally investigated. Experiments are conducted at a constant speed of 1500 rpm for three compression ratios and nozzle opening pressures at different engine loads. In-cylinder pressure history for 2000 consecutive engine cycles is recorded and averaged data is used for analysis of combustion characteristics. An electrical mobility-based fast particle sizer is used for analyzing particle size and mass distributions of engine exhaust particles at different test conditions. Soot particle distribution from 5 to 1000 nm was recorded. Results show that total particle concentration decreases with an increase in engine operating loads. Moreover, the addition of butanol in the diesel fuel leads to the reduction in soot particle concentration. Regression analysis was also conducted to derive a correlation between combustion parameters and particle number emissions for different compression ratios. Regression analysis shows a strong correlation between cylinder pressure-based combustion parameters and particle number emission.

  2. Knock-Limited Performance of Triptane and 28-R Fuel Blends as Affected by Changes in Compression Ratio and in Engine Operating Variables

    Science.gov (United States)

    Brun, Rinaldo J.; Feder, Melvin S.; Fisher, William F.

    1947-01-01

    A knock-limited performance investigation was conducted on blends of triptane and 28-P fuel with a 12-cylinder, V-type, liquid-cooled aircraft engine of 1710-cubic-inch displacement at three compression ratios: 6.65, 7.93, and 9.68. At each compression ratio, the effect of changes in temperature of the inlet air to the auxiliary-stage supercharger and in fuel-air ratio were investigated at engine speeds of 2280 and. 3000 rpm. The results show that knock-limited engine performance, as improved by the use of triptane, allowed operation at both take-off and cruising power at a compression ratio of 9.68. At an inlet-air temperature of 60 deg F, an engine speed of 3000 rpm ; and a fuel-air ratio of 0,095 (approximately take-off conditions), a knock-limited engine output of 1500 brake horsepower was possible with 100-percent 28-R fuel at a compression ratio of 6.65; 20-percent triptane was required for the same power output at a compression ratio of 7.93, and 75 percent at a compression ratio of 9.68 allowed an output of 1480 brake horsepower. Knock-limited power output was more sensitive to changes in fuel-air ratio as the engine speed was increased from 2280 to 3000 rpm, as the compression ratio is raised from 6.65 to 9.68, or as the inlet-air temperature is raised from 0 deg to 120 deg F.

  3. Configuring and Characterizing X-Rays for Laser-Driven Compression Experiments at the Dynamic Compression Sector

    Science.gov (United States)

    Li, Y.; Capatina, D.; D'Amico, K.; Eng, P.; Hawreliak, J.; Graber, T.; Rickerson, D.; Klug, J.; Rigg, P. A.; Gupta, Y. M.

    2017-06-01

    Coupling laser-driven compression experiments to the x-ray beam at the Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS) of Argonne National Laboratory requires state-of-the-art x-ray focusing, pulse isolation, and diagnostics capabilities. The 100J UV pulsed laser system can be fired once every 20 minutes so precise alignment and focusing of the x-rays on each new sample must be fast and reproducible. Multiple Kirkpatrick-Baez (KB) mirrors are used to achieve a focal spot size as small as 50 μm at the target, while the strategic placement of scintillating screens, cameras, and detectors allows for fast diagnosis of the beam shape, intensity, and alignment of the sample to the x-ray beam. In addition, a series of x-ray choppers and shutters are used to ensure that the sample is exposed to only a single x-ray pulse ( 80ps) during the dynamic compression event and require highly precise synchronization. Details of the technical requirements, layout, and performance of these instruments will be presented. Work supported by DOE/NNSA.

  4. Dynamics of compressible gas-liquid flows with a stiff density ratio

    International Nuclear Information System (INIS)

    Cortes, Julien

    1999-01-01

    This work is devoted to the study of transient two-phase flows when the ratio of the two densities is stiff. At first, we review briefly some of the basic principles about two-phase flow, hyperbolicity and the finite volume method. Then we develop a perturbation method, based on the stiffness of the density ratio, to examine the Eigen-structure of two-fluid models. Indeed, in such models, complex phasic interactions yield a complex Eigen-structure which may raise numerous problems in simulations. We show that our approach provides a convenient frame to study the hyperbolicity of such models. At this stage, advanced numerical tests are computed showing the efficiency of our approach in the context of unstructured multidimensional meshes. Our tests are validated for non-equilibrium flows using experimental data or through mesh refinements. At last, we use the scaling of the densities to analyse how momentum is transferred between phases in the context of bubbly flows. We study the relevance of a stiff relaxation term related to the ratio of the densities using linear stability properties and Chapman-Enskog expansions. Our results and some numerical computations tends to show that such a system is apparently well-posed despite being 'weakly' hyperbolic. (author) [fr

  5. An experimental and numerical analysis of the influence of the inlet temperature, equivalence ratio and compression ratio on the HCCI auto-ignition process of Primary Reference Fuels in an engine

    OpenAIRE

    Machrafi, Hatim; Cavadias

    2008-01-01

    In order to understand better the auto-ignition process in an HCCI engine, the influence of some important parameters on the auto-ignition is investigated. The inlet temperature, the equivalence ratio and the compression ratio were varied and their influence on the pressure, the heat release and the ignition delays were measured, The inlet temperature was changed from 25 to 70 degrees C and the equivalence ratio from 0.18 to 0.41, while the compression ratio varied from 6 to 13.5. The fuels t...

  6. Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading.

    Science.gov (United States)

    de Krijger, Joep; Rans, Calvin; Van Hooreweder, Brecht; Lietaert, Karel; Pouran, Behdad; Zadpoor, Amir A

    2017-06-01

    Additively manufactured (AM) porous metallic biomaterials are considered promising candidates for bone substitution. In particular, AM porous titanium can be designed to exhibit mechanical properties similar to bone. There is some experimental data available in the literature regarding the fatigue behavior of AM porous titanium, but the effect of stress ratio on the fatigue behavior of those materials has not been studied before. In this paper, we study the effect of applied stress ratio on the compression-compression fatigue behavior of selective laser melted porous titanium (Ti-6Al-4V) based on the diamond unit cell. The porous titanium biomaterial is treated as a meta-material in the context of this work, meaning that R-ratios are calculated based on the applied stresses acting on a homogenized volume. After morphological characterization using micro computed tomography and quasi-static mechanical testing, the porous structures were tested under cyclic loading using five different stress ratios, i.e. R = 0.1, 0.3, 0.5, 0.7 and 0.8, to determine their S-N curves. Feature tracking algorithms were used for full-field deformation measurements during the fatigue tests. It was observed that the S-N curves of the porous structures shift upwards as the stress ratio increases. The stress amplitude was the most important factor determining the fatigue life. Constant fatigue life diagrams were constructed and compared with similar diagrams for bulk Ti-6Al-4V. Contrary to the bulk material, there was limited dependency of the constant life diagrams to mean stress. The notches present in the AM biomaterials were the sites of crack initiation. This observation and other evidence suggest that the notches created by the AM process cause the insensitivity of the fatigue life diagrams to mean stress. Feature tracking algorithms visualized the deformation during fatigue tests and demonstrated the root cause of inclined (45°) planes of specimen failure. In conclusion, the R-ratio

  7. Minimum Specific Fuel Consumption of a Liquid-Cooled Multicylinder Aircraft Engine as Affected by Compression Ratio and Engine Operating Conditions

    Science.gov (United States)

    Brun, Rinaldo J.; Feder, Melvin S.; Harries, Myron L.

    1947-01-01

    An investigation was conducted on a 12-cylinder V-type liquid-cooled aircraft engine of 1710-cubic-inch displacement to determine the minimum specific fuel consumption at constant cruising engine speed and compression ratios of 6.65, 7.93, and 9.68. At each compression ratio, the effect.of the following variables was investigated at manifold pressures of 28, 34, 40, and 50 inches of mercury absolute: temperature of the inlet-air to the auxiliary-stage supercharger, fuel-air ratio, and spark advance. Standard sea-level atmospheric pressure was maintained at the auxiliary-stage supercharger inlet and the exhaust pressure was atmospheric. Advancing the spark timing from 34 deg and 28 deg B.T.C. (exhaust and intake, respectively) to 42 deg and 36 deg B.T.C. at a compression ratio of 6.65 resulted in a decrease of approximately 3 percent in brake specific fuel consumption. Further decreases in brake specific fuel consumption of 10.5 to 14.1 percent (depending on power level) were observed as the compression ratio was increased from 6.65 to 9.68, maintaining at each compression ratio the spark advance required for maximum torque at a fuel-air ratio of 0.06. This increase in compression ratio with a power output of 0.585 horsepower per cubic inch required a change from . a fuel- lend of 6-percent triptane with 94-percent 68--R fuel at a compression ratio of 6.65 to a fuel blend of 58-percent, triptane with 42-percent 28-R fuel at a compression ratio of 9.68 to provide for knock-free engine operation. As an aid in the evaluation of engine mechanical endurance, peak cylinder pressures were measured on a single-cylinder engine at several operating conditions. Peak cylinder pressures of 1900 pounds per square inch can be expected at a compression ratio of 9.68 and an indicated mean effective pressure of 320 pounds per square inch. The engine durability was considerably reduced at these conditions.

  8. Theoretical modeling of combustion characteristics and performance parameters of biodiesel in DI diesel engine with variable compression ratio

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dawody, Mohamed F.; Bhatti, S.K. [Department of Mechanical Engineering, Andhra University (India)

    2013-07-01

    Increasing of costly and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as a promising alternative to petro-diesel fuels. A comprehensive computer code using ''Quick basic'' language was developed for the diesel engine cycle to study the combustion and performance characteristics of a single cylinder, four stroke, direct injection diesel engine with variable compression ratio. The engine operates on diesel fuel and 20% (mass basis) of biodiesel (derived from soybean oil) blended with diesel. Combustion characteristics such as cylinder pressure, heat release fraction, heat transfer and performance characteristics such as brake power; and brake specific fuel consumption (BSFC) were analyzed. On the basis of the first law of thermodynamics the properties at each degree crank angle was calculated. Wiebe function is used to calculate the instantaneous heat release rate. The computed results are validated through the results obtained in the simulation Diesel-rk software.

  9. Neutralized Drift Compression Experiment (NDCX) - II Quarterly Report

    International Nuclear Information System (INIS)

    Kwan, J.W.

    2009-01-01

    LBNL has received American Recovery and Reinvestment Act (ARRA) funding to construct a new accelerator at Lawrence Berkeley National Laboratory (LBNL) to significantly increase the energy on target, which will allow both the Heavy Ion Fusion (HIF) and Warm Dense Matter (WDM) research communities to explore scientific conditions that have not been available in any other device. For NDCX-II, a new induction linear accelerator (linac) will be constructed at Lawrence Berkeley National Laboratory (LBNL). NDCX-II will produce nano-second long ion beam bunches to hit thin foil targets. The final kinetic energy of the ions arriving at the target varies according to the ion mass. For atomic mass unit of 6 or 7 (Lithium ions), useful kinetic energies range from 1.5 to 5 or more MeV. The expected beam charge in the 1 ns (or shorter) pulse is about 20 nanoCoulombs. The pulse repetition rate will be about once or twice per minute (of course, target considerations will often reduce this rate). Our approach to building the NDCX-II ion accelerator is to make use of the available induction modules and 200 kV pulsers from the retired ATA electron linac at LLNL. Reusing this hardware will maximize the ion energy on target at a minimum cost. Some modification of the cells (e.g., reduce the bore diameter and replace with higher field pulsed solenoids) are needed in order to meet the requirements of this project. The NDCX-II project will include the following tasks: (1) Physics design to determine the required ion current density at the ion source, the injector beam optics, the layout of accelerator cells along the beam line, the voltage waveforms for beam acceleration and compression, the solenoid focusing, the neutralized drift compression and the final focus on target; (2) Engineering design and fabrication of the accelerator components, pulsed power system, diagnostic system, and control and data acquisition system; (3) Conventional facilities; and (4) Installation and integration

  10. Performance and emission characteristics of LPG powered four stroke SI engine under variable stroke length and compression ratio

    International Nuclear Information System (INIS)

    Ozcan, Hakan; Yamin, Jehad A.A.

    2008-01-01

    A computer simulation of a variable stroke length, LPG fuelled, four stroke, single cylinder, water cooled spark ignition engine was done. The engine capacity was varied by varying the stroke length of the engine, which also changed its compression ratio. The simulation model developed was verified with experimental results from the literature for both constant and variable stroke engines. The performance of the engine was simulated at each stroke length/compression ratio combination. The simulation results clearly indicate the advantages and utility of variable stroke engines in fuel economy and power issues. Using the variable stroke technique has significantly improved the engine's performance and emission characteristics within the range studied. The brake torque and power have registered an increase of about 7-54% at low speed and 7-57% at high speed relative to the original engine design and for all stroke lengths and engine speeds studied. The brake specific fuel consumption has registered variations from a reduction of about 6% to an increase of about 3% at low speed and from a reduction of about 6% to an increase of about 8% at high speed relative to the original engine design and for all stroke lengths and engine speeds studied. On the other hand, an increase of pollutants of about 0.65-2% occurred at low speed. Larger stroke lengths resulted in a reduction of the pollutants level of about 1.5% at higher speeds. At lower stroke lengths, on the other hand, an increase of about 2% occurred. Larger stroke lengths resulted in increased exhaust temperature and, hence, make the exhaust valve work under high temperature

  11. Influence of Palm Oil Fuel Ash and W/B Ratios on Compressive Strength, Water Permeability, and Chloride Resistance of Concrete

    Directory of Open Access Journals (Sweden)

    Wachilakorn Sanawung

    2017-01-01

    Full Text Available This research studies the effects of W/B ratios and palm oil fuel ash (POFA on compressive strength, water permeability, and chloride resistance of concrete. POFA was ground until the particles retained on sieve number 325 were less than 5% by weight. POFA was used to partially replace OPC at rates of 15, 25, and 35% by weight of binder. The water to binder (W/B ratios of concrete were 0.40 and 0.50. The compressive strength, water permeability, and chloride resistance of concrete were investigated up to 90 days. The results showed that POFA concrete with W/B ratio of 0.40 had the compressive strengths ranging from 45.8 to 55.9 MPa or 82–94% of OPC concrete at 90 days, while POFA concrete with W/B ratio of 0.50 had the compressive strengths of 33.9–41.9 MPa or 81–94% of OPC concrete. Furthermore, the compressive strength of concrete incorporation of ground POFA at 15% was the same as OPC concrete. The water permeability coefficient and the chloride ion penetration of POFA concrete were lower than OPC concrete when both types of concrete had the same compressive strengths. The findings also indicated that water permeability and chloride ion penetration of POFA concrete were significantly reduced compared to OPC concrete.

  12. Effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures

    Science.gov (United States)

    Andy W.C. Lee; Zhongli Hong; Douglas R. Phillips; Chung-Yun Hse

    1987-01-01

    This study investigated the effect of cement/wood ratios and wood storage conditions on hydration temperature, hydration time, and compressive strength of wood-cement mixtures made from six wood species: southern pine, white oak, southern red oak, yellow-poplar, sweetgum, and hickory. Cement/wood ratios varied from 13/1 to 4/1. Wood storage conditions consisted of air-...

  13. Poisson’s Ratio Extrapolation from Digital Image Correlation Experiments

    Science.gov (United States)

    2013-03-01

    prior to dewetting ). Also, it is often impractical to measure compressibility. Current rocket laboratory methods measure strains in propellants...distribution unlimited. Public Affairs Clearance Number XXXXX. Damage Characterization of Propellants 16 Dewetting Results 0 2 4 6 8 10 0 5 10 15 20

  14. Effect of tension and compression reinforcements on the serviceability of HSC beams with relatively small shear span to depth ratio

    International Nuclear Information System (INIS)

    Maghsoudi, A.A.; Akbarzadeh, B.H.

    2007-01-01

    To investigate the serviceability performance of High-Strength Concrete (HSC) beams, 12 beams (L=2m, b=0.2m, h=0.3m and shear span to depth ratio of 1.8) with different ratios of p and p' (percentage of tensile and compressive steel) were cast and tested under bending. During the test, concrete and steel strains, deflections and crack widths were measured at different locations along each beam. Based on experimental readings and observations, the cracked moment of inertia (Icr) of HSC beams was determined and the results were compared with some selective theoretical methods. Also, the flexural crack widths of the beams were measured and the applicability of ACI, BS and CSA code for normal strength concrete (NSC) was verified for HSC beams tested. The experimental (Icr) exp values of HSC beams were lower than the theoretical (Icr) th values from different codes. It was concluded that the serviceability and post serviceability performance of reinforced concrete structures can be improved using high strength concrete. In general, for almost all HSC tested beams at three crack width (0.1, 0.2, 0.3 mm); the use of ACI equation led to predict 50% of the crack width conservatively (the ratio of ((wcr) th / (wcr) exp) is greater than unity) but the results of the BS equation are conservative while compare to the ACI equation. The use of the CSA equation for the beams of higher and lower reinforcement ratio caused a more conservative and a closer value respectively, to limiting values of CSA. The deflection at initial steel horizontal yield plateau is less than 9 mm which is a sign of excellent deflection performance of HSC beams. (author)

  15. DNABIT Compress - Genome compression algorithm.

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  16. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of ceramic material are investigated within the framework of developing solid breeder blankets for future fusion power plants. A thermo-mechanical characterisation of such pebble beds is mandatory for understanding the behaviour of pebble beds, and thus the overall blanket, under fusion environment conditions. The mechanical behaviour of pebble beds is typically explored with uni-axial, bi-axial and tri-axial compression experiments. The latter two types of experiment are particularly revealing since they contain explicitly, beyond a compression behaviour of the bed, information on the conditions for pebble flow, i.e. macroscopic relocation, in the pebble bed. (orig.)

  17. Combined effects of cooled EGR and a higher geometric compression ratio on thermal efficiency improvement of a downsized boosted spark-ignition direct-injection engine

    International Nuclear Information System (INIS)

    Su, Jianye; Xu, Min; Li, Tie; Gao, Yi; Wang, Jiasheng

    2014-01-01

    Highlights: • Experiments for the effects of cooled EGR and two compression ratios (CR) on fuel efficiency were conducted. • The mechanism for the observed fuel efficiency behaviors by cooled EGR and high CR was clarified. • Cooled EGR offers more fuel efficiency improvement than elevating CR from 9.3 to 10.9. • Combining 18–25% cooled EGR with 10.9 CR lead to 2.1–3.5% brake thermal efficiency improvements. - Abstract: The downsized boosted spark-ignition direct-injection (SIDI) engine has proven to be one of the most promising concepts to improve vehicle fuel economy. However, the boosted engine is typically designed at a lower geometric compression ratio (CR) due to the increased knock tendency in comparison to naturally aspirated engines, limiting the potential of improving fuel economy. On the other hand, cooled exhaust gas recirculation (EGR) has drawn attention due to the potential to suppress knock and improve fuel economy. Combing the effects of boosting, increased CR and cooled EGR to further improve fuel economy within acceptable knock tolerance has been investigated using a 2.0 L downsized boosted SIDI engine over a wide range of engine operating conditions from 1000 rpm to 3000 rpm at low to high loads. To clarify the mechanism of this complicated effects, the first law of thermodynamics analysis was conducted with the inputs from GT-Power® engine simulation. Experiment results indicate that cooled EGR provides more brake thermal efficiency improvement than increasing geometric CR from 9.3 to 10.9. The benefit of brake thermal efficiency from the higher CR is limited to low load conditions. The attributes for improving brake thermal efficiency by cooled EGR include reduced heat transfer loss, reduced pumping work and increased ratio of specific heats for all the engine operating conditions, as well as higher degree of constant volume heat release only for the knock-limited high load conditions. The combined effects of 18–25% cooled EGR

  18. Drift compression experiments on MBE-4 and related emittance growth phenomena

    International Nuclear Information System (INIS)

    Eylon, S.; Faltens, A.; Fawley, W.; Garvey, T.; Hahn, K.; Henestroza, E.; Smith, L.

    1991-04-01

    We have recently conducted a series of experiments on the MBE-4 heavy ion accelerator in which a velocity tilt was placed on the beam in the first accelerating section beyond the injector, followed by drift compression over the remaining 11 meters. Depending upon the magnitude of the velocity tilt and the accompanying mismatch in the focusing lattice, emittance growth was observed, manifested by ''butterfly'' shapes in x - x' phase space. We discuss various analytical limits on ion beam compression and relate them to these experiments and also to a driver for a heavy ion fusion reactor. We also present numerical simulations which investigate various aspects of compression and consequent emittance growth. 2 refs., 3 figs., 1 tab

  19. Compression Ratio Ion Mobility Programming (CRIMP) Accumulation and Compression of Billions of Ions for Ion Mobility-Mass Spectrometry Using Traveling Waves in Structures for Lossless Ion Manipulations (SLIM)

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Liulin; Garimella, Venkata BS; Hamid, Ahmed M.; Webb, Ian K.; Attah, Isaac K.; Norheim, Randolph V.; Prost, Spencer A.; Zheng, Xueyun; Sandoval, Jeremy A.; Baker, Erin M.; Ibrahim, Yehia M.; Smith, Richard D.

    2017-05-25

    We report on the implementation of a traveling wave (TW) based compression ratio ion mobility programming (CRIMP) approach within Structures for Lossless Ion Manipulations (SLIM) that enables both greatly enlarged trapped ion charge capacities and also their subsequent efficient compression for use in ion mobility (IM) separations. Ion accumulation is conducted in a long serpentine path TW SLIM region after which CRIMP allows the large ion populations to be ‘squeezed’. The compression process occurs at an interface between two SLIM regions, one operating conventionally and the second having an intermittently pausing or ‘stuttering’ TW, allowing the contents of multiple bins of ions from the first region to be merged into a single bin in the second region. In this initial work stationary voltages in the second region were used to block ions from exiting the first (trapping) region, and the resumption of TWs in the second region allows ions to exit, and the population to also be compressed if CRIMP is applied. In our initial evaluation we show that the number of charges trapped for a 40 s accumulation period was ~5×109, more than two orders of magnitude greater than the previously reported charge capacity using an ion funnel trap. We also show that over 1×109 ions can be accumulated with high efficiency in the present device, and that the extent of subsequent compression is only limited by the space charge capacity of the trapping region. Lower compression ratios allow increased IM peak heights without significant loss of signal, while excessively large compression ratios can lead to ion losses and other artifacts. Importantly, we show that extended ion accumulation in conjunction with CRIMP and multiple passes provides the basis for a highly desirable combination of ultra-high sensitivity and ultra-high resolution IM separations using SLIM.

  20. Lossy compression of TPC data and trajectory tracking efficiency for the ALICE experiment

    International Nuclear Information System (INIS)

    Nicolaucig, A.; Ivanov, M.; Mattavelli, M.

    2003-01-01

    In this paper a quasi-lossless algorithm for the on-line compression of the data generated by the Time Projection Chamber (TPC) detector of the ALICE experiment at CERN is described. The algorithm is based on a lossy source code modeling technique, i.e. it is based on a source model which is lossy if samples of the TPC signal are considered one by one; conversely, the source model is lossless or quasi-lossless if some physical quantities that are of main interest for the experiment are considered. These quantities are the area and the location of the center of mass of each TPC signal pulse, representing the pulse charge and the time localization of the pulse. So as to evaluate the consequences of the error introduced by the lossy compression process, the results of the trajectory tracking algorithms that process data off-line after the experiment are analyzed, in particular, versus their sensibility to the noise introduced by the compression. Two different versions of these off-line algorithms are described, performing cluster finding and particle tracking. The results on how these algorithms are affected by the lossy compression are reported. Entropy coding can be applied to the set of events defined by the source model to reduce the bit rate to the corresponding source entropy. Using TPC simulated data according to the expected ALICE TPC performance, the compression algorithm achieves a data reduction in the range of 34.2% down to 23.7% of the original data rate depending on the desired precision on the pulse center of mass. The number of operations per input symbol required to implement the algorithm is relatively low, so that a real-time implementation of the compression process embedded in the TPC data acquisition chain using low-cost integrated electronics is a realistic option to effectively reduce the data storing cost of ALICE experiment

  1. Diagnostic methods and interpretation of the experiments on microtarget compression in the Iskra-4 device

    International Nuclear Information System (INIS)

    Kochemasov, G.G.

    1992-01-01

    Studies on the problem of laser fusion, which is mainly based on experiments conducted in the Iskra-4 device are reviewed. Different approaches to solution of the problem of DT-fuel ignition, methods of diagnostics of characteristics of laser radiation and plasma, occurring on microtarget heating and compression, are considered

  2. New pellet compression schemes by indirect irradiation of REB and related preliminary experiments

    International Nuclear Information System (INIS)

    Sato, M.; Tazima, T.; Yonezu, H.

    1986-01-01

    Preliminary experiments on a proposed scheme for pellet compression is carried out with a Point Pinch Diode. A high current density of ion beam is observed, and its value corresponds to 13.5 kA/cm 2 from the anode to the cathode. (author)

  3. Shock compression of monocrystalline copper: Experiments, characterization, and analysis

    International Nuclear Information System (INIS)

    Cao Buyang; Lassila, David H.; Huang Chongxiang; Xu Yongbo; Meyers, Marc Andre

    2010-01-01

    Monocrystalline copper samples with [0 0 1] and [2 2 1] orientations were subjected to shock/recovery experiments at 30 and 57 GPa and 90 K. The slip system activity and the microstructural evolution were investigated. Different defect structures, including dislocations, stacking faults, twins, microbands, and recrystallized grains were observed in the specimens. The residual microstructures were dependent on crystalline orientation and pressure. The differences with crystalline orientations are most likely due to different resolved shear stresses on specific crystalline planes. The geometric relationships between the shock propagation direction and crystalline orientation are presented under uniaxial strain. It is shown that the [2 2 1] orientation, by virtue of having fewer highly activated slip systems, exhibits greater concentration of deformation with more intense shear on the primary system. This, in turn leads to greater local temperature rise and full recrystallization, in spite of the thermodynamic residual temperature of ∼500 K and rapid cooling (within 20 s) to ambient temperature. The profuse observation of microbands is interpreted in terms of the mechanism proposed by Huang and Gray [J.C. Huang, G.T. Gray III, Acta Metallurgica 37 (1989) 3335-3347].

  4. Simulations and experiments of intense ion beam compression in space and time

    International Nuclear Information System (INIS)

    Yu, S.S.; Seidl, P.A.; Roy, P.K.; Lidia, S.M.; Coleman, J.E.; Kaganovich, I.D.; Gilson, E.P.; Welch, Dale Robert; Sefkow, Adam B.; Davidson, R.C.

    2008-01-01

    The Heavy Ion Fusion Science Virtual National Laboratory has achieved 60-fold longitudinal pulse compression of ion beams on the Neutralized Drift Compression Experiment (NDCX) (P. K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005)). To focus a space-charge-dominated charge bunch to sufficiently high intensities for ion-beam-heated warm dense matter and inertial fusion energy studies, simultaneous transverse and longitudinal compression to a coincident focal plane is required. Optimizing the compression under the appropriate constraints can deliver higher intensity per unit length of accelerator to the target, thereby facilitating the creation of more compact and cost-effective ion beam drivers. The experiments utilized a drift region filled with high-density plasma in order to neutralize the space charge and current of an ∼300 keV K + beam and have separately achieved transverse and longitudinal focusing to a radius Z 2 MeV) ion beam user-facility for warm dense matter and inertial fusion energy-relevant target physics experiments.

  5. Neutron measurements in the FRX-C/LSM magnetic compression experiment

    International Nuclear Information System (INIS)

    Chrien, R.E.; Baron, M.H.

    1989-01-01

    Neutron measurements are being pursued as an ion temperature diagnostic in the FRX-C/LSM Magnetic Compression Experiment. One can easily see that the d-d neutron emission is a sensitive measure of ion heating during adiabatic magnetic compression of FRCs. The reaction rate may be written as R = (1/2) n N left-angle σv right-angle, where n and N are the deuterium density and inventory. The fusion reactivity varies as left-angle σv right-angle ∝ T 5.6 for T ≅ 1 keV. For adiabatic compression, n ∝ B 1.2 and T ∝ B 0.8 so R ∝ B 5.7 in the absence of losses. The neutron yield is also sensitive to the time duration that the plasma remains near its peak temperature. 4 refs., 4 figs

  6. Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.

    Science.gov (United States)

    Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard

    2017-01-01

    Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.

  7. Shock compression experiments on Lithium Deuteride (LiD) single crystals

    Science.gov (United States)

    Knudson, M. D.; Desjarlais, M. P.; Lemke, R. W.

    2016-12-01

    Shock compression experiments in the few hundred GPa (multi-Mbar) regime were performed on Lithium Deuteride single crystals. This study utilized the high velocity flyer plate capability of the Sandia Z Machine to perform impact experiments at flyer plate velocities in the range of 17-32 km/s. Measurements included pressure, density, and temperature between ˜190 and 570 GPa along the Principal Hugoniot—the locus of end states achievable through compression by large amplitude shock waves—as well as pressure and density of reshock states up to ˜920 GPa. The experimental measurements are compared with density functional theory calculations, tabular equation of state models, and legacy nuclear driven results that have been reanalyzed using modern equations of state for the shock wave standards used in the experiments.

  8. Taylor bubbles at high viscosity ratios: experiments and numerical simulations

    Science.gov (United States)

    Hewakandamby, Buddhika; Hasan, Abbas; Azzopardi, Barry; Xie, Zhihua; Pain, Chris; Matar, Omar

    2015-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube, often occurring in gas-liquid slug flows in many industrial applications, particularly oil and gas production. The objective of this study is to investigate the fluid dynamics of three-dimensional Taylor bubble rising in highly viscous silicone oil in a vertical pipe. An adaptive unstructured mesh modelling framework is adopted here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rising and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid'-type method for the interface-capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Experimental results for the Taylor bubble shape and rise velocity are presented, together with numerical results for the dynamics of the bubbles. A comparison of the simulation predictions with experimental data available in the literature is also presented to demonstrate the capabilities of our numerical method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  9. Numerical Investigation of Injection Timing Influence on Fuel Slip and Influence of Compression Ratio on Knock Occurrence in Conventional Dual Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mario Sremec

    2017-12-01

    Full Text Available Compressed natural gas can be used in diesel engine with great benefits, but because of its low reactivity it is usually used in a so called dual fuel combustion process. Optimal parameters for dual fuel engines are not yet investigated thoroughly which is the motivation for this work. In this work, a numerical study performed in a cycle simulation tool (AVL Boost v2013 on the influence of different injection timings on fuel slip into exhaust and influence of compression ratio on knock phenomena in port injected dual fuel engine was conducted. The introduction of natural gas into the intake port of a diesel engine usually results in some fuel slipping into the exhaust port due to valve overlap. By analysing the simulation results, the injection strategy that significantly decreases the natural gas slip is defined. The knock occurrence study showed that the highest allowed compression ratio that will result in knock free operation of the presented engine is 18 for ambient intake condition, while for charged intake conditions the compression ratio should be lowered to 16.

  10. An experimental and numerical analysis of the influence of the inlet temperature, equivalence ratio and compression ratio on the HCCI auto-ignition process of Primary Reference Fuels in an engine

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert (France); Cavadiasa, Simeon [UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert (France)

    2008-11-15

    In order to understand better the auto-ignition process in an HCCI engine, the influence of some important parameters on the auto-ignition is investigated. The inlet temperature, the equivalence ratio and the compression ratio were varied and their influence on the pressure, the heat release and the ignition delays were measured. The inlet temperature was changed from 25 to 70 C and the equivalence ratio from 0.18 to 0.41, while the compression ratio varied from 6 to 13.5. The fuels that were investigated were PRF40 and n-heptane. These three parameters appeared to decrease the ignition delays, with the inlet temperature having the least influence and the compression ratio the most. A previously experimentally validated reduced surrogate mechanism, for mixtures of n-heptane, iso-octane and toluene, has been used to explain observations of the auto-ignition process. The same kinetic mechanism is used to better understand the underlying chemical and physical phenomena that make the influence of a certain parameter change according to the operating conditions. This can be useful for the control of the auto-ignition process in an HCCI engine. (author)

  11. Conceptual design of bend, compression, and final focus components of ILSE [Induction Linac System Experiment

    International Nuclear Information System (INIS)

    Lee, E.P.; Fong, C.; Mukherjee, S.; Thur, W.

    1989-03-01

    The Induction Linac System Experiment (ILSE) includes a 180/degree/ bend system, drift compression line and a final focus, which test the analogous features of a heavy ion driver for inertial fusion. These components are novel in their transport of a space-charge-dominated ion beam with large head-to-tail velocity tilt. Their conceptual design is presented, including calculations of the beam envelope, momentum dispersion, and engineering design of magnets, vacuum system, diagnostics, alignment, and support. 3 refs., 5 figs

  12. Assessment of eddy current effects on compression experiments in the TFTR tokamak

    International Nuclear Information System (INIS)

    Wong, K.L.; Park, W.

    1986-05-01

    The eddy current induced on the TFTR vacuum vessel during compression experiments is estimated based on a cylindrical model. It produces an error magnetic field that generates magnetic islands at the rational magnetic surfaces. The widths of these islands are calculated and found to have some effect on electron energy confinement. However, resistive MHD simulation results indicate that the island formation process can be slowed down by plasma rotation

  13. Gasoline surrogate modeling of gasoline ignition in a rapid compression machine and comparison to experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mehl, M; Kukkadapu, G; Kumar, K; Sarathy, S M; Pitz, W J; Sung, S J

    2011-09-15

    The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history during ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first

  14. Dynamic Compression Experiments on Hydrogen and Deuterium in the Warm Dense Liquid.

    Science.gov (United States)

    Desjarlais, Michael; McCoy, Chad; Cochrane, Kyle; Mattsson, Thomas; Knudson, Marcus; Redmer, Ronald

    2017-06-01

    Recently a shock-ramp platform has been developed on the Z Accelerator to access off-Hugoniot states in liquids. The accelerator delivers a two-step current pulse; the first accelerates the electrode to a constant velocity, which upon impact with the sample cell creates a well-defined shock, the subsequent current rise produces ramp compression from the initially shocked state producing relatively cool (1-2 kK), high pressure (>300 GPa), high compression (10 to 15-fold compression) states. This technique allows experimental access to the region of phase space where hydrogen is predicted to undergo a first-order phase transition from an insulating molecular-like to a conducting atomic-like liquid. Here we discuss the experimental platform, survey various theoretical predictions for the liquid-liquid, insulator-to-metal transition in hydrogen, and present results of experiments on both deuterium and hydrogen that clearly show an abrupt transition to a metallic state. We also present results from recent experiments at higher temperatures (3-4 kK) and compare the observations to both first-principles theory and previous step-wise loading experiments that exhibited a minimum metallic conductivity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Lossy compression of TPC data and trajectory tracking efficiency for the ALICE experiment

    CERN Document Server

    Nicolaucig, A; Mattavelli, M

    2003-01-01

    In this paper a quasi-lossless algorithm for the on-line compression of the data generated by the Time Projection Chamber (TPC) detector of the ALICE experiment at CERN is described. The algorithm is based on a lossy source code modeling technique, i.e. it is based on a source model which is lossy if samples of the TPC signal are considered one by one; conversely, the source model is lossless or quasi-lossless if some physical quantities that are of main interest for the experiment are considered. These quantities are the area and the location of the center of mass of each TPC signal pulse, representing the pulse charge and the time localization of the pulse. So as to evaluate the consequences of the error introduced by the lossy compression process, the results of the trajectory tracking algorithms that process data off-line after the experiment are analyzed, in particular, versus their sensibility to the noise introduced by the compression. Two different versions of these off- line algorithms are described,...

  16. Porous media experience applicable to field evaluation for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.; Gutknecht, P.J.

    1980-06-01

    A survey is presented of porous media field experience that may aid in the development of a compressed air energy storage field demonstration. Work done at PNL and experience of other groups and related industries is reviewed. An overall view of porous media experience in the underground storage of fluids is presented. CAES experience consists of site evaluation and selection processes used by groups in California, Kansas, and Indiana. Reservoir design and field evaluation of example sites are reported. The studies raised questions about compatibility with depleted oil and gas reservoirs, storage space rights, and compressed air regulations. Related experience embraces technologies of natural gas, thermal energy, and geothermal and hydrogen storage. Natural gas storage technology lends the most toward compressed air storage development, keeping in mind the respective differences between stored fluids, physical conditions, and cycling frequencies. Both fluids are injected under pressure into an aquifer to form a storage bubble confined between a suitable caprock structure and partially displaced ground water. State-of-the-art information is summarized as the necessary foundation material for field planning. Preliminary design criteria are given as recommendations for basic reservoir characteristics. These include geometric dimensions and storage matrix properties such as permeability. Suggested ranges are given for injection air temperature and reservoir pressure. The second step in developmental research is numerical modeling. Results have aided preliminary design by analyzing injection effects upon reservoir pressure, temperature and humidity profiles. Results are reported from laboratory experiments on candidate sandstones and caprocks. Conclusions are drawn, but further verification must be done in the field.

  17. A theory overview on the Compressed Baryonic Matter Experiment at FAIR

    International Nuclear Information System (INIS)

    Nahrgang, Marlene

    2014-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR offers for the first time in heavy-ion physics the opportunity to investigate extremely baryon-dense strongly interacting matter with large data samples as a basis for high precision measurements. This will allow us to put theories at test, answer questions about the structure of the phase diagram of QCD and the transport properties of the medium. In this overview I will highlight some recent advances on several key questions, which will be addressed by the CBM experiment.

  18. Modeling Drift Compression in an Integrated Beam Experiment for Heavy-Ion-Fusion

    Science.gov (United States)

    Sharp, W. M.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Celata, C. M.; Yu, S. S.

    2003-10-01

    The Integrated Beam Experiment (IBX) is an induction accelerator being designed to further develop the science base for heavy-ion fusion. The experiment is being developed jointly by Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. One conceptual approach would first accelerate a 0.5-1 A beam of singly charged potassium ions to 5 MeV, impose a head-to-tail velocity tilt to compress the beam longitudinally, and finally focus the beam radiallly using a series of quadrupole lenses. The lengthwise compression is a critical step because the radial size must be controlled as the current increases, and the beam emittance must be kept minimal. The work reported here first uses the moment-based model HERMES to design the drift-compression beam line and to assess the sensitivity of the final beam profile to beam and lattice errors. The particle-in-cell code WARP is then used to validate the physics design, study the phase-space evolution, and quantify the emittance growth.

  19. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I. (University of California, San Diego); Winey, J. Michael (Washington State University); Gupta, Yogendra Mohan (Washington State University); Lane, J. Matthew D.; Ditmire, Todd (University of Texas at Austin); Quevedo, Hernan J. (University of Texas at Austin)

    2011-10-01

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  20. Image compression for the silicon drift detectors in the ALICE experiment

    International Nuclear Information System (INIS)

    Werbrouck, A.; Tosello, F.; Rivetti, A.; Mazza, G.; De Remigis, P.; Cavagnino, D.; Alberici, G.

    2001-01-01

    We describe an algorithm for the zero suppression and data compression for the Silicon Drift Detectors (SDD) in the ALICE experiment. The algorithm operates on 10-bit linear data streams from the SDDs by applying a 10 bit to 8-bit non-linear compression followed by a data reduction based on a two-threshold discrimination and a two-dimensional analysis along both the drift time and the anodes. The proposed scheme allows for a better understanding of the neighborhoods of the SDD signal clusters, thus improving their reconstructability, and also provides a statistical monitoring of the background characteristics for each SDD anode. The entire algorithm is purely combinatorial and thus can be executed in pipeline, without additional clock cycles, during the SDD readout. The hardware coding together with the methods for the expansion to the original 10-bit values in the offline analysis and for the background monitoring are presented

  1. Squeezing of Ion Populations and Peaks in Traveling Wave Ion Mobility Separations and Structures for Lossless Ion Manipulations using Compression Ratio Ion Mobility Programming

    Energy Technology Data Exchange (ETDEWEB)

    Garimella, Venkata BS; Hamid, Ahmed M.; Deng, Liulin; Ibrahim, Yehia M.; Webb, Ian K.; Baker, Erin M.; Prost, Spencer A.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.

    2016-11-02

    In this work, we report an approach for spatial and temporal gas phase ion population manipulation, and demonstrate its application for the collapse of the ion distributions in ion mobility (IM) separations into tighter packets providing higher sensitivity measurements in conjunction with mass spectrometry (MS). We do this for ions moving from a conventionally traveling wave (TW)-driven region to a region where the TW is intermittently halted or ‘stuttered’. This approach causes the ion packets spanning a number of TW-created traveling traps (TT) to be redistributed into fewer TT, resulting in spatial compression. The degree of spatial compression is controllable and determined by the ratio of stationary time of the TW in the second region to its moving time. This compression ratio ion mobility programming (CRIMP) approach has been implemented using Structures for Lossless Ion Manipulations (SLIM) in conjunction with MS. CRIMP with the SLIM-MS platform is shown to provide increased peak intensities, reduced peak widths, and improved S/N ratios with MS detection. CRIMP also provides a foundation for extremely long path length and multi-pass IM separations in SLIM providing greatly enhanced IM resolution by reducing the detrimental effects of diffusional peak broadening due to increasing peak widths.

  2. Bayesian model calibration of computational models in velocimetry diagnosed dynamic compression experiments.

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hund, Lauren [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Dynamic compression experiments are being performed on complicated materials using increasingly complex drivers. The data produced in these experiments are beginning to reach a regime where traditional analysis techniques break down; requiring the solution of an inverse problem. A common measurement in dynamic experiments is an interface velocity as a function of time, and often this functional output can be simulated using a hydrodynamics code. Bayesian model calibration is a statistical framework to estimate inputs into a computational model in the presence of multiple uncertainties, making it well suited to measurements of this type. In this article, we apply Bayesian model calibration to high pressure (250 GPa) ramp compression measurements in tantalum. We address several issues speci c to this calibration including the functional nature of the output as well as parameter and model discrepancy identi ability. Speci cally, we propose scaling the likelihood function by an e ective sample size rather than modeling the autocorrelation function to accommodate the functional output and propose sensitivity analyses using the notion of `modularization' to assess the impact of experiment-speci c nuisance input parameters on estimates of material properties. We conclude that the proposed Bayesian model calibration procedure results in simple, fast, and valid inferences on the equation of state parameters for tantalum.

  3. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    Science.gov (United States)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  4. Mechanical response of common millet (Panicum miliaceum) seeds under quasi-static compression: Experiments and modeling.

    Science.gov (United States)

    Hasseldine, Benjamin P J; Gao, Chao; Collins, Joseph M; Jung, Hyun-Do; Jang, Tae-Sik; Song, Juha; Li, Yaning

    2017-09-01

    The common millet (Panicum miliaceum) seedcoat has a fascinating complex microstructure, with jigsaw puzzle-like epidermis cells articulated via wavy intercellular sutures to form a compact layer to protect the kernel inside. However, little research has been conducted on linking the microstructure details with the overall mechanical response of this interesting biological composite. To this end, an integrated experimental-numerical-analytical investigation was conducted to both characterize the microstructure and ascertain the microscale mechanical properties and to test the overall response of kernels and full seeds under macroscale quasi-static compression. Scanning electron microscopy (SEM) was utilized to examine the microstructure of the outer seedcoat and nanoindentation was performed to obtain the material properties of the seedcoat hard phase material. A multiscale computational strategy was applied to link the microstructure to the macroscale response of the seed. First, the effective anisotropic mechanical properties of the seedcoat were obtained from finite element (FE) simulations of a microscale representative volume element (RVE), which were further verified from sophisticated analytical models. Then, macroscale FE models of the individual kernel and full seed were developed. Good agreement between the compression experiments and FE simulations were obtained for both the kernel and the full seed. The results revealed the anisotropic property and the protective function of the seedcoat, and showed that the sutures of the seedcoat play an important role in transmitting and distributing loads in responding to external compression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Compression of Born ratio for fluorescence molecular tomography/x-ray computed tomography hybrid imaging: methodology and in vivo validation.

    Science.gov (United States)

    Mohajerani, Pouyan; Ntziachristos, Vasilis

    2013-07-01

    The 360° rotation geometry of the hybrid fluorescence molecular tomography/x-ray computed tomography modality allows for acquisition of very large datasets, which pose numerical limitations on the reconstruction. We propose a compression method that takes advantage of the correlation of the Born-normalized signal among sources in spatially formed clusters to reduce the size of system model. The proposed method has been validated using an ex vivo study and an in vivo study of a nude mouse with a subcutaneous 4T1 tumor, with and without inclusion of a priori anatomical information. Compression rates of up to two orders of magnitude with minimum distortion of reconstruction have been demonstrated, resulting in large reduction in weight matrix size and reconstruction time.

  6. PERCUTANEOUS BALLOON COMPRESSION OF GASSERIAN GANGLION FOR THE TREATMENT OF TRIGEMINAL NEURALGIA: AN EXPERIENCE FROM INDIA.

    Science.gov (United States)

    Agarwal, Anurag; Dhama, Vipin; Manik, Yogesh K; Upadhyaya, M K; Singh, C S; Rastogi, V

    2015-02-01

    Trigeminal neuralgia (TN) is characterized by unilateral, lancinating, paroxysmal pain in the dermatomal distribution area of trigeminal nerve. Percutaneous balloon compression (PBC) of Gasserian ganglion is an effective, comparatively cheaper and simple therapeutic modality for treatment of TN. Compression secondary to PBC selectively injures the large myelinated A-alfa (afferent) fibers that mediate light touch and does not affect A-delta and C-fibres, which carry pain sensation. Balloon compression reduces the sensory neuronal input, thus turning off the trigger to the neuropathic trigeminal pain. In this current case series, we are sharing our experience with PBC of Gasserian Ganglion for the treatment of idiopathic TN in our patients at an academic university-based medical institution in India. During the period of August 2012 to October 2013, a total of twelve PBCs of Gasserian Ganglion were performed in eleven patients suffering from idiopathic TN. There were nine female patients and two male patients with the age range of 35-70 years (median age: 54 years). In all patients cannulation of foramen ovale was done successfully in the first attempt. In eight out of eleven (72.7%) patients ideal 'Pear-shaped' balloon visualization could be achieved. In the remaining three patients (27.3%), inflated balloon was 'Bullet-shaped'. In one patient final placement of Fogarty balloon was not satisfactory and it ruptured during inflation. This case was deferred for one week when it was completed successfully with 'Pear-shaped' balloon inflation. During the follow up period of 1-13 months, there have been no recurrences of TN. Eight out of eleven patients (72.7%) are completely off medicines (carbamazepine and baclofen) and other two patients are stable on very low doses of carbamazepine. All patients have reported marked improvement in quality of life. This case series shows that percutaneous balloon compression is a useful minimally invasive intervention for the

  7. A painful, never ending story: older women's experiences of living with an osteoporotic vertebral compression fracture.

    Science.gov (United States)

    Svensson, H K; Olofsson, E H; Karlsson, J; Hansson, T; Olsson, L-E

    2016-05-01

    Vertebral compression fractures (VCF) cause pain and decreased physical ability, with no known well-established treatment. The aim of this study was to illuminate the experience of living with a VCF. The results show that fear and concerns are a major part of daily life. The women's initial contact with health-care providers should focus on making them feel acknowledged by offering person-centered and tailored support. In the past decade, osteoporotic-related fractures have become an increasingly common and costly public health problem worldwide. Vertebral compression fracture (VCF) is the second most common osteoporotic fracture, and patients with VCF describe an abrupt descent into disability, with a subsequent desire to regain independence in everyday life; however, little is known of their situation. The aim of this study was to illuminate the lived experience of women with an osteoporotic VCF. Ten women were interviewed during 2012-2013, starting with an open-ended question: could you tell me what it is like to live with a vertebral compression fracture? The verbatim transcribed interviews were analyzed using a phenomenological hermeneutical approach. The narrative provided descriptions of living in turmoil and chaos, unable to find stability in their life with little improvement regarding pain and physical function. Shifts from periods of constant pain to periods of fear of constant pain created a loss of confidence and an increased sense of confinement. The structural analysis revealed fear and concerns as the most prominent experience building on five themes: struggling to understand a deceiving body, breakthrough pain fueling fear, fearing a trajectory into isolation, concerns of dependency, and fearing an uncertain future. Until researchers find a successful prevention or medical/surgical treatment for osteoporotic VCFs, health-care providers and society abandon these women to remain in a painful and never ending story.

  8. Compressed Natural Gas (CNG) Transit Bus Experience Survey: April 2009--April 2010

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.; Horne, D. B.

    2010-09-01

    This survey was commissioned by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to collect and analyze experiential data and information from a cross-section of U.S. transit agencies with varying degrees of compressed natural gas (CNG) bus and station experience. This information will be used to assist DOE and NREL in determining areas of success and areas where further technical or other assistance might be required, and to assist them in focusing on areas judged by the CNG transit community as priority items.

  9. Limiting effects on laser compression by resonant backward Raman scattering in modern experiments

    International Nuclear Information System (INIS)

    Yampolsky, Nikolai A.; Fisch, Nathaniel J.

    2011-01-01

    Through resonant backward Raman scattering, the plasma wave mediates the energy transfer between long pump and short seed laser pulses. These mediations can result in pulse compression at extraordinarily high powers. However, both the overall efficiency of the energy transfer and the duration of the amplified pulse depend upon the persistence of the plasma wave excitation. At least with respect to the recent state-of-the-art experiments, it is possible to deduce that at present the experimentally realized efficiency of the amplifier is likely constrained mainly by two effects, namely, the pump chirp and the plasma wave wavebreaking.

  10. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of Tritium breeding ceramic material are investigated within the framework of developing solid breeder blankets for future nuclear fusion power plants. For the thermo-mechanical characterisation of such pebble beds, bed compression experiments are the standard tools. New bi-axial compression experiments on 20 and 30 mm high pebble beds show pebble flow effects much more pronounced than in previous 10 mm beds. Owing to the greater bed height, conditions are reached where the bed fails in cross direction and unhindered flow of the pebbles occurs. The paper presents measurements for the orthosilicate and metatitanate breeder materials that are envisaged to be used in a solid breeder blanket. The data are compared with calculations made with a Drucker-Prager soil model within the finite-element code ABAQUS, calibrated with data from other experiments. It is investigated empirically whether internal bed friction angles can be determined from pebble beds of the considered heights, which would simplify, and broaden the data base for, the calibration of the Drucker-Prager pebble bed models

  11. Damage evolution analysis in mortar, during compressive loading using acoustic emission and X-ray tomography: Effects of the sand/cement ratio

    International Nuclear Information System (INIS)

    Elaqra, H.; Godin, N.; Peix, G.; R'Mili, M.; Fantozzi, G.

    2007-01-01

    This paper explores the use of acoustic emission (AE) and X-ray tomography to identify the mechanisms of damage and the fracture process during compressive loading on concrete specimens. Three-dimensional (3D) X-ray tomography image analysis was used to observe defects of virgin mortar specimen under different compressive loads. Cumulative AE events were used to evaluate damage process in real time according to the sand/cement ratio. This work shows that AE and X-ray tomography are complementary nondestructive methods to measure, characterise and locate damage sites in mortar. The effect of the sand proportion on damage and fracture behaviour is studied, in relation with the microstructure of the material

  12. Confined compression and torsion experiments on a pHEMA gel in various bath concentrations.

    Science.gov (United States)

    Roos, Reinder W; Petterson, Rob; Huyghe, Jacques M

    2013-06-01

    The constitutive behaviour of cartilaginous tissue is the result of complex interaction between electrical, chemical and mechanical forces. Electrostatic interactions between fixed charges and mobile ions are usually accounted for by means of Donnan osmotic pressure. Recent experimental data show, however, that the shear modulus of articular cartilage depends on ionic concentration even if the strain is kept constant. Poisson-Boltzmann simulations suggest that this dependence is intrinsic to the double-layer around the proteoglycan chains. In order to verify this premise, this study measures whether--at a given strain--this ionic concentration-dependent shear modulus is present in a polymerized hydroxy-ethyl-methacrylate gel or not. A combined 1D confined compression and torque experiment is performed on a thin cylindrical hydrogel sample, which is brought in equilibrium with, respectively, 1, 0.1 and 0.03 M NaCl. The sample was placed in a chamber that consists of a stainless steel ring placed on a sintered glass filter, and on top a sintered glass piston. Stepwise ionic loading was cascaded by stepwise 1D compression, measuring the total stress after equilibration of the sample. In addition, a torque experiment was interweaved by applying a harmonic angular displacement and measuring the torque, revealing the relation between aggregate shear modulus and salt concentration at a given strain.

  13. Spherical implosion experiments on OMEGA: measurements of the cold, compressed shell

    Energy Technology Data Exchange (ETDEWEB)

    Yaakobi, B.; Smalyuk, V.A.; Delettrez, J.A.; Town, R.P.J.; Marshall, F.J.; Glebov, V.Y.; Petrasso, R.D.; Soures, J.M.; Meyerhofer, D.D.; Seka, W. [Rochester Univ., NY (United States). Lab. for Laser Energetics

    2000-07-01

    Targets in which a titanium-doped layer is incorporated into the shell provide a variety of diagnostic signatures (absorption lines, K-edge absorption, K{alpha} imaging) for determining the areal density and dimensions of the shell around peak compression. Here we apply these methods to demonstrate the improvement in target performance when SSD is implemented on slow-rising laser pulses. We introduce a new method to study the uniformity of imploded shells: using a recently developed pinhole-array x-ray spectrometer, we obtain core images at energies below and above the K-edge energy of titanium. The ratio between such images reflects the nonuniformity of the shell alone. Finally, we compare the results with those of 1-D LILAC simulations, as well as 2-D ORCHID simulations that allow for the imprinting of laser non-uniformity on the target. The experimental results are replicated much better by ORCHID than by LILAC. (authors)

  14. Liner velocity, current, and symmetry measurements on the 32 MA flux compression generator experiment ALT-1

    CERN Document Server

    Clark, D A; Rodríguez, G; Tabaka, L J

    2001-01-01

    Summary form only given, as follows. A flux compression generator based pulse power system, designed, built, and fielded by a Russian team at the All Russian Scientific Research Institute of Experimental Physics (VNIIEF), was used to successfully drive an aluminum liner to velocities greater than 10 km/sec. The experiment objective was to demonstrate performance of a precision liner implosion at Atlas current of 30 MA or greater. Diagnostics to measure liner performance were an essential part of the experiment. An experimental team from Los Alamos National Laboratory (LANL) provided a suite of diagnostics to measure liner performance. Three diagnostics were fielded. 1. a velocity interferometer (VISAR) to continuously measure the liner inner surface velocity from throughout the entire range of travel. 2. Two Faraday rotation devices to measure liner current during the implosion. 3. Sixteen fiber optic impact pins to record liner impact time and provide axial and azimuthal symmetry information. All diagnostics...

  15. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-10-01

    We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ~;;1275 oC, a space-charge-limited Li+ beam current density of J ~;;1 mA/cm2 was obtained. The lifetime of the ion source was ~;;50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 mu s.

  16. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    International Nuclear Information System (INIS)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-01-01

    We report results on lithium alumino-silicate ion source development in preparation for warm-dense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCX-II). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ∼1275 C, a space-charge-limited Li + beam current density of J ∼1 mA/cm 2 was obtained. The lifetime of the ion source was ∼50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 (micro) s.

  17. Influence of fuel type, dilution and equivalence ratio on the emission reduction from the auto-ignition in an Homogeneous Charge Compression Ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Universite Libre de Bruxelles, TIPs - Fluid Physics, CP165/67, 50 Avenue F.D. Roosevelt, 1050 Brussels (Belgium); Cavadias, Simeon [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Amouroux, Jacques [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France)

    2010-04-15

    One technology that seems to be promising for automobile pollution reduction is the Homogeneous Charge Compression Ignition (HCCI). This technology still faces auto-ignition and emission-control problems. This paper focuses on the emission problem, since it is incumbent to realize engines that pollute less. For this purpose, this paper presents results concerning the measurement of the emissions of CO, NO{sub x}, CO{sub 2}, O{sub 2} and hydrocarbons. HCCI conditions are used, with equivalence ratios between 0.26 and 0.54, inlet temperatures of 70 C and 120 C and compression ratios of 10.2 and 13.5, with different fuel types: gasoline, gasoline surrogate, diesel, diesel surrogate and mixtures of n-heptane/toluene. The effect of dilution is considered for gasoline, while the effect of the equivalence ratio is considered for all the fuels. No significant amount of NO{sub x} has been measured. It appeared that the CO, O{sub 2} and hydrocarbon emissions were reduced by decreasing the toluene content of the fuel and by decreasing the dilution. The opposite holds for CO{sub 2}. The reduction of the hydrocarbon emission appears to compete with the reduction of the CO{sub 2} emission. Diesel seemed to produce less CO and hydrocarbons than gasoline when auto-ignited. An example of emission reduction control is presented in this paper. (author)

  18. Commissioning and operating experience of compressed air system of a reprocessing plant (Paper No. 5.10)

    International Nuclear Information System (INIS)

    Nair, M.K.T.; Bajpai, D.D.; Mishra, A.K.; Kulkarni, H.B.; Raje, R.V.; Rajeshwar, S.

    1992-01-01

    Compressed air system is one of the most important utility systems, required in the continued operation of a radiochemical plant. Moisture and oil free compressed air is used in large scale for process control and process operations in reprocessing plants. Commissioning and operating experience of this system is described in detail, to indicate the importance of the system in the overall design and operation of such chemical plant. (author). 1 tab

  19. Supercharged two-cycle engines employing novel single element reciprocating shuttle inlet valve mechanisms and with a variable compression ratio

    Science.gov (United States)

    Wiesen, Bernard (Inventor)

    2008-01-01

    This invention relates to novel reciprocating shuttle inlet valves, effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines, employing spark or compression ignition. Also permitting the elimination of out-of-phase piston arrangements to control scavenging and supercharging of opposed-piston engines. The reciprocating shuttle inlet valve (32) and its operating mechanism (34) is constructed as a single and simple uncomplicated member, in combination with the lost-motion abutments, (46) and (48), formed in a piston skirt, obviating the need for any complex mechanisms or auxiliary drives, unaffected by heat, friction, wear or inertial forces. The reciprocating shuttle inlet valve retains the simplicity and advantages of two-cycle engines, while permitting an increase in volumetric efficiency and performance, thereby increasing the range of usefulness of two-cycle engines into many areas that are now dominated by the four-cycle engine.

  20. [Correlation analysis of cement leakage with volume ratio of intravertebral bone cement to vertebral body and vertebral body wall incompetence in percutaneous vertebroplasty for osteoporotic vertebral compression fractures].

    Science.gov (United States)

    Liang, De; Ye, Linqiang; Jiang, Xiaobing; Huang, Weiquan; Yao, Zhensong; Tang, Yongchao; Zhang, Shuncong; Jin, Daxiang

    2014-11-01

    To investigate the risk factors of cement leakage in percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fracture (OVCF). Between March 2011 and March 2012, 98 patients with single level OVCF were treated by PVP, and the clinical data were analyzed retrospectively. There were 13 males and 85 females, with a mean age of 77.2 years (range, 54-95 years). The mean disease duration was 43 days (range, 15-120 days), and the mean T score of bone mineral density (BMD) was -3.8 (range, -6.7- -2.5). Bilateral transpedicular approach was used in all the patients. The patients were divided into cement leakage group and no cement leakage group by occurrence of cement leakage based on postoperative CT. Single factor analysis was used to analyze the difference between 2 groups in T score of BMD, operative level, preoperative anterior compression degree of operative vertebrae, preoperative middle compression degree of operative vertebrae, preoperative sagittal Cobb angle of operative vertebrae, preoperative vertebral body wall incompetence, cement volume, and volume ratio of intravertebral bone cement to vertebral body. All relevant factors were introduced to logistic regression analysis to analyze the risk factors of cement leakage. All procedures were performed successfully. The mean operation time was 40 minutes (range, 30-50 minutes), and the mean volume ratio of intravertebral bone cement to vertebral body was 24.88% (range, 7.84%-38.99%). Back pain was alleviated significantly in all the patients postoperatively. All patients were followed up with a mean time of 8 months (range, 6-12 months). Cement leakage occurred in 49 patients. Single factor analysis showed that there were significant differences in the volume ratio of intravertebral bone cement to vertebral body and preoperative vertebral body wall incompetence between 2 groups (P 0.05). The logistic regression analysis showed that the volume ratio of intravertebral bone cement to vertebral body (P

  1. DEM Simulation of Biaxial Compression Experiments of Inherently Anisotropic Granular Materials and the Boundary Effects

    Directory of Open Access Journals (Sweden)

    Zhao-Xia Tong

    2013-01-01

    Full Text Available The reliability of discrete element method (DEM numerical simulations is significantly dependent on the particle-scale parameters and boundary conditions. To verify the DEM models, two series of biaxial compression tests on ellipse-shaped steel rods are used. The comparisons on the stress-strain relationship, strength, and deformation pattern of experiments and simulations indicate that the DEM models are able to capture the key macro- and micromechanical behavior of inherently anisotropic granular materials with high fidelity. By using the validated DEM models, the boundary effects on the macrodeformation, strain localization, and nonuniformity of stress distribution inside the specimens are investigated using two rigid boundaries and one flexible boundary. The results demonstrate that the boundary condition plays a significant role on the stress-strain relationship and strength of granular materials with inherent fabric anisotropy if the stresses are calculated by the force applied on the wall. However, the responses of the particle assembly measured inside the specimens are almost the same with little influence from the boundary conditions. The peak friction angle obtained from the compression tests with flexible boundary represents the real friction angle of particle assembly. Due to the weak lateral constraints, the degree of stress nonuniformity under flexible boundary is higher than that under rigid boundary.

  2. Image quality (IQ) guided multispectral image compression

    Science.gov (United States)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  3. Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments

    Energy Technology Data Exchange (ETDEWEB)

    La Lone, B. M., E-mail: lalonebm@nv.doe.gov; Marshall, B. R.; Miller, E. K.; Stevens, G. D.; Turley, W. D. [National Security Technologies, LLC, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Veeser, L. R. [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, New Mexico 87544 (United States)

    2015-02-15

    A diagnostic was developed to simultaneously measure both the distance and velocity of rapidly moving surfaces in dynamic compression experiments, specifically non-planar experiments where integrating the velocity in one direction does not always give the material position accurately. The diagnostic is constructed mainly from fiber-optic telecommunications components. The distance measurement is based on a technique described by Xia and Zhang [Opt. Express 18, 4118 (2010)], which determines the target distance every 20 ns and is independent of the target speed. We have extended the full range of the diagnostic to several centimeters to allow its use in dynamic experiments, and we multiplexed it with a photonic Doppler velocimetry (PDV) system so that distance and velocity histories can be measured simultaneously using one fiber-optic probe. The diagnostic was demonstrated on a spinning square cylinder to show how integrating a PDV record can give an incorrect surface position and how the ranging diagnostic described here obtains it directly. The diagnostic was also tested on an explosive experiment where copper fragments and surface ejecta were identified in both the distance and velocity signals. We show how the distance measurements complement the velocity data. Potential applications are discussed.

  4. Flux Limiter Lattice Boltzmann Scheme Approach to Compressible Flows with Flexible Specific-Heat Ratio and Prandtl Number

    International Nuclear Information System (INIS)

    Gan Yanbiao; Li Yingjun; Xu Aiguo; Zhang Guangcai

    2011-01-01

    We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar-Gross-Krook (BGK) collision term in the LB equation, which makes the model suitable for simulating flows with different Prandtl numbers. Secondly, the flux limiter finite difference (FLFD) scheme is employed to calculate the convection term of the LB equation, which makes the unphysical oscillations at discontinuities be effectively suppressed and the numerical dissipations be significantly diminished. The proposed model is validated by recovering results of some well-known benchmarks, including (i) The thermal Couette flow; (ii) One- and two-dimensional Riemann problems. Good agreements are obtained between LB results and the exact ones or previously reported solutions. The flexibility, together with the high accuracy of the new model, endows the proposed model considerable potential for tracking some long-standing problems and for investigating nonlinear nonequilibrium complex systems. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  5. Measurements of the toroidal plasma rotation velocity in TFTR major-radius compression experiments with auxiliary neutral beam heating

    International Nuclear Information System (INIS)

    Bitter, M.; Wong, K.L.; Scott, S.; Hsuan, H.; Grek, B.; Johnson, D.; Tait, G.

    1990-01-01

    The time history of the central toroidal plasma rotation velocity in Tokamak Fusion Test Reactor (TFTR) experiments [Phys. Rev. Lett. 55, 2587 (1985)] with auxiliary heating by neutral deuterium beam injection and major-radius compression has been measured from the Doppler shift of the emitted Ti XXI Kα line radiation. The experiments were conducted for neutral beam powers in the range 2.1--3.8 MW and line-averaged densities in the range 1.8--3.0x10 19 m -2 . The observed rotation velocity increase during compression is consistent with theoretical estimates

  6. Experiments in a flighted conveyor comparing shear rates in compressed versus free surface flows

    Science.gov (United States)

    Pohlman, Nicholas; Higgins, Hannah; Krupiarz, Kamila; O'Connor, Ryan

    2017-11-01

    Uniformity of granular flow rate is critical in industry. Experiments in a flighted conveyor system aim to fill a gap in knowledge of achieving steady mass flow rate by correlating velocity profile data with mass flow rate measurements. High speed images were collected for uniformly-shaped particles in a bottom-driven flow conveyor belt system from which the velocity profiles can be generated. The correlation of mass flow rates from the velocity profiles to the time-dependent mass measurements will determine energy dissipation rates as a function of operating conditions. The velocity profiles as a function of the size of the particles, speed of the belt, and outlet size, will be compared to shear rate relationships found in past experiments that focused on gravity-driven systems. The dimension of the linear shear and type of decaying transition to the stationary bed may appear different due to the compression versus dilation space in open flows. The application of this research can serve to validate simulations in discrete element modeling and physically demonstrate a process that can be further developed and customized for industry applications, such as feeding a biomass conversion reactor. Sponsored by NIU's Office of Student Engagement and Experiential Learning.

  7. Uniaxial Negative Thermal Expansion, Negative Linear Compressibility, and Negative Poisson's Ratio Induced by Specific Topology in Zn[Au(CN)2]2.

    Science.gov (United States)

    Wang, Lei; Luo, Hubin; Deng, Shenghua; Sun, Ying; Wang, Cong

    2017-12-18

    The well-known idea of "structure determines properties" can be understood profoundly in the case of hexagonal zinc dicyanometalate. Using density functional theory (DFT) calculations, we show the uniaxial negative thermal expansion (NTE) and negative linear compressibility (NLC) properties of Zn[Au(CN) 2 ] 2 . The temperature dependence of phonon frequencies within the quasi-harmonic approximation (QHA) is investigated. The abnormal phonon hardening (frequency increase on heating) is detected in the ranges of 0-225, 320-345, and 410-430 cm -1 , which can be indicative of the unusual physical properties of Zn[Au(CN) 2 ] 2 . Due to the significance of low-energy phonon frequencies in Zn[Au(CN) 2 ] 2 , in this work, the corresponding vibrational mode of the lowest-frequency optical phonon at the zone center is analyzed. The specific topology of a springlike framework that will produce the effects of a compressed spring on heating and an extended spring under hydrostatic pressure is identified and leads to the coexistence of uniaxial-NTE and NLC behaviors in Zn[Au(CN) 2 ] 2 . The distinguishing phonon group velocity along the a axis and c axis facilitates different responses for both the axes under temperature and hydrostatic pressure field. Through an analysis and visualization of the spatial dependence of elastic tensors, it is found that a negative Poisson's ratio (NPR) is presented in all projection planes due to the specific topology.

  8. INTERRUPTED IN-SITU COMPRESSIVE DEFORMATION EXPERIMENTS ON MMC FOAMS IN AN XCT: EXPERIMENTS AND ESTIMATION OF DISPLACEMENT FIELDS

    Directory of Open Access Journals (Sweden)

    Katharina Losch

    2014-05-01

    Full Text Available The mechanical properties of a metal-matrix composite foam are investigated by interrupted in-situ compressive deformation experiments within an X-ray computed tomography device (XCT. Each in-situ experiment generates a sequence of reconstructed 3D images of the foam microstructure. From these data, the deformation field is estimated by registring the images corresponding to three consecutive steps. To this end, the generic registration framework of the itk software suite is exploited and combined with several image preprocessing steps. Both segmented (binary images having just two grey values for foreground (strut structure and background (pore space and the result of the Euclidean distance transform (EDT on pore space and solid phase are used. The estimation quality is evaluated based on a sequence of synthetic data sets, where the foam’s microstructure is modelled by a random Laguerre tessellation. For large deformations, a combination of non-rigid registration for the EDT images and partwise-rigid registration on strongly deformed regions of the binary images, yields surprisingly small estimation errors.

  9. DNABIT Compress – Genome compression algorithm

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923

  10. Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics

    International Nuclear Information System (INIS)

    Zhen, Xudong; Wang, Yang

    2013-01-01

    Methanol has been recently used as an alternative to conventional fuels for internal combustion engines in order to satisfy some environmental and economical concerns. In this paper, the ignition in a high compression ratio SI (spark ignition) methanol engine was studied by using LES (large eddy simulation) with detailed chemical kinetics. A 21-species, 84-reaction methanol mechanism was adopted to simulate the auto-ignition process of the methanol/air mixture. The MIT (minimum ignition temperature) and MIE (minimum ignition energy) are two important properties for designing safety standards and understanding the ignition process of combustible mixtures. The effects of the flame kernel size, flame kernel temperature and equivalence ratio were also examined on MIT, MIE and IDP (ignition delay period). The methanol mechanism was validated by experimental test. The simulated results showed that the flame kernel size, temperature and energy dramatically affected the values of the MIT, MIE and IDP for a methanol/air mixture, the value of the ignition delay period was not only related to the flame kernel energy, but also to the flame kernel temperature. - Highlights: • We used LES (large eddy simulation) coupled with detailed chemical kinetics to simulate methanol ignition. • The flame kernel size and temperature affected the minimum ignition temperature. • The flame kernel temperature and energy affected the ignition delay period. • The equivalence ratio of methanol–air mixture affected the ignition delay period

  11. Challenges in QCD matter physics -The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Science.gov (United States)

    Ablyazimov, T.; Abuhoza, A.; Adak, R. P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M. M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Akishina, E.; Akishina, T.; Akishina, V.; Akram, A.; Al-Turany, M.; Alekseev, I.; Alexandrov, E.; Alexandrov, I.; Amar-Youcef, S.; Anđelić, M.; Andreeva, O.; Andrei, C.; Andronic, A.; Anisimov, Yu.; Appelshäuser, H.; Argintaru, D.; Atkin, E.; Avdeev, S.; Averbeck, R.; Azmi, M. D.; Baban, V.; Bach, M.; Badura, E.; Bähr, S.; Balog, T.; Balzer, M.; Bao, E.; Baranova, N.; Barczyk, T.; Bartoş, D.; Bashir, S.; Baszczyk, M.; Batenkov, O.; Baublis, V.; Baznat, M.; Becker, J.; Becker, K.-H.; Belogurov, S.; Belyakov, D.; Bendarouach, J.; Berceanu, I.; Bercuci, A.; Berdnikov, A.; Berdnikov, Y.; Berendes, R.; Berezin, G.; Bergmann, C.; Bertini, D.; Bertini, O.; Beşliu, C.; Bezshyyko, O.; Bhaduri, P. P.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhattacharyya, A.; Bhattacharyya, T. K.; Biswas, S.; Blank, T.; Blau, D.; Blinov, V.; Blume, C.; Bocharov, Yu.; Book, J.; Breitner, T.; Brüning, U.; Brzychczyk, J.; Bubak, A.; Büsching, H.; Bus, T.; Butuzov, V.; Bychkov, A.; Byszuk, A.; Cai, Xu; Cãlin, M.; Cao, Ping; Caragheorgheopol, G.; Carević, I.; Cătănescu, V.; Chakrabarti, A.; Chattopadhyay, S.; Chaus, A.; Chen, Hongfang; Chen, LuYao; Cheng, Jianping; Chepurnov, V.; Cherif, H.; Chernogorov, A.; Ciobanu, M. I.; Claus, G.; Constantin, F.; Csanád, M.; D'Ascenzo, N.; Das, Supriya; Das, Susovan; de Cuveland, J.; Debnath, B.; Dementiev, D.; Deng, Wendi; Deng, Zhi; Deppe, H.; Deppner, I.; Derenovskaya, O.; Deveaux, C. A.; Deveaux, M.; Dey, K.; Dey, M.; Dillenseger, P.; Dobyrn, V.; Doering, D.; Dong, Sheng; Dorokhov, A.; Dreschmann, M.; Drozd, A.; Dubey, A. K.; Dubnichka, S.; Dubnichkova, Z.; Dürr, M.; Dutka, L.; Dželalija, M.; Elsha, V. V.; Emschermann, D.; Engel, H.; Eremin, V.; Eşanu, T.; Eschke, J.; Eschweiler, D.; Fan, Huanhuan; Fan, Xingming; Farooq, M.; Fateev, O.; Feng, Shengqin; Figuli, S. P. D.; Filozova, I.; Finogeev, D.; Fischer, P.; Flemming, H.; Förtsch, J.; Frankenfeld, U.; Friese, V.; Friske, E.; Fröhlich, I.; Frühauf, J.; Gajda, J.; Galatyuk, T.; Gangopadhyay, G.; García Chávez, C.; Gebelein, J.; Ghosh, P.; Ghosh, S. K.; Gläßel, S.; Goffe, M.; Golinka-Bezshyyko, L.; Golovatyuk, V.; Golovnya, S.; Golovtsov, V.; Golubeva, M.; Golubkov, D.; Gómez Ramírez, A.; Gorbunov, S.; Gorokhov, S.; Gottschalk, D.; Gryboś, P.; Grzeszczuk, A.; Guber, F.; Gudima, K.; Gumiński, M.; Gupta, A.; Gusakov, Yu.; Han, Dong; Hartmann, H.; He, Shue; Hehner, J.; Heine, N.; Herghelegiu, A.; Herrmann, N.; Heß, B.; Heuser, J. M.; Himmi, A.; Höhne, C.; Holzmann, R.; Hu, Dongdong; Huang, Guangming; Huang, Xinjie; Hutter, D.; Ierusalimov, A.; Ilgenfritz, E.-M.; Irfan, M.; Ivanischev, D.; Ivanov, M.; Ivanov, P.; Ivanov, Valery; Ivanov, Victor; Ivanov, Vladimir; Ivashkin, A.; Jaaskelainen, K.; Jahan, H.; Jain, V.; Jakovlev, V.; Janson, T.; Jiang, Di; Jipa, A.; Kadenko, I.; Kähler, P.; Kämpfer, B.; Kalinin, V.; Kallunkathariyil, J.; Kampert, K.-H.; Kaptur, E.; Karabowicz, R.; Karavichev, O.; Karavicheva, T.; Karmanov, D.; Karnaukhov, V.; Karpechev, E.; Kasiński, K.; Kasprowicz, G.; Kaur, M.; Kazantsev, A.; Kebschull, U.; Kekelidze, G.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Khasanov, F.; Khvorostukhin, A.; Kirakosyan, V.; Kirejczyk, M.; Kiryakov, A.; Kiš, M.; Kisel, I.; Kisel, P.; Kiselev, S.; Kiss, T.; Klaus, P.; Kłeczek, R.; Klein-Bösing, Ch.; Kleipa, V.; Klochkov, V.; Kmon, P.; Koch, K.; Kochenda, L.; Koczoń, P.; Koenig, W.; Kohn, M.; Kolb, B. W.; Kolosova, A.; Komkov, B.; Korolev, M.; Korolko, I.; Kotte, R.; Kovalchuk, A.; Kowalski, S.; Koziel, M.; Kozlov, G.; Kozlov, V.; Kramarenko, V.; Kravtsov, P.; Krebs, E.; Kreidl, C.; Kres, I.; Kresan, D.; Kretschmar, G.; Krieger, M.; Kryanev, A. V.; Kryshen, E.; Kuc, M.; Kucewicz, W.; Kucher, V.; Kudin, L.; Kugler, A.; Kumar, Ajit; Kumar, Ashwini; Kumar, L.; Kunkel, J.; Kurepin, A.; Kurepin, N.; Kurilkin, A.; Kurilkin, P.; Kushpil, V.; Kuznetsov, S.; Kyva, V.; Ladygin, V.; Lara, C.; Larionov, P.; Laso García, A.; Lavrik, E.; Lazanu, I.; Lebedev, A.; Lebedev, S.; Lebedeva, E.; Lehnert, J.; Lehrbach, J.; Leifels, Y.; Lemke, F.; Li, Cheng; Li, Qiyan; Li, Xin; Li, Yuanjing; Lindenstruth, V.; Linnik, B.; Liu, Feng; Lobanov, I.; Lobanova, E.; Löchner, S.; Loizeau, P.-A.; Lone, S. A.; Lucio Martínez, J. A.; Luo, Xiaofeng; Lymanets, A.; Lyu, Pengfei; Maevskaya, A.; Mahajan, S.; Mahapatra, D. P.; Mahmoud, T.; Maj, P.; Majka, Z.; Malakhov, A.; Malankin, E.; Malkevich, D.; Malyatina, O.; Malygina, H.; Mandal, M. M.; Mandal, S.; Manko, V.; Manz, S.; Marin Garcia, A. M.; Markert, J.; Masciocchi, S.; Matulewicz, T.; Meder, L.; Merkin, M.; Mialkovski, V.; Michel, J.; Miftakhov, N.; Mik, L.; Mikhailov, K.; Mikhaylov, V.; Milanović, B.; Militsija, V.; Miskowiec, D.; Momot, I.; Morhardt, T.; Morozov, S.; Müller, W. F. J.; Müntz, C.; Mukherjee, S.; Muñoz Castillo, C. E.; Murin, Yu.; Najman, R.; Nandi, C.; Nandy, E.; Naumann, L.; Nayak, T.; Nedosekin, A.; Negi, V. S.; Niebur, W.; Nikulin, V.; Normanov, D.; Oancea, A.; Oh, Kunsu; Onishchuk, Yu.; Ososkov, G.; Otfinowski, P.; Ovcharenko, E.; Pal, S.; Panasenko, I.; Panda, N. R.; Parzhitskiy, S.; Patel, V.; Pauly, C.; Penschuck, M.; Peshekhonov, D.; Peshekhonov, V.; Petráček, V.; Petri, M.; Petriş, M.; Petrovici, A.; Petrovici, M.; Petrovskiy, A.; Petukhov, O.; Pfeifer, D.; Piasecki, K.; Pieper, J.; Pietraszko, J.; Płaneta, R.; Plotnikov, V.; Plujko, V.; Pluta, J.; Pop, A.; Pospisil, V.; Poźniak, K.; Prakash, A.; Prasad, S. K.; Prokudin, M.; Pshenichnov, I.; Pugach, M.; Pugatch, V.; Querchfeld, S.; Rabtsun, S.; Radulescu, L.; Raha, S.; Rami, F.; Raniwala, R.; Raniwala, S.; Raportirenko, A.; Rautenberg, J.; Rauza, J.; Ray, R.; Razin, S.; Reichelt, P.; Reinecke, S.; Reinefeld, A.; Reshetin, A.; Ristea, C.; Ristea, O.; Rodriguez Rodriguez, A.; Roether, F.; Romaniuk, R.; Rost, A.; Rostchin, E.; Rostovtseva, I.; Roy, Amitava; Roy, Ankhi; Rożynek, J.; Ryabov, Yu.; Sadovsky, A.; Sahoo, R.; Sahu, P. K.; Sahu, S. K.; Saini, J.; Samanta, S.; Sambyal, S. S.; Samsonov, V.; Sánchez Rosado, J.; Sander, O.; Sarangi, S.; Satława, T.; Sau, S.; Saveliev, V.; Schatral, S.; Schiaua, C.; Schintke, F.; Schmidt, C. J.; Schmidt, H. R.; Schmidt, K.; Scholten, J.; Schweda, K.; Seck, F.; Seddiki, S.; Selyuzhenkov, I.; Semennikov, A.; Senger, A.; Senger, P.; Shabanov, A.; Shabunov, A.; Shao, Ming; Sheremetiev, A. D.; Shi, Shusu; Shumeiko, N.; Shumikhin, V.; Sibiryak, I.; Sikora, B.; Simakov, A.; Simon, C.; Simons, C.; Singaraju, R. N.; Singh, A. K.; Singh, B. K.; Singh, C. P.; Singhal, V.; Singla, M.; Sitzmann, P.; Siwek-Wilczyńska, K.; Škoda, L.; Skwira-Chalot, I.; Som, I.; Song, Guofeng; Song, Jihye; Sosin, Z.; Soyk, D.; Staszel, P.; Strikhanov, M.; Strohauer, S.; Stroth, J.; Sturm, C.; Sultanov, R.; Sun, Yongjie; Svirida, D.; Svoboda, O.; Szabó, A.; Szczygieł, R.; Talukdar, R.; Tang, Zebo; Tanha, M.; Tarasiuk, J.; Tarassenkova, O.; Târzilă, M.-G.; Teklishyn, M.; Tischler, T.; Tlustý, P.; Tölyhi, T.; Toia, A.; Topil'skaya, N.; Träger, M.; Tripathy, S.; Tsakov, I.; Tsyupa, Yu.; Turowiecki, A.; Tuturas, N. G.; Uhlig, F.; Usenko, E.; Valin, I.; Varga, D.; Vassiliev, I.; Vasylyev, O.; Verbitskaya, E.; Verhoeven, W.; Veshikov, A.; Visinka, R.; Viyogi, Y. P.; Volkov, S.; Volochniuk, A.; Vorobiev, A.; Voronin, Aleksey; Voronin, Alexander; Vovchenko, V.; Vznuzdaev, M.; Wang, Dong; Wang, Xi-Wei; Wang, Yaping; Wang, Yi; Weber, M.; Wendisch, C.; Wessels, J. P.; Wiebusch, M.; Wiechula, J.; Wielanek, D.; Wieloch, A.; Wilms, A.; Winckler, N.; Winter, M.; Wiśniewski, K.; Wolf, Gy.; Won, Sanguk; Wu, Ke-Jun; Wüstenfeld, J.; Xiang, Changzhou; Xu, Nu; Yang, Junfeng; Yang, Rongxing; Yin, Zhongbao; Yoo, In-Kwon; Yuldashev, B.; Yushmanov, I.; Zabołotny, W.; Zaitsev, Yu.; Zamiatin, N. I.; Zanevsky, Yu.; Zhalov, M.; Zhang, Yifei; Zhang, Yu; Zhao, Lei; Zheng, Jiajun; Zheng, Sheng; Zhou, Daicui; Zhou, Jing; Zhu, Xianglei; Zinchenko, A.; Zipper, W.; Żoładź, M.; Zrelov, P.; Zryuev, V.; Zumbruch, P.; Zyzak, M.

    2017-03-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√{s_{NN}}= 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.

  12. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Kaita, R.; Heidbrink, W.W.; Hammett, G.W.

    1986-04-01

    Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and 3 He ions, respectively. When the plasma was compressed, the d(d,n) 3 He fusion reaction rate increased a factor of five, and the 3 He(d,p) 4 He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling

  13. Optimization of current waveform tailoring for magnetically driven isentropic compression experiments

    Energy Technology Data Exchange (ETDEWEB)

    Waisman, E. M.; Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Cuneo, M. E.; Haill, T. A.; Davis, J.-P.; Brown, J. L.; Seagle, C. T. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Spielman, R. B. [Idaho State University, Pocatello, Idaho 83201 (United States)

    2016-06-15

    The Thor pulsed power generator is being developed at Sandia National Laboratories. The design consists of up to 288 decoupled and transit time isolated capacitor-switch units, called “bricks,” that can be individually triggered to achieve a high degree of pulse tailoring for magnetically driven isentropic compression experiments (ICE) [D. B. Reisman et al., Phys. Rev. Spec. Top.–Accel. Beams 18, 090401 (2015)]. The connecting transmission lines are impedance matched to the bricks, allowing the capacitor energy to be efficiently delivered to an ICE strip-line load with peak pressures of over 100 GPa. Thor will drive experiments to explore equation of state, material strength, and phase transition properties of a wide variety of materials. We present an optimization process for producing tailored current pulses, a requirement for many material studies, on the Thor generator. This technique, which is unique to the novel “current-adder” architecture used by Thor, entirely avoids the iterative use of complex circuit models to converge to the desired electrical pulse. We begin with magnetohydrodynamic simulations for a given material to determine its time dependent pressure and thus the desired strip-line load current and voltage. Because the bricks are connected to a central power flow section through transit-time isolated coaxial cables of constant impedance, the brick forward-going pulses are independent of each other. We observe that the desired equivalent forward-going current driving the pulse must be equal to the sum of the individual brick forward-going currents. We find a set of optimal brick delay times by requiring that the L{sub 2} norm of the difference between the brick-sum current and the desired forward-going current be a minimum. We describe the optimization procedure for the Thor design and show results for various materials of interest.

  14. Challenges in QCD matter physics. The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Ablyazimov, T. [Joint Institute for Nuclear Research (JINR-LIT), Dubna (Russian Federation). Lab. of Information Technologies; Abuhoza, A. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt (Germany); Adak, R.P. [Bose Institute, Kolkata (India). Dept. of Physics; and others

    2017-03-15

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√(s{sub NN}) = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μ{sub B} > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter. (orig.)

  15. Challenges in QCD matter physics. The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    International Nuclear Information System (INIS)

    Ablyazimov, T.; Adak, R.P.

    2017-01-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√(s_N_N) = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter. (orig.)

  16. Measurements of the toroidal plasma rotation velocity in TFTR major-radius compression experiments with auxiliary neutral beam heating

    International Nuclear Information System (INIS)

    Bitter, M.; Scott, S.; Wong, K.L.

    1986-07-01

    The time history of the central toroidal plasma rotation velocity in Tokamak Fusion Test Reactor (TFTR) experiments with auxiliary heating by neutral deuterium beam injection and major-radius compression has been measured from the Doppler shift of the emitted TiXXI-Kα line radiation. The experiments were conducted for neutral beam powers in the range from 2.1 to 3.8 MW and line-averaged densities in the range from 1.8 to 3.0 x 10 19 m -2 . The observed rotation velocity increase during compression is in agreement with results from modeling calculations which assume classical slowing-down of the injected fast deuterium ions and momentum damping at the rate established in the precompression plasma

  17. Radiation hardness investigation of avalanche photodiodes for the Projectile Spectator Detector readout at the Compressed Baryonic Matter experiment

    Czech Academy of Sciences Publication Activity Database

    Kushpil, Vasilij; Mikhaylov, Vasily; Kushpil, Svetlana; Tlustý, Pavel; Svoboda, Ondřej; Kugler, Andrej

    2015-01-01

    Roč. 787, JUL (2015), s. 117-120 ISSN 0168-9002 R&D Projects: GA MŠk LG12007; GA MŠk LG14004; GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 Keywords : avalanche photodiodes * single protons detection * radiation hardness * neutron irradiation tests * compressed Baryonic Matter experiment * Projectile Spectator Detector Subject RIV: BG - Nuclear, Atomic and Molecular Physics , Colliders Impact factor: 1.200, year: 2015

  18. Green technology effect of injection pressure, timing and compression ratio in constant pressure heat addition cycle by an eco-friendly material.

    Science.gov (United States)

    Karthikayan, S; Sankaranarayanan, G; Karthikeyan, R

    2015-11-01

    Present energy strategies focus on environmental issues, especially environmental pollution prevention and control by eco-friendly green technologies. This includes, increase in the energy supplies, encouraging cleaner and more efficient energy management, addressing air pollution, greenhouse effect, global warming, and climate change. Biofuels provide the panorama of new fiscal opportunities for people in rural area for meeting their need and also the demand of the local market. Biofuels concern protection of the environment and job creation. Renewable energy sources are self-reliance resources, have the potential in energy management with less emissions of air pollutants. Biofuels are expected to reduce dependability on imported crude oil with connected economic susceptibility, reduce greenhouse gases, other pollutants and invigorate the economy by increasing demand and prices for agricultural products. The use of neat paradise tree oil and induction of eco-friendly material Hydrogen through inlet manifold in a constant pressure heat addition cycle engine (diesel engine) with optimized engine operating parameters such as injection timing, injection pressure and compression ratio. The results shows the heat utilization efficiency for neat vegetable oil is 29% and neat oil with 15% Hydrogen as 33%. The exhaust gas temperature (EGT) for 15% of H2 share as 450°C at full load and the heat release of 80J/deg. crank angle for 15% Hydrogen energy share. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.

    Science.gov (United States)

    Hu, Kainan; Zhang, Hongwu; Geng, Shaojuan

    2016-10-01

    A decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio is proposed. The local equilibrium distribution function including the rotational velocity of particle is decoupled into two parts, i.e., the local equilibrium distribution function of the translational velocity of particle and that of the rotational velocity of particle. From these two local equilibrium functions, two lattice Boltzmann models are derived via the Hermite expansion, namely one is in relation to the translational velocity and the other is connected with the rotational velocity. Accordingly, the distribution function is also decoupled. After this, the evolution equation is decoupled into the evolution equation of the translational velocity and that of the rotational velocity. The two evolution equations evolve separately. The lattice Boltzmann models used in the scheme proposed by this work are constructed via the Hermite expansion, so it is easy to construct new schemes of higher-order accuracy. To validate the proposed scheme, a one-dimensional shock tube simulation is performed. The numerical results agree with the analytical solutions very well.

  20. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX-II)

    International Nuclear Information System (INIS)

    Roy, P.K.; Greenway, W.; Kwan, J.W.; Seidl, P.A.; Waldron, W.

    2011-01-01

    To heat targets to electron-volt temperatures for the study of warm dense matter with intense ion beams, low mass ions, such as lithium, have an energy loss peak (dE/dx) at a suitable kinetic energy. The Heavy Ion Fusion Sciences (HIFS) program at Lawrence Berkeley National Laboratory will carry out warm dense matter experiments using Li + ion beam with energy 1.2-4 MeV in order to achieve uniform heating up to 0.1-1 eV. The accelerator physics design of Neutralized Drift Compression Experiment (NDCX-II) has a pulse length at the ion source of about 0.5 (micro)s. Thus for producing 50 nC of beam charge, the required beam current is about 100 mA. Focusability requires a normalized (edge) emittance ∼2 π-mm-mrad. Here, lithium aluminosilicate ion sources, of β-eucryptite, are being studied within the scope of NDCX-II construction. Several small (0.64 cm diameter) lithium aluminosilicate ion sources, on 70%-80% porous tungsten substrate, were operated in a pulsed mode. The distance between the source surface and the mid-plane of the extraction electrode (1 cm diameter aperture) was 1.48 cm. The source surface temperature was at 1220 C to 1300 C. A 5-6 (micro)s long beam pulsed was recorded by a Faraday cup (+300 V on the collector plate and -300 V on the suppressor ring). Figure 1 shows measured beam current density (J) vs. V 3/2 . A space-charge limited beam density of ∼1 mA/cm 2 was measured at 1275 C temperature, after allowing a conditioning time of about ∼ 12 hours. Maximum emission limited beam current density of (ge) 1.8mA/cm 2 was recorded at 1300 C with 10-kV extractions. Figure 2 shows the lifetime of two typical sources with space-charge limited beam current emission at a lower extraction voltage (1.75 kV) and at temperature of 1265 ± 7 C. These data demonstrate a constant, space-charge limited beam current for 20-50 hours. The lifetime of a source is determined by the loss of lithium from the alumino-silicate material either as ions or as neutral

  1. Effects of homogeneous condensation in compressible flows: Ludwieg-tube experiments and simulations

    NARCIS (Netherlands)

    Luo, X.; Lamanna, G.; Holten, A.P.C.; Dongen, van M.E.H.

    2007-01-01

    Effects of homogeneous nucleation and subsequent droplet growth in compressible flows in humid nitrogen are investigated numerically and exptl. A Ludwieg tube is employed to produce expansion flows. Corresponding to different configurations, three types of expt. are carried out in such a tube.

  2. Celiac Artery Compression Syndrome: An Experience in a Single Institution in Taiwan

    Directory of Open Access Journals (Sweden)

    Jen-Wei Chou

    2012-01-01

    Full Text Available Celiac artery compression syndrome (CACS or median arcuate ligament (MAL syndrome is a rare vascular disease. The clinical manifestations of CACS include the triad of postprandial pain, vomiting, and weight loss. The pathogenesis of CACS is the external compression of celiac artery by the MAL or celiac ganglion. Moreover, some authors also reported the compression with different etiologies, such as neoplasms of pancreatic head, adjacent duodenal carcinoma, vascular aneurysms, aortic dissection, or sarcoidosis. In the literature, most cases of CACS were reported from Western countries. In contrast, this disease was seldom reported in Oriental countries or regions, including Taiwan. Superior mesenteric artery syndrome (SMAS is also a rare disease characterized by compression of the third portion of the duodenum by the SMA. The clinical features of SMAS are postprandial pain, vomiting, and weight loss. To date, there are no guidelines to ensure the proper treatment of patients with CACS because of its low incidence. Thus, tailored therapy for patients with CACS remains a challenge as well as the prediction of clinical response and prognosis. The aim of our present study was to investigate the clinical features, the association with SMAS, treatments, and outcomes of patients with CACS in a single institution in Taiwan.

  3. Optimization of a transition radiation detector for the compressed baryonic matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Arend, Andreas

    2014-07-01

    The Transition Radiation Detector (TRD) of the compressed baryonic matter (CBM) experiment at FAIR has to provide electron-pion separation as well as charged-particle tracking. Within this work, thin and symmetric Multi-Wire Proportional Chambers (MWPCs) without additional drift region were proposed. the proposed prototypes feature a foil-based entrance window to minimize the material budget and to reduce the absorption probability of the generated TR photon. Based on the conceptual design of thin and symmetric MWPCs without drift region, multiple prototypes were constructed and their performance presented within this thesis. With the constructed prototypes of generations II and III the geometries of the wire and cathode planes were determined to be 4+4 mm and 5+5 mm. Based on the results of a performed test beam campaign in 2011 with this prototypes new prototypes of generation IV were manufactured and tested in a subsequent test beam campaign in 2012. Prototypes of different radiators were developed together with the MWPC prototypes. Along with regular foil radiators, foam-based radiator types made of polyethylene foam were utilized. Also radiators constructed in a sandwich design, which used different fiber materials confined with solid foam sheets, were used. For the prototypes without drift region, simulations of the electrostatic and mechanical properties were performed. The GARFIELD software package was used to simulate the electric field and to determine the resulting drift lines of the generated electrons. The mean gas amplification depending on the utilized gas and the applied anode voltage was simulated and the gas-gain homogeneity was verified. Since the thin foil-based entrance window experiences a deformation due to pressure differences inside and outside the MWPC, the variation on the gas gain depending on the deformation was simulated. The mechanical properties focusing on the stability of the entrance window was determined with a finiteelement

  4. Optimization of a transition radiation detector for the compressed baryonic matter experiment

    International Nuclear Information System (INIS)

    Arend, Andreas

    2014-01-01

    The Transition Radiation Detector (TRD) of the compressed baryonic matter (CBM) experiment at FAIR has to provide electron-pion separation as well as charged-particle tracking. Within this work, thin and symmetric Multi-Wire Proportional Chambers (MWPCs) without additional drift region were proposed. the proposed prototypes feature a foil-based entrance window to minimize the material budget and to reduce the absorption probability of the generated TR photon. Based on the conceptual design of thin and symmetric MWPCs without drift region, multiple prototypes were constructed and their performance presented within this thesis. With the constructed prototypes of generations II and III the geometries of the wire and cathode planes were determined to be 4+4 mm and 5+5 mm. Based on the results of a performed test beam campaign in 2011 with this prototypes new prototypes of generation IV were manufactured and tested in a subsequent test beam campaign in 2012. Prototypes of different radiators were developed together with the MWPC prototypes. Along with regular foil radiators, foam-based radiator types made of polyethylene foam were utilized. Also radiators constructed in a sandwich design, which used different fiber materials confined with solid foam sheets, were used. For the prototypes without drift region, simulations of the electrostatic and mechanical properties were performed. The GARFIELD software package was used to simulate the electric field and to determine the resulting drift lines of the generated electrons. The mean gas amplification depending on the utilized gas and the applied anode voltage was simulated and the gas-gain homogeneity was verified. Since the thin foil-based entrance window experiences a deformation due to pressure differences inside and outside the MWPC, the variation on the gas gain depending on the deformation was simulated. The mechanical properties focusing on the stability of the entrance window was determined with a finiteelement

  5. The Miller cycle effects on improvement of fuel economy in a highly boosted, high compression ratio, direct-injection gasoline engine: EIVC vs. LIVC

    International Nuclear Information System (INIS)

    Li, Tie; Gao, Yi; Wang, Jiasheng; Chen, Ziqian

    2014-01-01

    Highlights: • At high load, LIVC is superior over EIVC in improving fuel economy. • The improvement with LIVC is due to advanced combustion phasing and increased pumping work. • At low load, EIVC is better than LIVC in improving fuel economy. • Pumping loss with EIVC is smaller than with LIVC at low load. • But heat release rate with EIVC is slower than with LIVC. - Abstract: A combination of downsizing, highly boosting and direct injection (DI) is an effective way to improve fuel economy of gasoline engines without the penalties of reduced torque or power output. At high loads, however, knock problem becomes severer when increasing the intake boosting. As a compromise, geometric compression ratio (CR) is usually reduced to mitigate knock, and the improvement of fuel economy is discounted. Application of Miller cycle, which can be realized by either early or late intake valve closing (EIVC or LIVC), has the potential to reduce the effective CR and suppress knock. In this paper, the effects of EIVC and LIVC on the fuel economy of a boosted DI gasoline production engine reformed with a geometric CR of 12.0 are experimentally compared at low and high loads. Compared to the original production engine with CR 9.3, at the high load operation, the brake specific fuel consumption (BSFC) is improved by 4.7% with CR12.0 and LIVC, while the effect of EIVC on improving BSFC is negligibly small. At the low load operation, combined with CR12.0, LIVC and EIVC improve the fuel economy by 6.8% and 7.4%, respectively, compared to the production engine. The mechanism behind the effects of LIVC and EIVC on improving the fuel economy is discussed. These results will be a valuable reference for engine designers and researchers

  6. Saclay Reactor: acquired knowledge by two years experience in heat transfer using compressed gas

    International Nuclear Information System (INIS)

    Yvon, J.

    1955-01-01

    Describes the conception and functioning of a new reactor (EL-2) using compressed gas as primary coolant. The aim of the use of compressed gas as primary coolant is to reduce the quantity of heavy water used in the functioning of the reactor. Description of the reactor vessel (dimensions, materials, reflector and protection). Description of the cells and the circulation of the gas within the cells. A complete explanation of the control and regulating of the reaction by the ionization chamber is given. Heavy water is used as modulator: it describes the heavy water system and its recombination system. The fuel slugs are cooled by compressed gas: its system is described as well as the blower and the heat exchanger system. Water is supplied by a cooling tower which means the reactor power is dependant of the atmospheric conditions. Particular attention has been given to the tightness of the different systems used. The relation between neutron flow and the thermal output is discussed: the thermal output can be calculated by measuring the gas flow and its heating or by measuring the neutron flow within the reactor, both methods gives closed results. Reactivity study: determination of the different factors which induce a variation of reactivity. Heat transfer: discussion on the use of different heat transfer systems, determination of the required chemical and physical properties of the primary coolant as well as the discussion of the nuclear and thermal requirements for the choice of it. A comparison between the use of nitrogen and carbon dioxide gas shows an advantage in using nitrogen with the existing knowledge. Reflexion on the relevance of this work and the future perspectives of the use of compressed gas as primary coolant. (M.P.)

  7. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    Science.gov (United States)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  8. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-12-01

    Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  9. Performance and stability limits at near-unity aspect ratio in the Pegasus Toroidal Experiment

    International Nuclear Information System (INIS)

    Fonck, R.J.

    2002-01-01

    The Pegasus Toroidal Experiment is a mid-sized extremely-low aspect ratio (A) spherical torus (ST). It has the dual roles of exploring limits of ST behavior as A approaches 1 and studying the physics of ST plasmas in the tokamak-spheromak overlap regime. Major parameters are R 0.25 - 0.45 m, A 1.1 - 1.4, I p ≤ 0.15MA, and B t p =aB t is similar to that observed for NBI-heated START discharges. Achievable plasma current apparently is subject to a 'soft' limit of I p =I t f ≤ 1. Access to higher-current plasmas appears to be restricted by the appearance of large internal MHD activity, including m/n=2/1 and 3/2 modes. Recent experiments have begun to access ideal stability limits, with disruptions observed as q 95 approaches 5, in agreement with numerical predictions. (author)

  10. Advanced plasma flow simulations of cathodic-arc and ferroelectric plasma sources for neutralized drift compression experiments

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2008-07-01

    Full Text Available Large-space-scale and long-time-scale plasma flow simulations are executed in order to study the spatial and temporal evolution of plasma parameters for two types of plasma sources used in the neutralized drift compression experiment (NDCX. The results help assess the charge neutralization conditions for ion beam compression experiments and can be employed in more sophisticated simulations, which previously neglected the dynamical evolution of the plasma. Three-dimensional simulations of a filtered cathodic-arc plasma source show the coupling efficiency of the plasma flow from the source to the drift region depends on geometrical factors. The nonuniform magnetic topology complicates the well-known general analytical considerations for evaluating guiding-center drifts, and particle-in-cell simulations provide a self-consistent evaluation of the physics in an otherwise challenging scenario. Plasma flow profiles of a ferroelectric plasma source demonstrate that the densities required for longitudinal compression experiments involving ion beams are provided over the drift length, and are in good agreement with measurements. Simulations involving azimuthally asymmetric plasma creation conditions show that symmetric profiles are nevertheless achieved at the time of peak on-axis plasma density. Also, the ferroelectric plasma expands upstream on the thermal expansion time scale, and therefore avoids the possibility of penetration into the acceleration gap and transport sections, where partial neutralization would increase the beam emittance. Future experiments on NDCX will investigate the transverse focusing of an axially compressing intense charge bunch to a sub-mm spot size with coincident focal planes using a strong final-focus solenoid. In order to fill a multi-tesla solenoid with the necessary high-density plasma for beam charge neutralization, the simulations predict that supersonically injected plasma from the low-field region will penetrate and

  11. Operational experience with compressed geometry acceleration tubes in the Oak Ridge 25URC tandem accelerator

    International Nuclear Information System (INIS)

    Jones, C.M.; Haynes, D.L.; Juras, R.C.; Meigs, M.J.; Ziegler, N.F.

    1989-01-01

    Installation of compressed geometry acceleration tubes and other associated modifications have increased the effective voltage capability of the Oak Ridge 25URC tandem accelerator by about 3 MV. Since mid-September 1988, the accelerator has been operated routinely at terminal potentials up to 24 MV and occasionally near 25 MV. In 3500 hours of full-column operation, including 1100 hours at potentials about 22 MV, no significant spark-included damage was observed. Some considerations related to further improvements in voltage performance are discussed. 7 refs., 5 figs

  12. Tamper temperature and compression from simultaneous proton and alpha-particle measurements in laser fusion experiments

    International Nuclear Information System (INIS)

    Cover, R.A.; Kubis, J.J.; Mayer, F.J.; Slater, D.C.

    1978-01-01

    The energy loss per unit path length for a charged particle incident on a spatially uniform isothermal Maxwellian plasma is a function of the temperature and density of the medium. Within this model the temperature and compression rhoΔr of the tamper of a laser-driven microshell target can be accurately determined, in the absence of electrostatic acceleration, by the simultaneous measurement of the energy loss from 3.52-MeV α particles from D-T reactions and 3.02-MeV protons from D-D reactions

  13. Radiological Image Compression

    Science.gov (United States)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  14. Wellhead compression

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)

    2012-07-01

    Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)

  15. Picosecond chirped pulse compression in single-mode fibers

    International Nuclear Information System (INIS)

    Wenhua Cao; Youwei Zhang

    1995-01-01

    In this paper, the nonlinear propagation of picosecond chirped pulses in single mode fibers has been investigated both analytically and numerically. Results show that downchirped pulses can be compressed owing to normal group-velocity dispersion. The compression ratio depends both on the initial peak power and on the initial frequency chirp of the input pulse. While the compression ratio depends both on the initial peak power and on the initial frequency chirp of the input pulse. While the compression ratio increases with the negative frequency chirp, it decreases with the initial peak power of the input pulse. This means that the self-phase modulation induced nonlinear frequency chirp which is linear and positive (up-chirp) over a large central region of the pulse and tends to cancel the initial negative chirp of the pulse. It is also shown that, as the negative chirped pulse compresses temporally, it synchronously experiences a spectral narrowing

  16. Injection of Compressed Diced Cartilage in the Correction of Secondary and Primary Rhinoplasty: A New Technique with 12 Years' Experience.

    Science.gov (United States)

    Erol, O Onur

    2017-11-01

    There are instances where small or large pockets are filled with diced cartilage in the nose, without use of wrapping materials. For this purpose, 1-cc commercial syringes were used. The obtained results were partial and incomplete. For better and improved results, the author designed new syringes, with two different sizes, which compress the diced cartilage for injection. The author presents his experience accrued over the past 12 years with 2366 primary, 749 secondary, 67 cleft lip and nose, and a total of 3182 rhinoplasties, using his new syringe design, which compresses diced cartilage and injects the diced cartilages as a conglutinate mass, simulating carved costal cartilage, but a malleable one. In 3125 patients, the take of cartilage graft was complete (98.2 percent) and a smooth surface was obtained, giving them a natural appearance. In 21 patients (0.65 percent), there was partial resorption of cartilage. Correction was performed with touch-up surgery by reinjection of a small amount of diced cartilage. In 36 patients (1.13 percent), there was overcorrection that, 1 year later, was treated by simple rasping. Compared with diced cartilage wrapped with Surgicel or fascia, the amount of injected cartilage graft is predictable because it consists purely of cartilage. The injected diced cartilage, because it is compressed and becomes a conglutinated mass, resembles a wood chip and simulates carved cartilage. It is superior to carved cartilage in that it is moldable, time saving, and gives a good result with no late show or warping. The injection takes only a few minutes.

  17. Performance and stability limits at near-unity aspect ratio in the pegasus toroidal experiment

    International Nuclear Information System (INIS)

    Fonck, R.; Diem, S.; Garstka, G.; Kissick, M.; Lewicki, B.; Ostrander, C.; Probert, P.; Reinke, M.; Sontag, A.; Tritz, K.; Unterberg, E.

    2003-01-01

    The Pegasus Toroidal Experiment is a mid-sized extremely-low aspect ratio (A) spherical torus (ST). It has the dual roles of exploring limits of ST behavior as A approaches 1 and studying the physics of ST plasmas in the tokamak-spheromak overlap regime. Major parameters are R 0.25 - 0.45 m, A 1.1 - 1.4, I p T 20% have been obtained, and the operational space of beta vs I p /aB T is similar to that observed for NBI-heated START discharges. Achievable plasma current is subject to an apparent limit of I p /I tf ∼ 1. Access to higher-current plasmas appears to be restricted by the appearance of large internal MHD activity, including m/n=2/1 and 3/2 modes. Recent experiments have begun to access ideal stability limits, with disruptions observed as q 95 approaches 5, in agreement with numerical predictions for external kink mode onset. (author)

  18. Vapor Compression and Thermoelectric Heat Pumps for a Cascade Distillation Subsystem: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2012-01-01

    Humans on a spacecraft require significant amounts of water for drinking, food, hydration, and hygiene. Maximizing the reuse of wastewater while minimizing the use of consumables is critical for long duration space exploration. One of the more promising consumable-free methods of reclaiming wastewater is the distillation/condensation process used in the Cascade Distillation Subsystem (CDS). The CDS heats wastewater to the point of vaporization then condenses and cools the resulting water vapor. The CDS wastewater flow requires heating for evaporation and the product water flow requires cooling for condensation. Performing the heating and cooling processes separately would require two separate units, each of which would demand large amounts of electrical power. Mass, volume, and power efficiencies can be obtained by heating the wastewater and cooling the condensate in a single heat pump unit. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the CDS system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump analysis and performance tests are provided. The mass, volume, and power requirement for each heat pump option is compared and the advantages and disadvantages of each system are listed.

  19. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  20. Electric-gun studies of conductors in high magnetic fields and experiments in dynamic flux compression

    International Nuclear Information System (INIS)

    Osher, J.E.; Chau, H.H.; Lee, R.S.; Tipton, R.E.; Weingart, R.C.

    1990-01-01

    Electric guns operate by discharging a fast capacitor bank through a thin, metallic bridge-foil load. The explosion of the foil and the accompanying magnetic forces acting on the bridge-foil plasma accelerate a thin flyer plate of dielectric material initially placed on top of the bridge foil. In hypervelocity impact studies with the linear electric gun, a thin, flat flyer is punched out of a cover sheet of dielectric (or dielectric/metallic composite) material by the explosion of the bridge foil and accelerated down a short barrel to impact on a target. In the coaxial gun, a cylindrical bridge foil is used to implode a cylindrical dielectric or dielectric/metallic composite (liner) flyer to produce a high peak compression through axial convergence. In this paper the authors discuss the range of currents, their rate of rise, and the magnetic fields attained by their fast capacitor banks, which supply power to the electric gun to explode the bridge foil. Also included is a study of the change of resistance of the bridge-foil element as a function of time for various flyer mass loadings for the linear geometry of the gun

  1. Electrode Conduction Processes Segmented Electrode-Insulator Ratio Effects in MHD Power Generation Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pain, H. J.; Fearn, D. G.; Distefano, E. [Imperial College. London (United Kingdom)

    1966-10-15

    (a) Electrode conduction processes have been investigated using a plasma produced in an electromagnetic shock tube operating with argon at 70 {mu}mHg pressure. Complete voltage-current characteristics were obtained by the variation of load and applied voltage. These indicated the existence of two conduction regimes with a complex transition region. In the first regime the current, controlled by ion mobility, rose linearly with voltage to saturate between 10 mA and 1 A depending on conditions. Electrode contamination was significant. The second regime involved large currents controlled by electron mobility and emission from the cathode. The current again increased linearly with voltage and reached 200 A. Observation of induced voltages in transverse magnetic fields and of plasma deceleration in non-uniform fields showed that in the electromagnetic shock tube the plasma was heated predominantly by the driver discharge. Its conductivity was calculated using properties measured by a Langmuir double probe. In both regimes the plasma conductivity was also found from the gradient of the voltage current characteristics using experimental electric field fringing factors and the experimental values were compared with theory. (b) Larger-scale experiments used a combustion-driven shock tube where argon plasma flow, magnetic field and induced current flow were mutually orthogonal. The supersonic flow velocity and thermodynamic parameters of the plasma were accurately known. The electrode channel consisted of a segmented system of 12 electrode pairs with an electrode insulator ratio ranging from 1 to 21, with electrode plus insulator length remaining constant, and with maximum Hall parameter values of unity. Different electrode load combinations (Faraday and Hall generators) have been studied in measuring the power generated and the flow of longitudinal currents between adjacent electrodes. A maximum power of 0,8 MW was obtained, the power output decreasing inversely with the

  2. Electrode Conduction Processes Segmented Electrode-Insulator Ratio Effects in MHD Power Generation Experiments

    International Nuclear Information System (INIS)

    Pain, H.J.; Fearn, D.G.; Distefano, E.

    1966-01-01

    (a) Electrode conduction processes have been investigated using a plasma produced in an electromagnetic shock tube operating with argon at 70 μmHg pressure. Complete voltage-current characteristics were obtained by the variation of load and applied voltage. These indicated the existence of two conduction regimes with a complex transition region. In the first regime the current, controlled by ion mobility, rose linearly with voltage to saturate between 10 mA and 1 A depending on conditions. Electrode contamination was significant. The second regime involved large currents controlled by electron mobility and emission from the cathode. The current again increased linearly with voltage and reached 200 A. Observation of induced voltages in transverse magnetic fields and of plasma deceleration in non-uniform fields showed that in the electromagnetic shock tube the plasma was heated predominantly by the driver discharge. Its conductivity was calculated using properties measured by a Langmuir double probe. In both regimes the plasma conductivity was also found from the gradient of the voltage current characteristics using experimental electric field fringing factors and the experimental values were compared with theory. (b) Larger-scale experiments used a combustion-driven shock tube where argon plasma flow, magnetic field and induced current flow were mutually orthogonal. The supersonic flow velocity and thermodynamic parameters of the plasma were accurately known. The electrode channel consisted of a segmented system of 12 electrode pairs with an electrode insulator ratio ranging from 1 to 21, with electrode plus insulator length remaining constant, and with maximum Hall parameter values of unity. Different electrode load combinations (Faraday and Hall generators) have been studied in measuring the power generated and the flow of longitudinal currents between adjacent electrodes. A maximum power of 0,8 MW was obtained, the power output decreasing inversely with the

  3. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    International Nuclear Information System (INIS)

    Scalerandi, M; Delsanto, P P; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model

  4. Stress induced conditioning and thermal relaxation in the simulation of quasi-static compression experiments

    CERN Document Server

    Scalerandi, M; Johnson, P A

    2003-01-01

    Local interaction simulation approach simulations of the ultrasonic wave propagation in multi-grained materials have succeeded in reproducing most of the recently observed nonclassical nonlinear effects, such as stress-strain hysteresis and discrete memory in quasi-static experiments and a downwards shift of the resonance frequency and the generation of odd harmonics at specific amplitude rates in dynamics experiments. By including a simple mechanism of thermally activated random transitions, we can predict the occurrence of experimentally observed effects, such as the conditioning and relaxation of the specimen. Experiments are also suggested for a quantitative assessment of the validity of the model.

  5. Compression instrument for tissue experiments (cite) at the meso-scale: device validation - biomed 2011.

    Science.gov (United States)

    Evans, Douglas W; Rajagopalan, Padma; Devita, Raffaella; Sparks, Jessica L

    2011-01-01

    Liver sinusoidal endothelial cells (LSECs) are the primary site of numerous transport and exchange processes essential for liver function. LSECs rest on a sparse extracellular matrix layer housed in the space of Disse, a 0.5-1LSECs from hepatocytes. To develop bioengineered liver tissue constructs, it is important to understand the mechanical interactions among LSECs, hepatocytes, and the extracellular matrix in the space of Disse. Currently the mechanical properties of space of Disse matrix are not well understood. The objective of this study was to develop and validate a device for performing mechanical tests at the meso-scale (100nm-100m), to enable novel matrix characterization within the space of Disse. The device utilizes a glass micro-spherical indentor attached to a cantilever made from a fiber optic cable. The 3-axis translation table used to bring the specimen in contact with the indentor and deform the cantilever. A position detector monitors the location of a laser passing through the cantilever and allows for the calculation of subsequent tissue deformation. The design allows micro-newton and nano-newton stress-strain tissue behavior to be quantified. To validate the device accuracy, 11 samples of silicon rubber in two formulations were tested to experimentally confirm their Young's moduli. Prior macroscopic unconfined compression tests determined the formulations of EcoFlex030 (n-6) and EcoFlex010 (n-5) to posses Young's moduli of 92.67+-6.22 and 43.10+-3.29 kPa respectively. Optical measurements taken utilizing CITE's position control and fiber optic cantilever found the moduli to be 106.4 kPa and 47.82 kPa.

  6. Early experience of the compression anastomosis ring (CARTM 27) in left-sided colon resection

    Science.gov (United States)

    Lee, Jung-Yeon; Woo, Jin-Hee; Choi, Hong-Jo; Park, Ki-Jae; Roh, Young-Hoon; Kim, Ki-Han; Lee, Hak-Yoon

    2011-01-01

    AIM: To evaluate clinical validity of the compression anastomosis ring (CAR™ 27) anastomosis in left-sided colonic resection. METHODS: A non-randomized prospective data collection was performed for patients undergoing an elective left-sided colon resection, followed by an anastomosis using the CAR™ 27 between November 2009 and January 2011. Eligibility criteria of the use of the CAR™ 27 were anastomoses between the colon and at or above the intraperitoneal rectum. The primary short-term clinical endpoint, rate of anastomotic leakage, and other clinical outcomes, including intra- and postoperative complications, length of operation time and hospital stay, and the ring elimination time were evaluated. RESULTS: A total of 79 patients (male, 43; median age, 64 years) underwent an elective left-sided colon resection, followed by an anastomosis using the CAR™ 27. Colectomy was performed laparoscopically in 70 patients, in whom two patients converted to open procedure (2.9%). There was no surgical mortality. As an intraoperative complication, total disruption of the anastomosis occurred by premature enforced tension on the proximal segment of the anastomosis in one patient. The ring was removed and another new CAR™ 27 anastomosis was constructed. One patient with sigmoid colon cancer showed postoperative anastomotic leakage after 6 d postoperatively and temporary diverting ileostomy was performed. Exact date of expulsion of the ring could not be recorded because most patients were not aware that the ring had been expelled. No patients manifested clinical symptoms of anastomotic stricture. CONCLUSION: Short-term evaluation of the CAR™ 27 anastomosis in elective left colectomy suggested it to be a safe and efficacious alternative to the standard hand-sewn or stapling technique. PMID:22147979

  7. Early experience of the compression anastomosis ring (CAR™ 27) in left-sided colon resection.

    Science.gov (United States)

    Lee, Jung-Yeon; Woo, Jin-Hee; Choi, Hong-Jo; Park, Ki-Jae; Roh, Young-Hoon; Kim, Ki-Han; Lee, Hak-Yoon

    2011-11-21

    To evaluate clinical validity of the compression anastomosis ring (CAR™ 27) anastomosis in left-sided colonic resection. A non-randomized prospective data collection was performed for patients undergoing an elective left-sided colon resection, followed by an anastomosis using the CAR™ 27 between November 2009 and January 2011. Eligibility criteria of the use of the CAR™ 27 were anastomoses between the colon and at or above the intraperitoneal rectum. The primary short-term clinical endpoint, rate of anastomotic leakage, and other clinical outcomes, including intra- and postoperative complications, length of operation time and hospital stay, and the ring elimination time were evaluated. A total of 79 patients (male, 43; median age, 64 years) underwent an elective left-sided colon resection, followed by an anastomosis using the CAR™ 27. Colectomy was performed laparoscopically in 70 patients, in whom two patients converted to open procedure (2.9%). There was no surgical mortality. As an intraoperative complication, total disruption of the anastomosis occurred by premature enforced tension on the proximal segment of the anastomosis in one patient. The ring was removed and another new CAR™ 27 anastomosis was constructed. One patient with sigmoid colon cancer showed postoperative anastomotic leakage after 6 d postoperatively and temporary diverting ileostomy was performed. Exact date of expulsion of the ring could not be recorded because most patients were not aware that the ring had been expelled. No patients manifested clinical symptoms of anastomotic stricture. Short-term evaluation of the CAR™ 27 anastomosis in elective left colectomy suggested it to be a safe and efficacious alternative to the standard hand-sewn or stapling technique.

  8. Intra-pulse laser absorption sensor with cavity enhancement for oxidation experiments in a rapid compression machine

    KAUST Repository

    Nasir, Ehson Fawad

    2018-05-23

    A sensor based on a mid-IR pulsed quantum cascade laser (QCL) and off-axis cavity enhanced absorption spectroscopy (OA-CEAS) has been developed for highly sensitive concentration measurements of carbon monoxide (CO) in a rapid compression machine. The duty cycle and the pulse repetition rate of the laser were optimized for increased tuning range, high chirp rate, and small line width to achieve effective laser-cavity coupling. This enabled spectrally resolved CO line-shape measurements at high pressures (P ~10 bar). A gain factor of 133 and a time resolution of 10 μs were demonstrated. CO concentration-time profiles during the oxidation of highly dilute n-octane/air mixtures were recorded, illustrating new opportunities in RCM experiments for chemical kinetics.

  9. Application of the collapsing method to acoustic emissions in a rock salt sample during a triaxial compression experiment

    International Nuclear Information System (INIS)

    Manthei, G.; Eisenblaetter, J.; Moriya, H.; Niitsuma, H.; Jones, R.H.

    2003-01-01

    Collapsing is a relatively new method. It is used for detecting patterns and structures in blurred and cloudy pictures of multiple soundings. In the case described here, the measurements were made in a very small region with a length of only a few decimeters. The events were registered during a triaxial compression experiment on a compact block of rock salt. The collapsing method showed a cellular structure of the salt block across the whole length of the test piece. The cells had a length of several cm, enclosing several grains of salt with an average grain size of less than one cm. In view of the fact that not all cell walls corresponded to acoustic emission events, it was assumed that only those grain boundaries are activated that are oriented at a favourable angle to the field of tension of the test piece [de

  10. Evaluation of a wavelet-based compression algorithm applied to the silicon drift detectors data of the ALICE experiment at CERN

    International Nuclear Information System (INIS)

    Falchieri, Davide; Gandolfi, Enzo; Masotti, Matteo

    2004-01-01

    This paper evaluates the performances of a wavelet-based compression algorithm applied to the data produced by the silicon drift detectors of the ALICE experiment at CERN. This compression algorithm is a general purpose lossy technique, in other words, its application could prove useful even on a wide range of other data reduction's problems. In particular the design targets relevant for our wavelet-based compression algorithm are the following ones: a high-compression coefficient, a reconstruction error as small as possible and a very limited execution time. Interestingly, the results obtained are quite close to the ones achieved by the algorithm implemented in the first prototype of the chip CARLOS, the chip that will be used in the silicon drift detectors readout chain

  11. DISCUS, Neutron Single to Double Scattering Ratio in Inelastic Scattering Experiment by Monte-Carlo

    International Nuclear Information System (INIS)

    Johnson, M.W.

    1993-01-01

    1 - Description of problem or function: DISCUS calculates the ratio of once-scattered to twice-scattered neutrons detected in an inelastic neutron scattering experiment. DISCUS also calculates the flux of once-scattered neutrons that would have been observed if there were no absorption in the sample and if, once scattered, the neutron would emerge without further re-scattering or absorption. Three types of sample geometry are used: an infinite flat plate, a finite flat plate or a finite length cylinder. (The infinite flat plate is included for comparison with other multiple scattering programs.) The program may be used for any sample for which the scattering law is of the form S(/Q/, omega). 2 - Method of solution: Monte Carlo with importance sampling is used. Neutrons are 'forced' both into useful angular trajectories, and useful energy bins. Biasing of the collision point according to the point of entry of the neutron into the sample is also utilised. The first and second order scattered neutron fluxes are calculated in independent histories. For twice-scattered neutron histories a square distribution in Q-omega space is used to sample the neutron coming from the first scattering event, whilst biasing is used for the second scattering event. (A square distribution is used so as to obtain reasonable inelastic-inelastic statistics.) 3 - Restrictions on the complexity of the problem: Unlimited number of detectors. Max. size of (Q, omega) matrix is 39*149. Max. number of points in momentum space for the scattering cross section is 199

  12. Measurements of the tensile and compressive properties of micro-concrete used in the Winfrith missile impact experiments

    International Nuclear Information System (INIS)

    Wilson, P.A.

    1982-10-01

    Tests to determine the tensile and compressive properties of a micro-concrete mix are described. The material is a nominally 40MPa ultimate compressive strength concrete used in impact tests with scale models in the prediction of responses in prototype concrete structures. Compressive tests were intended to give complete stress-strain relationships beyond initial failure. Tensile properties were measured by the Brazilian splitting technique and direct tension dog-bone specimens for comparison reasons. (U.K.)

  13. High-pressure resistivity technique for quasi-hydrostatic compression experiments.

    Science.gov (United States)

    Rotundu, C R; Ćuk, T; Greene, R L; Shen, Z-X; Hemley, Russell J; Struzhkin, V V

    2013-06-01

    Diamond anvil cell techniques are now well established and powerful methods for measuring materials properties to very high pressure. However, high pressure resistivity measurements are challenging because the electrical contacts attached to the sample have to survive to extreme stress conditions. Until recently, experiments in a diamond anvil cell were mostly limited to non-hydrostatic or quasi-hydrostatic pressure media other than inert gases. We present here a solution to the problem by using focused ion beam ultrathin lithography for a diamond anvil cell loaded with inert gas (Ne) and show typical resistivity data. These ultrathin leads are deposited on the culet of the diamond and are attaching the sample to the anvil mechanically, therefore allowing for measurements in hydrostatic or nearly hydrostatic conditions of pressure using noble gases like Ne or He as pressure transmitting media.

  14. LZ-Compressed String Dictionaries

    OpenAIRE

    Arz, Julian; Fischer, Johannes

    2013-01-01

    We show how to compress string dictionaries using the Lempel-Ziv (LZ78) data compression algorithm. Our approach is validated experimentally on dictionaries of up to 1.5 GB of uncompressed text. We achieve compression ratios often outperforming the existing alternatives, especially on dictionaries containing many repeated substrings. Our query times remain competitive.

  15. WSNs Microseismic Signal Subsection Compression Algorithm Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Zhouzhou Liu

    2015-01-01

    Full Text Available For wireless network microseismic monitoring and the problems of low compression ratio and high energy consumption of communication, this paper proposes a segmentation compression algorithm according to the characteristics of the microseismic signals and the compression perception theory (CS used in the transmission process. The algorithm will be collected as a number of nonzero elements of data segmented basis, by reducing the number of combinations of nonzero elements within the segment to improve the accuracy of signal reconstruction, while taking advantage of the characteristics of compressive sensing theory to achieve a high compression ratio of the signal. Experimental results show that, in the quantum chaos immune clone refactoring (Q-CSDR algorithm for reconstruction algorithm, under the condition of signal sparse degree higher than 40, to be more than 0.4 of the compression ratio to compress the signal, the mean square error is less than 0.01, prolonging the network life by 2 times.

  16. Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment

    KAUST Repository

    Cottrill, Anton L.; Wang, Song; Liu, Albert Tianxiang; Wang, Wen-Jun; Strano, Michael S.

    2018-01-01

    Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane-impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH-O) and a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.

  17. Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment

    KAUST Repository

    Cottrill, Anton L.

    2018-01-15

    Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane-impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH-O) and a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.

  18. Experience from long-term monitoring of RAKR ratios in 192Ir brachytherapy

    International Nuclear Information System (INIS)

    Carlsson Tedgren, Asa; Bengtsson, Emil; Hedtjaern, Hakan; Johansson, Asa; Karlsson, Leif; Lamm, Inger-Lena; Lundell, Marie; Mejaddem, Younes; Munck af Rosenschoeld, Per; Nilsson, Josef; Wieslander, Elinore; Wolke, Jeanette

    2008-01-01

    Background: Ratios of values of brachytherapy source strengths, as measured by hospitals and vendors, comprise constant differences as, e.g., systematic errors in ion chamber calibration factors and measurement setup. Such ratios therefore have the potential to reveal the systematic changes in routines or calibration services at either the hospital or the vendor laboratory, which could otherwise be hidden by the uncertainty in the source strength values. Methods: The RAKR of each new source in 13 afterloading units at five hospitals were measured by well-type ion chambers and compared to values for the same source stated on vendor certificates. Results: Differences from unity in the ratios of RAKR values determined by hospitals and vendors are most often small and stable around their mean values to within ±1.5%. Larger deviations are rare but occur. A decreasing ratio, seen at two hospitals for the same source, was useful in detecting an erroneous pressure gauge at the vendor's site. Conclusions: Establishing a mean ratio of RAKR values, as measured at the hospital and supplied on the vendor certificate, and monitoring this as a function of time are an easy way for the early detection of problems with equipment or routines at either the hospital or the vendor site

  19. Performance and emission characteristics of a turbocharged CNG engine fueled by hydrogen-enriched compressed natural gas with high hydrogen ratio

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Fanhua; Wang, Mingyue; Jiang, Long; Chen, Renzhe; Deng, Jiao; Naeve, Nashay; Zhao, Shuli [State Key Laboratory of Automotive Safety and Energy Tsinghua University, Beijing 100084 (China)

    2010-06-15

    This paper investigates the effect of high hydrogen volumetric ratio of 55% on performance and emission characteristics in a turbocharged lean burn natural gas engine. The experimental data was conducted under various operating conditions including different spark timing, excess air ratio (lambda), and manifold pressure. It is found that the addition of hydrogen at a high volumetric ratio could significantly extend the lean burn limit, improve the engine lean burn ability, decrease burn duration, and yield higher thermal efficiency. The CO, CH{sub 4} emissions were reduced and NO{sub x} emission could be kept an acceptable low level with high hydrogen content under lean burn conditions when ignition timing were optimized. (author)

  20. With the Advent of Tomosynthesis in the Workup of Mammographic Abnormality, is Spot Compression Mammography Now Obsolete? An Initial Clinical Experience.

    Science.gov (United States)

    Ni Mhuircheartaigh, Neasa; Coffey, Louise; Fleming, Hannah; O' Doherty, Ann; McNally, Sorcha

    2017-09-01

    To determine if the routine use of spot compression mammography is now obsolete in the assessment of screen detected masses, asymmetries and architectural distortion since the availability of digital breast tomosynthesis. We introduced breast tomosynthesis in the workup of screen detected abnormalities in our screening center in January 2015. During an initial learning period with tomosynthesis standard spot compression views were also performed. Three consultant breast radiologists retrospectively reviewed all screening mammograms recalled for assessment over the first 6-month period. We assessed retrospectively whether there was any additional diagnostic information obtained from spot compression views not already apparent on tomography. All cases were also reviewed for any additional lesions detected by tomosynthesis, not detected on routine 2-view screening mammography. 548 women screened with standard 2-view digital screening mammography were recalled for assessment in the selected period and a total of 565 lesions were assessed. 341 lesions were assessed by both tomosynthesis and routine spot compression mammography. The spot compression view was considered more helpful than tomosynthesis in only one patient. This was because the breast was inadequately positioned for tomosynthesis and the area in question was not adequately imaged. Apart from this technical error there was no asymmetry, distortion or mass where spot compression provided more diagnostic information than tomosynthesis alone. We detected three additional cancers on tomosynthesis, not detected by routine screening mammography. From our initial experience with tomosynthesis we conclude that spot compression mammography is now obsolete in the assessment of screen detected masses, asymmetries and distortions where tomosynthesis is available. © 2017 Wiley Periodicals, Inc.

  1. Are fixed grain size ratios useful proxies for loess sedimentation dynamics? Experiences from Remizovka, Kazakhstan

    Science.gov (United States)

    Schulte, Philipp; Sprafke, Tobias; Rodrigues, Leonor; Fitzsimmons, Kathryn E.

    2018-04-01

    Loess-paleosol sequences (LPS) are sensitive terrestrial archives of past aeolian dynamics and paleoclimatic changes within the Quaternary. Grain size (GS) analysis is commonly used to interpret aeolian dynamics and climate influences on LPS, based on granulometric parameters such as specific GS classes, ratios of GS classes and statistical manipulation of GS data. However, the GS distribution of a loess sample is not solely a function of aeolian dynamics; rather complex polygenetic depositional and post-depositional processes must be taken into account. This study assesses the reliability of fixed GS ratios as proxies for past sedimentation dynamics using the case study of Remizovka in southeast Kazakhstan. Continuous sampling of the upper 8 m of the profile, which shows extremely weak pedogenic alteration and is therefore dominated by primary aeolian activity, indicates that fixed GS ratios do not adequately serve as proxies for loess sedimentation dynamics. We find through the calculation of single value parameters, that "true" variations within sensitive GS classes are masked by relative changes of the more frequent classes. Heatmap signatures provide the visualization of GS variability within LPS without significant data loss within the measured classes of a sample, or across all measured samples. We also examine the effect of two different commonly used laser diffraction devices on GS ratio calculation by duplicate measurements, the Beckman Coulter (LS13320) and a Malvern Mastersizer Hydro (MM2000), as well as the applicability and significance of the so-called "twin peak ratio" previously developed on samples from the same section. The LS13320 provides higher resolution results than the MM2000, nevertheless the GS ratios related to variations in the silt-sized fraction were comparable. However, we could not detect a twin peak within the coarse silt as detected in the original study using the same device. Our GS measurements differ from previous works at

  2. Shock compression of glow discharge polymer (GDP): density functional theory (DFT) simulations and experiments on Sandia's Z machine

    Science.gov (United States)

    Cochrane, Kyle R.; Ao, T.; Lemke, R. W.; Hamel, S.; Schoff, M. E.; Blue, B. E.; Herrmann, M. C.; Mattsson, T. R.

    2014-03-01

    Glow discharge polymer (GDP) is used extensively as capsule/ablation material in inertial confinement fusion (ICF) capsules. Accurate knowledge of the equation of state (EOS) under shock and release is particularly important for high-fidelity design, analysis, and optimization of ICF experiments since the capsule material is subject to several converging shocks as well as release towards the cryogenic fuel. We performed Density Functional Theory (DFT) based quantum molecular dynamics (QMD) simulations, to gain knowledge of the behavior of GDP - for example regarding the role of chemical dissociation during shock compression, we find that the dissociation regime along the Hugoniot extends from 50 GPa to 250 GPa. The shock pressures calculated from DFT are compared experimental data taken at Sandia's Z-machine. The GDP samples were grown in a planar geometry to improve the sample quality and maintained in a nitrogen atmosphere following manufacturing, thus allowing for a direct comparison to the DFT/QMD simulations. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  3. Preamplifier-shaper prototype for the Fast Transition Detector of the Compressed Baryonic Matter (CBM) experiment at FAIR

    CERN Document Server

    Soltveit, Hans Kristian

    2007-01-01

    In this work a preamplifier-shaper prototype for the Fast Transition Detector of the Compressed BaryonicMatter (CBM) experiment at FAIR fabricated using a 0.35 μm CMOS technology will be presented. The ASIC integrates 16 identical Charge Sensitive Amplifiers (CSA) followed by a Pole-Zero network, two bridged-T filters, Common-Mode FeedBack (CMFB) network and two non-inverting level shifting stages. The circuit is optimized for a detector capacitance Cd of (5-10)pF. Measurement results confirm the noise of 330 e− + 12 e−/pF obtained in simulations for a pulse with a Full Width Half Maximum (FWHM) of 71 ns. The circuit recovers to the baseline within 200 ns. The conversion gain is 12.64 mV/fC. An integral nonlinearity of 0.7% is also achieved. The maximum output swing is 2 V. The power consumption is 16 mW/channel where the main contributors are the input transistor and the level shifting stage with 5.3 mW and 6.6 mW, respectively. The total area of the chip is 12 mm2. Although the circuit was designed for...

  4. Experimental investigation on the availability, performance, combustion and emission distinctiveness of bael oil/ diesel/ diethyl ether blends powered in a variable compression ratio diesel engine

    Science.gov (United States)

    Krishnamoorthi, M.; Malayalamurthi, R.

    2018-02-01

    The present work aims at experimental investigation on the combined effect of injection timing (IT) and injection pressure (IP) on the performance and emissions characteristics, and exergy analysis of a compression-ignition (CI) engine powered with bael oil blends. The tests were conducted using ternary blends of bael oil, diethyl ether (DEE) and neat diesel (D) at various engine loads at a constant engine speed (1500 rpm). With B2 (60%D + 30%bael oil+10%DEE) fuel, the brake thermal efficiency (BTE) of the engine is augmented by 3.5%, reduction of 4.7% of oxides of nitrogen (NOx) emission has been observed at 100% engine load with 250 bar IP. B2 fuel exhibits 7% lower scale of HC emissions compared to that of diesel fuel at 100% engine load in 23 °bTDC IT. The increment in both cooling water and exhaust gas availabilities lead to increasing exergy efficiency with increasing load. The exergy efficiency of about 62.17% has been recorded by B2 fuel at an injection pressure of 230 IP bar with 100% load. On the whole, B2 fuel displays the best performance and combustion characteristics. It also exhibits better characteristics of emissions level in terms of lower HC, smoke opacity and NOx.

  5. Digit Ratio (2D:4D) Predicts Self-Reported Measures of General Competitiveness, but Not Behavior in Economic Experiments.

    Science.gov (United States)

    Bönte, Werner; Procher, Vivien D; Urbig, Diemo; Voracek, Martin

    2017-01-01

    The ratio of index finger length to ring finger length (2D:4D) is considered to be a putative biomarker of prenatal androgen exposure (PAE), with previous research suggesting that 2D:4D is associated with human behaviors, especially sex-typical behaviors. This study empirically examines the relationship between 2D:4D and individual competitiveness, a behavioral trait that is found to be sexually dimorphic. We employ two related, but distinct, measures of competitiveness, namely behavioral measures obtained from economic experiments and psychometric self-reported measures. Our analyses are based on two independent data sets obtained from surveys and economic experiments with 461 visitors of a shopping mall (Study I) and 617 university students (Study II). The correlation between behavior in the economic experiment and digit ratios of both hands is not statistically significant in either study. In contrast, we find a negative and statistically significant relationship between psychometric self-reported measures of competitiveness and right hand digit ratios (R2D:4D) in both studies. This relationship is especially strong for younger people. Hence, this study provides some robust empirical evidence for a negative association between R2D:4D and self-reported competitiveness. We discuss potential reasons why digit ratio may relate differently to behaviors in specific economics experiments and to self-reported general competitiveness.

  6. Digit Ratio (2D:4D Predicts Self-Reported Measures of General Competitiveness, but Not Behavior in Economic Experiments

    Directory of Open Access Journals (Sweden)

    Werner Bönte

    2017-12-01

    Full Text Available The ratio of index finger length to ring finger length (2D:4D is considered to be a putative biomarker of prenatal androgen exposure (PAE, with previous research suggesting that 2D:4D is associated with human behaviors, especially sex-typical behaviors. This study empirically examines the relationship between 2D:4D and individual competitiveness, a behavioral trait that is found to be sexually dimorphic. We employ two related, but distinct, measures of competitiveness, namely behavioral measures obtained from economic experiments and psychometric self-reported measures. Our analyses are based on two independent data sets obtained from surveys and economic experiments with 461 visitors of a shopping mall (Study I and 617 university students (Study II. The correlation between behavior in the economic experiment and digit ratios of both hands is not statistically significant in either study. In contrast, we find a negative and statistically significant relationship between psychometric self-reported measures of competitiveness and right hand digit ratios (R2D:4D in both studies. This relationship is especially strong for younger people. Hence, this study provides some robust empirical evidence for a negative association between R2D:4D and self-reported competitiveness. We discuss potential reasons why digit ratio may relate differently to behaviors in specific economics experiments and to self-reported general competitiveness.

  7. A Search for New Resonances with the Dijet Angular Ratio Using the Compact Muon Solenoid Experiment

    CERN Document Server

    St John, Jason Michael; Harris, Rob

    A search for dijet resonances is performed using 2.2 fb$^{-1}$ of proton-proton collision data at $\\sqrt{s}$ = 7 TeV recorded by the CMS detector at CERN. The study is based on the dijet angular ratio, the ratio of the number of events with the two leading jets having pseudorapidity difference |delta eta| < 1.3 to the number of events with 1.3 < |delta eta| < 3.0. Models of new resonances which decay into two jets typically predict dijet angular distributions and hence, values of the dijet angular ratio which differ from standard model processes. We thus use the measurement of the angular ratio as a function of mass to set limits on the cross sections of new spin -1/2 quark-gluon resonances. We exclude excited quarks of mass less than 3.2 TeV at 95% confidence level, where a limit of 2.8 TeV is expected.

  8. A Search for New Resonances with the Dijet Angular Ratio Using the Compact Muon Solenoid Experiment

    Energy Technology Data Exchange (ETDEWEB)

    John, Jason Michael [Boston Univ., MA (United States)

    2012-01-01

    A search for dijet resonances is performed using 2.2 fb$^{-1}$ of proton-proton collision data at $\\sqrt{s}$ = 7 TeV recorded by the CMS detector at CERN. The study is based on the dijet angular ratio, the ratio of the number of events with the two leading jets having pseudorapidity difference |delta eta| < 1.3 to the number of events with 1.3 < |delta eta| < 3.0. Models of new resonances which decay into two jets typically predict dijet angular distributions and hence, values of the dijet angular ratio which differ from standard model processes. We thus use the measurement of the angular ratio as a function of mass to set limits on the cross sections of new spin -1/2 quark-gluon resonances. We exclude excited quarks of mass less than 3.2 TeV at 95% confidence level, where a limit of 2.8 TeV is expected.

  9. Accuracy of progress ratios determined from experience curves: the case of photovoltaic technology development

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.|info:eu-repo/dai/nl/074628526; Alsema, E.A.|info:eu-repo/dai/nl/073416258; Junginger, H.M.|info:eu-repo/dai/nl/202130703; de Moor, H.H.C.; Schaeffer, G.J.

    2008-01-01

    Learning curves are extensively used in policy and scenario studies. Progress ratios (PRs) are derived from historical data and are used for forecasting cost development of many technologies, including photovoltaics (PV). Forecasts are highly sensitive to uncertainties in the PR. A PR usually is

  10. Nonoperative active management of critical limb ischemia: initial experience using a sequential compression biomechanical device for limb salvage.

    LENUS (Irish Health Repository)

    Sultan, Sherif

    2008-01-01

    Critical limb ischemia (CLI) patients are at high risk of primary amputation. Using a sequential compression biomechanical device (SCBD) represents a nonoperative option in threatened limbs. We aimed to determine the outcome of using SCBD in amputation-bound nonreconstructable CLI patients regarding limb salvage and 90-day mortality. Thirty-five patients with 39 critically ischemic limbs (rest pain = 12, tissue loss = 27) presented over 24 months. Thirty patients had nonreconstructable arterial outflow vessels, and five were inoperable owing to severe comorbidity scores. All were Rutherford classification 4 or 5 with multilevel disease. All underwent a 12-week treatment protocol and received the best medical treatment. The mean follow-up was 10 months (SD +\\/- 6 months). There were four amputations, with an 18-month cumulative limb salvage rate of 88% (standard error [SE] +\\/- 7.62%). Ninety-day mortality was zero. Mean toe pressures increased from 38.2 to 67 mm Hg (SD +\\/- 33.7, 95% confidence interval [CI] 55-79). Popliteal artery flow velocity increased from 45 to 47.9 cm\\/s (95% CI 35.9-59.7). Cumulative survival at 12 months was 81.2% (SE +\\/- 11.1) for SCBD, compared with 69.2% in the control group (SE +\\/- 12.8%) (p = .4, hazards ratio = 0.58, 95% CI 0.15-2.32). The mean total cost of primary amputation per patient is euro29,815 ($44,000) in comparison with euro13,900 ($20,515) for SCBD patients. SCBD enhances limb salvage and reduces length of hospital stay, nonoperatively, in patients with nonreconstructable vessels.

  11. Notion Of Artificial Labs Slow Global Warming And Advancing Engine Studies Perspectives On A Computational Experiment On Dual-Fuel Compression-Ignition Engine Research

    Directory of Open Access Journals (Sweden)

    Tonye K. Jack

    2017-06-01

    Full Text Available To appreciate clean energy applications of the dual-fuel internal combustion engine D-FICE with pilot Diesel fuel to aid public policy formulation in terms of present and future benefits to the modern transportation stationary power and promotion of oil and gas green- drilling the brief to an engine research team was to investigate the feasible advantages of dual-fuel compression-ignition engines guided by the following concerns i Sustainable fuel and engine power delivery ii The requirements for fuel flexibility iii Low exhausts emissions and environmental pollution iv Achieving low specific fuel consumption and economy for maximum power v The comparative advantages over the conventional Diesel engines vi Thermo-economic modeling and analysis for the optimal blend as basis for a benefitcost evaluation Planned in two stages for reduced cost and fast turnaround of results - initial preliminary stage with basic simple models and advanced stage with more detailed complex modeling. The paper describes a simplified MATLAB based computational experiment predictive model for the thermodynamic combustion and engine performance analysis of dual-fuel compression-ignition engine studies operating on the theoretical limited-pressure cycle with several alternative fuel-blends. Environmental implications for extreme temperature moderation are considered by finite-time thermodynamic modeling for maximum power with predictions for pollutants formation and control by reaction rates kinetics analysis of systematic reduced plausible coupled chemistry models through the NCN reaction pathway for the gas-phase reactions classes of interest. Controllable variables for engine-out pollutants emissions reduction and in particular NOx elimination are identified. Verifications and Validations VampV through Performance Comparisons were made using a clinical approach in selection of StrokeBore ratios greater-than and equal-to one amp88051 low-to-high engine speeds and medium

  12. Uniaxial compression test series on Bullfrog Tuff

    International Nuclear Information System (INIS)

    Price, R.H.; Jones, A.K.; Nimick, K.G.

    1982-04-01

    Nineteen uniaxial compressive experiments were performed on samples of the Bullfrog Member of the Crater Flat Tuff, obtained from drillhole USW-G1 at Yucca Mountain on the Nevada Test Site. The water saturated samples were deformed at a nominal strain rate of 10 -5 sec -1 , atmospheric pressure and room temperature. Resultant unconfined compressive strengths, axial strains to failure, Young's moduli and Poisson's ratios ranged from 4.63 to 153. MPa, .0028 to .0058, 2.03 to 28.9 GPa and .08 to .16, respectively

  13. Image compression of bone images

    International Nuclear Information System (INIS)

    Hayrapetian, A.; Kangarloo, H.; Chan, K.K.; Ho, B.; Huang, H.K.

    1989-01-01

    This paper reports a receiver operating characteristic (ROC) experiment conducted to compare the diagnostic performance of a compressed bone image with the original. The compression was done on custom hardware that implements an algorithm based on full-frame cosine transform. The compression ratio in this study is approximately 10:1, which was decided after a pilot experiment. The image set consisted of 45 hand images, including normal images and images containing osteomalacia and osteitis fibrosa. Each image was digitized with a laser film scanner to 2,048 x 2,048 x 8 bits. Six observers, all board-certified radiologists, participated in the experiment. For each ROC session, an independent ROC curve was constructed and the area under that curve calculated. The image set was randomized for each session, as was the order for viewing the original and reconstructed images. Analysis of variance was used to analyze the data and derive statistically significant results. The preliminary results indicate that the diagnostic quality of the reconstructed image is comparable to that of the original image

  14. High Pressure In Situ X-ray Diffraction Study of MnO to 120 GPa and Comparison with Shock Compression Experiment

    Science.gov (United States)

    Yagi, Takehiko; Kondo, Tadashi; Syono, Yasuhiko

    1997-07-01

    In order to clarify the nature of the phase transformation in MnO observed at around 90 GPa by shock compression experiment (Syono et al., this symposium), high pressure in situ x-ray experiments were carried out up to 120 GPa. Powdered sample was directly compressed in Mao-Bell type diamond anvil and x-ray experiments were carried out using angle dispersive technique by combining synchrotron radiation and imaging plate detector. Distortion of the B1 structured phase into hexagonal unit cell was observed from 25-40 GPa, which continues to increase up to 90 GPa. At around 90 GPa, discontinuous change of the diffraction was observed. This new phase cannot be explained by a simple B2 structure and the analysis of this phase is in progress. This high pressure phase has metallic appearance, which reverses to transparent MnO on release of pressure.

  15. Compression stockings

    Science.gov (United States)

    Call your health insurance or prescription plan: Find out if they pay for compression stockings. Ask if your durable medical equipment benefit pays for compression stockings. Get a prescription from your doctor. Find a medical equipment store where they can ...

  16. Accuracy of progress ratios determined from experience curves: the case of photovoltaic technology development

    OpenAIRE

    van Sark, W.G.J.H.M.; Alsema, E.A.; Junginger, H.M.; de Moor, H.H.C.; Schaeffer, G.J.

    2008-01-01

    Learning curves are extensively used in policy and scenario studies. Progress ratios (PRs) are derived from historical data and are used for forecasting cost development of many technologies, including photovoltaics (PV). Forecasts are highly sensitive to uncertainties in the PR. A PR usually is determined together with the coefficient of determination R2, which should approach unity for a good fit of the available data. Although the R2 is instructive, we recommend using the error in the PR d...

  17. ERGC: an efficient referential genome compression algorithm.

    Science.gov (United States)

    Saha, Subrata; Rajasekaran, Sanguthevar

    2015-11-01

    Genome sequencing has become faster and more affordable. Consequently, the number of available complete genomic sequences is increasing rapidly. As a result, the cost to store, process, analyze and transmit the data is becoming a bottleneck for research and future medical applications. So, the need for devising efficient data compression and data reduction techniques for biological sequencing data is growing by the day. Although there exists a number of standard data compression algorithms, they are not efficient in compressing biological data. These generic algorithms do not exploit some inherent properties of the sequencing data while compressing. To exploit statistical and information-theoretic properties of genomic sequences, we need specialized compression algorithms. Five different next-generation sequencing data compression problems have been identified and studied in the literature. We propose a novel algorithm for one of these problems known as reference-based genome compression. We have done extensive experiments using five real sequencing datasets. The results on real genomes show that our proposed algorithm is indeed competitive and performs better than the best known algorithms for this problem. It achieves compression ratios that are better than those of the currently best performing algorithms. The time to compress and decompress the whole genome is also very promising. The implementations are freely available for non-commercial purposes. They can be downloaded from http://engr.uconn.edu/∼rajasek/ERGC.zip. rajasek@engr.uconn.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Prospects for measuring the branching ratio of the rare B0s→μ+μ- decay with the ATLAS experiment

    International Nuclear Information System (INIS)

    Sipica, Valentin

    2011-09-01

    The Large Hadron Collider (LHC) located at the CERN laboratory in Geneva provides p-p collisions at a centre-of-mass energy of √(s)=7 TeV. The study of the rare B 0 s →μ + μ - decay is among the research topics of ATLAS, one of the main experiments at the LHC. This decay is highly suppressed in the Standard Model of particle physics and may give an indirect evidence for New Physics models. This PhD thesis investigates prospects for measuring the branching ratio of the B 0 s →μ + μ - decay with the ATLAS experiment. The analysis is based on Monte Carlo data, with p-p collisions generated at a centre-of-mass energy of √(s)=10 TeV. The strategy employed is to calculate the B 0 s →μ + μ - branching ratio relative to the branching ratio of the B + → J/ψ(μ + μ - )K + decay. The dominant background channel is the b anti b→μ + μ - X combinatorial background. True B 0 s →μ + μ - decay candidates are separated from the much larger amount of combinatorial background events using several discriminating quantities. Upper limits on the B 0 s → μ + μ - branching ratio are computed using a Bayesian and a frequentist method. The expected precision of the branching ratio measurement is estimated for different values of the integrated luminosity. An expected upper limit on the branching ratio is computed to BR(B 0 s →μ + μ - ) -8 at a 95% confidence level for 1 fb -1 . The precision of the ATLAS measurement of the branching ratio will reach a level compatible with the best current measurements with about 2-5 fb -1 of data.

  19. Joining strength performances of metal skin and CFRP core laminate structures realized by compression-curing process, with supporting experiments

    Science.gov (United States)

    Quagliato, Luca; Jang, Changsoon; Kim, Naksoo

    2018-05-01

    In the recent years, the trend of lightening vehicles and structures of every kind has become an ever-growing issue, both for university and industrial researchers. As demonstrated in previous authors' works, laminate structures made of metal skin (MS) and carbon fiber reinforced polymer (CFRP) core show high specific bending strength properties while granting considerable weight reduction but, so far, no investigations have been carried out on the hole sensitivity and joinability of these hybrid structures. In the present research work, the hole size sensitivity of MS-CFRP structure has been studied by means of uniaxial tensile test on 160mm (length), 25mm (width), 2.0mm (average thickness) specimens bored with Ø06mm, Ø9mm, and Ø12mm holes. The specimen thickness is composed of two metal skins of 0.4mm thickness each, 8×0.2mm CFRP stacked layers and two thin epoxy-based adhesive layers. The specimens have been manufactured by means of a compression-curing process in which the different materials are stacked and, thanks to die pressure and temperature, the curing process is completed in a relatively short time (15˜20 minutes). The specimens have been tested by means of simple tension test showing that, for the MS-CFRP material, the smaller the hole the smaller the maximum bearable load. Moreover, specimens with the same hole sizes have been bolted together with class 12 resistance bolts and tested by means of tensile test, allowing to determine the maximum transferable load between the two MS-CFRP plates. Aiming to prove the improvement in the specific transferable load, experiments on only-steel specimens with the same weight of the MS-CFRP ones and joined with the same method and bolts have been carried out, allowing to conclude that, for the 9mm hole bolted plates, the proposed material has a specific maximum transferable 27% higher than that of the steel composing their skins.

  20. Modelling for Fuel Optimal Control of a Variable Compression Engine

    OpenAIRE

    Nilsson, Ylva

    2007-01-01

    Variable compression engines are a mean to meet the demand on lower fuel consumption. A high compression ratio results in high engine efficiency, but also increases the knock tendency. On conventional engines with fixed compression ratio, knock is avoided by retarding the ignition angle. The variable compression engine offers an extra dimension in knock control, since both ignition angle and compression ratio can be adjusted. The central question is thus for what combination of compression ra...

  1. Progress towards Steady State at Low Aspect Ratio on the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Gates, D.A.; Menard, J.; Maingi, R.; Kaye, S.; Sabbagh, S.A.; Diem, S.; Wilson, J.R.; Bell, M.G.; Bell, R.E.; Ferron, J.; Fredrickson, E.D.; Kessel, C.E.; LeBlanc, B.P.; Levinton, F.; Manickam, J.; Mueller, D.; Raman, R.; Stevenson, T.; Stutman, D.; Taylor, G.; Tritz, K.; Yu, H.

    2007-01-01

    Modifications to the plasma control capabilities and poloidal field coils of the National Spherical Torus Experiment (NSTX) have enabled a significant enhancement in shaping capability which has led to the transient achievement of a record shape factor (S (triple b ond) q 95 (I p /aB t )) of ∼ 41 (MA m -1 T -1 ) simultaneous with a record plasma elongation of κ (triple b ond) b/a ∼ 3. This result was obtained using isoflux control and real-time equilibrium reconstruction. Achieving high shape factor together with tolerable divertor loading is an important result for future ST burning plasma experiments as exemplified by studies for future ST reactor concepts, as well as neutron producing devices, which rely on achieving high shape factors in order to achieve steady state operation while maintaining MHD stability. Statistical evidence is presented which demonstrates the expected correlation between increased shaping and improved plasma performance.

  2. Low concentration of a Gd-chelate increases the signal-to-noise ratio in fast pulsing BEST experiments

    Science.gov (United States)

    Sibille, Nathalie; Bellot, Gaëtan; Wang, Jing; Déméné, Hélène

    2012-11-01

    Despite numerous developments in the past few years that aim to increase the sensitivity of NMR multidimensional experiments, NMR spectroscopy still suffers from intrinsic low sensitivity. In this report, we show that the combination of two developments in the field, the Band-selective Excitation Short-Transient (BEST) experiment [Schanda et al., J. Am. Chem. Soc., 128 (2006) 9042] and the addition of the nonionic paramagnetic gadolinium chelate gadodiamide into NMR samples, enhances the signal-to-noise ratio. This effect is shown here for four different proteins, three globular and one unfolded, of molecular weights ranging from 6.5 kDa to 40 kDa, using 2D BEST HSQC and 3D BEST triple resonance sequences. Moreover, we show that the increase in signal-to-noise ratio provided by the gadodiamide is higher for peak resonances with lower than average intensity in BEST experiments. It is interesting to note that these residues are on average the weakest ones in those experiments. In this case, the gadodiamide-mediated increase can reach a value of 60% for low and 30% for high molecular weight proteins respectively. An investigation into the origin of this “paramagnetic gain” in BEST experiments is presented.

  3. Comparison of analysis and experiment for dynamics of low-contact-ratio spur gears

    Science.gov (United States)

    Oswald, Fred B.; Rebbechi, Brian; Zakrajsek, James J.; Townsend, Dennis P.; Lin, Hsiang Hsi

    1991-01-01

    Low-contact-ratio spur gears were tested in NASA gear-noise-rig to study gear dynamics including dynamic load, tooth bending stress, vibration, and noise. The experimental results were compared with a NASA gear dynamics code to validate the code as a design tool for predicting transmission vibration and noise. Analytical predictions and experimental data for gear-tooth dynamic loads and tooth-root bending stress were compared at 28 operating conditions. Strain gage data were used to compute the normal load between meshing teeth and the bending stress at the tooth root for direct comparison with the analysis. The computed and measured waveforms for dynamic load and stress were compared for several test conditions. These are very similar in shape, which means the analysis successfully simulates the physical behavior of the test gears. The predicted peak value of the dynamic load agrees with the measurement results within an average error of 4.9 percent except at low-torque, high-speed conditions. Predictions of peak dynamic root stress are generally within 10 to 15 percent of the measured values.

  4. The capability of professional- and lay-rescuers to estimate the chest compression-depth target: a short, randomized experiment.

    Science.gov (United States)

    van Tulder, Raphael; Laggner, Roberta; Kienbacher, Calvin; Schmid, Bernhard; Zajicek, Andreas; Haidvogel, Jochen; Sebald, Dieter; Laggner, Anton N; Herkner, Harald; Sterz, Fritz; Eisenburger, Philip

    2015-04-01

    In CPR, sufficient compression depth is essential. The American Heart Association ("at least 5cm", AHA-R) and the European Resuscitation Council ("at least 5cm, but not to exceed 6cm", ERC-R) recommendations differ, and both are hardly achieved. This study aims to investigate the effects of differing target depth instructions on compression depth performances of professional and lay-rescuers. 110 professional-rescuers and 110 lay-rescuers were randomized (1:1, 4 groups) to estimate the AHA-R or ERC-R on a paper sheet (given horizontal axis) using a pencil and to perform chest compressions according to AHA-R or ERC-R on a manikin. Distance estimation and compression depth were the outcome variables. Professional-rescuers estimated the distance according to AHA-R in 19/55 (34.5%) and to ERC-R in 20/55 (36.4%) cases (p=0.84). Professional-rescuers achieved correct compression depth according to AHA-R in 39/55 (70.9%) and to ERC-R in 36/55 (65.4%) cases (p=0.97). Lay-rescuers estimated the distance correctly according to AHA-R in 18/55 (32.7%) and to ERC-R in 20/55 (36.4%) cases (p=0.59). Lay-rescuers yielded correct compression depth according to AHA-R in 39/55 (70.9%) and to ERC-R in 26/55 (47.3%) cases (p=0.02). Professional and lay-rescuers have severe difficulties in correctly estimating distance on a sheet of paper. Professional-rescuers are able to yield AHA-R and ERC-R targets likewise. In lay-rescuers AHA-R was associated with significantly higher success rates. The inability to estimate distance could explain the failure to appropriately perform chest compressions. For teaching lay-rescuers, the AHA-R with no upper limit of compression depth might be preferable. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Experiments on a low aspect ratio wing at low Reynolds numbers

    Science.gov (United States)

    Morse, Daniel R.

    At the start of the 21st century much of the focus of aircraft design has been turned to unmanned aerial vehicles (UAVs) which generally operate at much lower speeds in higher risk areas than manned aircraft. One subset of UAVs are Micro Air Vehicles (MAVs) which usually are no larger than 20cm and rely on non-traditional shapes to generate lift at very low velocities. This purpose of this work is to describe, in detail with experimental methods, the flow field around a low aspect ratio wing operating at low Reynolds numbers and at high angles of attack. Quantitative measurements are obtained by Three Component Time Resolved Particle Image Velocimetry (3C TR PIV) which describe the mean and turbulent flow field. This research focuses on the leading edge separation zone and the vortex shedding process which occurs at the leading edge. Streamwise wing tip vortices which dominate the lift characteristics are described with flow visualization and 3C TR PIV measurements. Turbulent Kinetic Energy (TKE) is described at the leading edge over several angles of attack. Turbulent Reynolds stresses in all three directions are described over the wing span and several Reynolds numbers. Two primary cyclic processes are observed within the flow field; one low frequency oscillation in the separated region and one high frequency event associated with leading edge vortex formation and convection. Two length scales are proposed and are shown to match well with each other, one based on leading edge vortex shedding frequency and convective velocity and the other based on mean vortex separation distance. A new method of rendering velocity frequency content over large data sets is proposed and used to illustrate the different frequencies observed at the leading edge.

  6. Gmz: a Gml Compression Model for Webgis

    Science.gov (United States)

    Khandelwal, A.; Rajan, K. S.

    2017-09-01

    Geography markup language (GML) is an XML specification for expressing geographical features. Defined by Open Geospatial Consortium (OGC), it is widely used for storage and transmission of maps over the Internet. XML schemas provide the convenience to define custom features profiles in GML for specific needs as seen in widely popular cityGML, simple features profile, coverage, etc. Simple features profile (SFP) is a simpler subset of GML profile with support for point, line and polygon geometries. SFP has been constructed to make sure it covers most commonly used GML geometries. Web Feature Service (WFS) serves query results in SFP by default. But it falls short of being an ideal choice due to its high verbosity and size-heavy nature, which provides immense scope for compression. GMZ is a lossless compression model developed to work for SFP compliant GML files. Our experiments indicate GMZ achieves reasonably good compression ratios and can be useful in WebGIS based applications.

  7. Filling high aspect ratio trenches by superconformal chemical vapor deposition: Predictive modeling and experiment

    Science.gov (United States)

    Wang, Wenjiao B.; Abelson, John R.

    2014-11-01

    Complete filling of a deep recessed structure with a second material is a challenge in many areas of nanotechnology fabrication. A newly discovered superconformal coating method, applicable in chemical vapor deposition systems that utilize a precursor in combination with a co-reactant, can solve this problem. However, filling is a dynamic process in which the trench progressively narrows and the aspect ratio (AR) increases. This reduces species diffusion within the trench and may drive the component partial pressures out of the regime for superconformal coating. We therefore derive two theoretical models that can predict the possibility for filling. First, we recast the diffusion-reaction equation for the case of a sidewall with variable taper angle. This affords a definition of effective AR, which is larger than the nominal AR due to the reduced species transport. We then derive the coating profile, both for superconformal and for conformal coating. The critical (most difficult) step in the filling process occurs when the sidewalls merge at the bottom of the trench to form the V shape. Experimentally, for the Mg(DMADB)2/H2O system and a starting AR = 9, this model predicts that complete filling will not be possible, whereas experimentally we do obtain complete filling. We then hypothesize that glancing-angle, long-range transport of species may be responsible for the better than predicted filling. To account for the variable range of species transport, we construct a ballistic transport model. This incorporates the incident flux from outside the structure, cosine law re-emission from surfaces, and line-of-sight transport between internal surfaces. We cast the transport probability between all positions within the trench into a matrix that represents the redistribution of flux after one cycle of collisions. Matrix manipulation then affords a computationally efficient means to determine the steady-state flux distribution and growth rate for a given taper angle. The

  8. Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments

    NARCIS (Netherlands)

    Chen, C.Q.; Pei, Y.T.; Hosson, J.T.M. De

    Quantitative bending and compression tests on micropillars made of two different amorphous alloys, with tip diameters ranging from 93 to 645 rim, are performed in situ in a transmission electron microscope (TEM). Under microcompression each pillar shows an intermittent plastic flow accommodated by

  9. Intra-pulse laser absorption sensor with cavity enhancement for oxidation experiments in a rapid compression machine

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2018-01-01

    A sensor based on a mid-IR pulsed quantum cascade laser (QCL) and off-axis cavity enhanced absorption spectroscopy (OA-CEAS) has been developed for highly sensitive concentration measurements of carbon monoxide (CO) in a rapid compression machine

  10. The co-evolution of alternative fuel infrastructure and vehicles. A study of the experience of Argentina with compressed natural gas

    International Nuclear Information System (INIS)

    Collantes, Gustavo; Melaina, Marc W.

    2011-01-01

    In a quest for strategic and environmental benefits, the developed countries have been trying for many years to increase the share of alternative fuels in their transportation fuel mixes. They have met very little success though. In this paper, we examine the experience of Argentina with compressed natural gas. We conducted interviews with a wide range of stakeholders and analyzed econometrically data collected in Argentina to investigate the factors, economic, political, and others that determined the high rate of adoption of this fuel. A central objective of this research was to identify lessons that could be useful to developed countries in their efforts to deploy alternative fuel vehicles. We find that fuel price regulation was a significant determinant of the adoption of compressed natural gas, while, contrary to expectations, government financing of refueling infrastructure was minimal. (author)

  11. The influence of He/dpa ratio and displacement rate on microstructural evolution: a comparison of theory and experiment

    International Nuclear Information System (INIS)

    Katoh, Yutai; Stoller, Roger E.; Kohno, Yutaka; Kohyama, Akira

    1994-01-01

    A kinetic model was developed to investigate the influence of the displacement rate and helium generation rate on microstructural evolution in austenitic stainless steels. The model integrates the rate equations describing the evolution of point defects, small point defect clusters, helium-vacancy clusters, and the larger cavity size distribution that is responsible for observable swelling. Cavity (bubble) nucleation is accounted for by the helium-vacancy cluster evolution, while void formation occurs when bubbles grow beyond a critical size in the larger cavity distribution. A series of ion irradiation experiments were used to both calibrate the model and to provide a comparison between model predictions and experimental observations. The experiments involved single and dual-beam irradiations of solution annealed AISI-316 stainless steel at 873 K. The displacement rates were in the range of 2x10 -3 to 1x10 -2 dpa/s and the helium-to-dpa ratios were in the range of 0 to 50 appm He/dpa. The maximum displacement dose was 25 dpa. The experiments revealed a significant effect of helium on both the dislocation structure and the cavity distribution. The model predictions of helium effects over a broad range of He/dpa ratios and displacement rates were consistent with experimental observations. ((orig.))

  12. Compressing Data Cube in Parallel OLAP Systems

    Directory of Open Access Journals (Sweden)

    Frank Dehne

    2007-03-01

    Full Text Available This paper proposes an efficient algorithm to compress the cubes in the progress of the parallel data cube generation. This low overhead compression mechanism provides block-by-block and record-by-record compression by using tuple difference coding techniques, thereby maximizing the compression ratio and minimizing the decompression penalty at run-time. The experimental results demonstrate that the typical compression ratio is about 30:1 without sacrificing running time. This paper also demonstrates that the compression method is suitable for Hilbert Space Filling Curve, a mechanism widely used in multi-dimensional indexing.

  13. Evaluation of a new image compression technique

    International Nuclear Information System (INIS)

    Algra, P.R.; Kroon, H.M.; Noordveld, R.B.; DeValk, J.P.J.; Seeley, G.W.; Westerink, P.H.

    1988-01-01

    The authors present the evaluation of a new image compression technique, subband coding using vector quantization, on 44 CT examinations of the upper abdomen. Three independent radiologists reviewed the original images and compressed versions. The compression ratios used were 16:1 and 20:1. Receiver operating characteristic analysis showed no difference in the diagnostic contents between originals and their compressed versions. Subjective visibility of anatomic structures was equal. Except for a few 20:1 compressed images, the observers could not distinguish compressed versions from original images. They conclude that subband coding using vector quantization is a valuable method for data compression in CT scans of the abdomen

  14. Performance of the 10-kV, 5-MA pulsed-power system for the FRX-C compression experiment

    International Nuclear Information System (INIS)

    Rej, D.J.; Waganaar, W.J.

    1991-01-01

    Performance data are presented for the 10-kV, 5-MA, 1.5-MJ pulsed-power system developed for the Los Alamos magnetic fusion facility FRX-C. This system energizes a low-inductance magnet for the high-power, compression heating of compact toroid plasmas. An ignitron-switched, 20-mF, 10-kV, 4-MA capacitor bank is discharged to produce the main compression field, while an inductively-isolated, 10-mF, 10-kV, 1-MA bank generates an initial magnetic field to accept the translated plasma. To date, the complete system has successfully operated for two years and approximately 2000 high-power discharges. Component performance during typical and fault-mode operation is reviewed. 5 refs., 5 figs

  15. First test experiment to produce the slowed-down RI beam with the momentum-compression mode at RIBF

    Energy Technology Data Exchange (ETDEWEB)

    Sumikama, T., E-mail: sumikama@ribf.riken.jp [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Ahn, D.S.; Fukuda, N.; Inabe, N.; Kubo, T.; Shimizu, Y.; Suzuki, H.; Takeda, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aoi, N. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Beaumel, D. [Institut de Physique Nucléaire d’Orsay (IPNO), CNRS/IN2P3, 91405 Orsay (France); Hasegawa, K. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Ideguchi, E. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Imai, N. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0298 (Japan); Kobayashi, T. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Matsushita, M.; Michimasa, S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0298 (Japan); Otsu, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shimoura, S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0298 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)

    2016-06-01

    The {sup 82}Ge beam has been produced by the in-flight fission reaction of the {sup 238}U primary beam with 345 MeV/u at the RIKEN RI beam factory, and slowed down to about 15 MeV/u using the energy degraders. The momentum-compression mode was applied to the second stage of the BigRIPS separator to reduce the momentum spread. The energy was successfully reduced down to 13 ± 2.5 MeV/u as expected. The focus was not optimized at the end of the second stage, therefore the beam size was larger than the expectation. The transmission of the second stage was half of the simulated value mainly due to out of focus. The two-stage separation worked very well for the slowed-down beam with the momentum-compression mode.

  16. Image splitting and remapping method for radiological image compression

    Science.gov (United States)

    Lo, Shih-Chung B.; Shen, Ellen L.; Mun, Seong K.

    1990-07-01

    A new decomposition method using image splitting and gray-level remapping has been proposed for image compression, particularly for images with high contrast resolution. The effects of this method are especially evident in our radiological image compression study. In our experiments, we tested the impact of this decomposition method on image compression by employing it with two coding techniques on a set of clinically used CT images and several laser film digitized chest radiographs. One of the compression techniques used was full-frame bit-allocation in the discrete cosine transform domain, which has been proven to be an effective technique for radiological image compression. The other compression technique used was vector quantization with pruned tree-structured encoding, which through recent research has also been found to produce a low mean-square-error and a high compression ratio. The parameters we used in this study were mean-square-error and the bit rate required for the compressed file. In addition to these parameters, the difference between the original and reconstructed images will be presented so that the specific artifacts generated by both techniques can be discerned by visual perception.

  17. Compressive laser ranging.

    Science.gov (United States)

    Babbitt, Wm Randall; Barber, Zeb W; Renner, Christoffer

    2011-12-15

    Compressive sampling has been previously proposed as a technique for sampling radar returns and determining sparse range profiles with a reduced number of measurements compared to conventional techniques. By employing modulation on both transmission and reception, compressive sensing in ranging is extended to the direct measurement of range profiles without intermediate measurement of the return waveform. This compressive ranging approach enables the use of pseudorandom binary transmit waveforms and return modulation, along with low-bandwidth optical detectors to yield high-resolution ranging information. A proof-of-concept experiment is presented. With currently available compact, off-the-shelf electronics and photonics, such as high data rate binary pattern generators and high-bandwidth digital optical modulators, compressive laser ranging can readily achieve subcentimeter resolution in a compact, lightweight package.

  18. Conditions for minimization of halo particle production during transverse compression of intense ion charge bunches in the Paul Trap Simulator Experiment (PTSX)

    International Nuclear Information System (INIS)

    Gilson, Erik P.; Chung, Moses; Davidson, Ronald C.; Dorf, Mikhail; Efthimion, Philip C.; Grote, David P.; Majeski, Richard; Startsev, Edward A.

    2007-01-01

    The Paul Trap Simulator Experiment (PTSX) is a compact laboratory Paul trap that simulates propagation of a long, thin charged-particle bunch coasting through a multi-kilometer-long magnetic alternating-gradient (AG) transport system by putting the physicist in the frame-of-reference of the beam. The transverse dynamics of particles in both systems are described by the same sets of equations-including all nonlinear space-charge effects. The time-dependent quadrupolar voltages applied to the PTSX confinement electrodes correspond to the axially dependent magnetic fields applied in the AG system. This paper presents the results of experiments in which the amplitude of the applied confining voltage is changed over the course of the experiment in order to transversely compress a beam with an initial depressed tune ν/ν 0 ∼0.9. Both instantaneous and smooth changes are considered. Particular emphasis is placed on determining the conditions that minimize the emittance growth and, generally, the number of particles that are found at large radius (so-called halo particles) after the beam compression. The experimental data are also compared with the results of particle-in-cell (PIC) simulations performed with the WARP code

  19. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. S.; Marinak, M. M.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-02-15

    The recently completed National Ignition Campaign (NIC) on the National Ignition Facility (NIF) showed significant discrepancies between post-shot simulations of implosion performance and experimentally measured performance, particularly in thermonuclear yield. This discrepancy between simulation and observation persisted despite concerted efforts to include all of the known sources of performance degradation within a reasonable two-dimensional (2-D), and even three-dimensional (3-D), simulation model, e.g., using measured surface imperfections and radiation drives adjusted to reproduce observed implosion trajectories [Clark et al., Phys. Plasmas 20, 056318 (2013)]. Since the completion of the NIC, several effects have been identified that could explain these discrepancies and that were omitted in previous simulations. In particular, there is now clear evidence for larger than anticipated long-wavelength radiation drive asymmetries and a larger than expected perturbation seeded by the capsule support tent. This paper describes an updated suite of one-dimensional (1-D), 2-D, and 3-D simulations that include the current best understanding of these effects identified since the NIC, as applied to a specific NIC shot. The relative importance of each effect on the experimental observables is compared. In combination, these effects reduce the simulated-to-measured yield ratio from 125:1 in 1-D to 1.5:1 in 3-D, as compared to 15:1 in the best 2-D simulations published previously. While the agreement with the experimental data remains imperfect, the comparison to the data is significantly improved and suggests that the largest sources for the previous discrepancies between simulation and experiment are now being included.

  20. The application of sparse linear prediction dictionary to compressive sensing in speech signals

    Directory of Open Access Journals (Sweden)

    YOU Hanxu

    2016-04-01

    Full Text Available Appling compressive sensing (CS,which theoretically guarantees that signal sampling and signal compression can be achieved simultaneously,into audio and speech signal processing is one of the most popular research topics in recent years.In this paper,K-SVD algorithm was employed to learn a sparse linear prediction dictionary regarding as the sparse basis of underlying speech signals.Compressed signals was obtained by applying random Gaussian matrix to sample original speech frames.Orthogonal matching pursuit (OMP and compressive sampling matching pursuit (CoSaMP were adopted to recovery original signals from compressed one.Numbers of experiments were carried out to investigate the impact of speech frames length,compression ratios,sparse basis and reconstruction algorithms on CS performance.Results show that sparse linear prediction dictionary can advance the performance of speech signals reconstruction compared with discrete cosine transform (DCT matrix.

  1. HVS-based medical image compression

    Energy Technology Data Exchange (ETDEWEB)

    Kai Xie [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China)]. E-mail: xie_kai2001@sjtu.edu.cn; Jie Yang [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China); Min Zhuyue [CREATIS-CNRS Research Unit 5515 and INSERM Unit 630, 69621 Villeurbanne (France); Liang Lixiao [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China)

    2005-07-01

    Introduction: With the promotion and application of digital imaging technology in the medical domain, the amount of medical images has grown rapidly. However, the commonly used compression methods cannot acquire satisfying results. Methods: In this paper, according to the existed and stated experiments and conclusions, the lifting step approach is used for wavelet decomposition. The physical and anatomic structure of human vision is combined and the contrast sensitivity function (CSF) is introduced as the main research issue in human vision system (HVS), and then the main designing points of HVS model are presented. On the basis of multi-resolution analyses of wavelet transform, the paper applies HVS including the CSF characteristics to the inner correlation-removed transform and quantization in image and proposes a new HVS-based medical image compression model. Results: The experiments are done on the medical images including computed tomography (CT) and magnetic resonance imaging (MRI). At the same bit rate, the performance of SPIHT, with respect to the PSNR metric, is significantly higher than that of our algorithm. But the visual quality of the SPIHT-compressed image is roughly the same as that of the image compressed with our approach. Our algorithm obtains the same visual quality at lower bit rates and the coding/decoding time is less than that of SPIHT. Conclusions: The results show that under common objective conditions, our compression algorithm can achieve better subjective visual quality, and performs better than that of SPIHT in the aspects of compression ratios and coding/decoding time.

  2. HVS-based medical image compression

    International Nuclear Information System (INIS)

    Kai Xie; Jie Yang; Min Zhuyue; Liang Lixiao

    2005-01-01

    Introduction: With the promotion and application of digital imaging technology in the medical domain, the amount of medical images has grown rapidly. However, the commonly used compression methods cannot acquire satisfying results. Methods: In this paper, according to the existed and stated experiments and conclusions, the lifting step approach is used for wavelet decomposition. The physical and anatomic structure of human vision is combined and the contrast sensitivity function (CSF) is introduced as the main research issue in human vision system (HVS), and then the main designing points of HVS model are presented. On the basis of multi-resolution analyses of wavelet transform, the paper applies HVS including the CSF characteristics to the inner correlation-removed transform and quantization in image and proposes a new HVS-based medical image compression model. Results: The experiments are done on the medical images including computed tomography (CT) and magnetic resonance imaging (MRI). At the same bit rate, the performance of SPIHT, with respect to the PSNR metric, is significantly higher than that of our algorithm. But the visual quality of the SPIHT-compressed image is roughly the same as that of the image compressed with our approach. Our algorithm obtains the same visual quality at lower bit rates and the coding/decoding time is less than that of SPIHT. Conclusions: The results show that under common objective conditions, our compression algorithm can achieve better subjective visual quality, and performs better than that of SPIHT in the aspects of compression ratios and coding/decoding time

  3. Measurement of charged kaon semileptonic decay branching fractions and their ratio at the NA-48/2 experiment at CERN

    CERN Document Server

    Dabrowski, Anne Evelyn

    2007-01-01

    Measurements of the ratios of charged kaon decay rates for Ke3/K2 π, K μ 3/K2 π and K μ 3/Ke3 are presented. These measurements are based on charged kaon decays collected in a dedicated run in 2003 by the NA48/2 experiment at CERN. The results obtained are Ke3/K2 π = 0.2470 ± 0.0009 ( stat ) ± 0.0004 ( syst ) and K μ 3/K2 π = 0.1637 ± 0.0006 ( stat ) ± 0.0003 ( syst ). Using the PDG average for the K2pi normalization mode, both values are found to be larger than the current values given by the Particle Data Book and lead to a larger magnitude of the V us parameter in the Cabibbo-Kobayashi-Maskawa (CKM) matrix than previously accepted. When combined with the latest Particle Data Book value of | V ud |, | V us | is in agreement with unitarity of the CKM matrix. A new measured value of the ratio of the semileptonic decay rates, K μ 3/Ke3 = 0.663 ± 0.003(stat) ± 0.001(syst) is compared to semi-empirical predictions based on the latest form factor measurements.

  4. FRESCO: Referential compression of highly similar sequences.

    Science.gov (United States)

    Wandelt, Sebastian; Leser, Ulf

    2013-01-01

    In many applications, sets of similar texts or sequences are of high importance. Prominent examples are revision histories of documents or genomic sequences. Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever-increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. In this paper, we propose a general open-source framework to compress large amounts of biological sequence data called Framework for REferential Sequence COmpression (FRESCO). Our basic compression algorithm is shown to be one to two orders of magnitudes faster than comparable related work, while achieving similar compression ratios. We also propose several techniques to further increase compression ratios, while still retaining the advantage in speed: 1) selecting a good reference sequence; and 2) rewriting a reference sequence to allow for better compression. In addition,we propose a new way of further boosting the compression ratios by applying referential compression to already referentially compressed files (second-order compression). This technique allows for compression ratios way beyond state of the art, for instance,4,000:1 and higher for human genomes. We evaluate our algorithms on a large data set from three different species (more than 1,000 genomes, more than 3 TB) and on a collection of versions of Wikipedia pages. Our results show that real-time compression of highly similar sequences at high compression ratios is possible on modern hardware.

  5. High pressure in situ X-ray diffraction study of MnO to 137 GPa and comparison with shock compression experiment

    Science.gov (United States)

    Yagi, T.; Kondo, T.; Syono, Y.

    1998-07-01

    In order to clarify the nature of the phase transformation in MnO observed at around 90 GPa by shock compression experiment, high pressure in situ X-ray observations were carried out up to 137 GPa. Powdered sample was directly compressed in Mao-Bell type diamond anvil cell and X-ray experiments were carried out using angle dispersive technique by combining synchrotron radiation and imaging plate detector. Distortion of the B1 structured phase was observed above about 40 GPa, which continues to increase up to 90 GPa. Two discontinuous changes of the diffraction profiles were observed at around 90 GPa and 120 GPa. The nature of the intermediate phase between 90 GPa and 120 GPa is not clear yet. It is neither cesium chloride (B2) nor nickel arsenide (B8) structure. On the other hand, the diffraction profile above 120 GPa can be reasonably well explained by the B8 structure. High pressure phases above 90 GPa have metallic luster and all the transformations are reversible on release of pressure.

  6. Subjective evaluation of compressed image quality

    Science.gov (United States)

    Lee, Heesub; Rowberg, Alan H.; Frank, Mark S.; Choi, Hyung-Sik; Kim, Yongmin

    1992-05-01

    Lossy data compression generates distortion or error on the reconstructed image and the distortion becomes visible as the compression ratio increases. Even at the same compression ratio, the distortion appears differently depending on the compression method used. Because of the nonlinearity of the human visual system and lossy data compression methods, we have evaluated subjectively the quality of medical images compressed with two different methods, an intraframe and interframe coding algorithms. The evaluated raw data were analyzed statistically to measure interrater reliability and reliability of an individual reader. Also, the analysis of variance was used to identify which compression method is better statistically, and from what compression ratio the quality of a compressed image is evaluated as poorer than that of the original. Nine x-ray CT head images from three patients were used as test cases. Six radiologists participated in reading the 99 images (some were duplicates) compressed at four different compression ratios, original, 5:1, 10:1, and 15:1. The six readers agree more than by chance alone and their agreement was statistically significant, but there were large variations among readers as well as within a reader. The displacement estimated interframe coding algorithm is significantly better in quality than that of the 2-D block DCT at significance level 0.05. Also, 10:1 compressed images with the interframe coding algorithm do not show any significant differences from the original at level 0.05.

  7. Effect of Kollidon VA®64 particle size and morphology as directly compressible excipient on tablet compression properties.

    Science.gov (United States)

    Chaudhary, R S; Patel, C; Sevak, V; Chan, M

    2018-01-01

    The study evaluates use of Kollidon VA ® 64 and a combination of Kollidon VA ® 64 with Kollidon VA ® 64 Fine as excipient in direct compression process of tablets. The combination of the two grades of material is evaluated for capping, lamination and excessive friability. Inter particulate void space is higher for such excipient due to the hollow structure of the Kollidon VA ® 64 particles. During tablet compression air remains trapped in the blend exhibiting poor compression with compromised physical properties of the tablets. Composition of Kollidon VA ® 64 and Kollidon VA ® 64 Fine is evaluated by design of experiment (DoE). A scanning electron microscopy (SEM) of two grades of Kollidon VA ® 64 exhibits morphological differences between coarse and fine grade. The tablet compression process is evaluated with a mix consisting of entirely Kollidon VA ® 64 and two mixes containing Kollidon VA ® 64 and Kollidon VA ® 64 Fine in ratio of 77:23 and 65:35. A statistical modeling on the results from the DoE trials resulted in the optimum composition for direct tablet compression as combination of Kollidon VA ® 64 and Kollidon VA ® 64 Fine in ratio of 77:23. This combination compressed with the predicted parameters based on the statistical modeling and applying main compression force between 5 and 15 kN, pre-compression force between 2 and 3 kN, feeder speed fixed at 25 rpm and compression range of 45-49 rpm produced tablets with hardness ranging between 19 and 21 kp, with no friability, capping, or lamination issue.

  8. Parallel Algorithm for Wireless Data Compression and Encryption

    Directory of Open Access Journals (Sweden)

    Qin Jiancheng

    2017-01-01

    Full Text Available As the wireless network has limited bandwidth and insecure shared media, the data compression and encryption are very useful for the broadcasting transportation of big data in IoT (Internet of Things. However, the traditional techniques of compression and encryption are neither competent nor efficient. In order to solve this problem, this paper presents a combined parallel algorithm named “CZ algorithm” which can compress and encrypt the big data efficiently. CZ algorithm uses a parallel pipeline, mixes the coding of compression and encryption, and supports the data window up to 1 TB (or larger. Moreover, CZ algorithm can encrypt the big data as a chaotic cryptosystem which will not decrease the compression speed. Meanwhile, a shareware named “ComZip” is developed based on CZ algorithm. The experiment results show that ComZip in 64 b system can get better compression ratio than WinRAR and 7-zip, and it can be faster than 7-zip in the big data compression. In addition, ComZip encrypts the big data without extra consumption of computing resources.

  9. Measurement of R{sub l} ratio by ALEPH experiment at LEP 1; Mesure du raport R{sub l} avec l`experience ALEPH a LEP 1

    Energy Technology Data Exchange (ETDEWEB)

    Tournefier, Edwige [Universite de Paris Sud, 91 - Orsay (France)

    1998-05-04

    The work described by this thesis ranges among the high precision measurements at LEP. The data recorded by the ALEPH experiment at energies near the mass of the gage Z boson were utilized. The accurate cross section measurements of e{sup +}e{sup -} {yields} ff-bar allows extracting the parameters describing the resonance of Z as well as to make a very accurate verification of the Standard Model. One of these parameters, the ratio R{sub l}, is defined by the ratio of the hadron and lepton widths of Z:R{sub l}{Gamma}{sub had}/{Gamma}{sub l}. For the measurement of R{sub l}, a global selection of di-lepton events without flavor discrimination (e, {mu} or {tau}) was developed. This selection allows tackling the problems raised by the migration of the events from one flavor to another, so that the systematic uncertainty of R{sub l} arising from the lepton channel is reduced at 0.08% while the statistical uncertainty is 0.15%. The value obtained through the measurements of cross section is R{sub l} = 20.735 {+-} 0.039. Given the R{sub l} dependence on {alpha}{sub s}, through the corrections introduced by the strong interaction, the value of {alpha}{sub s} can be extracted from this measurement of R{sub l}. One finds {alpha}{sub s} = 0.119 {+-} 0.007 59 refs., 73 figs., 58 tabs.

  10. On multigrid solution of the implicit equations of hydrodynamics. Experiments for the compressible Euler equations in general coordinates

    Science.gov (United States)

    Kifonidis, K.; Müller, E.

    2012-08-01

    Aims: We describe and study a family of new multigrid iterative solvers for the multidimensional, implicitly discretized equations of hydrodynamics. Schemes of this class are free of the Courant-Friedrichs-Lewy condition. They are intended for simulations in which widely differing wave propagation timescales are present. A preferred solver in this class is identified. Applications to some simple stiff test problems that are governed by the compressible Euler equations, are presented to evaluate the convergence behavior, and the stability properties of this solver. Algorithmic areas are determined where further work is required to make the method sufficiently efficient and robust for future application to difficult astrophysical flow problems. Methods: The basic equations are formulated and discretized on non-orthogonal, structured curvilinear meshes. Roe's approximate Riemann solver and a second-order accurate reconstruction scheme are used for spatial discretization. Implicit Runge-Kutta (ESDIRK) schemes are employed for temporal discretization. The resulting discrete equations are solved with a full-coarsening, non-linear multigrid method. Smoothing is performed with multistage-implicit smoothers. These are applied here to the time-dependent equations by means of dual time stepping. Results: For steady-state problems, our results show that the efficiency of the present approach is comparable to the best implicit solvers for conservative discretizations of the compressible Euler equations that can be found in the literature. The use of red-black as opposed to symmetric Gauss-Seidel iteration in the multistage-smoother is found to have only a minor impact on multigrid convergence. This should enable scalable parallelization without having to seriously compromise the method's algorithmic efficiency. For time-dependent test problems, our results reveal that the multigrid convergence rate degrades with increasing Courant numbers (i.e. time step sizes). Beyond a

  11. Temperature fluctuation caused by coaxial-jet flow: Experiments on the effect of the velocity ratio R ⩾ 1

    International Nuclear Information System (INIS)

    Cao, Qiong; Li, Hongyuan; Lu, Daogang; Chang, Mu

    2017-01-01

    Highlights: • The effect on temperature fluctuation from velocity ratio was studied by experiment. • The distribution of time-averaged temperatures is the axial-symmetry in R ⩾ 1. • The region of intense temperature fluctuation in R = 1 is different from that of R > 1. • The intensity of temperature fluctuation under R > 1 is weaker than that of R = 1. - Abstract: The temperature fluctuation appears in the core outlet region due to the different of the temperature and velocity of the coolant, which can cause thermal stresses and the high-cycle thermal fatigue on solid boundaries. So, it is necessary to analyze the characteristics of the temperature fluctuation. In the present study, a comparative experiment was performed to analyze the effect on the temperature fluctuation caused by the coaxial-jet flow from the inlet cold and hot fluid velocity ratios (R ⩾ 1). In the condition of R ⩾ 1, the distribution of the time-averaged temperature is the axial-symmetry. In the cold fluid field, the temperature field is divided into four parts, including the first steady region, linear region, nonlinear region and the second steady region along the axial direction, while that is lack of the first steady state region in the hot fluid field. In the condition of R = 1, due to the velocity of the cold fluid is equivalent to that of the hot fluid, the cold fluid flow can be severely disturbed by the hot flow. The intense temperature fluctuation mainly distributed in the annular region at bottom region and the circular region in the upper region. While, in the condition of R > 1, the inertia of the cold fluid is larger than that of the hot fluid. The hot fluid will attach itself to the periphery of the cold fluid. The intense temperature fluctuation distributed in the annular region between the cold and hot fluid and the periphery of the hot fluid. However, the intensity of temperature fluctuation under R > 1 is weaker than that of R = 1.

  12. Temperature fluctuation caused by coaxial-jet flow: Experiments on the effect of the velocity ratio R ⩾ 1

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qiong, E-mail: lian24111@163.com [Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206 (China); Li, Hongyuan, E-mail: lihongyuan@ncepu.edu.cn [School of Control and Computer Engineering, North China Electric Power University, Beijing 102206 (China); Lu, Daogang, E-mail: ludaogang@ncepu.edu.cn [Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206 (China); Chang, Mu, E-mail: changmu123@163.com [Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206 (China)

    2017-04-01

    Highlights: • The effect on temperature fluctuation from velocity ratio was studied by experiment. • The distribution of time-averaged temperatures is the axial-symmetry in R ⩾ 1. • The region of intense temperature fluctuation in R = 1 is different from that of R > 1. • The intensity of temperature fluctuation under R > 1 is weaker than that of R = 1. - Abstract: The temperature fluctuation appears in the core outlet region due to the different of the temperature and velocity of the coolant, which can cause thermal stresses and the high-cycle thermal fatigue on solid boundaries. So, it is necessary to analyze the characteristics of the temperature fluctuation. In the present study, a comparative experiment was performed to analyze the effect on the temperature fluctuation caused by the coaxial-jet flow from the inlet cold and hot fluid velocity ratios (R ⩾ 1). In the condition of R ⩾ 1, the distribution of the time-averaged temperature is the axial-symmetry. In the cold fluid field, the temperature field is divided into four parts, including the first steady region, linear region, nonlinear region and the second steady region along the axial direction, while that is lack of the first steady state region in the hot fluid field. In the condition of R = 1, due to the velocity of the cold fluid is equivalent to that of the hot fluid, the cold fluid flow can be severely disturbed by the hot flow. The intense temperature fluctuation mainly distributed in the annular region at bottom region and the circular region in the upper region. While, in the condition of R > 1, the inertia of the cold fluid is larger than that of the hot fluid. The hot fluid will attach itself to the periphery of the cold fluid. The intense temperature fluctuation distributed in the annular region between the cold and hot fluid and the periphery of the hot fluid. However, the intensity of temperature fluctuation under R > 1 is weaker than that of R = 1.

  13. Influence of Compression Ratio on High Load Performance and Knock Behavior for Gasoline Port-Fuel Injection, Natural Gas Direct Injection and Blended Operation in a Spark Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Pamminger, Michael; Sevik, James; Scarcelli, Riccardo; Wallner, Thomas; Hall, Carrie

    2017-03-28

    Natural Gas (NG) is an alternative fuel which has attracted a lot of attention recently, in particular in the US due to shale gas availability. The higher hydrogen-to-carbon (H/C) ratio, compared to gasoline, allows for decreasing carbon dioxide emissions throughout the entire engine map. Furthermore, the high knock resistance of NG allows increasing the efficiency at high engine loads compared to fuels with lower knock resistance. NG direct injection (DI) allows for fuel to be added after intake valve closing (IVC) resulting in an increase in power density compared to an injection before IVC. Steady-state engine tests were performed on a single-cylinder research engine equipped with gasoline (E10) port-fuel injection (PFI) and NG DI to allow for in-cylinder blending of both fuels. Knock investigations were performed at two discrete compression ratios (CR), 10.5 and 12.5. Operating conditions span mid-load, wide-open-throttle and boosted conditions, depending on the knock response of the fuel blend. Blended operation was performed using E10 gasoline and NG. An additional gasoline type fuel (E85) with higher knock resistance than E10 was used as a high-octane reference fuel, since the octane rating of E10-NG fuel blends is unknown. Spark timing was varied at different loads under stoichiometric conditions in order to study the knock response as well as the effects on performance and efficiency. As anticipated, results suggest that the knock resistance can be increased significantly by increasing the NG amount. Comparing the engine operation with the least knock resistant fuel, E10 PFI, and the fuel blend with the highest knock resistance, 75% NG DI, shows an increase in indicated mean effective pressure of about 9 bar at CR 12.5. The usage of reference fuels with known knock characteristics allowed an assessment of knock characteristic of intermediate E10-NG blend levels. Mathematical correlations were developed allowing characterizing the occurrence of knocking

  14. A New Algorithm for the On-Board Compression of Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Raúl Guerra

    2018-03-01

    Full Text Available Hyperspectral sensors are able to provide information that is useful for many different applications. However, the huge amounts of data collected by these sensors are not exempt of drawbacks, especially in remote sensing environments where the hyperspectral images are collected on-board satellites and need to be transferred to the earth’s surface. In this situation, an efficient compression of the hyperspectral images is mandatory in order to save bandwidth and storage space. Lossless compression algorithms have been traditionally preferred, in order to preserve all the information present in the hyperspectral cube for scientific purposes, despite their limited compression ratio. Nevertheless, the increment in the data-rate of the new-generation sensors is making more critical the necessity of obtaining higher compression ratios, making it necessary to use lossy compression techniques. A new transform-based lossy compression algorithm, namely Lossy Compression Algorithm for Hyperspectral Image Systems (HyperLCA, is proposed in this manuscript. This compressor has been developed for achieving high compression ratios with a good compression performance at a reasonable computational burden. An extensive amount of experiments have been performed in order to evaluate the goodness of the proposed HyperLCA compressor using different calibrated and uncalibrated hyperspectral images from the AVIRIS and Hyperion sensors. The results provided by the proposed HyperLCA compressor have been evaluated and compared against those produced by the most relevant state-of-the-art compression solutions. The theoretical and experimental evidence indicates that the proposed algorithm represents an excellent option for lossy compressing hyperspectral images, especially for applications where the available computational resources are limited, such as on-board scenarios.

  15. Design and performance of the 10-kV, 5-MA pulsed-power system for the FRX-C compression experiment

    International Nuclear Information System (INIS)

    Rej, D.J.; Barnes, G.A.; Gribble, R.J.; Hinckley, J.E.; Kreider, T.W.; Waganaar, W.J.

    1989-05-01

    The design and performance of the pulsed-power system for the FRX-C compact toroid compression heating experiment are reviewed. Two inductively-isolated, 10-kV capacitor banks (total energy = 1.5 MJ) are discharged through a common, low-inductance load. The 5-MA currents are switched and crowbarred with parallel arrays of size-D ignitrons. Power supplies are constructed in simple 25 and 50 kJ modules, each capable of supplying 100 kA at 10 kV. Non-negligible source inductance and the addition of high-power resistors maintain module isolation and protect the system during fault modes. 21 refs., 31 figs

  16. Speech Compression

    Directory of Open Access Journals (Sweden)

    Jerry D. Gibson

    2016-06-01

    Full Text Available Speech compression is a key technology underlying digital cellular communications, VoIP, voicemail, and voice response systems. We trace the evolution of speech coding based on the linear prediction model, highlight the key milestones in speech coding, and outline the structures of the most important speech coding standards. Current challenges, future research directions, fundamental limits on performance, and the critical open problem of speech coding for emergency first responders are all discussed.

  17. Evaluation of mammogram compression efficiency

    International Nuclear Information System (INIS)

    Przelaskowski, A.; Surowski, P.; Kukula, A.

    2005-01-01

    Lossy image coding significantly improves performance over lossless methods, but a reliable control of diagnostic accuracy regarding compressed images is necessary. The acceptable range of compression ratios must be safe with respect to as many objective criteria as possible. This study evaluates the compression efficiency of digital mammograms in both numerically lossless (reversible) and lossy (irreversible) manner. Effective compression methods and concepts were examined to increase archiving and telediagnosis performance. Lossless compression as a primary applicable tool for medical applications was verified on a set 131 mammograms. Moreover, nine radiologists participated in the evaluation of lossy compression of mammograms. Subjective rating of diagnostically important features brought a set of mean rates given for each test image. The lesion detection test resulted in binary decision data analyzed statistically. The radiologists rated and interpreted malignant and benign lesions, representative pathology symptoms, and other structures susceptible to compression distortions contained in 22 original and 62 reconstructed mammograms. Test mammograms were collected in two radiology centers for three years and then selected according to diagnostic content suitable for an evaluation of compression effects. Lossless compression efficiency of the tested coders varied, but CALIC, JPEG-LS, and SPIHT performed the best. The evaluation of lossy compression effects affecting detection ability was based on ROC-like analysis. Assuming a two-sided significance level of p=0.05, the null hypothesis that lower bit rate reconstructions are as useful for diagnosis as the originals was false in sensitivity tests with 0.04 bpp mammograms. However, verification of the same hypothesis with 0.1 bpp reconstructions suggested their acceptance. Moreover, the 1 bpp reconstructions were rated very similarly to the original mammograms in the diagnostic quality evaluation test, but the

  18. Compressing DNA sequence databases with coil

    Directory of Open Access Journals (Sweden)

    Hendy Michael D

    2008-05-01

    Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  19. An Enhanced Run-Length Encoding Compression Method for Telemetry Data

    Directory of Open Access Journals (Sweden)

    Shan Yanhu

    2017-09-01

    Full Text Available The telemetry data are essential in evaluating the performance of aircraft and diagnosing its failures. This work combines the oversampling technology with the run-length encoding compression algorithm with an error factor to further enhance the compression performance of telemetry data in a multichannel acquisition system. Compression of telemetry data is carried out with the use of FPGAs. In the experiments there are used pulse signals and vibration signals. The proposed method is compared with two existing methods. The experimental results indicate that the compression ratio, precision, and distortion degree of the telemetry data are improved significantly compared with those obtained by the existing methods. The implementation and measurement of the proposed telemetry data compression method show its effectiveness when used in a high-precision high-capacity multichannel acquisition system.

  20. Kinetic theory of plasma adiabatic major radius compression in tokamaks

    International Nuclear Information System (INIS)

    Gorelenkova, M.V.; Gorelenkov, N.N.; Azizov, E.A.; Romannikov, A.N.; Herrmann, H.W.

    1998-01-01

    In order to understand the individual charged particle behavior as well as plasma macroparameters (temperature, density, etc.) during the adiabatic major radius compression (R-compression) in a tokamak, a kinetic approach is used. The perpendicular electric field from the Ohm close-quote s law at zero resistivity is made use of in order to describe particle motion during the R-compression. Expressions for both passing and trapped particle energy and pitch angle change are derived for a plasma with high aspect ratio and circular magnetic surfaces. The particle behavior near the passing trapped boundary during the compression is studied to simulate the compression-induced collisional losses of alpha particles. Qualitative agreement is obtained with the alphas loss measurements in deuterium-tritium (D-T) experiments in the Tokamak Fusion Test Reactor (TFTR) [World Survey of Activities in Controlled Fusion Research [Nucl. Fusion special supplement (1991)] (International Atomic Energy Agency, Vienna, 1991)]. The plasma macroparameters evolution at the R-compression is calculated by solving the gyroaveraged drift kinetic equation. copyright 1998 American Institute of Physics

  1. Shock compression of glow discharge polymer (GDP): density functional theory (DFT) simulations and experiments on Sandia's Z-machine

    Science.gov (United States)

    Mattsson, Thomas R.; Cochrane, K. R.; Ao, T.; Lemke, R. W.; Flicker, D. G.; Schoff, M. E.; Blue, B. E.; Hamel, S.; Herrmann, M. C.

    2015-11-01

    Glow discharge polymer (GDP) is used extensively as capsule/ablation material in inertial confinement fusion (ICF) capsules. Accurate knowledge of the equation of state (EOS) under shock and release is particularly important for high-fidelity design, analysis, and optimization of ICF experiments since the capsule material is subject to several converging shocks as well as release towards the cryogenic fuel. We performed Density Functional Theory (DFT) based quantum molecular dynamics (QMD) simulations, to gain knowledge of the behavior of GDP - including the effect of changes in chemical composition. The shock pressures calculated from DFT are compared experimental data taken on magnetically launched flyer plate impact experiments on at Sandia's Z-machine. Large GDP samples were grown in a planar geometry to improve the sample quality and maintained in a nitrogen atmosphere following manufacturing, thus allowing for a direct comparison to the DFT/QMD simulations. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  2. Numerical experiments on thermal convection of highly compressible fluids with variable viscosity and thermal conductivity: Implications for mantle convection of super-Earths

    Science.gov (United States)

    Kameyama, Masanori; Yamamoto, Mayumi

    2018-01-01

    We conduct a series of numerical experiments of thermal convection of highly compressible fluids in a two-dimensional rectangular box, in order to study the mantle convection on super-Earths. The thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively, while the variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with 10 times the Earth's. From our experiments we identified a distinct regime of convecting flow patterns induced by the interplay between the adiabatic temperature change and the spatial variations in viscosity and thermal conductivity. That is, for the cases with strong temperature-dependent viscosity and depth-dependent thermal conductivity, a "deep stratosphere" of stable thermal stratification is formed at the base of the mantle, in addition to thick stagnant lids at their top surfaces. In the "deep stratosphere", the fluid motion is insignificant particularly in the vertical direction in spite of smallest viscosity owing to its strong dependence on temperature. Our finding may further imply that some of super-Earths which are lacking in mobile tectonic plates on their top surfaces may have "deep stratospheres" at the base of their mantles.

  3. An Algorithm for the Numerical Solution of the Pseudo Compressible Navier-stokes Equations Based on the Experimenting Fields Approach

    KAUST Repository

    Salama, Amgad; Sun, Shuyu; Amin, Mohamed F. El

    2015-01-01

    In this work, the experimenting fields approach is applied to the numerical solution of the Navier-Stokes equation for incompressible viscous flow. In this work, the solution is sought for both the pressure and velocity fields in the same time. Apparently, the correct velocity and pressure fields satisfy the governing equations and the boundary conditions. In this technique a set of predefined fields are introduced to the governing equations and the residues are calculated. The flow according to these fields will not satisfy the governing equations and the boundary conditions. However, the residues are used to construct the matrix of coefficients. Although, in this setup it seems trivial constructing the global matrix of coefficients, in other setups it can be quite involved. This technique separates the solver routine from the physics routines and therefore makes easy the coding and debugging procedures. We compare with few examples that demonstrate the capability of this technique.

  4. An Algorithm for the Numerical Solution of the Pseudo Compressible Navier-stokes Equations Based on the Experimenting Fields Approach

    KAUST Repository

    Salama, Amgad

    2015-06-01

    In this work, the experimenting fields approach is applied to the numerical solution of the Navier-Stokes equation for incompressible viscous flow. In this work, the solution is sought for both the pressure and velocity fields in the same time. Apparently, the correct velocity and pressure fields satisfy the governing equations and the boundary conditions. In this technique a set of predefined fields are introduced to the governing equations and the residues are calculated. The flow according to these fields will not satisfy the governing equations and the boundary conditions. However, the residues are used to construct the matrix of coefficients. Although, in this setup it seems trivial constructing the global matrix of coefficients, in other setups it can be quite involved. This technique separates the solver routine from the physics routines and therefore makes easy the coding and debugging procedures. We compare with few examples that demonstrate the capability of this technique.

  5. Compressed normalized block difference for object tracking

    Science.gov (United States)

    Gao, Yun; Zhang, Dengzhuo; Cai, Donglan; Zhou, Hao; Lan, Ge

    2018-04-01

    Feature extraction is very important for robust and real-time tracking. Compressive sensing provided a technical support for real-time feature extraction. However, all existing compressive tracking were based on compressed Haar-like feature, and how to compress many more excellent high-dimensional features is worth researching. In this paper, a novel compressed normalized block difference feature (CNBD) was proposed. For resisting noise effectively in a highdimensional normalized pixel difference feature (NPD), a normalized block difference feature extends two pixels in the original formula of NPD to two blocks. A CNBD feature can be obtained by compressing a normalized block difference feature based on compressive sensing theory, with the sparse random Gaussian matrix as the measurement matrix. The comparative experiments of 7 trackers on 20 challenging sequences showed that the tracker based on CNBD feature can perform better than other trackers, especially than FCT tracker based on compressed Haar-like feature, in terms of AUC, SR and Precision.

  6. A measurement of the branching ratio of K± →π±μ+μ- decays in the Hyper CP experiment

    International Nuclear Information System (INIS)

    Zyla, Piotr

    2001-01-01

    Large samples of hyperon and kaon decays were collected with the Hyper CP spectrometer during two fixed-target runs at Fermilab. Based on an analysis of 110 million K pm decays from the 1997 data sample we present a branching ratio for K pm right arrow pi pm mu+ mu-. This is the first observation of K- right arrow pi- mu+ mu- decay

  7. Amplifiers of Developmental and Negative Experiences in Organized Activities: Dosage, Motivation, Lead Roles, and Adult-Youth Ratios

    Science.gov (United States)

    Hansen, David M.; Larson, Reed W.

    2007-01-01

    This study evaluated four sets of factors hypothesized to amplify adolescents' developmental and negative experience in organized youth activities. A representative sample of 1,822 eleventh grade students from 19 high schools completed the computer-administered Youth Experience Survey. Findings indicated that amount of time, motivation, holding a…

  8. Component optimization of dairy manure vermicompost, straw, and peat in seedling compressed substrates using simplex-centroid design.

    Science.gov (United States)

    Yang, Longyuan; Cao, Hongliang; Yuan, Qiaoxia; Luoa, Shuai; Liu, Zhigang

    2018-03-01

    Vermicomposting is a promising method to disposal dairy manures, and the dairy manure vermicompost (DMV) to replace expensive peat is of high value in the application of seedling compressed substrates. In this research, three main components: DMV, straw, and peat, are conducted in the compressed substrates, and the effect of individual components and the corresponding optimal ratio for the seedling production are significant. To address these issues, the simplex-centroid experimental mixture design is employed, and the cucumber seedling experiment is conducted to evaluate the compressed substrates. Results demonstrated that the mechanical strength and physicochemical properties of compressed substrates for cucumber seedling can be well satisfied with suitable mixture ratio of the components. Moreover, DMV, straw, and peat) could be determined at 0.5917:0.1608:0.2475 when the weight coefficients of the three parameters (shoot length, root dry weight, and aboveground dry weight) were 1:1:1. For different purpose, the optimum ratio can be little changed on the basis of different weight coefficients. Compressed substrate is lump and has certain mechanical strength, produced by application of mechanical pressure to the seedling substrates. It will not harm seedlings when bedding out the seedlings, since the compressed substrate and seedling are bedded out together. However, there is no one using the vermicompost and agricultural waste components of compressed substrate for vegetable seedling production before. Thus, it is important to understand the effect of individual components to seedling production, and to determine the optimal ratio of components.

  9. Transmission and compression of an intense relativistic electron beam produced by a converging annular diode with return current feedback through the cathode. Pt. 2. The experiments

    International Nuclear Information System (INIS)

    Kelly, J.G.; Schuch, R.L.

    1976-02-01

    The complete results of the experiments with the converging annular diode within return current fedback through the cathode (Triax) are reported herein. The diode was designed to focus a relativistic high-current electron beam to a small focus. It did confirm the Triaxial theory detailed in Part I, and it did achieve a factor of 10 areal compression with 50% efficiency (which was below expectations). There were two principal reasons for this shortfall. First, the rapid diode plasma motion of 10 cm/μsec that was discovered necessitated the use of larger A-K gaps than expected and led to thicker beam sheets than are needed for good focusing. Second, the intrinsic angular spread of the electrons, even from the best cathode surfaces, introduced excessive angular momentum into the beam so that only a minor portion of the electrons could reach the axis. However, the yield of useful information about diode physics in general and about the influence of prepulse, the role of diode plasmas, the motion of energetic beams within conducting boundaries, diode emission properties, and diode diagnostic techniques in particle has had a significant and useful impact on the electron beam program at Sandia

  10. Using Regression Analysis To Determine If Faculty Salaries Are Overly Compressed. AIR 1997 Annual Forum Paper.

    Science.gov (United States)

    Toutkoushian, Robert K.

    This paper proposes a five-step process by which to analyze whether the salary ratio between junior and senior college faculty exhibits salary compression, a term used to describe an unusually small differential between faculty with different levels of experience. The procedure utilizes commonly used statistical techniques (multiple regression…

  11. Creep and creep recovery of concrete subjected to triaxial compressive stresses at elevated temperature

    International Nuclear Information System (INIS)

    Ohnuma, Hiroshi; Abe, Hirotoshi

    1979-01-01

    In order to design rationally the vessels made of prestressed concrete for nuclear power stations and to improve the accuracy of high temperature creep analysis, the Central Research Institute of Electric Power Industry had carried out the proving experiments with scale models. In order to improve the accuracy of analysis, it is important to grasp the creep behavior of the concrete subjected to triaxial compressive stresses at high temperature as the basic property of concrete, because actual prestressed concrete vessels are in such conditions. In this paper, the triaxial compression creep test at 60 deg. C using the concrete specimens with same mixing ratio as the scale models is reported. The compressive strength of the concrete at the age of 28 days was 406 kg/cm 2 , and the age of the concrete at the time of loading was 63 days. Creep and creep recovery were measured for 5 months and 2 months, respectively. The creep of concrete due to uniaxial compression increased with temperature rise, and the creep strain at 60 deg. C was 2.54 times as much as that at 20 deg. C. The effective Poisson's ratio in triaxial compression creep was 0.15 on the average, based on the creep strain due to uniaxial compression at 60 deg. C. The creep recovery rate in high temperature, triaxial compression creep was 33% on the average. (Kako, I.)

  12. Digital cinema video compression

    Science.gov (United States)

    Husak, Walter

    2003-05-01

    The Motion Picture Industry began a transition from film based distribution and projection to digital distribution and projection several years ago. Digital delivery and presentation offers the prospect to increase the quality of the theatrical experience for the audience, reduce distribution costs to the distributors, and create new business opportunities for the theater owners and the studios. Digital Cinema also presents an opportunity to provide increased flexibility and security of the movies for the content owners and the theater operators. Distribution of content via electronic means to theaters is unlike any of the traditional applications for video compression. The transition from film-based media to electronic media represents a paradigm shift in video compression techniques and applications that will be discussed in this paper.

  13. MP3 compression of Doppler ultrasound signals.

    Science.gov (United States)

    Poepping, Tamie L; Gill, Jeremy; Fenster, Aaron; Holdsworth, David W

    2003-01-01

    The effect of lossy, MP3 compression on spectral parameters derived from Doppler ultrasound (US) signals was investigated. Compression was tested on signals acquired from two sources: 1. phase quadrature and 2. stereo audio directional output. A total of 11, 10-s acquisitions of Doppler US signal were collected from each source at three sites in a flow phantom. Doppler signals were digitized at 44.1 kHz and compressed using four grades of MP3 compression (in kilobits per second, kbps; compression ratios in brackets): 1400 kbps (uncompressed), 128 kbps (11:1), 64 kbps (22:1) and 32 kbps (44:1). Doppler spectra were characterized by peak velocity, mean velocity, spectral width, integrated power and ratio of spectral power between negative and positive velocities. The results suggest that MP3 compression on digital Doppler US signals is feasible at 128 kbps, with a resulting 11:1 compression ratio, without compromising clinically relevant information. Higher compression ratios led to significant differences for both signal sources when compared with the uncompressed signals. Copyright 2003 World Federation for Ultrasound in Medicine & Biology

  14. DNABIT Compress – Genome compression algorithm

    OpenAIRE

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our ...

  15. A Streaming PCA VLSI Chip for Neural Data Compression.

    Science.gov (United States)

    Wu, Tong; Zhao, Wenfeng; Guo, Hongsun; Lim, Hubert H; Yang, Zhi

    2017-12-01

    Neural recording system miniaturization and integration with low-power wireless technologies require compressing neural data before transmission. Feature extraction is a procedure to represent data in a low-dimensional space; its integration into a recording chip can be an efficient approach to compress neural data. In this paper, we propose a streaming principal component analysis algorithm and its microchip implementation to compress multichannel local field potential (LFP) and spike data. The circuits have been designed in a 65-nm CMOS technology and occupy a silicon area of 0.06 mm. Throughout the experiments, the chip compresses LFPs by 10 at the expense of as low as 1% reconstruction errors and 144-nW/channel power consumption; for spikes, the achieved compression ratio is 25 with 8% reconstruction errors and 3.05-W/channel power consumption. In addition, the algorithm and its hardware architecture can swiftly adapt to nonstationary spiking activities, which enables efficient hardware sharing among multiple channels to support a high-channel count recorder.

  16. Formation and sustainment of a very low aspect ratio tokamak using coaxial helicity injection (the Helicity Injected Torus [HIT] experiment)

    International Nuclear Information System (INIS)

    Jarboe, T.R.; Nelson, B.A.

    1992-01-01

    In the paper we will detail the progress of the HIT experiment construction, including the following components: preliminary data and interpretation; diagnostic systems; vacuum vessel and pumping system; helicity source and power supplies; toroidal field coil and power supply; data acquisition system; collaboration with general atomics, with a brief summary given on each

  17. Determination of Mo- and Ca-isotope ratios in Ca100MoO4 crystal for AMoRE-I experiment

    Science.gov (United States)

    Karki, S.; Aryal, P.; Kim, H. J.; Kim, Y. D.; Park, H. K.

    2018-01-01

    The first phase of the AMoRE (Advanced Mo-based Rare process Experiment) is to search for neutrinoless double-beta decay of 100Mo with calcium molybdate (Ca100MoO4) crystals enriched in 100Mo and depleted in 48Ca using a cryogenic technique at Yangyang underground laboratory in Korea. It is important to know 100Mo- and 48Ca-isotope ratios in Ca100MoO4 crystal to estimate half-life of 100Mo decays and to 2 νββ background from 48Ca. We employed the ICP-MS (Inductive Coupled Plasma Mass Spectrometer) to measure 100Mo- and 48Ca-isotope ratios in Ca100MoO4 crystal. The measured results for 100Mo- and 48Ca-isotope ratios in the crystal are (94 . 6 ± 2 . 8) % and (0 . 00211 ± 0 . 00006) %, respectively, where errors are included both statistical and systematic uncertainties.

  18. Efficient transmission of compressed data for remote volume visualization.

    Science.gov (United States)

    Krishnan, Karthik; Marcellin, Michael W; Bilgin, Ali; Nadar, Mariappan S

    2006-09-01

    One of the goals of telemedicine is to enable remote visualization and browsing of medical volumes. There is a need to employ scalable compression schemes and efficient client-server models to obtain interactivity and an enhanced viewing experience. First, we present a scheme that uses JPEG2000 and JPIP (JPEG2000 Interactive Protocol) to transmit data in a multi-resolution and progressive fashion. The server exploits the spatial locality offered by the wavelet transform and packet indexing information to transmit, in so far as possible, compressed volume data relevant to the clients query. Once the client identifies its volume of interest (VOI), the volume is refined progressively within the VOI from an initial lossy to a final lossless representation. Contextual background information can also be made available having quality fading away from the VOI. Second, we present a prioritization that enables the client to progressively visualize scene content from a compressed file. In our specific example, the client is able to make requests to progressively receive data corresponding to any tissue type. The server is now capable of reordering the same compressed data file on the fly to serve data packets prioritized as per the client's request. Lastly, we describe the effect of compression parameters on compression ratio, decoding times and interactivity. We also present suggestions for optimizing JPEG2000 for remote volume visualization and volume browsing applications. The resulting system is ideally suited for client-server applications with the server maintaining the compressed volume data, to be browsed by a client with a low bandwidth constraint.

  19. Embedment of Chlorpheniramine Maleate in Directly Compressed ...

    African Journals Online (AJOL)

    chlorpheniramine maleate (CPM) from its matrix tablets prepared by direct compression. Methods: Different ratios of compritol and kollidon SR (containing 50 % matrix component) in 1:1, 1:2, ... Magnesium stearate and hydrochloric acid were.

  20. Compressed Sensing with Rank Deficient Dictionaries

    DEFF Research Database (Denmark)

    Hansen, Thomas Lundgaard; Johansen, Daniel Højrup; Jørgensen, Peter Bjørn

    2012-01-01

    In compressed sensing it is generally assumed that the dictionary matrix constitutes a (possibly overcomplete) basis of the signal space. In this paper we consider dictionaries that do not span the signal space, i.e. rank deficient dictionaries. We show that in this case the signal-to-noise ratio...... (SNR) in the compressed samples can be increased by selecting the rows of the measurement matrix from the column space of the dictionary. As an example application of compressed sensing with a rank deficient dictionary, we present a case study of compressed sensing applied to the Coarse Acquisition (C...

  1. Compressed sensing electron tomography

    International Nuclear Information System (INIS)

    Leary, Rowan; Saghi, Zineb; Midgley, Paul A.; Holland, Daniel J.

    2013-01-01

    The recent mathematical concept of compressed sensing (CS) asserts that a small number of well-chosen measurements can suffice to reconstruct signals that are amenable to sparse or compressible representation. In addition to powerful theoretical results, the principles of CS are being exploited increasingly across a range of experiments to yield substantial performance gains relative to conventional approaches. In this work we describe the application of CS to electron tomography (ET) reconstruction and demonstrate the efficacy of CS–ET with several example studies. Artefacts present in conventional ET reconstructions such as streaking, blurring of object boundaries and elongation are markedly reduced, and robust reconstruction is shown to be possible from far fewer projections than are normally used. The CS–ET approach enables more reliable quantitative analysis of the reconstructions as well as novel 3D studies from extremely limited data. - Highlights: • Compressed sensing (CS) theory and its application to electron tomography (ET) is described. • The practical implementation of CS–ET is outlined and its efficacy demonstrated with examples. • High fidelity tomographic reconstruction is possible from a small number of images. • The CS–ET reconstructions can be more reliably segmented and analysed quantitatively. • CS–ET is applicable to different image content by choice of an appropriate sparsifying transform

  2. Density and permeability of a loess soil: long-term organic matter effect and the response to compressive stress

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per

    2013-01-01

    to compressive stress, undisturbed soil cores were collected from a long-term fertilisation experiment in Bad Lauchstädt in Germany, including combinations of animal manure and mineral fertilisers. The cores were drained to -100 hPa matric potential and exposed to uniaxial confined compression (200k......Pa). Investigated indicators for compression resistance included compression index, precompression stress, and resistance and resilience indices based on measured soil physical properties (bulk density, air-filled porosity, air permeability, and void ratio). Soil resilience was assessed following exposure...... but the correlation was not significant. However, initial bulk density (ρbi) and initial gravimetric water content (wi) were significantly positively correlated to the indices of soil compression resistance, with the effect of ρbi being significantly stronger. Significant recovery of airfilled porosity and air...

  3. Analysis of d/p ratio in Au+Au collisions from the E866 experiment at the AGS

    International Nuclear Information System (INIS)

    Shea, Y.; Garcia-Solis, E.J.; Stanskas, P.J.

    1996-01-01

    High energy nucleus-nucleus collisions are a great interest as a means of creating a new state of matter. The transition of nuclear matter to quark matter is expected to result in a strongly interacting region that lives for a long time and expands to a large volume. In order to understand the properties of the collision region, it is important to gather information experimentally on the lifetime and thermodynamic attributes such as temperature, volume, density, and entropy of the collision region. Deuteron production by phase space coalescence is particularly interesting because it can be used as a probe in studying the space-time structure of the heavy ion collisions. In the hot and dense participant region, a proton and a neutron coalesce when their relative momentum is small. The deuteron density in momentum space is proportional to the proton density squared in momentum space at equal momenta per nucleon, assuming proton and neutron density to be identical. The motivation here is to study the properties of the coalesced deuterons formed in the participant region of Au-Au collisions at 11.6 GeV/c. The d/p ratio as a function of centrality is studied in hopes of gaining information about any change in the size of the participant zone which could lead to the effort of searching for the Quark-Gluon-Plasma at the AGS. The results shown here is very preliminary and the work is in progress

  4. SPECTRUM analysis of multispectral imagery in conjunction with wavelet/KLT data compression

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.N.; Brislawn, C.M.

    1993-12-01

    The data analysis program, SPECTRUM, is used for fusion, visualization, and classification of multi-spectral imagery. The raw data used in this study is Landsat Thematic Mapper (TM) 7-channel imagery, with 8 bits of dynamic range per channel. To facilitate data transmission and storage, a compression algorithm is proposed based on spatial wavelet transform coding and KLT decomposition of interchannel spectral vectors, followed by adaptive optimal multiband scalar quantization. The performance of SPECTRUM clustering and visualization is evaluated on compressed multispectral data. 8-bit visualizations of 56-bit data show little visible distortion at 50:1 compression and graceful degradation at higher compression ratios. Two TM images were processed in this experiment: a 1024 x 1024-pixel scene of the region surrounding the Chernobyl power plant, taken a few months before the reactor malfunction, and a 2048 x 2048 image of Moscow and surrounding countryside.

  5. Dataset on predictive compressive strength model for self-compacting concrete.

    Science.gov (United States)

    Ofuyatan, O M; Edeki, S O

    2018-04-01

    The determination of compressive strength is affected by many variables such as the water cement (WC) ratio, the superplasticizer (SP), the aggregate combination, and the binder combination. In this dataset article, 7, 28, and 90-day compressive strength models are derived using statistical analysis. The response surface methodology is used toinvestigate the effect of the parameters: Varying percentages of ash, cement, WC, and SP on hardened properties-compressive strengthat 7,28 and 90 days. Thelevels of independent parameters are determinedbased on preliminary experiments. The experimental values for compressive strengthat 7, 28 and 90 days and modulus of elasticity underdifferent treatment conditions are also discussed and presented.These dataset can effectively be used for modelling and prediction in concrete production settings.

  6. Block-Based Compressed Sensing for Neutron Radiation Image Using WDFB

    Directory of Open Access Journals (Sweden)

    Wei Jin

    2015-01-01

    Full Text Available An ideal compression method for neutron radiation image should have high compression ratio while keeping more details of the original image. Compressed sensing (CS, which can break through the restrictions of sampling theorem, is likely to offer an efficient compression scheme for the neutron radiation image. Combining wavelet transform with directional filter banks, a novel nonredundant multiscale geometry analysis transform named Wavelet Directional Filter Banks (WDFB is constructed and applied to represent neutron radiation image sparsely. Then, the block-based CS technique is introduced and a high performance CS scheme for neutron radiation image is proposed. By performing two-step iterative shrinkage algorithm the problem of L1 norm minimization is solved to reconstruct neutron radiation image from random measurements. The experiment results demonstrate that the scheme not only improves the quality of reconstructed image obviously but also retains more details of original image.

  7. Adiabatic compression of ion rings

    International Nuclear Information System (INIS)

    Larrabee, D.A.; Lovelace, R.V.

    1982-01-01

    A study has been made of the compression of collisionless ion rings in an increasing external magnetic field, B/sub e/ = zB/sub e/(t), by numerically implementing a previously developed kinetic theory of ring compression. The theory is general in that there is no limitation on the ring geometry or the compression ratio, lambdaequivalentB/sub e/ (final)/B/sub e/ (initial)> or =1. However, the motion of a single particle in an equilibrium is assumed to be completely characterized by its energy H and canonical angular momentum P/sub theta/ with the absence of a third constant of the motion. The present computational work assumes that plasma currents are negligible, as is appropriate for a low-temperature collisional plasma. For a variety of initial ring geometries and initial distribution functions (having a single value of P/sub theta/), it is found that the parameters for ''fat'', small aspect ratio rings follow general scaling laws over a large range of compression ratios, 1 3 : The ring radius varies as lambda/sup -1/2/; the average single particle energy as lambda/sup 0.72/; the root mean square energy spread as lambda/sup 1.1/; and the total current as lambda/sup 0.79/. The field reversal parameter is found to saturate at values typically between 2 and 3. For large compression ratios the current density is found to ''hollow out''. This hollowing tends to improve the interchange stability of an embedded low β plasma. The implications of these scaling laws for fusion reactor systems are discussed

  8. Golden Ratio

    Indian Academy of Sciences (India)

    Our attraction to another body increases if the body is symmetricaland in proportion. If a face or a structure is in proportion,we are more likely to notice it and find it beautiful.The universal ratio of beauty is the 'Golden Ratio', found inmany structures. This ratio comes from Fibonacci numbers.In this article, we explore this ...

  9. Golden Ratio

    Indian Academy of Sciences (India)

    Keywords. Fibonacci numbers, golden ratio, Sanskrit prosody, solar panel. Abstract. Our attraction to another body increases if the body is symmetricaland in proportion. If a face or a structure is in proportion,we are more likely to notice it and find it beautiful.The universal ratio of beauty is the 'Golden Ratio', found inmany ...

  10. Golden Ratio

    Indian Academy of Sciences (India)

    Our attraction to another body increases if the body is sym- metrical and in proportion. If a face or a structure is in pro- portion, we are more likely to notice it and find it beautiful. The universal ratio of beauty is the 'Golden Ratio', found in many structures. This ratio comes from Fibonacci numbers. In this article, we explore this ...

  11. Homogeneous Charge Compression Ignition Combustion of Dimethyl Ether

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr

    This thesis is based on experimental and numerical studies on the use of dimethyl ether (DME) in the homogeneous charge compression ignition (HCCI) combustion process. The first paper in this thesis was published in 2007 and describes HCCI combustion of pure DME in a small diesel engine. The tests...... were designed to investigate the effect of engine speed, compression ratio and equivalence ratio on the combustion timing and the engine performance. It was found that the required compression ratio depended on the equivalence ratio used. A lower equivalence ratio requires a higher compression ratio...... before the fuel is burned completely, due to lower in-cylinder temperatures and lower reaction rates. The study provided some insight in the importance of operating at the correct compression ratio, as well as the operational limitations and emission characteristics of HCCI combustion. HCCI combustion...

  12. Prospects for measuring the branching ratio of the rare B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -} decay with the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sipica, Valentin

    2011-09-15

    The Large Hadron Collider (LHC) located at the CERN laboratory in Geneva provides p-p collisions at a centre-of-mass energy of {radical}(s)=7 TeV. The study of the rare B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -} decay is among the research topics of ATLAS, one of the main experiments at the LHC. This decay is highly suppressed in the Standard Model of particle physics and may give an indirect evidence for New Physics models. This PhD thesis investigates prospects for measuring the branching ratio of the B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -} decay with the ATLAS experiment. The analysis is based on Monte Carlo data, with p-p collisions generated at a centre-of-mass energy of {radical}(s)=10 TeV. The strategy employed is to calculate the B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -} branching ratio relative to the branching ratio of the B{sup +}{yields} J/{psi}({mu}{sup +}{mu}{sup -})K{sup +} decay. The dominant background channel is the b anti b{yields}{mu}{sup +}{mu}{sup -}X combinatorial background. True B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -} decay candidates are separated from the much larger amount of combinatorial background events using several discriminating quantities. Upper limits on the B{sup 0}{sub s} {yields} {mu}{sup +}{mu}{sup -} branching ratio are computed using a Bayesian and a frequentist method. The expected precision of the branching ratio measurement is estimated for different values of the integrated luminosity. An expected upper limit on the branching ratio is computed to BR(B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -})<3.8 x 10{sup -8} at a 95% confidence level for 1 fb{sup -1}. The precision of the ATLAS measurement of the branching ratio will reach a level compatible with the best current measurements with about 2-5 fb{sup -1} of data.

  13. HVS scheme for DICOM image compression: Design and comparative performance evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, B. [Biomedical and Engineering Division, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu (India)]. E-mail: prabhakarb@iitm.ac.in; Reddy, M. Ramasubba [Biomedical and Engineering Division, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu (India)

    2007-07-15

    Advanced digital imaging technology in medical domain demands efficient and effective DICOM image compression for progressive image transmission and picture archival. Here a compression system, which incorporates sensitivities of HVS coded with SPIHT quantization, is discussed. The weighting factors derived from luminance CSF are used to transform the wavelet subband coefficients to reflect characteristics of HVS in best possible manner. Mannos et al. and Daly HVS models have been used and results are compared. To evaluate the performance, Eskicioglu chart metric is considered. Experiment is done on both Monochrome and Color Dicom images of MRI, CT, OT, and CR, natural and benchmark images. Reconstructed image through our technique showed improvement in visual quality and Eskicioglu chart metric at same compression ratios. Also the Daly HVS model based compression shows better performance perceptually and quantitatively when compared to Mannos et el. model. Further 'bior4.4' wavelet filter provides better results than 'db9' filter for this compression system. Results give strong evidence that under common boundary conditions; our technique achieves competitive visual quality, compression ratio and coding/decoding time, when compared with jpeg2000 (kakadu)

  14. Washout ratio of NaCl particles by raindrops, snowflakes and fog particles obtained using the large artificial climate experiment chamber at ACEF in IES

    International Nuclear Information System (INIS)

    Kawabata, Hitoshi; Kondo, Kunio; Hasegawa, Hidenao; Akata, Naofumi; Chikuchi, Yuki; Hisamatsu, Shun'ichi; Inaba, Jiro; Komagata, Yuuetsu

    2007-01-01

    Scavenging of NaCl particles by rainfall, snowfall and fog was examined in a large artificial climate experiment chamber in which the meteorological elements were controlled. The scavenging coefficient of Na by rainfall and snowfall were obtained using Na concentrations in air and precipitation. The washout ratio of Na by fog was also measured using Na concentrations in air and fog water. The scavenging coefficients by snowfall were found to be larger than those by rainfall, and showed that the removal efficiency of the former was higher than that of the latter. The coefficients by both rainfall and snowfall increased linearly with precipitation intensity. When the average diameters of fog droplets were the same, the washout ratio of Na by fog increased with fog liquid water content. On the other hand, when liquid water contents were the same, the washout ratio decreased with increasing average diameter of fog droplets. The washout ratio of Na by fog exponentially increased with the total surface area of fog droplets. (author)

  15. Compression of surface myoelectric signals using MP3 encoding.

    Science.gov (United States)

    Chan, Adrian D C

    2011-01-01

    The potential of MP3 compression of surface myoelectric signals is explored in this paper. MP3 compression is a perceptual-based encoder scheme, used traditionally to compress audio signals. The ubiquity of MP3 compression (e.g., portable consumer electronics and internet applications) makes it an attractive option for remote monitoring and telemedicine applications. The effects of muscle site and contraction type are examined at different MP3 encoding bitrates. Results demonstrate that MP3 compression is sensitive to the myoelectric signal bandwidth, with larger signal distortion associated with myoelectric signals that have higher bandwidths. Compared to other myoelectric signal compression techniques reported previously (embedded zero-tree wavelet compression and adaptive differential pulse code modulation), MP3 compression demonstrates superior performance (i.e., lower percent residual differences for the same compression ratios).

  16. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a

  17. Research on the compressive strength of basic magnesium salts and cyanide slag solidified body

    Science.gov (United States)

    Tu, Yubo; Han, Peiwei; Ye, Shufeng; Wei, Lianqi; Zhang, Xiaomeng; Fu, Guoyan; Yu, Bo

    2018-02-01

    The solidification of cyanide slag by using basic magnesium salts could reduce pollution and protect the environment. Experiments were carried out to investigate the effects of age, mixing amount of cyanide slag, water cement ratio and molar ratio of MgO to MgSO4 on the compressive strength of basic magnesium salts and cyanide slag solidified body in the present paper. It was found that compressive strength of solidified body increased with the increase of age, and decreased with the increase of mixing amount of cyanide slag and water cement ratio. The molar ratio of MgO to MgSO4 should be controlled in the range from 9 to 11 when the mixing amount of cyanide slag was larger than 80 mass%.

  18. Sex ratios

    OpenAIRE

    West, Stuart A; Reece, S E; Sheldon, Ben C

    2002-01-01

    Sex ratio theory attempts to explain variation at all levels (species, population, individual, brood) in the proportion of offspring that are male (the sex ratio). In many cases this work has been extremely successful, providing qualitative and even quantitative explanations of sex ratio variation. However, this is not always the situation, and one of the greatest remaining problems is explaining broad taxonomic patterns. Specifically, why do different organisms show so ...

  19. A New Approach for Fingerprint Image Compression

    Energy Technology Data Exchange (ETDEWEB)

    Mazieres, Bertrand

    1997-12-01

    The FBI has been collecting fingerprint cards since 1924 and now has over 200 million of them. Digitized with 8 bits of grayscale resolution at 500 dots per inch, it means 2000 terabytes of information. Also, without any compression, transmitting a 10 Mb card over a 9600 baud connection will need 3 hours. Hence we need a compression and a compression as close to lossless as possible: all fingerprint details must be kept. A lossless compression usually do not give a better compression ratio than 2:1, which is not sufficient. Compressing these images with the JPEG standard leads to artefacts which appear even at low compression rates. Therefore the FBI has chosen in 1993 a scheme of compression based on a wavelet transform, followed by a scalar quantization and an entropy coding : the so-called WSQ. This scheme allows to achieve compression ratios of 20:1 without any perceptible loss of quality. The publication of the FBI specifies a decoder, which means that many parameters can be changed in the encoding process: the type of analysis/reconstruction filters, the way the bit allocation is made, the number of Huffman tables used for the entropy coding. The first encoder used 9/7 filters for the wavelet transform and did the bit allocation using a high-rate bit assumption. Since the transform is made into 64 subbands, quite a lot of bands receive only a few bits even at an archival quality compression rate of 0.75 bit/pixel. Thus, after a brief overview of the standard, we will discuss a new approach for the bit-allocation that seems to make more sense where theory is concerned. Then we will talk about some implementation aspects, particularly for the new entropy coder and the features that allow other applications than fingerprint image compression. Finally, we will compare the performances of the new encoder to those of the first encoder.

  20. Tokamak plasma variations under rapid compression

    International Nuclear Information System (INIS)

    Holmes, J.A.; Peng, Y.K.M.; Lynch, S.J.

    1980-04-01

    Changes in plasmas undergoing large, rapid compressions are examined numerically over the following range of aspect ratios A:3 greater than or equal to A greater than or equal to 1.5 for major radius compressions of circular, elliptical, and D-shaped cross sections; and 3 less than or equal to A less than or equal to 6 for minor radius compressions of circular and D-shaped cross sections. The numerical approach combines the computation of fixed boundary MHD equilibria with single-fluid, flux-surface-averaged energy balance, particle balance, and magnetic flux diffusion equations. It is found that the dependences of plasma current I/sub p/ and poloidal beta anti β/sub p/ on the compression ratio C differ significantly in major radius compressions from those proposed by Furth and Yoshikawa. The present interpretation is that compression to small A dramatically increases the plasma current, which lowers anti β/sub p/ and makes the plasma more paramagnetic. Despite large values of toroidal beta anti β/sub T/ (greater than or equal to 30% with q/sub axis/ approx. = 1, q/sub edge/ approx. = 3), this tends to concentrate more toroidal flux near the magnetic axis, which means that a reduced minor radius is required to preserve the continuity of the toroidal flux function F at the plasma edge. Minor radius compressions to large aspect ratio agree well with the Furth-Yoshikawa scaling laws

  1. Comparing biological networks via graph compression

    Directory of Open Access Journals (Sweden)

    Hayashida Morihiro

    2010-09-01

    Full Text Available Abstract Background Comparison of various kinds of biological data is one of the main problems in bioinformatics and systems biology. Data compression methods have been applied to comparison of large sequence data and protein structure data. Since it is still difficult to compare global structures of large biological networks, it is reasonable to try to apply data compression methods to comparison of biological networks. In existing compression methods, the uniqueness of compression results is not guaranteed because there is some ambiguity in selection of overlapping edges. Results This paper proposes novel efficient methods, CompressEdge and CompressVertices, for comparing large biological networks. In the proposed methods, an original network structure is compressed by iteratively contracting identical edges and sets of connected edges. Then, the similarity of two networks is measured by a compression ratio of the concatenated networks. The proposed methods are applied to comparison of metabolic networks of several organisms, H. sapiens, M. musculus, A. thaliana, D. melanogaster, C. elegans, E. coli, S. cerevisiae, and B. subtilis, and are compared with an existing method. These results suggest that our methods can efficiently measure the similarities between metabolic networks. Conclusions Our proposed algorithms, which compress node-labeled networks, are useful for measuring the similarity of large biological networks.

  2. Harmonic analysis in integrated energy system based on compressed sensing

    International Nuclear Information System (INIS)

    Yang, Ting; Pen, Haibo; Wang, Dan; Wang, Zhaoxia

    2016-01-01

    Highlights: • We propose a harmonic/inter-harmonic analysis scheme with compressed sensing theory. • Property of sparseness of harmonic signal in electrical power system is proved. • The ratio formula of fundamental and harmonic components sparsity is presented. • Spectral Projected Gradient-Fundamental Filter reconstruction algorithm is proposed. • SPG-FF enhances the precision of harmonic detection and signal reconstruction. - Abstract: The advent of Integrated Energy Systems enabled various distributed energy to access the system through different power electronic devices. The development of this has made the harmonic environment more complex. It needs low complexity and high precision of harmonic detection and analysis methods to improve power quality. To solve the shortages of large data storage capacities and high complexity of compression in sampling under the Nyquist sampling framework, this research paper presents a harmonic analysis scheme based on compressed sensing theory. The proposed scheme enables the performance of the functions of compressive sampling, signal reconstruction and harmonic detection simultaneously. In the proposed scheme, the sparsity of the harmonic signals in the base of the Discrete Fourier Transform (DFT) is numerically calculated first. This is followed by providing a proof of the matching satisfaction of the necessary conditions for compressed sensing. The binary sparse measurement is then leveraged to reduce the storage space in the sampling unit in the proposed scheme. In the recovery process, the scheme proposed a novel reconstruction algorithm called the Spectral Projected Gradient with Fundamental Filter (SPG-FF) algorithm to enhance the reconstruction precision. One of the actual microgrid systems is used as simulation example. The results of the experiment shows that the proposed scheme effectively enhances the precision of harmonic and inter-harmonic detection with low computing complexity, and has good

  3. The differentiation of the character of solid lesions in the breast in the compression sonoelastography. Part II: Diagnostic value of BIRADS-US classification, Tsukuba score and FLR ratio

    OpenAIRE

    Dobruch-Sobczak, Katarzyna

    2013-01-01

    Sonoelastography is a dynamically developing method of ultrasound examination used to differentiate the character of focal lesions in the breasts. The aim of the Part II of the study is to determine the usefulness of sonoelastography in the differentiation diagnosis of focal breast lesions including the evaluation of the diagnostic value of Tsukuba score and FLR ratio in characterizing solid lesions in the breasts. Furthermore, the paper provides a comparison of classic B-mode imaging and son...

  4. Strength and compressibility of returned lunar soil.

    Science.gov (United States)

    Carrier, W. D., III; Bromwell, L. G.; Martin, R. T.

    1972-01-01

    Two oedometer and three direct shear tests have been performed in vacuum on a 200 g sample of lunar soil from Apollo 12 (12001, 119). The compressibility data have been used to calculate bulk density and shear wave velocity versus depth on the lunar surface. The shear wave velocity was found to increase approximately with the one-fourth power of the depth, and the results suggest that the Apollo 14 Active Seismic Experiment may not have detected the Fra Mauro formation at a depth of 8.5 m, but only naturally consolidated lunar soil. The shear data indicate that the strength of the lunar soil sample is about 65% that of a ground basalt simulant at the same void ratio.

  5. Torque Modeling and Control of a Variable Compression Engine

    OpenAIRE

    Bergström, Andreas

    2003-01-01

    The SAAB variable compression engine is a new engine concept that enables the fuel consumption to be radically cut by varying the compression ratio. A challenge with this new engine concept is that the compression ratio has a direct influence on the output torque, which means that a change in compression ratio also leads to a change in the torque. A torque change may be felt as a jerk in the movement of the car, and this is an undesirable effect since the driver has no control over the compre...

  6. Application and Analysis of the Isoelectronic Line Ratio Temperature Diagnostic in a Planar Ablating-Plasma Experiment at the National Ignition Facility

    Science.gov (United States)

    Epstein, R.; Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; Regan, S. P.; Seka, W.; Hohenberger, M.; Barrios, M. A.; Moody, J. D.

    2015-11-01

    The Mn/Co isoelectronic emission-line ratio from a microdot source in planar CH foil targets was measured to infer the electron temperature (Te) in the ablating plasma during two-plasmon-decay experiments at the National Ignition Facility (NIF). We examine the systematic uncertainty in the Te estimate based on the temperature and density sensitivities of the line ratio in conjunction with plausible density constraints, and its contribution to the total Te estimate uncertainty. The potential advantages of alternative microdot elements (e.g., Ti/Cr and Sc/V) are considered. The microdot mass was selected to provide ample line strength while minimizing the effect of self-absorption on the line emission, which is of particular concern, given the narrow linewidths of mid- Z emitters at subcritical electron densities. Atomic line-formation theory and detailed atomic-radiative simulations show that the straight forward interpretation of the isoelectronic ratio solely in terms of its temperature independence remains valid with lines of moderate optical thickness (up to ~ 10) at line center. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  7. Development of Ultrasonic Pulse Compression Using Golay Codes

    International Nuclear Information System (INIS)

    Kim, Young H.; Kim, Young Gil; Jeong, Peter

    1994-01-01

    Conventional ultrasonic flaw detection system uses a large amplitude narrow pulse to excite a transducer. However, these systems are limited in pulse energy. An excessively large amplitude causes a dielectric breakage of the transducer, and an excessively long pulse causes decrease of the resolution. Using the pulse compression, a long pulse of pseudorandom signal can be used without sacrificing resolution by signal correlation. In the present work, the pulse compression technique was implemented into an ultrasonic system. Golay code was used as a pseudorandom signal in this system, since pair sum of autocorrelations has no sidelobe. The equivalent input pulse of the Golay code was derived to analyze the pulse compression system. Throughout the experiment, the pulse compression technique has demonstrated for its improved SNR(signal to noise ratio) by reducing the system's white noise. And the experimental data also indicated that the SNR enhancement was proportional to the square root of the code length used. The technique seems to perform particularly well with highly energy-absorbent materials such as polymers, plastics and rubbers

  8. Coronary angiogram video compression for remote browsing and archiving applications.

    Science.gov (United States)

    Ouled Zaid, Azza; Fradj, Bilel Ben

    2010-12-01

    In this paper, we propose a H.264/AVC based compression technique adapted to coronary angiograms. H.264/AVC coder has proven to use the most advanced and accurate motion compensation process, but, at the cost of high computational complexity. On the other hand, analysis of coronary X-ray images reveals large areas containing no diagnostically important information. Our contribution is to exploit the energy characteristics in slice equal size regions to determine the regions with relevant information content, to be encoded using the H.264 coding paradigm. The others regions, are compressed using fixed block motion compensation and conventional hard-decision quantization. Experiments have shown that at the same bitrate, this procedure reduces the H.264 coder computing time of about 25% while attaining the same visual quality. A subjective assessment, based on the consensus approach leads to a compression ratio of 30:1 which insures both a diagnostic adequacy and a sufficient compression in regards to storage and transmission requirements. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Analysis of tractable distortion metrics for EEG compression applications

    International Nuclear Information System (INIS)

    Bazán-Prieto, Carlos; Blanco-Velasco, Manuel; Cruz-Roldán, Fernando; Cárdenas-Barrera, Julián

    2012-01-01

    Coding distortion in lossy electroencephalographic (EEG) signal compression methods is evaluated through tractable objective criteria. The percentage root-mean-square difference, which is a global and relative indicator of the quality held by reconstructed waveforms, is the most widely used criterion. However, this parameter does not ensure compliance with clinical standard guidelines that specify limits to allowable noise in EEG recordings. As a result, expert clinicians may have difficulties interpreting the resulting distortion of the EEG for a given value of this parameter. Conversely, the root-mean-square error is an alternative criterion that quantifies distortion in understandable units. In this paper, we demonstrate that the root-mean-square error is better suited to control and to assess the distortion introduced by compression methods. The experiments conducted in this paper show that the use of the root-mean-square error as target parameter in EEG compression allows both clinicians and scientists to infer whether coding error is clinically acceptable or not at no cost for the compression ratio. (paper)

  10. Soil Compressibility Models for a Wide Stress Range

    KAUST Repository

    Chong, Song-Hun; Santamarina, Carlos

    2016-01-01

    Soil compressibility models with physically correct asymptotic void ratios are required to analyze situations that involve a wide stress range. Previously suggested models and other functions are adapted to satisfy asymptotic void ratios at low

  11. Premixed autoignition in compressible turbulence

    Science.gov (United States)

    Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline

    2016-11-01

    Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.

  12. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  13. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix; Gregson, James; Wetzstein, Gordon; Raskar, Ramesh; Heidrich, Wolfgang

    2014-01-01

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  14. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix

    2014-06-22

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  15. Photon compression in cylinders

    International Nuclear Information System (INIS)

    Ensley, D.L.

    1977-01-01

    It has been shown theoretically that intense microwave radiation is absorbed non-classically by a newly enunciated mechanism when interacting with hydrogen plasma. Fields > 1 Mg, lambda > 1 mm are within this regime. The predicted absorption, approximately P/sub rf/v/sub theta/sup e/, has not yet been experimentally confirmed. The applications of such a coupling are many. If microwave bursts approximately > 5 x 10 14 watts, 5 ns can be generated, the net generation of power from pellet fusion as well as various military applications becomes feasible. The purpose, then, for considering gas-gun photon compression is to obtain the above experimental capability by converting the gas kinetic energy directly into microwave form. Energies of >10 5 joules cm -2 and powers of >10 13 watts cm -2 are potentially available for photon interaction experiments using presently available technology. The following topics are discussed: microwave modes in a finite cylinder, injection, compression, switchout operation, and system performance parameter scaling

  16. Optimisation algorithms for ECG data compression.

    Science.gov (United States)

    Haugland, D; Heber, J G; Husøy, J H

    1997-07-01

    The use of exact optimisation algorithms for compressing digital electrocardiograms (ECGs) is demonstrated. As opposed to traditional time-domain methods, which use heuristics to select a small subset of representative signal samples, the problem of selecting the subset is formulated in rigorous mathematical terms. This approach makes it possible to derive algorithms guaranteeing the smallest possible reconstruction error when a bounded selection of signal samples is interpolated. The proposed model resembles well-known network models and is solved by a cubic dynamic programming algorithm. When applied to standard test problems, the algorithm produces a compressed representation for which the distortion is about one-half of that obtained by traditional time-domain compression techniques at reasonable compression ratios. This illustrates that, in terms of the accuracy of decoded signals, existing time-domain heuristics for ECG compression may be far from what is theoretically achievable. The paper is an attempt to bridge this gap.

  17. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    Science.gov (United States)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2017-12-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further

  18. Sudden viscous dissipation in compressing plasma turbulence

    Science.gov (United States)

    Davidovits, Seth; Fisch, Nathaniel

    2015-11-01

    Compression of a turbulent plasma or fluid can cause amplification of the turbulent kinetic energy, if the compression is fast compared to the turnover and viscous dissipation times of the turbulent eddies. The consideration of compressing turbulent flows in inviscid fluids has been motivated by the suggestion that amplification of turbulent kinetic energy occurred on experiments at the Weizmann Institute of Science Z-Pinch. We demonstrate a sudden viscous dissipation mechanism whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, which further increases the temperature, feeding back to further enhance the dissipation. Application of this mechanism in compression experiments may be advantageous, if the plasma can be kept comparatively cold during much of the compression, reducing radiation and conduction losses, until the plasma suddenly becomes hot. This work was supported by DOE through contract 67350-9960 (Prime # DOE DE-NA0001836) and by the DTRA.

  19. Microbunching and RF Compression

    International Nuclear Information System (INIS)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-01-01

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  20. Mining compressing sequential problems

    NARCIS (Netherlands)

    Hoang, T.L.; Mörchen, F.; Fradkin, D.; Calders, T.G.K.

    2012-01-01

    Compression based pattern mining has been successfully applied to many data mining tasks. We propose an approach based on the minimum description length principle to extract sequential patterns that compress a database of sequences well. We show that mining compressing patterns is NP-Hard and

  1. Highly Efficient Compression Algorithms for Multichannel EEG.

    Science.gov (United States)

    Shaw, Laxmi; Rahman, Daleef; Routray, Aurobinda

    2018-05-01

    The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.

  2. Prechamber Compression-Ignition Engine Performance

    Science.gov (United States)

    Moore, Charles S; Collins, John H , Jr

    1938-01-01

    Single-cylinder compression-ignition engine tests were made to investigate the performance characteristics of prechamber type of cylinder head. Certain fundamental variables influencing engine performance -- clearance distribution, size, shape, and direction of the passage connecting the cylinder and prechamber, shape of prechamber, cylinder clearance, compression ratio, and boosting -- were independently tested. Results of motoring and of power tests, including several typical indicator cards, are presented.

  3. Compression of the digitized X-ray images

    International Nuclear Information System (INIS)

    Terae, Satoshi; Miyasaka, Kazuo; Fujita, Nobuyuki; Takamura, Akio; Irie, Goro; Inamura, Kiyonari.

    1987-01-01

    Medical images are using an increased amount of space in the hospitals, while they are not accessed easily. Thus, suitable data filing system and precise data compression will be necessitated. Image quality was evaluated before and after image data compression, using local filing system (MediFile 1000, NEC Co.) and forty-seven modes of compression parameter. For this study X-ray images of 10 plain radiographs and 7 contrast examinations were digitized using a film reader of CCD sensor in MediFile 1000. Those images were compressed into forty-seven kinds of image data to save in an optical disc and then the compressed images were reconstructed. Each reconstructed image was compared with non-compressed images in respect to several regions of our interest by four radiologists. Compression and extension of radiological images were promptly made by employing the local filing system. Image quality was much more affected by the ratio of data compression than by the mode of parameter itself. In another word, the higher compression ratio became, the worse the image quality were. However, image quality was not significantly degraded until the compression ratio was about 15: 1 on plain radiographs and about 8: 1 on contrast studies. Image compression by this technique will be admitted by diagnostic radiology. (author)

  4. Study of CSR longitudinal bunch compression cavity

    International Nuclear Information System (INIS)

    Yin Dayu; Li Peng; Liu Yong; Xie Qingchun

    2009-01-01

    The scheme of longitudinal bunch compression cavity for the Cooling Storage Ring (CSR)is an important issue. Plasma physics experiments require high density heavy ion beam and short pulsed bunch,which can be produced by non-adiabatic compression of bunch implemented by a fast compression with 90 degree rotation in the longitudinal phase space. The phase space rotation in fast compression is initiated by a fast jump of the RF-voltage amplitude. For this purpose, the CSR longitudinal bunch compression cavity, loaded with FINEMET-FT-1M is studied and simulated with MAFIA code. In this paper, the CSR longitudinal bunch compression cavity is simulated and the initial bunch length of 238 U 72+ with 250 MeV/u will be compressed from 200 ns to 50 ns.The construction and RF properties of the CSR longitudinal bunch compression cavity are simulated and calculated also with MAFIA code. The operation frequency of the cavity is 1.15 MHz with peak voltage of 80 kV, and the cavity can be used to compress heavy ions in the CSR. (authors)

  5. The differentiation of the character of solid lesions in the breast in the compression sonoelastography. Part II: Diagnostic value of BIRADS-US classification, Tsukuba score and FLR ratio

    Directory of Open Access Journals (Sweden)

    Katarzyna Dobruch-Sobczak

    2013-03-01

    Full Text Available Sonoelastography is a dynamically developing method of ultrasound examination used to differentiate the character of focal lesions in the breasts. The aim of the Part II of the study is to determine the usefulness of sonoelastography in the differentiation diagnosis of focal breast lesions including the evaluation of the diagnostic value of Tsukuba score and FLR ratio in characterizing solid lesions in the breasts. Furthermore, the paper provides a comparison of classic B-mode imaging and sonoelastography. Material and methods: From January to July 2010 in the Ultrasound Department of the Cancer Centre, The Institute of Maria Skłodowska-Curie, 375 breast ultrasound examinations were conducted. The examined group included patients who in B-mode examinations presented indications for pathological verification. They were 80 women aged between 17 and 83 (mean age was 50 with 99 solid focal lesions in the breasts. All patients underwent: the interview, physical examination, B-mode ultrasound examination and elastography of the mammary glands and axillary fossae. The visualized lesions were evaluated according to BIRADS-US classification and Tsukuba score as well as FLR ratio was calculated. In all cases, the histopathological and/or cytological verification of the tested lesions was obtained. Results: In the group of 80 patients, the examination revealed 39 malignant neoplastic lesions and 60 benign ones. The mean age of women with malignant neoplasms was 55.07 (SD=10.54, and with benign lesions – 46.9 (SD=15.47. In order to identify threshold values that distinguish benign lesions from malignant ones, a comparative analysis of statistical models based on BIRADS-US classification and Tsukuba score was conducted and the cut-off value for FLR was assumed. The sensitivity and specificity values for BIRADS-US 4/5 were 76.92% and 96.67% and for Tsukuba 3/4 – 64.1% and 98.33% respectively. The assumed FLR threshold value to differentiate between

  6. The differentiation of the character of solid lesions in the breast in the compression sonoelastography. Part II: Diagnostic value of BIRADS-US classification, Tsukuba score and FLR ratio.

    Science.gov (United States)

    Dobruch-Sobczak, Katarzyna

    2013-03-01

    Sonoelastography is a dynamically developing method of ultrasound examination used to differentiate the character of focal lesions in the breasts. The aim of the Part II of the study is to determine the usefulness of sonoelastography in the differentiation diagnosis of focal breast lesions including the evaluation of the diagnostic value of Tsukuba score and FLR ratio in characterizing solid lesions in the breasts. Furthermore, the paper provides a comparison of classic B-mode imaging and sonoelastography. From January to July 2010 in the Ultrasound Department of the Cancer Centre, The Institute of Maria Skłodowska-Curie, 375 breast ultrasound examinations were conducted. The examined group included patients who in B-mode examinations presented indications for pathological verification. They were 80 women aged between 17 and 83 (mean age was 50) with 99 solid focal lesions in the breasts. All patients underwent: the interview, physical examination, B-mode ultrasound examination and elastography of the mammary glands and axillary fossae. The visualized lesions were evaluated according to BIRADS-US classification and Tsukuba score as well as FLR ratio was calculated. In all cases, the histopathological and/or cytological verification of the tested lesions was obtained. In the group of 80 patients, the examination revealed 39 malignant neoplastic lesions and 60 benign ones. The mean age of women with malignant neoplasms was 55.07 (SD = 10.54), and with benign lesions - 46.9 (SD = 15.47). In order to identify threshold values that distinguish benign lesions from malignant ones, a comparative analysis of statistical models based on BIRADS-US classification and Tsukuba score was conducted and the cut-off value for FLR was assumed. The sensitivity and specificity values for BIRADS-US 4/5 were 76.92% and 96.67% and for Tsukuba 3/4 - 64.1% and 98.33% respectively. The assumed FLR threshold value to differentiate between benign and malignant lesions in the breasts equaled 3

  7. Compression for radiological images

    Science.gov (United States)

    Wilson, Dennis L.

    1992-07-01

    The viewing of radiological images has peculiarities that must be taken into account in the design of a compression technique. The images may be manipulated on a workstation to change the contrast, to change the center of the brightness levels that are viewed, and even to invert the images. Because of the possible consequences of losing information in a medical application, bit preserving compression is used for the images used for diagnosis. However, for archiving the images may be compressed to 10 of their original size. A compression technique based on the Discrete Cosine Transform (DCT) takes the viewing factors into account by compressing the changes in the local brightness levels. The compression technique is a variation of the CCITT JPEG compression that suppresses the blocking of the DCT except in areas of very high contrast.

  8. Development, simulation and test of transition radiation detector prototypes for the compressed baryonic matter experiment at the facility for antiproton and ion research

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Cyrano S.H.

    2014-07-01

    The focus of this thesis is the development of a Transition Radiation Detector (TRD) for the Compressed Baryonic Matter (CBM) experiment at FAIR. The TRD sub-detector will contribute to the global particle identification and track reconstruction of charged particles. The technical design goal for the TRD is to identify 90% electrons with a maximum pion contamination of 1%. The TRD and Ring Image CHerenkov (RICH) detector should reach a common pion rejection of 10{sup 4}, in order to measure charmonium and low-mass vector mesons. The position resolution should be between 200 and 300 μm in the anode wire direction. The most demanding aspect of the CBM TRD design is the high interaction rate of up to 10{sup 7} Hz resulting in a charged particle rate of up to 100 kHz/cm{sup 2} in the central part of the detector planes at SIS300 conditions. It is crucial to find the optimal radiator detector combination with a minimum material budget to limit scattering and background due to conversions and at the same time reach a sufficient pion rejection and position resolution. In this thesis it is confirmed that a Multi-Wire Proportional Counter (MWPC) with a Xe/CO{sub 2} gas thickness of 12mm provides sufficient absorption probability for TR-photons in combination with self-supporting low density PE foam or micro-structured foil radiators. A continuous investigation aiming at an optimal wire and pad-plane geometry, as well as a minimization of the material budget between active gas and radiator has been presented in hard- and software. A minimum photon absorption cross-section of the entrance window was realized with a thermally stretched aluminized Kapton foil, glued to a G11 support grid support frame. This structure limits the mechanical deformation of the entire window to 1mm/mbar. All MWPC prototypes include two wire planes. A symmetric amplification region of 2 x (3, 3.5 or 4)mm is followed by a short drift region of 6, 5 or 4 mm. The drift region reduces the gain

  9. Development, simulation and test of transition radiation detector prototypes for the compressed baryonic matter experiment at the facility for antiproton and ion research

    International Nuclear Information System (INIS)

    Bergmann, Cyrano S.H.

    2014-01-01

    The focus of this thesis is the development of a Transition Radiation Detector (TRD) for the Compressed Baryonic Matter (CBM) experiment at FAIR. The TRD sub-detector will contribute to the global particle identification and track reconstruction of charged particles. The technical design goal for the TRD is to identify 90% electrons with a maximum pion contamination of 1%. The TRD and Ring Image CHerenkov (RICH) detector should reach a common pion rejection of 10 4 , in order to measure charmonium and low-mass vector mesons. The position resolution should be between 200 and 300 μm in the anode wire direction. The most demanding aspect of the CBM TRD design is the high interaction rate of up to 10 7 Hz resulting in a charged particle rate of up to 100 kHz/cm 2 in the central part of the detector planes at SIS300 conditions. It is crucial to find the optimal radiator detector combination with a minimum material budget to limit scattering and background due to conversions and at the same time reach a sufficient pion rejection and position resolution. In this thesis it is confirmed that a Multi-Wire Proportional Counter (MWPC) with a Xe/CO 2 gas thickness of 12mm provides sufficient absorption probability for TR-photons in combination with self-supporting low density PE foam or micro-structured foil radiators. A continuous investigation aiming at an optimal wire and pad-plane geometry, as well as a minimization of the material budget between active gas and radiator has been presented in hard- and software. A minimum photon absorption cross-section of the entrance window was realized with a thermally stretched aluminized Kapton foil, glued to a G11 support grid support frame. This structure limits the mechanical deformation of the entire window to 1mm/mbar. All MWPC prototypes include two wire planes. A symmetric amplification region of 2 x (3, 3.5 or 4)mm is followed by a short drift region of 6, 5 or 4 mm. The drift region reduces the gain variation due to

  10. Assessment of n-pentanol/Calophyllum inophyllum/diesel blends on the performance, emission, and combustion characteristics of a constant-speed variable compression ratio direct injection diesel engine.

    Science.gov (United States)

    Ramakrishnan, Purnachandran; Kasimani, Ramesh; Peer, Mohamed Shameer; Rajamohan, Sakthivel

    2018-05-01

    Alcohol is used as an additive for a long time with the petroleum-based fuels. In this study, the higher alcohol, n-pentanol, was used as an additive to Calophyllum inophyllum (CI) biodiesel/diesel blends at 10, 15, and 20% by volume. In all blends, the ratio of CI was maintained at 20% by volume. The engine characteristics of the pentanol fuel blends were compared with the diesel and CI20 (Calophyllum inophyllum 20% and diesel 80%) biodiesel blend. The nitrogen oxide (NO) emission of the pentanol fuel blends showed an increased value than CI20 and neat diesel fuel. The carbon dioxide (CO 2 ) also increased with increase in pentanol addition with the fuel blends than CI20 fuel blend and diesel. The carbon monoxide (CO) and hydrocarbon (HC) emissions were decreased with increase in pentanol proportion in the blend than the CI20 fuel and diesel. The smoke emission was reduced and the combustion characteristics of the engine were also improved by using pentanol blended fuels. From this investigation, it is suggested that 20% pentanol addition with the biodiesel/diesel fuel is suitable for improved performance and combustion characteristics of a diesel engine without any engine modifications, whereas CO 2 and NO emissions increased with addition of pentanol due to effective combustion.

  11. Midrapidity antiproton-to-proton ratio in pp collisions at $\\sqrt{s} = 0.9$ and $7$~TeV measured by the ALICE experiment

    CERN Document Server

    Aamodt, K.; Abeysekara, U.; Abrahantes Quintana, A.; Abramyan, A.; Adamova, D.; Aggarwal, M.M.; Aglieri Rinella, G.; Agocs, A.G.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahn, S.U.; Akimoto, R.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Almaraz Avina, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Andrei, C.; Andronic, A.; Anelli, G.; Angelov, V.; Anson, C.; Anticic, T.; Antinori, F.; Antinori, S.; Antipin, K.; Antonczyk, D.; Antonioli, P.; Anzo, A.; Aphecetche, L.; Appelshauser, H.; Arcelli, S.; Arceo, R.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I.C.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T.C.; Aysto, J.; Azmi, M.D.; Bablok, S.; Bach, M.; Badala, A.; Baek, Y.W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldit, A.; Ban, J.; Barbera, R.; Barnafoldi, G.G.; Barnby, L.; Barret, V.; Bartke, J.; Barile, F.; Basile, M.; Basmanov, V.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I.G.; Becker, B.; Belikov, I.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Benhabib, L.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Betev, L.; Bhasin, A.; Bhati, A.K.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielcik, J.; Bielcikova, J.; Bilandzic, A.; Bimbot, L.; Biolcati, E.; Blanc, A.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bogdanov, A.; Boggild, H.; Bogolyubsky, M.; Bohm, J.; Boldizsar, L.; Bombara, M.; Bombonati, C.; Bondila, M.; Borel, H.; Borisov, A.; Bortolin, C.; Bose, S.; Bosisio, L.; Bossu, F.; Botje, M.; Bottger, S.; Bourdaud, G.; Boyer, B.; Braun, M.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Breitner, T.; Bruckner, G.; Brun, R.; Bruna, E.; Bruno, G.E.; Budnikov, D.; Buesching, H.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Camacho, E.; Camerini, P.; Campbell, M.; Canoa Roman, V.; Capitani, G.P.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Diaz, A.; Caselle, M.; Castillo Castellanos, J.; Castillo Hernandez, J.F.; Catanescu, V.; Cattaruzza, E.; Cavicchioli, C.; Cerello, P.; Chambert, V.; Chang, B.; Chapeland, S.; Charpy, A.; Charvet, J.L.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D.D.; Chochula, P.; Choi, K.; Chojnacki, M.; Christakoglou, P.; Christensen, C.H.; Christiansen, P.; Chujo, T.; Chuman, F.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Cobanoglu, O.; Coffin, J.-P.; Coli, S.; Colla, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Conner, E.S.; Constantin, P.; Contin, G.; Contreras, J.G.; Corrales Morales, Y.; Cormier, T.M.; Cortese, P.; Cortes Maldonado, I.; Cosentino, M.R.; Costa, F.; Cotallo, M.E.; Crescio, E.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Cussonneau, J.; Dainese, A.; Dalsgaard, H.H.; Danu, A.; Das, I.; Dash, A.; Dash, S.; de Barros, G.O.V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gaspari, M.; de Groot, J.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Remigis, R.; de Rooij, R.; de Vaux, G.; Delagrange, H.; Dellacasa, G.; Deloff, A.; Demanov, V.; Denes, E.; Deppman, A.; D'Erasmo, G.; Derkach, D.; Devaux, A.; Di Bari, D.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Dialinas, M.; Diaz, L.; Diaz, R.; Dietel, T.; Divia, R.; Djuvsland, O.; Dobretsov, V.; Dobrin, A.; Dobrowolski, T.; Donigus, B.; Dominguez, I.; Dordic, O.; Dubey, A.K.; Dubuisson, J.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A.K.; Dutta Majumdar, M.R.; Elia, D.; Emschermann, D.; Enokizono, A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evrard, S.; Eyyubova, G.; Fabjan, C.W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fateev, O.; Fearick, R.; Fedunov, A.; Fehlker, D.; Fekete, V.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernandez Tellez, A.; Ferreiro, E.G.; Ferretti, A.; Ferretti, R.; Figueredo, M.A.S.; Filchagin, S.; Fini, R.; Fionda, F.M.; Fiore, E.M.; Floris, M.; Fodor, Z.; Foertsch, S.; Foka, P.; Fokin, S.; Formenti, F.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Frolov, A.; Fuchs, U.; Furano, F.; Furget, C.; Fusco Girard, M.; Gaardhoje, J.J.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gallio, M.; Ganoti, P.; Ganti, M.S.; Garabatos, C.; Garcia Trapaga, C.; Gebelein, J.; Gemme, R.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Giraudo, G.; Giubellino, P.; Gladysz-Dziadus, E.; Glasow, R.; Glassel, P.; Glenn, A.; Gomez Jimenez, R.; Gonzalez Santos, H.; Gonzalez-Trueba, L.H.; Gonzalez-Zamora, P.; Gorbunov, S.; Gorbunov, Y.; Gotovac, S.; Gottschlag, H.; Grabski, V.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J.F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Gustafsson, H.-A.; Gutbrod, H.; Haaland, O.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamblen, J.; Han, B.H.; Harris, J.W.; Hartig, M.; Harutyunyan, A.; Hasch, D.; Hasegan, D.; Hatzifotiadou, D.; Hayrapetyan, A.; Heide, M.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Hernandez, C.; Herrera Corral, G.; Herrmann, N.; Hetland, K.F.; Hicks, B.; Hiei, A.; Hille, P.T.; Hippolyte, B.; Horaguchi, T.; Hori, Y.; Hristov, P.; Hrivnacova, I.; Hu, S.; Huang, M.; Huber, S.; Humanic, T.J.; Hutter, D.; Hwang, D.S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Innocenti, P.G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Iwasaki, T.; Jacholkowski, A.; Jacobs, P.; Jancurova, L.; Jangal, S.; Janik, R.; Jena, C.; Jena, S.; Jirden, L.; Jones, G.T.; Jones, P.G.; Jovanovic, P.; Jung, H.; Jung, W.; Jusko, A.; Kaidalov, A.B.; Kalcher, S.; Kalinak, P.; Kalisky, M.; Kalliokoski, T.; Kalweit, A.; Kamal, A.; Kamermans, R.; Kanaki, K.; Kang, E.; Kang, J.H.; Kapitan, J.; Kaplin, V.; Kapusta, S.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, M.M.; Khan, S.A.; Khanzadeev, A.; Kharlov, Y.; Kikola, D.; Kileng, B.; Kim, D.J; Kim, D.S.; Kim, D.W.; Kim, H.N.; Kim, J.; Kim, J.H.; Kim, J.S.; Kim, M.; Kim, S.H.; Kim, S.; Kim, Y.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J.L.; Klein, J.; Klein-Bosing, C.; Kliemant, M.; Klovning, A.; Kluge, A.; Knichel, M.L.; Kniege, S.; Koch, K.; Kolevatov, R.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskih, A.; Kornas, E.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Kral, J.; Kralik, I.; Kramer, F.; Kraus, I.; Kravcakova, A.; Krawutschke, T.; Krivda, M.; Krumbhorn, D.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kuhn, C.; Kuijer, P.G.; Kumar, L.; Kumar, N.; Kupczak, R.; Kurashvili, P.; Kurepin, A.; Kurepin, A.N.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kutouski, M.; Kvaerno, H.; Kweon, M.J.; Kwon, Y.; La Rocca, P.; Lackner, F.; Ladron de Guevara, P.; Lafage, V.; Lal, C.; Lara, Camilo; Larsen, D.T.; Laurenti, G.; Lazzeroni, C.; Le Bornec, Y.; Le Bris, N.; Lee, H.; Lee, K.S.; Lee, S.C.; Lefevre, F.; Lenhardt, M.; Leistam, L.; Lehnert, J.; Lenti, V.; Leon, H.; Leon Monzon, I.; Leon Vargas, H.; Levai, P.; Li, X.; Li, Y.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M.A.; Liu, L.; Loginov, V.; Lohn, S.; Lopez, X.; Lopez Noriega, M.; Lopez-Ramirez, R.; Lopez Torres, E.; Lovhoiden, G.; Lozea Feijo Soares, A.; Lu, S.; Lunardon, M.; Luparello, G.; Luquin, L.; Lutz, J.-R.; Ma, K.; Ma, R.; Madagodahettige-Don, D.M.; Maevskaya, A.; Mager, M.; Mahapatra, D.P.; Maire, A.; Makhlyueva, I.; Mal'Kevich, D.; Malaev, M.; Malagalage, K.J.; Maldonado Cervantes, I.; Malek, M.; Malkiewicz, T.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Mares, J.; Margagliotti, G.V.; Margotti, A.; Marin, A.; Martashvili, I.; Martinengo, P.; Martinez Hernandez, M.I.; Martinez Davalos, A.; Martinez Garcia, G.; Maruyama, Y.; Marzari Chiesa, A.; Masciocchi, S.; Masera, M.; Masetti, M.; Masoni, A.; Massacrier, L.; Mastromarco, M.; Mastroserio, A.; Matthews, Z.L.; Matyja, A.; Mayani, D.; Mazza, G.; Mazzoni, M.A.; Meddi, F.; Menchaca-Rocha, A.; Mendez Lorenzo, P.; Meoni, M.; Mercado Perez, J.; Mereu, P.; Miake, Y.; Michalon, A.; Miftakhov, N.; Milano, L.; Milosevic, J.; Minafra, F.; Mischke, A.; Miskowiec, D.; Mitu, C.; Mizoguchi, K.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Mondal, M.M.; Montano Zetina, L.; Monteno, M.; Montes, E.; Morando, M.; Moretto, S.; Morsch, A.; Moukhanova, T.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Muller, H.; Munhoz, M.G.; Munoz, J.; Musa, L.; Musso, A.; Nandi, B.K.; Nania, R.; Nappi, E.; Navach, F.; Navin, S.; Nayak, T.K.; Nazarenko, S.; Nazarov, G.; Nedosekin, A.; Nendaz, F.; Newby, J.; Nianine, A.; Nicassio, M.; Nielsen, B.S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.S.; Nilsson, M.S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyatha, A.; Nygaard, C.; Nyiri, A.; Nystrand, J.; Ochirov, A.; Odyniec, G.; Oeschler, H.; Oinonen, M.; Okada, K.; Okada, Y.; Oldenburg, M.; Oleniacz, J.; Oppedisano, C.; Orsini, F.; Ortiz Velasquez, A.; Ortona, G.; Oskarsson, A.; Osmic, F.; Osterman, L.; Ostrowski, P.; Otterlund, I.; Otwinowski, J.; Ovrebekk, G.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paic, G.; Painke, F.; Pajares, C.; Pal, S.; Pal, S.K.; Palaha, A.; Palmeri, A.; Panse, R.; Papikyan, V.; Pappalardo, G.S.; Park, W.J.; Pastircak, B.; Pastore, C.; Paticchio, V.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pepato, A.; Pereira, H.; Peressounko, D.; Perez, C.; Perini, D.; Perrino, D.; Peryt, W.; Peschek, J.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A.J.; Petracek, V.; Petridis, A.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Peyre, J.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piuz, F.; Platt, R.; Ploskon, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta Lerma, P.L.M.; Poggio, F.; Poghosyan, M.G.; Polak, K.; Polichtchouk, B.; Polozov, P.; Polyakov, V.; Pommeresch, B.; Pop, A.; Posa, F.; Pospisil, V.; Potukuchi, B.; Pouthas, J.; Prasad, S.K.; Preghenella, R.; Prino, F.; Pruneau, C.A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Pulvirenti, A.; Punin, A.; Punin, V.; Putis, M.; Putschke, J.; Quercigh, E.; Rachevski, A.; Rademakers, A.; Radomski, S.; Raiha, T.S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rodriguez Cahuantzi, M.; Rammler, M.; Raniwala, R.; Raniwala, S.; Rasanen, S.S.; Rashevskaya, I.; Rath, S.; Read, K.F.; Real, J.S.; Redlich, K.; Renfordt, R.; Reolon, A.R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R.A.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Roed, K.; Rohrich, D.; Roman Lopez, S.; Romita, R.; Ronchetti, F.; Rosinsky, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, P.; Rubio-Montero, A.J.; Rui, R.; Rusanov, I.; Russo, G.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Safarik, K.; Sahoo, R.; Saini, J.; Saiz, P.; Sakata, D.; Salgado, C.A.; Salgueiro Domingues da Silva, R.; Salur, S.; Samanta, T.; Sambyal, S.; Samsonov, V.; Sandor, L.; Sandoval, A.; Sano, M.; Sano, S.; Santo, R.; Santoro, R.; Sarkamo, J.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R.P.; Schiaua, C.; Schicker, R.; Schindler, H.; Schmidt, C.; Schmidt, H.R.; Schossmaier, K.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P.A.; Segato, G.; Semenov, D.; Senyukov, S.; Seo, J.; Serci, S.; Serkin, L.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharkov, G.; Sharma, N.; Sharma, S.; Shigaki, K.; Shimomura, M.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Sicking, E.; Siddi, E.; Siemiarczuk, T.; Silenzi, A.; Silvermyr, D.; Simili, E.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, B.C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T.B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R.; Snow, H.; Sogaard, C.; Soloviev, A.; Soltveit, H.K.; Soltz, R.; Sommer, W.; Son, C.W.; Son, Hyungsuk; Song, M.; Soos, C.; Soramel, F.; Soyk, D.; Spyropoulou-Stassinaki, M.; Srivastava, B.K.; Stachel, J.; Staley, F.; Stan, E.; Stefanek, G.; Stefanini, G.; Steinbeck, T.; Stenlund, E.; Steyn, G.; Stocco, D.; Stock, R.; Stolpovsky, P.; Strmen, P.; Suaide, A.A.P.; Subieta Vasquez, M.A.; Sugitate, T.; Suire, C.; Sumbera, M.; Susa, T.; Swoboda, D.; Symons, J.; Szanto de Toledo, A.; Szarka, I.; Szostak, A.; Szuba, M.; Tadel, M.; Tagridis, C.; Takahara, A.; Takahashi, J.; Tanabe, R.; Tapia Takaki, J.D.; Taureg, H.; Tauro, A.; Tavlet, M.; Tejeda Munoz, G.; Telesca, A.; Terrevoli, C.; Thaeder, Jochen Mathias; Tieulent, R.; Tlusty, D.; Toia, A.; Tolyhy, T.; Torcato de Matos, C.; Torii, H.; Torralba, G.; Toscano, L.; Tosello, F.; Tournaire, A.; Traczyk, T.; Tribedy, P.; Troger, G.; Truesdale, D.; Trzaska, W.H.; Tsiledakis, G.; Tsilis, E.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Turvey, A.; Tveter, T.S.; Tydesjo, H.; Tywoniuk, K.; Ulery, J.; Ullaland, K.; Uras, A.; Urban, J.; Urciuoli, G.M.; Usai, G.L.; Vacchi, A.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Kolk, N.; Vyvre, P.Vande; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasiliev, A.; Vassiliev, I.; Vasileiou, M.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vetlitskiy, I.; Vickovic, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y.P.; Vodopianov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vranic, D.; Vrlakova, J.; Vulpescu, B.; Wagner, B.; Wagner, V.; Wallet, L.; Wan, R.; Wang, D.; Wang, Y.; Watanabe, K.; Wen, Q.; Wessels, J.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilk, A.; Wilk, G.; Williams, M.C.S.; Willis, N.; Windelband, B.; Xu, C.; Yang, C.; Yang, H.; Yasnopolskiy, S.; Yermia, F.; Yi, J.; Yin, Z.; Yokoyama, H.; Yoo, I-K.; Yuan, X.; Yurevich, V.; Yushmanov, I.; Zabrodin, E.; Zagreev, B.; Zalite, A.; Zampolli, C.; Zanevsky, Yu.; Zaporozhets, S.; Zarochentsev, A.; Zavada, P.; Zbroszczyk, H.; Zelnicek, P.; Zenin, A.; Zepeda, A.; Zgura, I.; Zhalov, M.; Zhang, X.; Zhou, D.; Zhou, S.; Zhu, J.; Zichichi, A.; Zinchenko, A.; Zinovjev, G.; Zoccarato, Y.; Zychacek, V.; Zynovyev, M.

    2010-01-01

    The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at $\\sqrt{s} = 0.9$ and $7$~TeV during the initial running periods of the Large Hadron Collider(LHC). The measurement covers the transverse momentum interval $0.45 < p_{\\rm{t}} < 1.05$~GeV/$c$ and rapidity $|y| < 0.5$. The ratio is measured to be $R_{|y| < 0.5} = 0.957 \\pm 0.006 (stat.) \\pm 0.014 (syst.)$ at $0.9$~TeV and $R_{|y| < 0.5} = 0.991 \\pm 0.005 (stat.) \\pm 0.014 (syst.)$ at $7$~TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions.

  12. KungFQ: a simple and powerful approach to compress fastq files.

    Science.gov (United States)

    Grassi, Elena; Di Gregorio, Federico; Molineris, Ivan

    2012-01-01

    Nowadays storing data derived from deep sequencing experiments has become pivotal and standard compression algorithms do not exploit in a satisfying manner their structure. A number of reference-based compression algorithms have been developed but they are less adequate when approaching new species without fully sequenced genomes or nongenomic data. We developed a tool that takes advantages of fastq characteristics and encodes them in a binary format optimized in order to be further compressed with standard tools (such as gzip or lzma). The algorithm is straightforward and does not need any external reference file, it scans the fastq only once and has a constant memory requirement. Moreover, we added the possibility to perform lossy compression, losing some of the original information (IDs and/or qualities) but resulting in smaller files; it is also possible to define a quality cutoff under which corresponding base calls are converted to N. We achieve 2.82 to 7.77 compression ratios on various fastq files without losing information and 5.37 to 8.77 losing IDs, which are often not used in common analysis pipelines. In this paper, we compare the algorithm performance with known tools, usually obtaining higher compression levels.

  13. Three dimensional range geometry and texture data compression with space-filling curves.

    Science.gov (United States)

    Chen, Xia; Zhang, Song

    2017-10-16

    This paper presents a novel method to effectively store three-dimensional (3D) data and 2D texture data into a regular 24-bit image. The proposed method uses the Hilbert space-filling curve to map the normalized unwrapped phase map to two 8-bit color channels, and saves the third color channel for 2D texture storage. By further leveraging existing 2D image and video compression techniques, the proposed method can achieve high compression ratios while effectively preserving data quality. Since the encoding and decoding processes can be applied to most of the current 2D media platforms, this proposed compression method can make 3D data storage and transmission available for many electrical devices without requiring special hardware changes. Experiments demonstrate that if a lossless 2D image/video format is used, both original 3D geometry and 2D color texture can be accurately recovered; if lossy image/video compression is used, only black-and-white or grayscale texture can be properly recovered, but much higher compression ratios (e.g., 1543:1 against the ASCII OBJ format) are achieved with slight loss of 3D geometry quality.

  14. On-board image compression for the RAE lunar mission

    Science.gov (United States)

    Miller, W. H.; Lynch, T. J.

    1976-01-01

    The requirements, design, implementation, and flight performance of an on-board image compression system for the lunar orbiting Radio Astronomy Explorer-2 (RAE-2) spacecraft are described. The image to be compressed is a panoramic camera view of the long radio astronomy antenna booms used for gravity-gradient stabilization of the spacecraft. A compression ratio of 32 to 1 is obtained by a combination of scan line skipping and adaptive run-length coding. The compressed imagery data are convolutionally encoded for error protection. This image compression system occupies about 1000 cu cm and consumes 0.4 W.

  15. Compressive buckling of black phosphorene nanotubes: an atomistic study

    Science.gov (United States)

    Nguyen, Van-Trang; Le, Minh-Quy

    2018-04-01

    We investigate through molecular dynamics finite element method with Stillinger-Weber potential the uniaxial compression of armchair and zigzag black phosphorene nanotubes. We focus especially on the effects of the tube’s diameter with fixed length-diameter ratio, effects of the tube’s length for a pair of armchair and zigzag tubes of equal diameters, and effects of the tube’s diameter with fixed lengths. Their Young’s modulus, critical compressive stress and critical compressive strain are studied and discussed for these 3 case studies. Compressive buckling was clearly observed in the armchair nanotubes. Local bond breaking near the boundary occurred in the zigzag ones under compression.

  16. Search for Supersymmetry with a Highly Compressed Mass Spectrum in the Single Soft Lepton Channel with the CMS Experiment at the LHC

    CERN Document Server

    Zarucki, Mateusz

    2017-01-01

    Models with compressed mass spectra target a very interesting region of the SUSY parameter space and are very well motivated by theoretical considerations, such as dark matter constraints and naturalness. The presented analysis focuses on signal events containing a single low-momentum lepton and moderate missing transverse energy. The search targets a simplified model in which the signal consists of stop (supersymmetric partner of the top quark) pair-production, followed by 4-body decays into a lepton-neutrino (quark-antiquark) pair, a b-quark and a neutralino, which is considered the lightest supersymmetric particle (LSP), and with a mass gap between the stop and the LSP that is smaller than the W-boson mass. The LSPs and the neutrino escape the detector, leading to a missing transverse energy signature. Compressed regions are challenging to study, as the visible decay products have low momentum and generally do not pass detector acceptance thresholds. This difficulty can be mitigated by requiring the presen...

  17. Recognizable or Not: Towards Image Semantic Quality Assessment for Compression

    Science.gov (United States)

    Liu, Dong; Wang, Dandan; Li, Houqiang

    2017-12-01

    Traditionally, image compression was optimized for the pixel-wise fidelity or the perceptual quality of the compressed images given a bit-rate budget. But recently, compressed images are more and more utilized for automatic semantic analysis tasks such as recognition and retrieval. For these tasks, we argue that the optimization target of compression is no longer perceptual quality, but the utility of the compressed images in the given automatic semantic analysis task. Accordingly, we propose to evaluate the quality of the compressed images neither at pixel level nor at perceptual level, but at semantic level. In this paper, we make preliminary efforts towards image semantic quality assessment (ISQA), focusing on the task of optical character recognition (OCR) from compressed images. We propose a full-reference ISQA measure by comparing the features extracted from text regions of original and compressed images. We then propose to integrate the ISQA measure into an image compression scheme. Experimental results show that our proposed ISQA measure is much better than PSNR and SSIM in evaluating the semantic quality of compressed images; accordingly, adopting our ISQA measure to optimize compression for OCR leads to significant bit-rate saving compared to using PSNR or SSIM. Moreover, we perform subjective test about text recognition from compressed images, and observe that our ISQA measure has high consistency with subjective recognizability. Our work explores new dimensions in image quality assessment, and demonstrates promising direction to achieve higher compression ratio for specific semantic analysis tasks.

  18. Data compression of digital X-ray images from a clinical viewpoint

    International Nuclear Information System (INIS)

    Ando, Yutaka

    1992-01-01

    For the PACS (picture archiving and communication system), large storage capacity recording media and a fast data transfer network are necessary. When the PACS are working, these technology requirements become an large problem. So we need image data compression having a higher recording efficiency media and an improved transmission ratio. There are two kinds of data compression methods, one is reversible compression and other is the irreversible one. By these reversible compression methods, a compressed-expanded image is exactly equal to the original image. The ratio of data compression is about between 1/2 an d1/3. On the other hand, for irreversible data compression, the compressed-expanded image is a distorted image, and we can achieve a high compression ratio by using this method. In the medical field, the discrete cosine transform (DCT) method is popular because of the low distortion and fast performance. The ratio of data compression is actually from 1/10 to 1/20. It is important for us to decide the compression ratio according to the purposes and modality of the image. We must carefully select the ratio of the data compression because the suitable compression ratio alters in the usage of image for education, clinical diagnosis and reference. (author)

  19. Measurement of the ratio of C3+ and O4+ ions produced by ECRIS to prepare a laser cooling experiment at storage rings

    International Nuclear Information System (INIS)

    Zhu, X.L.; Wen, W.Q.; Ma, X.; Li, J.Y.; Feng, W.T.; Zhang, R.T.; Wang, Enliang; Yan, S.; Guo, D.L.; Hai, B.; Qian, D.B.; Zhang, P.; Xu, S.; Zhao, D.M.; Yang, J.; Zhang, D.C.; Li, B.; Gao, Y.; Huang, Z.K.; Wang, H.B.

    2014-01-01

    To prepare the upcoming laser cooling of relativistic C 3+ ion beams at the experimental Cooler Storage Ring (CSRe), a novel experiment was performed using a reaction microscope to determine the ratio of C 3+ ions in mixed ion beams of C 3+ and O 4+ that are produced by an Electron Cyclotron Resonance Ion Source (ECRIS). The mixed ion beams at an energy of 4 keV/u were directed to collide on a supersonic helium gas target. Using the single-electron capture channel and the coincidence technique, the fractions of C 3+ and O 4+ ions in the primary beam were obtained. Using different injection gases for ECRIS, including O 2 , CO, CO 2 , and CH 4 , at a fixed radio-frequency power of 300 W, the measured results showed that the fraction of C 3+ ions was greater than 70% for the injection gases of CO and CO 2 . These measured results are very important and helpful for the upcoming laser cooling experiments

  20. Exploring compression techniques for ROOT IO

    Science.gov (United States)

    Zhang, Z.; Bockelman, B.

    2017-10-01

    ROOT provides an flexible format used throughout the HEP community. The number of use cases - from an archival data format to end-stage analysis - has required a number of tradeoffs to be exposed to the user. For example, a high “compression level” in the traditional DEFLATE algorithm will result in a smaller file (saving disk space) at the cost of slower decompression (costing CPU time when read). At the scale of the LHC experiment, poor design choices can result in terabytes of wasted space or wasted CPU time. We explore and attempt to quantify some of these tradeoffs. Specifically, we explore: the use of alternate compressing algorithms to optimize for read performance; an alternate method of compressing individual events to allow efficient random access; and a new approach to whole-file compression. Quantitative results are given, as well as guidance on how to make compression decisions for different use cases.

  1. A novel pulse compression algorithm for frequency modulated active thermography using band-pass filter

    Science.gov (United States)

    Chatterjee, Krishnendu; Roy, Deboshree; Tuli, Suneet

    2017-05-01

    This paper proposes a novel pulse compression algorithm, in the context of frequency modulated thermal wave imaging. The compression filter is derived from a predefined reference pixel in a recorded video, which contains direct measurement of the excitation signal alongside the thermal image of a test piece. The filter causes all the phases of the constituent frequencies to be adjusted to nearly zero value, so that on reconstruction a pulse is obtained. Further, due to band-limited nature of the excitation, signal-to-noise ratio is improved by suppressing out-of-band noise. The result is similar to that of a pulsed thermography experiment, although the peak power is drastically reduced. The algorithm is successfully demonstrated on mild steel and carbon fibre reference samples. Objective comparisons of the proposed pulse compression algorithm with the existing techniques are presented.

  2. Experiments on hydraulically-compensated Compressed Air Energy Storage (CAES) system using large-diameter vertical pipe two-phase flow test facility: test facility and test procedure

    International Nuclear Information System (INIS)

    Ohtsu, Iwao; Murata, Hideo; Kukita, Yutaka; Kumamaru, Hiroshige.

    1996-07-01

    JAERI, the University of Tokyo, the Central Research Institute of Electric Power Industry and Shimizu Corporation jointing performed and experimental study on two-phase flow in the hydraulically-compensated Compressed Air Energy Storage (CAES) system with a large-diameter vertical pipe two-phase flow test facility from 1993 to 1995. A hydraulically-compensated CAES system is a proposed, conceptual energy storage system where energy is stored in the form of compressed air in an underground cavern which is sealed by a deep (several hundred meters) water shaft. The shaft water head maintains a constant pressure in the cavern, of several mega Pascals, even during loading or unloading of the cavern with air. The dissolved air in the water, however, may create voids in the shaft when the water rises through the shaft during the loading, being forced by the air flow into the cavern. The voids may reduce the effective head of the shaft, and thus the seal may fail, if significant bubbling should occur in the shaft. This bubbling phenomenon (termed 'Champaign effect') and potential failure of the water seal ('blowout') are simulated in a scaled-height, scaled-diameter facility. Carbon dioxide is used to simulate high solubility of air in the full-height, full-pressure system. This report describes the expected and potential two-phase flow phenomena in a hydraulically-compensated CAES system, the test facility and the test procedure, a method to estimate quantities which are not directly measured by using measured quantities and hydrodynamic basic equations, and desirable additional instrumentation. (author)

  3. Effects of Different Compression Techniques on Diagnostic Accuracies of Breast Masses on Digitized Mammograms

    International Nuclear Information System (INIS)

    Zhigang Liang; Xiangying Du; Jiabin Liu; Yanhui Yang; Dongdong Rong; Xinyu Y ao; Kuncheng Li

    2008-01-01

    Background: The JPEG 2000 compression technique has recently been introduced into the medical imaging field. It is critical to understand the effects of this technique on the detection of breast masses on digitized images by human observers. Purpose: To evaluate whether lossless and lossy techniques affect the diagnostic results of malignant and benign breast masses on digitized mammograms. Material and Methods: A total of 90 screen-film mammograms including craniocaudal and lateral views obtained from 45 patients were selected by two non-observing radiologists. Of these, 22 cases were benign lesions and 23 cases were malignant. The mammographic films were digitized by a laser film digitizer, and compressed to three levels (lossless and lossy 20:1 and 40:1) using the JPEG 2000 wavelet-based image compression algorithm. Four radiologists with 10-12 years' experience in mammography interpreted the original and compressed images. The time interval was 3 weeks for each reading session. A five-point malignancy scale was used, with a score of 1 corresponding to definitely not a malignant mass, a score of 2 referring to not a malignant mass, a score of 3 meaning possibly a malignant mass, a score of 4 being probably a malignant mass, and a score of 5 interpreted as definitely a malignant mass. The radiologists' performance was evaluated using receiver operating characteristic analysis. Results: The average Az values for all radiologists decreased from 0.8933 for the original uncompressed images to 0.8299 for the images compressed at 40:1. This difference was not statistically significant. The detection accuracy of the original images was better than that of the compressed images, and the Az values decreased with increasing compression ratio. Conclusion: Digitized mammograms compressed at 40:1 could be used to substitute original images in the diagnosis of breast cancer

  4. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  5. Huffman-based code compression techniques for embedded processors

    KAUST Repository

    Bonny, Mohamed Talal

    2010-09-01

    The size of embedded software is increasing at a rapid pace. It is often challenging and time consuming to fit an amount of required software functionality within a given hardware resource budget. Code compression is a means to alleviate the problem by providing substantial savings in terms of code size. In this article we introduce a novel and efficient hardware-supported compression technique that is based on Huffman Coding. Our technique reduces the size of the generated decoding table, which takes a large portion of the memory. It combines our previous techniques, Instruction Splitting Technique and Instruction Re-encoding Technique into new one called Combined Compression Technique to improve the final compression ratio by taking advantage of both previous techniques. The instruction Splitting Technique is instruction set architecture (ISA)-independent. It splits the instructions into portions of varying size (called patterns) before Huffman coding is applied. This technique improves the final compression ratio by more than 20% compared to other known schemes based on Huffman Coding. The average compression ratios achieved using this technique are 48% and 50% for ARM and MIPS, respectively. The Instruction Re-encoding Technique is ISA-dependent. It investigates the benefits of reencoding unused bits (we call them reencodable bits) in the instruction format for a specific application to improve the compression ratio. Reencoding those bits can reduce the size of decoding tables by up to 40%. Using this technique, we improve the final compression ratios in comparison to the first technique to 46% and 45% for ARM and MIPS, respectively (including all overhead that incurs). The Combined Compression Technique improves the compression ratio to 45% and 42% for ARM and MIPS, respectively. In our compression technique, we have conducted evaluations using a representative set of applications and we have applied each technique to two major embedded processor architectures

  6. Extreme compression for extreme conditions: pilot study to identify optimal compression of CT images using MPEG-4 video compression.

    Science.gov (United States)

    Peterson, P Gabriel; Pak, Sung K; Nguyen, Binh; Jacobs, Genevieve; Folio, Les

    2012-12-01

    This study aims to evaluate the utility of compressed computed tomography (CT) studies (to expedite transmission) using Motion Pictures Experts Group, Layer 4 (MPEG-4) movie formatting in combat hospitals when guiding major treatment regimens. This retrospective analysis was approved by Walter Reed Army Medical Center institutional review board with a waiver for the informed consent requirement. Twenty-five CT chest, abdomen, and pelvis exams were converted from Digital Imaging and Communications in Medicine to MPEG-4 movie format at various compression ratios. Three board-certified radiologists reviewed various levels of compression on emergent CT findings on 25 combat casualties and compared with the interpretation of the original series. A Universal Trauma Window was selected at -200 HU level and 1,500 HU width, then compressed at three lossy levels. Sensitivities and specificities for each reviewer were calculated along with 95 % confidence intervals using the method of general estimating equations. The compression ratios compared were 171:1, 86:1, and 41:1 with combined sensitivities of 90 % (95 % confidence interval, 79-95), 94 % (87-97), and 100 % (93-100), respectively. Combined specificities were 100 % (85-100), 100 % (85-100), and 96 % (78-99), respectively. The introduction of CT in combat hospitals with increasing detectors and image data in recent military operations has increased the need for effective teleradiology; mandating compression technology. Image compression is currently used to transmit images from combat hospital to tertiary care centers with subspecialists and our study demonstrates MPEG-4 technology as a reasonable means of achieving such compression.

  7. Composite Techniques Based Color Image Compression

    Directory of Open Access Journals (Sweden)

    Zainab Ibrahim Abood

    2017-03-01

    Full Text Available Compression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S, composite wavelet technique (W and composite multi-wavelet technique (M. For the high energy sub-band of the 3rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet transform (MMM in M technique which has the highest values of energy (En and compression ratio (CR and least values of bit per pixel (bpp, time (T and rate distortion R(D. Also the values of the compression parameters of the color image are nearly the same as the average values of the compression parameters of the three bands of the same image.

  8. Compression evaluation of surgery video recordings retaining diagnostic credibility (compression evaluation of surgery video)

    Science.gov (United States)

    Duplaga, M.; Leszczuk, M. I.; Papir, Z.; Przelaskowski, A.

    2008-12-01

    Wider dissemination of medical digital video libraries is affected by two correlated factors, resource effective content compression that directly influences its diagnostic credibility. It has been proved that it is possible to meet these contradictory requirements halfway for long-lasting and low motion surgery recordings at compression ratios close to 100 (bronchoscopic procedures were a case study investigated). As the main supporting assumption, it has been accepted that the content can be compressed as far as clinicians are not able to sense a loss of video diagnostic fidelity (a visually lossless compression). Different market codecs were inspected by means of the combined subjective and objective tests toward their usability in medical video libraries. Subjective tests involved a panel of clinicians who had to classify compressed bronchoscopic video content according to its quality under the bubble sort algorithm. For objective tests, two metrics (hybrid vector measure and hosaka Plots) were calculated frame by frame and averaged over a whole sequence.

  9. A hybrid data compression approach for online backup service

    Science.gov (United States)

    Wang, Hua; Zhou, Ke; Qin, MingKang

    2009-08-01

    With the popularity of Saas (Software as a service), backup service has becoming a hot topic of storage application. Due to the numerous backup users, how to reduce the massive data load is a key problem for system designer. Data compression provides a good solution. Traditional data compression application used to adopt a single method, which has limitations in some respects. For example data stream compression can only realize intra-file compression, de-duplication is used to eliminate inter-file redundant data, compression efficiency cannot meet the need of backup service software. This paper proposes a novel hybrid compression approach, which includes two levels: global compression and block compression. The former can eliminate redundant inter-file copies across different users, the latter adopts data stream compression technology to realize intra-file de-duplication. Several compressing algorithms were adopted to measure the compression ratio and CPU time. Adaptability using different algorithm in certain situation is also analyzed. The performance analysis shows that great improvement is made through the hybrid compression policy.

  10. FRC translation into a compression coil

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1985-01-01

    Several features of the problem of FRC translation into a compression coil are considered. First, the magnitude of the guide field is calculated and found to exceed that which would be applied to a flux conserver. Second, energy conservation is applied to FRC translation from a flux conserver into a compression coil. It is found that a significant temperature decrease is required for translation to be energetically possible. The temperature change depends on the external inductance in the compression circuit. An analogous case is that of a compression region composed of a compound magnet; in this case the temperature change depends on the ratio of inner and outer coil radii. Finally, the kinematics of intermediate translation states are calculated using an ''abrupt transition'' model. It is found, in this model, that the FRC must overcome a potential hill during translation, which requires a small initial velocity

  11. Compressed Gas Safety for Experimental Fusion Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  12. Application of content-based image compression to telepathology

    Science.gov (United States)

    Varga, Margaret J.; Ducksbury, Paul G.; Callagy, Grace

    2002-05-01

    Telepathology is a means of practicing pathology at a distance, viewing images on a computer display rather than directly through a microscope. Without compression, images take too long to transmit to a remote location and are very expensive to store for future examination. However, to date the use of compressed images in pathology remains controversial. This is because commercial image compression algorithms such as JPEG achieve data compression without knowledge of the diagnostic content. Often images are lossily compressed at the expense of corrupting informative content. None of the currently available lossy compression techniques are concerned with what information has been preserved and what data has been discarded. Their sole objective is to compress and transmit the images as fast as possible. By contrast, this paper presents a novel image compression technique, which exploits knowledge of the slide diagnostic content. This 'content based' approach combines visually lossless and lossy compression techniques, judiciously applying each in the appropriate context across an image so as to maintain 'diagnostic' information while still maximising the possible compression. Standard compression algorithms, e.g. wavelets, can still be used, but their use in a context sensitive manner can offer high compression ratios and preservation of diagnostically important information. When compared with lossless compression the novel content-based approach can potentially provide the same degree of information with a smaller amount of data. When compared with lossy compression it can provide more information for a given amount of compression. The precise gain in the compression performance depends on the application (e.g. database archive or second opinion consultation) and the diagnostic content of the images.

  13. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  14. Fast lossless compression via cascading Bloom filters.

    Science.gov (United States)

    Rozov, Roye; Shamir, Ron; Halperin, Eran

    2014-01-01

    Data from large Next Generation Sequencing (NGS) experiments present challenges both in terms of costs associated with storage and in time required for file transfer. It is sometimes possible to store only a summary relevant to particular applications, but generally it is desirable to keep all information needed to revisit experimental results in the future. Thus, the need for efficient lossless compression methods for NGS reads arises. It has been shown that NGS-specific compression schemes can improve results over generic compression methods, such as the Lempel-Ziv algorithm, Burrows-Wheeler transform, or Arithmetic Coding. When a reference genome is available, effective compression can be achieved by first aligning the reads to the reference genome, and then encoding each read using the alignment position combined with the differences in the read relative to the reference. These reference-based methods have been shown to compress better than reference-free schemes, but the alignment step they require demands several hours of CPU time on a typical dataset, whereas reference-free methods can usually compress in minutes. We present a new approach that achieves highly efficient compression by using a reference genome, but completely circumvents the need for alignment, affording a great reduction in the time needed to compress. In contrast to reference-based methods that first align reads to the genome, we hash all reads into Bloom filters to encode, and decode by querying the same Bloom filters using read-length subsequences of the reference genome. Further compression is achieved by using a cascade of such filters. Our method, called BARCODE, runs an order of magnitude faster than reference-based methods, while compressing an order of magnitude better than reference-free methods, over a broad range of sequencing coverage. In high coverage (50-100 fold), compared to the best tested compressors, BARCODE saves 80-90% of the running time while only increasing space

  15. Saclay Reactor: acquired knowledge by two years experience in heat transfer using compressed gas; La pile de Saclay experience acquise en deux ans sur le transfert de chaleur par gaz comprime

    Energy Technology Data Exchange (ETDEWEB)

    Yvon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    Describes the conception and functioning of a new reactor (EL-2) using compressed gas as primary coolant. The aim of the use of compressed gas as primary coolant is to reduce the quantity of heavy water used in the functioning of the reactor. Description of the reactor vessel (dimensions, materials, reflector and protection). Description of the cells and the circulation of the gas within the cells. A complete explanation of the control and regulating of the reaction by the ionization chamber is given. Heavy water is used as modulator: it describes the heavy water system and its recombination system. The fuel slugs are cooled by compressed gas: its system is described as well as the blower and the heat exchanger system. Water is supplied by a cooling tower which means the reactor power is dependant of the atmospheric conditions. Particular attention has been given to the tightness of the different systems used. The relation between neutron flow and the thermal output is discussed: the thermal output can be calculated by measuring the gas flow and its heating or by measuring the neutron flow within the reactor, both methods gives closed results. Reactivity study: determination of the different factors which induce a variation of reactivity. Heat transfer: discussion on the use of different heat transfer systems, determination of the required chemical and physical properties of the primary coolant as well as the discussion of the nuclear and thermal requirements for the choice of it. A comparison between the use of nitrogen and carbon dioxide gas shows an advantage in using nitrogen with the existing knowledge. Reflexion on the relevance of this work and the future perspectives of the use of compressed gas as primary coolant. (M.P.)

  16. Optimization of Error-Bounded Lossy Compression for Hard-to-Compress HPC Data

    Energy Technology Data Exchange (ETDEWEB)

    Di, Sheng; Cappello, Franck

    2018-01-01

    Since today’s scientific applications are producing vast amounts of data, compressing them before storage/transmission is critical. Results of existing compressors show two types of HPC data sets: highly compressible and hard to compress. In this work, we carefully design and optimize the error-bounded lossy compression for hard-tocompress scientific data. We propose an optimized algorithm that can adaptively partition the HPC data into best-fit consecutive segments each having mutually close data values, such that the compression condition can be optimized. Another significant contribution is the optimization of shifting offset such that the XOR-leading-zero length between two consecutive unpredictable data points can be maximized. We finally devise an adaptive method to select the best-fit compressor at runtime for maximizing the compression factor. We evaluate our solution using 13 benchmarks based on real-world scientific problems, and we compare it with 9 other state-of-the-art compressors. Experiments show that our compressor can always guarantee the compression errors within the user-specified error bounds. Most importantly, our optimization can improve the compression factor effectively, by up to 49% for hard-tocompress data sets with similar compression/decompression time cost.

  17. Visual feature discrimination versus compression ratio for polygonal shape descriptors

    Science.gov (United States)

    Heuer, Joerg; Sanahuja, Francesc; Kaup, Andre

    2000-10-01

    In the last decade several methods for low level indexing of visual features appeared. Most often these were evaluated with respect to their discrimination power using measures like precision and recall. Accordingly, the targeted application was indexing of visual data within databases. During the standardization process of MPEG-7 the view on indexing of visual data changed, taking also communication aspects into account where coding efficiency is important. Even if the descriptors used for indexing are small compared to the size of images, it is recognized that there can be several descriptors linked to an image, characterizing different features and regions. Beside the importance of a small memory footprint for the transmission of the descriptor and the memory footprint in a database, eventually the search and filtering can be sped up by reducing the dimensionality of the descriptor if the metric of the matching can be adjusted. Based on a polygon shape descriptor presented for MPEG-7 this paper compares the discrimination power versus memory consumption of the descriptor. Different methods based on quantization are presented and their effect on the retrieval performance are measured. Finally an optimized computation of the descriptor is presented.

  18. Variable compression ratio device for internal combustion engine

    Science.gov (United States)

    Maloney, Ronald P.; Faletti, James J.

    2004-03-23

    An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.

  19. Culture: copying, compression, and conventionality.

    Science.gov (United States)

    Tamariz, Mónica; Kirby, Simon

    2015-01-01

    Through cultural transmission, repeated learning by new individuals transforms cultural information, which tends to become increasingly compressible (Kirby, Cornish, & Smith, ; Smith, Tamariz, & Kirby, ). Existing diffusion chain studies include in their design two processes that could be responsible for this tendency: learning (storing patterns in memory) and reproducing (producing the patterns again). This paper manipulates the presence of learning in a simple iterated drawing design experiment. We find that learning seems to be the causal factor behind the increase in compressibility observed in the transmitted information, while reproducing is a source of random heritable innovations. Only a theory invoking these two aspects of cultural learning will be able to explain human culture's fundamental balance between stability and innovation. Copyright © 2014 Cognitive Science Society, Inc.

  20. Refrigerants for Vapour Compression Refrigeration Systems

    Indian Academy of Sciences (India)

    c) Low compression ratio to give high volumetric efficiency and low power ... The normal boiling point5 is also a good indicator of the critical temperature since .... than a few minutes during maintenance and service activities. Freezing point of ...

  1. Mechanical characterization of diesel soot nanoparticles: in situ compression in a transmission electron microscope and simulations

    Science.gov (United States)

    Jenei, Istvan Zoltan; Dassenoy, Fabrice; Epicier, Thierry; Khajeh, Arash; Martini, Ashlie; Uy, Dairene; Ghaednia, Hamed; Gangopadhyay, Arup

    2018-02-01

    Incomplete fuel burning inside an internal combustion engine results in the creation of soot in the form of nanoparticles. Some of these soot nanoparticles (SNP) become adsorbed into the lubricating oil film present on the cylinder walls, which adversely affects the tribological performance of the lubricant. In order to better understand the mechanisms underlying the wear caused by SNPs, it is important to understand the behavior of SNPs and to characterize potential changes in their mechanical properties (e.g. hardness) caused by (or during) mechanical stress. In this study, the behavior of individual SNPs originating from diesel engines was studied under compression. The experiments were performed in a transmission electron microscope using a nanoindentation device. The nanoparticles exhibited elasto-plastic behavior in response to consecutive compression cycles. From the experimental data, the Young’s modulus and hardness of the SNPs were calculated. The Young’s modulus and hardness of the nanoparticles increased with the number of compression cycles. Using an electron energy loss spectroscopy technique, it was shown that the sp2/sp3 ratio within the compressed nanoparticle decreases, which is suggested to be the cause of the increase in elasticity and hardness. In order to corroborate the experimental findings, molecular dynamics simulations of a model SNP were performed. The SNP model was constructed using carbon and hydrogen atoms with morphology and composition comparable to those observed in the experiment. The model SNP was subjected to repeated compressions between two virtual rigid walls. During the simulation, the nanoparticle exhibited elasto-plastic behavior like that in the experiments. The results of the simulations confirm that the increase in the elastic modulus and hardness is associated with a decrease in the sp2/sp3 ratio.

  2. Salary Compression in the Association of Research Libraries

    Science.gov (United States)

    Seaman, Scott

    2005-01-01

    Using salary data from the "ARL Annual Salary Survey," this paper analyzes 2003-2004 salary data for evidence of salary compression. It reviews the concept of salary compression to explain its relationship to market salary rates and salary dispersion within an organization. The analysis utilizes comparison ratios between salaries and years of…

  3. Strain ratio ultrasound elastography increases the accuracy of colour-Doppler ultrasound in the evaluation of Thy-3 nodules. A bi-centre university experience.

    Science.gov (United States)

    Cantisani, Vito; Maceroni, Piero; D'Andrea, Vito; Patrizi, Gregorio; Di Segni, Mattia; De Vito, Corrado; Grazhdani, Hektor; Isidori, Andrea M; Giannetta, Elisa; Redler, Adriano; Frattaroli, Fabrizio; Giacomelli, Laura; Di Rocco, Giorgio; Catalano, Carlo; D'Ambrosio, Ferdinando

    2016-05-01

    To assess whether ultrasound elastography (USE) with strain ratio increases diagnostic accuracy of Doppler ultrasound in further characterisation of cytologically Thy3 thyroid nodules. In two different university diagnostic centres, 315 patients with indeterminate cytology (Thy3) in thyroid nodules aspirates were prospectively evaluated with Doppler ultrasound and strain ratio USE before surgery. Ultrasonographic features were analysed separately and together as ultrasound score, to assess sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Receiver operating characteristic (ROC) curves to identify optimal cut-off value of the strain ratio were also provided. Diagnosis on a surgical specimen was considered the standard of reference. Higher strain ratio values were found in malignant nodules, with an optimum strain ratio cut-off of 2.09 at ROC analysis. USE with strain ratio showed 90.6% sensitivity, 93% specificity, 82.8% PPV, 96.4% NPV, while US score yielded a sensitivity of 52.9%, specificity of 84.3%, PPV 55.6% and NPV 82.9%. The diagnostic gain with strain ratio was statistically significant as proved by ROC areas, which was 0.9182 for strain ratio and 0.6864 for US score. USE with strain ratio should be considered a useful additional tool to colour-Doppler US, since it improves characterisation of thyroid nodules with indeterminate cytology. • Strain ratio measurements improve differentiation of thyroid nodules with indeterminate cytology • Elastography with strain ratio is more reliable than ultrasound features and ultrasound score • Strain ratio may help to better select patients with Thy 3 nodules candidate for surgery.

  4. Increase in soil stable carbon isotope ratio relates to loss of organic carbon: results from five long-term bare fallow experiments.

    Science.gov (United States)

    Menichetti, Lorenzo; Houot, Sabine; van Oort, Folkert; Kätterer, Thomas; Christensen, Bent T; Chenu, Claire; Barré, Pierre; Vasilyeva, Nadezda A; Ekblad, Alf

    2015-03-01

    Changes in the (12)C/(13)C ratio (expressed as δ(13)C) of soil organic C (SOC) has been observed over long time scales and with depth in soil profiles. The changes are ascribed to the different reaction kinetics of (12)C and (13)C isotopes and the different isotopic composition of various SOC pool components. However, experimental verification of the subtle isotopic shifts associated with SOC turnover under field conditions is scarce. We determined δ(13)C and SOC in soil sampled during 1929-2009 in the Ap-horizon of five European long-term bare fallow experiments kept without C inputs for 27-80 years and covering a latitudinal range of 11°. The bare fallow soils lost 33-65% of their initial SOC content and showed a mean annual δ(13)C increase of 0.008-0.024‰. The (13)C enrichment could be related empirically to SOC losses by a Rayleigh distillation equation. A more complex mechanistic relationship was also examined. The overall estimate of the fractionation coefficient (ε) was -1.2 ± 0.3‰. This coefficient represents an important input to studies of long-term SOC dynamics in agricultural soils that are based on variations in (13)C natural abundance. The variance of ε may be ascribed to site characteristics not disclosed in our study, but the very similar kinetics measured across our five experimental sites suggest that overall site-specific factors (including climate) had a marginal influence and that it may be possible to isolate a general mechanism causing the enrichment, although pre-fallow land use may have some impact on isotope abundance and fractionation.

  5. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths.

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-12-08

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete's compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

  6. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    Science.gov (United States)

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei

    2014-01-01

    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength. PMID:28788279

  7. CoGI: Towards Compressing Genomes as an Image.

    Science.gov (United States)

    Xie, Xiaojing; Zhou, Shuigeng; Guan, Jihong

    2015-01-01

    Genomic science is now facing an explosive increase of data thanks to the fast development of sequencing technology. This situation poses serious challenges to genomic data storage and transferring. It is desirable to compress data to reduce storage and transferring cost, and thus to boost data distribution and utilization efficiency. Up to now, a number of algorithms / tools have been developed for compressing genomic sequences. Unlike the existing algorithms, most of which treat genomes as one-dimensional text strings and compress them based on dictionaries or probability models, this paper proposes a novel approach called CoGI (the abbreviation of Compressing Genomes as an Image) for genome compression, which transforms the genomic sequences to a two-dimensional binary image (or bitmap), then applies a rectangular partition coding algorithm to compress the binary image. CoGI can be used as either a reference-based compressor or a reference-free compressor. For the former, we develop two entropy-based algorithms to select a proper reference genome. Performance evaluation is conducted on various genomes. Experimental results show that the reference-based CoGI significantly outperforms two state-of-the-art reference-based genome compressors GReEn and RLZ-opt in both compression ratio and compression efficiency. It also achieves comparable compression ratio but two orders of magnitude higher compression efficiency in comparison with XM--one state-of-the-art reference-free genome compressor. Furthermore, our approach performs much better than Gzip--a general-purpose and widely-used compressor, in both compression speed and compression ratio. So, CoGI can serve as an effective and practical genome compressor. The source code and other related documents of CoGI are available at: http://admis.fudan.edu.cn/projects/cogi.htm.

  8. The effect of hydraulic bed movement on the quality of chest compressions.

    Science.gov (United States)

    Park, Maeng Real; Lee, Dae Sup; In Kim, Yong; Ryu, Ji Ho; Cho, Young Mo; Kim, Hyung Bin; Yeom, Seok Ran; Min, Mun Ki

    2017-08-01

    The hydraulic height control systems of hospital beds provide convenience and shock absorption. However, movements in a hydraulic bed may reduce the effectiveness of chest compressions. This study investigated the effects of hydraulic bed movement on chest compressions. Twenty-eight participants were recruited for this study. All participants performed chest compressions for 2min on a manikin and three surfaces: the floor (Day 1), a firm plywood bed (Day 2), and a hydraulic bed (Day 3). We considered 28 participants of Day 1 as control and each 28 participants of Day 2 and Day 3 as study subjects. The compression rates, depths, and good compression ratios (>5-cm compressions/all compressions) were compared between the three surfaces. When we compared the three surfaces, we did not detect a significant difference in the speed of chest compressions (p=0.582). However, significantly lower values were observed on the hydraulic bed in terms of compression depth (p=0.001) and the good compression ratio (p=0.003) compared to floor compressions. When we compared the plywood and hydraulic beds, we did not detect significant differences in compression depth (p=0.351) and the good compression ratio (p=0.391). These results indicate that the movements in our hydraulic bed were associated with a non-statistically significant trend towards lower-quality chest compressions. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz

    2018-01-30

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  10. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz; Hantouche, Mireille; Khurshid, Muneeb; Mohamed, Samah; Nasir, Ehson Fawad; Farooq, Aamir; Roberts, William L.; Knio, Omar; Sarathy, Mani

    2018-01-01

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  11. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2009-01-01

    This book introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. For the computation of turbulent compressible flows, current methods of averaging and filtering are presented so that the reader is exposed to a consistent development of applicable equation sets for both the mean or resolved fields as well as the transport equations for the turbulent stress field. For the measurement of turbulent compressible flows, current techniques ranging from hot-wire anemometry to PIV are evaluated and limitations assessed. Characterizing dynamic features of free shear flows, including jets, mixing layers and wakes, and wall-bounded flows, including shock-turbulence and shock boundary-layer interactions, obtained from computations, experiments and simulations are discussed. Key features: * Describes prediction methodologies in...

  12. models for predicting compressive strength and water absorption

    African Journals Online (AJOL)

    user

    presents a mathematical model for predicting the compressive strength and water absorption of laterite-quarry dust cement block using ... building and construction of new infrastructure and .... In (6), R is a vector containing the real ratios of the.

  13. Lossy compression of quality scores in genomic data.

    Science.gov (United States)

    Cánovas, Rodrigo; Moffat, Alistair; Turpin, Andrew

    2014-08-01

    Next-generation sequencing technologies are revolutionizing medicine. Data from sequencing technologies are typically represented as a string of bases, an associated sequence of per-base quality scores and other metadata, and in aggregate can require a large amount of space. The quality scores show how accurate the bases are with respect to the sequencing process, that is, how confident the sequencer is of having called them correctly, and are the largest component in datasets in which they are retained. Previous research has examined how to store sequences of bases effectively; here we add to that knowledge by examining methods for compressing quality scores. The quality values originate in a continuous domain, and so if a fidelity criterion is introduced, it is possible to introduce flexibility in the way these values are represented, allowing lossy compression over the quality score data. We present existing compression options for quality score data, and then introduce two new lossy techniques. Experiments measuring the trade-off between compression ratio and information loss are reported, including quantifying the effect of lossy representations on a downstream application that carries out single nucleotide polymorphism and insert/deletion detection. The new methods are demonstrably superior to other techniques when assessed against the spectrum of possible trade-offs between storage required and fidelity of representation. An implementation of the methods described here is available at https://github.com/rcanovas/libCSAM. rcanovas@student.unimelb.edu.au Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Application of plasma focus device to compression of toroidal plasma

    International Nuclear Information System (INIS)

    Ikuta, Kazunari

    1980-01-01

    A new concept of compressing a toroidal plasma using a plasma focus device is considered. Maximum compression ratio of toroidal plasma is determined merely by the initial density ratio of the toroidal plasma to a sheet plasma in a focus device because of the Rayleigh-Taylor instability. An initiation senario of plasma-linear is also proposed with a possible application of this concepts to the creation of a burning plasma in reversed field configurations, i.e., burning plasma vortex. (author)

  15. Unstable oscillation of tubular cantilevered beams conveying a compressible fluid

    International Nuclear Information System (INIS)

    Johnson, R.O.; Stoneking, J.E.; Carley, T.G.

    1986-01-01

    This paper is concerned with establishing the conditions of stability of a cantilevered tube conveying a compressible fluid. Solutions to Niordson's eigenvalue problem associated with the equations of motion are computed using Muller's method. The effects on critical velocity of compressibility which are accommodated by specifying the tube aspect ratio and fluid sonic velocity are parametrically studied. Aspect ratio is found to have a more pronounced effect on critical velocity than sonic velocity over the parameter range that was considered. (orig.)

  16. PERFORMANCE ANALYSIS OF SET PARTITIONING IN HIERARCHICAL TREES (SPIHT ALGORITHM FOR A FAMILY OF WAVELETS USED IN COLOR IMAGE COMPRESSION

    Directory of Open Access Journals (Sweden)

    A. Sreenivasa Murthy

    2014-11-01

    Full Text Available With the spurt in the amount of data (Image, video, audio, speech, & text available on the net, there is a huge demand for memory & bandwidth savings. One has to achieve this, by maintaining the quality & fidelity of the data acceptable to the end user. Wavelet transform is an important and practical tool for data compression. Set partitioning in hierarchal trees (SPIHT is a widely used compression algorithm for wavelet transformed images. Among all wavelet transform and zero-tree quantization based image compression algorithms SPIHT has become the benchmark state-of-the-art algorithm because it is simple to implement & yields good results. In this paper we present a comparative study of various wavelet families for image compression with SPIHT algorithm. We have conducted experiments with Daubechies, Coiflet, Symlet, Bi-orthogonal, Reverse Bi-orthogonal and Demeyer wavelet types. The resulting image quality is measured objectively, using peak signal-to-noise ratio (PSNR, and subjectively, using perceived image quality (human visual perception, HVP for short. The resulting reduction in the image size is quantified by compression ratio (CR.

  17. Watermark Compression in Medical Image Watermarking Using Lempel-Ziv-Welch (LZW) Lossless Compression Technique.

    Science.gov (United States)

    Badshah, Gran; Liew, Siau-Chuin; Zain, Jasni Mohd; Ali, Mushtaq

    2016-04-01

    In teleradiology, image contents may be altered due to noisy communication channels and hacker manipulation. Medical image data is very sensitive and can not tolerate any illegal change. Illegally changed image-based analysis could result in wrong medical decision. Digital watermarking technique can be used to authenticate images and detect as well as recover illegal changes made to teleradiology images. Watermarking of medical images with heavy payload watermarks causes image perceptual degradation. The image perceptual degradation directly affects medical diagnosis. To maintain the image perceptual and diagnostic qualities standard during watermarking, the watermark should be lossless compressed. This paper focuses on watermarking of ultrasound medical images with Lempel-Ziv-Welch (LZW) lossless-compressed watermarks. The watermark lossless compression reduces watermark payload without data loss. In this research work, watermark is the combination of defined region of interest (ROI) and image watermarking secret key. The performance of the LZW compression technique was compared with other conventional compression methods based on compression ratio. LZW was found better and used for watermark lossless compression in ultrasound medical images watermarking. Tabulated results show the watermark bits reduction, image watermarking with effective tamper detection and lossless recovery.

  18. Shock compression of diamond crystal

    OpenAIRE

    Kondo, Ken-ichi; Ahrens, Thomas J.

    1983-01-01

    Two shock wave experiments employing inclined mirrors have been carried out to determine the Hugoniot elastic limit (HEL), final shock state at 191 and 217 GPa, and the post-shock state of diamond crystal, which is shock-compressed along the intermediate direction between the and crystallographic axes. The HEL wave has a velocity of 19.9 ± 0.3 mm/µsec and an amplitude of 63 ± 28 GPa. An alternate interpretation of the inclined wedge mirror streak record suggests a ramp precursor wave and th...

  19. Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression

    Science.gov (United States)

    Guerette, Michael; Ackerson, Michael R.; Thomas, Jay; Yuan, Fenglin; Bruce Watson, E.; Walker, David; Huang, Liping

    2015-10-01

    Silica glass has been shown in numerous studies to possess significant capacity for permanent densification under pressure at different temperatures to form high density amorphous (HDA) silica. However, it is unknown to what extent the processes leading to irreversible densification of silica glass in cold-compression at room temperature and in hot-compression (e.g., near glass transition temperature) are common in nature. In this work, a hot-compression technique was used to quench silica glass from high temperature (1100 °C) and high pressure (up to 8 GPa) conditions, which leads to density increase of ~25% and Young’s modulus increase of ~71% relative to that of pristine silica glass at ambient conditions. Our experiments and molecular dynamics (MD) simulations provide solid evidences that the intermediate-range order of the hot-compressed HDA silica is distinct from that of the counterpart cold-compressed at room temperature. This explains the much higher thermal and mechanical stability of the former than the latter upon heating and compression as revealed in our in-situ Brillouin light scattering (BLS) experiments. Our studies demonstrate the limitation of the resulting density as a structural indicator of polyamorphism, and point out the importance of temperature during compression in order to fundamentally understand HDA silica.

  20. Temporal compression in episodic memory for real-life events.

    Science.gov (United States)

    Jeunehomme, Olivier; Folville, Adrien; Stawarczyk, David; Van der Linden, Martial; D'Argembeau, Arnaud

    2018-07-01

    Remembering an event typically takes less time than experiencing it, suggesting that episodic memory represents past experience in a temporally compressed way. Little is known, however, about how the continuous flow of real-life events is summarised in memory. Here we investigated the nature and determinants of temporal compression by directly comparing memory contents with the objective timing of events as measured by a wearable camera. We found that episodic memories consist of a succession of moments of prior experience that represent events with varying compression rates, such that the density of retrieved information is modulated by goal processing and perceptual changes. Furthermore, the results showed that temporal compression rates remain relatively stable over one week and increase after a one-month delay, particularly for goal-related events. These data shed new light on temporal compression in episodic memory and suggest that compression rates are adaptively modulated to maintain current goal-relevant information.

  1. Compression of toroidal plasma by imploding plasma-liner

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1979-07-01

    A new concept of compressing a plasma in a closed magnetic configuration by a version of liner implosion flux compression technique is considered. The liner consists of a dense plasma cylinder, i.e. the plasma-liner. Maximum compression ratio of toroidal plasma is determined just by the initial density ratio of the toroidal plasma to the liner plasma because of the Rayleigh-Taylor instability. A start-up senario of plasma-liner is also proposed with a possible application of this concept to the creation of a burning plasma in reversed field configurations, i.e. burning plasma vortex. (author)

  2. Effects of errors in velocity tilt on maximum longitudinal compression during neutralized drift compression of intense beam pulses: II. Analysis of experimental data of the Neutralized Drift Compression eXperiment-I (NDCX-I)

    International Nuclear Information System (INIS)

    Massidda, Scott; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.; Lidia, Steven M.; Seidl, Peter; Friedman, Alex

    2012-01-01

    Neutralized drift compression offers an effective means for particle beam focusing and current amplification with applications to heavy ion fusion. In the Neutralized Drift Compression eXperiment-I (NDCX-I), a non-relativistic ion beam pulse is passed through an inductive bunching module that produces a longitudinal velocity modulation. Due to the applied velocity tilt, the beam pulse compresses during neutralized drift. The ion beam pulse can be compressed by a factor of more than 100; however, errors in the velocity modulation affect the compression ratio in complex ways. We have performed a study of how the longitudinal compression of a typical NDCX-I ion beam pulse is affected by the initial errors in the acquired velocity modulation. Without any voltage errors, an ideal compression is limited only by the initial energy spread of the ion beam, ΔΕ b . In the presence of large voltage errors, δU⪢ΔE b , the maximum compression ratio is found to be inversely proportional to the geometric mean of the relative error in velocity modulation and the relative intrinsic energy spread of the beam ions. Although small parts of a beam pulse can achieve high local values of compression ratio, the acquired velocity errors cause these parts to compress at different times, limiting the overall compression of the ion beam pulse.

  3. Optical pulse compression

    International Nuclear Information System (INIS)

    Glass, A.J.

    1975-01-01

    The interest in using large lasers to achieve a very short and intense pulse for generating fusion plasma has provided a strong impetus to reexamine the possibilities of optical pulse compression at high energy. Pulse compression allows one to generate pulses of long duration (minimizing damage problems) and subsequently compress optical pulses to achieve the short pulse duration required for specific applications. The ideal device for carrying out this program has not been developed. Of the two approaches considered, the Gires--Tournois approach is limited by the fact that the bandwidth and compression are intimately related, so that the group delay dispersion times the square of the bandwidth is about unity for all simple Gires--Tournois interferometers. The Treacy grating pair does not suffer from this limitation, but is inefficient because diffraction generally occurs in several orders and is limited by the problem of optical damage to the grating surfaces themselves. Nonlinear and parametric processes were explored. Some pulse compression was achieved by these techniques; however, they are generally difficult to control and are not very efficient. (U.S.)

  4. NRGC: a novel referential genome compression algorithm.

    Science.gov (United States)

    Saha, Subrata; Rajasekaran, Sanguthevar

    2016-11-15

    Next-generation sequencing techniques produce millions to billions of short reads. The procedure is not only very cost effective but also can be done in laboratory environment. The state-of-the-art sequence assemblers then construct the whole genomic sequence from these reads. Current cutting edge computing technology makes it possible to build genomic sequences from the billions of reads within a minimal cost and time. As a consequence, we see an explosion of biological sequences in recent times. In turn, the cost of storing the sequences in physical memory or transmitting them over the internet is becoming a major bottleneck for research and future medical applications. Data compression techniques are one of the most important remedies in this context. We are in need of suitable data compression algorithms that can exploit the inherent structure of biological sequences. Although standard data compression algorithms are prevalent, they are not suitable to compress biological sequencing data effectively. In this article, we propose a novel referential genome compression algorithm (NRGC) to effectively and efficiently compress the genomic sequences. We have done rigorous experiments to evaluate NRGC by taking a set of real human genomes. The simulation results show that our algorithm is indeed an effective genome compression algorithm that performs better than the best-known algorithms in most of the cases. Compression and decompression times are also very impressive. The implementations are freely available for non-commercial purposes. They can be downloaded from: http://www.engr.uconn.edu/~rajasek/NRGC.zip CONTACT: rajasek@engr.uconn.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. On the difficulties of discriminating between major and minor hybrid male sterility factors in Drosophila by examining the segregation ratio of sterile and fertile sons in backcrossing experiments.

    Science.gov (United States)

    Maside, X R; Naveira, H F

    1996-10-01

    The observation of segregation ratios of sterile and fertile males in offspring samples from backcrossed hybrid females is, in principle, a valid method to unveil the genetic basis of hybrid male sterility in Drosophila. When the female parent is heterozygous (hybrid) for a sterility factor with major effects, equal proportions of fertile and sterile sons are expected in her offspring. However, intact (not recombined) chromosome segments of considerable length are expected to give segregation ratios that can not be easily differentiated from the 1:1 ratio expected from a single factor. When the phenotypic character under analysis can be determined by combinations of minor factors from the donor species spanning a certain chromosome length, very large offspring samples may be needed to test this alternative hypothesis against the null hypothesis of a single major factor. This is particularly the case of hybrid male sterility determinants in Drosophila.

  6. Experiments of flow-induced in-line oscillation of a circular cylinder in a water tunnel. 2. Influence of the aspect ratio of a cantilevered circular cylinder

    International Nuclear Information System (INIS)

    Nakamura, Akira; Okajima, Atsushi; Kosugi, Takashi

    2001-01-01

    The flow-induced in-line oscillation of a cantilevered circular cylinder was experimentally studied through free-oscillation tests in a water tunnel. The response displacement amplitude at a circular cylinder tip was measured at reduced velocity from 1.0 to 4.0. A cantilevered cylinder was supported by a plate spring mounted on the water tunnel wall. The cylinder aspect ratio was varied from 5 to 21 to investigate the effect of aspect ratio on the response displacement. It is found that cylinders with aspect ratios of 5 and 10 have one excitation region, while cylinders with aspect ratios of 14 and 21 have two excitation regions. The aspect ratio, therefore, affects the amplitude of the excitation regions. The influence of end-effect was also investigated using cylinders with an end plate attached to the free end. Since the cylinders with an end plate show two excitation regions, even at an aspect ratio of 5, the flow around the free end of a cantilevered cylinder causes the end-effect. The mechanism of vibration was investigated using a cylinder with a splitter plate in wake to prevent alternate vortices. The amplitude is greater than those of a normal cylinder without a splitter plate, especially at V r =2.3 to 3.0, where a cylinder with an end plate shows the second excitation region. In order words, the alternate vortices suppress the amplitude in this range. The maximum amplitude of each excitation region decreases in proportion to C n and the amplitude of the first excitation is more sensitive to C n . (author)

  7. Tensile and compressive failure modes of laminated composites loaded by fatigue with different mean stress

    Science.gov (United States)

    Rotem, Assa

    1990-01-01

    Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.

  8. Isentropic Compression of Argon

    International Nuclear Information System (INIS)

    Oona, H.; Solem, J.C.; Veeser, L.R.; Ekdahl, C.A.; Rodriquez, P.J.; Younger, S.M.; Lewis, W.; Turley, W.D.

    1997-01-01

    We are studying the transition of argon from an insulator to a conductor by compressing the frozen gas isentropically to pressures at which neighboring atomic orbitals overlap sufficiently to allow some electron motion between atoms. Argon and the other rare gases have closed electron shells and therefore remain montomic, even when they solidify. Their simple structure makes it likely that any measured change in conductivity is due to changes in the atomic structure, not in molecular configuration. As the crystal is compressed the band gap closes, allowing increased conductivity. We have begun research to determine the conductivity at high pressures, and it is our intention to determine the compression at which the crystal becomes a metal

  9. Pulsed Compression Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roestenberg, T. [University of Twente, Enschede (Netherlands)

    2012-06-07

    The advantages of the Pulsed Compression Reactor (PCR) over the internal combustion engine-type chemical reactors are briefly discussed. Over the last four years a project concerning the fundamentals of the PCR technology has been performed by the University of Twente, Enschede, Netherlands. In order to assess the feasibility of the application of the PCR principle for the conversion methane to syngas, several fundamental questions needed to be answered. Two important questions that relate to the applicability of the PCR for any process are: how large is the heat transfer rate from a rapidly compressed and expanded volume of gas, and how does this heat transfer rate compare to energy contained in the compressed gas? And: can stable operation with a completely free piston as it is intended with the PCR be achieved?.

  10. Medullary compression syndrome

    International Nuclear Information System (INIS)

    Barriga T, L.; Echegaray, A.; Zaharia, M.; Pinillos A, L.; Moscol, A.; Barriga T, O.; Heredia Z, A.

    1994-01-01

    The authors made a retrospective study in 105 patients treated in the Radiotherapy Department of the National Institute of Neoplasmic Diseases from 1973 to 1992. The objective of this evaluation was to determine the influence of radiotherapy in patients with medullary compression syndrome in aspects concerning pain palliation and improvement of functional impairment. Treatment sheets of patients with medullary compression were revised: 32 out of 39 of patients (82%) came to hospital by their own means and continued walking after treatment, 8 out of 66 patients (12%) who came in a wheelchair or were bedridden, could mobilize by their own after treatment, 41 patients (64%) had partial alleviation of pain after treatment. In those who came by their own means and did not change their characteristics, functional improvement was observed. It is concluded that radiotherapy offers palliative benefit in patients with medullary compression syndrome. (authors). 20 refs., 5 figs., 6 tabs

  11. Using Mole Ratios of Electrolytic Products of Water for Analysis of Household Vinegar: An Experiment for the Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Dabke, Rajeev B.; Gebeyehu, Zewdu

    2012-01-01

    A simple 3-h physical chemistry undergraduate experiment for the quantitative analysis of acetic acid in household vinegar is presented. The laboratory experiment combines titration concept with electrolysis and an application of the gas laws. A vinegar sample was placed in the cathode compartment of the electrolysis cell. Electrolysis of water…

  12. Adiabatic liquid piston compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Tage [Danish Technological Institute, Aarhus (Denmark); Elmegaard, B. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Schroeder Pedersen, A. [Technical Univ. of Denmark. DTU Energy Conversion, Risoe Campus, Roskilde (Denmark)

    2013-01-15

    ;'Adiabatic Liquid Piston Compressed Air Energy Storage'' (ALP-CAES). The compression ratio of the gas in the vessel (ratio between maximum and minimum pressure) is relatively low; typical values would be < 1,5, whereas the compression ratio in existing CAES systems can be higher than 100, because the air is compressed from atmospheric pressure to the storage pressure. This investigation leads to the conclusion that: 1) The mechanical/electrical efficiency of the ALP-CAES system is significantly higher than existing CAES systems due to a low or nearly absent compression heat loss. Furthermore, pumps/turbines, which use a liquid as a medium, are more efficient than air/gas compressors/turbines. In addition, the demand for fuel during expansion does not occur. 2) The energy density of the ALP-CAES system is much lower than that of existing CAES systems (by a factor of 15-30) leading to a similar increase in investment in pressure vessel volume per stored MWh. Since the pressure vessel constitutes a relatively large fraction of the overall cost of a CAES system, an increase of 15-30 times renders the system economically unfeasible unless the operating conditions and the system design are very carefully selected to compensate the low energy density. Future electricity prices may increase to the extent that the efficiency benefit of ALP-CAES partly compensates the added investment. 3) When comparing ALP-CAES to an adiabatic CAES system, where compression heat is stored in thermal oil, the ALP-CAES system is found only to be competitive under a very specific set of operating/design conditions, including very high operation pressure and the use of very large caverns. 4) New systems are under development, which show an interesting trend in that they use near-isothermal compression and expansion of air (compression/expansion at almost constant temperature), eliminate compression heat loss and still maintain nearly the same level of energy density as existing CAES systems. This

  13. Graph Compression by BFS

    Directory of Open Access Journals (Sweden)

    Alberto Apostolico

    2009-08-01

    Full Text Available The Web Graph is a large-scale graph that does not fit in main memory, so that lossless compression methods have been proposed for it. This paper introduces a compression scheme that combines efficient storage with fast retrieval for the information in a node. The scheme exploits the properties of the Web Graph without assuming an ordering of the URLs, so that it may be applied to more general graphs. Tests on some datasets of use achieve space savings of about 10% over existing methods.

  14. A new hyperspectral image compression paradigm based on fusion

    Science.gov (United States)

    Guerra, Raúl; Melián, José; López, Sebastián.; Sarmiento, Roberto

    2016-10-01

    The on-board compression of remote sensed hyperspectral images is an important task nowadays. One of the main difficulties is that the compression of these images must be performed in the satellite which carries the hyperspectral sensor. Hence, this process must be performed by space qualified hardware, having area, power and speed limitations. Moreover, it is important to achieve high compression ratios without compromising the quality of the decompress image. In this manuscript we proposed a new methodology for compressing hyperspectral images based on hyperspectral image fusion concepts. The proposed compression process has two independent steps. The first one is to spatially degrade the remote sensed hyperspectral image to obtain a low resolution hyperspectral image. The second step is to spectrally degrade the remote sensed hyperspectral image to obtain a high resolution multispectral image. These two degraded images are then send to the earth surface, where they must be fused using a fusion algorithm for hyperspectral and multispectral image, in order to recover the remote sensed hyperspectral image. The main advantage of the proposed methodology for compressing remote sensed hyperspectral images is that the compression process, which must be performed on-board, becomes very simple, being the fusion process used to reconstruct image the more complex one. An extra advantage is that the compression ratio can be fixed in advanced. Many simulations have been performed using different fusion algorithms and different methodologies for degrading the hyperspectral image. The results obtained in the simulations performed corroborate the benefits of the proposed methodology.

  15. Acceleration of beam ions during major radius compression in TFTR

    International Nuclear Information System (INIS)

    Wong, K.L.; Bitter, M.; Hammett, G.W.

    1985-09-01

    Tangentially co-injected deuterium beam ions were accelerated from 82 keV up to 150 keV during a major radius compression experiment in TFTR. The ion energy spectra and the variation in fusion yield were in good agreement with Fokker-Planck code simulations. In addition, the plasma rotation velocity was observed to rise during compression

  16. Measuring Poisson Ratios at Low Temperatures

    Science.gov (United States)

    Boozon, R. S.; Shepic, J. A.

    1987-01-01

    Simple extensometer ring measures bulges of specimens in compression. New method of measuring Poisson's ratio used on brittle ceramic materials at cryogenic temperatures. Extensometer ring encircles cylindrical specimen. Four strain gauges connected in fully active Wheatstone bridge self-temperature-compensating. Used at temperatures as low as liquid helium.

  17. An ROI multi-resolution compression method for 3D-HEVC

    Science.gov (United States)

    Ti, Chunli; Guan, Yudong; Xu, Guodong; Teng, Yidan; Miao, Xinyuan

    2017-09-01

    3D High Efficiency Video Coding (3D-HEVC) provides a significant potential on increasing the compression ratio of multi-view RGB-D videos. However, the bit rate still rises dramatically with the improvement of the video resolution, which will bring challenges to the transmission network, especially the mobile network. This paper propose an ROI multi-resolution compression method for 3D-HEVC to better preserve the information in ROI on condition of limited bandwidth. This is realized primarily through ROI extraction and compression multi-resolution preprocessed video as alternative data according to the network conditions. At first, the semantic contours are detected by the modified structured forests to restrain the color textures inside objects. The ROI is then determined utilizing the contour neighborhood along with the face region and foreground area of the scene. Secondly, the RGB-D videos are divided into slices and compressed via 3D-HEVC under different resolutions for selection by the audiences and applications. Afterwards, the reconstructed low-resolution videos from 3D-HEVC encoder are directly up-sampled via Laplace transformation and used to replace the non-ROI areas of the high-resolution videos. Finally, the ROI multi-resolution compressed slices are obtained by compressing the ROI preprocessed videos with 3D-HEVC. The temporal and special details of non-ROI are reduced in the low-resolution videos, so the ROI will be better preserved by the encoder automatically. Experiments indicate that the proposed method can keep the key high-frequency information with subjective significance while the bit rate is reduced.

  18. Compressible generalized Newtonian fluids

    Czech Academy of Sciences Publication Activity Database

    Málek, Josef; Rajagopal, K.R.

    2010-01-01

    Roč. 61, č. 6 (2010), s. 1097-1110 ISSN 0044-2275 Institutional research plan: CEZ:AV0Z20760514 Keywords : power law fluid * uniform temperature * compressible fluid Subject RIV: BJ - Thermodynamics Impact factor: 1.290, year: 2010

  19. Temporal compressive sensing systems

    Science.gov (United States)

    Reed, Bryan W.

    2017-12-12

    Methods and systems for temporal compressive sensing are disclosed, where within each of one or more sensor array data acquisition periods, one or more sensor array measurement datasets comprising distinct linear combinations of time slice data are acquired, and where mathematical reconstruction allows for calculation of accurate representations of the individual time slice datasets.

  20. Compression of Infrared images

    DEFF Research Database (Denmark)

    Mantel, Claire; Forchhammer, Søren

    2017-01-01

    best for bits-per-pixel rates below 1.4 bpp, while HEVC obtains best performance in the range 1.4 to 6.5 bpp. The compression performance is also evaluated based on maximum errors. These results also show that HEVC can achieve a precision of 1°C with an average of 1.3 bpp....

  1. Gas compression infrared generator

    International Nuclear Information System (INIS)

    Hug, W.F.

    1980-01-01

    A molecular gas is compressed in a quasi-adiabatic manner to produce pulsed radiation during each compressor cycle when the pressure and temperature are sufficiently high, and part of the energy is recovered during the expansion phase, as defined in U.S. Pat. No. 3,751,666; characterized by use of a cylinder with a reciprocating piston as a compressor

  2. Wavelet compression algorithm applied to abdominal ultrasound images

    International Nuclear Information System (INIS)

    Lin, Cheng-Hsun; Pan, Su-Feng; LU, Chin-Yuan; Lee, Ming-Che

    2006-01-01

    We sought to investigate acceptable compression ratios of lossy wavelet compression on 640 x 480 x 8 abdominal ultrasound (US) images. We acquired 100 abdominal US images with normal and abnormal findings from the view station of a 932-bed teaching hospital. The US images were then compressed at quality factors (QFs) of 3, 10, 30, and 50 followed outcomes of a pilot study. This was equal to the average compression ratios of 4.3:1, 8.5:1, 20:1 and 36.6:1, respectively. Four objective measurements were carried out to examine and compare the image degradation between original and compressed images. Receiver operating characteristic (ROC) analysis was also introduced for subjective assessment. Five experienced and qualified radiologists as reviewers blinded to corresponding pathological findings, analysed paired 400 randomly ordered images with two 17-inch thin film transistor/liquid crystal display (TFT/LCD) monitors. At ROC analysis, the average area under curve (Az) for US abdominal image was 0.874 at the ratio of 36.6:1. The compressed image size was only 2.7% for US original at this ratio. The objective parameters showed the higher the mean squared error (MSE) or root mean squared error (RMSE) values, the poorer the image quality. The higher signal-to-noise ratio (SNR) or peak signal-to-noise ratio (PSNR) values indicated better image quality. The average RMSE, PSNR at 36.6:1 for US were 4.84 ± 0.14, 35.45 dB, respectively. This finding suggests that, on the basis of the patient sample, wavelet compression of abdominal US to a ratio of 36.6:1 did not adversely affect diagnostic performance or evaluation error for radiologists' interpretation so as to risk affecting diagnosis

  3. A Robust Parallel Algorithm for Combinatorial Compressed Sensing

    Science.gov (United States)

    Mendoza-Smith, Rodrigo; Tanner, Jared W.; Wechsung, Florian

    2018-04-01

    In previous work two of the authors have shown that a vector $x \\in \\mathbb{R}^n$ with at most $k Parallel-$\\ell_0$ decoding algorithm, where $\\mathrm{nnz}(A)$ denotes the number of nonzero entries in $A \\in \\mathbb{R}^{m \\times n}$. In this paper we present the Robust-$\\ell_0$ decoding algorithm, which robustifies Parallel-$\\ell_0$ when the sketch $Ax$ is corrupted by additive noise. This robustness is achieved by approximating the asymptotic posterior distribution of values in the sketch given its corrupted measurements. We provide analytic expressions that approximate these posteriors under the assumptions that the nonzero entries in the signal and the noise are drawn from continuous distributions. Numerical experiments presented show that Robust-$\\ell_0$ is superior to existing greedy and combinatorial compressed sensing algorithms in the presence of small to moderate signal-to-noise ratios in the setting of Gaussian signals and Gaussian additive noise.

  4. Study of the compressibility of the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Morsch, P.H. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik]|[Laboratoire National Saturne, Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1996-12-31

    A brief discussion of the theoretical and experimental situation in baryon spectroscopy is given. Then, the radial structure is discussed, related to the ground state form factors and the compressibility. The compressibility derived from experimental data is compared with results from different nucleon models. From the study of the Roper resonance in nuclei information on the dynamical radius of the nucleon can be obtained. Experiments have been performed on deuteron and {sup 12}C which show no shift of the Roper resonance in these systems. This indicates no sizeable `swelling` or `shrinking` of the nucleon in the nuclear medium. (K.A.). 25 refs.

  5. Study of the compressibility of the nucleon

    International Nuclear Information System (INIS)

    Morsch, P.H.

    1996-01-01

    A brief discussion of the theoretical and experimental situation in baryon spectroscopy is given. Then, the radial structure is discussed, related to the ground state form factors and the compressibility. The compressibility derived from experimental data is compared with results from different nucleon models. From the study of the Roper resonance in nuclei information on the dynamical radius of the nucleon can be obtained. Experiments have been performed on deuteron and 12 C which show no shift of the Roper resonance in these systems. This indicates no sizeable 'swelling' or 'shrinking' of the nucleon in the nuclear medium. (K.A.)

  6. Four-body interaction energy for compressed solid krypton from quantum theory.

    Science.gov (United States)

    Tian, Chunling; Wu, Na; Liu, Fusheng; Saxena, Surendra K; Zheng, Xingrong

    2012-07-28

    The importance of the four-body contribution in compressed solid krypton was first evaluated using the many-body expansion method and the coupled cluster theory with full single and double excitations plus perturbative treatment of triples. All different four-atom clusters existing in the first- and second-nearest neighbor shells of face-centered cubic krypton were considered, and both self-consistent-field Hartree-Fock and correlation parts of the four-body interaction were accurately determined from the ambient conditions up to eightfold volume compression. We find that the four-body interaction energy is negative at compression ratio lower than 2, where the dispersive forces play a dominant role. With increasing the compression, the four-body contribution becomes repulsive and significantly cancels the over-softening effects of the three-body potential. The obtained equation of state (EOS) was compared with the experiments and the density-functional theory calculations. It shows that combination of the four-body effects with two- and three-body interactions leads to an excellent agreement with EOS measurements throughout the whole experimental range 0-130 GPa, and extends the prediction to 300 GPa.

  7. Compressible Fluid Suspension Performance Testing

    National Research Council Canada - National Science Library

    Hoogterp, Francis

    2003-01-01

    ... compressible fluid suspension system that was designed and installed on the vehicle by DTI. The purpose of the tests was to evaluate the possible performance benefits of the compressible fluid suspension system...

  8. Wavelet/scalar quantization compression standard for fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, C.M.

    1996-06-12

    US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class of potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.

  9. Active RF Pulse Compression Using An Electrically Controlled Semiconductor Switch

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan; Tantawi, Sami; /SLAC

    2007-01-10

    First we review the theory of active pulse compression systems using resonant delay lines. Then we describe the design of an electrically controlled semiconductor active switch. The switch comprises an active window and an overmoded waveguide three-port network. The active window is based on a four-inch silicon wafer which has 960 PIN diodes. These are spatially combined in an overmoded waveguide. We describe the philosophy and design methodology for the three-port network and the active window. We then present the results of using this device to compress 11.4 GHz RF signals with high compression ratios. We show how the system can be used with amplifier like sources, in which one can change the phase of the source by manipulating the input to the source. We also show how the active switch can be used to compress a pulse from an oscillator like sources, which is not possible with passive pulse compression systems.

  10. Variable valve timing in a homogenous charge compression ignition engine

    Science.gov (United States)

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  11. Compression of FASTQ and SAM format sequencing data.

    Directory of Open Access Journals (Sweden)

    James K Bonfield

    Full Text Available Storage and transmission of the data produced by modern DNA sequencing instruments has become a major concern, which prompted the Pistoia Alliance to pose the SequenceSqueeze contest for compression of FASTQ files. We present several compression entries from the competition, Fastqz and Samcomp/Fqzcomp, including the winning entry. These are compared against existing algorithms for both reference based compression (CRAM, Goby and non-reference based compression (DSRC, BAM and other recently published competition entries (Quip, SCALCE. The tools are shown to be the new Pareto frontier for FASTQ compression, offering state of the art ratios at affordable CPU costs. All programs are freely available on SourceForge. Fastqz: https://sourceforge.net/projects/fastqz/, fqzcomp: https://sourceforge.net/projects/fqzcomp/, and samcomp: https://sourceforge.net/projects/samcomp/.

  12. Experimental study on compressive strength of sediment brick masonry

    Science.gov (United States)

    Woen, Ean Lee; Malek, Marlinda Abdul; Mohammed, Bashar S.; Chao-Wei, Tang; Tamunif, Muhammad Thaqif

    2018-02-01

    The effects of pre-wetted unit bricks, mortar type and slenderness ratio of prisms on the compressive strength and failure mode of newly developed sediment brick have been evaluated and compared to clay brick and cement-sand bricks. The results show that pre-wetted sediment brick masonry exhibits higher compressive strength of up to 20% compared to the dry sediment masonry. Using cement-lime mortar leads to lower compressive strength compared to cement mortar. However, the sediment brick masonry with the cement lime mortar exhibit higher compressive strength in comparison with cement mortar masonry. More of diagonal shear cracks have been observed in the failure mode of the sediment bricks masonry compared to clay and cement-sand bricks masonry that show mostly vertical cracks and crushing. The sediment unit bricks display compressive strength in between clay and cement-sand bricks.

  13. Toward a Better Compression for DNA Sequences Using Huffman Encoding.

    Science.gov (United States)

    Al-Okaily, Anas; Almarri, Badar; Al Yami, Sultan; Huang, Chun-Hsi

    2017-04-01

    Due to the significant amount of DNA data that are being generated by next-generation sequencing machines for genomes of lengths ranging from megabases to gigabases, there is an increasing need to compress such data to a less space and a faster transmission. Different implementations of Huffman encoding incorporating the characteristics of DNA sequences prove to better compress DNA data. These implementations center on the concepts of selecting frequent repeats so as to force a skewed Huffman tree, as well as the construction of multiple Huffman trees when encoding. The implementations demonstrate improvements on the compression ratios for five genomes with lengths ranging from 5 to 50 Mbp, compared with the standard Huffman tree algorithm. The research hence suggests an improvement on all such DNA sequence compression algorithms that use the conventional Huffman encoding. The research suggests an improvement on all DNA sequence compression algorithms that use the conventional Huffman encoding. Accompanying software is publicly available (AL-Okaily, 2016 ).

  14. 2D-RBUC for efficient parallel compression of residuals

    Science.gov (United States)

    Đurđević, Đorđe M.; Tartalja, Igor I.

    2018-02-01

    In this paper, we present a method for lossless compression of residuals with an efficient SIMD parallel decompression. The residuals originate from lossy or near lossless compression of height fields, which are commonly used to represent models of terrains. The algorithm is founded on the existing RBUC method for compression of non-uniform data sources. We have adapted the method to capture 2D spatial locality of height fields, and developed the data decompression algorithm for modern GPU architectures already present even in home computers. In combination with the point-level SIMD-parallel lossless/lossy high field compression method HFPaC, characterized by fast progressive decompression and seamlessly reconstructed surface, the newly proposed method trades off small efficiency degradation for a non negligible compression ratio (measured up to 91%) benefit.

  15. Study of the B0→K*0μ+μ- decay with the LHCb experiment : angular analysis and measurement of the ratio RK

    CERN Document Server

    Coquereau, Samuel; Ben-Haïm, Eli

    Rare beauty decays proceed mostly through the Flavor Changing Neutral Current, which is possible only at loop level in the Standard Model. These FCNC processes are subject to GIM suppression leading to a rare decay. Therefore the [Math Processing Error] processes are good tools to look for New Physics phenomenon beyond the Standard Model. New Physics particle could become detectable by causing deviation from the Standard Model predictions for observables such as angular observables, branching ratio or CP asymmetries. This thesis present the angular analysis of the [Math Processing Error] decay with the whole dataset collected by lhcb during the first run of the lhc. The full set of the angular observables has been measured through a maximum likelihood fit, thanks to an improved selection and the 3 fb[Math Processing Error] of data collected in 2011 and 2012 by lhcb. In addition, the analysis on the measurement of the ratio [Math Processing Error] has also been presented and the results are expected by the end...

  16. Analysis of radially heterogeneous ZPPR-13A benchmark for investigating the spatial dependence of the calculated-to-experiment ratio for control rod worths

    International Nuclear Information System (INIS)

    Mahalakshmi, B.; Mohanakrishnan, P.

    1993-01-01

    Investigation were performed on the ZPPR-13A critical assembly to determine the cause of the radial variation of the calculated-to-experimental (C/E) ratio for control rod worth in large heterogeneous cores. The effects of errors in cross section, mesh size, group condensation, transport, and modeling were studied by studied by using two- and three-dimensional diffusion calculations and three-dimensional transport calculations. In that process, the cross-section set and the calculation scheme that are being used for fast reactor design in India have been revalidated. The cross-section set was found to yield satisfactory results. Three-dimensional calculations with adjusted and unadjusted cross sections confirmed that the error in cross sections was largely responsible for the radial dependence of the C/E ratios. The contributions from group condensation and mesh size errors were < 2%, and from modeling errors and transport correction, < 1%. The effect of these errors is insignificant when compared with the effect of the cross-section error. The analysis also showed that even without the adjustment in diffusion coefficient suggested in earlier studies, a satisfactory prediction is found, at least for this benchmark. The diffusion-to-transport correction for control rod worth was found to be -7%

  17. A rapid compression technique for 4-D functional MRI images using data rearrangement and modified binary array techniques.

    Science.gov (United States)

    Uma Vetri Selvi, G; Nadarajan, R

    2015-12-01

    Compression techniques are vital for efficient storage and fast transfer of medical image data. The existing compression techniques take significant amount of time for performing encoding and decoding and hence the purpose of compression is not fully satisfied. In this paper a rapid 4-D lossy compression method constructed using data rearrangement, wavelet-based contourlet transformation and a modified binary array technique has been proposed for functional magnetic resonance imaging (fMRI) images. In the proposed method, the image slices of fMRI data are rearranged so that the redundant slices form a sequence. The image sequence is then divided into slices and transformed using wavelet-based contourlet transform (WBCT). In WBCT, the high frequency sub-band obtained from wavelet transform is further decomposed into multiple directional sub-bands by directional filter bank to obtain more directional information. The relationship between the coefficients has been changed in WBCT as it has more directions. The differences in parent–child relationships are handled by a repositioning algorithm. The repositioned coefficients are then subjected to quantization. The quantized coefficients are further compressed by modified binary array technique where the most frequently occurring value of a sequence is coded only once. The proposed method has been experimented with fMRI images the results indicated that the processing time of the proposed method is less compared to existing wavelet-based set partitioning in hierarchical trees and set partitioning embedded block coder (SPECK) compression schemes [1]. The proposed method could also yield a better compression performance compared to wavelet-based SPECK coder. The objective results showed that the proposed method could gain good compression ratio in maintaining a peak signal noise ratio value of above 70 for all the experimented sequences. The SSIM value is equal to 1 and the value of CC is greater than 0.9 for all

  18. Compressing Aviation Data in XML Format

    Science.gov (United States)

    Patel, Hemil; Lau, Derek; Kulkarni, Deepak

    2003-01-01

    Design, operations and maintenance activities in aviation involve analysis of variety of aviation data. This data is typically in disparate formats making it difficult to use with different software packages. Use of a self-describing and extensible standard called XML provides a solution to this interoperability problem. XML provides a standardized language for describing the contents of an information stream, performing the same kind of definitional role for Web content as a database schema performs for relational databases. XML data can be easily customized for display using Extensible Style Sheets (XSL). While self-describing nature of XML makes it easy to reuse, it also increases the size of data significantly. Therefore, transfemng a dataset in XML form can decrease throughput and increase data transfer time significantly. It also increases storage requirements significantly. A natural solution to the problem is to compress the data using suitable algorithm and transfer it in the compressed form. We found that XML-specific compressors such as Xmill and XMLPPM generally outperform traditional compressors. However, optimal use of Xmill requires of discovery of optimal options to use while running Xmill. This, in turn, depends on the nature of data used. Manual disc0ver.y of optimal setting can require an engineer to experiment for weeks. We have devised an XML compression advisory tool that can analyze sample data files and recommend what compression tool would work the best for this data and what are the optimal settings to be used with a XML compression tool.

  19. Haemodynamic effects of adrenaline (epinephrine) depend on chest compression quality during cardiopulmonary resuscitation in pigs.

    Science.gov (United States)

    Pytte, Morten; Kramer-Johansen, Jo; Eilevstjønn, Joar; Eriksen, Morten; Strømme, Taevje A; Godang, Kristin; Wik, Lars; Steen, Petter Andreas; Sunde, Kjetil

    2006-12-01

    Adrenaline (epinephrine) is used during cardiopulmonary resuscitation (CPR) based on animal experiments without supportive clinical data. Clinically CPR was reported recently to have much poorer quality than expected from international guidelines and what is generally done in laboratory experiments. We have studied the haemodynamic effects of adrenaline during CPR with good laboratory quality and with quality simulating clinical findings and the feasibility of monitoring these effects through VF waveform analysis. After 4 min of cardiac arrest, followed by 4 min of basic life support, 14 pigs were randomised to ClinicalCPR (intermittent manual chest compressions, compression-to-ventilation ratio 15:2, compression depth 30-38 mm) or LabCPR (continuous mechanical chest compressions, 12 ventilations/min, compression depth 45 mm). Adrenaline 0.02 mg/kg was administered 30 s thereafter. Plasma adrenaline concentration peaked earlier with LabCPR than with ClinicalCPR, median (range), 90 (30, 150) versus 150 (90, 270) s (p = 0.007), respectively. Coronary perfusion pressure (CPP) and cortical cerebral blood flow (CCBF) increased and femoral blood flow (FBF) decreased after adrenaline during LabCPR (mean differences (95% CI) CPP 17 (6, 29) mmHg (p = 0.01), FBF -5.0 (-8.8, -1.2) ml min(-1) (p = 0.02) and median difference CCBF 12% of baseline (p = 0.04)). There were no significant effects during ClinicalCPR (mean differences (95% CI) CPP 4.7 (-3.2, 13) mmHg (p = 0.2), FBF -0.2 (-4.6, 4.2) ml min(-1)(p = 0.9) and CCBF 3.6 (-1.8, 9.0)% of baseline (p = 0.15)). Slope VF waveform analysis reflected changes in CPP. Adrenaline improved haemodynamics during laboratory quality CPR in pigs, but not with quality simulating clinically reported CPR performance.

  20. Parallel Tensor Compression for Large-Scale Scientific Data.

    Energy Technology Data Exchange (ETDEWEB)

    Kolda, Tamara G. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ballard, Grey [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Austin, Woody Nathan [Univ. of Texas, Austin, TX (United States)

    2015-10-01

    As parallel computing trends towards the exascale, scientific data produced by high-fidelity simulations are growing increasingly massive. For instance, a simulation on a three-dimensional spatial grid with 512 points per dimension that tracks 64 variables per grid point for 128 time steps yields 8 TB of data. By viewing the data as a dense five way tensor, we can compute a Tucker decomposition to find inherent low-dimensional multilinear structure, achieving compression ratios of up to 10000 on real-world data sets with negligible loss in accuracy. So that we can operate on such massive data, we present the first-ever distributed memory parallel implementation for the Tucker decomposition, whose key computations correspond to parallel linear algebra operations, albeit with nonstandard data layouts. Our approach specifies a data distribution for tensors that avoids any tensor data redistribution, either locally or in parallel. We provide accompanying analysis of the computation and communication costs of the algorithms. To demonstrate the compression and accuracy of the method, we apply our approach to real-world data sets from combustion science simulations. We also provide detailed performance results, including parallel performance in both weak and strong scaling experiments.

  1. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2013-01-01

    We introduce a new compression scheme for labeled trees based on top trees [3]. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  2. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2015-01-01

    We introduce a new compression scheme for labeled trees based on top trees. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  3. Indentation of elastically soft and plastically compressible solids

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo; Van der Giessen, E.

    2015-01-01

    rapidly for small deviations from plastic incompressibility and then decreases rather slowly for values of the plastic Poisson's ratio less than 0.25. For both soft elasticity and plastic compressibility, the main reason for the lower values of indentation hardness is related to the reduction......The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking...... rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plastic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce...

  4. Compressive Detection Using Sub-Nyquist Radars for Sparse Signals

    Directory of Open Access Journals (Sweden)

    Ying Sun

    2016-01-01

    Full Text Available This paper investigates the compression detection problem using sub-Nyquist radars, which is well suited to the scenario of high bandwidths in real-time processing because it would significantly reduce the computational burden and save power consumption and computation time. A compressive generalized likelihood ratio test (GLRT detector for sparse signals is proposed for sub-Nyquist radars without ever reconstructing the signal involved. The performance of the compressive GLRT detector is analyzed and the theoretical bounds are presented. The compressive GLRT detection performance of sub-Nyquist radars is also compared to the traditional GLRT detection performance of conventional radars, which employ traditional analog-to-digital conversion (ADC at Nyquist sampling rates. Simulation results demonstrate that the former can perform almost as well as the latter with a very small fraction of the number of measurements required by traditional detection in relatively high signal-to-noise ratio (SNR cases.

  5. Light-weight reference-based compression of FASTQ data.

    Science.gov (United States)

    Zhang, Yongpeng; Li, Linsen; Yang, Yanli; Yang, Xiao; He, Shan; Zhu, Zexuan

    2015-06-09

    The exponential growth of next generation sequencing (NGS) data has posed big challenges to data storage, management and archive. Data compression is one of the effective solutions, where reference-based compression strategies can typically achieve superior compression ratios compared to the ones not relying on any reference. This paper presents a lossless light-weight reference-based compression algorithm namely LW-FQZip to compress FASTQ data. The three components of any given input, i.e., metadata, short reads and quality score strings, are first parsed into three data streams in which the redundancy information are identified and eliminated independently. Particularly, well-designed incremental and run-length-limited encoding schemes are utilized to compress the metadata and quality score streams, respectively. To handle the short reads, LW-FQZip uses a novel light-weight mapping model to fast map them against external reference sequence(s) and produce concise alignment results for storage. The three processed data streams are then packed together with some general purpose compression algorithms like LZMA. LW-FQZip was evaluated on eight real-world NGS data sets and achieved compression ratios in the range of 0.111-0.201. This is comparable or superior to other state-of-the-art lossless NGS data compression algorithms. LW-FQZip is a program that enables efficient lossless FASTQ data compression. It contributes to the state of art applications for NGS data storage and transmission. LW-FQZip is freely available online at: http://csse.szu.edu.cn/staff/zhuzx/LWFQZip.

  6. Increase in soil stable carbon isotope ratio relates to loss of organic carbon: results from five long-term bare fallow experiments

    DEFF Research Database (Denmark)

    Menichetti, Lorenzo; Houot, Sabine; van Oort, Folkert

    2015-01-01

    Changes in the 12C/13C ratio (expressed as δ13C) of soil organic C (SOC) has been observed over long time scales and with depth in soil profiles. The changes are ascribed to the different reaction kinetics of 12C and 13C isotopes and the different isotopic composition of various SOC pool components...... examined. The overall estimate of the fractionation coefficient (ε) was −1.2 ± 0.3 ‰. This coefficient represents an important input to studies of long-term SOC dynamics in agricultural soils that are based on variations in 13C natural abundance. The variance of ε may be ascribed to site characteristics...... some impact on isotope abundance and fractionation....

  7. A 172 $\\mu$W Compressively Sampled Photoplethysmographic (PPG) Readout ASIC With Heart Rate Estimation Directly From Compressively Sampled Data.

    Science.gov (United States)

    Pamula, Venkata Rajesh; Valero-Sarmiento, Jose Manuel; Yan, Long; Bozkurt, Alper; Hoof, Chris Van; Helleputte, Nick Van; Yazicioglu, Refet Firat; Verhelst, Marian

    2017-06-01

    A compressive sampling (CS) photoplethysmographic (PPG) readout with embedded feature extraction to estimate heart rate (HR) directly from compressively sampled data is presented. It integrates a low-power analog front end together with a digital back end to perform feature extraction to estimate the average HR over a 4 s interval directly from compressively sampled PPG data. The application-specified integrated circuit (ASIC) supports uniform sampling mode (1x compression) as well as CS modes with compression ratios of 8x, 10x, and 30x. CS is performed through nonuniformly subsampling the PPG signal, while feature extraction is performed using least square spectral fitting through Lomb-Scargle periodogram. The ASIC consumes 172  μ W of power from a 1.2 V supply while reducing the relative LED driver power consumption by up to 30 times without significant loss of relevant information for accurate HR estimation.

  8. Fingerprints in compressed strings

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Cording, Patrick Hagge

    2017-01-01

    In this paper we show how to construct a data structure for a string S of size N compressed into a context-free grammar of size n that supports efficient Karp–Rabin fingerprint queries to any substring of S. That is, given indices i and j, the answer to a query is the fingerprint of the substring S......[i,j]. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get O(log⁡N) query time, and for Linear SLPs (an SLP derivative that captures LZ78 compression and its variations) we get O(log⁡log⁡N) query time...

  9. The strength of compressed structures with CFRP materials reinforcement when exceeding the cross-section size

    Science.gov (United States)

    Polskoy, Petr; Mailyan, Dmitry; Georgiev, Sergey; Muradyan, Viktor

    2018-03-01

    The increase of high-rise construction volume or «High-Rise Construction» requires the use of high-strength concrete and that leads to the reduction in section size of structures and to the decrease in material consumption. First of all, it refers to the compressed elements for which, when the transverse dimensions are reduced, their flexibility and deformation increase but the load bearing capacity decreases. Growth in construction also leads to the increase of repair and restoration works or to the strengthening of structures. The most effective method of their strengthening in buildings of «High-Rise Construction» is the use of composite materials which reduces the weight of reinforcement elements and labour costs on execution of works. In this article the results of experimental research on strength and deformation of short compressed reinforced concrete structures, reinforced with external carbon fiber reinforcement, are presented. Their flexibility is λh=10, and the cross-section dimensions ratio b/h is 2, that is 1,5 times more, than recommended by standards in Russia. The following research was being done for three kinds of strained and deformed conditions with different variants of composite reinforcement. The results of the experiment proved the real efficiency of composite reinforcement of the compressed elements with sides ratio equal to 2, increasing the bearing capacity of pillars till 1,5 times. These results can be used for designing the buildings of different number of storeys.

  10. Screening of Low Clinker Binders, Compressive Strength and Chloride Ingress

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; De Weerdt, Klaartje; Garzón, Sergio Ferreiro

    2017-01-01

    This paper reports an initial screening of potential new binders for concrete with reduced CO2-emission. Mortars cured saturated for 90 days are compared with regard to a) compressive strength of mortars with similar water-to-binder ratio, and b) chloride ingress in similar design strength mortar...... compromising the 90 days compressive strength and resistance to chloride ingress in marine exposure by using selected alternative binders....

  11. Adiabatic compression of elongated field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.L.; Tuszewski, M.; Linford, R.K.

    1983-06-01

    The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas.

  12. Adiabatic compression of elongated field-reversed configurations

    International Nuclear Information System (INIS)

    Spencer, R.L.; Tuszewski, M.; Linford, R.K.

    1983-01-01

    The adiabatic compression of an elongated field-reversed configuration (FRC) is computed by using a one-dimensional approximation. The one-dimensional results are checked against a two-dimensional equilibrium code. For ratios of FRC separatrix length to separatrix radius greater than about ten, the one-dimensional results are accurate within 10%. To this accuracy, the adiabatic compression of FRC's can be described by simple analytic formulas

  13. Application of the bilinear compression function to calorimetry

    CERN Document Server

    Cattaneo, P W

    2000-01-01

    The energy dynamic range required by a calorimeter may exceed, if high speed is also required, the technical limitations of available ADCs. In this case the use of a dynamic compressor matching the energy range to the ADC range may be an adequate solution. The requirement for the compression function is to add an appropriately small quantization error to the calorimeter resolution. The bilinear compression function is easy to realize, it is therefore interesting to study the conditions under which it is adequate and which are the parameters of the compression curve, the slope ratio and the break point, minimizing the additional error due to quantization.

  14. Application of the bilinear compression function to calorimetry

    International Nuclear Information System (INIS)

    Cattaneo, Paolo Walter

    2000-01-01

    The energy dynamic range required by a calorimeter may exceed, if high speed is also required, the technical limitations of available ADCs. In this case the use of a dynamic compressor matching the energy range to the ADC range may be an adequate solution. The requirement for the compression function is to add an appropriately small quantization error to the calorimeter resolution. The bilinear compression function is easy to realize, it is therefore interesting to study the conditions under which it is adequate and which are the parameters of the compression curve, the slope ratio and the break point, minimizing the additional error due to quantization

  15. An adaptive Petrov-Galerkin formulation for solving the compressible Euler and Navier-Stokes

    International Nuclear Information System (INIS)

    Almeida, Regina Celia Cerqueira de

    1993-01-01

    A space-time finite element finite element formulation for the compressible Euler and Navier-Stokes equations is proposed. The present work develops a stable generalized CAU method which represents shocks and boundary-layers accurately. An h-adaptive remeshing refinement, which takes into account directional stretching and stretching ratio, is used leading to a very good way to indicate and refine the flow regions with singularities. Numerical experiment were conducted for some steady and unsteady problems and the performance of the proposed methods is discussed. (author)

  16. Compression and decompression of digital seismic waveform data for storage and communication

    International Nuclear Information System (INIS)

    Bhadauria, Y.S.; Kumar, Vijai

    1991-01-01

    Two different classes of data compression schemes, namely physical data compression schemes and logical data compression schemes are examined for their use in storage and communication of digital seismic waveform data. In physical data compression schemes, the physical size of the waveform is reduced. One, therefore, gets only a broad picture of the original waveform, when the data are retrieved and the waveform is reconstituted. Coerrelation between original and decompressed waveform varies inversely with the data compresion ratio. In the logical data compression schemes, the data are stored in a logically encoded form. Storage of unnecessary characters like blank space is avoided. On decompression original data are retrieved and compression error is nil. Three algorithms of logical data compression schemes have been developed and studied. These are : 1) optimum formatting schemes, 2) differential bit reduction scheme, and 3) six bit compression scheme. Results of the above three algorithms of logical compression class are compared with those of physical compression schemes reported in literature. It is found that for all types of data, six bit compression scheme gives the highest value of data compression ratio. (author). 6 refs., 8 figs., 1 appendix, 2 tabs

  17. Compressive failure with interacting cracks

    International Nuclear Information System (INIS)

    Yang Guoping; Liu Xila

    1993-01-01

    The failure processes in concrete and other brittle materials are just the results of the propagation, coalescence and interaction of many preexisting microcracks or voids. To understand the real behaviour of the brittle materials, it is necessary to bridge the gap from the relatively matured one crack behaviour to the stochastically distributed imperfections, that is, to concern the crack propagation and interaction of microscopic mechanism with macroscopic parameters of brittle materials. Brittle failure in compression has been studied theoretically by Horii and Nemat-Nasser (1986), in which a closed solution was obtained for a preexisting flaw or some special regular flaws. Zaitsev and Wittmann (1981) published a paper on crack propagation in compression, which is so-called numerical concrete, but they did not take account of the interaction among the microcracks. As for the modelling of the influence of crack interaction on fracture parameters, many studies have also been reported. Up till now, some researcher are working on crack interaction considering the ratios of SIFs with and without consideration of the interaction influences, there exist amplifying or shielding effects of crack interaction which are depending on the relative positions of these microcracks. The present paper attempts to simulate the whole failure process of brittle specimen in compression, which includes the complicated coupling effects between the interaction and propagation of randomly distributed or other typical microcrack configurations step by step. The lengths, orientations and positions of microcracks are all taken as random variables. The crack interaction among many preexisting random microcracks is evaluated with the help of a simple interaction matrix (Yang and Liu, 1991). For the subcritically stable propagation of microcracks in mixed mode fracture, fairly known maximum hoop stress criterion is adopted to compute branching lengths and directions at each tip of the crack

  18. Performance evaluation of breast image compression techniques

    Energy Technology Data Exchange (ETDEWEB)

    Anastassopoulos, G; Lymberopoulos, D [Wire Communications Laboratory, Electrical Engineering Department, University of Patras, Greece (Greece); Panayiotakis, G; Bezerianos, A [Medical Physics Department, School of Medicine, University of Patras, Greece (Greece)

    1994-12-31

    Novel diagnosis orienting tele working systems manipulate, store, and process medical data through real time communication - conferencing schemes. One of the most important factors affecting the performance of these systems is image handling. Compression algorithms can be applied to the medical images, in order to minimize : a) the volume of data to be stored in the database, b) the demanded bandwidth from the network, c) the transmission costs, and to minimize the speed of the transmitted data. In this paper an estimation of all the factors of the process that affect the presentation of breast images is made, from the time the images are produced from a modality, till the compressed images are stored, or transmitted in a Broadband network (e.g. B-ISDN). The images used were scanned images of the TOR(MAX) Leeds breast phantom, as well as typical breast images. A comparison of seven compression techniques has been done, based on objective criteria such as Mean Square Error (MSE), resolution, contrast, etc. The user can choose the appropriate compression ratio in order to achieve the desired image quality. (authors). 12 refs, 4 figs.

  19. FRC translation into a compression coil

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1986-01-01

    The equilibrium and translational kinematics of Field-Reversed Configurations (FRCs) in a cylindrical coil which does not conserve flux are problems that arise in connection with adiabatic compressional heating. In this paper, they consider several features of the problem of FRC translation into a compression coil. First, the magnitude of the guide field is calculated and found to exceed that which would be applied to a flux conserver. Second, energy conservation is applied to FRC translation from a flux conserver into a compression coil. It is found that a significant temperature decrease is required for translation to be energetically possible. The temperature change depends on the external inductance in the compression circuit. An analogous case is that of a compression region composed of a compound magnet; in this case the temperature change depends on the ratio of inner and outer coil radii. Finally, the kinematics of intermediate translation states are calculated using an abrupt transition model. It is found, in this model, that the FRC must overcome a potential hill during translation, which requires a small initial velocity

  20. A soft compressive sensor using dielectric elastomers

    International Nuclear Information System (INIS)

    Zhang, Hongying; Wang, Michael Yu; Li, Jisen; Zhu, Jian

    2016-01-01

    This paper proposes a methodology to design, analyze and fabricate a soft compressive sensor, made of dielectric elastomers that are able to recover from large strain. Each module of the compressive sensor is modeled as a capacitor, comprising a DE membrane sandwiched between two compliant electrodes. When the sensor modules aligned in an array were subject to a compressive load, the induced deformation on the corresponding module resulted in capacitance increase. By detecting the capacitance signal, not only the position but also the magnitude of the compressive load were obtained. We built an analytical model to simulate the mechanical–electrical responses of two common soft sensor structures, namely with and without an embedded air chamber. The simulation results showed that the air embedded prototype improved the sensitivity of the sensor significantly, which was consistent with the experimental results, where the sensitivity is enhanced from 0.05 N −1 to 0.91 N −1 . Furthermore, the effect of the air chamber dimension on the sensitivity is also discussed theoretically and experimentally. It concluded that the detection range increased with the air chamber height over length ratio. (paper)

  1. Dynamic mode decomposition for compressive system identification

    Science.gov (United States)

    Bai, Zhe; Kaiser, Eurika; Proctor, Joshua L.; Kutz, J. Nathan; Brunton, Steven L.

    2017-11-01

    Dynamic mode decomposition has emerged as a leading technique to identify spatiotemporal coherent structures from high-dimensional data. In this work, we integrate and unify two recent innovations that extend DMD to systems with actuation and systems with heavily subsampled measurements. When combined, these methods yield a novel framework for compressive system identification, where it is possible to identify a low-order model from limited input-output data and reconstruct the associated full-state dynamic modes with compressed sensing, providing interpretability of the state of the reduced-order model. When full-state data is available, it is possible to dramatically accelerate downstream computations by first compressing the data. We demonstrate this unified framework on simulated data of fluid flow past a pitching airfoil, investigating the effects of sensor noise, different types of measurements (e.g., point sensors, Gaussian random projections, etc.), compression ratios, and different choices of actuation (e.g., localized, broadband, etc.). This example provides a challenging and realistic test-case for the proposed method, and results indicate that the dominant coherent structures and dynamics are well characterized even with heavily subsampled data.

  2. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif

    2013-05-01

    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  3. Performance evaluation of breast image compression techniques

    International Nuclear Information System (INIS)

    Anastassopoulos, G.; Lymberopoulos, D.; Panayiotakis, G.; Bezerianos, A.

    1994-01-01

    Novel diagnosis orienting tele working systems manipulate, store, and process medical data through real time communication - conferencing schemes. One of the most important factors affecting the performance of these systems is image handling. Compression algorithms can be applied to the medical images, in order to minimize : a) the volume of data to be stored in the database, b) the demanded bandwidth from the network, c) the transmission costs, and to minimize the speed of the transmitted data. In this paper an estimation of all the factors of the process that affect the presentation of breast images is made, from the time the images are produced from a modality, till the compressed images are stored, or transmitted in a Broadband network (e.g. B-ISDN). The images used were scanned images of the TOR(MAX) Leeds breast phantom, as well as typical breast images. A comparison of seven compression techniques has been done, based on objective criteria such as Mean Square Error (MSE), resolution, contrast, etc. The user can choose the appropriate compression ratio in order to achieve the desired image quality. (authors)

  4. Stability of Zircon and Its Isotopic Ratios in High-Temperature Fluids: Long-Term (4 months Isotope Exchange Experiment at 850°C and 50 MPa

    Directory of Open Access Journals (Sweden)

    Ilya N. Bindeman

    2018-05-01

    Full Text Available Stability of zircon in hydrothermal fluids and vanishingly slow rates of diffusion identify zircon as a reliable recorder of its formation conditions in recent and ancient rocks. Debate, however, persists on how rapidly oxygen and key trace elements (e.g., Li, B, Pb diffuse when zircon is exposed to silicate melt or hot aqueous fluids. Here, we report results of a nano- to micrometer-scale investigation of isotopic exchange using natural zircon from Mesa Falls Tuff (Yellowstone treated with quartz-saturated, isotopically (18O, D, 7Li, and 11B labeled water with a nominal δ18O value of +450%0 over 4 months at 850°C and 50 MPa. Frontside (crystal rim inwards δ18O depth profiling of zircon by magnetic sector SIMS shows initially high but decreasing 18O/16O over a ~130 nm non-Fickian profile, with a decay length comparable to the signal from surficial Au coating deposited onto zircon. In contrast, backside (crystal interior outwards depth profiling on a 2-3 μm thick wafer cut and thinned from treated zircon by focused ion beam (FIB milling lacks any significant increase in 18O/16O during penetration of the original surface layer. Near-surface time-of-flight (TOF-SIMS frontside profiles of uncoated zircon from 4-month and 1-day-long experiments as well as untreated zircons display similar enrichments of 18O over a distance of ~20 nm. All frontside 18O profiles are here interpreted as transient surface signals from nm-thick surface enrichment or contamination unrelated to diffusion. Likewise, frontside depth profiling of H, Li, and B isotopes are similar for long- and short-duration experiments. Additionally, surface U-Pb dating of zircon from the 4-month experiment returned U-Pb ages by depth profiling with ~1 μm penetration that were identical to untreated samples. Frontside and backside depth-profiling thus demonstrate that diffusive 18O enrichment in the presence of H2O is much slower than predicted from experiments in Watson and Cherniak

  5. Manual compression and reflex syncope in native renal biopsy.

    Science.gov (United States)

    Takeuchi, Yoichi; Ojima, Yoshie; Kagaya, Saeko; Aoki, Satoshi; Nagasawa, Tasuku

    2018-03-14

    Complications associated with diagnostic native percutaneous renal biopsy (PRB) must be minimized. While life threatening major complications has been extensively investigated, there is little discussion regarding minor bleeding complications, such as a transient hypotension, which directly affect patients' quality of life. There is also little evidence supporting the need for conventional manual compression following PRB. Therefore, this study evaluated the relationship between minor and major complications incidence in patients following PRB with or without compression. This single-center, retrospective study included 456 patients (compression group: n = 71; observation group: n = 385). The compression group completed 15 min of manual compression and 4 h of subsequent strict bed rest with abdominal bandage. The observation group completed 2 h of strict bed rest only. The primary outcome of interest was transient symptomatic hypotension (minor event). Of the 456 patients, 26 patients encountered intraoperative and postoperative transient hypotension, which were considered reflex syncope without tachycardia. Univariate analysis showed that symptomatic transient hypotension was significantly associated with compression. This association remained significant, even after adjustment of covariates using multivariate logistic regression analysis (adjusted odds ratio 3.27; 95% confidential interval 1.36-7.82; P = 0.0078). Manual compression and abdominal bandage significantly increased the frequency of reflex syncope during native PRB. It is necessary to consider the potential benefit and risk of compression maneuvers for each patient undergoing this procedure.

  6. Lossless medical image compression with a hybrid coder

    Science.gov (United States)

    Way, Jing-Dar; Cheng, Po-Yuen

    1998-10-01

    The volume of medical image data is expected to increase dramatically in the next decade due to the large use of radiological image for medical diagnosis. The economics of distributing the medical image dictate that data compression is essential. While there is lossy image compression, the medical image must be recorded and transmitted lossless before it reaches the users to avoid wrong diagnosis due to the image data lost. Therefore, a low complexity, high performance lossless compression schematic that can approach the theoretic bound and operate in near real-time is needed. In this paper, we propose a hybrid image coder to compress the digitized medical image without any data loss. The hybrid coder is constituted of two key components: an embedded wavelet coder and a lossless run-length coder. In this system, the medical image is compressed with the lossy wavelet coder first, and the residual image between the original and the compressed ones is further compressed with the run-length coder. Several optimization schemes have been used in these coders to increase the coding performance. It is shown that the proposed algorithm is with higher compression ratio than run-length entropy coders such as arithmetic, Huffman and Lempel-Ziv coders.

  7. Effects of N source concentration and NH4(+)/NO3(-) ratio on phenylethanoid glycoside pattern in tissue cultures of Plantago lanceolata L.: a metabolomics driven full-factorial experiment with LC-ESI-MS(3.).

    Science.gov (United States)

    Gonda, Sándor; Kiss-Szikszai, Attila; Szűcs, Zsolt; Máthé, Csaba; Vasas, Gábor

    2014-10-01

    Tissue cultures of a medicinal plant, Plantago lanceolata L. were screened for phenylethanoid glycosides (PGs) and other natural products (NPs) with LC-ESI-MS(3). The effects of N source concentration and NH4(+)/NO3(-) ratio were evaluated in a full-factorial (FF) experiment. N concentrations of 10, 20, 40 and 60mM, and NH4(+)/NO3(-) ratios of 0, 0.11, 0.20 and 0.33 (ratio of NH4(+) in total N source) were tested. Several peaks could be identified as PGs, of which, 16 could be putatively identified from the MS/MS/MS spectra. N source concentrat