Sample records for compression ratio experiments

  1. Alvar engine. An engine with variable compression ratio. Experiments and tests

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, Olof


    This report is focused on tests with Variable Compression Ratio (VCR) engines, according to the Alvar engine principle. Variable compression ratio means an engine design where it is possible to change the nominal compression ratio. The purpose is to increase the fuel efficiency at part load by increasing the compression ratio. At maximum load, and maybe supercharging with for example turbocharger, it is not possible to keep a high compression ratio because of the knock phenomena. Knock is a shock wave caused by self-ignition of the fuel-air mix. If knock occurs, the engine will be exposed to a destructive load. Because of the reasons mentioned it would be an advantage if it would be possible to change the compression ratio continuously when the load changes. The Alvar engine provides a solution for variable compression ratio based on well-known engine components. This paper provides information about efficiency and emission characteristics from tests with two Alvar engines. Results from tests with a phase shift mechanism (for automatic compression ratio control) for the Alvar engine are also reviewed Examination paper. 5 refs, 23 figs, 2 tabs, 5 appendices

  2. Eccentric crank variable compression ratio mechanism (United States)

    Lawrence, Keith Edward [Kobe, JP; Moser, William Elliott [Peoria, IL; Roozenboom, Stephan Donald [Washington, IL; Knox, Kevin Jay [Peoria, IL


    A variable compression ratio mechanism for an internal combustion engine that has an engine block and a crankshaft is disclosed. The variable compression ratio mechanism has a plurality of eccentric disks configured to support the crankshaft. Each of the plurality of eccentric disks has at least one cylindrical portion annularly surrounded by the engine block. The variable compression ratio mechanism also has at least one actuator configured to rotate the plurality of eccentric disks.

  3. Experiments with automata compression

    NARCIS (Netherlands)

    Daciuk, J.; Yu, S; Daley, M; Eramian, M G


    Several compression methods of finite-state automata are presented and evaluated. Most compression methods used here are already described in the literature. However, their impact on the size of automata has not been described yet. We fill that gap, presenting results of experiments carried out on

  4. Impact of Various Compression Ratio on the Compression Ignition Engine with Diesel and Jatropha Biodiesel (United States)

    Sivaganesan, S.; Chandrasekaran, M.; Ruban, M.


    The present experimental investigation evaluates the effects of using blends of diesel fuel with 20% concentration of Methyl Ester of Jatropha biodiesel blended with various compression ratio. Both the diesel and biodiesel fuel blend was injected at 23º BTDC to the combustion chamber. The experiment was carried out with three different compression ratio. Biodiesel was extracted from Jatropha oil, 20% (B20) concentration is found to be best blend ratio from the earlier experimental study. The engine was maintained at various compression ratio i.e., 17.5, 16.5 and 15.5 respectively. The main objective is to obtain minimum specific fuel consumption, better efficiency and lesser Emission with different compression ratio. The results concluded that full load show an increase in efficiency when compared with diesel, highest efficiency is obtained with B20MEOJBA with compression ratio 17.5. It is noted that there is an increase in thermal efficiency as the blend ratio increases. Biodiesel blend has performance closer to diesel, but emission is reduced in all blends of B20MEOJBA compared to diesel. Thus this work focuses on the best compression ratio and suitability of biodiesel blends in diesel engine as an alternate fuel.

  5. Designing experiments through compressed sensing.

    Energy Technology Data Exchange (ETDEWEB)

    Young, Joseph G.; Ridzal, Denis


    In the following paper, we discuss how to design an ensemble of experiments through the use of compressed sensing. Specifically, we show how to conduct a small number of physical experiments and then use compressed sensing to reconstruct a larger set of data. In order to accomplish this, we organize our results into four sections. We begin by extending the theory of compressed sensing to a finite product of Hilbert spaces. Then, we show how these results apply to experiment design. Next, we develop an efficient reconstruction algorithm that allows us to reconstruct experimental data projected onto a finite element basis. Finally, we verify our approach with two computational experiments.

  6. Effect of compression ratio on perception of time compressed phonemically balanced words in Kannada and monosyllables

    Directory of Open Access Journals (Sweden)

    Prashanth Prabhu


    Full Text Available The present study attempted to study perception of time-compressed speech and the effect of compression ratio for phonemically balanced (PB word lists in Kannada and monosyllables. The test was administered on 30 normal hearing individuals at compression ratios of 40%, 50%, 60%, 70% and 80% for PB words in Kannada and monosyllables. The results of the study showed that the speech identification scores for time-compressed speech reduced with increase in compression ratio. The scores were better for monosyllables compared to PB words especially at higher compression ratios. The study provides speech identification scores at different compression ratio for PB words and monosyllables in individuals with normal hearing. The results of the study also showed that the scores did not vary across gender for all the compression ratios for both the stimuli. The same test material needs to be compared the clinical population with central auditory processing disorder for clinical validation of the present results.

  7. MHD simulation of plasma compression experiments (United States)

    Reynolds, Meritt; Barsky, Sandra; de Vietien, Peter


    General Fusion (GF) is working to build a magnetized target fusion (MTF) power plant based on compression of magnetically-confined plasma by liquid metal. GF is testing this compression concept by collapsing solid aluminum liners onto plasmas formed by coaxial helicity injection in a series of experiments called PCS (Plasma Compression, Small). We simulate the PCS experiments using the finite-volume MHD code VAC. The single-fluid plasma model includes temperature-dependent resistivity and anisotropic heat transport. The time-dependent curvilinear mesh for MHD simulation is derived from LS-DYNA simulations of actual field tests of liner implosion. We will discuss how 3D simulations reproduced instability observed in the PCS13 experiment and correctly predicted stabilization of PCS14 by ramping the shaft current during compression. We will also present a comparison of simulated Mirnov and x-ray diagnostics with experimental measurements indicating that PCS14 compressed well to a linear compression ratio of 2.5:1.

  8. Determination of Optimum Compression Ratio: A Tribological Aspect

    Directory of Open Access Journals (Sweden)

    L. Yüksek


    Full Text Available Internal combustion engines are the primary energy conversion machines both in industry and transportation. Modern technologies are being implemented to engines to fulfill today's low fuel consumption demand. Friction energy consumed by the rubbing parts of the engines are becoming an important parameter for higher fuel efficiency. Rate of friction loss is primarily affected by sliding speed and the load acting upon rubbing surfaces. Compression ratio is the main parameter that increases the peak cylinder pressure and hence normal load on components. Aim of this study is to investigate the effect of compression ratio on total friction loss of a diesel engine. A variable compression ratio diesel engine was operated at four different compression ratios which were "12.96", "15:59", "18:03", "20:17". Brake power and speed was kept constant at predefined value while measuring the in- cylinder pressure. Friction mean effective pressure ( FMEP data were obtained from the in cylinder pressure curves for each compression ratio. Ratio of friction power to indicated power of the engine was increased from 22.83% to 37.06% with varying compression ratio from 12.96 to 20:17. Considering the thermal efficiency , FMEP and maximum in- cylinder pressure optimum compression ratio interval of the test engine was determined as 18.8 ÷ 19.6.


    Directory of Open Access Journals (Sweden)

    Radivoje B Pešić


    Full Text Available The compression ratio strongly affects the working process and provides an exceptional degree of control over engine performance. In conventional internal combustion engines, the compression ratio is fixed and their performance is therefore a compromise between conflicting requirements. One fundamental problem is that drive units in the vehicles must successfully operate at variable speeds and loads and in different ambient conditions. If a diesel engine has a fixed compression ratio, a minimal value must be chosen that can achieve a reliable self-ignition when starting the engine in cold start conditions. In diesel engines, variable compression ratio provides control of peak cylinder pressure, improves cold start ability and low load operation, enabling the multi-fuel capability, increase of fuel economy and reduction of emissions. This paper contains both theoretical and experimental investigation of the impact that automatic variable compression ratios has on working process parameters in experimental diesel engine. Alternative methods of implementing variable compression ratio are illustrated and critically examined.

  10. Influence of the compression ratio on Stirling and Otto cycle

    Energy Technology Data Exchange (ETDEWEB)

    Koscak-Kolin, S.; Golub, M.; Kolin, I. [Zagreb Univ. (Croatia); Naso, V.; Lucentini, M. [Universita degli Studi La Sapienza, Rome (Italy)


    The Stirling engine (1815) is more than half a century older from the Otto engine (1867). Nevertheless, in spite of the considerably longer development period, compression ratio of Stirling engines remains nearly the same as it was in its very beginning. As a contrast to this, compression ratio of Otto engines progressively increases, always reaching higher and higher power. Finally, modern Otto engines are considerably stronger than contemporary Stirling engines of the same size. However, by means of thermodynamical analysis of the old indicator diagrams, the rate of growth could be mathematically expressed in the shape of polytropic equation. In such a way the proper direction for a significant improvement of the Stirling engine could be recognized. (orig.)

  11. Hige Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Heywood, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jo, Young Suk [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lewis, Raymond [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Bromberg, Leslie [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Heywood, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)


    The overall objective of this project was to quantify the potential for improving the performance and efficiency of gasoline engine technology by use of alcohols to suppress knock. Knock-free operation is obtained by direct injection of a second “anti-knock” fuel such as ethanol, which suppresses knock when, with gasoline fuel, knock would occur. Suppressing knock enables increased turbocharging, engine downsizing, and use of higher compression ratios throughout the engine’s operating map. This project combined engine testing and simulation to define knock onset conditions, with different mixtures of gasoline and alcohol, and with this information quantify the potential for improving the efficiency of turbocharged gasoline spark-ignition engines, and the on-vehicle fuel consumption reductions that could then be realized. The more focused objectives of this project were therefore to: Determine engine efficiency with aggressive turbocharging and downsizing and high compression ratio (up to a compression ratio of 13.5:1) over the engine’s operating range; Determine the knock limits of a turbocharged and downsized engine as a function of engine speed and load; Determine the amount of the knock-suppressing alcohol fuel consumed, through the use of various alcohol-gasoline and alcohol-water gasoline blends, for different driving cycles, relative to the gasoline consumed; Determine implications of using alcohol-boosted engines, with their higher efficiency operation, in both light-duty and medium-duty vehicle sectors.

  12. Effect of compression ratio in a slow-acting compression hearing aid: paired-comparison judgments of quality. (United States)

    Neuman, A C; Bakke, M H; Hellman, S; Levitt, H


    Paired-comparison judgments of quality were obtained from 20 hearing-impaired listeners (half with a small dynamic range and half with a large dynamic range) for speech-in-noise (vent, apartment, and cafeteria) processed through a slow-acting compression hearing aid. Compression ratio was varied (1, 1.5, 2, 3, 5, and 10:1). Compression threshold, attack time, and release time were fixed. Sound quality judgments were significantly affected by compression ratio, noise, and dynamic range. Preference decreased with increasing compression ratio. The selection of compression ratio. The selection of compression ratios compression ratios > 3:1. Less compression (no compression or 1.5:1) was preferred with the highest level noise (cafeteria noise) than with the lower level noises (vent or apartment). In particular, the small dynamic range group preferred compression with the vent and apartment noises (noise below the compression threshold), but preferred a linear hearing aid with the cafeteria noise (above the compression threshold). The large dynamic range group showed a slightly greater preference for the linear hearing aid for all three noises.

  13. Crank drive for variable compression ratio; Kurbeltrieb fuer variable Verdichtung

    Energy Technology Data Exchange (ETDEWEB)

    Bollig, C. [FEV Motorentechnik GmbH und Co. KG, Aachen (Germany); Habermann, K.; Marckwardt, H.; Yapici, K.I. [Technische Hochschule Aachen (Germany). Lehrstuhl fuer Angewandte Thermodynamik (LAT)


    In a research project at the Institute of Applied Thermodynamics (LAT) of the University of Aachen (RWTH) between April 1995 and October 1996, a variable compression ratio was realised on a specially prepared FEV Single Cylinder Research Engine and investigated in terms of combustion and tribological behaviour. On the basis of an invention by the FEV Motorentechnik, the variable compression ratio was realised with a variable crankdrive. This technology allows a variable compression ratio across a wide range. In combination with High Pressure Supercharging, F.E. concept for S.I. engines results in a fuel saving potential of up to 30%. Equipped with well-known Three-Way-Catalyst (TWC) technology, it is capable of meeting future low emission standards. To achieve a weight-optimised design of the conrod, FEM analyses have been conducted. The primary goal of the test bench investigation was to obtain information about the influence of the unconventional piston movement during combustion as well as about the tribological behaviour of the variable crankdrive. (orig.) [Deutsch] Innerhalb eines Forschungsprojektes am Lehrstuhl fuer Angewandte Thermodynamik der RWTH-Aachen (LAT) wurde im Zeitraum April 1995 bis Oktober 1996 ein variables Verdichtungsverhaeltnis an einem speziell praeparierten FEV-Einzylinder-Ottomotor umgesetzt und brennverfahrenstechnisch wie auch tribologisch im Pruefstandsbetrieb untersucht. Basierend auf einer Erfindung der FEV Motorentechnik wurde das veraenderliche Verdichtungsverhaeltnis mit einem variablen Kurbeltrieb realisiert. Diese Technik ermoeglicht eine Variabilitaet der Verdichtung in einem grossen Bereich. In Verbindung mit Hochaufladung kann so ein ottomotorisches Verbrauchskonzept mit einem Einsparpotential von bis zu 30% dargestellt werden, das unter Beibehaltung der {lambda}=1-Technik zukuenftige Abgasnormen erfuellen kann. Die Eignung des variablen Kurbeltriebs zur Realisierung einer veraenderlichen Verdichtung konnte in der

  14. A Study on the Effects of Compression Ratio, Engine Speed and Equivalence Ratio on HCCI Combustion of DME

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper


    An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio...... was adjusted in steps to find suitable regions of operation, and the effect of engine speed was studied at 1000, 2000 and 3000 RPM. It was found that leaner excess air ratios require higher compression ratios to achieve satisfactory combustion. Engine speed also affects operation significantly....

  15. The effects of compression ratio, signal-to-noise ratio, and level on speech recognition in normal-hearing listeners. (United States)

    Hornsby, B W; Ricketts, T A


    Previous research has demonstrated reduced speech recognition when speech is presented at higher-than-normal levels (e.g., above conversational speech levels), particularly in the presence of speech-shaped background noise. Persons with hearing loss frequently listen to speech-in-noise at these levels through hearing aids, which incorporate multiple-channel, wide dynamic range compression. This study examined the interactive effects of signal-to-noise ratio (SNR), speech presentation level, and compression ratio on consonant recognition in noise. Nine subjects with normal hearing identified CV and VC nonsense syllables in a speech-shaped noise at two SNRs (0 and +6 dB), three presentation levels (65, 80, and 95 dB SPL) and four compression ratios (1:1, 2:1, 4:1, and 6:1). Stimuli were processed through a simulated three-channel, fast-acting, wide dynamic range compression hearing aid. Consonant recognition performance decreased as compression ratio increased and presentation level increased. Interaction effects were noted between SNR and compression ratio, as well as between presentation level and compression ratio. Performance decrements due to increases in compression ratio were larger at the better (+6 dB) SNR and at the lowest (65 dB SPL) presentation level. At higher levels (95 dB SPL), such as those experienced by persons with hearing loss, increasing compression ratio did not significantly affect speech intelligibility.

  16. Results of subscale MTF compression experiments (United States)

    Howard, Stephen; Mossman, A.; Donaldson, M.; Fusion Team, General


    In magnetized target fusion (MTF) a magnetized plasma torus is compressed in a time shorter than its own energy confinement time, thereby heating to fusion conditions. Understanding plasma behavior and scaling laws is needed to advance toward a reactor-scale demonstration. General Fusion is conducting a sequence of subscale experiments of compact toroid (CT) plasmas being compressed by chemically driven implosion of an aluminum liner, providing data on several key questions. CT plasmas are formed by a coaxial Marshall gun, with magnetic fields supported by internal plasma currents and eddy currents in the wall. Configurations that have been compressed so far include decaying and sustained spheromaks and an ST that is formed into a pre-existing toroidal field. Diagnostics measure B, ne, visible and x-ray emission, Ti and Te. Before compression the CT has an energy of 10kJ magnetic, 1 kJ thermal, with Te of 100 - 200 eV, ne 5x1020 m-3. Plasma was stable during a compression factor R0/R >3 on best shots. A reactor scale demonstration would require 10x higher initial B and ne but similar Te. Liner improvements have minimized ripple, tearing and ejection of micro-debris. Plasma facing surfaces have included plasma-sprayed tungsten, bare Cu and Al, and gettering with Ti and Li.

  17. Preferred low- and high-frequency compression ratios among hearing aid users with moderately severe to profound hearing loss. (United States)

    Keidser, Gitte; Dillon, Harvey; Dyrlund, Ole; Carter, Lyndal; Hartley, David


    This study aimed to determine the low- and high-frequency compression ratios of a fast-acting device that were preferred by people with moderately severe to profound hearing loss. Three compression ratios (1:1, 1.8:1, and 3:1) were combined in the low and high frequencies to produce nine schemes that were evaluated pair-wise for three weeks in the field using an adaptive procedure. The evaluation was performed by 21 experienced hearing aid users with a moderately severe to profound hearing loss. Diaries and an exit interview were used to monitor preferences. Generally, the subjects preferred lower compression ratios than are typically prescribed, especially in the low frequencies. Specifically, 11 subjects preferred linear amplification in the low frequencies, and 14 subjects preferred more compression in the high than in the low frequencies. Preferences could not be predicted from audiometric data, onset of loss, or past experience with amplification. The data suggest that clients with moderately severe to profound hearing loss should be fitted with low-frequency compression ratios in the range 1:1 to 2:1 and that fine-tuning is essential.

  18. Particular mechanism for continuously varying the compression ratio for an internal combustion engine (United States)

    Raţiu, S.; Cătălinoiu, R.; Alexa, V.; Miklos, I.; Cioată, V.


    Variable compression ratio (VCR) is a technology to adjust the compression ratio of an internal combustion engine while the engine is in operation. The paper proposes the presentation of a particular mechanism allowing the position of the top dead centre to be changed, while the position of the bottom dead centre remains fixed. The kinematics of the mechanism is studied and its trajectories are graphically represented for different positions of operation.

  19. Combustion and Emission Characteristics of Variable Compression Ignition Engine Fueled with Jatropha curcas Ethyl Ester Blends at Different Compression Ratio

    Directory of Open Access Journals (Sweden)

    Rajneesh Kumar


    Full Text Available Engine performance and emission characteristics of unmodified biodiesel fueled diesel engines are highly influenced by their ignition and combustion behavior. In this study, emission and combustion characteristics were studied when the engine operated using the different blends (B10, B20, B30, and B40 and normal diesel fuel (B0 as well as when varying the compression ratio from 16.5 : 1 to 17.5 : 1 to 18.5 : 1. The change of compression ratio from 16.5 : 1 to 18.5 : 1 resulted in 27.1%, 27.29%, 26.38%, 28.48%, and 34.68% increase in cylinder pressure for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions. Higher peak heat release rate increased by 23.19%, 14.03%, 26.32%, 21.87%, and 25.53% for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions, when compression ratio was increased from16.5 : 1 to 18.5 : 1. The delay period decreased by 21.26%, CO emission reduced by 14.28%, and NOx emission increased by 22.84% for B40 blends at 75% of rated load conditions, when compression ratio was increased from 16.5 : 1 to 18.5 : 1. It is concluded that Jatropha oil ester can be used as fuel in diesel engine by blending it with diesel fuel.

  20. Experiments of cylindrical isentropic compression by ultrahigh magnetic field (United States)

    Gu, Zhuowei; Zhou, Zhongyu; Zhang, Chunbo; Tang, Xiaosong; Tong, Yanjin; Zhao, Jianheng; Sun, Chengwei


    The high Explosive Magnetic Flux Implosion Compression Generator (EMFICG) is a kind of unique high energy density dynamic technique with characters like ultrahigh pressure and low temperature rising and could be suitable as a tool of cylindrical isentropic compression. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) have developed EMFICG technique and realized cylindrical isentropic compression. In the experiments, a seed magnetic field of 5-6 Tesla were built first and compressed by a stainless steel liner which is driven by high explosive. The inner free surface velocity of sample was measured by PDV. The isentropic compression of a copper sample was verified and the isentropic pressure is over 100 GPa. The cylindrical isentropic compression process has been numerical simulated by 1D MHD code and the simulation results were compared with the experiments. Compared with the transitional X-ray flash radiograph measurement, this method will probably promote the data accuracy.

  1. Experiments of cylindrical isentropic compression by ultrahigh magnetic field

    Directory of Open Access Journals (Sweden)

    Gu Zhuowei


    Full Text Available The high Explosive Magnetic Flux Implosion Compression Generator (EMFICG is a kind of unique high energy density dynamic technique with characters like ultrahigh pressure and low temperature rising and could be suitable as a tool of cylindrical isentropic compression. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP have developed EMFICG technique and realized cylindrical isentropic compression. In the experiments, a seed magnetic field of 5–6 Tesla were built first and compressed by a stainless steel liner which is driven by high explosive. The inner free surface velocity of sample was measured by PDV. The isentropic compression of a copper sample was verified and the isentropic pressure is over 100 GPa. The cylindrical isentropic compression process has been numerical simulated by 1D MHD code and the simulation results were compared with the experiments. Compared with the transitional X-ray flash radiograph measurement, this method will probably promote the data accuracy.

  2. Some investigations in design of low cost variable compression ratio two stroke petrol engine

    CERN Document Server

    Srinivas, A; rao, P Venkateswar; Reddy, M Penchal


    Historically two stroke engine petrol engines find wide applications in construction of two wheelers worldwide, however due to stringent environmental laws enforced universally; these engines are fading in numbers. In spite of the tight norms, internationally these engines are still used in agriculture, gensets etc. Several designs of variable compression ratio two stroke engines are commercially available for analysis purpose. In this present investigation a novel method of changing the compression ratio is proposed, applied, studied and analyzed. The clearance volume of the engine is altered by introducing a metal plug into the combustion chamber. This modification permitted to have four different values of clearance value keeping in view of the studies required the work is brought out as two sections. The first part deals with the design, modification, engine fabrication and testing at different compression ratios for the study of performance of the engine. The second part deals with the combustion in engi...

  3. The non-compressibility ratio for accurate diagnosis of lower extremity deep vein thrombosis

    Directory of Open Access Journals (Sweden)

    Caecilia Marliana


    Full Text Available Background Accurate identification of patients with deep vein thrombosis (DVT is critical, as untreated cases can be fatal. It is well established that the specificity of the clinical signs and symptoms of DVT is low. Therefore, clinicians rely on additional tests to make this diagnosis. There are three modalities for DVT diagnosis; clinical scoring, laboratory investigations, and radiology. The objective of this study was to determine the correlation of plasma D-dimer concentration with the ultrasonographic non-compressibility ratio in patients with DVT in the lower extremities. Methods This research was a cross-sectional observational study. The sample comprised 25 subjects over 30 years of age with clinically diagnosed DVT in the lower extremities. In all subjects, D-dimer determination using latex enhanced turbidimetric test was performed, as well as ultrasonographic non-compressibility ratio assessment of the lower extremities. Data were analyzed using Pearson’s correlation at significance level of 0.05. Results Mean plasma D-dimer concentration was 2953.00 ± 2054.44 mg/L. The highest mean non-compressibility ratio (59.96 ± 35.98% was found in the superficial femoral vein and the lowest mean non-compressibility ratio (42.68 ± 33.71% in the common femoral vein. There was a moderately significant correlation between plasma D-dimer level and non-compressibility ratio in the popliteal vein (r=0.582; p=0.037. In the other veins of the lower extremities, no significant correlation was found. Conclusion The sonographic non-compressibility ratio is an objective test for quick and accurate diagnosis of lower extremity DVT and for evaluation of DVT severity.

  4. Investigations of effects of pilot injection with change in level of compression ratio in a common rail diesel engine

    Directory of Open Access Journals (Sweden)

    Gajarlawar Nilesh


    Full Text Available These day diesel engines are gaining lots of attention as prime movers for various source of transportation. It offers better drive ability, very good low end torque and importantly the lower CO2 emission. Diesel engines are bridging the gap between gasoline and diesel engines. Better noise vibration and harshness levels of gasoline engine are realized to great extent in diesel engine, thanks to common rail direct injection system. Common rail injection system is now well known entity. Its unique advantage is flexible in operation. In common rail injection system, number of injection prior and after main injection at different injection pressure is possible. Due to multiple injections, gain in emission reduction as well as noise has been already experienced and demonstrated by researcher in the past. However, stringent emission norms for diesel engine equipped vehicle demands for further lower emission of oxides of nitrogen (NOx and particulate matter (PM. In the present paper, authors attempted to study the effect of multiple injections in combination with two level of compression ratio. The aim was to study the combustion behavior with the reduced compression ratio which is going to be tried out as low temperature combustion concept in near future. The results were compared with the current level of compression ratio. Experiments were carried out in 2.2L cubic capacity engine with two levels of compression ratios. Pilot injection separation and quantities were varied keeping the main injection, rail pressure, boost pressure and EGR rate constant. Cylinder pressure traces and gross heat release rates were measured and analyzed to understand the combustion behavior.

  5. The effects of video compression on acceptability of images for monitoring life sciences experiments (United States)

    Haines, Richard F.; Chuang, Sherry L.


    Future manned space operations for Space Station Freedom will call for a variety of carefully planned multimedia digital communications, including full-frame-rate color video, to support remote operations of scientific experiments. This paper presents the results of an investigation to determine if video compression is a viable solution to transmission bandwidth constraints. It reports on the impact of different levels of compression and associated calculational parameters on image acceptability to investigators in life-sciences research at ARC. Three nonhuman life-sciences disciplines (plant, rodent, and primate biology) were selected for this study. A total of 33 subjects viewed experimental scenes in their own scientific disciplines. Ten plant scientists viewed still images of wheat stalks at various stages of growth. Each image was compressed to four different compression levels using the Joint Photographic Expert Group (JPEG) standard algorithm, and the images were presented in random order. Twelve and eleven staffmembers viewed 30-sec videotaped segments showing small rodents and a small primate, respectively. Each segment was repeated at four different compression levels in random order using an inverse cosine transform (ICT) algorithm. Each viewer made a series of subjective image-quality ratings. There was a significant difference in image ratings according to the type of scene viewed within disciplines; thus, ratings were scene dependent. Image (still and motion) acceptability does, in fact, vary according to compression level. The JPEG still-image-compression levels, even with the large range of 5:1 to 120:1 in this study, yielded equally high levels of acceptability. In contrast, the ICT algorithm for motion compression yielded a sharp decline in acceptability below 768 kb/sec. Therefore, if video compression is to be used as a solution for overcoming transmission bandwidth constraints, the effective management of the ratio and compression parameters

  6. Lossy three-dimensional JPEG2000 compression of abdominal CT images: assessment of the visually lossless threshold and effect of compression ratio on image quality

    NARCIS (Netherlands)

    Ringl, Helmut; Schernthaner, Ruediger E.; Kulinna-Cosentini, Christiane; Weber, Michael; Schaefer-Prokop, Cornelia; Herold, Christian J.; Schima, Wolfgang


    PURPOSE: To retrospectively determine the maximum compression ratio at which compressed images are indistinguishable from the original by using a three-dimensional (3D) wavelet algorithm. MATERIALS AND METHODS: The protocol of this study was approved by the local Institutional Review Board and

  7. Analysis of Large-Strain Extrusion Machining with Different Chip Compression Ratios

    Directory of Open Access Journals (Sweden)

    Wen Jun Deng


    Full Text Available Large-Strain Extrusion Machining (LSEM is a novel-introduced process for deforming materials to very high plastic strains to produce ultra-fine nanostructured materials. Before the technique can be exploited, it is important to understand the deformation behavior of the workpiece and its relationship to the machining parameters and friction conditions. This paper reports finite-element method (FEM analysis of the LSEM process to understand the evolution of temperature field, effective strain, and strain rate under different chip compression ratios. The cutting and thrust forces are also analyzed with respect to time. The results show that LSEM can produce very high strains by changing in the value of chip compression ratio, thereby enabling the production of nanostructured materials. The shape of the chip produced by LSEM can also be geometrically well constrained.

  8. Spectrophotometry mole ratio and continuous variation experiments ...

    African Journals Online (AJOL)

    The mole-ratio method yield a ratio of 1M : 1L for the silver dithizonate complex and 1M : 3L for cobalt. Employing the continuous variation method give M : L ratio's of 1 : 3 for both nickel and cobalt. Formation constants are readily calculated from absorbance data. Complete methods, data, calculations and outcomes are ...

  9. Compressibility and resiliency properties of wilton type woven carpets produced with different fiber blend ratio (United States)

    Osman, B.; Esin, S.; Sıdıka Ziba, O.


    Carpet is a textile structure that composed of three components: warp (stuffer and chain warp), weft and pile yarns. These textile products are used for areas which will stand up to the use of home, hotel, work place etc. Furthermore, the capable of carpets are related to it’s especially pile performance during use in various areas. During usage, carpets made from various type of raw materials of pile yarn also acts differently that these differentiate determines carpet performance, as well.This study was focused on the compression and resilience behaviour of carpet composed of 100% viscose and 100% acrylic pile yarns and blended pile yarns of blend ratios, 80%/20%, 50%/50% and 20%/80% viscose/acrylic. During the yarn production process, all spinning conditions were kept constant in order to eliminate the yarn production parameters. Five different types of wilton face to face carpet samples were produced from these yarns at the same pile height and pile density on Van de Wiele carpet weaving machine at 110 picks/min machine speed and 1/1 V carpet construction. Compressibility properties of carpets were examined whether blend ratio was statistically significant on carpet resilience or not. The behaviour of pile yarns under pressure is important that leads to understand the growth characteristic which is exposed to decrease and increase loadings during usage of carpet made from these yarns. Results indicated that blend ratio of pile yarns have significance effect on compression behaviour of carpet samples.

  10. A study on negative Poisson’s ratio effect of 3D auxetic orthogonal textile composites under compression (United States)

    Zeng, Jifang; Hu, Hong; Zhou, Lin


    More and more researches have been focused on auxetic composite materials and a number of composite structures have been fabricated, synthesized or theoretically predicted. Since their structures are complex, their mechanical behavior is very difficult to be characterized. The purpose of the present paper is to systematically investigate the negative Poisson’s ratio effect of a novel three-dimensional auxetic orthogonal textile composite under compression. Firstly, a set of equations are derived for the theoretical calculation of the Poisson’s ratio of the composite under uniaxial compression via an analytical analysis. Secondly, a finite element model (FEM) is created by ANSYS Parameter Design Language and is verified by experiment. The deviation between the simulation and experimental results are carefully discussed. Thirdly, the effects of geometry parameters and material properties on the negative Poisson’s ratio behavior of the composite are discussed based on the FEM simulated results. At last, a general basis is concluded. It is expected that the outcomes of this study could be useful to guide the design and fabrication of auxetic textile composites with required negative Poisson’s ratio behavior.

  11. Formation of compressed flat electron beams with high transverse-emittance ratios

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J. [Fermilab; Institute of Fluid Physics, CAEP, China; Piot, P. [Northern Illinois University; Fermilab; Mihalcea, D. [Northern Illinois University; Prokop, C. R. [Northern Illinois University


    Flat beams—beams with asymmetric transverse emittances—have important applications in novel light-source concepts and advanced-acceleration schemes and could possibly alleviate the need for damping rings in lepton colliders. Over the last decade, a flat beam generation technique based on the conversion of an angular-momentum-dominated beam was proposed and experimentally tested. In this paper we explore the production of compressed flat beams. We especially investigate and optimize the flat beam transformation for beams with substantial fractional energy spread. We use as a simulation example the photoinjector of Fermilab’s Advanced Superconducting Test Accelerator. The optimizations of the flat beam generation and compression at Advanced Superconducting Test Accelerator were done via start-to-end numerical simulations for bunch charges of 3.2 nC, 1.0 nC, and 20 pC at ~37 MeV. The optimized emittances of flat beams with different bunch charges were found to be 0.25 μm (emittance ratio is ~400), 0.13 μm, 15 nm before compression, and 0.41 μm, 0.20 μm, 16 nm after full compression, respectively, with peak currents as high as 5.5 kA for a 3.2-nC flat beam. These parameters are consistent with requirements needed to excite wakefields in asymmetric dielectric-lined waveguides or produce significant photon flux using small-gap micro-undulators.

  12. Multiwavelength optical pyrometer for shock compression experiments. (United States)

    Lyzenga, G A; Ahrens, T J


    A system for measurement of the spectral radiance of materials shocked to high pressures ( approximately 100 GPa) by impact using a light gas gun is described. Thermal radiation from the sample is sampled at six wavelength bands in the visible spectrum, and each signal is separately detected by solid-state photodiodes, and recorded with a time resolution of approximately 10 ns. Interpretation of the records in terms of temperature of transparent sample materials is discussed. Results of a series of exploratory experiments with metals are also given. Shock temperatures in the range 4000-8000 K have been reliably measured. Spectral radiance and temperatures have been determined with uncertainties of 2%.

  13. Measuring image quality performance on image versions saved with different file format and compression ratio (United States)

    Mitjà, Carles; Escofet, Jaume; Bover, Toni


    Digitization of existing documents containing images is an important body of work for many archives ranging from individuals to institutional organizations. The methods and file formats used in this digitization is usually a trade off between budget, file volume size and image quality, while not necessarily in this order. The use of most commons and standardized file formats, JPEG and TIFF, prompts the operator to decide the compression ratio that affects both the final file volume size and the quality of the resulting image version. The evaluation of the image quality achieved by a system can be done by means of several measures and methods, being the Modulation Transfer Function (MTF) one of most used. The methods employed by the compression algorithms affect in a different way the two basic features of the image contents, edges and textures. Those basic features are too differently affected by the amount of noise generated at the digitization stage. Therefore, the target used in the measurement should be related with the features usually presents in general imaging. This work presents a comparison between the results obtained by measuring the MTF of images taken with a professional camera system and saved in several file formats compression ratios. In order to accomplish with the needs early stated, the MTF measurement has been done by two separate methods using the slanted edge and dead leaves targets respectively. The measurement results are shown and compared related with the respective file volume size.

  14. Experiments on Cascaded Quadratic Soliton Compression in Unpoled LN Waveguide

    DEFF Research Database (Denmark)

    Guo, Hairun; Zhou, Binbin; Zeng, Xianglong


    Experiments on cascaded quadratic soliton compression in unpoled phasemismatched lithium niobate waveguides are presented. Pulse self-phasemodulation dominated by an overall self-defocusing nonlinearity is observed, with an variation of pump wavelength and waveguide core width. © 2014 Optical...... Society of America...

  15. The VELOCE pulsed power generator for isentropic compression experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Tommy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Asay, James Russell [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Chantrenne, Sophie J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Hickman, Randall John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Willis, Michael David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Shay, Andrew W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Grine-Jones, Suzi A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Hall, Clint Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dynamic Material Properties; Baer, Melvin R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center


    Veloce is a medium-voltage, high-current, compact pulsed power generator developed for isentropic and shock compression experiments. Because of its increased availability and ease of operation, Veloce is well suited for studying isentropic compression experiments (ICE) in much greater detail than previously allowed with larger pulsed power machines such as the Z accelerator. Since the compact pulsed power technology used for dynamic material experiments has not been previously used, it is necessary to examine several key issues to ensure that accurate results are obtained. In the present experiments, issues such as panel and sample preparation, uniformity of loading, and edge effects were extensively examined. In addition, magnetohydrodynamic (MHD) simulations using the ALEGRA code were performed to interpret the experimental results and to design improved sample/panel configurations. Examples of recent ICE studies on aluminum are presented.

  16. Effects of compression force on elasticity index and elasticity ratio in ultrasound elastography (United States)

    Sasaki, Y; Sakamoto, J; Kamio, T; Nishikawa, K; Otonari-Yamamoto, M; Wako, M


    Objectives: The purpose of this study was to investigate the relationship between compression force and hardness values in ultrasound elastography. Methods: Ultrasound elastography was performed using an elastography phantom, comprising inclusions with different elasticities and echogenicities. The compression force was set to approximately 100 gw (light force) and approximately 500 gw (heavy force). The elasticity index (EI) of the inclusion was measured. The EI was a relative hardness value of a structure within an elastographic image. Similarly, the EI of the background was measured as a reference. The elasticity ratio (ER) was calculated as the EI of the inclusion divided by the EI of the reference. Results: The hardness of the phantom could be discerned with both the EI and ER, regardless of the compression force. The EI and ER with heavy force tended to be higher than those with light force, but the difference was not significant. A strong correlation was observed between the EI and ER of soft structures, whereas the correlation between the EI and ER of hard structures was weak, and the ER values varied widely. Conclusions: The EI offers potential as a good indicator for assessing the hardness. PMID:24592929

  17. Magnetic Compression Experiment at General Fusion with Simulation Results (United States)

    Dunlea, Carl; Khalzov, Ivan; Hirose, Akira; Xiao, Chijin; Fusion Team, General


    The magnetic compression experiment at GF was a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. External coil currents keep the CT off the outer wall (levitation) and then rapidly compress it inwards. The optimal external coil configuration greatly improved both the levitated CT lifetime and the rate of shots with good compressional flux conservation. As confirmed by spectrometer data, the improved levitation field profile reduced plasma impurity levels by suppressing the interaction between plasma and the insulating outer wall during the formation process. We developed an energy and toroidal flux conserving finite element axisymmetric MHD code to study CT formation and compression. The Braginskii MHD equations with anisotropic heat conduction were implemented. To simulate plasma / insulating wall interaction, we couple the vacuum field solution in the insulating region to the full MHD solution in the remainder of the domain. We see good agreement between simulation and experiment results. Partly funded by NSERC and MITACS Accelerate.

  18. Formation of compressed flat electron beams with high transverse-emittance ratios

    Directory of Open Access Journals (Sweden)

    J. Zhu


    Full Text Available Flat beams—beams with asymmetric transverse emittances—have important applications in novel light-source concepts and advanced-acceleration schemes and could possibly alleviate the need for damping rings in lepton colliders. Over the last decade, a flat beam generation technique based on the conversion of an angular-momentum-dominated beam was proposed and experimentally tested. In this paper we explore the production of compressed flat beams. We especially investigate and optimize the flat beam transformation for beams with substantial fractional energy spread. We use as a simulation example the photoinjector of Fermilab’s Advanced Superconducting Test Accelerator. The optimizations of the flat beam generation and compression at Advanced Superconducting Test Accelerator were done via start-to-end numerical simulations for bunch charges of 3.2 nC, 1.0 nC, and 20 pC at ∼37  MeV. The optimized emittances of flat beams with different bunch charges were found to be 0.25  μm (emittance ratio is ∼400, 0.13   μm, 15 nm before compression, and 0.41  μm, 0.20  μm, 16 nm after full compression, respectively, with peak currents as high as 5.5 kA for a 3.2-nC flat beam. These parameters are consistent with requirements needed to excite wakefields in asymmetric dielectric-lined waveguides or produce significant photon flux using small-gap micro-undulators.

  19. Performance and exhaust emission characteristics of variable compression ratio diesel engine fuelled with esters of crude rice bran oil. (United States)

    Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu


    As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio.

  20. Class B Fire-Extinguishing Performance Evaluation of a Compressed Air Foam System at Different Air-to-Aqueous Foam Solution Mixing Ratios

    Directory of Open Access Journals (Sweden)

    Dong-Ho Rie


    Full Text Available The purpose of this research is to evaluate the fire-extinguishing performance of a compressed air foam system at different mixing ratios of pressurized air. In this system, compressed air is injected into an aqueous solution of foam and then discharged. The experimental device uses an exclusive fire-extinguishing technology with compressed air foam that is produced based on the Canada National Laboratory and UL (Underwriters Laboratories 162 standards, with a 20-unit oil fire model (Class B applied as the fire extinguisher. Compressed air is injected through the air mixture, and results with different air-to-aqueous solution foam ratios of 1:4, 1:7, and 1:10 are studied. In addition, comparison experiments between synthetic surfactant foam and a foam type which forms an aqueous film are carried out at an air-to-aqueous solution foam ratio of 1:4. From the experimental results, at identical discharging flows, it was found that the fire-extinguishing effect of the aqueous film-forming foam is greatest at an air-to-aqueous solution foam ratio of 1:7 and weakest at 1:10. Moreover, the fire-extinguishing effect of the aqueous film-forming foam in the comparison experiments between the aqueous film-forming foam and the synthetic surfactant foam is greatest.

  1. The Effect of Alkaline Activator Ratio on the Compressive Strength of Fly Ash-Based Geopolymer Paste (United States)

    Lăzărescu, A. V.; Szilagyi, H.; Baeră, C.; Ioani, A.


    Alkaline activation of fly ash is a particular procedure in which ash resulting from a power plant combined with a specific alkaline activator creates a solid material when dried at a certain temperature. In order to obtain desirable compressive strengths, the mix design of fly ash based geopolymer pastes should be explored comprehensively. To determine the preliminary compressive strength for fly ash based geopolymer paste using Romanian material source, various ratios of Na2SiO3 solution/ NaOH solution were produced, keeping the fly ash/alkaline activator ratio constant. All the mixes were then cured at 70 °C for 24 hours and tested at 2 and 7 days, respectively. The aim of this paper is to present the preliminary compressive strength results for producing fly ash based geopolymer paste using Romanian material sources, the effect of alkaline activators ratio on the compressive strength and studying the directions for future research.

  2. Design of a miniature explosive isentropic compression experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, Douglas G [Los Alamos National Laboratory


    The purpose of this design study is to adapt the High Explosive Pulsed Power Isentropic Compression Experiment (HEPP-ICE) to milligram quantities of materials at stresses of {approx}100 GPa. For this miniature application we assume that a parallel plate stripline of {approx}2.5 mm width is needed to compress the samples. In any parallel plate load, the rising currents flow preferentially along the outside edges of the load where the specific impedance is a minimum [1]. Therefore, the peak current must be between 1 and 2 MA to reach a stress of 100 GPa in the center of a 2.5 mm wide parallel plate load; these are small relative to typical HEPP-ICE currents. We show that a capacitor bank alone exceeds the requirements of this miniature ICE experiment and a flux compression generator (FCG) is not necessary. The proposed circuit will comprise one half of the 2.4-MJ bank, i.e., the 6-mF, 20-kV, 1.2 MJ capacitor bank used in the original HEPP-ICE circuit. Explosive opening and closing switches will still be required because the rise time of the capacitor circuit would be of the order of 30 {micro}s without them. For isentropic loading in these small samples, stress rise times of {approx}200 ns are required.

  3. Optical pulse compression reflectometry: proposal and proof-of-concept experiment. (United States)

    Zou, Weiwen; Yang, Shuo; Long, Xin; Chen, Jianping


    This paper proposes a novel reflectometry based on the frequency modulation pulse-compression technology, called optical pulse compression reflectometry (OPCR). Linear frequency modulation (LFM) pulse is taken as an example to implement the OPCR. Its working principle and theoretical analysis are demonstrated. The spatial resolution is determined by the sweeping range of the LFM rather than the pulse width, which overcomes the tradeoff between spatial resolution and measurement range in the conventional pulse-based optical time domain reflectometry. The influence of the laser's phase noise on the integrated side lobe ratio and peak side lobe ratio is theoretically studied. Thanks to the continuous acquisition nature of the OPCR, time averaging is valid to eliminate the influence and results in the measurement range of the OPCR beyond a few times of the source coherent length. A proof-of-concept experiment of the OPCR is carried out to verify the spatial resolution and measurement range.

  4. Acoustic analysis of speech through a hearing aid: consonant-vowel ratio effects with two-channel compression amplification. (United States)

    Hickson, L; Thyer, N; Bates, D


    In this study, the consonant-vowel ratio (CVR) changes associated with varying the compression ratio and crossover frequency of two-channel syllabic compression amplification were examined. Consonant-vowel syllables were recorded at 60 and 75 dB SPL input levels to the hearing aid under 13 different amplification conditions: 12 compression conditions and a condition that used linear amplification in both channels. Syllables consisted of voiceless stops, fricatives, and affricates combined with the vowels /a/, /i/, and /u/. Acoustic analysis of the processed syllables indicated that the CVR was generally increased with compression, compared to linear amplification, and that the effects were greatest for amplification with compression in the high-frequency channel. In addition, higher CVRs were obtained when the crossover frequency was raised. Compression in the low-frequency channel had the least effect on CVR. As previous research has indicated that CVR may serve as a cue to the perception of some consonant sounds by people with hearing impairment, the results suggest the need for caution with the application of high-frequency channel compression until the perceptual effects are fully investigated.

  5. Urine protein-to-creatinine concentration ratio in samples collected by means of cystocentesis versus manual compression in cats. (United States)

    Vilhena, Hugo C R; Santos, Raquel R; Sargo, Teresa J; Lima, Tatiana B; Dias, Sofia S; Pastorinho, M Ramiro; Queiroga, Felisbina L; Silvestre-Ferreira, Ana C


    Objective-To compare urine protein-to-creatinine concentration (UPC) ratios in samples collected by means of cystocentesis versus manual compression in cats. Design-Evaluation study. Animals-43 client-owned cats requiring urinalysis. Procedures-In all cats, 5 mL of urine from the midstream phase of micturition was collected by means of manual compression and, subsequently, an additional 5 mL of urine was obtained by means of ultrasound-guided cystocentesis. A complete urinalysis was performed on all samples, and UPC ratios were determined. Results-Cats were classified on the basis of the International Renal Interest Society substaging system as being free from proteinuria (UPC ratio, 0.4; 17). None of the cats had postrenal proteinuria. A significant linear correlation was identified between UPC ratios in urine samples obtained by means of manual compression and ratios in samples obtained by means of cystocentesis. For all cats, UPC ratios for samples obtained by the 2 collection methods resulted in classification in the same IRIS substage. Conclusions and Clinical Relevance-Results suggested that collection of a urine sample from the midstream phase of micturition by manual compression would be a reliable alternative to cystocentesis for the determination of UPC ratio in cats, provided that postrenal proteinuria was excluded by means of urine sediment analysis. Once postrenal proteinuria was ruled out, the method used to collect urine samples did not appear to influence the quantification of urine protein concentration.

  6. Initial Results on Neutralized Drift Compression Experiments (NDCX-IA) for High Intensity Ion Beam

    CERN Document Server

    Roy, Prabir K; Baca, David; Bieniosek, Frank; Coleman, Joshua E; Davidson, Ronald C; Efthimion, Philip; Eylon, Shmuel; Gilson, Erik P; Grant Logan, B; Greenway, Wayne; Henestroza, Enrique; Kaganovich, Igor D; Leitner, Matthaeus; Rose, David; Sefkow, Adam; Sharp, William M; Shuman, Derek; Thoma, Carsten H; Vanecek, David; Waldron, William; Welch, Dale; Yu, Simon


    Ion beam neutralization and compression experiments are designed to determine the feasibility of using compressed high intensity ion beams for high energy density physics (HEDP) experiments and for inertial fusion power. To quantitatively ascertain the various mechanisms and methods for beam compression, the Neutralized Drift Compression Experiment (NDCX) facility is being constructed at Lawrence Berkeley National Laboratory (LBNL). In the first compression experiment, a 260 KeV, 25 mA, K+ ion beam of centimeters size is radially compressed to a mm size spot by neutralization in a meter-long plasma column and beam peak current is longitudinally compressed by an induction velocity tilt core. Instrumentation, preliminary results of the experiments, and practical limits of compression are presented. These include parameters such as emittance, degree of neutralization, velocity tilt time profile, and accuracy of measurements (fast and spatially high resolution diagnostic) are discussed.

  7. Influence of the Saturation Ratio on Concrete Behavior under Triaxial Compressive Loading

    Directory of Open Access Journals (Sweden)

    Xuan-Dung Vu


    Full Text Available When a concrete structure is subjected to an impact, the material is subjected to high triaxial compressive stresses. Furthermore, the water saturation ratio in massive concrete structures may reach nearly 100% at the core, whereas the material dries quickly on the skin. The impact response of a massive concrete wall may thus depend on the state of water saturation in the material. This paper presents some triaxial tests performed at a maximum confining pressure of 600 MPa on concrete representative of a nuclear power plant containment building. Experimental results show the concrete constitutive behavior and its dependence on the water saturation ratio. It is observed that as the degree of saturation increases, a decrease in the volumetric strains as well as in the shear strength is observed. The coupled PRM constitutive model does not accurately reproduce the response of concrete specimens observed during the test. The differences between experimental and numerical results can be explained by both the influence of the saturation state of concrete and the effect of deviatoric stresses, which are not accurately taken into account. The PRM model was modified in order to improve the numerical prediction of concrete behavior under high stresses at various saturation states.

  8. The 4-parameter Compressible Packing Model (CPM) including a critical cavity size ratio (United States)

    Roquier, Gerard


    The 4-parameter Compressible Packing Model (CPM) has been developed to predict the packing density of mixtures constituted by bidisperse spherical particles. The four parameters are: the wall effect and the loosening effect coefficients, the compaction index and a critical cavity size ratio. The two geometrical interactions have been studied theoretically on the basis of a spherical cell centered on a secondary class bead. For the loosening effect, a critical cavity size ratio, below which a fine particle can be inserted into a small cavity created by touching coarser particles, is introduced. This is the only parameter which requires adaptation to extend the model to other types of particles. The 4-parameter CPM demonstrates its efficiency on frictionless glass beads (300 values), spherical particles numerically simulated (20 values), round natural particles (125 values) and crushed particles (335 values) with correlation coefficients equal to respectively 99.0%, 98.7%, 97.8%, 96.4% and mean deviations equal to respectively 0.007, 0.006, 0.007, 0.010.

  9. Digitized hand-wrist radiographs: comparison of subjective and software-derived image quality at various compression ratios. (United States)

    McCord, Layne K; Scarfe, William C; Naylor, Rachel H; Scheetz, James P; Silveira, Anibal; Gillespie, Kevin R


    The objectives of this study were to compare the effect of JPEG 2000 compression of hand-wrist radiographs on observer image quality qualitative assessment and to compare with a software-derived quantitative image quality index. Fifteen hand-wrist radiographs were digitized and saved as TIFF and JPEG 2000 images at 4 levels of compression (20:1, 40:1, 60:1, and 80:1). The images, including rereads, were viewed by 13 orthodontic residents who determined the image quality rating on a scale of 1 to 5. A quantitative analysis was also performed by using a readily available software based on the human visual system (Image Quality Measure Computer Program, version 6.2, Mitre, Bedford, Mass). ANOVA was used to determine the optimal compression level (P quality. When we used quantitative indexes, the JPEG 2000 images had lower quality at all compression ratios compared with the original TIFF images. There was excellent correlation (R2 >0.92) between qualitative and quantitative indexes. Image Quality Measure indexes are more sensitive than subjective image quality assessments in quantifying image degradation with compression. There is potential for this software-based quantitative method in determining the optimal compression ratio for any image without the use of subjective raters.

  10. Introducing errors in progress ratios determined from experience curves

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.|info:eu-repo/dai/nl/074628526


    Progress ratios (PRs) derived from historical data in experience curves are used for forecasting development of many technologies as a means to model endogenous technical change in for instance climate–economy models. These forecasts are highly sensitive to uncertainties in the progress ratio. As a

  11. Adaptation of existing facilities to isentropic compression experiments

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, Douglas G [Los Alamos National Laboratory; Mielke, Charles H [Los Alamos National Laboratory; Rodriguez, George [Los Alamos National Laboratory; Rickel, Dwight G [Los Alamos National Laboratory


    We demonstrate that the established pulsed power infrastructure at the National High Magnetic Field Laboratory - Pulsed Field Facility (NHMFL-PFF) at the Los Alamos National Laboratory can be adapted to obtain high quality isentropic compression experiment (ICE) data on materials in extreme conditions of dynamic high pressure. Experiments utilized a single-turn magnet pulsed power system at the NHMFL-PFF that was originally designed to measure actinide samples in extremes of high magnetic field (to 300 Tesla). A simple modification to the single-turn magnet has converted it to a fast turnaround dynamic high pressure measurement system. This paper details the work done including important background details that indicate that much more can be accomplished with optimization of the load characteristics in terms of ultimate peak pressures. To match the rise time of the NHMFL capacitor bank ({approx}2 {mu}s versus {approx}0.5 {mu}s for the Sandia Z-machine) the sample dimensions can be relatively large, i.e., up to 5 mm thickness. The maximum stresses are {approx}50GPa (0.5 Mbar) at the maximum bank voltage (60 kV) and higher pressures may be possible if the sample is tamped. For the design and predictions of performance of the NHMFL-ICE experiment it is important to have good predictive models. A SPICE code simulation was chosen to model all aspects of the experiment, electrical and physical. To this end, accurate dynamic load models were developed to simulate the compression and expansion of the dynamic load at high pressures using shock physics principles. A series experiments have been performed which demonstrated the feasibility of the NHMFL-ICE technique. The results will be shown and discussed. The NHMFL-ICE technique is an excellent method for measuring equations of state (EOS) at megabar pressures. Because a complete EOS can be obtained in one experiment from zero to the peak pressure, and because many shots can be fired in one day, the technique promises to

  12. Three-dimensional characteristics of solar coronal shocks determined from observations; Geometry, Kinematics, and Compression ratio (United States)

    Kwon, Ryun Young; Vourlidas, Angelos


    We investigate the three-dimensional (3D) characteristics of coronal shocks associated with Coronal Mass Ejections (CMEs), in terms of geometry, kinematics, and density compression ratio, employing a new method we have developed. The method uses multi-viewpoint observations from the STEREO-A, -B and SOHO coronagraphs. The 3D structure and kinematics of coronal shock waves and the driving CMEs are derived separately using a forward modeling method. We analyze two CMEs that are observed as halos by the three spacecraft, and the peak speeds are over 2000 km s-1. From the 3D modeling, we find (1) the coronal shock waves are spherical apparently enclosing the Sun, in which the angular widths are much wider than those of CMEs (92° and 252° versus 58° and 91°), indicating shock waves are propagating away from the CMEs in the azimuthal directions, and (2) the speeds of the shock waves around the CME noses are comparable to those of the CME noses, but the speeds at the lateral flanks seem to be limited to the local fast magnetosonic speed. Applying our new method, we determine electron densities in the shock sheaths, the downstream-upstream density ratios, and the Mach numbers. We find (1) the sheath electron densities decrease with height in general but have the maximum near the CME noses, (2) the density ratios and Mach numbers also seem to depend on the position angle from the CME nose to the far-flank but are more or less constant in time, while the sheath electron densities and speeds decrease with time, because of the reduced local Alfven speed with height, and (3) the shocks could be supercritical in a wider spatial range, and it lasts longer, than those of what have been reported in the past. We conclude that the shock wave associated with an energetic CME is a phenomenon that is becoming a non-driven (blast-type), nearly freely propagating wave at the flank from a driven (bow- and/or piston-type) wave near the CME nose.

  13. Recent advance in Isentropic compression experiments on PTS facility (United States)

    Wang, Guilin; Zhang, Zhaohui; Guo, Shuai; Sun, Qizhi; Wang, Meng; Magnetically Loading techiniques Team


    The Primary Test Stand (PTS) facility is a pulsed power machine capable of delivering currents to loads of 5 8 MA over times of 200-620 ns. As current flows in the opposite direction electrode plates, smoothly rising, time dependent magnetic pressures were generated on each electrode plates. With pulse shaping techniques, the ramped compression waves can propagate in electrodes and specimens without forming a shock. Photonic Doppler velocimetry (PDV) have application in shockless, free-surface or sample/window interface velocity measurements of different thickness samples, which were used for equation-of-state (EOS) studies of condensed matter. Analysis the velocity data with a backward integration techniques, the quasi-isentrope to 1 Mbar of OFHC were inferred. Based on the application performance, confirms that PTS is a good experiment equipment for EOS and dynamic properties of different materials.

  14. Strength and Absorption Rate of Compressed Stabilized Earth Bricks (CSEBs Due to Different Mixture Ratios and Degree of Compaction

    Directory of Open Access Journals (Sweden)

    Abdullah Abd Halid


    Full Text Available Compressed Stabilized Earth Brick (CSEB is produced by compressing a mixture of water with three main materials such as Ordinary Portland Cement (OPC, soil, and sand. It becomes popularfor its good strength, better insulation properties, and a sustainable product due to its easy production with low carbon emission and less skilled labour required. Different types of local soils usedwill produce CSEB of different physical properties in terms of its strength, durability, and water absorption rate. This study focuses on laterite soil taken from the surrounding local area in Parit Raja, Johor, and CSEB samples are produced based on prototype brick size 100×50×30 mm. The investigations are based on four different degree of compactions (i.e. 1500, 2000, 2500, and 3000 Psi and three different mix proportion ratios of cement:sand:laterite soil (i.e. 1:1:9, 1:2:8, 1:3:7. A total of 144 CSEB samples have been tested at 7 and 28 days curing periods to determine the compressive strength (BS 3921:1985 and water absorption rate (MS 76:1972. It was found that maximum compressive strength of CSEB was 14.68 N/mm2 for mixture ratio of 1:3:7 at 2500 Psi compaction. Whereas, the minimum strengthis 6.87 N/mm2 for 1:1:9mixture ratio at 1500 Psi. Meanwhile, the lowest water absorption was 12.35% for mixture ratio of 1:2:8 at 3000 Psi; while the 1:1:9 mixture ratio at 1500 Psi gave the highest rate of 16.81%. This study affirms that the sand content in the mixture and the degree of compaction would affect the value of compressive strength and water absorption of CSEB.

  15. Effect of varying water-to-powder ratios and ultrasonic placement on the compressive strength of mineral trioxide aggregate. (United States)

    Basturk, Fatima B; Nekoofar, Mohammad Hossein; Gunday, Mahir; Dummer, Paul M H


    The purpose of this study was to compare the compressive strength of mineral trioxide aggregate (MTA) when mixed with 2 different water-to-powder (WP) proportions using either hand or ultrasonic placement. Tooth-colored ProRoot MTA (Dentsply Maillefer, Ballaigues, Switzerland) and white MTA Angelus (Angelus Soluçoes Odontologicas, Londrina, Brazil) were investigated. One gram of each MTA powder was mixed with either 0.34 or 0.40 g distilled water. The 4 groups were further divided into 2 groups of 5 specimens for each of the following techniques: conventional (ie, hand placement) and placement using indirect ultrasonic activation for 30 seconds. All specimens were subjected to compressive strength testing after 4 days. The results were statistically analyzed with multivariate analysis of variance and Tukey Honestly Significant Difference tests at a significance level of P MTA (84.17 ± 22.68) were significantly greater than those of MTA Angelus (47.71 ± 14.29) (P MTA specimens that were mixed in the 0.34 WP ratio, and then the samples were placed with ultrasonic activation (mean = 91.35 MPa). The lowest values were recorded for MTA Angelus samples that were mixed in the 0.40 WP ratio, and the specimens were placed without ultrasonic activation (mean = 36.36 MPa). Ultrasonic activation had no significant difference in terms of compressive strength. When using ProRoot MTA and MTA Angelus, higher WP ratios resulted in lower compressive strength values. Ultrasonication had no significant effect on the compressive strength of the material regardless of the WP ratio that was used. Therefore, adherence to the manufacturer's recommended WP ratio when preparing MTA for use in dental applications is advised. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Improving throughput and user experience for information intensive websites by applying HTTP compression technique. (United States)

    Malla, Ratnakar


    HTTP compression is a technique specified as part of the W3C HTTP 1.0 standard. It allows HTTP servers to take advantage of GZIP compression technology that is built into latest browsers. A brief survey of medical informatics websites show that compression is not enabled. With compression enabled, downloaded files sizes are reduced by more than 50% and typical transaction time is also reduced from 20 to 8 minutes, thus providing a better user experience.

  17. Bayesian model calibration of ramp compression experiments on Z (United States)

    Brown, Justin; Hund, Lauren


    Bayesian model calibration (BMC) is a statistical framework to estimate inputs for a computational model in the presence of multiple uncertainties, making it well suited to dynamic experiments which must be coupled with numerical simulations to interpret the results. Often, dynamic experiments are diagnosed using velocimetry and this output can be modeled using a hydrocode. Several calibration issues unique to this type of scenario including the functional nature of the output, uncertainty of nuisance parameters within the simulation, and model discrepancy identifiability are addressed, and a novel BMC process is proposed. As a proof of concept, we examine experiments conducted on Sandia National Laboratories' Z-machine which ramp compressed tantalum to peak stresses of 250 GPa. The proposed BMC framework is used to calibrate the cold curve of Ta (with uncertainty), and we conclude that the procedure results in simple, fast, and valid inferences. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Investigation on effect of equivalence ratio and engine speed on homogeneous charge compression ignition combustion using chemistry based CFD code

    Directory of Open Access Journals (Sweden)

    Ghafouri Jafar


    Full Text Available Combustion in a large-bore natural gas fuelled diesel engine operating under Homogeneous Charge Compression Ignition mode at various operating conditions is investigated in the present paper. Computational Fluid Dynamics model with integrated chemistry solver is utilized and methane is used as surrogate of natural gas fuel. Detailed chemical kinetics mechanism is used for simulation of methane combustion. The model results are validated using experimental data by Aceves, et al. (2000, conducted on the single cylinder Volvo TD100 engine operating at Homogeneous Charge Compression Ignition conditions. After verification of model predictions using in-cylinder pressure histories, the effect of varying equivalence ratio and engine speed on combustion parameters of the engine is studied. Results indicate that increasing engine speed provides shorter time for combustion at the same equivalence ratio such that at higher engine speeds, with constant equivalence ratio, combustion misfires. At lower engine speed, ignition delay is shortened and combustion advances. It was observed that increasing the equivalence ratio retards the combustion due to compressive heating effect in one of the test cases at lower initial pressure. Peak pressure magnitude is increased at higher equivalence ratios due to higher energy input.

  19. Compressed natural gas fueled vehicles: The Houston experience

    Energy Technology Data Exchange (ETDEWEB)


    The report describes the experience of the City of Houston in defining the compressed natural gas fueled vehicle research scope and issues. It details the ways in which the project met initial expectations, and how the project scope, focus, and duration were adjusted in response to unanticipated results. It provides examples of real world successes and failures in efforts to commercialize basic research in adapting a proven technology (natural gas) to a noncommercially proven application (vehicles). Phase one of the demonstration study investigates, develops, documents, and disseminates information regarding the economic, operational, and environmental implications of utilizing compressed natural gas (CNG) in various truck fueling applications. The four (4) truck classes investigated are light duty gasoline trucks, medium duty gasoline trucks, medium duty diesel trucks and heavy duty diesel trucks. The project researches aftermarket CNG conversions for the first three vehicle classes and original equipment manufactured (OEM) CNG vehicles for light duty gasoline and heavy duty diesel classes. In phase two of the demonstration project, critical issues are identified and assessed with respect to implementing use of CNG fueled vehicles in a large vehicle fleet. These issues include defining changes in local, state, and industry CNG fueled vehicle related codes and standards; addressing vehicle fuel storage limitations; using standardized vehicle emission testing procedures and results; and resolving CNG refueling infrastructure implementation issues and related cost factors. The report identifies which CNG vehicle fueling options were tried and failed and which were tried and succeeded, with and without modifications. The conclusions include a caution regarding overly optimistic assessments of CNG vehicle technology at the initiation of the project.

  20. Measuring and managing ratio compression for accurate iTRAQ/TMT quantification. (United States)

    Savitski, Mikhail M; Mathieson, Toby; Zinn, Nico; Sweetman, Gavain; Doce, Carola; Becher, Isabelle; Pachl, Fiona; Kuster, Bernhard; Bantscheff, Marcus


    Isobaric mass tagging (e.g., TMT and iTRAQ) is a precise and sensitive multiplexed peptide/protein quantification technique in mass spectrometry. However, accurate quantification of complex proteomic samples is impaired by cofragmentation of peptides, leading to systematic underestimation of quantitative ratios. Label-free quantification strategies do not suffer from such an accuracy bias but cannot be multiplexed and are less precise. Here, we compared protein quantification results obtained with these methods for a chemoproteomic competition binding experiment and evaluated the utility of measures of spectrum purity in survey spectra for estimating the impact of cofragmentation on measured TMT-ratios. While applying stringent interference filters enables substantially more accurate TMT quantification, this came at the expense of 30%-60% fewer proteins quantified. We devised an algorithm that corrects experimental TMT ratios on the basis of determined peptide interference levels. The quantification accuracy achieved with this correction was comparable to that obtained with stringent spectrum filters but limited the loss in coverage to <10%. The generic applicability of the fold change correction algorithm was further demonstrated by spiking of chemoproteomics samples into excess amounts of E. coli tryptic digests.

  1. The effect on quality of chest compressions and exhaustion of a compression--ventilation ratio of 30:2 versus 15:2 during cardiopulmonary resuscitation--a randomised trial

    NARCIS (Netherlands)

    Deschilder, Koen; de Vos, Rien; Stockman, Willem


    Recent cardio pulmonary resuscitation (CPR) guidelines changed the compression:ventilation ratio in 30:2. To compare the quality of chest compressions and exhaustion using the ratio 30:2 versus 15:2. A prospective, randomised crossover design was used. Subjects were recruited from the H.-Hart

  2. The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency. (United States)

    Leone, Thomas G; Anderson, James E; Davis, Richard S; Iqbal, Asim; Reese, Ronald A; Shelby, Michael H; Studzinski, William M


    Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate "tank-to-wheel" estimates of this type are necessary for "well-to-wheel" analyses of increased gasoline octane ratings in the context of light duty vehicle transportation.

  3. A DEM study of oedometric compression of model granular materials Initial state influence, stress ratio, elasticity, irreversibility.

    Directory of Open Access Journals (Sweden)

    Khalili Mohamed Hassan


    Full Text Available A DEM simulation study of spherical beads with elastic-frictional contacts in oedometric compression is carried out for a wide variety of initial states, differing in solid fraction Φ, coordination number z (independent of Φ in dense systems and inherent anisotropy. Stress ratio K0 = σ2/σ1, along with z, Φ and force and fabric anisotropies are monitored in compressions in which axial stress σ1 varies by more than 3 orders of magnitude. K0 tends to remain constant if the material was already one-dimensionally compressed in the assembling stage. Otherwise, it decreases steadily over the investigated stress range. K0 relates to force and fabric anisotropy parameters by a simple formula. Elastic moduli may express the response to very small stress increments about the transversely isotropic equilibrated states, although oedometric compression proves an essentially anelastic process, mainly due to friction mobilization. Despite apparent nearly reversible increases of axial strain ϵ1 (or density Φ, especially in dense samples, internal state evolutions are strongly irreversible, as evidenced by changes in z and K0. Fabric changes are reflected by anisotropic elastic moduli.

  4. 3D Printing Hierarchical Silver Nanowire Aerogel with Highly Compressive Resilience and Tensile Elongation through Tunable Poisson's Ratio. (United States)

    Yan, Pengli; Brown, Emery; Su, Qing; Li, Jun; Wang, Jian; Xu, Changxue; Zhou, Chi; Lin, Dong


    Metallic aerogels have attracted intense attention due to their superior properties, such as high electrical conductivity, ultralow densities, and large specific surface area. The preparation of metal aerogels with high efficiency and controllability remains challenge. A 3D freeze assembling printing technique integrated with drop-on-demand inkjet printing and freeze casting are proposed for metallic aerogels preparation. This technique enables tailoring both the macrostructure and microstructure of silver nanowire aerogels (SNWAs) by integrating programmable 3D printing and freeze casting, respectively. The density of the printed SNWAs is controllable, which can be down to 1.3 mg cm(-3) . The ultralight SNWAs reach high electrical conductivity of 1.3 S cm(-1) and exhibit excellent compressive resilience under 50% compressive strain. Remarkably, the printing methodology also enables tuning aerogel architectures with designed Poisson's ratio (from negative to positive). Moreover, these aerogel architechtures with tunable Poisson's ratio present highly electromechanical stability under high compressive and tensile strain (both strain up to 20% with fully recovery). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Improving the signal-to-noise ratio of complementary compressive imaging with a threshold (United States)

    Xue, Chang-Bin; Yao, Xu-Ri; Liu, Xue-Feng; Zhai, Guang-Jie; Zhao, Qing; Guo, Xiao-Yong


    We present a new technique to denoise a single-pixel camera, in which complementary compressive imaging and a threshold strategy have been combined to improve image quality. The number of measurements recorded by the detector is reduced by setting a threshold. With an appropriate choice of threshold value, the quality of the reconstructed image is enhanced with a small number of measurements. This denoising method thus offers a very effective approach to promote the implementation of single-pixel camera in real applications.

  6. Technique for Selecting Optimum Fan Compression Ratio based on the Effective Power Plant Parameters

    Directory of Open Access Journals (Sweden)

    I. I. Kondrashov


    Full Text Available Nowadays, civilian aircrafts occupy the major share of global aviation industry market. As to medium and long - haul aircrafts, turbofans with separate exhaust streams are widely used. Here, fuel efficiency is the main criterion of this engine. The paper presents the research results of the mutual influence of fan pressure ratio and bypass ratio on the effective specific fuel consumption. Shows the increasing bypass ratio to be a rational step for reducing the fuel consumption. Also considers the basic features of engines with a high bypass ratio. Among the other working process parameters, fan pressure ratio and bypass ratio are the most relevant for consideration as they are the most structural variables at a given level of technical excellence. The paper presents the dependence of the nacelle drag coefficient on the engine bypass ratio. For computation were adopted the projected parameters of prospective turbofans to be used in the power plant of the 180-seat medium-haul aircraft. Computation of the engine cycle was performed in Mathcad using these data, with fan pressure ratio and bypass ratio being varied. The combustion chamber gas temperature, the overall pressure ratio and engine thrust remained constant. Pressure loss coefficients, the efficiency of the engine components and the amount of air taken for cooling also remained constant. The optimal parameters corresponding to the minimum effective specific fuel consumption were found as the result of computation. The paper gives recommendations for adjusting optimal parameters, depending on the considered external factors, such as weight of engine and required fuel reserve. The obtained data can be used to estimate parameters of future turbofan engines with high bypass ratio.

  7. Compressive Sensing Radar: Simulation and Experiments for Target Detection

    NARCIS (Netherlands)

    Anitori, L.; Rossum, W.L. van; Otten, M.P.G.; Maleki, A.; Baraniuk, R.


    In this paper the performance of a combined Constant False Alarm Rate (CFAR) Compressive Sensing (CS) radar detector is investigated Using the properties of the Complex Approximate Message Passing (CAMP) algorithm, it is demonstratedthat the behavior of the CFAR processor can be separated from that

  8. Experiments on Metamaterials with Negative Effective Static Compressibility

    Directory of Open Access Journals (Sweden)

    Jingyuan Qu


    Full Text Available The volume of ordinary materials decreases in response to a pressure increase exerted by a surrounding gas or liquid, i.e., the material volume compressibility is positive. Recently, poroelastic metamaterial architectures have been suggested theoretically that allow for an unusual negative effective static volume compressibility—which appears to be forbidden for reasons of energy conservation at first sight. The challenge in the three-dimensional (3D fabrication of these blueprints lies in the necessary many hollow 3D crosses sealed by thin membranes, which we realize in this work by using 3D laser microlithography combined with a serendipitous mechanism. By using optical-microscopy cross-correlation analysis, we determine an extraordinarily large negative metamaterial effective volume compressibility of κ_{eff}=-0.8%  bar^{-1}=-80  GPa^{-1} under pressure control.

  9. Effects of Nanosilica on Compressive Strength and Durability Properties of Concrete with Different Water to Binder Ratios

    Directory of Open Access Journals (Sweden)

    Forood Torabian Isfahani


    Full Text Available The effects of the addition of different nanosilica dosages (0.5%, 1%, and 1.5% with respect to cement on compressive strength and durability properties of concrete with water/binder ratios 0.65, 0.55, and 0.5 were investigated. Water sorptivity, apparent chloride diffusion coefficient, electrical resistivity, and carbonation coefficient of concrete were measured. The results showed that compressive strength significantly improved in case of water/binder = 0.65, while for water/binder = 0.5 no change was found. Increasing nanosilica content, the water sorptivity decreased only for water/binder = 0.55. The addition of 0.5% nanosilica decreased the apparent chloride diffusion coefficient for water/binder = 0.65 and 0.55; however, higher nanosilica dosages did not decrease it with respect to reference value. The resistivity was elevated by 0.5% nanosilica for all water/binder ratios and by 1.5% nanosilica only for water/binder = 0.5. The carbonation coefficient was not notably affected by increasing nanosilica dosages and even adverse effect was observed for water/binder = 0.65. Further information of microstructure was also provided through characterization techniques such as X-ray diffraction, thermal gravimetric analysis, mercury intrusion porosimetry, and scanning electron microscopy. The effectiveness of a certain nanosilica dosage addition into lower strength mixes was more noticeable, while, for the higher strength mix, the effectiveness was less.

  10. Specimen aspect ratio and progressive field strain development of sandstone under uniaxial compression by three-dimensional digital image correlation

    Directory of Open Access Journals (Sweden)

    H. Munoz


    Full Text Available The complete stress–strain characteristics of sandstone specimens were investigated in a series of quasi-static monotonic uniaxial compression tests. Strain patterns development during pre- and post-peak behaviours in specimens with different aspect ratios was also examined. Peak stress, post-peak portion of stress–strain, brittleness, characteristics of progressive localisation and field strain patterns development were affected at different extents by specimen aspect ratio. Strain patterns of the rocks were obtained by applying three-dimensional (3D digital image correlation (DIC technique. Unlike conventional strain measurement using strain gauges attached to specimen, 3D DIC allowed not only measuring large strains, but more importantly, mapping the development of field strain throughout the compression test, i.e. in pre- and post-peak regimes. Field strain development in the surface of rock specimen suggests that strain starts localising progressively and develops at a lower rate in pre-peak regime. However, in post-peak regime, strains increase at different rates as local deformations take place at different extents in the vicinity and outside the localised zone. The extent of localised strains together with the rate of strain localisation is associated with the increase in rate of strength degradation. Strain localisation and local inelastic unloading outside the localised zone both feature post-peak regime.

  11. Effect of Variable Compression Ratio on Performance of a Diesel Engine Fueled with Karanja Biodiesel and its Blends (United States)

    Mishra, Rahul Kumar; soota, Tarun, Dr.; singh, Ranjeet


    Rapid exploration and lavish consumption of underground petroleum resources have led to the scarcity of underground fossil fuels moreover the toxic emissions from such fuels are pernicious which have increased the health hazards around the world. So the aim was to find an alternative fuel which would meet the requirements of petroleum or fossil fuels. Biodiesel is a clean, renewable and bio-degradable fuel having several advantages, one of the most important of which is being its eco-friendly and better knocking characteristics than diesel fuel. In this work the performance of Karanja oil was analyzed on a four stroke, single cylinder, water cooled, variable compression ratio diesel engine. The fuel used was 5% - 25% karanja oil methyl ester by volume in diesel. The results such obtained are compared with standard diesel fuel. Several properties i.e. Brake Thermal Efficiency, Brake Specific Fuel Consumptions, Exhaust Gas Temperature are determined at all operating conditions & at variable compression ratio 17 and 17.5.

  12. Modified water-cement ratio law for compressive strength of rice ...

    African Journals Online (AJOL)

    This work examines the modification of age long water – cement ratio law of Ordinary Portland Cement (OPC) concrete to cater for concrete with Rice Husk Ash (RHA). Chemical analysis of RHA produced under controlled temperature of 600°C was carried out. A total of one hundred and fifty (150) RHA concrete cubes at ...

  13. modified water-cement ratio law for compressive strength of rice

    African Journals Online (AJOL)


    sacrificing the strength of mortar, it was noted that proper consumption of ... sustainable cheaper concrete products. To this end ... mortar phase. 1.1 Development of Water/Cement Ratio Law. Abram found out that for a full compaction at a given age and normal temperature, the strength of concrete is inversely related to the ...

  14. Sonoelastographic evaluation with the determination of compressibility ratio for symmetrical prostatic regions in the diagnosis of clinically significant prostate cancer

    Directory of Open Access Journals (Sweden)

    Artur Przewor


    Full Text Available Aim: Sonoelastography is a technique that assesses tissue hardness/compressibility. Utility and sensitivity of the method in prostate cancer diagnostics were assessed compared to the current gold standard in prostate cancer diagnostics i.e. systematic biopsy. Material and methods: The study involved 84 patients suspected of prostate cancer based on elevated PSA levels or abnormal per rectal examination findings. Sonoelastography was used to evaluate the prostate gland. In the case of regions with hardness two-fold greater than that of symmetric prostate area (strain ratio >2, targeted biopsy was used; which was followed by an ultrasound-guided 8- or 10-core systematic biopsy (regardless of sonoelastography-indicated sites as a reference point. Results: The mean age of patients was 69 years. PSA serum levels ranged between 1.02 and 885 ng/dl. The mean prostate volume was 62 ml (19–149 ml. Prostate cancer was found in 39 out of 84 individuals. Statistically significant differences in strain ratios between cancers and benign lesions were shown. Sonoelastography guided biopsy revealed 30 lesions – overall sensitivity 77% (sensitivity of the method – 81%. Sonoelastographic sensitivity increased depending on cancer stage according to the Gleason grading system: 6–60%, 7–75%, 8–83%, 9/10–100%. The estimated sensitivity of systematic biopsy was 92%. Conclusions: Sonoelastography shows higher diagnostic sensitivity in prostate cancer diagnostics compared to conventional imaging techniques, i.e. grey-scale TRUS, Doppler ultrasound. It allows to reduce the number of collected tissue cores, and thus limit the incidence of complications as well as the costs involved. Sonoelastography using the determination of compressibility ratio for symmetrical prostatic regions may prove useful in the detection of clinically significant prostate cancer.

  15. Sonoelastographic evaluation with the determination of compressibility ratio for symmetrical prostatic regions in the diagnosis of clinically significant prostate cancer (United States)

    Słapa, Rafał Z.; Jakubowski, Wiesław S.; Migda, Bartosz; Dmowski, Tadeusz


    Aim Sonoelastography is a technique that assesses tissue hardness/compressibility. Utility and sensitivity of the method in prostate cancer diagnostics were assessed compared to the current gold standard in prostate cancer diagnostics i.e. systematic biopsy. Material and methods The study involved 84 patients suspected of prostate cancer based on elevated PSA levels or abnormal per rectal examination findings. Sonoelastography was used to evaluate the prostate gland. In the case of regions with hardness two-fold greater than that of symmetric prostate area (strain ratio >2), targeted biopsy was used; which was followed by an ultrasound-guided 8- or 10-core systematic biopsy (regardless of sonoelastography-indicated sites) as a reference point. Results The mean age of patients was 69 years. PSA serum levels ranged between 1.02 and 885 ng/dl. The mean prostate volume was 62 ml (19–149 ml). Prostate cancer was found in 39 out of 84 individuals. Statistically significant differences in strain ratios between cancers and benign lesions were shown. Sonoelastography guided biopsy revealed 30 lesions – overall sensitivity 77% (sensitivity of the method – 81%). Sonoelastographic sensitivity increased depending on cancer stage according to the Gleason grading system: 6–60%, 7–75%, 8–83%, 9/10–100%. The estimated sensitivity of systematic biopsy was 92%. Conclusions Sonoelastography shows higher diagnostic sensitivity in prostate cancer diagnostics compared to conventional imaging techniques, i.e. grey-scale TRUS, Doppler ultrasound. It allows to reduce the number of collected tissue cores, and thus limit the incidence of complications as well as the costs involved. Sonoelastography using the determination of compressibility ratio for symmetrical prostatic regions may prove useful in the detection of clinically significant prostate cancer. PMID:26674065

  16. Neutralized Drift Compression Experiment (NDCX) - II Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, J.W.


    LBNL has received American Recovery and Reinvestment Act (ARRA) funding to construct a new accelerator at Lawrence Berkeley National Laboratory (LBNL) to significantly increase the energy on target, which will allow both the Heavy Ion Fusion (HIF) and Warm Dense Matter (WDM) research communities to explore scientific conditions that have not been available in any other device. For NDCX-II, a new induction linear accelerator (linac) will be constructed at Lawrence Berkeley National Laboratory (LBNL). NDCX-II will produce nano-second long ion beam bunches to hit thin foil targets. The final kinetic energy of the ions arriving at the target varies according to the ion mass. For atomic mass unit of 6 or 7 (Lithium ions), useful kinetic energies range from 1.5 to 5 or more MeV. The expected beam charge in the 1 ns (or shorter) pulse is about 20 nanoCoulombs. The pulse repetition rate will be about once or twice per minute (of course, target considerations will often reduce this rate). Our approach to building the NDCX-II ion accelerator is to make use of the available induction modules and 200 kV pulsers from the retired ATA electron linac at LLNL. Reusing this hardware will maximize the ion energy on target at a minimum cost. Some modification of the cells (e.g., reduce the bore diameter and replace with higher field pulsed solenoids) are needed in order to meet the requirements of this project. The NDCX-II project will include the following tasks: (1) Physics design to determine the required ion current density at the ion source, the injector beam optics, the layout of accelerator cells along the beam line, the voltage waveforms for beam acceleration and compression, the solenoid focusing, the neutralized drift compression and the final focus on target; (2) Engineering design and fabrication of the accelerator components, pulsed power system, diagnostic system, and control and data acquisition system; (3) Conventional facilities; and (4) Installation and integration

  17. Historical Background of Ultrahigh Pressure Shock Compression Experiments at LLNL: 1973 to 2000

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, W.J.


    My purpose is to recount the historical development of ultrahigh pressure shock compression experiments at LLNL, which I experienced in the period 1973 to 2000. I used several experimental techniques: shock-impedance-match experiments using planar shock waves driven by nuclear explosives (NIMs), the Janus Laser, a railgun, and a two-stage light-gas gun.

  18. Effect of Compression, Digital Noise Reduction and Directionality on Envelope Difference Index, Log-Likelihood Ratio and Perceived Quality. (United States)

    Geetha, Chinnaraj; Manjula, Puttabasappa


    The aim of the present study was to evaluate the use of the envelope difference index (EDI) and log-likelihood ratio (LLR) to quantify the independent and interactive effects of wide dynamic range compression, digital noise reduction and directionality, and to carry out self-rated quality measures. A recorded sentence embedded in speech spectrum noise at +5 dB signal to noise ratio was presented to a four channel digital hearing aid and the output was recorded with different combinations of algorithms at 30, 45 and 70 dB HL levels of presentation through a 2 cc coupler. EDI and LLR were obtained in comparison with the original signal using MATLAB software. In addition, thirty participants with normal hearing sensitivity rated the output on the loudness and clarity parameters of quality. The results revealed that the temporal changes happening at the output is independent of the number of algorithms activated together in a hearing aid. However, at a higher level of presentation, temporal cues are better preserved if all of these algorithms are deactivated. The spectral components speech tend to get affected by the presentation level. The results also indicate the importance of quality rating as this helps in considering whether the spectral and/or temporal deviations created in the hearing aid are desirable or not.

  19. Effect of compression, digital noise reduction and directionality on envelope difference index, log-likelihood ratio and perceived quality

    Directory of Open Access Journals (Sweden)

    Chinnaraj Geetha


    Full Text Available The aim of the present study was to evaluate the use of the envelope difference index (EDI and log-likelihood ratio (LLR to quantify the independent and interactive effects of wide dynamic range compression, digital noise reduction and directionality, and to carry out selfrated quality measures. A recorded sentence embedded in speech spectrum noise at +5 dB signal to noise ratio was presented to a four channel digital hearing aid and the output was recorded with different combinations of algorithms at 30, 45 and 70 dB HL levels of presentation through a 2 cc coupler. EDI and LLR were obtained in comparison with the original signal using MATLAB software. In addition, thirty participants with normal hearing sensitivity rated the output on the loudness and clarity parameters of quality. The results revealed that the temporal changes happening at the output is independent of the number of algorithms activated together in a hearing aid. However, at a higher level of presentation, temporal cues are better preserved if all of these algorithms are deactivated. The spectral components speech tend to get affected by the presentation level. The results also indicate the importance of quality rating as this helps in considering whether the spectral and/or temporal deviations created in the hearing aid are desirable or not.

  20. Microscale Mechanical Deformation Behaviors and Mechanisms in Bulk Metallic Glasses Investigated with Micropillar Compression Experiments (United States)

    Ye, Jianchao


    Over the past years of my PhD study, the focused-ion-beam (FIB) based microcompression experiment has been thoroughly investigated with respect to the small-scale deformation in metallic glasses. It was then utilized to explore the elastic and plastic deformation mechanisms in metallic glasses. To this end, micropillars with varying sample sizes and aspect ratios were fabricated by the FIB technique and subsequently compressed on a modified nanoindentation system. An improved formula for the measurement of the Young's modulus was derived by adding a geometrical prefactor to the Sneddon's solution. Through the formula, geometry-independent Young's moduli were extracted from microcompression experiments, which are consistent with nanoindentation results. Furthermore, cyclic microcompression was developed, which revealed reversible inelastic deformation in the apparent elastic regime through high-frequency cyclic loading. The reversible inelastic deformation manifests as hysteric loops in cyclic microcompression and can be captured by the Kelvin-type viscoelastic model. The experimental results indicate that the free-volume zones behave essentially like supercooled liquids with an effective viscosity on the order of 1 x 108 Pas. The microscopic yield strengths were first extracted with a formula derived based on the Mohr-Coulomb law to account for the geometrical effects from the tapered micropillar and the results showed a weak size effect on the yield strengths of a variety of metallic-glass alloys, which can be attributed to Weibull statistics. The nature of the yielding phenomenon was explored with the cyclic micro-compression approach. Through cyclic microcompression of a Zr-based metallic glass, it can be demonstrated that its yielding stress increases at higher applied stress rate but its yielding strain is kept at a constant of ~ 2%. The room-temperature post-yielding deformation behavior of metallic glasses is characterized by flow serrations, which were

  1. Hydrodynamic Liner Experiments Using the Ranchero Flux Compression Generator System

    Energy Technology Data Exchange (ETDEWEB)

    Goforth, J.H.; Atchison, W.L.; Fowler, C.M.; Lopez, E.A.; Oona, H.; Tasker, D.G.; King, J.C.; Herrera, D.H.; Torres, D.T.; Sena, F.C.; McGuire, J.A.; Reinovsky, R.E.; Stokes, J.L.; Tabaka, L.J.; Garcia, O.F.; Faehl, R.J.; Lindemuth, I.R.; Keinigs, R.K.; Broste, B.


    The authors have developed a system for driving hydrodynamic liners at currents approaching 30 MA. Their 43 cm module will deliver currents of interest, and when fully developed, the 1.4 m module will allow similar currents with more total system inductance. With these systems they can perform interesting physics experiments and support the Atlas development effort.

  2. Compression Ratio Ion Mobility Programming (CRIMP) Accumulation and Compression of Billions of Ions for Ion Mobility-Mass Spectrometry Using Traveling Waves in Structures for Lossless Ion Manipulations (SLIM)

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Liulin; Garimella, Venkata BS; Hamid, Ahmed M.; Webb, Ian K.; Attah, Isaac K.; Norheim, Randolph V.; Prost, Spencer A.; Zheng, Xueyun; Sandoval, Jeremy A.; Baker, Erin M.; Ibrahim, Yehia M.; Smith, Richard D.


    We report on the implementation of a traveling wave (TW) based compression ratio ion mobility programming (CRIMP) approach within Structures for Lossless Ion Manipulations (SLIM) that enables both greatly enlarged trapped ion charge capacities and also their subsequent efficient compression for use in ion mobility (IM) separations. Ion accumulation is conducted in a long serpentine path TW SLIM region after which CRIMP allows the large ion populations to be ‘squeezed’. The compression process occurs at an interface between two SLIM regions, one operating conventionally and the second having an intermittently pausing or ‘stuttering’ TW, allowing the contents of multiple bins of ions from the first region to be merged into a single bin in the second region. In this initial work stationary voltages in the second region were used to block ions from exiting the first (trapping) region, and the resumption of TWs in the second region allows ions to exit, and the population to also be compressed if CRIMP is applied. In our initial evaluation we show that the number of charges trapped for a 40 s accumulation period was ~5×109, more than two orders of magnitude greater than the previously reported charge capacity using an ion funnel trap. We also show that over 1×109 ions can be accumulated with high efficiency in the present device, and that the extent of subsequent compression is only limited by the space charge capacity of the trapping region. Lower compression ratios allow increased IM peak heights without significant loss of signal, while excessively large compression ratios can lead to ion losses and other artifacts. Importantly, we show that extended ion accumulation in conjunction with CRIMP and multiple passes provides the basis for a highly desirable combination of ultra-high sensitivity and ultra-high resolution IM separations using SLIM.

  3. Shock Compression Experiments with in situ Ellipsometry Measurements (United States)

    Bakshi, Lior; Eliezer, Shalom; Nissim, Noaz; Perelmutter, Lior; Sudai, Moris; Mond, Michael


    Knowledge about the optical properties of materials at high pressure and high temperature is needed for EOS research. Ellipsometry measures the change in the polarization of a probe beam reflected from a surface. From the change in polarization, the real and imaginary parts of the time dependent complex index of refraction can be extracted. From the measured optical properties, fundamental physical properties of the material, such as emissivity, phase transitions, and electrical conductivity can be extracted. A dynamic ellipsometry measurement system with nanosecond resolution was built in order to measure all four stocks parameters. Gas gun was used to accelerate the impact flyer. Our experiments concentrated on the optical properties of 1020 steel targets with impact pressure range of 40-250 kbar. Free surface measurements as well as window-target interface measurements were preformed. Although there are intrinsic difficulties with dynamic ellipsometric measurements, distinct changes were observed for shock wave pressures larger than 130kbar, the α->ɛ phase transition.

  4. Measurement of the Compressibility Factor of Gases: A Physical Chemistry Laboratory Experiment (United States)

    Varberg, Thomas D.; Bendelsmith, Andrew J.; Kuwata, Keith T.


    In this article, we describe an experiment for the undergraduate physical chemistry laboratory in which students measure the compressibility factor of two gases, helium and carbon dioxide, as a function of pressure at constant temperature. The experimental apparatus is relatively inexpensive to construct and is described and diagrammed in detail.…

  5. Dynamic Compression Sector: Time-Resolved Synchrotron X-Ray Measurements in Shock Wave Experiments (United States)

    Rigg, P. A.; Arganbright, N.; Klug, J.; Konrad, C.; Li, Y.; Rickerson, D.; Schuman, A.; Sethian, J.; Sinclair, N.; Toyoda, Y.; Turneaure, S.; Williams, B.; Zdanowicz, E.; Zimmerman, K.; Gupta, Y. M.


    The Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS) located at Argonne National Laboratory - a first-of-its-kind user facility - has been established to address long standing scientific questions regarding atomistic - and micro/meso - scale mechanisms governing condensed matter changes under high stress, dynamic loading. By linking a diverse set of dynamic compression drivers to 80 ps bright, hard x-ray pulses from a synchrotron, the temporal evolution (or ``movies'') of material phenomena (structural changes, inelastic deformation, chemical changes) can be observed in single event, dynamic compression experiments. An overview of the DCS capabilities, operational guidelines, and representative results will be presented. Work supported by DOE/NNSA.

  6. Sample pre-heating in magnetic ramp compression experiments on the GEPI high pulsed power driver (United States)

    D'Almeida, Thierry; Chanal, Pierre-Yves; Zinszner, Jean-Luc; Daulhac, Gaetan


    GEPI is a 3 MA, 500 ns, high pulsed power driver operated by the CEA and mainly used for dynamically compressing materials in a quasi-isentropic regime at stress levels up to 100 GPa. Usually, materials are loaded starting from ambient temperature conditions, thus, following a single thermodynamic path near an isentrope. Dynamically loading samples from non-ambient initial conditions, either in pressure or temperature, can significantly improve our ability to obtain direct measurements over specific thermodynamic paths of interest. For instance, ramp-compressing multiphase metallic materials from various initial temperatures can help constrain their Equation of State. We have recently equipped the GEPI facility with a preheating device capable of pre-heating metallic samples up to 1100 K prior to their loading. We present results from preliminary experiments on copper and iron ramp compressed starting from temperatures ranging from 300 K to 900 K.

  7. Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments. (United States)

    Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard


    Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.

  8. Numerical Investigation of Injection Timing Influence on Fuel Slip and Influence of Compression Ratio on Knock Occurrence in Conventional Dual Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mario Sremec


    Full Text Available Compressed natural gas can be used in diesel engine with great benefits, but because of its low reactivity it is usually used in a so called dual fuel combustion process. Optimal parameters for dual fuel engines are not yet investigated thoroughly which is the motivation for this work. In this work, a numerical study performed in a cycle simulation tool (AVL Boost v2013 on the influence of different injection timings on fuel slip into exhaust and influence of compression ratio on knock phenomena in port injected dual fuel engine was conducted. The introduction of natural gas into the intake port of a diesel engine usually results in some fuel slipping into the exhaust port due to valve overlap. By analysing the simulation results, the injection strategy that significantly decreases the natural gas slip is defined. The knock occurrence study showed that the highest allowed compression ratio that will result in knock free operation of the presented engine is 18 for ambient intake condition, while for charged intake conditions the compression ratio should be lowered to 16.

  9. Assessment of eddy current effects on compression experiments in the TFTR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wong, K.L.; Park, W.


    The eddy current induced on the TFTR vacuum vessel during compression experiments is estimated based on a cylindrical model. It produces an error magnetic field that generates magnetic islands at the rational magnetic surfaces. The widths of these islands are calculated and found to have some effect on electron energy confinement. However, resistive MHD simulation results indicate that the island formation process can be slowed down by plasma rotation.

  10. Gasoline surrogate modeling of gasoline ignition in a rapid compression machine and comparison to experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mehl, M; Kukkadapu, G; Kumar, K; Sarathy, S M; Pitz, W J; Sung, S J


    The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history during ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first

  11. Waste Heat Approximation for Understanding Dynamic Compression in Nature and Experiments (United States)

    Jeanloz, R.


    Energy dissipated during dynamic compression quantifies the residual heat left in a planet due to impact and accretion, as well as the deviation of a loading path from an ideal isentrope. Waste heat ignores the difference between the pressure-volume isentrope and Hugoniot in approximating the dissipated energy as the area between the Rayleigh line and Hugoniot (assumed given by a linear dependence of shock velocity on particle velocity). Strength and phase transformations are ignored: justifiably, when considering sufficiently high dynamic pressures and reversible transformations. Waste heat mis-estimates the dissipated energy by less than 10-20 percent for volume compressions under 30-60 percent. Specific waste heat (energy per mass) reaches 0.2-0.3 c02 at impact velocities 2-4 times the zero-pressure bulk sound velocity (c0), its maximum possible value being 0.5 c02. As larger impact velocities are implied for typical orbital velocities of Earth-like planets, and c02 ≈ 2-30 MJ/kg for rock, the specific waste heat due to accretion corresponds to temperature rises of about 3-15 x 103 K for rock: melting accompanies accretion even with only 20-30 percent waste heat retained. Impact sterilization is similarly quantified in terms of waste heat relative to the energy required to vaporize H2O (impact velocity of 7-8 km/s, or 4.5-5 c0, is sufficient). Waste heat also clarifies the relationship between shock, multi-shock and ramp loading experiments, as well as the effect of (static) pre-compression. Breaking a shock into 2 steps significantly reduces the dissipated energy, with minimum waste heat achieved for two equal volume compressions in succession. Breaking a shock into as few as 4 steps reduces the waste heat to within a few percent of zero, documenting how multi-shock loading approaches an isentrope. Pre-compression, being less dissipative than an initial shock to the same strain, further reduces waste heat. Multi-shock (i.e., high strain-rate) loading of pre-compressed

  12. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I. (University of California, San Diego); Winey, J. Michael (Washington State University); Gupta, Yogendra Mohan (Washington State University); Lane, J. Matthew D.; Ditmire, Todd (University of Texas at Austin); Quevedo, Hernan J. (University of Texas at Austin)


    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  13. Zero Suppression and Data Compression for SDD Output in the ALICE Experiment

    CERN Document Server

    Alberici, G; De Remigis, P; Mazza, G; Rivetti, A; Tosello, F; Werbrouck, A E


    We describe a proposal for the zero suppression and data compression for the Silicon Drift Detectors in the ALICE experiment. The proposal seeks to maintain maximum precision within the limits of data transmission bandwidth, to retain two-dimensional cluster reconstructability and to monitor statistically the background. Two thresholds (high and low) are employed to facilitate understanding of the cluster neighbourhoods. This choice also helps to suppress single high background peaks and provides a statistically cleaner sample for background monitoring. Background average and standard deviation are monitored by counting the zero signal (due to negative inputs to the ADCs) and the signals above the thresholds, then using a minimisation algorithm. Background counts which overflow the small counter ranges are discarded to avoid wasting bits and then corrected statistically offline.First the 10-bit output of the ADCs is compressed to 8 bits using a quasi-parabolic monotonic characteristic which requires no conver...

  14. Computational modeling of joint U.S.-Russian experiments relevant to magnetic compression/magnetized target fusion (MAGO/MTF)

    Energy Technology Data Exchange (ETDEWEB)

    Sheehey, P.T.; Faehl, R.J.; Kirkpatrick, R.C.; Lindemuth, I.R. [Los Alamos National Lab., NM (United States)


    Magnetized Target Fusion (MTF) experiments, in which a preheated and magnetized target plasma is hydrodynamically compressed to fusion conditions, present some challenging computational modeling problems. Recently, joint experiments relevant to MTF (Russian acronym MAGO, for Magnitnoye Obzhatiye, or magnetic compression) have been performed by Los Alamos National Laboratory and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF). Modeling of target plasmas must accurately predict plasma densities, temperatures, fields, and lifetime; dense plasma interactions with wall materials must be characterized. Modeling of magnetically driven imploding solid liners, for compression of target plasmas, must address issues such as Rayleigh-Taylor instability growth in the presence of material strength, and glide plane-liner interactions. Proposed experiments involving liner-on-plasma compressions to fusion conditions will require integrated target plasma and liner calculations. Detailed comparison of the modeling results with experiment will be presented.

  15. Effect of Water-Cement Ratio on Linear Shrinkage, Cohesion, Friction Angle and Compressive Strength of Expansive Black Clay of Gombe State, Nigeria (United States)

    Ochepo, J.; Ogwola, O.; Masbeye, O.


    This study evaluates the effect of water-cement ratio on linear shrinkage strain, cohesion, friction angle and unconfined compressive strength of expansive black clay of Gombe state in Nigeria. The soil was remolded with predetermined amount of water and then mixed with cement slurry which was design so as to obtain cement contents of 4, 8 and 12%. The remolding water content (w) and the water content of the cement slurry was design so as to obtain a clay-water-cement mixture with water content equal to the optimum mixing clay-water content. The specimen for linear shrinkage strain, cohesion, friction angle and unconfined compressive strength were then prepared and cured for 7, 14 and 28 days before the various tests were conducted. The results obtained show that LSS increased with W/C ratio and decreased with curing periods. Cohesion increased with W/C ratio and decreased with curing periods and cement content while the soil friction angle decreased with W/C ratio and increased with curing period and cement content. UCS decreased with increase in W/C ratio for all cement content and increased with curing period and cement contents. Statistical analysis using ANOVA was carried out to evaluate the relative effect of W/C ratio, cement content and curing period on LSS, C, θ, and UCS. The results shows that the effect of both W/C ratio, cement content and curing period are statistically significant at 5% level with values of F calculated all greater than F critical for all the properties investigated. However from the calculated F values, the effect of W/C ratio was found to be more statistically significant than the effect of curing periods and cement content while the effect of curing period was found to be more statistically significant than the effect of cement content on LSS, C, θ, and UCS respectively.


    Agarwal, Anurag; Dhama, Vipin; Manik, Yogesh K; Upadhyaya, M K; Singh, C S; Rastogi, V


    Trigeminal neuralgia (TN) is characterized by unilateral, lancinating, paroxysmal pain in the dermatomal distribution area of trigeminal nerve. Percutaneous balloon compression (PBC) of Gasserian ganglion is an effective, comparatively cheaper and simple therapeutic modality for treatment of TN. Compression secondary to PBC selectively injures the large myelinated A-alfa (afferent) fibers that mediate light touch and does not affect A-delta and C-fibres, which carry pain sensation. Balloon compression reduces the sensory neuronal input, thus turning off the trigger to the neuropathic trigeminal pain. In this current case series, we are sharing our experience with PBC of Gasserian Ganglion for the treatment of idiopathic TN in our patients at an academic university-based medical institution in India. During the period of August 2012 to October 2013, a total of twelve PBCs of Gasserian Ganglion were performed in eleven patients suffering from idiopathic TN. There were nine female patients and two male patients with the age range of 35-70 years (median age: 54 years). In all patients cannulation of foramen ovale was done successfully in the first attempt. In eight out of eleven (72.7%) patients ideal 'Pear-shaped' balloon visualization could be achieved. In the remaining three patients (27.3%), inflated balloon was 'Bullet-shaped'. In one patient final placement of Fogarty balloon was not satisfactory and it ruptured during inflation. This case was deferred for one week when it was completed successfully with 'Pear-shaped' balloon inflation. During the follow up period of 1-13 months, there have been no recurrences of TN. Eight out of eleven patients (72.7%) are completely off medicines (carbamazepine and baclofen) and other two patients are stable on very low doses of carbamazepine. All patients have reported marked improvement in quality of life. This case series shows that percutaneous balloon compression is a useful minimally invasive intervention for the

  17. Compressed Natural Gas (CNG) Transit Bus Experience Survey: April 2009--April 2010

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.; Horne, D. B.


    This survey was commissioned by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to collect and analyze experiential data and information from a cross-section of U.S. transit agencies with varying degrees of compressed natural gas (CNG) bus and station experience. This information will be used to assist DOE and NREL in determining areas of success and areas where further technical or other assistance might be required, and to assist them in focusing on areas judged by the CNG transit community as priority items.

  18. Cycle-by-cycle Variations in a Direct Injection Hydrogen Enriched Compressed Natural Gas Engine Employing EGR at Relative Air-Fuel Ratios.

    Directory of Open Access Journals (Sweden)

    Olalekan Wasiu Saheed


    Full Text Available Since the pressure development in a combustion chamber is uniquely related to the combustion process, substantial variations in the combustion process on a cycle-by-cycle basis are occurring. To this end, an experimental study of cycle-by-cycle variation in a direct injection spark ignition engine fueled with natural gas-hydrogen blends combined with exhaust gas recirculation at relative air-fuel ratios was conducted. The impacts of relative air-fuel ratios (i.e. λ = 1.0, 1.2, 1.3 and 1.4 which represent stoichiometric, moderately lean, lean and very lean mixtures respectively, hydrogen fractions and EGR rates were studied. The results showed that increasing the relative air-fuel ratio increases the COVIMEP. The behavior is more pronounced at the larger relative air-fuel ratios. More so, for a specified EGR rate; increasing the hydrogen fractions decreases the maximum COVIMEP value just as increasing in EGR rates increases the maximum COVIMEP value. (i.e. When percentage EGR rates is increased from 0% to 17% and 20% respectively. The maximum COVIMEP value increases from 6.25% to 6.56% and 8.30% respectively. Since the introduction of hydrogen gas reduces the cycle-by-cycle combustion variation in engine cylinder; thus it can be concluded that addition of hydrogen into direct injection compressed natural gas engine employing EGR at various relative air-fuel ratios is a viable approach to obtain an improved combustion quality which correspond to lower coefficient of variation in imep, (COVIMEP in a direct injection compressed natural gas engine employing EGR at relative air-fuel ratios.

  19. Influence of fuel type, dilution and equivalence ratio on the emission reduction from the auto-ignition in an Homogeneous Charge Compression Ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Universite Libre de Bruxelles, TIPs - Fluid Physics, CP165/67, 50 Avenue F.D. Roosevelt, 1050 Brussels (Belgium); Cavadias, Simeon [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 4 place Jussieu, 75252 Paris cedex 05 (France); Amouroux, Jacques [UPMC Universite Paris 06, ENSCP, 11 rue de Pierre et Marie Curie, 75005 Paris (France)


    One technology that seems to be promising for automobile pollution reduction is the Homogeneous Charge Compression Ignition (HCCI). This technology still faces auto-ignition and emission-control problems. This paper focuses on the emission problem, since it is incumbent to realize engines that pollute less. For this purpose, this paper presents results concerning the measurement of the emissions of CO, NO{sub x}, CO{sub 2}, O{sub 2} and hydrocarbons. HCCI conditions are used, with equivalence ratios between 0.26 and 0.54, inlet temperatures of 70 C and 120 C and compression ratios of 10.2 and 13.5, with different fuel types: gasoline, gasoline surrogate, diesel, diesel surrogate and mixtures of n-heptane/toluene. The effect of dilution is considered for gasoline, while the effect of the equivalence ratio is considered for all the fuels. No significant amount of NO{sub x} has been measured. It appeared that the CO, O{sub 2} and hydrocarbon emissions were reduced by decreasing the toluene content of the fuel and by decreasing the dilution. The opposite holds for CO{sub 2}. The reduction of the hydrocarbon emission appears to compete with the reduction of the CO{sub 2} emission. Diesel seemed to produce less CO and hydrocarbons than gasoline when auto-ignited. An example of emission reduction control is presented in this paper. (author)

  20. Patient's experiences of being discharged home from hospital following a diagnosis of malignant spinal cord compression. (United States)

    Manson, Jane; Warnock, Clare; Crowther, Lesley


    The purpose of this study is to explore experiences in the days and weeks following discharge home following diagnosis and treatment for metastatic spinal cord compression (MSCC). Eleven participants took part in audio-recorded semi-structured interviews about their experiences at 1 and 3-4 weeks post-discharge home following a diagnosis of MSCC. Transcripts were analysed using a framework approach. Time emerged as an overarching theme within the framework of four time points: past, present, near future and distant future. Themes included getting home, challenges at home, community support, getting back to normal, in limbo, long-term goals and coping strategies. Getting to a level of coping at home after discharge following MSCC can take time. Services need to address this so that patients can live well within the limitations they face.

  1. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.


    We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ~;;1275 oC, a space-charge-limited Li+ beam current density of J ~;;1 mA/cm2 was obtained. The lifetime of the ion source was ~;;50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 mu s.

  2. Characterization of compression strength of granite-epoxy composites using design of experiments

    Directory of Open Access Journals (Sweden)

    Antonio Piratelli-Filho


    Full Text Available This paper presents a processing study of the polymer matrix composite (PMC developed with an epoxy polymeric matrix reinforced with particulate ceramic granite. This PMC composite has been reported to be used as structural parts of machine tools and Coordinate Measuring Machines due to its superior vibration damping characteristics and reduced processing cycle over cast iron. The investigated processing variables were epoxy content and particle size and the mechanical characterization was carried out by compressive tests. Rejects of granite with particle size smaller than 500 µm were prepared by crushing, milling and classification operations. The powder was mixed with different compositions of epoxy resin, between 15 and 20% in weight. An experiment was planned and executed according to the Factorial design technique using two variables at two levels. The obtained cylindrical samples were submitted to compressive strength tests and the results showed a maximum resistance of 114.23 MPa at 20 wt. (% epoxy, value close to that of the literature.

  3. Quasi-Isentropic Compression of Vapor Deposited Hexanitroazobenzene (HNAB): Experiments and Analysis (United States)

    Yarrington, Cole; Tappan, Alexander; Specht, Paul; Knepper, Robert


    Vapor-deposited hexanitroazobenzene (HNAB) is an explosive with unique physical characteristics resulting from the deposition process that make it desirable for the study of microstructure effects. A relatively understudied high explosive (HE), few data are available on the equation of state (EOS) of HNAB reactants or products. HNAB samples exhibiting high density and sub-micron porosity and grain size were prepared using physical vapor deposition onto polymethyl methacrylate (PMMA) and lithium fluoride (LiF) substrates. The samples were quasi-isentropically ramp compressed using VELOCE, a compact pulsed power generator. Evidence of a low pressure phase transition was observed in HNAB. Interferometric measurements of reference and sample interface velocities enabled inference of the unreacted EOS for HNAB using DAKOTA, an optimization toolkit. Initial simulations of the HNAB critical thickness experiment have been carried out using the parameterized EOS, and a products EOS from thermal equilibrium calculations.

  4. Disposition of transuranic residues from plutonium isentropic compression experiment (Pu-ice) conducted at Z machine

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Kapil K [Los Alamos National Laboratory; French, David M [Los Alamos National Laboratory; Humphrey, Betty J [WESTON SOLUTIONS INC.; Gluth, Jeffry [SNL


    In 1992, the U.S. Congress passed legislation to discontinue above- and below-ground testing of nuclear weapons. Because of this, the U.S. Department of Energy (DOE) must rely on laboratory experiments and computer-based calculations to verify the reliability of the nation's nuclear stockpile. The Sandia National Laboratories/New Mexico (SNL/NM) Z machine was developed by the DOE to support its science-based approach to stockpile stewardship. SNL/NM researchers also use the Z machine to test radiation effects on various materials in experiments designed to mimic nuclear explosions. Numerous components, parts, and materials have been tested. These experiments use a variety of radionuclides; however, plutonium (Pu) isotopes with greater than ninety-eight percent enrichment are the primary radionuclides used in the experiments designed for stockpile stewardship. In May 2006, SNL/NM received authority that the Z Machine Isentropic Compression Experiments could commence. Los Alamos National Laboratory (LANL) provided the plutonium targets and loaded the target assemblies, which were fabricated by SNL/NM. LANL shipped the loaded assemblies to SNL/NM for Z machine experiments. Three experiments were conducted from May through July 2006. The residues from each experiment, which weighed up to 913 pounds, were metallic and packaged into a respective 55-gallon drum each. Based on a memorandum of understanding between the two laboratories, LANL provides the plutonium samples and the respective radio-isotopic information. SNL/NM conducts the experiments and provides temporary storage for the drums until shipment to LANL for final waste certification for disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. This paper presents a comprehensive approach for documenting generator knowledge for characterization of waste in cooperation with scientists at the two laboratories and addresses a variety of topics such as material control and accountability


    Directory of Open Access Journals (Sweden)

    Katharina Losch


    Full Text Available The mechanical properties of a metal-matrix composite foam are investigated by interrupted in-situ compressive deformation experiments within an X-ray computed tomography device (XCT. Each in-situ experiment generates a sequence of reconstructed 3D images of the foam microstructure. From these data, the deformation field is estimated by registring the images corresponding to three consecutive steps. To this end, the generic registration framework of the itk software suite is exploited and combined with several image preprocessing steps. Both segmented (binary images having just two grey values for foreground (strut structure and background (pore space and the result of the Euclidean distance transform (EDT on pore space and solid phase are used. The estimation quality is evaluated based on a sequence of synthetic data sets, where the foam’s microstructure is modelled by a random Laguerre tessellation. For large deformations, a combination of non-rigid registration for the EDT images and partwise-rigid registration on strongly deformed regions of the binary images, yields surprisingly small estimation errors.

  6. Experiments in a flighted conveyor comparing shear rates in compressed versus free surface flows (United States)

    Pohlman, Nicholas; Higgins, Hannah; Krupiarz, Kamila; O'Connor, Ryan


    Uniformity of granular flow rate is critical in industry. Experiments in a flighted conveyor system aim to fill a gap in knowledge of achieving steady mass flow rate by correlating velocity profile data with mass flow rate measurements. High speed images were collected for uniformly-shaped particles in a bottom-driven flow conveyor belt system from which the velocity profiles can be generated. The correlation of mass flow rates from the velocity profiles to the time-dependent mass measurements will determine energy dissipation rates as a function of operating conditions. The velocity profiles as a function of the size of the particles, speed of the belt, and outlet size, will be compared to shear rate relationships found in past experiments that focused on gravity-driven systems. The dimension of the linear shear and type of decaying transition to the stationary bed may appear different due to the compression versus dilation space in open flows. The application of this research can serve to validate simulations in discrete element modeling and physically demonstrate a process that can be further developed and customized for industry applications, such as feeding a biomass conversion reactor. Sponsored by NIU's Office of Student Engagement and Experiential Learning.

  7. An experiment study of homogeneous charge compression ignition combustion and emission in a gasoline engine

    Directory of Open Access Journals (Sweden)

    Zhang Jianyong


    Full Text Available Homogenous charge compression ignition (HCCI technology has exhibited high potential to reduce fuel consumption and NOx emissions over normal spark ignition engines significantly. Optimized kinetic process (OKP technology is implemented to realize HCCI combustion in a port fuel injection gasoline engine. The combustion and emission characteristics are investigated with variation of intake air temperature, exhaust gas recirculation (EGR rate and intake air pressure. The results show that intake air temperature has great influence on HCCI combustion characteristic. Increased intake air temperature results in advance combustion phase, shorten combustion duration, and lower indicated mean effective pressure (IMEP. Increased EGR rate retards combustion start phase and prolongs combustion duration, while maximum pressure rising rate and NOx emission are reduced with increase of EGR rate. In the condition with constant fuel flow quantity, increased air pressure leads to retarded combustion phase and lower pressure rising rate, which will reduce the engine knocking tendency. In the condition with constant air fuel ratio condition, fuel injection quantity increases as intake air pressure increases, which lead to high heat release rate and high emission level. The optimal intake air temperature varies in different operating area, which can be tuned from ambient temperature to 220℃ by heat management system. The combination of EGR and air boost technology could expand operating area of HCCI engine, which improve indicated mean effective pressure from maximum 510kPa to 720kPa.

  8. An Experimental Parametric Study of Geometric, Reynolds Number, and Ratio of Specific Heats Effects in Three-Dimensional Sidewall Compression Scramjet Inlets at Mach 6 (United States)

    Holland, Scott D.; Murphy, Kelly J.


    Since mission profiles for airbreathing hypersonic vehicles such as the National Aero-Space Plane include single-stage-to-orbit requirements, real gas effects may become important with respect to engine performance. The effects of the decrease in the ratio of specific heats have been investigated in generic three-dimensional sidewall compression scramjet inlets with leading-edge sweep angles of 30 and 70 degrees. The effects of a decrease in ratio of specific heats were seen by comparing data from two facilities in two test gases: in the Langley Mach 6 CF4 Tunnel in tetrafluoromethane (where gamma=1.22) and in the Langley 15-Inch Mach 6 Air Tunnel in perfect gas air (where gamma=1.4). In addition to the simulated real gas effects, the parametric effects of cowl position, contraction ratio, leading-edge sweep, and Reynolds number were investigated in the 15-Inch Mach 6 Air Tunnel. The models were instrumented with a total of 45 static pressure orifices distributed on the sidewalls and baseplate. Surface streamline patterns were examined via oil flow, and schlieren videos were made of the external flow field. The results of these tests have significant implications to ground based testing of inlets in facilities which do not operate at flight enthalpies.

  9. Optimization of current waveform tailoring for magnetically driven isentropic compression experiments (United States)

    Waisman, E. M.; Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Cuneo, M. E.; Haill, T. A.; Davis, J.-P.; Brown, J. L.; Seagle, C. T.; Spielman, R. B.


    The Thor pulsed power generator is being developed at Sandia National Laboratories. The design consists of up to 288 decoupled and transit time isolated capacitor-switch units, called "bricks," that can be individually triggered to achieve a high degree of pulse tailoring for magnetically driven isentropic compression experiments (ICE) [D. B. Reisman et al., Phys. Rev. Spec. Top.-Accel. Beams 18, 090401 (2015)]. The connecting transmission lines are impedance matched to the bricks, allowing the capacitor energy to be efficiently delivered to an ICE strip-line load with peak pressures of over 100 GPa. Thor will drive experiments to explore equation of state, material strength, and phase transition properties of a wide variety of materials. We present an optimization process for producing tailored current pulses, a requirement for many material studies, on the Thor generator. This technique, which is unique to the novel "current-adder" architecture used by Thor, entirely avoids the iterative use of complex circuit models to converge to the desired electrical pulse. We begin with magnetohydrodynamic simulations for a given material to determine its time dependent pressure and thus the desired strip-line load current and voltage. Because the bricks are connected to a central power flow section through transit-time isolated coaxial cables of constant impedance, the brick forward-going pulses are independent of each other. We observe that the desired equivalent forward-going current driving the pulse must be equal to the sum of the individual brick forward-going currents. We find a set of optimal brick delay times by requiring that the L2 norm of the difference between the brick-sum current and the desired forward-going current be a minimum. We describe the optimization procedure for the Thor design and show results for various materials of interest.

  10. Optimization of current waveform tailoring for magnetically driven isentropic compression experiments

    Energy Technology Data Exchange (ETDEWEB)

    Waisman, E. M.; Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Cuneo, M. E.; Haill, T. A.; Davis, J.-P.; Brown, J. L.; Seagle, C. T. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Spielman, R. B. [Idaho State University, Pocatello, Idaho 83201 (United States)


    The Thor pulsed power generator is being developed at Sandia National Laboratories. The design consists of up to 288 decoupled and transit time isolated capacitor-switch units, called “bricks,” that can be individually triggered to achieve a high degree of pulse tailoring for magnetically driven isentropic compression experiments (ICE) [D. B. Reisman et al., Phys. Rev. Spec. Top.–Accel. Beams 18, 090401 (2015)]. The connecting transmission lines are impedance matched to the bricks, allowing the capacitor energy to be efficiently delivered to an ICE strip-line load with peak pressures of over 100 GPa. Thor will drive experiments to explore equation of state, material strength, and phase transition properties of a wide variety of materials. We present an optimization process for producing tailored current pulses, a requirement for many material studies, on the Thor generator. This technique, which is unique to the novel “current-adder” architecture used by Thor, entirely avoids the iterative use of complex circuit models to converge to the desired electrical pulse. We begin with magnetohydrodynamic simulations for a given material to determine its time dependent pressure and thus the desired strip-line load current and voltage. Because the bricks are connected to a central power flow section through transit-time isolated coaxial cables of constant impedance, the brick forward-going pulses are independent of each other. We observe that the desired equivalent forward-going current driving the pulse must be equal to the sum of the individual brick forward-going currents. We find a set of optimal brick delay times by requiring that the L{sub 2} norm of the difference between the brick-sum current and the desired forward-going current be a minimum. We describe the optimization procedure for the Thor design and show results for various materials of interest.

  11. Signal-to-Noise Ratio Prediction and Validation for Space Shuttle GPS Flight Experiment (United States)

    Hwu, Shian U.; Adkins, Antha A.; Loh, Yin-Chung; Brown, Lisa C.; Sham, Catherine C.; Kroll, Quin D.


    A deterministic method for Space Station Global Positioning System (GPS) Signal-To- Noise Ratio (SNR) predictions is proposed. The complex electromagnetic interactions between GPS antennas and surrounding Space Station structures are taken into account by computational electromagnetic technique. This computer simulator is capable of taking into account multipath effects from dynamically changed solar panels and thermal radiators. A comparison with recent collected Space Station GPS system flight experiment data is presented. The simulation results are in close agreement with flight data.

  12. PIENU experiment at TRIUMF: Measurement of π-->eν/π-->μν branching ratio (United States)

    Sher, A.; Aoki, M.; Blecher, M.; Bryman, D. A.; Comfort, J.; Doornbos, J.; Doria, L.; Gumplinger, P.; Hussein, A.; Igarashi, Y.; Ito, N.; Kettell, S.; Kuno, Y.; Kurchaninov, L.; Littenberg, L.; Malbrunot, C.; Marshal, G.; Muroi, A.; Poutissou, R.; Sandorfi, A.; Yamada, K.


    A TRIUMF experiment, PIENU, which aims to measure the branching ratio of pion decays, R = Γ(π→eν+eνγ)/Γ(π→μν+μνγ) to a precision of 0.1% or better is described. Such a measurement provides the best test of electron-muon universality in weak interactions and is sensitive to an effective mass scale of up to 1000 TeV in new physics.

  13. Compression algorithm for data analysis in a radio link (preparation of PACEM 2 experiment) (United States)

    Leroux, G.; Sylvain, M.


    The Hadamard transformation for image compression is applied to a radio data transmission system. The programs used and the performance obtained are described. The algorithms use PASCAL and the listed programs are written in FORTRAN 77. The experimental results of 62 images of 64 lines, show a standard deviation of 1.5% with a compression rate of 18.5, which is in accordance with the proposed goals.

  14. Challenges in QCD matter physics. The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Ablyazimov, T. [Joint Institute for Nuclear Research (JINR-LIT), Dubna (Russian Federation). Lab. of Information Technologies; Abuhoza, A. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt (Germany); Adak, R.P. [Bose Institute, Kolkata (India). Dept. of Physics; and others


    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√(s{sub NN}) = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μ{sub B} > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter. (orig.)

  15. Green technology effect of injection pressure, timing and compression ratio in constant pressure heat addition cycle by an eco-friendly material. (United States)

    Karthikayan, S; Sankaranarayanan, G; Karthikeyan, R


    Present energy strategies focus on environmental issues, especially environmental pollution prevention and control by eco-friendly green technologies. This includes, increase in the energy supplies, encouraging cleaner and more efficient energy management, addressing air pollution, greenhouse effect, global warming, and climate change. Biofuels provide the panorama of new fiscal opportunities for people in rural area for meeting their need and also the demand of the local market. Biofuels concern protection of the environment and job creation. Renewable energy sources are self-reliance resources, have the potential in energy management with less emissions of air pollutants. Biofuels are expected to reduce dependability on imported crude oil with connected economic susceptibility, reduce greenhouse gases, other pollutants and invigorate the economy by increasing demand and prices for agricultural products. The use of neat paradise tree oil and induction of eco-friendly material Hydrogen through inlet manifold in a constant pressure heat addition cycle engine (diesel engine) with optimized engine operating parameters such as injection timing, injection pressure and compression ratio. The results shows the heat utilization efficiency for neat vegetable oil is 29% and neat oil with 15% Hydrogen as 33%. The exhaust gas temperature (EGT) for 15% of H2 share as 450°C at full load and the heat release of 80J/deg. crank angle for 15% Hydrogen energy share. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Breaking of rod-shaped model material during compression

    Directory of Open Access Journals (Sweden)

    Lukas Kulaviak


    Full Text Available The breakage of a model anisometric dry granular material caused by uniaxial compression was studied. The bed of uniform rod-like pasta particles (8 mm long, aspect ratio 1:8 was compressed (Gamlen Tablet Press and their size distribution was measured after each run (Dynamic Image Analysing. The compression dynamics was recorded and the effect of several parameters was tested (rate of compression, volume of granular bed, pressure magnitude and mode of application. Besides the experiments, numerical modelling of the compressed breakable material was performed as well, employing the DEM approach (Discrete Element Method. The comparison between the data and the model looks promising.

  17. Breaking of rod-shaped model material during compression (United States)

    Lukas, Kulaviak; Vera, Penkavova; Marek, Ruzicka; Miroslav, Puncochar; Petr, Zamostny; Zdenek, Grof; Frantisek, Stepanek; Marek, Schongut; Jaromir, Havlica


    The breakage of a model anisometric dry granular material caused by uniaxial compression was studied. The bed of uniform rod-like pasta particles (8 mm long, aspect ratio 1:8) was compressed (Gamlen Tablet Press) and their size distribution was measured after each run (Dynamic Image Analysing). The compression dynamics was recorded and the effect of several parameters was tested (rate of compression, volume of granular bed, pressure magnitude and mode of application). Besides the experiments, numerical modelling of the compressed breakable material was performed as well, employing the DEM approach (Discrete Element Method). The comparison between the data and the model looks promising.

  18. Hayman uterine compression stitch for arresting atonic postpartum hemorrhage: 5 years experience

    Directory of Open Access Journals (Sweden)

    Smiti Nanda


    Conclusion: Two parallel vertical compression sutures (Hayman stitch placed in the uterus controls bleeding effectively. The technique is easy, rapid and requires less skill and this simple procedure be tried first before other complex measures like uterine artery ligation are undertaken particularly for those obstetricians who lack sufficient training and skill.

  19. PEN experiment: a measurement of π+ -->e+νe (γ) branching ratio (United States)

    Frlez, Emil; PEN Collaboration


    The experimental π+ -->e+νe (γ) decay branching ratio currently provides the most accurate test of lepton universality. The PEN experiment at PSI, Switzerland, aims to improve the present world average experimental precision of ΔB / B = 3 . 3 .10-3 to ~ 5 .10-4 using a stopped pion beam. During runs in 2008-2010, PEN has acquired over 2 .107 πe 2 events. The experiment includes active beam detectors (degrader, mini TPC, target), central MWPC tracking with a plastic scintillator hodoscope, and a spherical pure CsI electromagnetic shower calorimeter. We will present a progress report on the PEN analysis. In addition to πe 2 and the normalizing π --> μ --> e process, we will discuss radiative pion and muon decays, decays in flight, as well as accidental and hadronic backgrounds. The experimental π+ -->e+νe (γ) decay branching ratio currently provides the most accurate test of lepton universality. The PEN experiment at PSI, Switzerland, aims to improve the present world average experimental precision of ΔB / B = 3 . 3 .10-3 to ~ 5 .10-4 using a stopped pion beam. During runs in 2008-2010, PEN has acquired over 2 .107 πe 2 events. The experiment includes active beam detectors (degrader, mini TPC, target), central MWPC tracking with a plastic scintillator hodoscope, and a spherical pure CsI electromagnetic shower calorimeter. We will present a progress report on the PEN analysis. In addition to πe 2 and the normalizing π --> μ --> e process, we will discuss radiative pion and muon decays, decays in flight, as well as accidental and hadronic backgrounds. Work supported by NSF Grants PHY-0970013, 1307328, and others.

  20. Time-Dependent Material Data Essential for the Durability Analysis of Composite Flywheels Provided by Compressive Experiments (United States)

    Thesken, John C.; Bowman, Cheryl L.; Arnold, Steven M.


    Successful spaceflight operations require onboard power management systems that reliably achieve mission objectives for a minimal launch weight. Because of their high specific energies and potential for reduced maintenance and logistics, composite flywheels are an attractive alternative to electrochemical batteries. The Rotor Durability Team, which comprises members from the Ohio Aerospace Institute (OAI) and the NASA Glenn Research Center, completed a program of elevated temperature testing at Glenn' s Life Prediction Branch's Fatigue Laboratory. The experiments provided unique design data essential to the safety and durability of flywheel energy storage systems for the International Space Station and other manned spaceflight applications. Analysis of the experimental data (ref. 1) demonstrated that the compressive stress relaxation of composite flywheel rotor material is significantly greater than the commonly available tensile stress relaxation data. Durability analysis of compression preloaded flywheel rotors is required for accurate safe-life predictions for use in the International Space Station.

  1. Optimization of a transition radiation detector for the compressed baryonic matter experiment

    Energy Technology Data Exchange (ETDEWEB)

    Arend, Andreas


    The Transition Radiation Detector (TRD) of the compressed baryonic matter (CBM) experiment at FAIR has to provide electron-pion separation as well as charged-particle tracking. Within this work, thin and symmetric Multi-Wire Proportional Chambers (MWPCs) without additional drift region were proposed. the proposed prototypes feature a foil-based entrance window to minimize the material budget and to reduce the absorption probability of the generated TR photon. Based on the conceptual design of thin and symmetric MWPCs without drift region, multiple prototypes were constructed and their performance presented within this thesis. With the constructed prototypes of generations II and III the geometries of the wire and cathode planes were determined to be 4+4 mm and 5+5 mm. Based on the results of a performed test beam campaign in 2011 with this prototypes new prototypes of generation IV were manufactured and tested in a subsequent test beam campaign in 2012. Prototypes of different radiators were developed together with the MWPC prototypes. Along with regular foil radiators, foam-based radiator types made of polyethylene foam were utilized. Also radiators constructed in a sandwich design, which used different fiber materials confined with solid foam sheets, were used. For the prototypes without drift region, simulations of the electrostatic and mechanical properties were performed. The GARFIELD software package was used to simulate the electric field and to determine the resulting drift lines of the generated electrons. The mean gas amplification depending on the utilized gas and the applied anode voltage was simulated and the gas-gain homogeneity was verified. Since the thin foil-based entrance window experiences a deformation due to pressure differences inside and outside the MWPC, the variation on the gas gain depending on the deformation was simulated. The mechanical properties focusing on the stability of the entrance window was determined with a finiteelement

  2. Comparing nonlinear MHD simulations of low-aspect-ratio RFPs to RELAX experiments (United States)

    McCollam, K. J.; den Hartog, D. J.; Jacobson, C. M.; Sovinec, C. R.; Masamune, S.; Sanpei, A.


    Standard reversed-field pinch (RFP) plasmas provide a nonlinear dynamical system as a validation domain for numerical MHD simulation codes, with applications in general toroidal confinement scenarios including tokamaks. Using the NIMROD code, we simulate the nonlinear evolution of RFP plasmas similar to those in the RELAX experiment. The experiment's modest Lundquist numbers S (as low as a few times 104) make closely matching MHD simulations tractable given present computing resources. Its low aspect ratio ( 2) motivates a comparison study using cylindrical and toroidal geometries in NIMROD. We present initial results from nonlinear single-fluid runs at S =104 for both geometries and a range of equilibrium parameters, which preliminarily show that the magnetic fluctuations are roughly similar between the two geometries and between simulation and experiment, though there appear to be some qualitative differences in their temporal evolution. Runs at higher S are planned. This work is supported by the U.S. DOE and by the Japan Society for the Promotion of Science.

  3. The Universal Aspect Ratio of Vortices in Rotating Stratifi?ed Flows: Experiments and Observations

    CERN Document Server

    Aubert, Oriane; Gal, Patrice Le; Marcus, Philip S


    We validate a new law for the aspect ratio $\\alpha = H/L$ of vortices in a rotating, stratified flow, where $H$ and $L$ are the vertical half-height and horizontal length scale of the vortices. The aspect ratio depends not only on the Coriolis parameter f and buoyancy (or Brunt-Vaisala) frequency $\\bar{N}$ of the background flow, but also on the buoyancy frequency $N_c$ within the vortex and on the Rossby number $Ro$ of the vortex such that $\\alpha = f \\sqrt{[Ro (1 + Ro)/(N_c^2- \\bar{N}^2)]}$. This law for $\\alpha$ is obeyed precisely by the exact equilibrium solution of the inviscid Boussinesq equations that we show to be a useful model of our laboratory vortices. The law is valid for both cyclones and anticyclones. Our anticyclones are generated by injecting fluid into a rotating tank filled with linearly-stratified salt water. The vortices are far from the top and bottom boundaries of the tank, so there is no Ekman circulation. In one set of experiments, the vortices viscously decay, but as they do, they c...

  4. Advanced plasma flow simulations of cathodic-arc and ferroelectric plasma sources for neutralized drift compression experiments

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow


    Full Text Available Large-space-scale and long-time-scale plasma flow simulations are executed in order to study the spatial and temporal evolution of plasma parameters for two types of plasma sources used in the neutralized drift compression experiment (NDCX. The results help assess the charge neutralization conditions for ion beam compression experiments and can be employed in more sophisticated simulations, which previously neglected the dynamical evolution of the plasma. Three-dimensional simulations of a filtered cathodic-arc plasma source show the coupling efficiency of the plasma flow from the source to the drift region depends on geometrical factors. The nonuniform magnetic topology complicates the well-known general analytical considerations for evaluating guiding-center drifts, and particle-in-cell simulations provide a self-consistent evaluation of the physics in an otherwise challenging scenario. Plasma flow profiles of a ferroelectric plasma source demonstrate that the densities required for longitudinal compression experiments involving ion beams are provided over the drift length, and are in good agreement with measurements. Simulations involving azimuthally asymmetric plasma creation conditions show that symmetric profiles are nevertheless achieved at the time of peak on-axis plasma density. Also, the ferroelectric plasma expands upstream on the thermal expansion time scale, and therefore avoids the possibility of penetration into the acceleration gap and transport sections, where partial neutralization would increase the beam emittance. Future experiments on NDCX will investigate the transverse focusing of an axially compressing intense charge bunch to a sub-mm spot size with coincident focal planes using a strong final-focus solenoid. In order to fill a multi-tesla solenoid with the necessary high-density plasma for beam charge neutralization, the simulations predict that supersonically injected plasma from the low-field region will penetrate and

  5. Evaluation of dissociation constants from competition binding experiments based on the relative binding ratio. (United States)

    Kozelka, Jiří


    Methods probing protein-DNA associations include direct binding titrations and competition binding experiments. For the latter, we present here a simple procedure allowing the quantitative evaluation of dissociation constants. We show that the ratio between the fraction of a DNA probe bound to protein in the absence of competitor and that in the presence of competitor is, at large competitor concentrations, a linear function of the competitor concentration, and we derive equations allowing the dissociation constant for the protein-competitor complex to be evaluated from the slope. We show further that a self-competition experiment, where the DNA probe and competitor are chemically the same species, can be used as a complement to a direct titration to determine the fraction of protein that is correctly folded for specific DNA binding. Thus, such a combination of direct and self-competition titration can be used as a check of the conformational purity of DNA binding proteins. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Impact of frequency compression on music perception. (United States)

    Mussoi, Bruna S S; Bentler, Ruth A


    To determine the effects of frequency compression on music perception, and the impact of previous music training and hearing status. It was hypothesized that lesser amounts of compression would be preferred, and that this pattern of preference would be more evident in the musically trained groups. A paired-comparison paradigm was used. Subjects listened to pairs of musical passages as processed by a hearing aid with different frequency-compression settings. Subjects indicated their preferred passage and the strength of their preference. Fifty-seven subjects divided in four groups, according to hearing status (normal hearing, mild-to-moderate hearing loss), and previous music experience (trained, not trained). Subjects generally preferred the conditions with the lesser amount of compression. Listeners in the group with previous music training showed stronger preference for less compression than those without training, as did listeners with normal hearing when compared to subjects with hearing loss. Although less frequency compression was in general preferred, there was more variability in the comparisons involving the default settings for a 50-dB hearing loss (i.e. start frequency 4000 Hz, compression ratio 2.5:1) and no compression, suggesting that mild amounts of compression may not be detrimental to perceived sound quality.

  7. EEG data compression to monitor DoA in telemedicine. (United States)

    Palendeng, Mario E; Zhang, Qing; Pang, Chaoyi; Li, Yan


    Data compression techniques have been widely used to process and transmit huge amount of EEG data in real-time and remote EEG signal processing systems. In this paper we propose a lossy compression technique, F-shift, to compress EEG signals for remote depth of Anaesthesia (DoA) monitoring. Compared with traditional wavelet compression techniques, our method not only preserves valuable clinical information with high compression ratios, but also reduces high frequency noises in EEG signals. Moreover, our method has negligible compression overheads (less than 0.1 seconds), which can greatly benefit real-time EEG signal monitoring systems. Our extensive experiments demonstrate the efficiency and effectiveness of the proposed compression method.

  8. The MCE-5 technology: a new technical approach for variable compression ratio implementation on SI engines; Die MCE-5 Technologie: eine neue technische Moeglichkeit des variablen Verdichtungsverhaeltnis bei SI Motoren

    Energy Technology Data Exchange (ETDEWEB)

    Rabhi, V. [MCE-5 Development (France); Dionnet, F. [CERTAM (France); Beroff, J. [ENSCM Besancon (France)


    Variable compression ratio is one of the most interesting solutions for reducing fuel consumption, as well as greenhouse gases emissions. In this context, the MCE-5 technology has been developed by the MCE-5 Development Company in partnership with PSA Peugeot-Citroen group and the CERTAM. After 4 years R and D program, the first test results point out a sum of intermediary conclusions regarding the potential of the MCE-5 VCR engine, which is based on a gear transmission device. (orig.)

  9. Injection of Compressed Diced Cartilage in the Correction of Secondary and Primary Rhinoplasty: A New Technique with 12 Years' Experience. (United States)

    Erol, O Onur


    There are instances where small or large pockets are filled with diced cartilage in the nose, without use of wrapping materials. For this purpose, 1-cc commercial syringes were used. The obtained results were partial and incomplete. For better and improved results, the author designed new syringes, with two different sizes, which compress the diced cartilage for injection. The author presents his experience accrued over the past 12 years with 2366 primary, 749 secondary, 67 cleft lip and nose, and a total of 3182 rhinoplasties, using his new syringe design, which compresses diced cartilage and injects the diced cartilages as a conglutinate mass, simulating carved costal cartilage, but a malleable one. In 3125 patients, the take of cartilage graft was complete (98.2 percent) and a smooth surface was obtained, giving them a natural appearance. In 21 patients (0.65 percent), there was partial resorption of cartilage. Correction was performed with touch-up surgery by reinjection of a small amount of diced cartilage. In 36 patients (1.13 percent), there was overcorrection that, 1 year later, was treated by simple rasping. Compared with diced cartilage wrapped with Surgicel or fascia, the amount of injected cartilage graft is predictable because it consists purely of cartilage. The injected diced cartilage, because it is compressed and becomes a conglutinated mass, resembles a wood chip and simulates carved cartilage. It is superior to carved cartilage in that it is moldable, time saving, and gives a good result with no late show or warping. The injection takes only a few minutes.

  10. The quest for 'diagnostically lossless' medical image compression: a comparative study of objective quality metrics for compressed medical images (United States)

    Kowalik-Urbaniak, Ilona; Brunet, Dominique; Wang, Jiheng; Koff, David; Smolarski-Koff, Nadine; Vrscay, Edward R.; Wallace, Bill; Wang, Zhou


    Our study, involving a collaboration with radiologists (DK,NSK) as well as a leading international developer of medical imaging software (AGFA), is primarily concerned with improved methods of assessing the diagnostic quality of compressed medical images and the investigation of compression artifacts resulting from JPEG and JPEG2000. In this work, we compare the performances of the Structural Similarity quality measure (SSIM), MSE/PSNR, compression ratio CR and JPEG quality factor Q, based on experimental data collected in two experiments involving radiologists. An ROC and Kolmogorov-Smirnov analysis indicates that compression ratio is not always a good indicator of visual quality. Moreover, SSIM demonstrates the best performance, i.e., it provides the closest match to the radiologists' assessments. We also show that a weighted Youden index1 and curve tting method can provide SSIM and MSE thresholds for acceptable compression ratios.

  11. Nitrogen, phosphorus, potassium, calcium and magnesium release from two compressed fertilizers: column experiments (United States)

    Fernández-Sanjurjo, M. J.; Alvarez-Rodríguez, E.; Núñez-Delgado, A.; Fernández-Marcos, M. L.; Romar-Gasalla, A.


    The objective of this work was to study nutrients release from two compressed nitrogen-potassium-phosphorous (NPK) fertilizers. In the Lourizán Forest Center, tablet-type controlled-release fertilizers (CRF) were prepared by compressing various mixtures of fertilizers without covers or binders. We used soil columns (50 cm long and 7.3 cm inner diameter) that were filled with soil from the surface layer (0-20 cm) of an A horizon corresponding to a Cambic Umbrisol. Tablets of two slow-release NPK fertilizers (11-18-11 or 8-8-16) were placed into the soil (within the first 3 cm), and then water was percolated through the columns in a saturated regime for 80 days. Percolates were analyzed for N, P, K+, Ca2+ and Mg2+. These elements were also determined in soil and fertilizer tablets at the end of the trials. Nutrient concentrations were high in the first leachates and reached a steady state when 1426 mm of water had been percolated, which is equivalent to approximately 1.5 years of rainfall in this geographic area. In the whole trial, both tablets lost more than 80% of their initial N, P and K contents. However, K+, Ca2+ and Mg2+ were the most leached, whereas N and P were lost in leachates to a lesser extent. Nutrient release was slower from the tablet with a composition of 8-8-16 than from the 11-18-11 fertilizer. In view of that, the 8-8-16 tablet can be considered more adequate for crops with a nutrient demand sustained over time. At the end of the trial, the effects of these fertilizers on soil chemical parameters were still evident, with a significant increase of pH, available Ca2+, Mg2+, K+, P and effective cation exchange capacity (eCEC) in the fertilized columns, as well as a significant decrease in exchangeable Al3+, reaching values < 0.08 cmol (+) kg-1.

  12. Dual-phase steel sheets under cyclic tension-compression to large strains: Experiments and crystal plasticity modeling (United States)

    Zecevic, Milovan; Korkolis, Yannis P.; Kuwabara, Toshihiko; Knezevic, Marko


    In this work, we develop a physically-based crystal plasticity model for the prediction of cyclic tension-compression deformation of multi-phase materials, specifically dual-phase (DP) steels. The model is elasto-plastic in nature and integrates a hardening law based on statistically stored dislocation density, localized hardening due to geometrically necessary dislocations (GNDs), slip-system-level kinematic backstresses, and annihilation of dislocations. The model further features a two level homogenization scheme where the first level is the overall response of a two-phase polycrystalline aggregate and the second level is the homogenized response of the martensite polycrystalline regions. The model is applied to simulate a cyclic tension-compression-tension deformation behavior of DP590 steel sheets. From experiments, we observe that the material exhibits a typical decreasing hardening rate during forward loading, followed by a linear and then a non-linear unloading upon the load reversal, the Bauschinger effect, and changes in hardening rate during strain reversals. To predict these effects, we identify the model parameters using a portion of the measured data and validate and verify them using the remaining data. The developed model is capable of predicting all the particular features of the cyclic deformation of DP590 steel, with great accuracy. From the predictions, we infer and discuss the effects of GNDs, the backstresses, dislocation annihilation, and the two-level homogenization scheme on capturing the cyclic deformation behavior of the material.

  13. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment (United States)

    Erickson, Lisa R.; Ungar, Eugene K.


    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  14. Vapor Compression and Thermoelectric Heat Pumps for a Cascade Distillation Subsystem: Design and Experiment (United States)

    Erickson, Lisa R.; Ungar, Eugene K.


    Humans on a spacecraft require significant amounts of water for drinking, food, hydration, and hygiene. Maximizing the reuse of wastewater while minimizing the use of consumables is critical for long duration space exploration. One of the more promising consumable-free methods of reclaiming wastewater is the distillation/condensation process used in the Cascade Distillation Subsystem (CDS). The CDS heats wastewater to the point of vaporization then condenses and cools the resulting water vapor. The CDS wastewater flow requires heating for evaporation and the product water flow requires cooling for condensation. Performing the heating and cooling processes separately would require two separate units, each of which would demand large amounts of electrical power. Mass, volume, and power efficiencies can be obtained by heating the wastewater and cooling the condensate in a single heat pump unit. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the CDS system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump analysis and performance tests are provided. The mass, volume, and power requirement for each heat pump option is compared and the advantages and disadvantages of each system are listed.

  15. Magnetic compression anastomosis for biliary obstruction: review and experience at Tokyo Medical University Hospital. (United States)

    Itoi, Takao; Kasuya, Kazuhiko; Sofuni, Atsushi; Itokawa, Fumihide; Tsuchiya, Takayoshi; Kurihara, Toshio; Ikeuchi, Nobuhito; Takeuchi, Mami; Nagano, Takeshi; Iwamoto, Hitoshi; Yamanouchi, Eigoro; Shimazu, Motohide; Tsuchida, Akihiko


    Magnetic compression anastomosis (MCA) is a revolutionary, minimally invasive method of performing choledochoenterostomy or choledochocholedochostomy without using surgical techniques in patients with biliary stricture or obstruction. Herein, we describe a case series of MCA for severe biliary stricture or obstruction, which could not be treated with conventional therapies. Two patients with biliary obstruction were treated using MCA for choledochocholedochostomy and choledochoenterostomy at Tokyo Medical University Hospital and Tokyo Medical University Hachioji Medical Center. Endoscopically, a samarium-cobalt (Sm-Co) rare-earth magnet was placed at the superior site of obstruction through the percutaneous transhepatic biliary drainage route and another Sm-Co magnet was placed at the inferior site of obstruction. A comprehensive computer-aided literature search for MCA was performed up to September 2009 by using MEDLINE and EMBASE. MCA techniques enabled complete anastomosis in both cases without procedure-related complications. The MCA technique is a revolutionary method of performing choledochocholedochostomy and choledochoenterostomy interventionally in patients with biliary obstruction, for whom the conventional endoscopic procedure is not available, or in candidates who are deemed unsuitable for surgery.

  16. An Analysis of the X-Ray Diffraction Signal for the (alpha) - (epsilon) Transition in Shock-Compressed Iron: Simulation and Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hawreliak, J; Colvin, J D; Kalantar, D H; Lorenzana, H E; Stolken, J S; Davies, H M; Germann, T C; Holian, B L; Kadau, K; Lomdahl, P S; Higginbotham, A; Rosolankova, K; Sheppard, J; Wark, J S


    Recent published work has shown that the phase change of shock compressed iron along the [001] direction does transform to the {epsilon} (HCP) phase similar to the case for static measurements. This article provides an indepth analysis of the experiment and NEMD simulations, using x-ray diffraction in both cases to study the crystal structure upon transition. Both simulation and experiment are consistent with a compression and shuffle mechanism responsible for the phase change from BCC to HCP. Also both show a polycrystalline structure upon the phase transition, due to the four degenerate directions the phase change can occur on, with grain sizes measured of 4nm in the NEMD simulations and {approx} 2nm in the experiment. And looking at the time scale of the transition the NEMD shows the transition from the compressed BCC to HCP is less then 1.2 ps where the experimental data places an upper limit on the transition of 80 ps.

  17. Storage analysis and compression of signals with application in medicine (United States)

    Ponomaryov, Volodymyr I.; Badillo, Leonardo; Juarez, Cristina; Sanchez, Jose L.; Igartua, Luis


    This paper presents the use of Wavelet function technique to compress and storage the electroencephalographic (EEG) signal into a multichannel EEG system. The system consists of such components: multichannel bio-amplifier, analog filters, ADC, microprocessor, DSP, PCMCIA memory, etc. The algorithms to compress EEG signal have been implemented using language C/C++. The proposed digital FIR filter to compress the signal has own coefficients chosen as the coefficients of Daubechies Wavelets. The results of the experiments with implemented procedures have shown the compression ratio and SNR values for EEG signal in the case of real time compression. Values of real time compressing and storing parameters are presented when DSP and AMD586 processor used. The Backpropagation Neural Network was used to carry out the identification of EEG Patterns in the case of epilepsy illness.

  18. Freeze-bond strength experiments,: radially confined compression tests on saline and fresh water samples.


    Bueide, Ida Mari


    This thesis presents and analyses the method and results from strength experiments on freeze- bonds conducted on radially confined cylindrical samples (tri-axial tests). In total sixty samples were tested successfully, divided on twenty configurations. The variables consisted of confinement, submersion time, initial temperature and salinity (8 configurations with fresh water ice and 12 with 2-3ppt saline ice). The test set-up was similar to that of Møllegaard [2012] and Shafrova and Høyland [...

  19. Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment

    KAUST Repository

    Cottrill, Anton L.


    Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane-impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH-O) and a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.

  20. Results of explosively-driven isentropic compression experiments (HEPP-ICE)

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, D. G. (Douglas G.); Goforth, J. H. (James H.); Oona, H. (Henn); Rigg, P. A. (Paulo A.); Dennis-Koller, D. (Darcie); King, J. C. (James Carrel); Torres, D. T. (David T); Herrera, D. H. (Dennis H.); Sena, F. C. (Francis C.); Abeyta, F. G. (Frank G.); Tabaka, L. J. (Leonard J.)


    Using the Los Alamos high explosive pulsed power (HEPP) system, isentropic equation of state (EOS) data may be obtained for a wide range of materials. Current pulses with risetimes of {approx}500 ns and current densities exceeding 400 MA/m, create continuous magnetic loading of samples at megabar pressures. We will summarize the technique and the problems that had to be overcome to perform the HEPP-ICE experiments at these pressures. We will then present our EOS results obtained with the conventional Lagrangian analysis and the Hayes 'Backward' integration method, and compare the data with the published principal isentrope of OFHC copper.

  1. Digit Ratio (2D:4D) Predicts Self-Reported Measures of General Competitiveness, but Not Behavior in Economic Experiments (United States)

    Bönte, Werner; Procher, Vivien D.; Urbig, Diemo; Voracek, Martin


    The ratio of index finger length to ring finger length (2D:4D) is considered to be a putative biomarker of prenatal androgen exposure (PAE), with previous research suggesting that 2D:4D is associated with human behaviors, especially sex-typical behaviors. This study empirically examines the relationship between 2D:4D and individual competitiveness, a behavioral trait that is found to be sexually dimorphic. We employ two related, but distinct, measures of competitiveness, namely behavioral measures obtained from economic experiments and psychometric self-reported measures. Our analyses are based on two independent data sets obtained from surveys and economic experiments with 461 visitors of a shopping mall (Study I) and 617 university students (Study II). The correlation between behavior in the economic experiment and digit ratios of both hands is not statistically significant in either study. In contrast, we find a negative and statistically significant relationship between psychometric self-reported measures of competitiveness and right hand digit ratios (R2D:4D) in both studies. This relationship is especially strong for younger people. Hence, this study provides some robust empirical evidence for a negative association between R2D:4D and self-reported competitiveness. We discuss potential reasons why digit ratio may relate differently to behaviors in specific economics experiments and to self-reported general competitiveness. PMID:29276479

  2. Accuracy of progress ratios determined from experience curves: the case of photovoltaic technology development

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.; Alsema, E.A.; Junginger, H.M.; de Moor, H.H.C.; Schaeffer, G.J.


    Learning curves are extensively used in policy and scenario studies. Progress ratios (PRs) are derived from historical data and are used for forecasting cost development of many technologies, including photovoltaics (PV). Forecasts are highly sensitive to uncertainties in the PR. A PR usually is

  3. A Search for New Resonances with the Dijet Angular Ratio Using the Compact Muon Solenoid Experiment

    Energy Technology Data Exchange (ETDEWEB)

    John, Jason Michael [Boston Univ., MA (United States)


    A search for dijet resonances is performed using 2.2 fb$^{-1}$ of proton-proton collision data at $\\sqrt{s}$ = 7 TeV recorded by the CMS detector at CERN. The study is based on the dijet angular ratio, the ratio of the number of events with the two leading jets having pseudorapidity difference |delta eta| < 1.3 to the number of events with 1.3 < |delta eta| < 3.0. Models of new resonances which decay into two jets typically predict dijet angular distributions and hence, values of the dijet angular ratio which differ from standard model processes. We thus use the measurement of the angular ratio as a function of mass to set limits on the cross sections of new spin -1/2 quark-gluon resonances. We exclude excited quarks of mass less than 3.2 TeV at 95% confidence level, where a limit of 2.8 TeV is expected.

  4. Data compression for near Earth and deep space to Earth transmission (United States)

    Erickson, Daniel E.


    Key issues of data compression for near Earth and deep space to Earth transmission discussion group are briefly presented. Specific recommendations as made by the group are as follows: (1) since data compression is a cost effective way to improve communications and storage capacity, NASA should use lossless data compression wherever possible; (2) NASA should conduct experiments and studies on the value and effectiveness of lossy data compression; (3) NASA should develop and select approaches to high ratio compression of operational data such as voice and video; (4) NASA should develop data compression integrated circuits for a few key approaches identified in the preceding recommendation; (5) NASA should examine new data compression approaches such as combining source and channel encoding, where high payoff gaps are identified in currently available schemes; and (6) users and developers of data compression technologies should be in closer communication within NASA and with academia, industry, and other government agencies.

  5. Compression techniques in tele-radiology (United States)

    Lu, Tianyu; Xiong, Zixiang; Yun, David Y.


    This paper describes a prototype telemedicine system for remote 3D radiation treatment planning. Due to voluminous medical image data and image streams generated in interactive frame rate involved in the application, the importance of deploying adjustable lossy to lossless compression techniques is emphasized in order to achieve acceptable performance via various kinds of communication networks. In particular, the compression of the data substantially reduces the transmission time and therefore allows large-scale radiation distribution simulation and interactive volume visualization using remote supercomputing resources in a timely fashion. The compression algorithms currently used in the software we developed are JPEG and H.263 lossy methods and Lempel-Ziv (LZ77) lossless methods. Both objective and subjective assessment of the effect of lossy compression methods on the volume data are conducted. Favorable results are obtained showing that substantial compression ratio is achievable within distortion tolerance. From our experience, we conclude that 30dB (PSNR) is about the lower bound to achieve acceptable quality when applying lossy compression to anatomy volume data (e.g. CT). For computer simulated data, much higher PSNR (up to 100dB) is expectable. This work not only introduces such novel approach for delivering medical services that will have significant impact on the existing cooperative image-based services, but also provides a platform for the physicians to assess the effects of lossy compression techniques on the diagnostic and aesthetic appearance of medical imaging.

  6. Measurement of 3He/4He ratio in cosmic rays with the AMS experiment

    CERN Document Server

    Xiong Zhao Hua; Chen Gang; Chen He Sheng; Lü Yu Sheng; Tang, Xiaowei; Yang Chang Gen; Yang Min; Zhuang, Honglin


    The cosmic-ray 3He/4He ratios from 0.09 to 1.2 GeV per nucleon are measured by Alpha Magnetic Spectrometer (AMS) at its precursor mission on broad the space shuttle Discovery during flight STS-91 in June 1998. Taking unique advantage of AMS data collected from large region covering the earth equator, we also studied the magnetic latitude effect on the ratios. Our analysis shows that the relative abundances of 3He and 4He in cosmic rays depend weakly on the magnetic latitude, and given present uncertainties, the observed isotopic compositions are generally consistent with the predictions of the standard propagation model of cosmic rays.

  7. Dynamic Compression System: An Effective Nonoperative Treatment for Pectus Carinatum: A Single Center Experience in Basel, Switzerland. (United States)

    Sesia, Sergio B; Holland-Cunz, Stefan; Häcker, Frank-Martin


    Background Several nonoperative treatments are currently available for the correction of pectus carinatum (PC). Objective The objective of this study is to report our single center experience with the dynamic compression system (DCS). Materials and Methods The DCS is a rigid aluminum brace. PC is reshaped into a normal appearance through anterior-posterior pressure and lateral expansion of the chest. Patients with chondrogladiolar PC were considered suitable for the nonoperative treatment with DCS. Results In this study, 53 of 68 children (78%) with chondrogladiolar PC were assessed retrospectively: 2 children were corrected by surgery, 12/53 (23%) treated by a conventional orthesis, 11/53 (21%) remained without therapy because of minor PC, and 36/53 (68%) were treated using the DCS. Of these 36 patients, 17 (47%) are already cured with a good (7/17) to excellent (10/17) cosmetic result after a median treatment period of 9 months (range, 2.5-16 months). The mean daily time of wearing of the device for those 17 patients was 9 hours (range, 5-18). None abandoned the treatment and there were almost no complications. Conclusions Lateral expansion of the chest and the possibility to measure the applied pressure seemed to be the key to DCSs success. We propose the DCS as first choice in the treatment of chondrogladiolar PC in children. Georg Thieme Verlag KG Stuttgart · New York.

  8. Preamplifier-shaper prototype for the Fast Transition Detector of the Compressed Baryonic Matter (CBM) experiment at FAIR

    CERN Document Server

    Soltveit, Hans Kristian


    In this work a preamplifier-shaper prototype for the Fast Transition Detector of the Compressed BaryonicMatter (CBM) experiment at FAIR fabricated using a 0.35 μm CMOS technology will be presented. The ASIC integrates 16 identical Charge Sensitive Amplifiers (CSA) followed by a Pole-Zero network, two bridged-T filters, Common-Mode FeedBack (CMFB) network and two non-inverting level shifting stages. The circuit is optimized for a detector capacitance Cd of (5-10)pF. Measurement results confirm the noise of 330 e− + 12 e−/pF obtained in simulations for a pulse with a Full Width Half Maximum (FWHM) of 71 ns. The circuit recovers to the baseline within 200 ns. The conversion gain is 12.64 mV/fC. An integral nonlinearity of 0.7% is also achieved. The maximum output swing is 2 V. The power consumption is 16 mW/channel where the main contributors are the input transistor and the level shifting stage with 5.3 mW and 6.6 mW, respectively. The total area of the chip is 12 mm2. Although the circuit was designed for...

  9. Compressive strength of resin-modified glass ionomer restorative material: effect of P/L ratio and storage time Resistência à compressão de ionômeros de vidro modificados por resina: efeito da relação P/L e tempos de armazenagem

    Directory of Open Access Journals (Sweden)

    Mônica Aratani


    Full Text Available The aim of this study was to evaluate the compressive strength of resin-modified glass ionomer cement Fuji II LC and Vitremer, in powder/liquid ratios of 1:1, 1:2 and 1:3, at three periods (24 hours, 7 and 28 days of storage in distilled water at 37ºC. For each material, P/L ratio and storage time, 5 cylindrical specimens were prepared, with 4mm diameter and 6mm height, in silicon moulds. Specimens were light-cured for 40 seconds at each extremity, removed from the moulds and laterally light-cured (perpendicular to long axis for 40 seconds, protected as recommended by the manufacturers and immersed for the time tested. The specimens were submitted to compressive strength testing in an Instron machine at a crosshead speed of 1.0mm/min until failure. Data were submitted to ANOVA and Tukey's test (5%, and showed that the compressive strength of resin-modified glass ionomer cement was reduced when P/L ratio was reduced and that the storage in water had little influence on compressive strength.O objetivo deste estudo foi avaliar a resistência à compressão dos cimentos de ionômero de vidro modificados por resina Vitremer e Fuji II LC, nas relações pó/líquido 1:1, 1:2 e 1:3, por três períodos de armazenagem (24 horas, 7 e 28 dias em água destilada a 37 ºC. Para cada material, relação pó/líquido e tempo de armazenagem, cinco corpos-de-prova cilíndricos foram preparados com 4 mm de diâmetro por 6 mm de altura, em moldes de silicone. Os corpos-de-prova foram fotoativados por 40 segundos, em cada extremidade, removidos dos moldes, fotoativado lateralmente (perpendicular ao longo eixo por 40 segundos, protegidos conforme as instruções dos fabricantes e imersos pelo tempo de teste. Os corpos-de-prova foram submetidos à compressão em uma Instron, à velocidade de 1,0 mm/min até a falha. Os dados foram submetidos à análise de variância e ao teste de Tukey (5%, e mostraram que a resistência à compressão do cimento de ionômero de

  10. Determination of air/water ratio in pipes by fast neutrons: experiment and Monte Carlo simulation. (United States)

    AboAlfaraj, Tareq; Abdul-Majid, Samir


    Fast neutron dose attenuation from a (252)Cf neutron source is used for the determination of air to water ratio in pipes. Such measurement of the two-phase flow volume fraction is important for many industrial plants such as desalination plants and oil refineries. Fast neutrons penetrate liquid more than slow neutrons or gamma rays. Using diameters from 11.5 cm to 20.76 cm and with wall thicknesses from 0.45 to 1.02 cm, attenuation was independent of pipe wall thicknesses and diameters. Experimental data was in good agreement with values calculated using MCNP codes. The measured neutron flux values decreased with increasing water levels in pipes up to about 14 cm, indicating that our system can be used successfully in desalination plants in pipes of different sizes. The experimental sensitivity was found to be about 0.015 mSv/hcm and the system can be used to measure water level changes down to few millimeters. Use of such a system in fixed positions in the plant can provide information on plant's overall performance and can detect loss of flow immediately before any consequences. A portable system could be designed to measure the air to water ratio in different locations in the plant in a relatively short time. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Notion Of Artificial Labs Slow Global Warming And Advancing Engine Studies Perspectives On A Computational Experiment On Dual-Fuel Compression-Ignition Engine Research

    Directory of Open Access Journals (Sweden)

    Tonye K. Jack


    Full Text Available To appreciate clean energy applications of the dual-fuel internal combustion engine D-FICE with pilot Diesel fuel to aid public policy formulation in terms of present and future benefits to the modern transportation stationary power and promotion of oil and gas green- drilling the brief to an engine research team was to investigate the feasible advantages of dual-fuel compression-ignition engines guided by the following concerns i Sustainable fuel and engine power delivery ii The requirements for fuel flexibility iii Low exhausts emissions and environmental pollution iv Achieving low specific fuel consumption and economy for maximum power v The comparative advantages over the conventional Diesel engines vi Thermo-economic modeling and analysis for the optimal blend as basis for a benefitcost evaluation Planned in two stages for reduced cost and fast turnaround of results - initial preliminary stage with basic simple models and advanced stage with more detailed complex modeling. The paper describes a simplified MATLAB based computational experiment predictive model for the thermodynamic combustion and engine performance analysis of dual-fuel compression-ignition engine studies operating on the theoretical limited-pressure cycle with several alternative fuel-blends. Environmental implications for extreme temperature moderation are considered by finite-time thermodynamic modeling for maximum power with predictions for pollutants formation and control by reaction rates kinetics analysis of systematic reduced plausible coupled chemistry models through the NCN reaction pathway for the gas-phase reactions classes of interest. Controllable variables for engine-out pollutants emissions reduction and in particular NOx elimination are identified. Verifications and Validations VampV through Performance Comparisons were made using a clinical approach in selection of StrokeBore ratios greater-than and equal-to one amp88051 low-to-high engine speeds and medium

  12. Nonoperative active management of critical limb ischemia: initial experience using a sequential compression biomechanical device for limb salvage.

    LENUS (Irish Health Repository)

    Sultan, Sherif


    Critical limb ischemia (CLI) patients are at high risk of primary amputation. Using a sequential compression biomechanical device (SCBD) represents a nonoperative option in threatened limbs. We aimed to determine the outcome of using SCBD in amputation-bound nonreconstructable CLI patients regarding limb salvage and 90-day mortality. Thirty-five patients with 39 critically ischemic limbs (rest pain = 12, tissue loss = 27) presented over 24 months. Thirty patients had nonreconstructable arterial outflow vessels, and five were inoperable owing to severe comorbidity scores. All were Rutherford classification 4 or 5 with multilevel disease. All underwent a 12-week treatment protocol and received the best medical treatment. The mean follow-up was 10 months (SD +\\/- 6 months). There were four amputations, with an 18-month cumulative limb salvage rate of 88% (standard error [SE] +\\/- 7.62%). Ninety-day mortality was zero. Mean toe pressures increased from 38.2 to 67 mm Hg (SD +\\/- 33.7, 95% confidence interval [CI] 55-79). Popliteal artery flow velocity increased from 45 to 47.9 cm\\/s (95% CI 35.9-59.7). Cumulative survival at 12 months was 81.2% (SE +\\/- 11.1) for SCBD, compared with 69.2% in the control group (SE +\\/- 12.8%) (p = .4, hazards ratio = 0.58, 95% CI 0.15-2.32). The mean total cost of primary amputation per patient is euro29,815 ($44,000) in comparison with euro13,900 ($20,515) for SCBD patients. SCBD enhances limb salvage and reduces length of hospital stay, nonoperatively, in patients with nonreconstructable vessels.

  13. Compressive Sensing for Spread Spectrum Receivers

    DEFF Research Database (Denmark)

    Fyhn, Karsten; Jensen, Tobias Lindstrøm; Larsen, Torben


    to a decrease in the two design parameters. This paper investigates the use of Compressive Sensing (CS) in a general Code Division Multiple Access (CDMA) receiver. We show that when using spread spectrum codes in the signal domain, the CS measurement matrix may be simplified. This measurement scheme, named...... Compressive Spread Spectrum (CSS), allows for a simple, effective receiver design. Furthermore, we numerically evaluate the proposed receiver in terms of bit error rate under different signal to noise ratio conditions and compare it with other receiver structures. These numerical experiments show that though...

  14. Laser-driven shock experiments in pre-compressed water: Implications for magnetic field generation in Icy Giant planets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K; Benedetti, L R; Jeanloz, R; Celliers, P M; Eggert, J H; Hicks, D G; Moon, S J; Mackinnon, A; Henry, E; Koenig, M; Benuzzi-Mounaix, A; Collins, G W


    Laser-driven shock compression of pre-compressed water (up to 1 GPa precompression) produces high-pressure, -temperature conditions in the water inducing two optical phenomena: opacity and reflectivity in the initially transparent water. The onset of reflectivity at infrared wavelengths can be interpreted as a semi-conductor to electronic conductor transition in water and is found at pressures above {approx}130 GPa for single-shocked samples pre-compressed to 1 GPa. This electronic conduction provides an additional contribution to the conductivity required for magnetic field generation in Icy Giant planets like Uranus and Neptune.

  15. Recent experiences with improving steel-to-hot-metal ratio in BOF steelmaking

    Directory of Open Access Journals (Sweden)

    T. D. Bradarić


    Full Text Available After the American company U.S. Steel pulled out of Serbia, the Serbian government decided to continue the steel production in Železara Smederevo. Given the unfavorable market conditions, this decision requires taking all necessary steps to reduce production costs in the time to come. Since most of the production losses occur during Basic Oxygen Furnace (BOF process, this paper focuses on this stage of steel production. We provide an overview of related experiences in other steel plants as well as earlier production experiences in Železara Smederevo, and propose cost saving measures that will improve the overall business position of the Serbia's only one steel producer. These measures do not require new investments.

  16. An experiment to assess the effects of diatom dissolution on oxygen isotope ratios. (United States)

    Smith, Andrew C; Leng, Melanie J; Swann, George E A; Barker, Philip A; Mackay, Anson W; Ryves, David B; Sloane, Hilary J; Chenery, Simon R N; Hems, Mike


    Current studies which use the oxygen isotope composition from diatom silica (δ(18) Odiatom ) as a palaeoclimate proxy assume that the δ(18) Odiatom value reflects the isotopic composition of the water in which the diatom formed. However, diatoms dissolve post mortem, preferentially losing less silicified structures in the water column and during/after burial into sediments. The impact of dissolution on δ(18) Odiatom values and potential misinterpretation of the palaeoclimate record are evaluated. Diatom frustules covering a range of ages (6 samples from the Miocene to the Holocene), environments and species were exposed to a weak alkaline solution for 48 days at two temperatures (20 °C and 4 °C), mimicking natural dissolution post mucilage removal. Following treatment, dissolution was assessed using scanning electron microscope images and a qualitative diatom dissolution index. The diatoms were subsequently analysed for their δ(18) O values using step-wise fluorination and isotope ratio mass spectrometry. Variable levels of diatom dissolution were observed between the six samples; in all cases higher temperatures resulted in more frustule degradation. Dissolution was most evident in younger samples, probably as a result of the more porous nature of the silica. The degree of diatom dissolution does not directly equate to changes in the isotope ratios; the δ(18) Odiatom value was, however, lower after dissolution, but in only half the samples was this reduction outside the analytical error (2σ analytical error = 0.46‰). We have shown that dissolution can have a small negative impact on δ(18) Odiatom values, causing reductions of up to 0.59‰ beyond analytical error (0.46‰) at natural environmental temperatures. These findings need to be considered in palaeoenvironmental reconstructions using δ(18) Odiatom values, especially when interpreting variations in these values of <1‰. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Benefit from non-linear frequency compression hearing aids in a clinical setting: the effects of duration of experience and severity of high-frequency hearing loss. (United States)

    Hopkins, Kathryn; Khanom, Mumtaz; Dickinson, Ann-Marie; Munro, Kevin J


    To determine whether non-linear frequency compression (NLFC) is effective for hearing-impaired adults in a clinical setting. To determine whether benefit from NLFC is related to duration of NLFC experience or severity of high-frequency hearing loss. Participants were fitted with Phonak frequency compression hearing aids as part of their standard clinical care, using the manufacturer's default fitting settings. Participants had been using NLFC for between 1 and 121 weeks at the time of testing. Speech recognition thresholds in noise and consonant recognition in quiet were measured with and without NLFC enabled. Forty-six experienced adult hearing-aid users. Consonant recognition in quiet, but not speech recognition in noise was significantly better with NLFC enabled. There was no significant correlation between duration of frequency compression experience and benefit. Benefit for consonant recognition was negatively correlated with mean audiometric thresholds from 2-6 kHz. NLFC was beneficial for consonant recognition but not speech recognition in noise. There was no evidence to support the idea that a long period of acclimatization is necessary to gain full benefit. The relation between benefit and high-frequency thresholds might be explained by the poor audibility of compressed information for some listeners with severe loss.

  18. Effects of Nonlinear Frequency Compression on ACC Amplitude and Listener Performance. (United States)

    Kirby, Benjamin James; Brown, Carolyn J


    Nonlinear frequency compression is a signal processing technique used to increase the audibility of high-frequency speech sounds for hearing aid users with sloping, high-frequency hearing loss. However, excessive compression ratios may reduce spectral contrast between sounds and negatively impact speech perception. This is of particular concern in infants and young children who may not be able to provide feedback about frequency compression settings. This study explores the use of an objective cortical auditory evoked potential that is sensitive to changes in spectral contrast, the acoustic change complex (ACC), in the verification of frequency compression parameters. ACC responses were recorded from adult listeners to a spectral ripple contrast stimulus that was processed using a range of frequency compression ratios (1:1, 1.5:1, 2:1, 3:1, and 4:1). Vowel identification, consonant identification, speech recognition in noise (QuickSIN), and behavioral ripple discrimination thresholds were also measured under identical frequency compression conditions. In Experiment 1, these tasks were completed in 10 adults with normal hearing. In Experiment 2, these same tasks were repeated in 10 adults with sloping, high-frequency hearing loss. Repeated measures analysis of variance was completed for each task and each group with frequency compression ratio as the within-subjects factor. Increasing the compression ratio did not affect vowel identification for the normal hearing group but did cause a significant decrease in vowel identification for the hearing-impaired listeners. Increases in compression ratio were associated with significant decrements in ACC amplitudes, consonant identification scores, ripple discrimination thresholds, and speech perception in noise scores for both groups of listeners. The ACC response, like speech and nonspeech perceptual measures, is sensitive to frequency compression ratio. Additional study is needed to establish optimal stimulus and

  19. A Unifying Concept for the Dependence of Whole-crop N : P Ratio on Biomass: Theory and Experiment (United States)

    Greenwood, Duncan J.; Karpinets, Tatiana V.; Zhang, Kefeng; Bosh-Serra, Angela; Boldrini, Arianna; Karawulova, Lyudmila


    Background and Aims Numerous estimates have been made of the concentrations of N and P required for good growth of crop species but they have not been defined by any unifying model. The aim of the present study was to develop such a model for the dependence of the N : P ratio on crop mass, to test its validity and to use it to identify elements of similarity between different crop species and wild plants. Methods A model was derived between plant N : P ratio (Rw) and its dry biomass per unit area (W) during growth with near optimum nutrition by considering that plants consist of growth-related tissue and storage-related tissue with N : P ratios Rg and Rs, respectively. Testing and calibration against experimental data on different crop species led to a simple equation between Rw and W which was tested against independent experimental data. Key Results The validity of the model and equation was supported by 365 measurements of Rw in 38 field experiments on crops. Rg and Rs remained approximately constant throughout growth, with average values of 11·8 and 5·8 by mass. The model also approximately predicted the relationships between leaf N and P concentrations in 124 advisory estimates on immature tissues and in 385 wild species from published global surveys. Conclusions The N : P ratio of the biomass of very different crops, during growth with near optimum levels of nutrients, is defined entirely in terms of crop biomass, an average N : P ratio of the storage/structure-related tissue of the crop and an average N : P ratio of the growth-related tissue. The latter is similar to that found in leaves of many wild plant species, and even micro-organisms and terrestrial and freshwater autotrophs. PMID:18840873

  20. H-mode plasmas at very low aspect ratio on the Pegasus Toroidal Experiment (United States)

    Thome, K. E.; Bongard, M. W.; Barr, J. L.; Bodner, G. M.; Burke, M. G.; Fonck, R. J.; Kriete, D. M.; Perry, J. M.; Reusch, J. A.; Schlossberg, D. J.


    H-mode is obtained at A˜ 1.2 in the Pegasus Toroidal Experiment via Ohmic heating, high-field-side fueling, and low edge recycling in both limited and diverted magnetic topologies. These H-mode plasmas show the formation of edge current and pressure pedestals and a doubling of the energy confinement time to {{H}98y,2}˜ 1 . The L-H power threshold {{P}\\text{LH}} increases with density, and there is no {{P}\\text{LH}} minimum observed in the attainable density space. The power threshold is equivalent in limited and diverted plasmas, consistent with the FM3 model. However, the measured {{P}\\text{LH}} is ˜ 15 × higher than that predicted by conventional International Tokamak Physics Activity (ITPA) scalings, and {{P}\\text{LH}}/{{P}\\text{ITPA08}} increases as A\\to 1 . Small ELMs are present at low input power {{P}\\text{IN}}˜ {{P}\\text{LH}} , with toroidal mode number n≤slant 4 . At {{P}\\text{IN}}\\gg {{P}\\text{LH}} , they transition to large ELMs with intermediate 5. The dominant-n component of a large ELM grows exponentially, while other components evolve nonlinearly and can damp prior to the crash. Direct measurements of the current profile in the pedestal region show that both ELM types exhibit a generation of a current-hole, followed by a pedestal recovery. Large ELMs are shown to further expel a current-carrying filament. Small ELM suppression via injection of low levels of helical current into the edge plasma region is also indicated.

  1. An instrumental and numerical method to determine the hydrogenic ratio in isotopic experiments in the TJ-II stellarator. (United States)

    Baciero, A; Zurro, B; Martínez, M


    The isotope effect is an important topic that is relevant for future D-T fusion reactors, where the use of deuterium, rather than hydrogen, may lean to improved plasma confinement. An evaluation of the ratio of hydrogen/deuterium is needed for isotope effect studies in current isotopic experiments. Here, the spectral range around Hα and Dα lines, obtained with an intensified multi-channel detector mounted to a 1-m focal length spectrometer, is analyzed using a fit function that includes several Gaussian components. The isotopic ratio evolution for a single operational day of the TJ-II stellarator is presented. The role of injected hydrogen by Neutral Beam Injection heating is also studied.

  2. Gmz: a Gml Compression Model for Webgis (United States)

    Khandelwal, A.; Rajan, K. S.


    Geography markup language (GML) is an XML specification for expressing geographical features. Defined by Open Geospatial Consortium (OGC), it is widely used for storage and transmission of maps over the Internet. XML schemas provide the convenience to define custom features profiles in GML for specific needs as seen in widely popular cityGML, simple features profile, coverage, etc. Simple features profile (SFP) is a simpler subset of GML profile with support for point, line and polygon geometries. SFP has been constructed to make sure it covers most commonly used GML geometries. Web Feature Service (WFS) serves query results in SFP by default. But it falls short of being an ideal choice due to its high verbosity and size-heavy nature, which provides immense scope for compression. GMZ is a lossless compression model developed to work for SFP compliant GML files. Our experiments indicate GMZ achieves reasonably good compression ratios and can be useful in WebGIS based applications.

  3. Technical Review Report for the Application for Contents Amendment for Shipping Isentropic Compression Experiment (ICE) Apparatus in 9977 Packaging

    Energy Technology Data Exchange (ETDEWEB)

    West, M


    This report documents the review of Application for Contents Amendment for Shipping Isentropic Compression Experiment (ICE) Apparatus in 9977 Packaging, prepared by Savannah River Packaging Technology (SRPT) of Savannah River National Laboratory (SRNL) of Savannah River Nuclear Solutions, LLC, -- the Submittal -- at the request of the Department of Energy's (DOE) National Nuclear Security Agency's (NNSA) Albuquerque Facility Operations Division, for the shipment of the ICE apparatus from Los Alamos National Laboratory (LANL), to Sandia National Laboratory (SNL). The ICE apparatus consists of a stainless steel assembly containing about 8 grams of {sup 239}Pu or its dose equivalent as noted in Table 1, Comparison of 9977 Content C.1 and the ICE Radioactive Contents, of the Submittal. The ICE target is mounted on the transport container assembly base. A Viton{sup R} O-ring seals the transport container base to the transport container body. Another Viton{sup R} O-ring seals the transport container handle to the transport container body. The ICE apparatus weighs less than 30 pounds and has less than 0.6 watts decay heat rate. For the Model 9977 Package, the maximum payload weight is 100 pounds and the maximum decay heat rate is 19 watts. Thus, the maximum payload weight and the maximum decay heat rate for the Model 9977 Package easily bound those for the ICE apparatus. This Addendum supplements the Safety Analysis Report for Packaging (SARP), Revision 2, for the Model 9977 Package and Addendum 1, Revision 2, to Revision 2 of the Model 9977 Package SARP. The ICE apparatus is considered as part of Content Envelope C.6, Samples and Sources, under the submittal for the Model 9978 Package SARP currently under review. The Staff at Lawrence Livermore National Laboratory (LLNL) recommends that the Submittal be approved by the DOE-Headquarters Certifying Official (EM-60), and incorporated into a subsequent revision to the current Certificate of Compliance (CoC), to the

  4. Compression embedding (United States)

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.


    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.

  5. The co-evolution of alternative fuel infrastructure and vehicles. A study of the experience of Argentina with compressed natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Collantes, Gustavo [Renergh Consulting and Department of Commerce, State of Washington, 2001 6th Ave, Suite 2600, Seattle, WA 98121 (United States); Melaina, Marc W. [National Renewable Energy Laboratory (United States)


    In a quest for strategic and environmental benefits, the developed countries have been trying for many years to increase the share of alternative fuels in their transportation fuel mixes. They have met very little success though. In this paper, we examine the experience of Argentina with compressed natural gas. We conducted interviews with a wide range of stakeholders and analyzed econometrically data collected in Argentina to investigate the factors, economic, political, and others that determined the high rate of adoption of this fuel. A central objective of this research was to identify lessons that could be useful to developed countries in their efforts to deploy alternative fuel vehicles. We find that fuel price regulation was a significant determinant of the adoption of compressed natural gas, while, contrary to expectations, government financing of refueling infrastructure was minimal. (author)

  6. Backpropagation Neural Network Implementation for Medical Image Compression


    Kamil Dimililer


    Medical images require compression, before transmission or storage, due to constrained bandwidth and storage capacity. An ideal image compression system must yield high-quality compressed image with high compression ratio. In this paper, Haar wavelet transform and discrete cosine transform are considered and a neural network is trained to relate the X-ray image contents to their ideal compression method and their optimum compression ratio.

  7. Backpropagation Neural Network Implementation for Medical Image Compression

    Directory of Open Access Journals (Sweden)

    Kamil Dimililer


    Full Text Available Medical images require compression, before transmission or storage, due to constrained bandwidth and storage capacity. An ideal image compression system must yield high-quality compressed image with high compression ratio. In this paper, Haar wavelet transform and discrete cosine transform are considered and a neural network is trained to relate the X-ray image contents to their ideal compression method and their optimum compression ratio.

  8. First test experiment to produce the slowed-down RI beam with the momentum-compression mode at RIBF

    Energy Technology Data Exchange (ETDEWEB)

    Sumikama, T., E-mail: [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Ahn, D.S.; Fukuda, N.; Inabe, N.; Kubo, T.; Shimizu, Y.; Suzuki, H.; Takeda, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aoi, N. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Beaumel, D. [Institut de Physique Nucléaire d’Orsay (IPNO), CNRS/IN2P3, 91405 Orsay (France); Hasegawa, K. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Ideguchi, E. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Imai, N. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0298 (Japan); Kobayashi, T. [Department of Physics, Tohoku University, Aoba, Sendai 980-8578 (Japan); Matsushita, M.; Michimasa, S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0298 (Japan); Otsu, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shimoura, S. [Center for Nuclear Study, University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0298 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)


    The {sup 82}Ge beam has been produced by the in-flight fission reaction of the {sup 238}U primary beam with 345 MeV/u at the RIKEN RI beam factory, and slowed down to about 15 MeV/u using the energy degraders. The momentum-compression mode was applied to the second stage of the BigRIPS separator to reduce the momentum spread. The energy was successfully reduced down to 13 ± 2.5 MeV/u as expected. The focus was not optimized at the end of the second stage, therefore the beam size was larger than the expectation. The transmission of the second stage was half of the simulated value mainly due to out of focus. The two-stage separation worked very well for the slowed-down beam with the momentum-compression mode.

  9. Influence of High-Current-Density Impulses on the Compression Behavior: Experiments with Iron and a Nickel-Based Alloy (United States)

    Demler, E.; Gerstein, G.; Dalinger, A.; Epishin, A.; Rodman, D.; Nürnberger, F.


    Difficulties of processing of high strength and/or brittle materials by plastic deformation, e.g., by forging, require to develop new industrial technologies. In particular, the feasible deformation rates are limited for low-ductile metallic materials. For this reason, processes were investigated to improve the deformability in which electrical impulses are to be applied to lower the yield strength. However, owing to the impulse duration and low current densities, concomitant effects always occur, e.g., as a result of Joule heating. Current developments in power electronics allow now to transmit high currents as short pulses. By reducing the impulse duration and increasing the current density, the plasticity of metallic materials can be correspondingly increased. Using the examples of polycrystalline iron and a single-crystal, nickel-based alloy (PWA 1480), current advances in the development of methods for forming materials by means of high-current-density impulses are demonstrated. For this purpose, appropriate specimens were loaded in compression and, using novel testing equipment, subjected to a current strength of 10 kA with an impulse duration of 2 ms. For a pre-defined strain, the test results show a significant decrease in the compressive stress during the compression test and a significant change in the dislocation distribution following the current impulse treatment.

  10. Measurement of charged kaon semileptonic decay branching fractions and their ratio at the NA-48/2 experiment at CERN

    CERN Document Server

    Dabrowski, Anne Evelyn


    Measurements of the ratios of charged kaon decay rates for Ke3/K2 π, K μ 3/K2 π and K μ 3/Ke3 are presented. These measurements are based on charged kaon decays collected in a dedicated run in 2003 by the NA48/2 experiment at CERN. The results obtained are Ke3/K2 π = 0.2470 ± 0.0009 ( stat ) ± 0.0004 ( syst ) and K μ 3/K2 π = 0.1637 ± 0.0006 ( stat ) ± 0.0003 ( syst ). Using the PDG average for the K2pi normalization mode, both values are found to be larger than the current values given by the Particle Data Book and lead to a larger magnitude of the V us parameter in the Cabibbo-Kobayashi-Maskawa (CKM) matrix than previously accepted. When combined with the latest Particle Data Book value of | V ud |, | V us | is in agreement with unitarity of the CKM matrix. A new measured value of the ratio of the semileptonic decay rates, K μ 3/Ke3 = 0.663 ± 0.003(stat) ± 0.001(syst) is compared to semi-empirical predictions based on the latest form factor measurements.

  11. Mm-Wave Spectroscopy and Determination of the Radiative Branching Ratios of 11BH for Laser Cooling Experiments (United States)

    Truppe, Stefan; Holland, Darren; Hendricks, Richard James; Hinds, Ed; Tarbutt, Michael


    We aim to slow a supersonic, molecular beam of 11BH using a Zeeman slower and subsequently cool the molecules to sub-millikelvin temperatures in a magneto-optical trap. Most molecules are not suitable for direct laser cooling because the presence of rotational and vibrational degrees of freedom means there is no closed-cycle transition which is necessary to scatter a large number of photons. As was pointed out by Di Rosa, there exists a class of molecules for which the excitation of vibrational modes is suppressed due to highly diagonal Franck-Condon factors. Furthermore, Stuhl et al. showed that angular momentum selection rules can be used to suppress leakage to undesired rotational states. Here we present a measurement of the radiative branching ratios of the A^1Π→ X^1Σ transition in 11BH - a necessary step towards subsequent laser cooling experiments. We also perform high-resolution mm-wave spectroscopy of the J'=1← J=0 rotational transition in the X^1Σ (v=0) state near 708 GHz. From this measurement we derive new, accurate hyper fine constants and compare these to theoretical descriptions. The measured branching ratios suggest that it is possible to laser cool 11BH molecules close to the recoil temperature of 4 μK using three laser frequencies only. M. D. Di Rosa, The European Physical Journal D, 31, 395, 2004 B. K. Stuhl et al., Physical Review Letters, 101, 243002, 2008

  12. Astronomical context coder for image compression (United States)

    Pata, Petr; Schindler, Jaromir


    Recent lossless still image compression formats are powerful tools for compression of all kind of common images (pictures, text, schemes, etc.). Generally, the performance of a compression algorithm depends on its ability to anticipate the image function of the processed image. In other words, a compression algorithm to be successful, it has to take perfectly the advantage of coded image properties. Astronomical data form a special class of images and they have, among general image properties, also some specific characteristics which are unique. If a new coder is able to correctly use the knowledge of these special properties it should lead to its superior performance on this specific class of images at least in terms of the compression ratio. In this work, the novel lossless astronomical image data compression method will be presented. The achievable compression ratio of this new coder will be compared to theoretical lossless compression limit and also to the recent compression standards of the astronomy and general multimedia.

  13. Linear Methods for Analysis and Quality Control of Relative Expression Ratios from Quantitative Real-Time Polymerase Chain Reaction Experiments

    Directory of Open Access Journals (Sweden)

    Robert B. Page


    Full Text Available Relative expression quantitative real-time polymerase chain reaction (RT-qPCR experiments are a common means of estimating transcript abundances across biological groups and experimental treatments. One of the most frequently used expression measures that results from such experiments is the relative expression ratio (RE, which describes expression in experimental samples (i.e., RNA isolated from organisms, tissues, and/or cells that were exposed to one or more experimental or nonbaseline condition in terms of fold change relative to calibrator samples (i.e., RNA isolated from organisms, tissues, and/or cells that were exposed to a control or baseline condition. Over the past decade, several models of RE have been proposed, and it is now clear that endogenous reference gene stability and amplification efficiency must be assessed in order to ensure that estimates of RE are valid. In this review, we summarize key issues associated with estimating RE from cycle threshold data. In addition, we describe several methods based on linear modeling that enable researchers to estimate model parameters and conduct quality control procedures that assess whether model assumptions have been violated.

  14. Evaluation of surgical outcome of Jack vertebral dilator kyphoplasty for osteoporotic vertebral compression fracture-clinical experience of 218 cases. (United States)

    Fan, Jin; Shen, Yimin; Zhang, Ning; Ren, Yongxin; Cai, Weihua; Yu, Lipeng; Wu, Naiqing; Yin, Guoyong


    Osteoporotic vertebral compression fracture is a serious complication of osteoporosis. Various vertebral kyphoplasty surgeries, which have their own unique features, are commonly used for osteoporotic vertebral compression fracture. Based on the anatomic property of the thoracolumbar vertebral pedicle that its horizontal diameter is twice that of the vertical diameter, we designed Jack vertebral dilator for better restoration of the vertebral height by manipulating the mechanical force. A total of 218 patients (236 vertebrae) with osteoporotic vertebral compression fracture were treated with Jack vertebral dilator. Surgery was successfully completed in all cases, and all the 218 patients were followed up for an average of 14.2 months (range 3 to 30 months). Bone cement leakage occurred in 12 cases, but no symptoms were reported. No other complications were noticed. The VAS scores were 8.2 ± 1.3, 1.7 ± 0.9, and 1.8 ± 0.8 and the ODI was 78.2 ± 13.3 %, 18.5 ± 7.3 %, and 20.9 ± 6.8 % before surgery and 1 week after surgery and at the final follow-up, respectively. The anterior vertebral body height was 19.3 ± 3.2, 25.1 ± 2.6, and 24.9 ± 2.6 mm and the central vertebral body height was 18.7 ± 3.0, 24.8 ± 3.0, and 24.5 ± 2.9 mm before surgery and 1 week after surgery and at the final follow-up, respectively. Cobb angle was 16.2° ± 6.6°, 8.1° ± 5.6°, and 8.5° ± 5.6° before surgery and 1 week after surgery and at the final follow-up, respectively. Jack vertebral dilator kyphoplasty for osteoporotic vertebral compression fracture is safe, feasible, and effective and has the prospect of further broad application in the future.

  15. Monte Carlo studies of β-detector efficiency with GEANT4 for precise &+circ;-branching-ratio experiments (United States)

    Golovko, V. V.; Iacob, V. E.; Hardy, J. C.


    We previously reported Monte Carlo (MC) studies of the efficiency of a 1-mm-thick plastic detector to few-MeV electrons with various programs: Geant4, EGSnrc and Penelope. The simulated results were also compared with measured data from standard conversion-electron sources: ^133Ba, ^137Cs and ^207Bi. [1] These studies were part of our program to test the Electroweak Standard Model via precise measurements of lifetimes, branching ratios and Q-values of superallowed 0^+->0^+ nuclear transitions [2], which in turn yield the value of the up-down quark-mixing element of the Cabibbo-Kobayasshi-Maskawa (CKM) matrix. The MC studies of the β-detector efficiency are important for the measurement of precise &+circ;-branching-ratios since there is a slight difference in the efficiency of the β-detector for different β-branches. This has an additional affect on the number of observed β-γ coincidences over and above the well known efficiency of our γ-ray detector. We report here an extension of the comparison between MC calculations and experiment to a ^60Co β-source, and a study of the influence of peripheral objects on the β-detector efficiency. [1] V.V. Golovko et. al. BAPS 59, no 6, p. DH4 83, 2006; BAPS 52, no 3, p. C16 53, 2007; BAPS 52, no 9, p. EH8 83, 2007. [2] J.C. Hardy and I.S. Towner. PRC, 71(5):055501, 2005.

  16. Measurement of R{sub l} ratio by ALEPH experiment at LEP 1; Mesure du raport R{sub l} avec l`experience ALEPH a LEP 1

    Energy Technology Data Exchange (ETDEWEB)

    Tournefier, Edwige [Universite de Paris Sud, 91 - Orsay (France)


    The work described by this thesis ranges among the high precision measurements at LEP. The data recorded by the ALEPH experiment at energies near the mass of the gage Z boson were utilized. The accurate cross section measurements of e{sup +}e{sup -} {yields} ff-bar allows extracting the parameters describing the resonance of Z as well as to make a very accurate verification of the Standard Model. One of these parameters, the ratio R{sub l}, is defined by the ratio of the hadron and lepton widths of Z:R{sub l}{Gamma}{sub had}/{Gamma}{sub l}. For the measurement of R{sub l}, a global selection of di-lepton events without flavor discrimination (e, {mu} or {tau}) was developed. This selection allows tackling the problems raised by the migration of the events from one flavor to another, so that the systematic uncertainty of R{sub l} arising from the lepton channel is reduced at 0.08% while the statistical uncertainty is 0.15%. The value obtained through the measurements of cross section is R{sub l} = 20.735 {+-} 0.039. Given the R{sub l} dependence on {alpha}{sub s}, through the corrections introduced by the strong interaction, the value of {alpha}{sub s} can be extracted from this measurement of R{sub l}. One finds {alpha}{sub s} = 0.119 {+-} 0.007 59 refs., 73 figs., 58 tabs.

  17. Temperature fluctuation caused by coaxial-jet flow: Experiments on the effect of the velocity ratio R ⩾ 1

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qiong, E-mail: [Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206 (China); Li, Hongyuan, E-mail: [School of Control and Computer Engineering, North China Electric Power University, Beijing 102206 (China); Lu, Daogang, E-mail: [Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206 (China); Chang, Mu, E-mail: [Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University, Beijing 102206 (China)


    Highlights: • The effect on temperature fluctuation from velocity ratio was studied by experiment. • The distribution of time-averaged temperatures is the axial-symmetry in R ⩾ 1. • The region of intense temperature fluctuation in R = 1 is different from that of R > 1. • The intensity of temperature fluctuation under R > 1 is weaker than that of R = 1. - Abstract: The temperature fluctuation appears in the core outlet region due to the different of the temperature and velocity of the coolant, which can cause thermal stresses and the high-cycle thermal fatigue on solid boundaries. So, it is necessary to analyze the characteristics of the temperature fluctuation. In the present study, a comparative experiment was performed to analyze the effect on the temperature fluctuation caused by the coaxial-jet flow from the inlet cold and hot fluid velocity ratios (R ⩾ 1). In the condition of R ⩾ 1, the distribution of the time-averaged temperature is the axial-symmetry. In the cold fluid field, the temperature field is divided into four parts, including the first steady region, linear region, nonlinear region and the second steady region along the axial direction, while that is lack of the first steady state region in the hot fluid field. In the condition of R = 1, due to the velocity of the cold fluid is equivalent to that of the hot fluid, the cold fluid flow can be severely disturbed by the hot flow. The intense temperature fluctuation mainly distributed in the annular region at bottom region and the circular region in the upper region. While, in the condition of R > 1, the inertia of the cold fluid is larger than that of the hot fluid. The hot fluid will attach itself to the periphery of the cold fluid. The intense temperature fluctuation distributed in the annular region between the cold and hot fluid and the periphery of the hot fluid. However, the intensity of temperature fluctuation under R > 1 is weaker than that of R = 1.

  18. Effect of Kollidon VA®64 particle size and morphology as directly compressible excipient on tablet compression properties. (United States)

    Chaudhary, R S; Patel, C; Sevak, V; Chan, M


    The study evaluates use of Kollidon VA®64 and a combination of Kollidon VA®64 with Kollidon VA®64 Fine as excipient in direct compression process of tablets. The combination of the two grades of material is evaluated for capping, lamination and excessive friability. Inter particulate void space is higher for such excipient due to the hollow structure of the Kollidon VA®64 particles. During tablet compression air remains trapped in the blend exhibiting poor compression with compromised physical properties of the tablets. Composition of Kollidon VA®64 and Kollidon VA®64 Fine is evaluated by design of experiment (DoE). A scanning electron microscopy (SEM) of two grades of Kollidon VA®64 exhibits morphological differences between coarse and fine grade. The tablet compression process is evaluated with a mix consisting of entirely Kollidon VA®64 and two mixes containing Kollidon VA®64 and Kollidon VA®64 Fine in ratio of 77:23 and 65:35. A statistical modeling on the results from the DoE trials resulted in the optimum composition for direct tablet compression as combination of Kollidon VA®64 and Kollidon VA®64 Fine in ratio of 77:23. This combination compressed with the predicted parameters based on the statistical modeling and applying main compression force between 5 and 15 kN, pre-compression force between 2 and 3 kN, feeder speed fixed at 25 rpm and compression range of 45-49 rpm produced tablets with hardness ranging between 19 and 21 kp, with no friability, capping, or lamination issue.

  19. Satellite image compression using wavelet (United States)

    Santoso, Alb. Joko; Soesianto, F.; Dwiandiyanto, B. Yudi


    Image data is a combination of information and redundancies, the information is part of the data be protected because it contains the meaning and designation data. Meanwhile, the redundancies are part of data that can be reduced, compressed, or eliminated. Problems that arise are related to the nature of image data that spends a lot of memory. In this paper will compare 31 wavelet function by looking at its impact on PSNR, compression ratio, and bits per pixel (bpp) and the influence of decomposition level of PSNR and compression ratio. Based on testing performed, Haar wavelet has the advantage that is obtained PSNR is relatively higher compared with other wavelets. Compression ratio is relatively better than other types of wavelets. Bits per pixel is relatively better than other types of wavelet.

  20. Within- and between-pen transmission of Classical Swine Fever Virus: a new method to estimate the basic reproduction ratio from transmission experiments

    NARCIS (Netherlands)

    Klinkenberg, D.; Bree, de J.; Laevens, H.; Jong, de M.C.M.


    We present a method to estimate basic reproduction ratio R0 from transmission experiments. By using previously published data of experiments with Classical Swine Fever Virus more extensively, we obtained smaller confidence intervals than the martingale method used in the original papers. Moreover,

  1. The influence of slope-angle ratio on the dynamics of granular flows: insights from laboratory experiments (United States)

    Sulpizio, R.; Castioni, D.; Rodriguez-Sedano, L. A.; Sarocchi, D.; Lucchi, F.


    Laboratory experiments on granular flows using natural material were carried out in order to investigate the behaviour of granular flows passing over a break in slope. Sensors in the depositional area recorded the flow kinematics, while video footage permitted reconstruction of the deposit formation, which allowed investigation of the deposit shape as a function of the change in slope. We defined the slope-angle ratio as the proportion between slope angle in the depositional area and that of the channel. When the granular flow encounters the break in slope part of the flow front forms a bouncing clast zone due to elastic impact with the expansion box floor. During this process, part of the kinetic energy of the dense granular flow is transferred to elutriating fine ash, which subsequently forms turbulent ash cloud accompanying the granular flow until it comes to rest. Morphometric analysis of the deposits shows that they are all elliptical, with an almost constant minor axis and a variable major axis. The almost constant value of the minor axis relates to the spreading angle of flow at the end of the channel, which resembles the basal friction angle of the material. The variation of the major axis is interpreted to relate to the effect of competing inertial and frictional forces. This effect also reflects the partitioning of centripetal and tangential velocities, which changes as the flow passes over the break in slope. After normalization, morphometric data provided empirical relationships that highlight the dependence of runout from the product of slope-angle ratio and the difference in height between granular material release and deposit. The empirical relationships were tested against the runouts of hot avalanches formed during the 1944 ad eruption at Vesuvius, with differences among actual and calculated values are between 1.7 and 15 %. Velocity measurements of laboratory granular flows record deceleration paths at different breaks in slope. When normalized

  2. Influence of Compression Ratio on High Load Performance and Knock Behavior for Gasoline Port-Fuel Injection, Natural Gas Direct Injection and Blended Operation in a Spark Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Pamminger, Michael; Sevik, James; Scarcelli, Riccardo; Wallner, Thomas; Hall, Carrie


    Natural Gas (NG) is an alternative fuel which has attracted a lot of attention recently, in particular in the US due to shale gas availability. The higher hydrogen-to-carbon (H/C) ratio, compared to gasoline, allows for decreasing carbon dioxide emissions throughout the entire engine map. Furthermore, the high knock resistance of NG allows increasing the efficiency at high engine loads compared to fuels with lower knock resistance. NG direct injection (DI) allows for fuel to be added after intake valve closing (IVC) resulting in an increase in power density compared to an injection before IVC. Steady-state engine tests were performed on a single-cylinder research engine equipped with gasoline (E10) port-fuel injection (PFI) and NG DI to allow for in-cylinder blending of both fuels. Knock investigations were performed at two discrete compression ratios (CR), 10.5 and 12.5. Operating conditions span mid-load, wide-open-throttle and boosted conditions, depending on the knock response of the fuel blend. Blended operation was performed using E10 gasoline and NG. An additional gasoline type fuel (E85) with higher knock resistance than E10 was used as a high-octane reference fuel, since the octane rating of E10-NG fuel blends is unknown. Spark timing was varied at different loads under stoichiometric conditions in order to study the knock response as well as the effects on performance and efficiency. As anticipated, results suggest that the knock resistance can be increased significantly by increasing the NG amount. Comparing the engine operation with the least knock resistant fuel, E10 PFI, and the fuel blend with the highest knock resistance, 75% NG DI, shows an increase in indicated mean effective pressure of about 9 bar at CR 12.5. The usage of reference fuels with known knock characteristics allowed an assessment of knock characteristic of intermediate E10-NG blend levels. Mathematical correlations were developed allowing characterizing the occurrence of knocking

  3. The co-evolution of alternative fuel infrastructure and vehicles: A study of the experience of Argentina with compressed natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Collantes, Gustavo, E-mail: gustavo.collantes@commerce.wa.go [Renergh Consulting and Department of Commerce, State of Washington, 2001 6th Ave, Suite 2600, Seattle, WA 98121 (United States); Melaina, Marc W. [National Renewable Energy Laboratory (United States)


    In a quest for strategic and environmental benefits, the developed countries have been trying for many years to increase the share of alternative fuels in their transportation fuel mixes. They have met very little success though. In this paper, we examine the experience of Argentina with compressed natural gas. We conducted interviews with a wide range of stakeholders and analyzed econometrically data collected in Argentina to investigate the factors, economic, political, and others that determined the high rate of adoption of this fuel. A central objective of this research was to identify lessons that could be useful to developed countries in their efforts to deploy alternative fuel vehicles. We find that fuel price regulation was a significant determinant of the adoption of compressed natural gas, while, contrary to expectations, government financing of refueling infrastructure was minimal. - Research Highlights: {yields}The broad scale adoption of CNG for transportation in Argentina was initiated by a market demand for an effective fuel that was priced at a significantly lower level compared to the mainstream alternatives. {yields}The Argentine played a marginal role in the development of refueling infrastructure. {yields}The role of the government focused on sending clear signals to the marketplace and developing effective codes and standards. {yields}Consumers willingness to switch to CNG increases as state of the economy deteriorates and disposable incomes decrease.

  4. Nonlinear Frequency Compression (United States)

    Scollie, Susan; Glista, Danielle; Seelisch, Andreas


    Frequency lowering technologies offer an alternative amplification solution for severe to profound high frequency hearing losses. While frequency lowering technologies may improve audibility of high frequency sounds, the very nature of this processing can affect the perceived sound quality. This article reports the results from two studies that investigated the impact of a nonlinear frequency compression (NFC) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing adults, 12 normal hearing children, 13 hearing impaired adults, and 9 hearing impaired children. In the second study, 12 normal hearing and 8 hearing impaired adult listeners rated the quality of speech in quiet, speech in noise, and music after processing with a different set of NFC parameters. Results showed that the cutoff frequency parameter had more impact on sound quality ratings than the compression ratio, and that the hearing impaired adults were more tolerant to increased frequency compression than normal hearing adults. No statistically significant differences were found in the sound quality ratings of speech-in-noise and music stimuli processed through various NFC settings by hearing impaired listeners. These findings suggest that there may be an acceptable range of NFC settings for hearing impaired individuals where sound quality is not adversely affected. These results may assist an Audiologist in clinical NFC hearing aid fittings for achieving a balance between high frequency audibility and sound quality. PMID:23539261

  5. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao


    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...... correlation to the curing time. The experiments show no correlation between the anisotropy and the curing time and a small strength difference between the two drilling directions. The literature shows variations on which drilling direction that is strongest. Based on a Monto Carlo simulation of the expected...

  6. Compressive beamforming

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Mosegaard, Klaus


    Sound source localization with sensor arrays involves the estimation of the direction-of-arrival (DOA) from a limited number of observations. Compressive sensing (CS) solves such underdetermined problems achieving sparsity, thus improved resolution, and can be solved efficiently with convex...

  7. The effect of size and sex ratio experiences on reproductive competition in Nicrophorus vespilloides burying beetles in the wild. (United States)

    Hopwood, P E; Moore, A J; Tregenza, T; Royle, N J


    Male parents face a choice: should they invest more in caring for offspring or in attempting to mate with other females? The most profitable course depends on the intensity of competition for mates, which is likely to vary with the population sex ratio. However, the balance of pay-offs may vary among individual males depending on their competitive prowess or attractiveness. We tested the prediction that sex ratio and size of the resource holding male provide cues regarding the level of mating competition prior to breeding and therefore influence the duration of a male's biparental caring in association with a female. Male burying beetles, Nicrophorus vespilloides were reared, post-eclosion, in groups that differed in sex ratio. Experimental males were subsequently translocated to the wild, provided with a breeding resource (carcass) and filmed. We found no evidence that sex ratio cues prior to breeding affected future parental care behaviour but males that experienced male-biased sex ratios took longer to attract wild mating partners. Smaller males attracted a higher proportion of females than did larger males, securing significantly more monogamous breeding associations as a result. Smaller males thus avoided competitive male-male encounters more often than larger males. This has potential benefits for their female partners who avoid both intrasexual competition and direct costs of higher mating frequency associated with competing males. © 2016 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  8. Compressing DNA sequence databases with coil

    Directory of Open Access Journals (Sweden)

    Hendy Michael D


    Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  9. Speech Compression

    Directory of Open Access Journals (Sweden)

    Jerry D. Gibson


    Full Text Available Speech compression is a key technology underlying digital cellular communications, VoIP, voicemail, and voice response systems. We trace the evolution of speech coding based on the linear prediction model, highlight the key milestones in speech coding, and outline the structures of the most important speech coding standards. Current challenges, future research directions, fundamental limits on performance, and the critical open problem of speech coding for emergency first responders are all discussed.

  10. Still image and video compression with MATLAB

    CERN Document Server

    Thyagarajan, K


    This book describes the principles of image and video compression techniques and introduces current and popular compression standards, such as the MPEG series. Derivations of relevant compression algorithms are developed in an easy-to-follow fashion. Numerous examples are provided in each chapter to illustrate the concepts. The book includes complementary software written in MATLAB SIMULINK to give readers hands-on experience in using and applying various video compression methods. Readers can enhance the software by including their own algorithms.

  11. Midrapidity antiproton-to-proton ratio in pp collisions at sqrt(s) = 0.9 and 7 TeV measured by the ALICE experiment

    NARCIS (Netherlands)

    Aamodt, K.; Chojnacki, M.; Christakoglou, P.; de Rooij, R. S.; Grelli, A.; Ivan, C.G.; Kamermans, R.; Mischke, A.; Nooren, G.J.L.; Peitzmann, T.; Simili, E.; van Leeuwen, M.; Verweij, M.


    The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at $\\sqrt{s} = 0.9$ and $7$~TeV during the initial running periods of the Large Hadron Collider(LHC). The measurement covers the transverse momentum interval $0.45

  12. Data compression for command and control (United States)

    Litow, Bruce


    Software, both source and executable versions, designed using LR parser generator technology offers superior data compression characteristics both with respect to the compression ratio, which is essentially optimal, and computational resources efficiency. Ten-fold compression should make possible highly sophisticated command and control systems for use during a space mission, on route and at the target. Carrying source in compressed form on manned missions will mean that significant modifications and even redesign of large systems can be accomplished. Basic aspects of this compression scheme are described in the paper.

  13. Client preferences for compression threshold in single-channel wide dynamic range compression hearing aids. (United States)

    Barker, C; Dillon, H


    Compression in hearing aids can be applied with low compression ratios over a wide range of input levels, but reverts to linear amplification below the compression threshold (CT). In this study, we aimed to determine which of two CTs was preferred by subjects as they used their hearing aids in their own environments, and whether they would prefer to have no low ratio compression at all. Subjects were fitted with a multimemory hearing aid incorporating input controlled compression with a 2:1 compression ratio and output controlled compression limiting. The two memories contained identical programs except that they differed in CT. Sixteen mild to moderately sensorineurally hearing-impaired subjects compared low (approximately 40 dB SPL) and moderate (approximately 65 dB SPL) CTs over 2 mo of field trials using hand held remote controls to switch between the alternatives. In a third month's trial, the preferred option (which also included output controlled compression limiting) was compared with compression limiting alone. The higher CT was preferred by 14 of the subjects. The combination of input compression and output compression limiting was preferred to compression limiting alone by 14 of the subjects. Several real world advantages of frequency independent 2:1 compression with a CT of about 65 dB SPL were demonstrated over linear amplification. Extending the compression to much lower input levels appears to carry more disadvantages than advantages, at least for clients with mild and moderate hearing losses, when fitted with single-channel compression aids with a 2:1 compression ratio.

  14. Cortisol, dehydroepiandrosterone sulphate, their ratio and hypertension: evidence of associations in male veterans from the Vietnam Experience Study. (United States)

    Carroll, D; Phillips, A C; Lord, J M; Arlt, W; Batty, G D


    Although clinical observations implicate cortisol in hypertension, the epidemiological evidence is less compelling. Little is known about the relationship between dehydroepiandrosterone sulphate (DHEAS) and hypertension, and nothing about the association with the cortisol:DHEAS ratio. The present analyses of data obtained from Vietnam-era US veterans examined the associations between cortisol, DHEAS, their ratio and hypertension. Participants were 4180 male veterans. From military files, telephone interviews and a medical examination, sociodemographic and health data were collected. At medical examination, a fasted morning blood sample was collected to assay serum cortisol and DHEAS, blood pressure measured and body mass index (BMI) determined. Hypertension was defined by having one of the following: a reported physician diagnosis, taking antihypertensive medication, an average systolic blood pressure ≥ 140 mm Hg and an average diastolic blood pressure ≥ 90 mm Hg. Cortisol and the cortisol:DHEAS ratio were positively associated with hypertension (P significance (P = 0.06) in models that adjusted for age, sociodemographics, place of service, health behaviours and BMI. The present analyses provide confirmation of a positive association between cortisol and the cortisol:DHEAS ratio and population hypertension.

  15. Initial clinical experience with a novel vertebral augmentation system for treatment of symptomatic vertebral compression fractures: A case series of 26 consecutive patients

    Directory of Open Access Journals (Sweden)

    Miller Larry E


    Full Text Available Abstract Background Minimally invasive vertebral augmentation procedures are widely used to treat vertebral compression fractures although procedural polymethylmethacrylate cement leakage remains common. We report herein our initial experience with a novel vertebral augmentation technique designed to treat symptomatic vertebral osteoporotic fractures and osteolytic metastases with minimal cement extravasation. Methods Forty-two vertebral fractures were identified in 26 consecutive patients (mean age 74 ± 9 years. All patients were treated with a novel percutaneous vertebral augmentation device (Kiva® VCF Treatment System, Benvenue Medical, Santa Clara, CA, USA. Indications for surgery included recent (≤ 3 months symptomatic osteoporotic vertebral fracture (n = 34 and pathologic vertebral fractures (e.g. metabolic bone disease, myeloma, metastasis (n = 8 located between T10 and S1. Patient outcomes were evaluated pre-treatment and at 2- and 6-month follow-up visits. Postoperative cement extravasation was assessed with computed tomography. Patient-reported back pain was quantified using an 11-point numeric scale. Back-specific functional disability was self-reported with the Oswestry Disability Index on a 0 to 100% scale. Results No cases of intraoperative hypotension, respiratory disturbance, neurological deterioration, infection, or death were observed. There were 2 (4.8% levels where anterior cement leakage was visible radiographically in patients with osteolyses. No intracanal leakage was observed. Back pain scores improved 71% (p Conclusions The initial clinical experience with the Kiva® System demonstrated significant improvements in back pain and function with minimal and clinically insignificant procedural cement leakage.

  16. Shock compression experiment for gold at an extreme pressure of 0.36Gbar driven by radiation on the Shenguang-III prototype laser facility (United States)

    Hu, Z.; Yang, D.; Li, S.; Jiang, X.; Liu, Y.; Yi, R.; Song, T.; Guo, L.; Zhang, C.; Zhang, H.; Li, Z.; Jiang, S.; Liu, S.; Yang, J.; Ding, Y.; Li, X.; Li, Y.; Lan, K.; Zheng, W.


    In this paper, we report a radiation-driven shock compression experiment for gold at an extreme pressure around 0.36 Gbar. In order to obtain such high pressure with relatively low laser energy, two main proposals were used in the target design: a smaller-size cavity to obtain higher temperature radiation resource, and impedance-match technique for pressure enhancement. The present experiment was carried out on the Shenguang-III prototype laser facility which is located at the research center of laser fusion, Mianyang, China. Eight laser beams (a total energy of 6.4 kJ of 0.35 μm light in 1 nsec) were injected into a cavity and heat its inner wall, and then the generated x-ray radiation was used to ablate an aluminum substrate and generate shock waves. For using the impedance-match, the gold stepped sample was placed on the aluminum substrate. The shock wave velocity of 49.6 km/s was measured by a streaked optical pyrometer, and then the shock-induced pressure of 0.36 Gbar was deduced using Hugoniot data of gold.

  17. Numerical experiments on thermal convection of highly compressible fluids with variable viscosity and thermal conductivity: Implications for mantle convection of super-Earths (United States)

    Kameyama, Masanori; Yamamoto, Mayumi


    We conduct a series of numerical experiments of thermal convection of highly compressible fluids in a two-dimensional rectangular box, in order to study the mantle convection on super-Earths. The thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively, while the variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with 10 times the Earth's. From our experiments we identified a distinct regime of convecting flow patterns induced by the interplay between the adiabatic temperature change and the spatial variations in viscosity and thermal conductivity. That is, for the cases with strong temperature-dependent viscosity and depth-dependent thermal conductivity, a "deep stratosphere" of stable thermal stratification is formed at the base of the mantle, in addition to thick stagnant lids at their top surfaces. In the "deep stratosphere", the fluid motion is insignificant particularly in the vertical direction in spite of smallest viscosity owing to its strong dependence on temperature. Our finding may further imply that some of super-Earths which are lacking in mobile tectonic plates on their top surfaces may have "deep stratospheres" at the base of their mantles.



    Ayman Abdalla; Ahmad Mazhar; Mosa Salah


    We evaluate the performance of three state of the art video codecs on synthetic videos. The evaluation is based on both subjective and objective quality metrics. The subjective quality of the compressed video sequences is evaluated using the Double Stimulus Impairment Scale (DSIS) assessment metric while the Peak Signal-to-Noise Ratio (PSNR) is used for the objective evaluation. An extensive number of experiments are conducted to study the effect of frame rate and resolution o...

  19. An Algorithm for the Numerical Solution of the Pseudo Compressible Navier-stokes Equations Based on the Experimenting Fields Approach

    KAUST Repository

    Salama, Amgad


    In this work, the experimenting fields approach is applied to the numerical solution of the Navier-Stokes equation for incompressible viscous flow. In this work, the solution is sought for both the pressure and velocity fields in the same time. Apparently, the correct velocity and pressure fields satisfy the governing equations and the boundary conditions. In this technique a set of predefined fields are introduced to the governing equations and the residues are calculated. The flow according to these fields will not satisfy the governing equations and the boundary conditions. However, the residues are used to construct the matrix of coefficients. Although, in this setup it seems trivial constructing the global matrix of coefficients, in other setups it can be quite involved. This technique separates the solver routine from the physics routines and therefore makes easy the coding and debugging procedures. We compare with few examples that demonstrate the capability of this technique.

  20. Centrifugal Gas Compression Cycle (United States)

    Fultun, Roy


    A centrifuged gas of kinetic, elastic hard spheres compresses isothermally and without flow of heat in a process that reverses free expansion. This theorem follows from stated assumptions via a collection of thought experiments, theorems and other supporting results, and it excludes application of the reversible mechanical adiabatic power law in this context. The existence of an isothermal adiabatic centrifugal compression process makes a three-process cycle possible using a fixed sample of the working gas. The three processes are: adiabatic mechanical expansion and cooling against a piston, isothermal adiabatic centrifugal compression back to the original volume, and isochoric temperature rise back to the original temperature due to an influx of heat. This cycle forms the basis for a Thomson perpetuum mobile that induces a loop of energy flow in an isolated system consisting of a heat bath connectable by a thermal path to the working gas, a mechanical extractor of the gas's internal energy, and a device that uses that mechanical energy and dissipates it as heat back into the heat bath. We present a simple experimental procedure to test the assertion that adiabatic centrifugal compression is isothermal. An energy budget for the cycle provides a criterion for breakeven in the conversion of heat to mechanical energy.

  1. Component optimization of dairy manure vermicompost, straw, and peat in seedling compressed substrates using simplex centroid design. (United States)

    Yang, Longyuan; Cao, Hongliang; Yuan, Qiaoxia; Luo, Shuai; Liu, Zhigang


    Vermicomposting is a promising method to disposal dairy manures, and the dairy manure vermicompost (DMV) to replace expensive peat is high-value in the application of seedling compressed substrates. In this research, three main components, DMV, straw, and peat are conducted in the compressed substrates, and the effect of individual component and the corresponding optimal ratio for the seedling production are significant. To address these issues, the simplex-centroid experimental mixture design is employed, and the cucumber seedling experiment is conducted to evaluate the compressed substrates. Results demonstrated that the mechanical strength and physicochemical properties of compressed substrates for cucumber seedling can be well satisfied with suitable mixture ratio of the components. Moreover, and peat) could be determined at 0.5917: 0.1608: 0.2475 when the weight coefficients of the three parameters (shoot length, root dry weight and aboveground dry weight) were 1: 1: 1. For different purpose, the optimum ratio can be little changed on the base of different weight coefficient. Compressed substrate is lump and has certain mechanical strength, produced by application of mechanical pressure to the seedling substrates. It will not harm seedlings when bedding out the seedlings, since the compressed substrate and seedling are bedded out together. However, there is no one using the vermicompost and agricultural wastes components of compressed substrate for vegetable seedling production before. Thus, it is important to understand the effect of individual component to seedling production, and to determine the optimal ratio of components.

  2. Compressive imaging based on clustering sub-dictionary learning and gradient histogram preservation (United States)

    Yao, Qinfen; Gu, Guohua; Sun, Yicheng; Sui, Xiubao


    This paper proposes a novel imaging technique which combines clustering sub-dictionary learning and gradient histogram preservation to improve the quality of compressive imaging from two aspects: edge sharpness and noise suppression. Practical experiments further demonstrate better results on practical optical imaging application in terms of weighted peak signal-to-noise ratio and measure of feature similarity index.

  3. Forecast Jointed Rock Mass Compressive Strength Using a Numerical Model

    Directory of Open Access Journals (Sweden)

    Protosenya Anatoliy


    Full Text Available The method of forecasting the strength of the jointed rock mass by numerical modeling of finite element method in ABAQUS was described. The paper presents advantages of this method to solve the problem of determining the mechanical characteristics of jointed rock mass and the basic steps of creating a numerical geomechanical model of jointed rock mass and numerical experiment. Numerical simulation was carried out with jointed rock mass in order to obtain the ratio of strain and stress while loading the numerical model, determining parameters of quantitative assessment of the impact of the discontinuities orientation on the value of the compressive strength, compressive strength anisotropy. The results of the numerical experiment are compared with the data of experimental studies investigations. Innovative materials and structures are analyzed in this paper. The results that were obtained by calculation show qualitative agreement with the results of laboratory experiments of jointed rock mass.

  4. Image compression for medical diagnosis using neural networks


    Lanzarini, Laura Cristina; Vargas Camacho, María Teresa; Flores Badrán, Amado; De Giusti, Armando Eduardo


    Images compression is a widely studied topic. Conventional situations offer variable compression ratios depending on the image in question and, in general, do not yield good results for images that are rich in tones. This work is an application of images compression of patient s computed tomographies using neural networks, which allows to carry out both compression and decompression of the images with a fixed ratio of 8:1 and a loss of 2%. Facultad de Informática

  5. Shock-adiabatic to quasi-isentropic compression of warm dense helium up to 150 GPa (United States)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Li, J. T.; Li, Z. G.; Li, C. J.; Chen, Z. Y.


    Multiple reverberation compression can achieve higher pressure, higher temperature, but lower entropy. It is available to provide an important validation for the elaborate and wider planetary models and simulate the inertial confinement fusion capsule implosion process. In the work, we have developed the thermodynamic and optical properties of helium from shock-adiabatic to quasi-isentropic compression by means of a multiple reverberation technique. By this technique, the initial dense gaseous helium was compressed to high pressure and high temperature and entered the warm dense matter (WDM) region. The experimental equation of state (EOS) of WDM helium in the pressure-density-temperature (P-ρ -T) range of 1 -150 GPa , 0.1 -1.1 g c m-3 , and 4600-24 000 K were measured. The optical radiations emanating from the WDM helium were recorded, and the particle velocity profiles detecting from the sample/window interface were obtained successfully up to 10 times compression. The optical radiation results imply that dense He has become rather opaque after the 2nd compression with a density of about 0.3 g c m-3 and a temperature of about 1 eV. The opaque states of helium under multiple compression were analyzed by the particle velocity measurements. The multiple compression technique could efficiently enhanced the density and the compressibility, and our multiple compression ratios (ηi=ρi/ρ0,i =1 -10 ) of helium are greatly improved from 3.5 to 43 based on initial precompressed density (ρ0) . For the relative compression ratio (ηi'=ρi/ρi -1) , it increases with pressure in the lower density regime and reversely decreases in the higher density regime, and a turning point occurs at the 3rd and 4th compression states under the different loading conditions. This nonmonotonic evolution of the compression is controlled by two factors, where the excitation of internal degrees of freedom results in the increasing compressibility and the repulsive interactions between the

  6. TEM Video Compressive Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Andrew; Kovarik, Libor; Abellan, Patricia; Yuan, Xin; Carin, Lawrence; Browning, Nigel D.


    One of the main limitations of imaging at high spatial and temporal resolution during in-situ TEM experiments is the frame rate of the camera being used to image the dynamic process. While the recent development of direct detectors has provided the hardware to achieve frame rates approaching 0.1ms, the cameras are expensive and must replace existing detectors. In this paper, we examine the use of coded aperture compressive sensing methods [1, 2, 3, 4] to increase the framerate of any camera with simple, low-cost hardware modifications. The coded aperture approach allows multiple sub-frames to be coded and integrated into a single camera frame during the acquisition process, and then extracted upon readout using statistical compressive sensing inversion. Our simulations show that it should be possible to increase the speed of any camera by at least an order of magnitude. Compressive Sensing (CS) combines sensing and compression in one operation, and thus provides an approach that could further improve the temporal resolution while correspondingly reducing the electron dose rate. Because the signal is measured in a compressive manner, fewer total measurements are required. When applied to TEM video capture, compressive imaging couled improve acquisition speed and reduce the electron dose rate. CS is a recent concept, and has come to the forefront due the seminal work of Candès [5]. Since the publication of Candès, there has been enormous growth in the application of CS and development of CS variants. For electron microscopy applications, the concept of CS has also been recently applied to electron tomography [6], and reduction of electron dose in scanning transmission electron microscopy (STEM) imaging [7]. To demonstrate the applicability of coded aperture CS video reconstruction for atomic level imaging, we simulate compressive sensing on observations of Pd nanoparticles and Ag nanoparticles during exposure to high temperatures and other environmental conditions


    Energy Technology Data Exchange (ETDEWEB)

    Orlikowski, D; Minich, R


    Compression wave analysis started nearly 50 years ago with Fowles. Coperthwaite and Williams gave a method that helps identify simple and steady waves. We have been developing a method that gives describes the non-isentropic character of compression waves, in general. One result of that work is a simple analysis tool. Our method helps clearly identify when a compression wave is a simple wave, a steady wave (shock), and when the compression wave is in transition. This affects the analysis of compression wave experiments and the resulting extraction of the high-pressure equation of state.

  8. Analysis of d/p ratio in Au+Au collisions from the E866 experiment at the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Shea, Y.; Garcia-Solis, E.J.; Stanskas, P.J. [Univ. of Maryland, College Park, MD (United States)


    High energy nucleus-nucleus collisions are a great interest as a means of creating a new state of matter. The transition of nuclear matter to quark matter is expected to result in a strongly interacting region that lives for a long time and expands to a large volume. In order to understand the properties of the collision region, it is important to gather information experimentally on the lifetime and thermodynamic attributes such as temperature, volume, density, and entropy of the collision region. Deuteron production by phase space coalescence is particularly interesting because it can be used as a probe in studying the space-time structure of the heavy ion collisions. In the hot and dense participant region, a proton and a neutron coalesce when their relative momentum is small. The deuteron density in momentum space is proportional to the proton density squared in momentum space at equal momenta per nucleon, assuming proton and neutron density to be identical. The motivation here is to study the properties of the coalesced deuterons formed in the participant region of Au-Au collisions at 11.6 GeV/c. The d/p ratio as a function of centrality is studied in hopes of gaining information about any change in the size of the participant zone which could lead to the effort of searching for the Quark-Gluon-Plasma at the AGS. The results shown here is very preliminary and the work is in progress.

  9. Digit ratio (2D:4D) predicts sporting success among female fencers independent from physical, experience, and personality factors. (United States)

    Voracek, M; Reimer, B; Dressler, S G


    Research particularly focusing on male athletes and popular sports (running and soccer) suggests associations of lower (masculinized) second-to-fourth digit ratio (2D:4D), a putative marker of prenatal androgen action, with better sports performance. Studies focusing on women, non-mainstream sports, or controlling for covariates relevant for sporting success are still sparse. This study examined associations between 2D:4D and performance of both male and female athletes active in fencing (a non-mainstream sport dominated by male participants), while controlling for covariates. National fencing rankings and 2D:4D of 58 male and 41 female Austrian tournament fencers (mean age 24 years) were correlated. Among female, but not male, fencers, lower 2D:4D was related to better national fencing rankings. 2D:4D still accounted for incremental variance (12%) in fencing success, when the effects of salient performance factors (age, body mass index, years of fencing, training intensity, and the personality variables achievement, control, harm avoidance, and social potency) were controlled for (totaling 35% attributable variance). Athletes active in the most aggressive form (the sabre) had lower 2D:4D than those active in the other forms (épée and foil fencing). Sporting success in adult life might be partly prenatally programmed via long-lasting extragenital effects of testosterone. © 2009 John Wiley & Sons A/S.

  10. Mechanical and Failure Criteria of Air-Entrained Concrete under Triaxial Compression Load after Rapid Freeze-Thaw Cycles

    Directory of Open Access Journals (Sweden)

    Feng-kun Cui


    Full Text Available The experiment study on the air-entrained concrete of 100 mm cubes under triaxial compression with different intermediate stress ratio α2=σ2D : σ3D was carried out using a hydraulic-servo testing system. The influence of rapid freeze-thaw cycles and intermediate stress ratio on the triaxial compressive strength σ3D was analyzed according to the experimental results, respectively. The experimental results of air-entrained concrete obtained from the study in this paper and the triaxial compression experimental results of plain concrete got through the same triaxial-testing-system were compared and analyzed. The conclusion was that the triaxial compressive strength is greater than the biaxial and uniaxial compressive strength after the same rapid freeze-thaw cycles, and the increased percentage of triaxial compressive strength over biaxial compressive strength or uniaxial compressive strength is dependent on the middle stress. The experimental data is useful for precise analysis of concrete member or concrete structure under the action complex stress state.

  11. Golden Ratio

    Indian Academy of Sciences (India)

    Our attraction to another body increases if the body is sym- metrical and in proportion. If a face or a structure is in pro- portion, we are more likely to notice it and find it beautiful. The universal ratio of beauty is the 'Golden Ratio', found in many structures. This ratio comes from Fibonacci numbers. In this article, we explore this ...

  12. Golden Ratio

    Indian Academy of Sciences (India)

    Our attraction to another body increases if the body is symmetricaland in proportion. If a face or a structure is in proportion,we are more likely to notice it and find it beautiful.The universal ratio of beauty is the 'Golden Ratio', found inmany structures. This ratio comes from Fibonacci numbers.In this article, we explore this ...

  13. Active elimination of radio frequency interference for improved signal-to-noise ratio for in-situ NMR experiments in strong magnetic field gradients. (United States)

    Ibrahim, M; Pardi, C I; Brown, T W C; McDonald, P J


    Improvement in the signal-to-noise ratio of Nuclear Magnetic Resonance (NMR) systems may be achieved either by increasing the signal amplitude or by decreasing the noise. The noise has multiple origins - not all of which are strictly "noise": incoherent thermal noise originating in the probe and pre-amplifiers, probe ring down or acoustic noise and coherent externally broadcast radio frequency transmissions. The last cannot always be shielded in open access experiments. In this paper, we show that pulsed, low radio-frequency data communications are a significant source of broadcast interference. We explore two signal processing methods of de-noising short T 2 ∗ NMR experiments corrupted by these communications: Linear Predictive Coding (LPC) and the Discrete Wavelet Transform (DWT). Results are shown for numerical simulations and experiments conducted under controlled conditions with pseudo radio frequency interference. We show that both the LPC and DWT methods have merit. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Compression limits in cascaded quadratic soliton compression

    DEFF Research Database (Denmark)

    Bache, Morten; Bang, Ole; Krolikowski, Wieslaw


    Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency.......Cascaded quadratic soliton compressors generate under optimal conditions few-cycle pulses. Using theory and numerical simulations in a nonlinear crystal suitable for high-energy pulse compression, we address the limits to the compression quality and efficiency....

  15. Prospects for measuring the branching ratio of the rare B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -} decay with the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sipica, Valentin


    The Large Hadron Collider (LHC) located at the CERN laboratory in Geneva provides p-p collisions at a centre-of-mass energy of {radical}(s)=7 TeV. The study of the rare B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -} decay is among the research topics of ATLAS, one of the main experiments at the LHC. This decay is highly suppressed in the Standard Model of particle physics and may give an indirect evidence for New Physics models. This PhD thesis investigates prospects for measuring the branching ratio of the B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -} decay with the ATLAS experiment. The analysis is based on Monte Carlo data, with p-p collisions generated at a centre-of-mass energy of {radical}(s)=10 TeV. The strategy employed is to calculate the B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -} branching ratio relative to the branching ratio of the B{sup +}{yields} J/{psi}({mu}{sup +}{mu}{sup -})K{sup +} decay. The dominant background channel is the b anti b{yields}{mu}{sup +}{mu}{sup -}X combinatorial background. True B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -} decay candidates are separated from the much larger amount of combinatorial background events using several discriminating quantities. Upper limits on the B{sup 0}{sub s} {yields} {mu}{sup +}{mu}{sup -} branching ratio are computed using a Bayesian and a frequentist method. The expected precision of the branching ratio measurement is estimated for different values of the integrated luminosity. An expected upper limit on the branching ratio is computed to BR(B{sup 0}{sub s}{yields}{mu}{sup +}{mu}{sup -})<3.8 x 10{sup -8} at a 95% confidence level for 1 fb{sup -1}. The precision of the ATLAS measurement of the branching ratio will reach a level compatible with the best current measurements with about 2-5 fb{sup -1} of data.

  16. Compressed Sensing with Rank Deficient Dictionaries

    DEFF Research Database (Denmark)

    Hansen, Thomas Lundgaard; Johansen, Daniel Højrup; Jørgensen, Peter Bjørn


    In compressed sensing it is generally assumed that the dictionary matrix constitutes a (possibly overcomplete) basis of the signal space. In this paper we consider dictionaries that do not span the signal space, i.e. rank deficient dictionaries. We show that in this case the signal-to-noise ratio...... (SNR) in the compressed samples can be increased by selecting the rows of the measurement matrix from the column space of the dictionary. As an example application of compressed sensing with a rank deficient dictionary, we present a case study of compressed sensing applied to the Coarse Acquisition (C...

  17. Homogeneous Charge Compression Ignition Combustion of Dimethyl Ether


    Pedersen, Troels Dyhr; Schramm, Jesper


    This thesis is based on experimental and numerical studies on the use of dimethyl ether (DME) in the homogeneous charge compression ignition (HCCI) combustion process. The first paper in this thesis was published in 2007 and describes HCCI combustion of pure DME in a small diesel engine. The tests were designed to investigate the effect of engine speed, compression ratio and equivalence ratio on the combustion timing and the engine performance. It was found that the required compression ratio...

  18. Block-Based Compressed Sensing for Neutron Radiation Image Using WDFB

    Directory of Open Access Journals (Sweden)

    Wei Jin


    Full Text Available An ideal compression method for neutron radiation image should have high compression ratio while keeping more details of the original image. Compressed sensing (CS, which can break through the restrictions of sampling theorem, is likely to offer an efficient compression scheme for the neutron radiation image. Combining wavelet transform with directional filter banks, a novel nonredundant multiscale geometry analysis transform named Wavelet Directional Filter Banks (WDFB is constructed and applied to represent neutron radiation image sparsely. Then, the block-based CS technique is introduced and a high performance CS scheme for neutron radiation image is proposed. By performing two-step iterative shrinkage algorithm the problem of L1 norm minimization is solved to reconstruct neutron radiation image from random measurements. The experiment results demonstrate that the scheme not only improves the quality of reconstructed image obviously but also retains more details of original image.

  19. XML data compression in web publishing (United States)

    Qiu, Ruiheng; Hu, Wei; Tang, Zhi; Lu, Xiaoqing; Zhang, Lei


    XML is widely used in various document formats on the web. But it has caused negative impacts such as expensive document distribution time over the web, and long content jumping and rendering delay, especially on mobile devices. Hence we proposed a Schema-based efficient queryable XML compressor, called XTrim, which significantly improves compression ratio by utilizing optimized information in XML Schema while supporting efficient queries. Firstly, XTrim draws structure information from XML document and corresponding XML Schema. Then a novel technique is used to transform the XML tree-like structure into a compact indexed form to support efficient queries. At the same time, text values are obtained, and a language-based text trim method (LTT) that facilitates language-specific text compressors is adopted to reduce the size of text values in various languages. In LTT a word composition detection method is proposed to better process text in non-Latin languages. To evaluate the performance of XTrim, we have implemented a compressor and query engine prototype. Via extensive experiments, results show that XTrim outperforms XMill and existing queryable alternatives in terms of compression ratio, as well as the query efficiency. By applying XTrim to documents, the storage space can save up to 30% and the content jumping and rendering delay is reduced to less than 100ms from 4 seconds.

  20. Analysis of toroidal momentum dissipation by non-axisymmetric fields in high beta, low aspect ratio tokamak experiments (United States)

    Zhu, Wubiao

    agreement. Computation in NSTX plasmas shows that the plateau regime NTV formulation is applicable at the plasma edge, while the 1/nu regime NTV torque is dominant at the radial position of peak torque as the ion collision frequency drops below the ion transit frequency. When the effect of toroidally trapped particles is included, NTV theory is a viable model to be used to predict torque balance in tokamak plasmas. The theory and experiment agree to order one when comparing the change in the plasma angular momentum profile to the computed NTV torque profile caused by an applied non-axisymmetric field perturbation, RFA, or RWM destabilization.

  1. Application of the change of sterane isomer ratios to the reconstruction of geothermal histories: implications of the results of hydrous pyrolysis experiments

    Energy Technology Data Exchange (ETDEWEB)

    Marzi, R. (Kernforschungsanlage Juelich GmbH (Germany). Inst. of Petroleum and Organic Geochemistry Curtin Univ. of Technology, Perth, Western Australia (Australia). Centre for Petroleum and Environmental Organic Geochemistry); Rullkoetter, J. (Kernforschungsanlage Juelich GmbH (Germany). Inst. of Petroleum and Organic Geochemistry); Perriman, W.S. (Curtin Univ. of Technology, Perth, Western Australia (Australia). School of Mathematics and Statistics)


    Kinetic data for the change of the C-20 isomer ratio of 5[alpha](H), 14[alpha](H), 17[alpha](H)-steranes have been derived from a series of hydrous pyrolysis experiments on samples of the lower Toarcian Posidonia shale from northern Germany. The results are compared with other published kinetic data for the same apparent biological marker reaction. It is shown that the sensitivity of these different sets of kinetic data varies drastically in the application to model calculations using predefined geothermal conditions. The difference in sensitivity is hard to estimate from an inspection of the numerical values of activation energy and frequency factor alone. A procedure for the selection of analytical sterane isomer ratios for kinetic assessment using a TTI approach is demonstrated. Error calculations show what level of accuracy can be reached in the prediction of formation temperatures and burial depths when the kinetic data are applied to the reconstruction of geothermal histories of sedimentary basins. (author)

  2. On the identification of the eggshell elastic properties under quasistatic compression

    Directory of Open Access Journals (Sweden)

    Jana Simeonovová


    Full Text Available The problem of the identification of the elastic properties of eggshell, i.e. the evaluation of the Young's modulus and Poisson's ratio is solved. The eggshell is considered as a rotational shell. The experiments on the egg compression under quasistatic loading have been conducted. During these experiments a strain on the eggshell surface has been recorded. By the mutual comparison between experimental and theoretical values of strains the influence of the elastic constants has been demonstrated.

  3. Research on the kinetic energy ratio of return air entrainment in the form of low supply–middle return in the large space of brine experiments

    Directory of Open Access Journals (Sweden)

    Xin Wang


    Full Text Available Introduced in this article is a 1:15 brine model experiment rig with an actual large space building as the research object, which provides different concentration brine for a simulation of the stratified air conditioning in the steady-state flow field featured with columnar air supply in the bottom, heat source on the ground, the central air return, and air exhaust from roof in a large space. According to the similarity theory, it is concluded that the similarity criterion numbers applied here are Reynolds number (Re and Archimedes number (Ar for designation of experiment rig size, choosing device type, and confirming experiment condition. In the designation of key components of experiment rig, the application of automation control makes brine recovery and recycling in the process; designation of electrical control system makes a centralized control of experiment start–stop and the adjustment of the pipeline flow, realizing automation in the whole experiment process. Particle image velocimetry testing technology is used to get velocity vector field of air return mouth area in the model under various working conditions, and also proper orthogonal decomposition method is applied to analyze flow field structure of air return mouth area and reconstruct it. Consequently, we can get a kinetic energy ratio of return air entrainment of lower air-conditioning section and upper non-air-conditioning section in large space. Experiments show that under the conditions of same air supply, indoor environment temperature difference, and height and direction of return air inlet, fastening the speed of return air suction, the entrainment of flow field around it strengthens accordingly. The entrainment of return air inlet has more kinetic energy in the lower air-conditioning section than the upper non-air-conditioning section.

  4. The Lateral Compressive Buckling Performance of Aluminum Honeycomb Panels for Long-Span Hollow Core Roofs

    Directory of Open Access Journals (Sweden)

    Caiqi Zhao


    Full Text Available To solve the problem of critical buckling in the structural analysis and design of the new long-span hollow core roof architecture proposed in this paper (referred to as a “honeycomb panel structural system” (HSSS, lateral compression tests and finite element analyses were employed in this study to examine the lateral compressive buckling performance of this new type of honeycomb panel with different length-to-thickness ratios. The results led to two main conclusions: (1 Under the experimental conditions that were used, honeycomb panels with the same planar dimensions but different thicknesses had the same compressive stiffness immediately before buckling, while the lateral compressive buckling load-bearing capacity initially increased rapidly with an increasing honeycomb core thickness and then approached the same limiting value; (2 The compressive stiffnesses of test pieces with the same thickness but different lengths were different, while the maximum lateral compressive buckling loads were very similar. Overall instability failure is prone to occur in long and flexible honeycomb panels. In addition, the errors between the lateral compressive buckling loads from the experiment and the finite element simulations are within 6%, which demonstrates the effectiveness of the nonlinear finite element analysis and provides a theoretical basis for future analysis and design for this new type of spatial structure.

  5. Visual acuity, contrast sensitivity, and range performance with compressed motion video (United States)

    Bijl, Piet; de Vries, Sjoerd C.


    Video of visual acuity (VA) and contrast sensitivity (CS) test charts in a complex background was recorded using a CCD color camera mounted on a computer-controlled tripod and was fed into real-time MPEG-2 compression/decompression equipment. The test charts were based on the triangle orientation discrimination (TOD) test method and contained triangle test patterns of different sizes and contrasts in four possible orientations. In a perception experiment, observers judged the orientation of the triangles in order to determine VA and CS thresholds at the 75% correct level. Three camera velocities (0, 1.0, and 2.0 deg/s, or 0, 4.1, and 8.1 pixels/frame) and four compression rates (no compression, 4 Mb/s, 2 Mb/s, and 1 Mb/s) were used. VA is shown to be rather robust to any combination of motion and compression. CS, however, dramatically decreases when motion is combined with high compression ratios. The measured thresholds were fed into the TOD target acquisition model to predict the effect of motion and compression on acquisition ranges for tactical military vehicles. The effect of compression on static performance is limited but strong with motion video. The data suggest that with the MPEG2 algorithm, the emphasis is on the preservation of image detail at the cost of contrast loss.

  6. Compression for preventing recurrence of venous ulcers. (United States)

    Nelson, E Andrea; Bell-Syer, Sally E M


    Up to 1% of adults will have a leg ulcer at some time. The majority of leg ulcers are venous in origin and are caused by high pressure in the veins due to blockage or weakness of the valves in the veins of the leg. Prevention and treatment of venous ulcers is aimed at reducing the pressure either by removing/repairing the veins, or by applying compression bandages/stockings to reduce the pressure in the veins.The majority of venous ulcers heal with compression bandages, however ulcers frequently recur. Clinical guidelines therefore recommend that people continue to wear compression, usually in the form of hosiery (tights, stockings, socks) after their ulcer heals, to prevent recurrence. To assess the effects of compression (socks, stockings, tights, bandages) in preventing the recurrence of venous ulcers. If compression does prevent ulceration compared with no compression, then to identify whether there is evidence to recommend particular levels of compression (high, medium or low, for example), types of compression, or brands of compression to prevent ulcer recurrence after healing. For this second update we searched The Cochrane Wounds Group Specialised Register (searched 4 September 2014) which includes the results of regular searches of MEDLINE, EMBASE and CINAHL; The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2014, Issue 8). Randomised controlled trials (RCTs)evaluating compression bandages or hosiery for preventing the recurrence of venous ulcers. Two review authors undertook data extraction and risk of bias assessment independently. Four trials (979 participants) were eligible for inclusion in this review. One trial in patients with recently healed venous ulcers (n = 153) compared recurrence rates with and without compression and found that compression significantly reduced ulcer recurrence at six months (Risk ratio (RR) 0.46, 95% CI 0.27 to 0.76).Two trials compared high-compression hosiery (equivalent to UK class 3) with

  7. Longitudinal bunch compression study with induction voltage modulator

    Directory of Open Access Journals (Sweden)

    Nakayama Akira


    Full Text Available For the beam driver of inertial confinement fusion, the technology to compress a charged particle beam in longitudinal direction is crucially important. However, the quality of the beam is expected to be deteriorated when the beam is rapidly compressed in longitudinal direction. In order to investigate the beam dynamics during bunch compression, we made a compact beam compression system and carried out beam compression experiments. In this paper, we show the background of our study and recent progress of the beam compression experiments.

  8. Perceptual Effects of Dynamic Range Compression in Popular Music Recordings

    DEFF Research Database (Denmark)

    Hjortkjær, Jens; Walther-Hansen, Mads


    compression. Surprisingly, the results failed to reveal any evidence of the effects of dynamic range compression on subjective preference or perceived depth cues. Perceptual data suggest that listeners are less sensitive than commonly believed to even high levels of compression. As measured in terms...... of differences in the peak-to-average ratio, compression has little perceptual effect other than increased loudness or clipping effects that only occur at high levels of compression. One explanation for the inconsistency between data and belief might result from the fact that compression is frequently...

  9. Energy efficiency improvements in Chinese compressed airsystems

    Energy Technology Data Exchange (ETDEWEB)

    McKane, Aimee; Li, Li; Li, Yuqi; Taranto, T.


    Industrial compressed air systems use more than 9 percent ofall electricity used in China. Experience in China and elsewhere hasshown that these systems can be much more energy efficient when viewed asa whole system and rather than as isolated components.This paper presentsa summary and analysis of several compressed air system assessments.Through these assessments, typical compressed air management practices inChina are analyzed. Recommendations are made concerning immediate actionsthat China s enterprises can make to improve compressed air systemefficiency using best available technology and managementstrategies.

  10. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)


    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a

  11. Strength and compressibility of returned lunar soil. (United States)

    Carrier, W. D., III; Bromwell, L. G.; Martin, R. T.


    Two oedometer and three direct shear tests have been performed in vacuum on a 200 g sample of lunar soil from Apollo 12 (12001, 119). The compressibility data have been used to calculate bulk density and shear wave velocity versus depth on the lunar surface. The shear wave velocity was found to increase approximately with the one-fourth power of the depth, and the results suggest that the Apollo 14 Active Seismic Experiment may not have detected the Fra Mauro formation at a depth of 8.5 m, but only naturally consolidated lunar soil. The shear data indicate that the strength of the lunar soil sample is about 65% that of a ground basalt simulant at the same void ratio.

  12. Medical image compression using block-based transform coding techniques (United States)

    De Neve, Peter; Philips, Wilfried R.; Van Overloop, Jeroen; Lemahieu, Ignace L.


    The JPEG lossy compression technique in medical imagery has several disadvantages (at higher compression ratios), mainly due to block-distortion. We therefore investigated two methods, the lapped orthogonal transform (LOT) and the DCT/DST coder, for the use on medical image data. These techniques are block-based but they reduce the block- distortion by spreading it out over the entire image. These compression techniques were applied on four different types of medical images (MRI image, x-ray image, angiogram and CT- scan). They were then compared with results from JPEG and variable block size DCT coders. At a first stage, we determined the optimal block size for each image and for each technique. It was found that for a specific image, the optimal block size was independent of the different transform coders. For the x-ray image, the CT-scan and the angiogram an optimal block size of 32 by 32 was found, while for the MRI image the optimal block size was 16 by 16. Afterwards, for all images the rate-distortion curves of the different techniques were calculated, using the optimal block size. The overall conclusion from our experiments is that the LOT is the best transform among the ones being investigated for compressing medical images of many different kinds. However, JPEG should be used for very high image qualities, as it then requires almost the same bit rate as the LOT and as it requires fewer computations than the LOT technique.

  13. Effects of dynamic-range compression on temporal acuity

    DEFF Research Database (Denmark)

    Wiinberg, Alan; Jepsen, Morten Løve; Epp, Bastian


    processing, temporal modulation transfer functions (TMTFs) and “supra-threshold” modulation-depth discrimination (MDD) thresholds were obtained in normal-hearing (NH) and hearing-impaired (HI) listeners with and without wide-dynamic range compression (WDRC). The TMTFs were obtained using tonal carriers of 1......Some of the challenges that hearing-aid listeners experience with speech perception in complex acoustic environments may originate from limitations in the temporal processing of sounds. To systematically investigate the influence of hearing impairment and hearing-aid signal processing on temporal...... and 5 kHz and modulation frequencies from 8 to 256 Hz. MDD thresholds were obtained using a reference modulation depth of -15 dB. A compression ratio of 2:1 was chosen. The attack and release time constants were 10 and 60 ms, respectively. For both carrier frequencies the TMTF thresholds decreased...

  14. Midrapidity antiproton-to-proton ratio in pp collisons at sqrt[s]=0.9 and 7 TeV measured by the ALICE experiment. (United States)

    Aamodt, K; Abel, N; Abeysekara, U; Abrahantes Quintana, A; Abramyan, A; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Aguilar Salazar, S; Ahammed, Z; Ahmad, A; Ahmad, N; Ahn, S U; Akimoto, R; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Almaráz Aviña, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Andrei, C; Andronic, A; Anelli, G; Angelov, V; Anson, C; Anticić, T; Antinori, F; Antinori, S; Antipin, K; Antończyk, D; Antonioli, P; Anzo, A; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arceo, R; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Aystö, J; Azmi, M D; Bablok, S; Bach, M; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Baldit, A; Bán, J; Barbera, R; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Barile, F; Basile, M; Basmanov, V; Bastid, N; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Becker, B; Belikov, I; Bellwied, R; Belmont-Moreno, E; Belogianni, A; Benhabib, L; Beole, S; Berceanu, I; Bercuci, A; Berdermann, E; Berdnikov, Y; Betev, L; Bhasin, A; Bhati, A K; Bianchi, L; Bianchi, N; Bianchin, C; Bielcík, J; Bielcíková, J; Bilandzic, A; Bimbot, L; Biolcati, E; Blanc, A; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, N; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Bohm, J; Boldizsár, L; Bombara, M; Bombonati, C; Bondila, M; Borel, H; Borisov, A; Bortolin, C; Bose, S; Bosisio, L; Bossú, F; Botje, M; Böttger, S; Bourdaud, G; Boyer, B; Braun, M; Braun-Munzinger, P; Bravina, L; Bregant, M; Breitner, T; Bruckner, G; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Calvo, E; Camacho, E; Camerini, P; Campbell, M; Canoa Roman, V; Capitani, G P; Cara Romeo, G; Carena, F; Carena, W; Carminati, F; Casanova Díaz, A; Caselle, M; Castillo Castellanos, J; Castillo Hernandez, J F; Catanescu, V; Cattaruzza, E; Cavicchioli, C; Cerello, P; Chambert, V; Chang, B; Chapeland, S; Charpy, A; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chiavassa, E; Chibante Barroso, V; Chinellato, D D; Chochula, P; Choi, K; Chojnacki, M; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chuman, F; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Cobanoglu, O; Coffin, J-P; Coli, S; Colla, A; Conesa Balbastre, G; Conesa Del Valle, Z; Conner, E S; Constantin, P; Contin, G; Contreras, J G; Corrales Morales, Y; Cormier, T M; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cuautle, E; Cunqueiro, L; Cussonneau, J; Dainese, A; Dalsgaard, H H; Danu, A; Das, I; Dash, A; Dash, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gaspari, M; de Groot, J; De Gruttola, D; De Marco, N; De Pasquale, S; De Remigis, R; de Rooij, R; de Vaux, G; Delagrange, H; Delgado, Y; Dellacasa, G; Deloff, A; Demanov, V; Dénes, E; Deppman, A; D'Erasmo, G; Derkach, D; Devaux, A; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Dialinas, M; Díaz, L; Díaz, R; Dietel, T; Divià, R; Djuvsland, O; Dobretsov, V; Dobrin, A; Dobrowolski, T; Dönigus, B; Domínguez, I; Don, D M M; Dordic, O; Dubey, A K; Dubuisson, J; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Dutta Majumdar, M R; Elia, D; Emschermann, D; Enokizono, A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evrard, S; Eyyubova, G; Fabjan, C W; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fateev, O; Fearick, R; Fedunov, A; Fehlker, D; Fekete, V; Felea, D; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Ferretti, R; Figueredo, M A S; Filchagin, S; Fini, R; Fionda, F M; Fiore, E M; Floris, M; Fodor, Z; Foertsch, S; Foka, P; Fokin, S; Formenti, F; Fragiacomo, E; Fragkiadakis, M; Frankenfeld, U; Frolov, A; Fuchs, U; Furano, F; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gadrat, S; Gagliardi, M; Gago, A; Gallio, M; Ganoti, P; Ganti, M S; Garabatos, C; García Trapaga, C; Gebelein, J; Gemme, R; Germain, M; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Giraudo, G; Giubellino, P; Gladysz-Dziadus, E; Glasow, R; Glässel, P; Glenn, A; Gómez Jiménez, R; González Santos, H; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Gorbunov, Y; Gotovac, S; Gottschlag, H; Grabski, V; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerra, C; Guerzoni, B; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Gustafsson, H-A; Gutbrod, H; Haaland, O; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hamblen, J; Han, B H; Harris, J W; Hartig, M; Harutyunyan, A; Hasch, D; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heide, M; Heinz, M; Helstrup, H; Herghelegiu, A; Hernández, C; Herrera Corral, G; Herrmann, N; Hetland, K F; Hicks, B; Hiei, A; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hrivnácová, I; Hu, S; Huang, M; Huber, S; Humanic, T J; Hutter, D; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Innocenti, P G; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Iwasaki, T; Jachołkowski, A; Jacobs, P; Jancurová, L; Jangal, S; Janik, R; Jena, C; Jena, S; Jirden, L; Jones, G T; Jones, P G; Jovanović, P; Jung, H; Jung, W; Jusko, A; Kaidalov, A B; Kalcher, S; Kalinák, P; Kalisky, M; Kalliokoski, T; Kalweit, A; Kamal, A; Kamermans, R; Kanaki, K; Kang, E; Kang, J H; Kapitan, J; Kaplin, V; Kapusta, S; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kikola, D; Kileng, B; Kim, D J; Kim, D S; Kim, D W; Kim, H N; Kim, J; Kim, J H; Kim, J S; Kim, M; Kim, M; Kim, S H; Kim, S; Kim, Y; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Klovning, A; Kluge, A; Knichel, M L; Kniege, S; Koch, K; Kolevatov, R; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskih, A; Kornaś, E; Kour, R; Kowalski, M; Kox, S; Kozlov, K; Kral, J; Králik, I; Kramer, F; Kraus, I; Kravcáková, A; Krawutschke, T; Krivda, M; Krumbhorn, D; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kumar, L; Kumar, N; Kupczak, R; Kurashvili, P; Kurepin, A; Kurepin, A N; Kuryakin, A; Kushpil, S; Kushpil, V; Kutouski, M; Kvaerno, H; Kweon, M J; Kwon, Y; La Rocca, P; Lackner, F; Ladrón de Guevara, P; Lafage, V; Lal, C; Lara, C; Larsen, D T; Laurenti, G; Lazzeroni, C; Le Bornec, Y; Le Bris, N; Lee, H; Lee, K S; Lee, S C; Lefèvre, F; Lenhardt, M; Leistam, L; Lehnert, J; Lenti, V; León, H; León Monzón, I; León Vargas, H; Lévai, P; Li, X; Li, Y; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loginov, V; Lohn, S; Lopez, X; López Noriega, M; López-Ramírez, R; López Torres, E; Løvhøiden, G; Lozea Feijo Soares, A; Lu, S; Lunardon, M; Luparello, G; Luquin, L; Lutz, J-R; Ma, K; Ma, R; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Makhlyueva, I; Mal'kevich, D; Malaev, M; Malagalage, K J; Maldonado Cervantes, I; Malek, M; Malkiewicz, T; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Mares, J; Margagliotti, G V; Margotti, A; Marín, A; Martashvili, I; Martinengo, P; Martínez Hernández, M I; Martínez Davalos, A; Martínez García, G; Maruyama, Y; Marzari Chiesa, A; Masciocchi, S; Masera, M; Masetti, M; Masoni, A; Massacrier, L; Mastromarco, M; Mastroserio, A; Matthews, Z L; Matyja, A; Mayani, D; Mazza, G; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mendez Lorenzo, P; Meoni, M; Mercado Pérez, J; Mereu, P; Miake, Y; Michalon, A; Miftakhov, N; Milano, L; Milosevic, J; Minafra, F; Mischke, A; Miśkowiec, D; Mitu, C; Mizoguchi, K; Mlynarz, J; Mohanty, B; Molnar, L; Mondal, M M; Montaño Zetina, L; Monteno, M; Montes, E; Morando, M; Moretto, S; Morsch, A; Moukhanova, T; Muccifora, V; Mudnic, E; Muhuri, S; Müller, H; Munhoz, M G; Munoz, J; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Navach, F; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nendaz, F; Newby, J; Nianine, A; Nicassio, M; Nielsen, B S; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyatha, A; Nygaard, C; Nyiri, A; Nystrand, J; Ochirov, A; Odyniec, G; Oeschler, H; Oinonen, M; Okada, K; Okada, Y; Oldenburg, M; Oleniacz, J; Oppedisano, C; Orsini, F; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Osmic, F; Osterman, L; Ostrowski, P; Otterlund, I; Otwinowski, J; Ovrebekk, G; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S; Pal, S K; Palaha, A; Palmeri, A; Panse, R; Papikyan, V; Pappalardo, G S; Park, W J; Pastircák, B; Pastore, C; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Pepato, A; Pereira, H; Peressounko, D; Pérez, C; Perini, D; Perrino, D; Peryt, W; Peschek, J; Pesci, A; Peskov, V; Pestov, Y; Peters, A J; Petrácek, V; Petridis, A; Petris, M; Petrov, P; Petrovici, M; Petta, C; Peyré, J; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piuz, F; Platt, R; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta Lerma, P L M; Poggio, F; Poghosyan, M G; Polák, K; Polichtchouk, B; Polozov, P; Polyakov, V; Pommeresch, B; Pop, A; Posa, F; Pospísil, V; Potukuchi, B; Pouthas, J; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Pujahari, P; Pulvirenti, A; Punin, A; Punin, V; Putis, M; Putschke, J; Quercigh, E; Rachevski, A; Rademakers, A; Radomski, S; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramírez Reyes, A; Rammler, M; Raniwala, R; Raniwala, S; Räsänen, S S; Rashevskaya, I; Rath, S; Read, K F; Real, J S; Redlich, K; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Ricaud, H; Riccati, L; Ricci, R A; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rodriguez Cahuantzi, M; Røed, K; Röhrich, D; Román López, S; Romita, R; Ronchetti, F; Rosinský, P; Rosnet, P; Rossegger, S; Rossi, A; Roukoutakis, F; Rousseau, S; Roy, C; Roy, P; Rubio-Montero, A J; Rui, R; Rusanov, I; Russo, G; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safarík, K; Sahoo, R; Saini, J; Saiz, P; Sakata, D; Salgado, C A; Salgueiro Domingues da Silva, R; Salur, S; Samanta, T; Sambyal, S; Samsonov, V; Sándor, L; Sandoval, A; Sano, M; Sano, S; Santo, R; Santoro, R; Sarkamo, J; Saturnini, P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schindler, H; Schmidt, C; Schmidt, H R; Schossmaier, K; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, P A; Segato, G; Semenov, D; Senyukov, S; Seo, J; Serci, S; Serkin, L; Serradilla, E; Sevcenco, A; Sgura, I; Shabratova, G; Shahoyan, R; Sharkov, G; Sharma, N; Sharma, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddi, E; Siemiarczuk, T; Silenzi, A; Silvermyr, D; Simili, E; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R; Snow, H; Søgaard, C; Soloviev, A; Soltveit, H K; Soltz, R; Sommer, W; Son, C W; Son, H; Song, M; Soos, C; Soramel, F; Soyk, D; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Staley, F; Stan, E; Stefanek, G; Stefanini, G; Steinbeck, T; Stenlund, E; Steyn, G; Stocco, D; Stock, R; Stolpovsky, P; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sumbera, M; Susa, T; Swoboda, D; Symons, J; Szanto de Toledo, A; Szarka, I; Szostak, A; Szuba, M; Tadel, M; Tagridis, C; Takahara, A; Takahashi, J; Tanabe, R; Tapia Takaki, J D; Taureg, H; Tauro, A; Tavlet, M; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Thäder, J; Tieulent, R; Tlusty, D; Toia, A; Tolyhy, T; Torcato de Matos, C; Torii, H; Torralba, G; Toscano, L; Tosello, F; Tournaire, A; Traczyk, T; Tribedy, P; Tröger, G; Truesdale, D; Trzaska, W H; Tsiledakis, G; Tsilis, E; Tsuji, T; Tumkin, A; Turrisi, R; Turvey, A; Tveter, T S; Tydesjö, H; Tywoniuk, K; Ulery, J; Ullaland, K; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vacchi, A; Vala, M; Valencia Palomo, L; Vallero, S; van der Kolk, N; Vande Vyvre, P; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasiliev, A; Vassiliev, I; Vasileiou, M; Vechernin, V; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vetlitskiy, I; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopianov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Vrláková, J; Vulpescu, B; Wagner, B; Wagner, V; Wallet, L; Wan, R; Wang, D; Wang, Y; Wang, Y; Watanabe, K; Wen, Q; Wessels, J; Westerhoff, U; Wiechula, J; Wikne, J; Wilk, A; Wilk, G; Williams, M C S; Willis, N; Windelband, B; Xu, C; Yang, C; Yang, H; Yasnopolskiy, S; Yermia, F; Yi, J; Yin, Z; Yokoyama, H; Yoo, I-K; Yuan, X; Yurevich, V; Yushmanov, I; Zabrodin, E; Zagreev, B; Zalite, A; Zampolli, C; Zanevsky, Yu; Zaporozhets, S; Zarochentsev, A; Závada, P; Zbroszczyk, H; Zelnicek, P; Zenin, A; Zepeda, A; Zgura, I; Zhalov, M; Zhang, X; Zhou, D; Zhou, S; Zhu, J; Zichichi, A; Zinchenko, A; Zinovjev, G; Zoccarato, Y; Zychácek, V; Zynovyev, M


    The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at sqrt[s]=0.9 and 7 TeV during the initial running periods of the Large Hadron Collider. The measurement covers the transverse momentum interval 0.45ratio is measured to be R_{|y|<0.5}=0.957±0.006(stat)±0.014(syst) at 0.9 TeV and R_{|y|<0.5}=0.991±0.005(stat)±0.014(syst) at 7 TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions.

  15. Midrapidity antiproton-to-proton ratio in pp collisions at $\\sqrt{s} = 0.9$ and $7$~TeV measured by the ALICE experiment

    CERN Document Server

    Aamodt, K.; Abeysekara, U.; Abrahantes Quintana, A.; Abramyan, A.; Adamova, D.; Aggarwal, M.M.; Aglieri Rinella, G.; Agocs, A.G.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahn, S.U.; Akimoto, R.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Almaraz Avina, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Andrei, C.; Andronic, A.; Anelli, G.; Angelov, V.; Anson, C.; Anticic, T.; Antinori, F.; Antinori, S.; Antipin, K.; Antonczyk, D.; Antonioli, P.; Anzo, A.; Aphecetche, L.; Appelshauser, H.; Arcelli, S.; Arceo, R.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I.C.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T.C.; Aysto, J.; Azmi, M.D.; Bablok, S.; Bach, M.; Badala, A.; Baek, Y.W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldit, A.; Ban, J.; Barbera, R.; Barnafoldi, G.G.; Barnby, L.; Barret, V.; Bartke, J.; Barile, F.; Basile, M.; Basmanov, V.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I.G.; Becker, B.; Belikov, I.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Benhabib, L.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Betev, L.; Bhasin, A.; Bhati, A.K.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielcik, J.; Bielcikova, J.; Bilandzic, A.; Bimbot, L.; Biolcati, E.; Blanc, A.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bogdanov, A.; Boggild, H.; Bogolyubsky, M.; Bohm, J.; Boldizsar, L.; Bombara, M.; Bombonati, C.; Bondila, M.; Borel, H.; Borisov, A.; Bortolin, C.; Bose, S.; Bosisio, L.; Bossu, F.; Botje, M.; Bottger, S.; Bourdaud, G.; Boyer, B.; Braun, M.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Breitner, T.; Bruckner, G.; Brun, R.; Bruna, E.; Bruno, G.E.; Budnikov, D.; Buesching, H.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Camacho, E.; Camerini, P.; Campbell, M.; Canoa Roman, V.; Capitani, G.P.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Diaz, A.; Caselle, M.; Castillo Castellanos, J.; Castillo Hernandez, J.F.; Catanescu, V.; Cattaruzza, E.; Cavicchioli, C.; Cerello, P.; Chambert, V.; Chang, B.; Chapeland, S.; Charpy, A.; Charvet, J.L.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D.D.; Chochula, P.; Choi, K.; Chojnacki, M.; Christakoglou, P.; Christensen, C.H.; Christiansen, P.; Chujo, T.; Chuman, F.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Cobanoglu, O.; Coffin, J.-P.; Coli, S.; Colla, A.; Conesa Balbastre, G.; Conesa del Valle, Z.; Conner, E.S.; Constantin, P.; Contin, G.; Contreras, J.G.; Corrales Morales, Y.; Cormier, T.M.; Cortese, P.; Cortes Maldonado, I.; Cosentino, M.R.; Costa, F.; Cotallo, M.E.; Crescio, E.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Cussonneau, J.; Dainese, A.; Dalsgaard, H.H.; Danu, A.; Das, I.; Dash, A.; Dash, S.; de Barros, G.O.V.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gaspari, M.; de Groot, J.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Remigis, R.; de Rooij, R.; de Vaux, G.; Delagrange, H.; Dellacasa, G.; Deloff, A.; Demanov, V.; Denes, E.; Deppman, A.; D'Erasmo, G.; Derkach, D.; Devaux, A.; Di Bari, D.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Dialinas, M.; Diaz, L.; Diaz, R.; Dietel, T.; Divia, R.; Djuvsland, O.; Dobretsov, V.; Dobrin, A.; Dobrowolski, T.; Donigus, B.; Dominguez, I.; Dordic, O.; Dubey, A.K.; Dubuisson, J.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A.K.; Dutta Majumdar, M.R.; Elia, D.; Emschermann, D.; Enokizono, A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evrard, S.; Eyyubova, G.; Fabjan, C.W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fateev, O.; Fearick, R.; Fedunov, A.; Fehlker, D.; Fekete, V.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernandez Tellez, A.; Ferreiro, E.G.; Ferretti, A.; Ferretti, R.; Figueredo, M.A.S.; Filchagin, S.; Fini, R.; Fionda, F.M.; Fiore, E.M.; Floris, M.; Fodor, Z.; Foertsch, S.; Foka, P.; Fokin, S.; Formenti, F.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Frolov, A.; Fuchs, U.; Furano, F.; Furget, C.; Fusco Girard, M.; Gaardhoje, J.J.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gallio, M.; Ganoti, P.; Ganti, M.S.; Garabatos, C.; Garcia Trapaga, C.; Gebelein, J.; Gemme, R.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Giraudo, G.; Giubellino, P.; Gladysz-Dziadus, E.; Glasow, R.; Glassel, P.; Glenn, A.; Gomez Jimenez, R.; Gonzalez Santos, H.; Gonzalez-Trueba, L.H.; Gonzalez-Zamora, P.; Gorbunov, S.; Gorbunov, Y.; Gotovac, S.; Gottschlag, H.; Grabski, V.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J.F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Gustafsson, H.-A.; Gutbrod, H.; Haaland, O.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamblen, J.; Han, B.H.; Harris, J.W.; Hartig, M.; Harutyunyan, A.; Hasch, D.; Hasegan, D.; Hatzifotiadou, D.; Hayrapetyan, A.; Heide, M.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Hernandez, C.; Herrera Corral, G.; Herrmann, N.; Hetland, K.F.; Hicks, B.; Hiei, A.; Hille, P.T.; Hippolyte, B.; Horaguchi, T.; Hori, Y.; Hristov, P.; Hrivnacova, I.; Hu, S.; Huang, M.; Huber, S.; Humanic, T.J.; Hutter, D.; Hwang, D.S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Innocenti, P.G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Iwasaki, T.; Jacholkowski, A.; Jacobs, P.; Jancurova, L.; Jangal, S.; Janik, R.; Jena, C.; Jena, S.; Jirden, L.; Jones, G.T.; Jones, P.G.; Jovanovic, P.; Jung, H.; Jung, W.; Jusko, A.; Kaidalov, A.B.; Kalcher, S.; Kalinak, P.; Kalisky, M.; Kalliokoski, T.; Kalweit, A.; Kamal, A.; Kamermans, R.; Kanaki, K.; Kang, E.; Kang, J.H.; Kapitan, J.; Kaplin, V.; Kapusta, S.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, M.M.; Khan, S.A.; Khanzadeev, A.; Kharlov, Y.; Kikola, D.; Kileng, B.; Kim, D.J; Kim, D.S.; Kim, D.W.; Kim, H.N.; Kim, J.; Kim, J.H.; Kim, J.S.; Kim, M.; Kim, S.H.; Kim, S.; Kim, Y.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J.L.; Klein, J.; Klein-Bosing, C.; Kliemant, M.; Klovning, A.; Kluge, A.; Knichel, M.L.; Kniege, S.; Koch, K.; Kolevatov, R.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskih, A.; Kornas, E.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Kral, J.; Kralik, I.; Kramer, F.; Kraus, I.; Kravcakova, A.; Krawutschke, T.; Krivda, M.; Krumbhorn, D.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kuhn, C.; Kuijer, P.G.; Kumar, L.; Kumar, N.; Kupczak, R.; Kurashvili, P.; Kurepin, A.; Kurepin, A.N.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kutouski, M.; Kvaerno, H.; Kweon, M.J.; Kwon, Y.; La Rocca, P.; Lackner, F.; Ladron de Guevara, P.; Lafage, V.; Lal, C.; Lara, Camilo; Larsen, D.T.; Laurenti, G.; Lazzeroni, C.; Le Bornec, Y.; Le Bris, N.; Lee, H.; Lee, K.S.; Lee, S.C.; Lefevre, F.; Lenhardt, M.; Leistam, L.; Lehnert, J.; Lenti, V.; Leon, H.; Leon Monzon, I.; Leon Vargas, H.; Levai, P.; Li, X.; Li, Y.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M.A.; Liu, L.; Loginov, V.; Lohn, S.; Lopez, X.; Lopez Noriega, M.; Lopez-Ramirez, R.; Lopez Torres, E.; Lovhoiden, G.; Lozea Feijo Soares, A.; Lu, S.; Lunardon, M.; Luparello, G.; Luquin, L.; Lutz, J.-R.; Ma, K.; Ma, R.; Madagodahettige-Don, D.M.; Maevskaya, A.; Mager, M.; Mahapatra, D.P.; Maire, A.; Makhlyueva, I.; Mal'Kevich, D.; Malaev, M.; Malagalage, K.J.; Maldonado Cervantes, I.; Malek, M.; Malkiewicz, T.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Mares, J.; Margagliotti, G.V.; Margotti, A.; Marin, A.; Martashvili, I.; Martinengo, P.; Martinez Hernandez, M.I.; Martinez Davalos, A.; Martinez Garcia, G.; Maruyama, Y.; Marzari Chiesa, A.; Masciocchi, S.; Masera, M.; Masetti, M.; Masoni, A.; Massacrier, L.; Mastromarco, M.; Mastroserio, A.; Matthews, Z.L.; Matyja, A.; Mayani, D.; Mazza, G.; Mazzoni, M.A.; Meddi, F.; Menchaca-Rocha, A.; Mendez Lorenzo, P.; Meoni, M.; Mercado Perez, J.; Mereu, P.; Miake, Y.; Michalon, A.; Miftakhov, N.; Milano, L.; Milosevic, J.; Minafra, F.; Mischke, A.; Miskowiec, D.; Mitu, C.; Mizoguchi, K.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Mondal, M.M.; Montano Zetina, L.; Monteno, M.; Montes, E.; Morando, M.; Moretto, S.; Morsch, A.; Moukhanova, T.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Muller, H.; Munhoz, M.G.; Munoz, J.; Musa, L.; Musso, A.; Nandi, B.K.; Nania, R.; Nappi, E.; Navach, F.; Navin, S.; Nayak, T.K.; Nazarenko, S.; Nazarov, G.; Nedosekin, A.; Nendaz, F.; Newby, J.; Nianine, A.; Nicassio, M.; Nielsen, B.S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.S.; Nilsson, M.S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyatha, A.; Nygaard, C.; Nyiri, A.; Nystrand, J.; Ochirov, A.; Odyniec, G.; Oeschler, H.; Oinonen, M.; Okada, K.; Okada, Y.; Oldenburg, M.; Oleniacz, J.; Oppedisano, C.; Orsini, F.; Ortiz Velasquez, A.; Ortona, G.; Oskarsson, A.; Osmic, F.; Osterman, L.; Ostrowski, P.; Otterlund, I.; Otwinowski, J.; Ovrebekk, G.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paic, G.; Painke, F.; Pajares, C.; Pal, S.; Pal, S.K.; Palaha, A.; Palmeri, A.; Panse, R.; Papikyan, V.; Pappalardo, G.S.; Park, W.J.; Pastircak, B.; Pastore, C.; Paticchio, V.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pepato, A.; Pereira, H.; Peressounko, D.; Perez, C.; Perini, D.; Perrino, D.; Peryt, W.; Peschek, J.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A.J.; Petracek, V.; Petridis, A.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Peyre, J.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piuz, F.; Platt, R.; Ploskon, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta Lerma, P.L.M.; Poggio, F.; Poghosyan, M.G.; Polak, K.; Polichtchouk, B.; Polozov, P.; Polyakov, V.; Pommeresch, B.; Pop, A.; Posa, F.; Pospisil, V.; Potukuchi, B.; Pouthas, J.; Prasad, S.K.; Preghenella, R.; Prino, F.; Pruneau, C.A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Pulvirenti, A.; Punin, A.; Punin, V.; Putis, M.; Putschke, J.; Quercigh, E.; Rachevski, A.; Rademakers, A.; Radomski, S.; Raiha, T.S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rodriguez Cahuantzi, M.; Rammler, M.; Raniwala, R.; Raniwala, S.; Rasanen, S.S.; Rashevskaya, I.; Rath, S.; Read, K.F.; Real, J.S.; Redlich, K.; Renfordt, R.; Reolon, A.R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R.A.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Roed, K.; Rohrich, D.; Roman Lopez, S.; Romita, R.; Ronchetti, F.; Rosinsky, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, P.; Rubio-Montero, A.J.; Rui, R.; Rusanov, I.; Russo, G.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Safarik, K.; Sahoo, R.; Saini, J.; Saiz, P.; Sakata, D.; Salgado, C.A.; Salgueiro Domingues da Silva, R.; Salur, S.; Samanta, T.; Sambyal, S.; Samsonov, V.; Sandor, L.; Sandoval, A.; Sano, M.; Sano, S.; Santo, R.; Santoro, R.; Sarkamo, J.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R.P.; Schiaua, C.; Schicker, R.; Schindler, H.; Schmidt, C.; Schmidt, H.R.; Schossmaier, K.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P.A.; Segato, G.; Semenov, D.; Senyukov, S.; Seo, J.; Serci, S.; Serkin, L.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharkov, G.; Sharma, N.; Sharma, S.; Shigaki, K.; Shimomura, M.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Sicking, E.; Siddi, E.; Siemiarczuk, T.; Silenzi, A.; Silvermyr, D.; Simili, E.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, B.C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T.B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R.; Snow, H.; Sogaard, C.; Soloviev, A.; Soltveit, H.K.; Soltz, R.; Sommer, W.; Son, C.W.; Son, Hyungsuk; Song, M.; Soos, C.; Soramel, F.; Soyk, D.; Spyropoulou-Stassinaki, M.; Srivastava, B.K.; Stachel, J.; Staley, F.; Stan, E.; Stefanek, G.; Stefanini, G.; Steinbeck, T.; Stenlund, E.; Steyn, G.; Stocco, D.; Stock, R.; Stolpovsky, P.; Strmen, P.; Suaide, A.A.P.; Subieta Vasquez, M.A.; Sugitate, T.; Suire, C.; Sumbera, M.; Susa, T.; Swoboda, D.; Symons, J.; Szanto de Toledo, A.; Szarka, I.; Szostak, A.; Szuba, M.; Tadel, M.; Tagridis, C.; Takahara, A.; Takahashi, J.; Tanabe, R.; Tapia Takaki, J.D.; Taureg, H.; Tauro, A.; Tavlet, M.; Tejeda Munoz, G.; Telesca, A.; Terrevoli, C.; Thaeder, Jochen Mathias; Tieulent, R.; Tlusty, D.; Toia, A.; Tolyhy, T.; Torcato de Matos, C.; Torii, H.; Torralba, G.; Toscano, L.; Tosello, F.; Tournaire, A.; Traczyk, T.; Tribedy, P.; Troger, G.; Truesdale, D.; Trzaska, W.H.; Tsiledakis, G.; Tsilis, E.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Turvey, A.; Tveter, T.S.; Tydesjo, H.; Tywoniuk, K.; Ulery, J.; Ullaland, K.; Uras, A.; Urban, J.; Urciuoli, G.M.; Usai, G.L.; Vacchi, A.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Kolk, N.; Vyvre, P.Vande; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasiliev, A.; Vassiliev, I.; Vasileiou, M.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vetlitskiy, I.; Vickovic, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y.P.; Vodopianov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vranic, D.; Vrlakova, J.; Vulpescu, B.; Wagner, B.; Wagner, V.; Wallet, L.; Wan, R.; Wang, D.; Wang, Y.; Watanabe, K.; Wen, Q.; Wessels, J.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilk, A.; Wilk, G.; Williams, M.C.S.; Willis, N.; Windelband, B.; Xu, C.; Yang, C.; Yang, H.; Yasnopolskiy, S.; Yermia, F.; Yi, J.; Yin, Z.; Yokoyama, H.; Yoo, I-K.; Yuan, X.; Yurevich, V.; Yushmanov, I.; Zabrodin, E.; Zagreev, B.; Zalite, A.; Zampolli, C.; Zanevsky, Yu.; Zaporozhets, S.; Zarochentsev, A.; Zavada, P.; Zbroszczyk, H.; Zelnicek, P.; Zenin, A.; Zepeda, A.; Zgura, I.; Zhalov, M.; Zhang, X.; Zhou, D.; Zhou, S.; Zhu, J.; Zichichi, A.; Zinchenko, A.; Zinovjev, G.; Zoccarato, Y.; Zychacek, V.; Zynovyev, M.


    The ratio of the yields of antiprotons to protons in pp collisions has been measured by the ALICE experiment at $\\sqrt{s} = 0.9$ and $7$~TeV during the initial running periods of the Large Hadron Collider(LHC). The measurement covers the transverse momentum interval $0.45 < p_{\\rm{t}} < 1.05$~GeV/$c$ and rapidity $|y| < 0.5$. The ratio is measured to be $R_{|y| < 0.5} = 0.957 \\pm 0.006 (stat.) \\pm 0.014 (syst.)$ at $0.9$~TeV and $R_{|y| < 0.5} = 0.991 \\pm 0.005 (stat.) \\pm 0.014 (syst.)$ at $7$~TeV and it is independent of both rapidity and transverse momentum. The results are consistent with the conventional model of baryon-number transport and set stringent limits on any additional contributions to baryon-number transfer over very large rapidity intervals in pp collisions.

  16. Effects of Screening on the Thermal Resistivity And Compressibility ...

    African Journals Online (AJOL)

    Models for computing thermal resistivity, compressibility ratio, and screening parameter of metals was developed and used to study the effects of screening on the thermal resistivity and compressibility ratio of metals. The results obtained revealed that the thermal resistivity of metals increases with an increase in the electron ...

  17. Lightness compression and hue changes. (United States)

    Lillo, Julio; Moreira, Humberto


    Two experiments were performed to relate the Bezold-Brücke (B-B) and lightness compression effects. The first used a calibrated screen to present an achromatic luminance staircase. In addition, it reproduced, the methodology and the essential aspects the lightness compression effect discovered by Cataliotti and Gilchrist (1995). That is, observers perceived a truncated grey scale (from white to medium grey) when the staircase was the only stimulation in the near background (Gelb condition), but not when presented on a Mondrian background, because of the high articulation level provided by this background. Experiment 1 design also included two other backgrounds that produced a partial compression effect. In Experiment 2, two chromatic staircases were used. Employing a naming task, changes in hue perception were only observed for the susceptible staircase. The observed changes were of two types. First, for the full staircase presentations, a Gelb background produced maximum lightness compression (more similarity in the lightness of the staircase stimuli) and, also, a minimum B-B effect (fewer differences in hue). Second, only for the Gelb condition, there were changes in the hue of the lowest luminance staircase stimuli depending on the staircase extension. Results are discussed in the framework of the anchoring theory of lightness perception.

  18. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)


    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  19. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine (United States)

    Moura, A. F.; Wheatley, V.; Jahn, I.


    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further

  20. MRI Images Compression Using Curvelets Transforms (United States)

    Beladgham, M.; Hacene, I. Boucli; Taleb-Ahmed, A.; Khélif, M.


    In the field of medical diagnostics, interested parties have resorted increasingly to medical imaging, it is well established that the accuracy and completeness of diagnosis are initially connected with the image quality, but the quality of the image is itself dependent on a number of factors including primarily the processing that an image must undergo to enhance its quality. We are interested in MRI medical image compression by Curvelets, of which we have proposed in this paper the compression algorithm FDCT using the wrapping method. In order to enhance the compression algorithm by FDCT, we have compared the results obtained with wavelet and Ridgelet transforms. The results are very satisfactory regarding compression ratio, and the computation time and quality of the compressed image compared to those of traditional methods.

  1. Compressive Sensing DNA Microarrays

    Directory of Open Access Journals (Sweden)

    Sheikh Mona A


    Full Text Available Compressive sensing microarrays (CSMs are DNA-based sensors that operate using group testing and compressive sensing (CS principles. In contrast to conventional DNA microarrays, in which each genetic sensor is designed to respond to a single target, in a CSM, each sensor responds to a set of targets. We study the problem of designing CSMs that simultaneously account for both the constraints from CS theory and the biochemistry of probe-target DNA hybridization. An appropriate cross-hybridization model is proposed for CSMs, and several methods are developed for probe design and CS signal recovery based on the new model. Lab experiments suggest that in order to achieve accurate hybridization profiling, consensus probe sequences are required to have sequence homology of at least 80% with all targets to be detected. Furthermore, out-of-equilibrium datasets are usually as accurate as those obtained from equilibrium conditions. Consequently, one can use CSMs in applications in which only short hybridization times are allowed.

  2. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix


    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  3. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Rune Hansen, Esben; Srinivasa Rao, S.; Tiedemann, Peter

    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1......-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances....

  4. Compressing Binary Decision Diagrams

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Satti, Srinivasa Rao; Tiedemann, Peter


    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1......-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances...

  5. Hyperspectral data compression

    CERN Document Server

    Motta, Giovanni; Storer, James A


    Provides a survey of results in the field of compression of remote sensed 3D data, with a particular interest in hyperspectral imagery. This work covers topics such as compression architecture, lossless compression, lossy techniques, and more. It also describes a lossless algorithm based on vector quantization.

  6. The differentiation of the character of solid lesions in the breast in the compression sonoelastography. Part II: Diagnostic value of BIRADS-US classification, Tsukuba score and FLR ratio

    Directory of Open Access Journals (Sweden)

    Katarzyna Dobruch-Sobczak


    Full Text Available Sonoelastography is a dynamically developing method of ultrasound examination used to differentiate the character of focal lesions in the breasts. The aim of the Part II of the study is to determine the usefulness of sonoelastography in the differentiation diagnosis of focal breast lesions including the evaluation of the diagnostic value of Tsukuba score and FLR ratio in characterizing solid lesions in the breasts. Furthermore, the paper provides a comparison of classic B-mode imaging and sonoelastography. Material and methods: From January to July 2010 in the Ultrasound Department of the Cancer Centre, The Institute of Maria Skłodowska-Curie, 375 breast ultrasound examinations were conducted. The examined group included patients who in B-mode examinations presented indications for pathological verification. They were 80 women aged between 17 and 83 (mean age was 50 with 99 solid focal lesions in the breasts. All patients underwent: the interview, physical examination, B-mode ultrasound examination and elastography of the mammary glands and axillary fossae. The visualized lesions were evaluated according to BIRADS-US classification and Tsukuba score as well as FLR ratio was calculated. In all cases, the histopathological and/or cytological verification of the tested lesions was obtained. Results: In the group of 80 patients, the examination revealed 39 malignant neoplastic lesions and 60 benign ones. The mean age of women with malignant neoplasms was 55.07 (SD=10.54, and with benign lesions – 46.9 (SD=15.47. In order to identify threshold values that distinguish benign lesions from malignant ones, a comparative analysis of statistical models based on BIRADS-US classification and Tsukuba score was conducted and the cut-off value for FLR was assumed. The sensitivity and specificity values for BIRADS-US 4/5 were 76.92% and 96.67% and for Tsukuba 3/4 – 64.1% and 98.33% respectively. The assumed FLR threshold value to differentiate between

  7. Modeling the Speech-Reception Threshold for Amplitude-Compressed Speech (United States)

    Festen, Joost M.; van Dijkhuizen, Janette N.

    For normal-hearing listeners reduction of modulations in speech transmission yields reduced intelligibility. Modulation transfer is even a good predictor for intelligibility in many listening conditions. For hearing-impaired listeners it is often argued that the limited dynamic range of the ear and the associated loudness recruitment needs to be compensated for by a compressive mapping of the level variations within speech (syllabic compression). However, because the results of numerous experiments on syllabic compression are generally negative, it is interesting to see whether the results for hearing-impaired listeners can be accounted for by a reduced transfer of modulations. Intelligibility scores for 16 normal-hearing listeners and 16 hearing-impaired listeners were obtained for speech after syllabic compression with as parameters the number of processing channels and the compression ratio. Simple modulation transfer accounts only partly for the variability in intelligibility scores. A much better result is obtained with a phase-locked transfer of modulations, using only output modulations in quarter octaves that are in-phase with modulations of the input signal. Both for normal-hearing listeners and for hearing-impaired listeners the data of various compression conditions can be equated in terms of the phase-locked modulation transfer.

  8. Development, simulation and test of transition radiation detector prototypes for the compressed baryonic matter experiment at the facility for antiproton and ion research

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, Cyrano S.H.


    The focus of this thesis is the development of a Transition Radiation Detector (TRD) for the Compressed Baryonic Matter (CBM) experiment at FAIR. The TRD sub-detector will contribute to the global particle identification and track reconstruction of charged particles. The technical design goal for the TRD is to identify 90% electrons with a maximum pion contamination of 1%. The TRD and Ring Image CHerenkov (RICH) detector should reach a common pion rejection of 10{sup 4}, in order to measure charmonium and low-mass vector mesons. The position resolution should be between 200 and 300 μm in the anode wire direction. The most demanding aspect of the CBM TRD design is the high interaction rate of up to 10{sup 7} Hz resulting in a charged particle rate of up to 100 kHz/cm{sup 2} in the central part of the detector planes at SIS300 conditions. It is crucial to find the optimal radiator detector combination with a minimum material budget to limit scattering and background due to conversions and at the same time reach a sufficient pion rejection and position resolution. In this thesis it is confirmed that a Multi-Wire Proportional Counter (MWPC) with a Xe/CO{sub 2} gas thickness of 12mm provides sufficient absorption probability for TR-photons in combination with self-supporting low density PE foam or micro-structured foil radiators. A continuous investigation aiming at an optimal wire and pad-plane geometry, as well as a minimization of the material budget between active gas and radiator has been presented in hard- and software. A minimum photon absorption cross-section of the entrance window was realized with a thermally stretched aluminized Kapton foil, glued to a G11 support grid support frame. This structure limits the mechanical deformation of the entire window to 1mm/mbar. All MWPC prototypes include two wire planes. A symmetric amplification region of 2 x (3, 3.5 or 4)mm is followed by a short drift region of 6, 5 or 4 mm. The drift region reduces the gain

  9. Temporal compressive imaging for video (United States)

    Zhou, Qun; Zhang, Linxia; Ke, Jun


    In many situations, imagers are required to have higher imaging speed, such as gunpowder blasting analysis and observing high-speed biology phenomena. However, measuring high-speed video is a challenge to camera design, especially, in infrared spectrum. In this paper, we reconstruct a high-frame-rate video from compressive video measurements using temporal compressive imaging (TCI) with a temporal compression ratio T=8. This means that, 8 unique high-speed temporal frames will be obtained from a single compressive frame using a reconstruction algorithm. Equivalently, the video frame rates is increased by 8 times. Two methods, two-step iterative shrinkage/threshold (TwIST) algorithm and the Gaussian mixture model (GMM) method, are used for reconstruction. To reduce reconstruction time and memory usage, each frame of size 256×256 is divided into patches of size 8×8. The influence of different coded mask to reconstruction is discussed. The reconstruction qualities using TwIST and GMM are also compared.

  10. Isentropic Compression of Argon and Krypton Using an MC1 Flux Compression Generator

    Energy Technology Data Exchange (ETDEWEB)

    Veeser, L.; Ekdahl, C.; Oona, H.; Rodriguez, P.; Schmitt, G.; Solem, J.; Younger, S.; Baker, S.; Hudson, C.; Lewis, W.; Marshall, B.; Turley, W.; Bykov, A.; Boriskov, G.; Dolotenko, M.; Egorov, N.; Kolokol' chikov, N.; Kozlov, M.; Kuropatkin, Y.; Volkov, A.


    LANL and VNIIEF are performing a set of joint experiments to explore the conductivity and possible metalization of argon and krypton compressed to up to five times normal solid density. The experiments use a magnetic field of several megagauss, generated by a Russian MC1 generator, to compress a metallic tube containing solidified argon or krypton. A probe in the center of the tube measures the electrical conductivity to the walls, and a 70-MeV betatron serves as an x-ray source for three radiographic measurements of the compression. Several of these experiments for argon compressed to around 4 to 5 times solid density indicate a conductivity in the range of 10 to 100 {Omega}{sup -1}cm{sup -1}, well below that of a metal. For krypton preliminary results show a conductivity of order 1000 or more, indicating likely metalization of the compressed sample.

  11. Recognizable or Not: Towards Image Semantic Quality Assessment for Compression (United States)

    Liu, Dong; Wang, Dandan; Li, Houqiang


    Traditionally, image compression was optimized for the pixel-wise fidelity or the perceptual quality of the compressed images given a bit-rate budget. But recently, compressed images are more and more utilized for automatic semantic analysis tasks such as recognition and retrieval. For these tasks, we argue that the optimization target of compression is no longer perceptual quality, but the utility of the compressed images in the given automatic semantic analysis task. Accordingly, we propose to evaluate the quality of the compressed images neither at pixel level nor at perceptual level, but at semantic level. In this paper, we make preliminary efforts towards image semantic quality assessment (ISQA), focusing on the task of optical character recognition (OCR) from compressed images. We propose a full-reference ISQA measure by comparing the features extracted from text regions of original and compressed images. We then propose to integrate the ISQA measure into an image compression scheme. Experimental results show that our proposed ISQA measure is much better than PSNR and SSIM in evaluating the semantic quality of compressed images; accordingly, adopting our ISQA measure to optimize compression for OCR leads to significant bit-rate saving compared to using PSNR or SSIM. Moreover, we perform subjective test about text recognition from compressed images, and observe that our ISQA measure has high consistency with subjective recognizability. Our work explores new dimensions in image quality assessment, and demonstrates promising direction to achieve higher compression ratio for specific semantic analysis tasks.

  12. Search for Supersymmetry with a Highly Compressed Mass Spectrum in the Single Soft Lepton Channel with the CMS Experiment at the LHC

    CERN Document Server

    Zarucki, Mateusz


    Models with compressed mass spectra target a very interesting region of the SUSY parameter space and are very well motivated by theoretical considerations, such as dark matter constraints and naturalness. The presented analysis focuses on signal events containing a single low-momentum lepton and moderate missing transverse energy. The search targets a simplified model in which the signal consists of stop (supersymmetric partner of the top quark) pair-production, followed by 4-body decays into a lepton-neutrino (quark-antiquark) pair, a b-quark and a neutralino, which is considered the lightest supersymmetric particle (LSP), and with a mass gap between the stop and the LSP that is smaller than the W-boson mass. The LSPs and the neutrino escape the detector, leading to a missing transverse energy signature. Compressed regions are challenging to study, as the visible decay products have low momentum and generally do not pass detector acceptance thresholds. This difficulty can be mitigated by requiring the presen...

  13. Continuous Catalyst-Free Esterification of Oleic Acid in Compressed Ethanol


    Ana Carolina de Araujo Abdala; Vitor Augusto dos Santos Garcia; Caroline Portilho Trentini; Lúcio Cardozo Filho; Edson Antonio da Silva; Camila da Silva


    The esterification of oleic acid in a continuous catalyst-free process using compressed ethanol was investigated in the present study. Experiments were performed in a tubular reactor and variables investigated were temperature, pressure, and oleic acid to ethanol molar ratio for different residence time. Results demonstrated that temperature, in the range of 473 K to 573 K, and pressure had a positive effect on fatty acid ethyl esters (FAEE) production. In the experimental range investigated,...

  14. Compression of space for low visibility probes

    Directory of Open Access Journals (Sweden)

    Sabine eBorn


    Full Text Available Stimuli briefly flashed just before a saccade are perceived closer to the saccade target, a phenomenon known as perisaccadic compression of space (Ross, Morrone, & Burr, 1997. More recently, we have demonstrated that brief probes are attracted towards a visual reference when followed by a mask, even in the absence of saccades (Zimmermann, Born, Fink, & Cavanagh, 2014. Here, we ask whether spatial compression depends on the transient disruptions of the visual input stream caused by either a mask or a saccade. Both of these degrade the probe visibility but we show that low probe visibility alone causes compression in the absence of any disruption. In a first experiment, we varied the regions of the screen covered by a transient mask, including areas where no stimulus was presented and a condition without masking. In all conditions, we adjusted probe contrast to make the probe equally hard to detect. Compression effects were found in all conditions. To obtain compression without a mask, the probe had to be presented at much lower contrasts than with masking. Comparing mislocalizations at different probe detection rates across masking, saccades and low contrast conditions without mask or saccade, Experiment 2 confirmed this observation and showed a strong influence of probe contrast on compression. Finally, in Experiment 3, we found that compression decreased as probe duration increased both for masks and saccades although here we did find some evidence that factors other than simply visibility as we measured it contribute to compression. Our experiments suggest that compression reflects how the visual system localizes weak targets in the context of highly visible stimuli.

  15. Compression of Space for Low Visibility Probes. (United States)

    Born, Sabine; Krüger, Hannah M; Zimmermann, Eckart; Cavanagh, Patrick


    Stimuli briefly flashed just before a saccade are perceived closer to the saccade target, a phenomenon known as perisaccadic compression of space (Ross et al., 1997). More recently, we have demonstrated that brief probes are attracted towards a visual reference when followed by a mask, even in the absence of saccades (Zimmermann et al., 2014a). Here, we ask whether spatial compression depends on the transient disruptions of the visual input stream caused by either a mask or a saccade. Both of these degrade the probe visibility but we show that low probe visibility alone causes compression in the absence of any disruption. In a first experiment, we varied the regions of the screen covered by a transient mask, including areas where no stimulus was presented and a condition without masking. In all conditions, we adjusted probe contrast to make the probe equally hard to detect. Compression effects were found in all conditions. To obtain compression without a mask, the probe had to be presented at much lower contrasts than with masking. Comparing mislocalizations at different probe detection rates across masking, saccades and low contrast conditions without mask or saccade, Experiment 2 confirmed this observation and showed a strong influence of probe contrast on compression. Finally, in Experiment 3, we found that compression decreased as probe duration increased both for masks and saccades although here we did find some evidence that factors other than simply visibility as we measured it contribute to compression. Our experiments suggest that compression reflects how the visual system localizes weak targets in the context of highly visible stimuli.

  16. Comparison of various Monte Carlo for response-function studies of a plastic β-detector used in precise &+circ;-branching-ratios experiments (United States)

    Golovko, V. V.; Iacob, V. E.; Hardy, J. C.; Melconian, D.


    In order to test the Conserved Vector Current hypothesis of the Standard Model, precise determination of the branching ratios for superallowed β transitions is needed [1]. For this purpose, we are using an experimental setup in which one of the main components is a plastic scintillator, and a knowledge of the Response Function (RF) of this scintillator to β particles as a function of energy is important. In previous works we compared a Monte Carlo (MC) simulated RF with experiment for β-particles from standard β-sources as well as from ``on-line" measurements [2]. However, we found that various MC programs predict slightly different results. To investigate this, we created the simplified configurations for the MC programs and studied the RF of a plastic disk to monoenergetic positrons with different energies from a point-like source in the air. We concentrated on an intercomparison between the MC results from physics models of various codes: Geant4, Penelope and EGSsrc. For energies between 0.1 MeV to 20 MeV, we see 2% relative differences in the efficiency calculations from different programs. [1] J.C. Hardy and I.S. Towner. PRC, 71(5):055501, 2005. [2] V.V. Golovko et. al. BAPS 59, no 6, p. DH4 83, 2006; BAPS 52, no 3, p. C16 53, 2007.

  17. Exploring compression techniques for ROOT IO (United States)

    Zhang, Z.; Bockelman, B.


    ROOT provides an flexible format used throughout the HEP community. The number of use cases - from an archival data format to end-stage analysis - has required a number of tradeoffs to be exposed to the user. For example, a high “compression level” in the traditional DEFLATE algorithm will result in a smaller file (saving disk space) at the cost of slower decompression (costing CPU time when read). At the scale of the LHC experiment, poor design choices can result in terabytes of wasted space or wasted CPU time. We explore and attempt to quantify some of these tradeoffs. Specifically, we explore: the use of alternate compressing algorithms to optimize for read performance; an alternate method of compressing individual events to allow efficient random access; and a new approach to whole-file compression. Quantitative results are given, as well as guidance on how to make compression decisions for different use cases.

  18. Deformation and material dynamics under ultrafast compression (United States)

    Armstrong, Michael


    For decades, dynamic compression experiments have been used to determine the equation of state of materials, and examine material deformation at high strain rates. Within the last 15 years, ultrafast optical methods have been used to characterize deformation at strain rates in excess of 10^10/s. Recently such experiments have found broad consistency with empirical laws formulated at orders of magnitude lower strain rates, but have also discovered intriguing phenomena on short time scales, such as elastic stress orders of magnitude beyond the yield strength. These experiments explore the ultimate limits of material relaxation via deformation, and the results suggest exciting possibilities for practical and scientific application of ultrafast compression, including nonequilibrium material synthesis, determination of the equation of state with a small scale experiment, and the investigation of ultrahigh density with a table top laser. Here we will talk about our experiments on the ultrafast deformation of metals, including aluminum and iron, and the ultrafast compression of deuterium.

  19. Huffman-based code compression techniques for embedded processors

    KAUST Repository

    Bonny, Mohamed Talal


    The size of embedded software is increasing at a rapid pace. It is often challenging and time consuming to fit an amount of required software functionality within a given hardware resource budget. Code compression is a means to alleviate the problem by providing substantial savings in terms of code size. In this article we introduce a novel and efficient hardware-supported compression technique that is based on Huffman Coding. Our technique reduces the size of the generated decoding table, which takes a large portion of the memory. It combines our previous techniques, Instruction Splitting Technique and Instruction Re-encoding Technique into new one called Combined Compression Technique to improve the final compression ratio by taking advantage of both previous techniques. The instruction Splitting Technique is instruction set architecture (ISA)-independent. It splits the instructions into portions of varying size (called patterns) before Huffman coding is applied. This technique improves the final compression ratio by more than 20% compared to other known schemes based on Huffman Coding. The average compression ratios achieved using this technique are 48% and 50% for ARM and MIPS, respectively. The Instruction Re-encoding Technique is ISA-dependent. It investigates the benefits of reencoding unused bits (we call them reencodable bits) in the instruction format for a specific application to improve the compression ratio. Reencoding those bits can reduce the size of decoding tables by up to 40%. Using this technique, we improve the final compression ratios in comparison to the first technique to 46% and 45% for ARM and MIPS, respectively (including all overhead that incurs). The Combined Compression Technique improves the compression ratio to 45% and 42% for ARM and MIPS, respectively. In our compression technique, we have conducted evaluations using a representative set of applications and we have applied each technique to two major embedded processor architectures

  20. Celiac Artery Compression Syndrome

    Directory of Open Access Journals (Sweden)

    Mohammed Muqeetadnan


    Full Text Available Celiac artery compression syndrome is a rare disorder characterized by episodic abdominal pain and weight loss. It is the result of external compression of celiac artery by the median arcuate ligament. We present a case of celiac artery compression syndrome in a 57-year-old male with severe postprandial abdominal pain and 30-pound weight loss. The patient eventually responded well to surgical division of the median arcuate ligament by laparoscopy.

  1. Compression evaluation of surgery video recordings retaining diagnostic credibility (compression evaluation of surgery video) (United States)

    Duplaga, M.; Leszczuk, M. I.; Papir, Z.; Przelaskowski, A.


    Wider dissemination of medical digital video libraries is affected by two correlated factors, resource effective content compression that directly influences its diagnostic credibility. It has been proved that it is possible to meet these contradictory requirements halfway for long-lasting and low motion surgery recordings at compression ratios close to 100 (bronchoscopic procedures were a case study investigated). As the main supporting assumption, it has been accepted that the content can be compressed as far as clinicians are not able to sense a loss of video diagnostic fidelity (a visually lossless compression). Different market codecs were inspected by means of the combined subjective and objective tests toward their usability in medical video libraries. Subjective tests involved a panel of clinicians who had to classify compressed bronchoscopic video content according to its quality under the bubble sort algorithm. For objective tests, two metrics (hybrid vector measure and hosaka Plots) were calculated frame by frame and averaged over a whole sequence.

  2. Compressed Gas Safety for Experimental Fusion Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader


    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  3. Comparison of different forms of compression using wearable digital hearing aids. (United States)

    Stone, M A; Moore, B C; Alcántara, J I; Glasberg, B R


    Four different compression algorithms were implemented in wearable digital hearing aids: (1) The slow-acting dual-front-end automatic gain control (AGC) system [B. C. J. Moore, B. R. Glasberg, and M. A. Stone, Br. J. Audiol. 25, 171-182 (1991)], combined with appropriate frequency response equalization, with a compression threshold of 63 dB sound pressure level (SPL) and with a compression ratio of 30 (DUAL-HI); (2) The dual-front-end AGC system combined with appropriate frequency response equalization, with a compression threshold of 55 dB SPL and with a compression ratio of 3 (DUAL-LO). This was intended to give some impression of the levels of sounds in the environment; (3) Fast-acting full dynamic range compression in four channels (FULL-4). The compression was designed to minimize envelope distortion due to overshoots and undershoots; (4) A combination of (2) and (3) above, where each applied less compression than when used alone (DUAL-4). Initial fitting was partly based on the concept of giving a flat specific-loudness pattern for a 65-dB SPL speech-shaped noise input, and this was followed by fine tuning using an adaptive procedure with speech stimuli. Eight subjects with moderate to severe cochlear hearing loss were tested in a counter-balanced design. Subjects had at least 2 weeks experience with each system in everyday life before evaluation using the Abbreviated Profile of Hearing Aid Benefit (APHAB) test and measures of speech intelligibility in quiet (AB word lists at 50 and 80 dB SPL) and noise (adoptive sentence lists in speech-shaped noise, or that same noise amplitude modulated with the envelope of speech from a single talker). The APHAB scores did not indicate clear differences between the four systems. Scores for the AB words in quiet were high for all four systems at both 50 and 80 dB SPL. The speech-to-noise ratios required for 50% intelligibility were low (indicating good performance) and similar for all the systems, but there was a slight

  4. Wavelet image compression

    CERN Document Server

    Pearlman, William A


    This book explains the stages necessary to create a wavelet compression system for images and describes state-of-the-art systems used in image compression standards and current research. It starts with a high level discussion of the properties of the wavelet transform, especially the decomposition into multi-resolution subbands. It continues with an exposition of the null-zone, uniform quantization used in most subband coding systems and the optimal allocation of bitrate to the different subbands. Then the image compression systems of the FBI Fingerprint Compression Standard and the JPEG2000 S

  5. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J


    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  6. Fatigue Properties of Plain Concrete under Triaxial Tension-Compression-Compression Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Dongfu Zhao


    Full Text Available Fatigue tests were performed on plain concrete under triaxial tension-compression-compression (T-C-C cyclic loading with constant and variable amplitude using a large multiaxial machine. Experimental results show that, under constant amplitude fatigue loads, the development of residual strain in the fatigue loading direction depends mostly on the lateral compressive stress ratio and is nearly independent of stress level. Under variable amplitude fatigue loads, the fatigue residual strain is related to the relative fatigue cycle and lateral compressive stress ratio but has little relationship with the loading process. To model this system, the relative residual strain was defined as the damage variant. Damage evolutions for plain concrete were established. In addition, fatigue damage analysis and predictions of fatigue remaining life were conducted. This work provides a reference for multistage fatigue testing and fatigue damage evaluation of plain concrete under multiaxial loads.

  7. Mechanical properties of Concrete with SAP. Part I: Development of compressive strength

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede


    compressive strength. It shows that results agree well with a model based on the following: 1. Concrete compressive strength is proportional to compressive strength of the paste phase 2. Paste strength depends on gel space ratio, as suggested by Powers 3. The influence of air voids created by SAP...... on compressive strength can be accounted for in the same way as when taking the air content into account in Bolomeys formula. The implication of the model is that at low w/c ratios (w/c compressive strength at later ages (from 3 days after casting and onwards...... the compressive strength....

  8. Aspects in the Synthesis of a Variable Compression Ratio Mechanism (United States)

    Mănescu, Bogdan; Dragomir, Ionuţ; Stănescu, Nicolae–Doru; Pandrea, Nicolae; Clenci, Adrian; Popa, Dinel


    The mechanism considered in this paper is a VCR one consisting in a crank, a shaft, an intermediate triangular element and a control lever and it was described in previous papers of the authors. The authors start from a classical crank-shaft mechanism for which the extreme positions are known. The first stage of the synthesis consists in determination of the constraint function which has to be fulfilled by the new mechanism so that the extreme position remain unchanged. The new step consists in imposing new conditions for the mechanism so that some new positions have to be obtained. The main hypothesis is that the positions of different characteristic points of the mechanism may be written as continuous functions of the certain input data. Due to aspect, the synthesis of the mechanism implies continuous variations of the output data and, consequently, there exists at least one solution for the synthesis process. In each case the authors determine the extreme positions of the piston. These extreme positions are also continuous functions of the input data. Two main approaches are discussed in the paper. One approach consists in the exact determination of the solution using a numerical procedure. The second one is an approximate one and consists in the determination of an approximate solution of the synthesis and verifying the deviation of this solution. For the new mechanism obtained by synthesis the authors determined the reduced velocities and accelerations of different characteristic elements. Some aspects of the wear are discussed with the aid of the reduced relative velocities.

  9. Visual feature discrimination versus compression ratio for polygonal shape descriptors (United States)

    Heuer, Joerg; Sanahuja, Francesc; Kaup, Andre


    In the last decade several methods for low level indexing of visual features appeared. Most often these were evaluated with respect to their discrimination power using measures like precision and recall. Accordingly, the targeted application was indexing of visual data within databases. During the standardization process of MPEG-7 the view on indexing of visual data changed, taking also communication aspects into account where coding efficiency is important. Even if the descriptors used for indexing are small compared to the size of images, it is recognized that there can be several descriptors linked to an image, characterizing different features and regions. Beside the importance of a small memory footprint for the transmission of the descriptor and the memory footprint in a database, eventually the search and filtering can be sped up by reducing the dimensionality of the descriptor if the metric of the matching can be adjusted. Based on a polygon shape descriptor presented for MPEG-7 this paper compares the discrimination power versus memory consumption of the descriptor. Different methods based on quantization are presented and their effect on the retrieval performance are measured. Finally an optimized computation of the descriptor is presented.

  10. Variable compression ratio device for internal combustion engine (United States)

    Maloney, Ronald P.; Faletti, James J.


    An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.

  11. Breast compression in mammography: pressure distribution patterns

    Energy Technology Data Exchange (ETDEWEB)

    Dustler, Magnus; Froejd, Patrik; Mattsson, Soeren; Tingberg, Anders; Foernvik, Daniel [Medical Radiation Physics, Lund Univ., Skaane Univ. Hospital, Malmoe (Sweden)], E-mail:; Andersson, Ingvar; Zackrisson, Sophia [Diagnostic Centre of Imaging and Functional Medicine, Lund Univ., Skaane Univ. Hospital, Malmoe (Sweden); Brorson, Haakan [Plastic and Reconstructive Surgery, Dept. of Clinical Sciences Malmoe, Lund Univ., Skaane Univ. Hospital, Malmoe (Sweden)


    Background Breast compression is important in mammography in order to improve image quality, better separate tissue components, and reduce absorbed dose to the breast. In this study we use a method to measure and visualize the distribution of pressure over a compressed breast in mammography. Purpose To measure and describe the pressure distribution over the breast as a result of applied breast compression in mammography. Material and Methods One hundred and three women aged 40.7-74.3 years (median, 48.9 years) invited for mammographic screening consented to take part in this study. They were subjected to two additional breast compressions of the left breast (standard force and approximately 50% reduction). Pressure images of the compressed breast were obtained using force sensing resistor (FSR) sensors placed underneath the compression plate. Subjects rated their experience of pain on a visual analogue scale (VAS). Results Four pressure patterns were identified, fitting 81 of the 103 breasts, which were grouped accordingly. The remaining 22 breasts were found to correspond to a combination of any two patterns. Two groups (43 breasts) showed pressure mainly over the juxtathoracic part of the breast, had significantly greater breast thickness (P = 0.003) and had a lower mean pressure over dense tissue (P < 0.0001) than those with more evenly distributed pressure. Reducing compression force increased average breast thickness by 1.8 mm (P < 0.0001). Conclusion The distribution of pressure differed greatly between breasts. In a large proportion of breasts the compression plate did not provide optimal compression of the breast, the compression force being absorbed in juxtathoracic structures.

  12. Optimization of Error-Bounded Lossy Compression for Hard-to-Compress HPC Data

    Energy Technology Data Exchange (ETDEWEB)

    Di, Sheng; Cappello, Franck


    Since today’s scientific applications are producing vast amounts of data, compressing them before storage/transmission is critical. Results of existing compressors show two types of HPC data sets: highly compressible and hard to compress. In this work, we carefully design and optimize the error-bounded lossy compression for hard-tocompress scientific data. We propose an optimized algorithm that can adaptively partition the HPC data into best-fit consecutive segments each having mutually close data values, such that the compression condition can be optimized. Another significant contribution is the optimization of shifting offset such that the XOR-leading-zero length between two consecutive unpredictable data points can be maximized. We finally devise an adaptive method to select the best-fit compressor at runtime for maximizing the compression factor. We evaluate our solution using 13 benchmarks based on real-world scientific problems, and we compare it with 9 other state-of-the-art compressors. Experiments show that our compressor can always guarantee the compression errors within the user-specified error bounds. Most importantly, our optimization can improve the compression factor effectively, by up to 49% for hard-tocompress data sets with similar compression/decompression time cost.

  13. Shock compression of liquid hydrazine

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, B.O. [Los Alamos National Lab., NM (United States); Chavez, D.J. [Rockwell White Sands Test Facility, Las Cruces, NM (United States)


    Liquid hydrazine (N{sub 2}H{sub 4}) is a propellant used by the Air Force and NASA for aerospace propulsion and power systems. Because the propellant modules that contain the hydrazine can be subject to debris impacts during their use, the shock states that can occur in the hydrazine need to be characterized to safely predict its response. Several shock compression experiments have been conducted in an attempt to investigate the detonability of liquid hydrazine; however, the experiments results disagree. Therefore, in this study, we reproduced each experiment numerically to evaluate in detail the shock wave profiles generated in the liquid hydrazine. This paper presents the results of each numerical simulation and compares the results to those obtained in experiment. We also present the methodology of our approach, which includes chemical kinetic experiments, chemical equilibrium calculations, and characterization of the equation of state of liquid hydrazine.

  14. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.


    We introduce a new compression scheme for labeled trees based on top trees. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...... navigational queries directly on the compressed representation. We show that the new compression scheme achieves close to optimal worst-case compression, can compress exponentially better than DAG compression, is never much worse than DAG compression, and supports navigational queries in logarithmic time....

  15. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.


    We introduce a new compression scheme for labeled trees based on top trees [3]. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...... navigational queries directly on the compressed representation. We show that the new compression scheme achieves close to optimal worst-case compression, can compress exponentially better than DAG compression, is never much worse than DAG compression, and supports navigational queries in logarithmic time....

  16. Mechanical characterization of diesel soot nanoparticles: in situ compression in a transmission electron microscope and simulations (United States)

    Jenei, Istvan Zoltan; Dassenoy, Fabrice; Epicier, Thierry; Khajeh, Arash; Martini, Ashlie; Uy, Dairene; Ghaednia, Hamed; Gangopadhyay, Arup


    Incomplete fuel burning inside an internal combustion engine results in the creation of soot in the form of nanoparticles. Some of these soot nanoparticles (SNP) become adsorbed into the lubricating oil film present on the cylinder walls, which adversely affects the tribological performance of the lubricant. In order to better understand the mechanisms underlying the wear caused by SNPs, it is important to understand the behavior of SNPs and to characterize potential changes in their mechanical properties (e.g. hardness) caused by (or during) mechanical stress. In this study, the behavior of individual SNPs originating from diesel engines was studied under compression. The experiments were performed in a transmission electron microscope using a nanoindentation device. The nanoparticles exhibited elasto-plastic behavior in response to consecutive compression cycles. From the experimental data, the Young’s modulus and hardness of the SNPs were calculated. The Young’s modulus and hardness of the nanoparticles increased with the number of compression cycles. Using an electron energy loss spectroscopy technique, it was shown that the sp2/sp3 ratio within the compressed nanoparticle decreases, which is suggested to be the cause of the increase in elasticity and hardness. In order to corroborate the experimental findings, molecular dynamics simulations of a model SNP were performed. The SNP model was constructed using carbon and hydrogen atoms with morphology and composition comparable to those observed in the experiment. The model SNP was subjected to repeated compressions between two virtual rigid walls. During the simulation, the nanoparticle exhibited elasto-plastic behavior like that in the experiments. The results of the simulations confirm that the increase in the elastic modulus and hardness is associated with a decrease in the sp2/sp3 ratio.

  17. The influence of image compression on target acquisition (United States)

    Hadar, O.; Goldberg, E.; Topchik, E.


    With the increased use of multimedia technologies, image compression has become increasingly popular. Compression decreases the high demands for storage capacity and transmission bandwidth. However, when compressing an image, some part of the information is lost, since the compression smoothes high frequencies thereby distorting small details. This issue is crucial, especially in military, spying and medical systems. When planning these kinds of systems, the image compression quality must be considered as well as how it affects the mission performance carried out by the user. Our goal is to examine the behavior of the human eye during image scanning and try to quantify the effect of image compression on observer tasks such as target acquisition. For this task, we used the standard JPEG2000 in order to compress the images at different compression ratios ranging from 10% (the highest) to 100% (the original image). It was found that animation images were more influenced by compression than thermal images. In general, as the compression ratio increased the ability to acquire the targets decreased.

  18. Learning random networks for compression of still and moving images (United States)

    Gelenbe, Erol; Sungur, Mert; Cramer, Christopher


    Image compression for both still and moving images is an extremely important area of investigation, with numerous applications to videoconferencing, interactive education, home entertainment, and potential applications to earth observations, medical imaging, digital libraries, and many other areas. We describe work on a neural network methodology to compress/decompress still and moving images. We use the 'point-process' type neural network model which is closer to biophysical reality than standard models, and yet is mathematically much more tractable. We currently achieve compression ratios of the order of 120:1 for moving grey-level images, based on a combination of motion detection and compression. The observed signal-to-noise ratio varies from values above 25 to more than 35. The method is computationally fast so that compression and decompression can be carried out in real-time. It uses the adaptive capabilities of a set of neural networks so as to select varying compression ratios in real-time as a function of quality achieved. It also uses a motion detector which will avoid retransmitting portions of the image which have varied little from the previous frame. Further improvements can be achieved by using on-line learning during compression, and by appropriate compensation of nonlinearities in the compression/decompression scheme. We expect to go well beyond the 250:1 compression level for color images with good quality levels.

  19. Reaction Dynamics of O((3)P) + Propyne: I. Primary Products, Branching Ratios, and Role of Intersystem Crossing from Crossed Molecular Beam Experiments. (United States)

    Vanuzzo, Gianmarco; Balucani, Nadia; Leonori, Francesca; Stranges, Domenico; Nevrly, Vaclav; Falcinelli, Stefano; Bergeat, Astrid; Casavecchia, Piergiorgio; Cavallotti, Carlo


    We performed synergic experimental/theoretical studies on the mechanism of the O((3)P) + propyne reaction by combining crossed molecular beams experiments with mass-spectrometric detection and time-of-flight analysis at 9.2 kcal/mol collision energy (Ec) with ab initio electronic structure calculations at a high level of theory of the relevant triplet and singlet potential energy surfaces (PESs) and statistical calculations of branching ratios (BRs) taking into account intersystem crossing (ISC). In this paper (I) we report the results of the experimental investigation, while the accompanying paper (II) shows results of the theoretical investigation with comparison to experimental results. By exploiting soft electron ionization detection to suppress/mitigate the effects of the dissociative ionization of reactants, products, and background gases, product angular and velocity distributions at different charge-to-mass ratios were measured. From the laboratory data angular and translational energy distributions in the center-of-mass system were obtained for the five competing most important product channels, and product BRs were derived. The reactive interaction of O((3)P) with propyne under single collision conditions is mainly leading to the rupture of the three-carbon atom chain, with production of the radical products methylketenyl + atomic hydrogen (BR = 0.04), methyl + ketenyl (BR = 0.10), and vinyl + formyl (BR = 0.11) and the molecular products ethylidene/ethylene + carbon monoxide (BR = 0.74) and propandienal + molecular hydrogen (BR = 0.01). Because some of the products can only be formed via ISC from the entrance triplet to the low-lying singlet PES, we infer from their BRs an amount of ISC larger than 80%. This value is dramatically large when compared to the negligible ISC reported for the O((3)P) reaction with the simplest alkyne, acetylene. At the same time, it is much larger than that (∼20%) recently observed in the related reaction of the three

  20. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao


    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  1. Steelmaking slag as aggregate for mortars: effects of particle dimension on compression strength. (United States)

    Faraone, Nicola; Tonello, Gabriele; Furlani, Erika; Maschio, Stefano


    The present paper reports on the results of some experiments obtained from the production, hydration and subsequent measurement of the mechanical properties of several mortars prepared using a commercial CII/B-LL Portland cement, steelmaking slag, superplasticizer and water. Relevant parameters for the mortar preparation are the weight ratios of cement/water, the weight ratio superplasticizer/cement and between fine and granulated coarse particles. It has been demonstrated that optimisation of such parameters leads to the production of materials with mechanical properties suitable for civil engineering applications. Moreover, materials with improved compressive strength can be prepared by the use of slag containing extensive amounts of large particles.

  2. Compression of digital hologram for three-dimensional object using Wavelet-Bandelets transform. (United States)

    Bang, Le Thanh; Ali, Zulfiqar; Quang, Pham Duc; Park, Jae-Hyeung; Kim, Nam


    In the transformation based compression algorithms of digital hologram for three-dimensional object, the balance between compression ratio and normalized root mean square (NRMS) error is always the core of algorithm development. The Wavelet transform method is efficient to achieve high compression ratio but NRMS error is also high. In order to solve this issue, we propose a hologram compression method using Wavelet-Bandelets transform. Our simulation and experimental results show that the Wavelet-Bandelets method has a higher compression ratio than Wavelet methods and all the other methods investigated in this paper, while it still maintains low NRMS error.

  3. Effect of superplasticizer on the Compressive strength of concrete ...

    African Journals Online (AJOL)

    Sixty-four (64) concrete cubes were cast and cured for 7, 14, 21 and 28 days respectively. At the end of each hydration period, the cubes were crushed and their compressive strength was determined. The compressive strength of 0- 3.5% level of superplasticizer at water cement ratio of 0.4 – 0.55 ranged from 11.38 ...

  4. Speeds of sound and isothermal compressibility of ternary liquid ...

    Indian Academy of Sciences (India)

    Isentropic compressibility has been widely used to study the molecular interactions through its excess value. On the other hand, it can also be used to deduce other useful thermodynamic properties such as isothermal compressibility (βT ), heat capacity ratio (γ), internal pressure (pi) and cohesive energy density (CED).

  5. effect of curing methods on the compressive strength of concrete

    African Journals Online (AJOL)

    Abstract. Different curing methods are usually adopted to evaluate the compressive strength of concrete. This study reports the laboratory results of the effect of curing meth- ods on the compressive strength as well as the density of concrete. A total of 72 cubes of mix ratio 1:2:4 were investigated after subjecting them to ...

  6. Significance of the shape of the assumed concrete compression ...

    African Journals Online (AJOL)

    In this study, the effect of assuming a parabolic-rectangular or rectangular shape of the concrete compression block on the analysis and design of reinforced concrete beams has been investigated. Analytical expressions are derived for the steel reinforcement ratio, the concrete compressive force coefficient and the design ...

  7. Trace compression mechanisms for the efficient simulation of CMP


    Rivas Barragan, Daniel


    In this project we present, first, a new mechanism to find patterns in memory accesses and then compress them achieving compress ratios higher than 200x without compromising decompression performance. We also present a new methodology to drive simulations reproducing with 100% accuracy an execution.

  8. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths

    Directory of Open Access Journals (Sweden)

    Hongying Dong


    Full Text Available In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete’s compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

  9. The Fire Resistance Performance of Recycled Aggregate Concrete Columns with Different Concrete Compressive Strengths. (United States)

    Dong, Hongying; Cao, Wanlin; Bian, Jianhui; Zhang, Jianwei


    In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete's compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

  10. Self-assembled polyelectrolyte complexes films as efficient compression coating layers for controlled-releasing tablets. (United States)

    Li, Wenyan; Huo, Mengmeng; Sen Chaudhuri, Arka; Yang, Chen; Cao, Dazhong; Wu, Zhenghong; Qi, Xiaole


    Currently, polysaccharide-based hydrogels are widely studied macromolecular networks to modify drug dissolution from controlled-releasing matrix tablets. Among them, polyelectrolyte complexes (PEC) films consisted of chitosan (CS) and sodium alginate (SA) could be obtained via spontaneously assembling under physiological gastrointestinal environment. Here, we utilized these self-assembled PEC films as an efficient coating materials to develop controlled-released matrix tablets through compression coating process, with paracetamol (APAP) as model drug. The constitutive and morphology characteristic studies on these PEC films illustrated that the mixture of CS and SA with the weight ratio of 1:1 would be an promising outer layer for compression-coating tablets. In addition, the in vitro drug releasing behavior experiments demonstrated that the optimized compression coating tablets displayed satisfied zero-order drug releasing profits. Furthermore, the in vivo pharmacokinetic studies of these APAP loaded compression-coated tablets in New Zealand rabbits gave that the T max (12.32 ± 1.05 h) was significantly prolonged (p tablets (Jinfuning ® ) after oral administration. These studies suggest that the compression-coated tablets with self-assembled PEC film as coating outer layer may be a promising strategy for peroral controlled release delivery system of water soluble drugs.

  11. On the compressibility effects in mixing layers

    Directory of Open Access Journals (Sweden)

    Khlifi Hechmi


    Full Text Available Previous studies of compressible flows carried out in the past few years have shown that the pressure-strain is the main indicator of the structural compressibility effects. Undoubtedly, this terms plays a key role toward strongly changing magnitude of the turbulent Reynolds stress anisotropy. On the other hand, the incompressible models of the pressure-strain correlation have not correctly predicted compressible turbulence at high speed shear flow. Consequently, a correction of these models is needed for precise prediction of compressibility effects. In the present work, a compressibility correction of the widely used incompressible Launder Reece and Rodi model making their standard coefficients dependent on the turbulent and convective Mach numbers is proposed. The ability of the model to predict the developed mixing layers in different cases from experiments of Goebel and Dutton is examined. The predicted results with the proposed model are compared with DNS and experimental data and those obtained by the compressible model of Adumitroiae et al. and the original LRR model. The results show that the essential compressibility effects on mixing layers are well captured by the proposed model.

  12. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz


    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  13. Compression fractures of the back (United States)

    ... most effective way to prevent compression or insufficiency fractures. Getting regular load-bearing exercise (such as walking) can help you avoid bone loss. Alternative Names Vertebral compression fractures Images Compression fracture References Cosman F, de Beur ...

  14. Digital Data Registration and Differencing Compression System (United States)

    Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)


    A process for X-ray registration and differencing results in more efficient compression. Differencing of registered modeled subject image with a modeled reference image forms a differenced image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three-dimensional model, which three-dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either a remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic X-ray digital images.


    Directory of Open Access Journals (Sweden)

    A. Sreenivasa Murthy


    Full Text Available With the spurt in the amount of data (Image, video, audio, speech, & text available on the net, there is a huge demand for memory & bandwidth savings. One has to achieve this, by maintaining the quality & fidelity of the data acceptable to the end user. Wavelet transform is an important and practical tool for data compression. Set partitioning in hierarchal trees (SPIHT is a widely used compression algorithm for wavelet transformed images. Among all wavelet transform and zero-tree quantization based image compression algorithms SPIHT has become the benchmark state-of-the-art algorithm because it is simple to implement & yields good results. In this paper we present a comparative study of various wavelet families for image compression with SPIHT algorithm. We have conducted experiments with Daubechies, Coiflet, Symlet, Bi-orthogonal, Reverse Bi-orthogonal and Demeyer wavelet types. The resulting image quality is measured objectively, using peak signal-to-noise ratio (PSNR, and subjectively, using perceived image quality (human visual perception, HVP for short. The resulting reduction in the image size is quantified by compression ratio (CR.

  16. Preliminary experience with balloon kyphoplasty for the treatment of painful osteoporotic compression fractures; Ballon-Kyphoplastie zur Behandlung schmerzhafter osteoporotischer Wirbelkoerperfrakturen - Technik und erste Ergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, K.; Urbach. H. [Bonn Univ. (Germany). Radiologische Klinik; Stoffel, M; Ringel, F.; Rao, G.; Roesseler, L.; Meyer, B. [Bonn Univ. (Germany). Neurochirurgische Klinik


    Purpose: To describe the technique and to evaluate the safety and efficacy of percutaneous kyphoplasty as a new treatment in patients with painful osteoporotic vertebral body compression fractures of the lumbar and thoracic spine. Materials and Methods: In this prospective study balloon kyphoplasty was performed in 34 consecutive patients (25 females, 9 males; mean age 75 years) with 56 painful osteoporotic vertebral fractures (from T6-L5), of which 22 showed a posterior wall involvement and -retropulsion on preoperative CT. The median duration of symptoms was 9.7 weeks. Symtomatic levels were identified by correlating the clinical presentation with MRI, conventional radiographs and CT including bone-densitometry. Pre- and postoperative examinations (radiographs, CT) as well as Karnofsky and visual analogy pain scores (Visual Analog Scale=VAS) were documented and compared to evaluate the success of the procedure. Results: The median Karnofsky score improved from 40% (pre-) to 70% (post-treatment). Simultaneously, median pain scores (VAS) decreased from 64 (pre-) to 21 (post-treatment) (p<0.001). Perioperative morbidity included one transient L2 nerve root bruise. The procedure led to a partial restoration of the height of the vertebral body by reducing the median sagittal index from 11.5 to 5 . In none of our patients, the procedure led to worsening of the fracture-induced narrowing of the spinal canal. Clinically asymptomatic cement leakage occurred in 10 cases, with leakage 4 times into the paraspinal space, 3 times into the spinal canal and 3 times into the disc space. Conclusion: Balloon kyphoplasty is a safe and effective procedure. It is applicable even in fractures with posterior wall involvement since it is a low-pressure technique in contrast to vertebroplasty and restores vertebral body height partially. It results in immediate clinical improvement of mobility and pain relief. While short-term results are excellent, follow-up data have to be awaited for

  17. Using Mole Ratios of Electrolytic Products of Water for Analysis of Household Vinegar: An Experiment for the Undergraduate Physical Chemistry Laboratory (United States)

    Dabke, Rajeev B.; Gebeyehu, Zewdu


    A simple 3-h physical chemistry undergraduate experiment for the quantitative analysis of acetic acid in household vinegar is presented. The laboratory experiment combines titration concept with electrolysis and an application of the gas laws. A vinegar sample was placed in the cathode compartment of the electrolysis cell. Electrolysis of water…

  18. Compressed Video Segmentation

    National Research Council Canada - National Science Library

    Kobla, Vikrant; Doermann, David S; Rosenfeld, Azriel


    ... changes in content and camera motion. The analysis is performed in the compressed domain using available macroblock and motion vector information, and if necessary, discrete cosine transform (DCT) information...

  19. Compressive light field displays. (United States)

    Wetzstein, Gordon; Lanman, Douglas; Hirsch, Matthew; Heidrich, Wolfgang; Raskar, Ramesh


    Light fields are the multiview extension of stereo image pairs: a collection of images showing a 3D scene from slightly different perspectives. Depicting high-resolution light fields usually requires an excessively large display bandwidth; compressive light field displays are enabled by the codesign of optical elements and computational-processing algorithms. Rather than pursuing a direct "optical" solution (for example, adding one more pixel to support the emission of one additional light ray), compressive displays aim to create flexible optical systems that can synthesize a compressed target light field. In effect, each pixel emits a superposition of light rays. Through compression and tailored optical designs, fewer display pixels are necessary to emit a given light field than a direct optical solution would require.

  20. Reference Based Genome Compression

    CERN Document Server

    Chern, Bobbie; Manolakos, Alexandros; No, Albert; Venkat, Kartik; Weissman, Tsachy


    DNA sequencing technology has advanced to a point where storage is becoming the central bottleneck in the acquisition and mining of more data. Large amounts of data are vital for genomics research, and generic compression tools, while viable, cannot offer the same savings as approaches tuned to inherent biological properties. We propose an algorithm to compress a target genome given a known reference genome. The proposed algorithm first generates a mapping from the reference to the target genome, and then compresses this mapping with an entropy coder. As an illustration of the performance: applying our algorithm to James Watson's genome with hg18 as a reference, we are able to reduce the 2991 megabyte (MB) genome down to 6.99 MB, while Gzip compresses it to 834.8 MB.

  1. Compressive Optical Image Encryption (United States)

    Li, Jun; Sheng Li, Jiao; Yang Pan, Yang; Li, Rong


    An optical image encryption technique based on compressive sensing using fully optical means has been proposed. An object image is first encrypted to a white-sense stationary noise pattern using a double random phase encoding (DRPE) method in a Mach-Zehnder interferometer. Then, the encrypted image is highly compressed to a signal using single-pixel compressive holographic imaging in the optical domain. At the receiving terminal, the encrypted image is reconstructed well via compressive sensing theory, and the original image can be decrypted with three reconstructed holograms and the correct keys. The numerical simulations show that the method is effective and suitable for optical image security transmission in future all-optical networks because of the ability of completely optical implementation and substantially smaller hologram data volume. PMID:25992946

  2. A Survey on Data Compression Methods for Biological Sequences

    Directory of Open Access Journals (Sweden)

    Morteza Hosseini


    Full Text Available The ever increasing growth of the production of high-throughput sequencing data poses a serious challenge to the storage, processing and transmission of these data. As frequently stated, it is a data deluge. Compression is essential to address this challenge—it reduces storage space and processing costs, along with speeding up data transmission. In this paper, we provide a comprehensive survey of existing compression approaches, that are specialized for biological data, including protein and DNA sequences. Also, we devote an important part of the paper to the approaches proposed for the compression of different file formats, such as FASTA, as well as FASTQ and SAM/BAM, which contain quality scores and metadata, in addition to the biological sequences. Then, we present a comparison of the performance of several methods, in terms of compression ratio, memory usage and compression/decompression time. Finally, we present some suggestions for future research on biological data compression.

  3. Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression (United States)

    Guerette, Michael; Ackerson, Michael R.; Thomas, Jay; Yuan, Fenglin; Bruce Watson, E.; Walker, David; Huang, Liping


    Silica glass has been shown in numerous studies to possess significant capacity for permanent densification under pressure at different temperatures to form high density amorphous (HDA) silica. However, it is unknown to what extent the processes leading to irreversible densification of silica glass in cold-compression at room temperature and in hot-compression (e.g., near glass transition temperature) are common in nature. In this work, a hot-compression technique was used to quench silica glass from high temperature (1100 °C) and high pressure (up to 8 GPa) conditions, which leads to density increase of ~25% and Young’s modulus increase of ~71% relative to that of pristine silica glass at ambient conditions. Our experiments and molecular dynamics (MD) simulations provide solid evidences that the intermediate-range order of the hot-compressed HDA silica is distinct from that of the counterpart cold-compressed at room temperature. This explains the much higher thermal and mechanical stability of the former than the latter upon heating and compression as revealed in our in-situ Brillouin light scattering (BLS) experiments. Our studies demonstrate the limitation of the resulting density as a structural indicator of polyamorphism, and point out the importance of temperature during compression in order to fundamentally understand HDA silica. PMID:26469314

  4. Deep Blind Compressed Sensing


    Singh, Shikha; Singhal, Vanika; Majumdar, Angshul


    This work addresses the problem of extracting deeply learned features directly from compressive measurements. There has been no work in this area. Existing deep learning tools only give good results when applied on the full signal, that too usually after preprocessing. These techniques require the signal to be reconstructed first. In this work we show that by learning directly from the compressed domain, considerably better results can be obtained. This work extends the recently proposed fram...

  5. Compressed Sensing in Astronomy (United States)

    Bobin, Jérôme; Starck, Jean-Luc; Ottensamer, Roland


    Recent advances in signal processing have focused on the use of sparse representations in various applications. A new field of interest based on sparsity has recently emerged: compressed sensing. This theory is a new sampling framework that provides an alternative to the well-known Shannon sampling theory. In this paper, we investigate how compressed sensing (CS) can provide new insights into astronomical data compression. We first give a brief overview of the compressed sensing theory which provides very simple coding process with low computational cost, thus favoring its use for real-time applications often found onboard space mission. In practical situations, owing to particular observation strategies (for instance, raster scans) astronomical data are often redundant; in that context, we point out that a CS-based compression scheme is flexible enough to account for particular observational strategies. Indeed, we show also that CS provides a new fantastic way to handle multiple observations of the same field view, allowing us to recover low level details, which is impossible with standard compression methods. This kind of CS data fusion concept could lead to an elegant and effective way to solve the problem ESA is faced with, for the transmission to the earth of the data collected by PACS, one of the instruments onboard the Herschel spacecraft which will launched in late 2008/early 2009. We show that CS enables to recover data with a spatial resolution enhanced up to 30% with similar sensitivity compared to the averaging technique proposed by ESA.

  6. Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy I: Insight from a climate chamber experiment (United States)

    Zech, Michael; Mayr, Christoph; Tuthorn, Mario; Leiber-Sauheitl, Katharina; Glaser, Bruno


    The oxygen isotopic composition of cellulose is a valuable proxy in paleoclimate research. However, its application to sedimentary archives is challenging due to extraction and purification of cellulose. Here we present compound-specific δ18O results of hemicellulose-derived sugar biomarkers determined using gas chromatography-pyrolysis-isotope ratio mass spectrometry, which is a method that overcomes the above-mentioned analytical challenges. The biomarkers were extracted from stem material of different plants (Eucalyptus globulus, Vicia faba and Brassica oleracea) grown in climate chamber experiments under different climatic conditions. The δ18O values of arabinose and xylose range from 31.4‰ to 45.9‰ and from 28.7‰ to 40.8‰, respectively, and correlate highly significantly with each other (R = 0.91, p automatic irrigation system, the relevance of the temperature and the Péclet effect in paleoclimate studies where water supply is actually often limited is presumably considerably lower than the relevance of relative air humidity. This assumption is confirmed by a climate transect study on δ18Ohemicellulose of modern topsoils presented in the companion paper by Tuthorn et al. (2014). Thirdly, a biosynthetic 18O fractionation of ˜+27‰ (Sternberg et al., 1986; Cernusak et al., 2003; Gessler et al., 2009) causes newly assimilated sugars and leaf cellulose to be systematically enriched in 18O compared to leaf water (Fig. 4). Recently, Sternberg and Ellsworth (2011) suggested that the biochemical 18O fractionation during cellulose synthesis is not constant but increases at lower temperatures to values of ˜+31‰. However, this conclusion is based on the assumption that the percentage of oxygen atoms exchanging during cellulose synthesis (pex) is constant and 42%. This assumption may not hold true, because although not statistically significant (p = 0.10, n = 6), there is a clear trend indicating that pex is not constant but temperature-dependent (ranging

  7. The Effect of Amplitude Compression on the Perception of Speech in Noise by the Hearing Impaired

    NARCIS (Netherlands)

    Houben, A.C.H.


    The influence of several compression parameters on speech intelligibility in stationary and fluctuating speech-shaped noise was systematically investigated. The experiment was designed to investigate possible interaction effects between compression parameters on the speech reception threshold (SRT)

  8. Image compression using singular value decomposition (United States)

    Swathi, H. R.; Sohini, Shah; Surbhi; Gopichand, G.


    We often need to transmit and store the images in many applications. Smaller the image, less is the cost associated with transmission and storage. So we often need to apply data compression techniques to reduce the storage space consumed by the image. One approach is to apply Singular Value Decomposition (SVD) on the image matrix. In this method, digital image is given to SVD. SVD refactors the given digital image into three matrices. Singular values are used to refactor the image and at the end of this process, image is represented with smaller set of values, hence reducing the storage space required by the image. Goal here is to achieve the image compression while preserving the important features which describe the original image. SVD can be adapted to any arbitrary, square, reversible and non-reversible matrix of m × n size. Compression ratio and Mean Square Error is used as performance metrics.

  9. Preferred listening levels for linear and slow-acting compression hearing aids. (United States)

    Neuman, A C; Bakke, M H; Hellman, S; Levitt, H


    The purpose of the present experiment was to determine the relationship between most comfortable listening level and preferred listening levels for linear and slow-acting compression hearing aids as a function of variations in speech and noise level. A digital hearing aid test system was used to simulate six hearing aids having compression ratios of 1, 1.5, 2, 3, 5, and 10:1. Speech was presented in three different noises (vent, apartment, and cafeteria), with speech input level being varied (55, 70, 85 dB SPL). Subjects were 20 listeners with sensorineural hearing loss (half with a dynamic range dynamic range >30 dB). The boundaries of the most comfortable listening range were measured to estimate most comfortable listening level. Preferred listening level was measured by having subjects adjust the output of the hearing aid for satisfactory listening. On average, the deviation of preferred listening level from most comfortable loudness (MCL) was less than 5 dB. Dynamic range, noise type, and input level were all found to have small, but significant, effects on the deviation of preferred listening level from MCL. On average, subjects with a small dynamic range listened slightly below MCL, and subjects with a larger dynamic range listened slightly above MCL. For favorable signal-to-noise ratios, preferred listening levels were highest for high input levels and for conditions that resulted in high output levels before level adjustment. Although the pattern of average performance differed slightly at poorer signal-to-noise ratios, all preferred listening levels were close to MCL. The gain of a slow-acting compression hearing aid should place the output within 5 dB of MCL. The output for low and medium inputs should approximate MCL and the output for high input levels should be slightly above MCL. This pattern of gain may be obtained with mild compression ratios and a gain rule that places a speech input of 70 dB at MCL.

  10. Density and permeability of a loess soil: long-term organic matter effect and the response to compressive stress

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Schjønning, Per; Møldrup, Per


    Pa). Investigated indicators for compression resistance included compression index, precompression stress, and resistance and resilience indices based on measured soil physical properties (bulk density, air-filled porosity, air permeability, and void ratio). Soil resilience was assessed following exposure...

  11. Compressing MEBES data enabling multi-threaded decompression (United States)

    Pereira, Mark; Parchuri, Anil


    With the resolution enhancement techniques such as OPC (Optical Proximity Correction) and SRAF (Sub-Resolution Assist Features), the size of layout data have grown significantly. It is quite common now to find layout files that are tens of GBs in size. Unlike GDSII which can store data hierarchically, mask data formats such as MEBES are essentially flat and more voluminous. Moreover, polygonal data present in layout data files is fractured, thereby increasing the data volume before getting stored in MEBES data format. This results in huge MEBES files. As per the ITRS roadmap of 2005, for a 45nm half-pitch node that is expected to be in use by 2010, the mask data volume for a single layer is expected to reach up to 825 GB. Storing and transferring such large mask data are issues for which the mask industry needs solutions. Historically, MEBES is the most prevalent EB format in the industry. Moreover, in many Mask Data Preparation (MDP) flows, the MEBES format is being used as the de-facto standard for specifying the fractured EB data even though the final target EB machine might be different. In this paper we present techniques for lossless reversible compression of MEBES data, i.e., when the compressed file is decompressed, the generated uncompressed file matches the original MEBES file bit- by-bit. By applying these compression techniques a compression ratio of 5X to 15X can be obtained. In practice, compressing MEBES files is usually a one-time task, but decompression of compressed files is expected to be done multiple times as every time a compressed MEBES file needs processing, it has to be decompressed. MEBES is essentially an efficient data format and the geometries are stored compactly. As a result the compression/decompression techniques described in this paper are quite computation intensive in order to achieve higher compression ratio. This in turn leads to higher CPU time for compression/decompression compared to generic compressors such as gzip. However

  12. Ultrafast compression: past, present, and future (United States)

    Armstrong, Michael


    In the nearly 20 years since the first sub-ps time resolution compression wave measurements, ultrafast compression experiments have progressed from simple demonstrations to robust discoveries of extreme phenomena spanning material plasticity, solid-solid phase transitions, and shock induced chemistry. At strain rates above 109 s-1, many usual assumptions about material response no longer apply - virtually every system investigated on sub-ns time scales exhibits phenomena which are unfamiliar to conventional intuition about compression waves. This diverse of range of phenomena reflects the fundamental complexity of dynamic material behavior, but it has also been a significant impediment to a full understanding of material compression. Nonetheless, ultrafast experiments afford a number of practical advantages, primarily related to scale. Using an inexpensive table-top laser, it is possible to obtain information on materials at extreme conditions with a low laser pulse energy and a high data rate. In this talk, I will briefly review the history of ultrafast compression, significant results, and future opportunities. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Virtually Lossless Compression of Astrophysical Images

    Directory of Open Access Journals (Sweden)

    Stefano Baronti


    Full Text Available We describe an image compression strategy potentially capable of preserving the scientific quality of astrophysical data, simultaneously allowing a consistent bandwidth reduction to be achieved. Unlike strictly lossless techniques, by which moderate compression ratios are attainable, and conventional lossy techniques, in which the mean square error of the decoded data is globally controlled by users, near-lossless methods are capable of locally constraining the maximum absolute error, based on user's requirements. An advanced lossless/near-lossless differential pulse code modulation (DPCM scheme, recently introduced by the authors and relying on a causal spatial prediction, is adjusted to the specific characteristics of astrophysical image data (high radiometric resolution, generally low noise, etc.. The background noise is preliminarily estimated to drive the quantization stage for high quality, which is the primary concern in most of astrophysical applications. Extensive experimental results of lossless, near-lossless, and lossy compression of astrophysical images acquired by the Hubble space telescope show the advantages of the proposed method compared to standard techniques like JPEG-LS and JPEG2000. Eventually, the rationale of virtually lossless compression, that is, a noise-adjusted lossles/near-lossless compression, is highlighted and found to be in accordance with concepts well established for the astronomers' community.

  14. JPEG compression history estimation for color images. (United States)

    Neelamani, Ramesh; de Queiroz, Ricardo; Fan, Zhigang; Dash, Sanjeeb; Baraniuk, Richard G


    We routinely encounter digital color images that were previously compressed using the Joint Photographic Experts Group (JPEG) standard. En route to the image's current representation, the previous JPEG compression's various settings-termed its JPEG compression history (CH)-are often discarded after the JPEG decompression step. Given a JPEG-decompressed color image, this paper aims to estimate its lost JPEG CH. We observe that the previous JPEG compression's quantization step introduces a lattice structure in the discrete cosine transform (DCT) domain. This paper proposes two approaches that exploit this structure to solve the JPEG Compression History Estimation (CHEst) problem. First, we design a statistical dictionary-based CHEst algorithm that tests the various CHs in a dictionary and selects the maximum a posteriori estimate. Second, for cases where the DCT coefficients closely conform to a 3-D parallelepiped lattice, we design a blind lattice-based CHEst algorithm. The blind algorithm exploits the fact that the JPEG CH is encoded in the nearly orthogonal bases for the 3-D lattice and employs novel lattice algorithms and recent results on nearly orthogonal lattice bases to estimate the CH. Both algorithms provide robust JPEG CHEst performance in practice. Simulations demonstrate that JPEG CHEst can be useful in JPEG recompression; the estimated CH allows us to recompress a JPEG-decompressed image with minimal distortion (large signal-to-noise-ratio) and simultaneously achieve a small file-size.

  15. Study of the B0→K*0μ+μ- decay with the LHCb experiment : angular analysis and measurement of the ratio RK

    CERN Document Server

    Coquereau, Samuel; Ben-Haïm, Eli

    Rare beauty decays proceed mostly through the Flavor Changing Neutral Current, which is possible only at loop level in the Standard Model. These FCNC processes are subject to GIM suppression leading to a rare decay. Therefore the [Math Processing Error] processes are good tools to look for New Physics phenomenon beyond the Standard Model. New Physics particle could become detectable by causing deviation from the Standard Model predictions for observables such as angular observables, branching ratio or CP asymmetries. This thesis present the angular analysis of the [Math Processing Error] decay with the whole dataset collected by lhcb during the first run of the lhc. The full set of the angular observables has been measured through a maximum likelihood fit, thanks to an improved selection and the 3 fb[Math Processing Error] of data collected in 2011 and 2012 by lhcb. In addition, the analysis on the measurement of the ratio [Math Processing Error] has also been presented and the results are expected by the end...

  16. Fukushima simulation experiment: assessing the effects of chronic low-dose-rate internal 137Cs radiation exposure on litter size, sex ratio, and biokinetics in mice. (United States)

    Nakajima, Hiroo; Yamaguchi, Yoshiaki; Yoshimura, Takashi; Fukumoto, Manabu; Todo, Takeshi


    To investigate the transgenerational effects of chronic low-dose-rate internal radiation exposure after the Fukushima Daiichi Nuclear Power Plant accident in Japan, 18 generations of mice were maintained in a radioisotope facility, with free access to drinking water containing (137)CsCl (0 and 100 Bq/ml). The (137)Cs distribution in the organs of the mice was measured after long-term ad libitum intake of the (137)CsCl water. The litter size and the sex ratio of the group ingesting the (137)Cs water were compared with those of the control group, for all 18 generations of mice. No significant difference was noted in the litter size or the sex ratio between the mice in the control group and those in the group ingesting the (137)Cs water. The fixed internal exposure doses were ∼160 Bq/g and 80 Bq/g in the muscles and other organs, respectively. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  17. Duration, compression, and the aided loudness discomfort level. (United States)

    Fortune, T; Scheller, T


    The purpose of this investigation is to determine how the unaided and aided loudness discomfort level (LDL) varies with the duration of the input signal and whether the electroacoustic characteristics of compression circuits affect this relationship in a manner that may alter the listener's dynamic range for short duration sounds. Ten hearing-impaired and 20 normal-hearing listeners participated. LDLs were determined for noise bursts of durations ranging in six steps from 32 to 1024 msec, using a two-alternative, forced-choice adaptive tracking procedure in which input level varied until LDL was achieved. LDLs were also obtained for continuous discourse, using a clinical procedure. Subjects were also given the opportunity to self adjust maximum output SPL to their LDL using either output limiting or volume controls in response to fixed 90 dB SPL noise bursts. Testing was conducted unaided and with hearing aids representing two analog (output compression limiting, wide dynamic range compression) and four digital compression circuits. Primary circuit contrasts included compression threshold, compression ratio, attack time and the presence or absence of unity gain at high levels. For the unaided condition, both normal-hearing and hearing-impaired subjects showed increasing LDLs with decreasing signal duration. Under aided conditions, circuits with compression thresholds of 45 to 50 dB SPL and compression ratios of 2:1 produced LDL functions that were similar in slope to the impaired listener's unaided functions. Slopes were steeper when the attack time was slow (128 msec) than when it was fast (2 msec). Circuits with compression ratios of 8:1 produced flat LDL duration functions (i.e., a loss of duration-dependent effects). Similar duration-dependent LDL effects were also observed when subjects adjusted their own hearing aid output characteristics in response to 90 dB noise bursts. For the unaided condition, results suggest that normal-hearing and hearing

  18. Compressed Sensing Of Complex Sinusoids Off The Grid (United States)

    Ping, Cheng; Liu, Shi; Jiaqun, Zhao


    To solve off-grid problem in compressed sensing, a new reconstruction algorithm for complex sinusoids is proposed. The compressed sensing reconstruction problem is transformed into a joint optimized problem. Based on coordinate descent approach and linear estimator, a new iteration algorithm is proposed. The results of experiments verify the effectiveness of the proposed method.


    African Journals Online (AJOL)

    Having developed and validated a code based on the Discrete Element Method principle with physical experiments the code was used to study and predict the behaviour (parametric changes) during compression of four bulk systems of particulates with the properties of canola seed, palm kernel and soyabean. The porosity ...

  20. An ROI multi-resolution compression method for 3D-HEVC (United States)

    Ti, Chunli; Guan, Yudong; Xu, Guodong; Teng, Yidan; Miao, Xinyuan


    3D High Efficiency Video Coding (3D-HEVC) provides a significant potential on increasing the compression ratio of multi-view RGB-D videos. However, the bit rate still rises dramatically with the improvement of the video resolution, which will bring challenges to the transmission network, especially the mobile network. This paper propose an ROI multi-resolution compression method for 3D-HEVC to better preserve the information in ROI on condition of limited bandwidth. This is realized primarily through ROI extraction and compression multi-resolution preprocessed video as alternative data according to the network conditions. At first, the semantic contours are detected by the modified structured forests to restrain the color textures inside objects. The ROI is then determined utilizing the contour neighborhood along with the face region and foreground area of the scene. Secondly, the RGB-D videos are divided into slices and compressed via 3D-HEVC under different resolutions for selection by the audiences and applications. Afterwards, the reconstructed low-resolution videos from 3D-HEVC encoder are directly up-sampled via Laplace transformation and used to replace the non-ROI areas of the high-resolution videos. Finally, the ROI multi-resolution compressed slices are obtained by compressing the ROI preprocessed videos with 3D-HEVC. The temporal and special details of non-ROI are reduced in the low-resolution videos, so the ROI will be better preserved by the encoder automatically. Experiments indicate that the proposed method can keep the key high-frequency information with subjective significance while the bit rate is reduced.

  1. Language experience-dependent advantage in pitch representation in the auditory cortex is limited to favorable signal-to-noise ratios. (United States)

    Suresh, Chandan H; Krishnan, Ananthanarayan; Gandour, Jackson T


    Long-term experience enhances neural representation of temporal attributes of pitch in the brainstem and auditory cortex in favorable listening conditions. Herein we examine whether cortical pitch mechanisms shaped by language experience are more resilient to degradation in background noise, and exhibit greater binaural release from masking (BRM). Cortical pitch responses (CPR) were recorded from Mandarin- and English-speaking natives using a Mandarin word exhibiting a high rising pitch (/yi2/). Stimuli were presented diotically in Quiet, and in noise at +5, and 0 dB SNR. CPRs were also recorded in binaural conditions, SONO (where signal and noise were in phase at both ears); or S0Nπ (where signal was in phase and noise 180° out of phase at each ear), using 0 dB SNR. At Fz, both groups showed increase in CPR peak latency and decrease in amplitude with increasing noise level. A language-dependent enhancement of Na-Pb amplitude (Chinese > English) was restricted to Quiet and +5 dB SNR conditions. At T7/T8 electrode sites, Chinese natives exhibited a rightward asymmetry for both CPR components. A language-dependent effect (Chinese > English) was restricted to T8. Regarding BRM, both CPR components showed greater response amplitude for the S0Nπ condition compared to S0N0 across groups. Rightward asymmetry for BRM in the Chinese group indicates experience-dependent recruitment of right auditory cortex. Restriction of the advantage in pitch representation to the quiet and +5 SNR conditions, and the absence of group differences in the binaural release from masking, suggest that language experience affords limited advantage in the neural representation of pitch-relevant information in the auditory cortex under adverse listening conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Graph Compression by BFS

    Directory of Open Access Journals (Sweden)

    Alberto Apostolico


    Full Text Available The Web Graph is a large-scale graph that does not fit in main memory, so that lossless compression methods have been proposed for it. This paper introduces a compression scheme that combines efficient storage with fast retrieval for the information in a node. The scheme exploits the properties of the Web Graph without assuming an ordering of the URLs, so that it may be applied to more general graphs. Tests on some datasets of use achieve space savings of about 10% over existing methods.

  3. The friction-free compressibility curve of bentonite block

    Energy Technology Data Exchange (ETDEWEB)

    Tien, Y.M.; Wu, P.L. [National Central University, Dpt. of Civil Engineering, Taiwan (China); Chuang, W.S. [Institute of Nuclear Energy Research, Atomic Energy Council, Taiwan (China)


    lubricant, tow pistons and low aspect ratio and high saturation sample are employed. Because the mechanism of powder compaction and wall friction is very complicate and has not been fully understood, the wall friction of any specific material during compaction is usually investigated through experiments. To better understand the behavior of wall friction, assess its effect on the properties of compacted block, and evaluate the preventing method, high quality measurement of wall friction during compaction and ejection is an important task. The compressibility curves (the plot of the applied force vs. density relation during uniaxial compaction, usually named as compaction curve in the fields of powder metallurgy, it should not be confuse with compaction curve in geotechnical engineering) have been widely used to describe the compaction behavior of powders. The density of block under a specified applied stress can be evaluated by the compressibility curve. The required applied stress for a specified density of compact can also be estimated by compressibility curve. The wall friction is induced between the materials and the wall of compaction mold during the compaction process, so it's hard to obtain the relationship between the actual compaction force and the density of the bentonite block. The compaction force will be over estimated because of wall friction force and changes with differential aspect ratio. This paper presents one method to correct the friction effect and obtain friction-free compressibility curve. Proposed method base on the friction force distribution theory. This friction-free compaction curve can eliminate wall friction force and the effect of geometric. A series compaction test of varies h/d ratio was carried out in this study, and to demonstrate the method obtained friction-free compressibility curve of bentonite block. (authors)

  4. Lossless compression of medical images using Hilbert space-filling curves. (United States)

    Liang, Jan-Yie; Chen, Chih-Sheng; Huang, Chua-Huang; Liu, Li


    A Hilbert space-filling curve is a curve traversing the 2(n) x 2(n)two-dimensional space and it visits neighboring points consecutively without crossing itself. The application of Hilbert space-filling curves in image processing is to rearrange image pixels in order to enhance pixel locality. A computer program of the Hilbert space-filling curve ordering generated from a tensor product formula is used to rearrange pixels of medical images. We implement four lossless encoding schemes, run-length encoding, LZ77 coding, LZW coding, and Huffman coding, along with the Hilbert space-filling curve ordering. Combination of these encoding schemes are also implemented to study the effectiveness of various compression methods. In addition, differential encoding is employed to medical images to study different format of image representation to the above encoding schemes. In the paper, we report the testing results of compression ratio and performance evaluation. The experiments show that the pre-processing operation of differential encoding followed by the Hilbert space-filling curve ordering and the compression method of LZW coding followed by Huffman coding will give the best compression result.

  5. A new model of marine sediment compression (United States)

    Martin, Kylara; Wood, Warren


    Marine sediments cover two-thirds of the earth, and porosity (or void ratio) is a major controlling parameter in virtually every model of seafloor properties, including strength, sound speed, hydrology, thermal conductivity, and electrical resistivity. Our new model of void ratio (e) is based on the proportional void ratio, [ep = (e -er) / (e0 -er)], where e0 is the depositional maximum at the sea floor, and er is the minimum residual void ratio at depth. We assume the values of e0 and er are inherent characteristics of the sediment type. Our model further defines the compression index Cc to be the square root of the proportional void ratio (Cc (e) =(ep) 1 / 2). This new formulation establishes a direct relation between void ratio and effective stress: e =(e0 -er) - 1[log10 ⁡ (σ0 / σ) + 2 (e0 -er) ] 2 / 4 +er and exhibits several advantages over previous models that we demonstrate with compression test data from the Gulf of Mexico and Nankai Trough.

  6. Increase in soil stable carbon isotope ratio relates to loss of organic carbon: results from five long-term bare fallow experiments

    DEFF Research Database (Denmark)

    Menichetti, Lorenzo; Houot, Sabine; van Oort, Folkert


    . However, experimental verification of the subtle isotopic shifts associated with SOC turnover under field conditions is scarce. We determined δ13C and SOC in soil sampled during 1929–2009 in the Ap-horizon of five European long-term bare fallow experiments kept without C inputs for 27–80 years...... examined. The overall estimate of the fractionation coefficient (ε) was −1.2 ± 0.3 ‰. This coefficient represents an important input to studies of long-term SOC dynamics in agricultural soils that are based on variations in 13C natural abundance. The variance of ε may be ascribed to site characteristics...

  7. Haemodynamic effects of adrenaline (epinephrine) depend on chest compression quality during cardiopulmonary resuscitation in pigs. (United States)

    Pytte, Morten; Kramer-Johansen, Jo; Eilevstjønn, Joar; Eriksen, Morten; Strømme, Taevje A; Godang, Kristin; Wik, Lars; Steen, Petter Andreas; Sunde, Kjetil


    Adrenaline (epinephrine) is used during cardiopulmonary resuscitation (CPR) based on animal experiments without supportive clinical data. Clinically CPR was reported recently to have much poorer quality than expected from international guidelines and what is generally done in laboratory experiments. We have studied the haemodynamic effects of adrenaline during CPR with good laboratory quality and with quality simulating clinical findings and the feasibility of monitoring these effects through VF waveform analysis. After 4 min of cardiac arrest, followed by 4 min of basic life support, 14 pigs were randomised to ClinicalCPR (intermittent manual chest compressions, compression-to-ventilation ratio 15:2, compression depth 30-38 mm) or LabCPR (continuous mechanical chest compressions, 12 ventilations/min, compression depth 45 mm). Adrenaline 0.02 mg/kg was administered 30 s thereafter. Plasma adrenaline concentration peaked earlier with LabCPR than with ClinicalCPR, median (range), 90 (30, 150) versus 150 (90, 270) s (p = 0.007), respectively. Coronary perfusion pressure (CPP) and cortical cerebral blood flow (CCBF) increased and femoral blood flow (FBF) decreased after adrenaline during LabCPR (mean differences (95% CI) CPP 17 (6, 29) mmHg (p = 0.01), FBF -5.0 (-8.8, -1.2) ml min(-1) (p = 0.02) and median difference CCBF 12% of baseline (p = 0.04)). There were no significant effects during ClinicalCPR (mean differences (95% CI) CPP 4.7 (-3.2, 13) mmHg (p = 0.2), FBF -0.2 (-4.6, 4.2) ml min(-1)(p = 0.9) and CCBF 3.6 (-1.8, 9.0)% of baseline (p = 0.15)). Slope VF waveform analysis reflected changes in CPP. Adrenaline improved haemodynamics during laboratory quality CPR in pigs, but not with quality simulating clinically reported CPR performance.

  8. Distributed Compressive Sensing (United States)


    more powerful algorithms like SOMP can be used. The ACIE algorithm is similar in spirit to other iterative estimation algorithms, such as turbo...Mitchell, “JPEG: Still image data compression standard,” Van Nostrand Reinhold , 1993. [11] D. S. Taubman and M. W. Marcellin, JPEG 2000: Image

  9. Temporal compressive sensing systems

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Bryan W.


    Methods and systems for temporal compressive sensing are disclosed, where within each of one or more sensor array data acquisition periods, one or more sensor array measurement datasets comprising distinct linear combinations of time slice data are acquired, and where mathematical reconstruction allows for calculation of accurate representations of the individual time slice datasets.

  10. Compression of Infrared images

    DEFF Research Database (Denmark)

    Mantel, Claire; Forchhammer, Søren


    This paper investigates the compression of infrared images with three codecs: JPEG2000, JPEG-XT and HEVC. Results are evaluated in terms of SNR, Mean Relative Squared Error (MRSE) and the HDR-VDP2 quality metric. JPEG2000 and HEVC perform fairy similar and better than JPEG-XT. JPEG2000 performs...

  11. Compressive CFAR radar detection

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Rossum, W.L. van; Maleki, A.; Baraniuk, R.


    In this paper we develop the first Compressive Sensing (CS) adaptive radar detector. We propose three novel architectures and demonstrate how a classical Constant False Alarm Rate (CFAR) detector can be combined with ℓ1-norm minimization. Using asymptotic arguments and the Complex Approximate

  12. Fingerprints in compressed strings

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Cording, Patrick Hagge


    In this paper we show how to construct a data structure for a string S of size N compressed into a context-free grammar of size n that supports efficient Karp–Rabin fingerprint queries to any substring of S. That is, given indices i and j, the answer to a query is the fingerprint of the substring S...

  13. Fingerprints in Compressed Strings

    DEFF Research Database (Denmark)

    Bille, Philip; Cording, Patrick Hagge; Gørtz, Inge Li


    The Karp-Rabin fingerprint of a string is a type of hash value that due to its strong properties has been used in many string algorithms. In this paper we show how to construct a data structure for a string S of size N compressed by a context-free grammar of size n that answers fingerprint queries...

  14. A measurement of W+jet and Z+jet cross sections in the tau decay channel, and their ratio in the ATLAS experiment

    CERN Document Server

    Kadlecik, Peter

    The amount of collision data delivered by the Large Hadron Collider and collected by the ATLAS detector in Spring 2011 was sufficient enough so that a variety of important measurements could be carried out. Among them are the measurements of the W+jet and the Z+jet cross sections in the tau decay channel of the W and Z boson, and the W+jet to Z+jet cross sections ratio measurement, the so called RJET measurement. The goal of these measurements is, by comparing the theoretical predictions and the measured quantities, to investigate, whether signs of physics beyond the Standard Model can be observed in the W(→ τν)+jet or the Z(→ τ τ )+jet signatures. The RJET measurement is an extra measurement which tested the possibility of canceling some systematic uncertainties which entered both W(→ τν)+jet and Z(→ τ τ )+jet cross section measurements, and thus provide a measurement with an enhanced sensitivity. This thesis provides the W(→ τν)+jet and the Z(→ τ τ )+jet observations and cross sectio...

  15. Compressed Sensing for Chemistry (United States)

    Sanders, Jacob Nathan

    Many chemical applications, from spectroscopy to quantum chemistry, involve measuring or computing a large amount of data, and then compressing this data to retain the most chemically-relevant information. In contrast, compressed sensing is an emergent technique that makes it possible to measure or compute an amount of data that is roughly proportional to its information content. In particular, compressed sensing enables the recovery of a sparse quantity of information from significantly undersampled data by solving an ℓ 1-optimization problem. This thesis represents the application of compressed sensing to problems in chemistry. The first half of this thesis is about spectroscopy. Compressed sensing is used to accelerate the computation of vibrational and electronic spectra from real-time time-dependent density functional theory simulations. Using compressed sensing as a drop-in replacement for the discrete Fourier transform, well-resolved frequency spectra are obtained at one-fifth the typical simulation time and computational cost. The technique is generalized to multiple dimensions and applied to two-dimensional absorption spectroscopy using experimental data collected on atomic rubidium vapor. Finally, a related technique known as super-resolution is applied to open quantum systems to obtain realistic models of a protein environment, in the form of atomistic spectral densities, at lower computational cost. The second half of this thesis deals with matrices in quantum chemistry. It presents a new use of compressed sensing for more efficient matrix recovery whenever the calculation of individual matrix elements is the computational bottleneck. The technique is applied to the computation of the second-derivative Hessian matrices in electronic structure calculations to obtain the vibrational modes and frequencies of molecules. When applied to anthracene, this technique results in a threefold speed-up, with greater speed-ups possible for larger molecules. The

  16. 2D-RBUC for efficient parallel compression of residuals (United States)

    Đurđević, Đorđe M.; Tartalja, Igor I.


    In this paper, we present a method for lossless compression of residuals with an efficient SIMD parallel decompression. The residuals originate from lossy or near lossless compression of height fields, which are commonly used to represent models of terrains. The algorithm is founded on the existing RBUC method for compression of non-uniform data sources. We have adapted the method to capture 2D spatial locality of height fields, and developed the data decompression algorithm for modern GPU architectures already present even in home computers. In combination with the point-level SIMD-parallel lossless/lossy high field compression method HFPaC, characterized by fast progressive decompression and seamlessly reconstructed surface, the newly proposed method trades off small efficiency degradation for a non negligible compression ratio (measured up to 91%) benefit.

  17. Parallel Tensor Compression for Large-Scale Scientific Data.

    Energy Technology Data Exchange (ETDEWEB)

    Kolda, Tamara G. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ballard, Grey [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Austin, Woody Nathan [Univ. of Texas, Austin, TX (United States)


    As parallel computing trends towards the exascale, scientific data produced by high-fidelity simulations are growing increasingly massive. For instance, a simulation on a three-dimensional spatial grid with 512 points per dimension that tracks 64 variables per grid point for 128 time steps yields 8 TB of data. By viewing the data as a dense five way tensor, we can compute a Tucker decomposition to find inherent low-dimensional multilinear structure, achieving compression ratios of up to 10000 on real-world data sets with negligible loss in accuracy. So that we can operate on such massive data, we present the first-ever distributed memory parallel implementation for the Tucker decomposition, whose key computations correspond to parallel linear algebra operations, albeit with nonstandard data layouts. Our approach specifies a data distribution for tensors that avoids any tensor data redistribution, either locally or in parallel. We provide accompanying analysis of the computation and communication costs of the algorithms. To demonstrate the compression and accuracy of the method, we apply our approach to real-world data sets from combustion science simulations. We also provide detailed performance results, including parallel performance in both weak and strong scaling experiments.

  18. Uranium 238U/235U isotope ratios as indicators of reduction: Results from an in situ biostimulation experiment at Rifle, Colorado, USA

    Energy Technology Data Exchange (ETDEWEB)

    Bopp IV, C.J.; Lundstrom, C.C.; Johnson, T.M.; Sanford, R.A.; Long, P.E.; Williams, K.H.


    The attenuation of groundwater contamination via chemical reaction is traditionally evaluated by monitoring contaminant concentration through time. However, this method can be confounded by common transport processes (e.g. dilution, sorption). Isotopic techniques bypass the limits of concentration methods, and so may provide improved accuracy in determining the extent of reaction. We apply measurements of {sup 238}U/{sup 235}U to a U bioremediation field experiment at the Rifle Integrated Field Research Challenge Site in Rifle, Colorado (USA). An array of monitoring and injection wells was installed on a 100 m{sup 2} plot where U(VI) contamination was present in the groundwater. Acetate-amended groundwater was injected along an up-gradient gallery to encourage the growth of dissimilatory metal reducing bacteria (e.g. Geobacter species). During amendment, U concentration dropped by an order of magnitude in the experiment plot. We measured {sup 238}U/{sup 235}U in samples from one monitoring well by MC-ICP-MS using a double isotope tracer method. A significant {approx}1.00{per_thousand} decrease in {sup 238}U/{sup 235}U occurred in the groundwater as U(VI) concentration decreased. The relationship between {sup 238}U/{sup 235}U and concentration corresponds approximately to a Rayleigh distillation curve with an effective fractionation factor ({alpha}) of 1.00046. We attribute the observed U isotope fractionation to a nuclear field shift effect during enzymatic reduction of U(VI){sub (aq)} to U(IV){sub (s)}.

  19. Compression selective solid-state chemistry (United States)

    Hu, Anguang

    Compression selective solid-state chemistry refers to mechanically induced selective reactions of solids under thermomechanical extreme conditions. Advanced quantum solid-state chemistry simulations, based on density functional theory with localized basis functions, were performed to provide a remarkable insight into bonding pathways of high-pressure chemical reactions in all agreement with experiments. These pathways clearly demonstrate reaction mechanisms in unprecedented structural details, showing not only the chemical identity of reactive intermediates but also how atoms move along the reaction coordinate associated with a specific vibrational mode, directed by induced chemical stress occurred during bond breaking and forming. It indicates that chemical bonds in solids can break and form precisely under compression as we wish. This can be realized through strongly coupling of mechanical work to an initiation vibrational mode when all other modes can be suppressed under compression, resulting in ultrafast reactions to take place isothermally in a few femtoseconds. Thermodynamically, such reactions correspond to an entropy minimum process on an isotherm where the compression can force thermal expansion coefficient equal to zero. Combining a significantly brief reaction process with specific mode selectivity, both statistical laws and quantum uncertainty principle can be bypassed to precisely break chemical bonds, establishing fundamental principles of compression selective solid-state chemistry. Naturally this leads to understand the ''alchemy'' to purify, grow, and perfect certain materials such as emerging novel disruptive energetics.

  20. Light-weight reference-based compression of FASTQ data. (United States)

    Zhang, Yongpeng; Li, Linsen; Yang, Yanli; Yang, Xiao; He, Shan; Zhu, Zexuan


    The exponential growth of next generation sequencing (NGS) data has posed big challenges to data storage, management and archive. Data compression is one of the effective solutions, where reference-based compression strategies can typically achieve superior compression ratios compared to the ones not relying on any reference. This paper presents a lossless light-weight reference-based compression algorithm namely LW-FQZip to compress FASTQ data. The three components of any given input, i.e., metadata, short reads and quality score strings, are first parsed into three data streams in which the redundancy information are identified and eliminated independently. Particularly, well-designed incremental and run-length-limited encoding schemes are utilized to compress the metadata and quality score streams, respectively. To handle the short reads, LW-FQZip uses a novel light-weight mapping model to fast map them against external reference sequence(s) and produce concise alignment results for storage. The three processed data streams are then packed together with some general purpose compression algorithms like LZMA. LW-FQZip was evaluated on eight real-world NGS data sets and achieved compression ratios in the range of 0.111-0.201. This is comparable or superior to other state-of-the-art lossless NGS data compression algorithms. LW-FQZip is a program that enables efficient lossless FASTQ data compression. It contributes to the state of art applications for NGS data storage and transmission. LW-FQZip is freely available online at:

  1. Effects of reverberation, background talker number, and compression release time on signal-to-noise ratioa) (United States)

    Reinhart, Paul; Zahorik, Pavel; Souza, Pamela E.


    Wide dynamic range compression (WDRC) processing in hearing aids alters the signal-to-noise ratio (SNR) of a speech-in-noise signal. This effect depends on the modulations of the speech and noise, input SNR, and WDRC speed. The purpose of the present experiment was to examine the change in output SNR caused by the interaction between modulation characteristics and WDRC speed. Two modulation manipulations were examined: (1) reverberation and (2) variation in background talker number. Results indicated that fast-acting WDRC altered SNR more than slow-acting WDRC; however, reverberation reduced this difference. Additionally, less modulated maskers led to poorer output SNRs than modulated maskers. PMID:28764441

  2. Continuous Catalyst-Free Esterification of Oleic Acid in Compressed Ethanol

    Directory of Open Access Journals (Sweden)

    Ana Carolina de Araujo Abdala


    Full Text Available The esterification of oleic acid in a continuous catalyst-free process using compressed ethanol was investigated in the present study. Experiments were performed in a tubular reactor and variables investigated were temperature, pressure, and oleic acid to ethanol molar ratio for different residence time. Results demonstrated that temperature, in the range of 473 K to 573 K, and pressure had a positive effect on fatty acid ethyl esters (FAEE production. In the experimental range investigated, high conversions can be obtained at low ethanol concentrations in the reaction medium and it was observed that oleic acid to ethanol molar ratios greater than 1 : 6 show no significant increase in conversion. Nonnegligible reaction conversions (>90% were achieved at 573 K, 20 MPa, oleic acid to ethanol molar ratio of 1 : 6, and 20 minutes of residence time.

  3. Effects of multi-channel compression time constants on subjectively perceived sound quality and speech intelligibility. (United States)

    Hansen, Martin


    The purpose of this study was to determine the influence of the compression time constants in a multi-channel compression hearing aid on both subjectively assessed speech intelligibility and sound quality in realistic binaural acoustical situations for normal-hearing and hearing-impaired listeners. A nonlinear hearing aid with 15 independent compression channels of approximated critical bandwidth was simulated on a personal computer. Various everyday life situations containing different sounds such as speech and speech in noise were recorded binaurally through original hearing aid microphones placed in BTE hearing aid cases. Two experiments were run with normal hearing and hearing-impaired subjects. For each subject, hearing thresholds were established using in situ audiometry. The static I/O-curve parameters in all channels of the hearing aid were then adjusted so that normal speech received an insertion gain corresponding to the NAL-R formula (Byrne & Dillon, 1986). The compression ratio was kept constant at 2.1:1. In the first experiment with six normal-hearing and six hearing-impaired subjects, the hearing aid was programmed to four different settings by changing only the compression time constants while all the parameters describing the static nonlinear Input/Output-curve were kept constant. The compression threshold was set to a very low value. In the second experiment with seven normal-hearing and eight hearing-impaired subjects, the hearing aid was programmed to four settings by changing the release time constants and the compression threshold while all other remaining parameters were kept constant. Using a complete A/B pair comparison procedure, subjects were presented binaurally with the amplified sounds and asked to subjectively assess their preference for each hearing aid setting with regards to speech intelligibility and sound quality. In Experiment 1, all subjects showed a significant preference for the longest release time (4 sec) over the two

  4. Predicting leaf wax n-alkane 2H/1H ratios: controlled water source and humidity experiments with hydroponically grown trees confirm predictions of Craig-Gordon model. (United States)

    Tipple, Brett J; Berke, Melissa A; Hambach, Bastian; Roden, John S; Ehleringer, James R


    The extent to which both water source and atmospheric humidity affect δ(2)H values of terrestrial plant leaf waxes will affect the interpretations of δ(2)H variation of leaf waxes as a proxy for hydrological conditions. To elucidate the effects of these parameters, we conducted a long-term experiment in which we grew two tree species, Populus fremontii and Betula occidentalis, hydroponically under combinations of six isotopically distinct waters and two different atmospheric humidities. We observed that leaf n-alkane δ(2)H values of both species were linearly related to source water δ(2)H values, but with slope differences associated with differing humidities. When a modified version of the Craig-Gordon model incorporating plant factors was used to predict the δ(2)H values of leaf water, all modelled leaf water values fit the same linear relationship with n-alkane δ(2)H values. These observations suggested a relatively constant biosynthetic fractionation factor between leaf water and n-alkanes. However, our calculations indicated a small difference in the biosynthetic fractionation factor between the two species, consistent with small differences calculated for species in other studies. At present, it remains unclear if these apparent interspecies differences in biosynthetic fractionation reflect species-specific biochemistry or a common biosynthetic fractionation factor with insufficient model parameterization. © 2014 John Wiley & Sons Ltd.

  5. Extreme dynamic compression with a table top laser (United States)

    Armstrong, Michael; Crowhurst, Jonathan; Radousky, Harry; Zaug, Joseph


    Recently, it was shown that the energy required for laser driven dynamic compression experiments varies as the third power of the compression time, where the compression time must be larger than the equilibration time in the sample. Traditional dynamic compression experiments typically have drive times greater than 10 ns, but a wide range of materials equilibrate on substantially faster time scales, which should enable such materials to be compressed on much shorter time scales. So, for materials which equilibrate on a sub-nanosecond time scale, ultrafast dynamic compression has the potential to substantially reduce the laser energy required to obtain highly compressed states of matter. This has been demonstrated for sub-Mbar pressures with <100 μJ energy laser drive pulses, where the laser drive energy per unit density change is as much as 109 smaller than longer time scale experiments. Although these results are promising, extreme pressures (up to 10 Mbar) have not yet been observed with table-top scale laser systems. Here we present results for ultrafast laser driven shock experiments using up to 500x more drive intensity than our previous work, which, by conventional scaling, should result in dynamic pressures previously only accessible to facility scale instruments. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Impact of CCSDS-IDC and JPEG 2000 Compression on Image Quality and Classification

    Directory of Open Access Journals (Sweden)

    Alaitz Zabala


    Full Text Available This study measures the impact of both on-board and user-side lossy image compression (CCSDS-IDC and JPEG 2000 on image quality and classification. The Sentinel-2 Image Performance Simulator was modified to include these compression algorithms in order to produce Sentinel-2 simulated images with on-board lossy compression. A multitemporal set of Landsat images was used for the user-side compression scenario in order to study a crop area. The performance of several compressors was evaluated by computing the Signal-to-Noise Ratio (SNR of the compressed images. The overall accuracy of land-cover classifications of these images was also evaluated. The results show that on-board CCSDS performs better than JPEG 2000 in terms of compression fidelity, especially at lower compression ratios (from CR 2:1 up to CR 4:1, i.e., 8 to 4 bpppb. The effect of compression on land cover classification follows the same trends, but compression fidelity may not be enough to assess the impact of compression on end-user applications. If compression is applied by end-users, the results show that 3D-JPEG 2000 obtains higher compression fidelity than CCSDS and JPEG 2000 with other parameterizations. This is due to the high dynamic range of the images (representing reflectances * 10000, which JPEG 2000 is able to exploit better.

  7. H.264/AVC Video Compressed Traces: Multifractal and Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Samčović Andreja


    Full Text Available Publicly available long video traces encoded according to H.264/AVC were analyzed from the fractal and multifractal points of view. It was shown that such video traces, as compressed videos (H.261, H.263, and MPEG-4 Version 2 exhibit inherent long-range dependency, that is, fractal, property. Moreover they have high bit rate variability, particularly at higher compression ratios. Such signals may be better characterized by multifractal (MF analysis, since this approach describes both local and global features of the process. From multifractal spectra of the frame size video traces it was shown that higher compression ratio produces broader and less regular MF spectra, indicating to higher MF nature and the existence of additive components in video traces. Considering individual frames (I, P, and B and their MF spectra one can approve additive nature of compressed video and the particular influence of these frames to a whole MF spectrum. Since compressed video occupies a main part of transmission bandwidth, results obtained from MF analysis of compressed video may contribute to more accurate modeling of modern teletraffic. Moreover, by appropriate choice of the method for estimating MF quantities, an inverse MF analysis is possible, that means, from a once derived MF spectrum of observed signal it is possible to recognize and extract parts of the signal which are characterized by particular values of multifractal parameters. Intensive simulations and results obtained confirm the applicability and efficiency of MF analysis of compressed video.

  8. Fast Compression and Decompression capabilities at HPCAT, APS (United States)

    Sinogeikin, S. V.


    Materials behavior and phase transformation pathways are strongly influenced by the time dependence of the driving mechanism (compression, thermal transfer, strain, irradiation, etc). While shock compression and static compression are well established techniques available for a long time, the techniques filling the compression rate gap and studying materials behavior as a function of compression rates at intermediate rates remain scarce. Recent advances in synchrotron sources, x-ray optics, fast area detectors, and sample environment control have enabled many time-resolved experimental techniques for studying materials at extreme pressure and temperature conditions. The High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source has made a sustained effort to develop and assemble a powerful collection of high-pressure apparatus for time-resolved research and developing techniques for collecting high-quality time-resolved x-ray scattering data at compression rates intermediate between static and shock compression experiments. In this talk we will outline recently developed capabilities at HPCAT for synthesis of metastable and amorphous materials and studying properties (EOS, lattice relaxation, etc.) and phase transition mechanisms of materials using fast unidirectional and cyclic compression-decompression with variable strain rates up to extreme compression of tens of TPa per second.

  9. The compressible adjoint equations in geodynamics: derivation and numerical assessment (United States)

    Ghelichkhan, Siavash; Bunge, Hans-Peter


    The adjoint method is a powerful means to obtain gradient information in a mantle convection model relative to past flow structure. While the adjoint equations in geodynamics have been derived for the conservation equations of mantle flow in their incompressible form, the applicability of this approximation to Earth is limited. Here we introduce the compressible adjoint equations for the conservation equations in the anelastic-liquid approximation. Our derivation applies an operator formulation in Hilbert spaces, to connect to recent work in seismology (Fichtner et al. 2006) and geodynamics (Horbach et al. 2014), where the approach was used to derive the adjoint equations for the wave equation and incompressible mantle flow. We present numerical tests of the newly derived equations based on twin experiments, focusing on three simulations. A first, termed Compressible, assumes the compressible forward and adjoint equations, and represents the consistent means of including compressibility effects. A second, termed Mixed, applies the compressible forward equation, but ignores compressibility effects in the adjoint equations, where the incompressible equations are used instead. A third simulation, termed Incompressible, neglects compressibility effects entirely in the forward and adjoint equations relative to the reference twin. The compressible and mixed formulations successfully restore earlier mantle flow structure, while the incompressible formulation yields noticeable artifacts. Our results suggest the use of a compressible formulation, when applying the adjoint method to seismically derived mantle heterogeneity structure.

  10. Compressive Spectral Renormalization Method

    CERN Document Server

    Bayindir, Cihan


    In this paper a novel numerical scheme for finding the sparse self-localized states of a nonlinear system of equations with missing spectral data is introduced. As in the Petviashivili's and the spectral renormalization method, the governing equation is transformed into Fourier domain, but the iterations are performed for far fewer number of spectral components (M) than classical versions of the these methods with higher number of spectral components (N). After the converge criteria is achieved for M components, N component signal is reconstructed from M components by using the l1 minimization technique of the compressive sampling. This method can be named as compressive spectral renormalization (CSRM) method. The main advantage of the CSRM is that, it is capable of finding the sparse self-localized states of the evolution equation(s) with many spectral data missing.


    Directory of Open Access Journals (Sweden)

    Idris Mohamed El-Mahdi


    Full Text Available This work was aimed at the use of dissolution testing and similarity factor to assess the level of damage taken by active drug microspheres during compression in tablet dosage form. To achieve that, combinations of suitable excipients were used to protect drug microspheres during compression. The excipients were used in the form of powders, granules or placebo pellets prepared by extrusion-spheronization technology. The excipients were evaluated alone, in combinations and post-compression into compacts.  Preliminary experiments included density, hardness, friability and disintegration on all of the selected excipients. Based on such experiments it was found that the flowability of combination powders was more acceptable than individual excipients. Two combinations of microcrystalline -starch and microcrystalline cellulose -calcium carbonate granules were selected to be compressed with active ketoprofen pellets. In all the combinations used there was a significant amount of damage to drug pellets.  The kinetics of drug release appears to follow the zero-order rate and the rate remained unchanged even when a significant degree of damage to pellets occur. It was found that a high level of excipients is required in order to prepare microspheres as a rapid disintegrating tablet. Citation DOI: 10.21502/limuj.002.01.2016  LIMUJ is licensed under a Creative Commons Attribution 4.0 International License

  12. MAPS Image Compression. (United States)


    SUMMARY MICRO-ADAPTIVE PICTURE SEQUENCING (MAPS) is a digital image data compression technique which originated at Control Data Corporation and underwent...w w Figure 1-3. Test Imagery Set 6 L.( The MAPS process is clearly sensitive to contrast but not to the Mean gray scale in the image . Thus, all images ...BUFFERED WORD TRANSFER RATES image processing Typical computa- tional functions which can be solved e DUAL 16-BIT INTERNAL DATA BUS SYSTEM with this

  13. Differential Privacy with Compression


    Zhou, Shuheng; Ligett, Katrina; Wasserman, Larry


    This work studies formal utility and privacy guarantees for a simple multiplicative database transformation, where the data are compressed by a random linear or affine transformation, reducing the number of data records substantially, while preserving the number of original input variables. We provide an analysis framework inspired by a recent concept known as differential privacy (Dwork 06). Our goal is to show that, despite the general difficulty of achieving the differential privacy guaran...

  14. Compressibility of solids (United States)

    Vinet, P.; Ferrante, J.; Rose, J. H.; Smith, J. R.


    A universal form is proposed for the equation of state (EOS) of solids. Good agreement is found for a variety of test data. The form of the EOS is used to suggest a method of data analysis, which is applied to materials of geophysical interest. The isothermal bulk modulus is discussed as a function of the volume and of the pressure. The isothermal compression curves for materials of geophysical interest are examined.

  15. Science-driven 3D data compression (United States)

    Alonso, David


    Photometric redshift surveys map the distribution of matter in the Universe through the positions and shapes of galaxies with poorly resolved measurements of their radial coordinates. While a tomographic analysis can be used to recover some of the large-scale radial modes present in the data, this approach suffers from a number of practical shortcomings, and the criteria to decide on a particular binning scheme are commonly blind to the ultimate science goals. We present a method designed to separate and compress the data into a small number of uncorrelated radial modes, circumventing some of the problems of standard tomographic analyses. The method is based on the Karhunen-Loève transform (KL), and is connected to other 3D data compression bases advocated in the literature, such as the Fourier-Bessel decomposition. We apply this method to both weak lensing and galaxy clustering. In the case of galaxy clustering, we show that the resulting optimal basis is closely associated with the Fourier-Bessel basis, and that for certain observables, such as the effects of magnification bias or primordial non-Gaussianity, the bulk of the signal can be compressed into a small number of modes. In the case of weak lensing, we show that the method is able to compress the vast majority of the signal-to-noise ratio into a single mode, and that optimal cosmological constraints can be obtained considering only three uncorrelated KL eigenmodes, considerably simplifying the analysis with respect to a traditional tomographic approach.

  16. Photogrammetric point cloud compression for tactical networks (United States)

    Madison, Andrew C.; Massaro, Richard D.; Wayant, Clayton D.; Anderson, John E.; Smith, Clint B.


    We report progress toward the development of a compression schema suitable for use in the Army's Common Operating Environment (COE) tactical network. The COE facilitates the dissemination of information across all Warfighter echelons through the establishment of data standards and networking methods that coordinate the readout and control of a multitude of sensors in a common operating environment. When integrated with a robust geospatial mapping functionality, the COE enables force tracking, remote surveillance, and heightened situational awareness to Soldiers at the tactical level. Our work establishes a point cloud compression algorithm through image-based deconstruction and photogrammetric reconstruction of three-dimensional (3D) data that is suitable for dissimination within the COE. An open source visualization toolkit was used to deconstruct 3D point cloud models based on ground mobile light detection and ranging (LiDAR) into a series of images and associated metadata that can be easily transmitted on a tactical network. Stereo photogrammetric reconstruction is then conducted on the received image stream to reveal the transmitted 3D model. The reported method boasts nominal compression ratios typically on the order of 250 while retaining tactical information and accurate georegistration. Our work advances the scope of persistent intelligence, surveillance, and reconnaissance through the development of 3D visualization and data compression techniques relevant to the tactical operations environment.

  17. Compressing bitmap indices by data reorganization

    Energy Technology Data Exchange (ETDEWEB)

    Pinar, Ali; Tao, Tao; Ferhatosmanoglu, Hakan


    Many scientific applications generate massive volumes of data through observations or computer simulations, bringing up the need for effective indexing methods for efficient storage and retrieval of scientific data. Unlike conventional databases, scientific data is mostly read-only and its volume can reach to the order of petabytes, making a compact index structure vital. Bit map indexing has been successfully applied to scientific databases by exploiting the fact that scientific data are enumerated or numerical. Bitmap indices can be compressed with variants of run length encoding for a compact index structure. However even this may not be enough for the enormous data generated in some applications such as high energy physics. In this paper, we study how to reorganize bitmap tables for improved compression rates. Our algorithms are used just as a preprocessing step, thus there is no need to revise the current indexing techniques and the query processing algorithms. We introduce the tuple reordering problem, which aims to reorganize database tuples for optimal compression rates. We propose Gray code ordering algorithm for this NP-Complete problem, which is an in-place algorithm, and runs in linear time in the order of the size of the database. We also discuss how the tuple reordering problem can be reduced to the traveling salesperson problem. Our experimental results on real data sets show that the compression ratio can be improved by a factor of 4 to 7.

  18. Artificial Neural Network Model for Predicting Compressive

    Directory of Open Access Journals (Sweden)

    Salim T. Yousif


    Full Text Available   Compressive strength of concrete is a commonly used criterion in evaluating concrete. Although testing of the compressive strength of concrete specimens is done routinely, it is performed on the 28th day after concrete placement. Therefore, strength estimation of concrete at early time is highly desirable. This study presents the effort in applying neural network-based system identification techniques to predict the compressive strength of concrete based on concrete mix proportions, maximum aggregate size (MAS, and slump of fresh concrete. Back-propagation neural networks model is successively developed, trained, and tested using actual data sets of concrete mix proportions gathered from literature.    The test of the model by un-used data within the range of input parameters shows that the maximum absolute error for model is about 20% and 88% of the output results has absolute errors less than 10%. The parametric study shows that water/cement ratio (w/c is the most significant factor  affecting the output of the model.     The results showed that neural networks has strong potential as a feasible tool for predicting compressive strength of concrete.

  19. Dynamic mode decomposition for compressive system identification (United States)

    Bai, Zhe; Kaiser, Eurika; Proctor, Joshua L.; Kutz, J. Nathan; Brunton, Steven L.


    Dynamic mode decomposition has emerged as a leading technique to identify spatiotemporal coherent structures from high-dimensional data. In this work, we integrate and unify two recent innovations that extend DMD to systems with actuation and systems with heavily subsampled measurements. When combined, these methods yield a novel framework for compressive system identification, where it is possible to identify a low-order model from limited input-output data and reconstruct the associated full-state dynamic modes with compressed sensing, providing interpretability of the state of the reduced-order model. When full-state data is available, it is possible to dramatically accelerate downstream computations by first compressing the data. We demonstrate this unified framework on simulated data of fluid flow past a pitching airfoil, investigating the effects of sensor noise, different types of measurements (e.g., point sensors, Gaussian random projections, etc.), compression ratios, and different choices of actuation (e.g., localized, broadband, etc.). This example provides a challenging and realistic test-case for the proposed method, and results indicate that the dominant coherent structures and dynamics are well characterized even with heavily subsampled data.

  20. Design Space Approach in Optimization of Fluid Bed Granulation and Tablets Compression Process

    Directory of Open Access Journals (Sweden)

    Jelena Djuriš


    Full Text Available The aim of this study was to optimize fluid bed granulation and tablets compression processes using design space approach. Type of diluent, binder concentration, temperature during mixing, granulation and drying, spray rate, and atomization pressure were recognized as critical formulation and process parameters. They were varied in the first set of experiments in order to estimate their influences on critical quality attributes, that is, granules characteristics (size distribution, flowability, bulk density, tapped density, Carr's index, Hausner's ratio, and moisture content using Plackett-Burman experimental design. Type of diluent and atomization pressure were selected as the most important parameters. In the second set of experiments, design space for process parameters (atomization pressure and compression force and its influence on tablets characteristics was developed. Percent of paracetamol released and tablets hardness were determined as critical quality attributes. Artificial neural networks (ANNs were applied in order to determine design space. ANNs models showed that atomization pressure influences mostly on the dissolution profile, whereas compression force affects mainly the tablets hardness. Based on the obtained ANNs models, it is possible to predict tablet hardness and paracetamol release profile for any combination of analyzed factors.

  1. Design space approach in optimization of fluid bed granulation and tablets compression process. (United States)

    Djuriš, Jelena; Medarević, Djordje; Krstić, Marko; Vasiljević, Ivana; Mašić, Ivana; Ibrić, Svetlana


    The aim of this study was to optimize fluid bed granulation and tablets compression processes using design space approach. Type of diluent, binder concentration, temperature during mixing, granulation and drying, spray rate, and atomization pressure were recognized as critical formulation and process parameters. They were varied in the first set of experiments in order to estimate their influences on critical quality attributes, that is, granules characteristics (size distribution, flowability, bulk density, tapped density, Carr's index, Hausner's ratio, and moisture content) using Plackett-Burman experimental design. Type of diluent and atomization pressure were selected as the most important parameters. In the second set of experiments, design space for process parameters (atomization pressure and compression force) and its influence on tablets characteristics was developed. Percent of paracetamol released and tablets hardness were determined as critical quality attributes. Artificial neural networks (ANNs) were applied in order to determine design space. ANNs models showed that atomization pressure influences mostly on the dissolution profile, whereas compression force affects mainly the tablets hardness. Based on the obtained ANNs models, it is possible to predict tablet hardness and paracetamol release profile for any combination of analyzed factors.

  2. Investigation of the performance of video analytics systems with compressed video using the i-LIDS sterile zone dataset (United States)

    Mahendrarajah, Prashath


    Recent years have seen significant investment and increasingly effective use of Video Analytics (VA) systems to detect intrusion or attacks in sterile areas. Currently there are a number of manufacturers who have achieved the Imagery Library for Intelligent Detection System (i-LIDS) primary detection classification performance standard for the sterile zone detection scenario. These manufacturers have demonstrated the performance of their systems under evaluation conditions using an uncompressed evaluation video. In this paper we consider the effect on the detection rate of an i-LIDS primary approved sterile zone system using compressed sterile zone scenario video clips as the input. The preliminary test results demonstrate a change time of detection rate with compression as the time to alarm increased with greater compression. Initial experiments suggest that the detection performance does not linearly degrade as a function of compression ratio. These experiments form a starting point for a wider set of planned trials that the Home Office will carry out over the next 12 months.

  3. The Basic Principles and Methods of the System Approach to Compression of Telemetry Data (United States)

    Levenets, A. V.


    The task of data compressing of measurement data is still urgent for information-measurement systems. In paper the basic principles necessary for designing of highly effective systems of compression of telemetric information are offered. A basis of the offered principles is representation of a telemetric frame as whole information space where we can find of existing correlation. The methods of data transformation and compressing algorithms realizing the offered principles are described. The compression ratio for offered compression algorithm is about 1.8 times higher, than for a classic algorithm. Thus, results of a research of methods and algorithms showing their good perspectives.

  4. Compression Amplification in Hearing Aids. (United States)

    Hickson, L M


    In this tutorial, the characteristics of compression amplification in analog hearing aids and the experimental results obtained with single- and multichannel compression amplification systems are reviewed. Single-channel compression systems are classified into four broad groups on the basis of their static and dynamic characteristics: compression limiters, syllabic compressors, automatic volume control (AVC) systems, and "others," those with adaptive recovery time (aRT) and dual frontend automatic gain control (AGC) (Moore, 1990; Moore & Glasberg, 1988). Multichannel compression devices have, to date, used a variety of different types of compression, with syllabic compression in each frequency channel being the most popular. Experimental evidence suggests that compression limiting is generally superior to peak clipping as a means of controlling output, except for some individuals with severe to profound hearing loss. There is some evidence that syllabic compression and AVC systems enhance speech perception in quiet compared to conventional linear amplification; however, this improvement is not consistently maintained in the presence of background noise. The majority of recent research has focused on multichannel compression, and favorable results have been obtained with some systems. Research findings about the efficacy of using compression amplification for people with hearing loss have been extremely variable, and possible reasons for this are discussed.

  5. Modelado y experimentación computacional de la etapa de compresión en motores de pistones libres//Modeling and computer experiments of the compression stage in free piston engines

    Directory of Open Access Journals (Sweden)

    Genovevo Morejón-Vizcaino


    Full Text Available En este articulo se alcanzó la obtención de un prototipo analítico de la etapa de combustión de un motor de pistones libres para realizar experimentos virtuales con el propósito de arribar al nuevo conocimiento, necesario para desarrollar un motor de pistones libres multicilindro con una bomba volumétrica, que hagala función, del acumulador hidráulico que emplean los diseños actuales para la carrera de compresión, con la finalidad de mejorar la densidad de potencia y disminuir las exigencias al comportamiento dinámico de los agregados. El método empleado es el “Desarrollo de nuevos productos mecatrónicos”. Se dedujo elmodelo matemático para la etapa de la compresión y aplicando el método de los grafos dicromáticos se obtuvo un algoritmo y el prototipo analítico. Los resultados de los experimentos virtuales muestran diferentes restricciones en la geometría y los materiales a utilizar así como las tendencias en el comportamiento de los diferentes parámetros hidráulicos.Palabras claves: motores de pistones libres, experimentos computacionales, prototipos analíticos, modelos matemáticos, oleohidráulica._____________________________________________________________________________AbstractThe goal of the investigation is the development of a free piston engine with an auxiliary hydraulic bomb that substitutes the function of the hydraulic accumulator with the objective of to improve the density of power and to diminish the demands in the dynamic behavior of the components. The used method is the“Development of new products mecatrónicos". In the investigation to arrive to the new knowledge an analytic prototype is developed to carry out PC-experiments. The mathematical model is deduced for the stage of the compression, the algorithm and the analytic prototype was obtained. The results of theexperiments show different restrictions in the geometry and the materials to use as well as the tendencies in the behavior of the

  6. An Energy Efficient Compressed Sensing Framework for the Compression of Electroencephalogram Signals

    Directory of Open Access Journals (Sweden)

    Simon Fauvel


    Full Text Available The use of wireless body sensor networks is gaining popularity in monitoring and communicating information about a person’s health. In such applications, the amount of data transmitted by the sensor node should be minimized. This is because the energy available in these battery powered sensors is limited. In this paper, we study the wireless transmission of electroencephalogram (EEG signals. We propose the use of a compressed sensing (CS framework to efficiently compress these signals at the sensor node. Our framework exploits both the temporal correlation within EEG signals and the spatial correlations amongst the EEG channels. We show that our framework is up to eight times more energy efficient than the typical wavelet compression method in terms of compression and encoding computations and wireless transmission. We also show that for a fixed compression ratio, our method achieves a better reconstruction quality than the CS-based state-of-the art method. We finally demonstrate that our method is robust to measurement noise and to packet loss and that it is applicable to a wide range of EEG signal types.

  7. Cylindrical isentropic compression by ultrahigh magnetic field (United States)

    Gu, Zhuowei; Luo, Hao; Zhang, Hengdi; Zhao, Shichao; Tang, Xiaosong; Tong, Yanjin; Song, Zhenfei; Tan, Fuli; Zhao, Jianheng; Sun, Chengwei


    The cylindrical isentropic compression by ultrahigh magnetic field (MC-1) is a kind of unique high energy density technique. It has characters like ultrahigh pressure and low temperature rising, and would have widely used in areas like high pressure physics, new material synthesis and ultrahigh magnetic field physics. The Institute of Fluid Physics, Chinese Academy of Engineering Physics (IFP, CAEP) has begun the experiment since 2011 and a primary experimental device had been set-up. In the experiments, a seed magnetic field of 5 Tesla were set-up first and compressed by a stainless steel liner which is driven by high explosive initiated synchronously. The internal diameter of the liner is 97 mm, and its thickness is 1.5 mm. The movement of liner was recorded optically and a typical turnaround phenomenon was observed. From the photography results the liner was compressed smoothly and evenly and its average velocity was about 5-6 km/s. In the experiment a axial magnetic field of over 1400 Tesla has been recorded. The MC-1 process was numerical simulated by 1D MHD code MC11D and the simulations are in accord with the experiments.

  8. n-Gram-Based Text Compression

    Directory of Open Access Journals (Sweden)

    Vu H. Nguyen


    Full Text Available We propose an efficient method for compressing Vietnamese text using n-gram dictionaries. It has a significant compression ratio in comparison with those of state-of-the-art methods on the same dataset. Given a text, first, the proposed method splits it into n-grams and then encodes them based on n-gram dictionaries. In the encoding phase, we use a sliding window with a size that ranges from bigram to five grams to obtain the best encoding stream. Each n-gram is encoded by two to four bytes accordingly based on its corresponding n-gram dictionary. We collected 2.5 GB text corpus from some Vietnamese news agencies to build n-gram dictionaries from unigram to five grams and achieve dictionaries with a size of 12 GB in total. In order to evaluate our method, we collected a testing set of 10 different text files with different sizes. The experimental results indicate that our method achieves compression ratio around 90% and outperforms state-of-the-art methods.

  9. Effects of Mineral Admixtures, Water Binder Ratio and Curing on ...

    African Journals Online (AJOL)

    This paper presents the laboratory investigation on the effects of mineral admixtures and water binder ratio on compressive strength is discussed. The study was conducted for three different mineral admixtures namely; FA, SF and Mk with different water cement ratios of 0.32, 0.35, 0.4 and 0.5. The admixture proportion ...

  10. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    Directory of Open Access Journals (Sweden)

    Qihui Yu


    Full Text Available A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.

  11. Changes of strength characteristics of pervious concrete due to variations in water to cement ratio (United States)

    Kovac, M.; Sicakova, A.


    Pervious concrete is considered to be a sustainable pavement material due to high water permeability. The experiment presented in this paper was aimed at study the influence of water to cement ratio on both the compressive and splitting tensile strength of pervious concrete. Typically, less water content in concrete mixture leads to less porosity of cement paste and thus it provides desirable mechanical properties. In case of conventional dense concrete, the lower is the water to cement ratio, the higher or better is the strength, density and durability of concrete. This behaviour is not quite clear in case of pervious concrete because of low amount of cement paste present. Results of compressive and splitting tensile strength of pervious concrete are discussed in the paper while taking into account values measured after 2 and 28 days of hardening and variations in water to cement ratio. The results showed that changes of water to cement ratio from 0.25 to 0.35 caused only slight differences in strength characteristics, and this applied to both types of tested strength.

  12. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhi, E-mail: [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China); He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)


    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO{sub x} emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  13. Velocity and Magnetic Compressions in FEL Drivers

    CERN Document Server

    Serafini, L


    We will compare merits and issues of these two techniques suitable for increasing the peak current of high brightness electron beams. The typical range of applicability is low energy for the velocity bunching and middle to high energy for magnetic compression. Velocity bunching is free from CSR effects but requires very high RF stability (time jitters), as well as a dedicated additional focusing and great cure in the beam transport: it is very well understood theoretically and numerical simulations are pretty straightforward. Several experiments of velocity bunching have been performed in the past few years: none of them, nevertheless, used a photoinjector designed and optimized for that purpose. Magnetic compression is a much more consolidated technique: CSR effects and micro-bunch instabilities are its main drawbacks. There is a large operational experience with chicanes used as magnetic compressors and their theoretical understanding is quite deep, though numerical simulations of real devices are still cha...

  14. Compressible turbulent flows: aspects of prediction and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, R. [TU Muenchen, Garching (Germany). Fachgebiet Stroemungsmechanik


    Compressible turbulent flows are an important element of high-speed flight. Boundary layers developing along fuselage and wings of an aircraft and along engine compressor and turbine blades are compressible and mostly turbulent. The high-speed flow around rockets and through rocket nozzles involves compressible turbulence and flow separation. Turbulent mixing and combustion in scramjet engines is another example where compressibility dominates the flow physics. Although compressible turbulent flows have attracted researchers since the fifties of the last century, they are not completely understood. Especially interactions between compressible turbulence and combustion lead to challenging, yet unsolved problems. Direct numerical simulation (DNS) and large-eddy simulation (LES) represent modern powerful research tools which allow to mimic such flows in great detail and to analyze underlying physical mechanisms, even those which cannot be accessed by the experiment. The present lecture provides a short description of these tools and some of their numerical characteristics. It then describes DNS and LES results of fully-developed channel and pipe flow and highlights effects of compressibility on the turbulence structure. The analysis of pressure fluctuations in such flows with isothermal cooled walls leads to the conclusion that the pressure-strain correlation tensor decreases in the wall layer and that the turbulence anisotropy increases, since the mean density falls off relative to the incompressible flow case. Similar increases in turbulence anisotropy due to compressibility are observed in inert and reacting temporal mixing layers. The nature of the pressure fluctuations is however two-facetted. While inert compressible mixing layers reveal wave-propagation effects in the pressure and density fluctuations, compressible reacting mixing layers seem to generate pressure fluctuations that are controlled by the time-rate of change of heat release and mean density

  15. Mammographic compression in Asian women (United States)

    Lau, Susie; Abdul Aziz, Yang Faridah; Ng, Kwan Hoong


    Objectives To investigate: (1) the variability of mammographic compression parameters amongst Asian women; and (2) the effects of reducing compression force on image quality and mean glandular dose (MGD) in Asian women based on phantom study. Methods We retrospectively collected 15818 raw digital mammograms from 3772 Asian women aged 35–80 years who underwent screening or diagnostic mammography between Jan 2012 and Dec 2014 at our center. The mammograms were processed using a volumetric breast density (VBD) measurement software (Volpara) to assess compression force, compression pressure, compressed breast thickness (CBT), breast volume, VBD and MGD against breast contact area. The effects of reducing compression force on image quality and MGD were also evaluated based on measurement obtained from 105 Asian women, as well as using the RMI156 Mammographic Accreditation Phantom and polymethyl methacrylate (PMMA) slabs. Results Compression force, compression pressure, CBT, breast volume, VBD and MGD correlated significantly with breast contact area (pimage quality (p>0.05). Conclusions Force-standardized protocol led to widely variable compression parameters in Asian women. Based on phantom study, it is feasible to reduce compression force up to 32.5% with minimal effects on image quality and MGD. PMID:28419125

  16. Relating the molecular structure of comb-type superplasticizers to the compression rheology of MgO suspensions

    DEFF Research Database (Denmark)

    Kjeldsen, Ane Mette; Flatt, Rober Johan; Bergström, Lennart


    chains. Consolidation experiments, where the volume fraction gradient of particle networks has been determined in response to a centrifugal force field, offer a simple, yet accurate, way of investigating flocculated, partly stabilized and stable suspensions under compression. The compression rheology...

  17. International magnetic pulse compression (United States)

    Kirbie, H. C.; Newton, M. A.; Siemens, P. D.


    Although pulsed-power engineering traditionally has been practiced by a fairly small, close community in the areas of defense and energy research, it is becoming more common in high-power, high-energy commercial pursuits such as material processing and lasers. This paper is a synopsis of the Feb. 12-14, 1990 workshop on magnetic switching as it applies primarily to pulse compression (power transformation). During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card - its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.

  18. Compressive Transient Imaging

    KAUST Repository

    Sun, Qilin


    High resolution transient/3D imaging technology is of high interest in both scientific research and commercial application. Nowadays, all of the transient imaging methods suffer from low resolution or time consuming mechanical scanning. We proposed a new method based on TCSPC and Compressive Sensing to achieve a high resolution transient imaging with a several seconds capturing process. Picosecond laser sends a serious of equal interval pulse while synchronized SPAD camera\\'s detecting gate window has a precise phase delay at each cycle. After capturing enough points, we are able to make up a whole signal. By inserting a DMD device into the system, we are able to modulate all the frames of data using binary random patterns to reconstruct a super resolution transient/3D image later. Because the low fill factor of SPAD sensor will make a compressive sensing scenario ill-conditioned, We designed and fabricated a diffractive microlens array. We proposed a new CS reconstruction algorithm which is able to denoise at the same time for the measurements suffering from Poisson noise. Instead of a single SPAD senor, we chose a SPAD array because it can drastically reduce the requirement for the number of measurements and its reconstruction time. Further more, it not easy to reconstruct a high resolution image with only one single sensor while for an array, it just needs to reconstruct small patches and a few measurements. In this thesis, we evaluated the reconstruction methods using both clean measurements and the version corrupted by Poisson noise. The results show how the integration over the layers influence the image quality and our algorithm works well while the measurements suffer from non-trival Poisson noise. It\\'s a breakthrough in the areas of both transient imaging and compressive sensing.

  19. Fast Compressive Tracking. (United States)

    Zhang, Kaihua; Zhang, Lei; Yang, Ming-Hsuan


    It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-independent basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance model. We compress sample images of the foreground target and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A coarse-to-fine search strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in terms of efficiency, accuracy and robustness.

  20. Compression and rupture cycles as tools for compressibility characterization application to apatitic calcium phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Pontier, C. [S.P.C.T.S., Faculte des Sciences, Limoges (France); G.E.F., Faculte de Pharmacie, Limoges (France); Viana, M.; Chulia, D. [G.E.F., Faculte de Pharmacie, Limoges (France); Champion, E.; Bernache-Assollant, D. [S.P.C.T.S., Faculte des Sciences, Limoges (France)


    Measurement of the cycles of compression and rupture helps to understand the phenomena occurring during compaction. Different parameters are deduced from the cycles, such as the packing of the material and energies used during compression. The ratio between the energy of rupture and the energy of compaction defines the efficacy of compaction of the materials. This technique is applied to ceramic materials using apatitic calcium phosphates with a Ca/P molar ratio of 1.5 (apatitic tricalcium phosphate and {beta}-tricalcium phosphate) and 1.667 (stoichiometric hydroxyapatite). The methodology uses a uniaxial instrumented press to plot the cycles of compaction and rupture. The results point out the good compaction and cohesion properties of apatitic tricalcium phosphate, compared to the other apatitic materials. (orig.)

  1. Analysis by compression

    DEFF Research Database (Denmark)

    Meredith, David

    MEL is a geometric music encoding language designed to allow for musical objects to be encoded parsimoniously as sets of points in pitch-time space, generated by performing geometric transformations on component patterns. MEL has been implemented in Java and coupled with the SIATEC pattern discov...... discovery algorithm to allow for compact encodings to be generated automatically from in extenso note lists. The MEL-SIATEC system is founded on the belief that music analysis and music perception can be modelled as the compression of in extenso descriptions of musical objects....

  2. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben


    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...

  3. Breast compression in mammography: how much is enough? (United States)

    Poulos, Ann; McLean, Donald; Rickard, Mary; Heard, Robert


    The amount of breast compression that is applied during mammography potentially influences image quality and the discomfort experienced. The aim of this study was to determine the relationship between applied compression force, breast thickness, reported discomfort and image quality. Participants were women attending routine breast screening by mammography at BreastScreen New South Wales Central and Eastern Sydney. During the mammographic procedure, an 'extra' craniocaudal (CC) film was taken at a reduced level of compression ranging from 10 to 30 Newtons. Breast thickness measurements were recorded for both the normal and the extra CC film. Details of discomfort experienced, cup size, menstrual status, existing breast pain and breast problems were also recorded. Radiologists were asked to compare the image quality of the normal and manipulated film. The results indicated that 24% of women did not experience a difference in thickness when the compression was reduced. This is an important new finding because the aim of breast compression is to reduce breast thickness. If breast thickness is not reduced when compression force is applied then discomfort is increased with no benefit in image quality. This has implications for mammographic practice when determining how much breast compression is sufficient. Radiologists found a decrease in contrast resolution within the fatty area of the breast between the normal and the extra CC film, confirming a decrease in image quality due to insufficient applied compression force.

  4. Frequency domain speech compression using the Karhunen-Loeve Transform (United States)

    Dryley, Donald W.


    The purpose of this study was to test the influence of phase on the quality of speech reproduced by a speaker dependent compression system. The tests consisted of compressing frequency domain speech vectors using the Karhunen-Loeve Transform, with and without phase, then making subjective judgements as to the reproduced quality. Error Metrics were then tested for their suitability as predictors of reproduced quality. The compression software transformed each speech vector into a vector of complex Fourier coefficients (only half of the coefficients are needed as transform is hermitian). Phase was preserved by using the real frequency components to form one vector and the corresponding imaginary components to form a second vector of real numbers which were then separately compressed. The expanded vectors were recombined and speech reconstructed by Inverse Fourier Transformation. Compression ratios of 8:1 could be achieved without any perceivable difference between the original speech and reconstructed speech by minimizing the MSE of each vector of the pair. The 8:1 Compression Ratio corresponded to a covariance matrix Condition Number of 200. Recommendations for further study into voice characterization and an optimal transform for speech are made.

  5. Axial Compressive Strength of Foamcrete with Different Profiles and Dimensions

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.


    Full Text Available Lightweight foamcrete is a versatile material; primarily consist of a cement based mortar mixed with at least 20% volume of air. High flow ability, lower self-weight, minimal requirement of aggregate, controlled low strength and good thermal insulation properties are a few characteristics of foamcrete. Its dry densities, typically, is below 1600kg/m3 with compressive strengths maximum of 15MPa. The ASTM standard provision specifies a correction factor for concrete strengths of between 14 and 42MPa to compensate for the reduced strength when the aspect height-to-diameter ratio of specimen is less than 2.0, while the CEB-FIP provision specifically mentions the ratio of 150 x 300mm cylinder strength to 150 mm cube strength. However, both provisions requirements do not specifically clarify the applicability and/or modification of the correction factors for the compressive strength of foamcrete. This proposed laboratory work is intended to study the effect of different dimensions and profiles on the axial compressive strength of concrete. Specimens of various dimensions and profiles are cast with square and circular cross-sections i.e., cubes, prisms and cylinders, and to investigate their behavior in compression strength at 7 and 28 days. Hypothetically, compressive strength will decrease with the increase of concrete specimen dimension and concrete specimen with cube profile would yield comparable compressive strength to cylinder (100 x 100 x 100mm cube to 100dia x 200mm cylinder.

  6. Compressive Sensing-Based Detection With Multimodal Dependent Data (United States)

    Wimalajeewa, Thakshila; Varshney, Pramod K.


    Detection with high dimensional multimodal data is a challenging problem when there are complex inter- and intra- modal dependencies. While several approaches have been proposed for dependent data fusion (e.g., based on copula theory), their advantages come at a high price in terms of computational complexity. In this paper, we treat the detection problem with compressive sensing (CS) where compression at each sensor is achieved via low dimensional random projections. CS has recently been exploited to solve detection problems under various assumptions on the signals of interest, however, its potential for dependent data fusion has not been explored adequately. We exploit the capability of CS to capture statistical properties of uncompressed data in order to compute decision statistics for detection in the compressed domain. First, a Gaussian approximation is employed to perform likelihood ratio (LR) based detection with compressed data. In this approach, inter-modal dependence is captured via a compressed version of the covariance matrix of the concatenated (temporally and spatially) uncompressed data vector. We show that, under certain conditions, this approach with a small number of compressed measurements per node leads to enhanced performance compared to detection with uncompressed data using widely considered suboptimal approaches. Second, we develop a nonparametric approach where a decision statistic based on the second order statistics of uncompressed data is computed in the compressed domain. The second approach is promising over other related nonparametric approaches and the first approach when multimodal data is highly correlated at the expense of slightly increased computational complexity.

  7. RACBVHs: random-accessible compressed bounding volume hierarchies. (United States)

    Kim, Tae-Joon; Moon, Bochang; Kim, Duksu; Yoon, Sung-Eui


    We present a novel compressed bounding volume hierarchy (BVH) representation, random-accessible compressed bounding volume hierarchies (RACBVHs), for various applications requiring random access on BVHs of massive models. Our RACBVH representation is compact and transparently supports random access on the compressed BVHs without decompressing the whole BVH. To support random access on our compressed BVHs, we decompose a BVH into a set of clusters. Each cluster contains consecutive bounding volume (BV) nodes in the original layout of the BVH. Also, each cluster is compressed separately from other clusters and serves as an access point to the RACBVH representation. We provide the general BVH access API to transparently access our RACBVH representation. At runtime, our decompression framework is guaranteed to provide correct BV nodes without decompressing the whole BVH. Also, our method is extended to support parallel random access that can utilize the multicore CPU architecture. Our method can achieve up to a 12:1 compression ratio, and more importantly, can decompress 4.2 M BV nodes ({=}135 {\\rm MB}) per second by using a single CPU-core. To highlight the benefits of our approach, we apply our method to two different applications: ray tracing and collision detection. We can improve the runtime performance by more than a factor of 4 as compared to using the uncompressed original data. This improvement is a result of the fast decompression performance and reduced data access time by selectively fetching and decompressing small regions of the compressed BVHs requested by applications.

  8. Stored energy function and compressibility of compressible rubberlike materials under large strain (United States)

    Peng, S. T. J.; Landel, R. F.


    By using new invariants in the theory of finite elasticity an expression is obtained for the stored energy function of slightly compressible materials in which the effects of the distortional change (change of shape) and of the volume change are clearly separated. The volume-related terms are expressed as a function of the third invariant, the classical compressibility, and an induced anisotropy of the effective compressibility which is due to the large deformations. After evaluating the terms, using data on pressure, volume, uniaxial strain, and fractional volume change vs strain data on natural rubber from the literature, it is shown that the volume change contribution to the total stress observed in a simple tensile experiment can be clearly separated from the distortional contribution, even at finite strains.

  9. Introduction to compressible fluid flow

    CERN Document Server

    Oosthuizen, Patrick H


    IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices

  10. Shock compression of precompressed deuterium (United States)

    Armstrong, Michael; Crowhurst, Jonathan; Goncharov, Alexander; Zaug, Joseph; Bastea, Sorin; Militzer, Burkhard


    Here we report quasi-isentropic dynamic compression and thermodynamic characterization of solid, precompressed deuterium over an ultra fast time scale (< 100 ps) and a microscopic length scale (< 1 ìm). We further report a fast transition in dynamically compressed solid deuterium that is consistent with the ramp to shock transition, with a time scale of less than 10 ps. These results suggest that high density dynamic compression of hydrogen may be possible on microscopic length scales.

  11. Abundance Estimation of Hyperspectral Data with Low Compressive Sampling Rate (United States)

    Wang, Zhongliang; Feng, Yan


    Hyperspectral data processing typically demands enormous computational resources in terms of storage, computation, and I/O throughputs. In this paper, a compressive sensing framework with low sampling rate is described for hyperspectral imagery. It is based on the widely used linear spectral mixture model. Abundance fractions can be calculated directly from compressively sensed data with no need to reconstruct original hyperspectral imagery. The proposed abundance estimation model is based on the sparsity of abundance fractions and an alternating direction method of multipliers is developed to solve this model. Experiments show that the proposed scheme has a high potential to unmix compressively sensed hyperspectral data with low sampling rate.

  12. Hugoniot and refractive indices of bromoform under shock compression

    Directory of Open Access Journals (Sweden)

    Q. C. Liu


    Full Text Available We investigate physical properties of bromoform (liquid CHBr3 including compressibility and refractive index under dynamic extreme conditions of shock compression. Planar shock experiments are conducted along with high-speed laser interferometry. Our experiments and previous results establish a linear shock velocity−particle velocity relation for particle velocities below 1.77 km/s, as well as the Hugoniot and isentropic compression curves up to ∼21 GPa. Shock-state refractive indices of CHBr3 up to 2.3 GPa or ∼26% compression, as a function of density, can be described with a linear relation and follows the Gladstone-Dale relation. The velocity corrections for laser interferometry measurements at 1550 nm are also obtained.

  13. Adapted LZW Protocol for ‎ ECG Data Compression

    Directory of Open Access Journals (Sweden)

    Saif M. Kh. Al-alak


    Full Text Available Lempel–Ziv–Welch (LZW is a data compression method, which is adopted by many applications likes Electrocardiography (ECG data to reduce the size of transferred data. Because of the ECG data moves over the network all the time, which means there is a need to reduce its size to improve the network performance. In this paper, we concerned with the LZW method, which is one of the important and famous data compression method. We propose a protocol to improve the way in which the LZW saving an index for the compressed data. The proposed protocol could reduce the size of the index in LZW method. Five samples data groups provided by Physionet are used for evaluation. The experimental result shows that the proposed protocol can give best compression ratio compared with the original method.

  14. Generation new MP3 data set after compression (United States)

    Atoum, Mohammed Salem; Almahameed, Mohammad


    The success of audio steganography techniques is to ensure imperceptibility of the embedded secret message in stego file and withstand any form of intentional or un-intentional degradation of secret message (robustness). Crucial to that using digital audio file such as MP3 file, which comes in different compression rate, however research studies have shown that performing steganography in MP3 format after compression is the most suitable one. Unfortunately until now the researchers can not test and implement their algorithm because no standard data set in MP3 file after compression is generated. So this paper focuses to generate standard data set with different compression ratio and different Genre to help researchers to implement their algorithms.

  15. A comparative study of SAR data compression schemes (United States)

    Lambert-Nebout, C.; Besson, O.; Massonnet, D.; Rogron, B.


    The amount of data collected from spaceborne remote sensing has substantially increased in the last years. During same time period, the ability to store or transmit data has not increased as quickly. At this time, there is a growing interest in developing compression schemes that could provide both higher compression ratios and lower encoding/decoding errors. In the case of the spaceborne Synthetic Aperture Radar (SAR) earth observation system developed by the French Space Agency (CNES), the volume of data to be processed will exceed both the on-board storage capacities and the telecommunication link. The objective of this paper is twofold: to present various compression schemes adapted to SAR data; and to define a set of evaluation criteria and compare the algorithms on SAR data. In this paper, we review two classical methods of SAR data compression and propose novel approaches based on Fourier Transforms and spectrum coding.

  16. Spectroscopic insight for tablet compression. (United States)

    Lakio, S; Ylinärä, H; Antikainen, O; Räikkönen, H; Yliruusi, J


    Tablet compression process has been studied over the years from various perspectives. However what exactly happens to material during compression is still unknown. In this study a novel compression die which enables real-time spectroscopic measurements during the compression of material is represented. Both near infrared and Raman spectroscope probes can be attached to the die. In this study the usage of the die is demonstrated by using Raman spectroscopy. Eicosane, d-glucose anhydrate, α-lactose monohydrate and xylitol were used in the study because their compression behavior and bonding properties during compression were assumed to be different. The intensity of the Raman signal changed during compression with all of the materials. However, the intensity changes were different within the materials. The biggest differences were within the xylitol spectra. It was noticed that some peaks disappeared with higher compression pressures indicating that the pressure affected variously on different bonds in xylitol structure. These reversible changes were supposed to relate the changes in conformation and crystal structure. As a conclusion, the die was found to be a significant addition for studying compression process in real-time. It can help to reveal Process induced transformations (PITs) occurring during powder compaction. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Lossless Compression of Broadcast Video

    DEFF Research Database (Denmark)

    Martins, Bo; Eriksen, N.; Faber, E.


    We investigate several techniques for lossless and near-lossless compression of broadcast video.The emphasis is placed on the emerging international standard for compression of continous-tone still images, JPEG-LS, due to its excellent compression performance and moderatecomplexity. Except for one...... artificial sequence containing uncompressible data all the 4:2:2, 8-bit test video material easily compresses losslessly to a rate below 125 Mbit/s. At this rate, video plus overhead can be contained in a single telecom 4th order PDH channel or a single STM-1 channel. Difficult 4:2:2, 10-bit test material...

  18. Compression Frequency Choice for Compression Mass Gauge Method and Effect on Measurement Accuracy (United States)

    Fu, Juan; Chen, Xiaoqian; Huang, Yiyong


    It is a difficult job to gauge the liquid fuel mass in a tank on spacecrafts under microgravity condition. Without the presence of strong buoyancy, the configuration of the liquid and gas in the tank is uncertain and more than one bubble may exist in the liquid part. All these will affect the measure accuracy of liquid mass gauge, especially for a method called Compression Mass Gauge (CMG). Four resonance resources affect the choice of compression frequency for CMG method. There are the structure resonance, liquid sloshing, transducer resonance and bubble resonance. Ground experimental apparatus are designed and built to validate the gauging method and the influence of different compression frequencies at different fill levels on the measurement accuracy. Harmonic phenomenon should be considered during filter design when processing test data. Results demonstrate the ground experiment system performances well with high accuracy and the measurement accuracy increases as the compression frequency climbs in low fill levels. But low compression frequencies should be the better choice for high fill levels. Liquid sloshing induces the measurement accuracy to degrade when the surface is excited to wave by external disturbance at the liquid natural frequency. The measurement accuracy is still acceptable at small amplitude vibration.

  19. The Development of the Electrically Controlled High Power RF Switch and Its Application to Active RF Pulse Compression Systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiquan [Stanford Univ., CA (United States)


    In the past decades, there has been increasing interest in pulsed high power RF sources for building high-gradient high-energy particle accelerators. Passive RF pulse compression systems have been used in many applications to match the available RF sources to the loads requiring higher RF power but a shorter pulse. Theoretically, an active RF pulse compression system has the advantage of higher efficiency and compactness over the passive system. However, the key component for such a system an element capable of switching hundreds of megawatts of RF power in a short time compared to the compressed pulse width is still an open problem. In this dissertation, we present a switch module composed of an active window based on the bulk effects in semiconductor, a circular waveguide three-port network and a movable short plane, with the capability to adjust the S-parameters before and after switching. The RF properties of the switch module were analyzed. We give the scaling laws of the multiple-element switch systems, which allow the expansion of the system to a higher power level. We present a novel overmoded design for the circular waveguide three-port network and the associated circular-to-rectangular mode-converter. We also detail the design and synthesis process of this novel mode-converter. We demonstrate an electrically controlled ultra-fast high power X-band RF active window built with PIN diodes on high resistivity silicon. The window is capable of handling multi-megawatt RF power and can switch in 2-300ns with a 1000A current driver. A low power active pulse compression experiment was carried out with the switch module and a 375ns resonant delay line, obtaining 8 times compression gain with a compression ratio of 20.

  20. Prediction of compressibility parameters of the soils using artificial neural network. (United States)

    Kurnaz, T Fikret; Dagdeviren, Ugur; Yildiz, Murat; Ozkan, Ozhan


    The compression index and recompression index are one of the important compressibility parameters to determine the settlement calculation for fine-grained soil layers. These parameters can be determined by carrying out laboratory oedometer test on undisturbed samples; however, the test is quite time-consuming and expensive. Therefore, many empirical formulas based on regression analysis have been presented to estimate the compressibility parameters using soil index properties. In this paper, an artificial neural network (ANN) model is suggested for prediction of compressibility parameters from basic soil properties. For this purpose, the input parameters are selected as the natural water content, initial void ratio, liquid limit and plasticity index. In this model, two output parameters, including compression index and recompression index, are predicted in a combined network structure. As the result of the study, proposed ANN model is successful for the prediction of the compression index, however the predicted recompression index values are not satisfying compared to the compression index.

  1. High bit depth infrared image compression via low bit depth codecs

    DEFF Research Database (Denmark)

    Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren

    Future infrared remote sensing systems, such as monitoring of the Earth's environment by satellites, infrastructure inspection by unmanned airborne vehicles etc., will require 16 bit depth infrared images to be compressed and stored or transmitted for further analysis. Such systems are equipped...... with low power embedded platforms where image or video data is compressed by a hardware block called the video processing unit (VPU). However, in many cases using two 8-bit VPUs can provide advantages compared with using higher bit depth image compression directly. We propose to compress 16 bit depth...... by an image or video codec with 8 bits per pixel input format. We analyze how the compression parameters for both MSB and LSB images should be chosen to provide the maximum objective quality for a given compression ratio. Finally, we apply the proposed infrared image compression method utilizing JPEG and H...

  2. Performance of a Discrete Wavelet Transform for Compressing Plasma Count Data and its Application to the Fast Plasma Investigation on NASA's Magnetospheric Multiscale Mission (United States)

    Barrie, Alexander C.; Yeh, Penshu; Dorelli, John C.; Clark, George B.; Paterson, William R.; Adrian, Mark L.; Holland, Matthew P.; Lobell, James V.; Simpson, David G.; Pollock, Craig J.; hide


    Plasma measurements in space are becoming increasingly faster, higher resolution, and distributed over multiple instruments. As raw data generation rates can exceed available data transfer bandwidth, data compression is becoming a critical design component. Data compression has been a staple of imaging instruments for years, but only recently have plasma measurement designers become interested in high performance data compression. Missions will often use a simple lossless compression technique yielding compression ratios of approximately 2:1, however future missions may require compression ratios upwards of 10:1. This study aims to explore how a Discrete Wavelet Transform combined with a Bit Plane Encoder (DWT/BPE), implemented via a CCSDS standard, can be used effectively to compress count information common to plasma measurements to high compression ratios while maintaining little or no compression error. The compression ASIC used for the Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale mission (MMS) is used for this study. Plasma count data from multiple sources is examined: resampled data from previous missions, randomly generated data from distribution functions, and simulations of expected regimes. These are run through the compression routines with various parameters to yield the greatest possible compression ratio while maintaining little or no error, the latter indicates that fully lossless compression is obtained. Finally, recommendations are made for future missions as to what can be achieved when compressing plasma count data and how best to do so.

  3. Effective reduction of in-cylinder peak pressures in Homogeneous Charge Compression Ignition Engine – A computational study

    Directory of Open Access Journals (Sweden)

    T. Karthikeya Sharma


    Full Text Available HCCI mode of combustion is known for simultaneous reduction of NOx and PM emissions besides yielding low specific fuel consumption. The nature of volumetric combustion of HCCI engine leads to the development of high peak pressures inside the combustion chamber. This high peak pressures may damage the engine, limiting the HCCI engine life period and thus demands sturdy designs. In this study an attempt is made to analyze computationally the effect of induction swirl in reducing the peak pressures of a HCCI engine under various operating parameters. For the study, specifications of a single cylinder 1.6 L, reentrant piston bowl diesel engine are chosen. For the computational analysis ECFM-3Z model of STARCD is considered. This model is suitable to analyze the combustion processes in SI and CI engines. As HCCI engine is a hybrid version of SI and CI engines, ECFM-3Z model with necessary modifications is used to analyze the peak pressures inside the combustion chamber. The ECFM-3Z model for HCCI mode of combustion is validated with the existing literature to make sure that the results obtaining are accurate. Numerical experiments are performed to study the effect of compression ratio, equivalence ratio, exhaust gas recirculation and boost pressure under different swirl ratios in reducing the in-cylinder peak pressures. The results showed that swirl ratio has a considerable impact in limiting the peak pressures of HCCI engine. The analysis resulted in achieving about 21% reduction in peak pressures are achieved when a swirl ratio of 4 with 30% EGR is adopted when compared to a swirl ratio of 1 with 0% EGR. The study revealed that out of the four operating parameters selected, lower compression ratios, higher EGR concentrations, lower equivalence ratios, lower boost pressures and higher swirl ratios are favorable in reducing the peak pressures.



    Faiza Mekhalfa; Daoud Berkani


    Based on the standard fractal transformation in spatial domain, simple relations may be found relating coefficients in detail subbands in the wavelet domain. In this work we evaluate a hybrid wavelet-fractal image coder, and we test its ability to compress radiographic images of weld defects. A comparative study between the hybrid coder and standard fractal compression technique have been made in order to investigate the compression ratio and corresponding quality of the image using peak sign...

  5. Magnetic Flux Compression Concept for Nuclear Pulse Propulsion and Power (United States)

    Litchford, Ronald J.


    The desire for fast, efficient interplanetary transport requires propulsion systems having short acceleration times and very high specific impulse attributes. Unfortunately, most highly efficient propulsion systems which are within the capabilities of present day technologies are either very heavy or yield very low impulse such that the acceleration time to final velocity is too long to be of lasting interest, One exception, the nuclear thermal thruster, could achieve the desired acceleration but it would require inordinately large mass ratios to reach the range of desired final velocities. An alternative approach, among several competing concepts that are beyond our modern technical capabilities, is a pulsed thermonuclear device utilizing microfusion detonations. In this paper, we examine the feasibility of an innovative magnetic flux compression concept for utilizing microfusion detonations, assuming that such low yield nuclear bursts can be realized in practice. In this concept, a magnetic field is compressed between an expanding detonation driven diamagnetic plasma and a stationary structure formed from a high temperature superconductor (HTSC). In general, we are interested in accomplishing two important functions: (1) collimation of a hot diamagnetic plasma for direct thrust production; and (2) pulse power generation for dense plasma ignition. For the purposes of this research, it is assumed that rnicrofusion detonation technology may become available within a few decades, and that this approach could capitalize on recent advances in inertial confinement fusion ICF) technologies including magnetized target concepts and antimatter initiated nuclear detonations. The charged particle expansion velocity in these detonations can be on the order of 10 (exp 6)- 10 (exp 7) meters per second, and, if effectively collimated by a magnetic nozzle, can yield the Isp and the acceleration levels needed for practical interplanetary spaceflight. The ability to ignite pure

  6. Issues with Strong Compression of Plasma Target by Stabilized Imploding Liner (United States)

    Turchi, Peter; Frese, Sherry; Frese, Michael


    Strong compression (10:1 in radius) of an FRC by imploding liquid metal liners, stabilized against Rayleigh-Taylor modes, using different scalings for loss based on Bohm vs 100X classical diffusion rates, predict useful compressions with implosion times half the initial energy lifetime. The elongation (length-to-diameter ratio) near peak compression needed to satisfy empirical stability criterion and also retain alpha-particles is about ten. The present paper extends these considerations to issues of the initial FRC, including stability conditions (S*/E) and allowable angular speeds. Furthermore, efficient recovery of the implosion energy and alpha-particle work, in order to reduce the necessary nuclear gain for an economical power reactor, is seen as an important element of the stabilized liner implosion concept for fusion. We describe recent progress in design and construction of the high energy-density prototype of a Stabilized Liner Compressor (SLC) leading to repetitive laboratory experiments to develop the plasma target. Supported by ARPA-E ALPHA Program.

  7. Characterization of the constitutive behavior of municipal solid waste considering particle compressibility. (United States)

    Lü, Xilin; Zhai, Xinle; Huang, Maosong


    This paper presents a characterization of the mechanical behavior of municipal solid waste (MSW) under consolidated drained and undrained triaxial conditions. The constitutive model was established based on a deviatoric hardening plasticity model. A power form function and incremental hyperbolic form function were proposed to describe the shear strength and the hardening role of MSW. The stress ratio that corresponds to the zero dilatancy was not fixed but depended on mean stress, making the Rowe's rule be able to describe the stress-dilatancy of MSW. A pore water pressure reduction coefficient, which attributed to the compressibility of a particle and the solid matrix, was introduced to the effective stress formulation to modify the Terzaghi's principle. The effects of particle compressibility and solid matrix compressibility on the undrained behavior of MSW were analyzed by parametric analysis, and the changing characteristic of stress-path, stress-strain, and pore-water pressure were obtained. The applicability of the proposed model on MSW under drained and undrained conditions was verified by model predictions of three triaxial tests. The comparison between model simulations and experiments indicated that the proposed model can capture the observed different characteristics of MSW response from normal soil, such as nonlinear shear strength, pressure dependent stress dilatancy, and the reduced value of pore water pressure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Structure and Properties of Compressed Borate Glasses

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Bauer, U.; Behrens, H.

    While the influence of thermal history on the structure and properties of glasses has been thoroughly studied in the past century, the influence of pressure history has received considerably less attention. In this study, we investigate the pressure-induced changes in structure and properties...... in a series of borate glasses. Upon isostatic compression, NMR experiments show that the fraction of tetrahedral boron increases, leading to an overall decrease of the molar volume of the network. We correlate these structural changes with changes in elastic moduli from Brillouin scattering experiments...

  9. Adaptively Compressed Exchange Operator

    CERN Document Server

    Lin, Lin


    The Fock exchange operator plays a central role in modern quantum chemistry. The large computational cost associated with the Fock exchange operator hinders Hartree-Fock calculations and Kohn-Sham density functional theory calculations with hybrid exchange-correlation functionals, even for systems consisting of hundreds of atoms. We develop the adaptively compressed exchange operator (ACE) formulation, which greatly reduces the computational cost associated with the Fock exchange operator without loss of accuracy. The ACE formulation does not depend on the size of the band gap, and thus can be applied to insulating, semiconducting as well as metallic systems. In an iterative framework for solving Hartree-Fock-like systems, the ACE formulation only requires moderate modification of the code, and can be potentially beneficial for all electronic structure software packages involving exchange calculations. Numerical results indicate that the ACE formulation can become advantageous even for small systems with tens...

  10. Waves and compressible flow

    CERN Document Server

    Ockendon, Hilary


    Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications.  New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises.  Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science.   Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...

  11. Central cooling: compressive chillers

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.


    Representative cost and performance data are provided in a concise, useable form for three types of compressive liquid packaged chillers: reciprocating, centrifugal, and screw. The data are represented in graphical form as well as in empirical equations. Reciprocating chillers are available from 2.5 to 240 tons with full-load COPs ranging from 2.85 to 3.87. Centrifugal chillers are available from 80 to 2,000 tons with full load COPs ranging from 4.1 to 4.9. Field-assemblied centrifugal chillers have been installed with capacities up to 10,000 tons. Screw-type chillers are available from 100 to 750 tons with full load COPs ranging from 3.3 to 4.5.

  12. A study of the properties of tablets from the mixtures of directly compressible starch and directly compressible lactitol. (United States)

    Muzíková, J; Vajglová, J


    The paper deals with the evaluation of tablets from the mixtures of directly compressible starch Starch 1500 and directly compressible lactitol Lacty-Tab in a ratio of 3:1 and 1:1. The examination included the tensile strength and disintegration time of tablets in dependence on compression force, addition of two concentrations of sodium stearyl fumarate (Pruv) as the lubricant, and a 50% content of the model active ingredient acetylsalicylic acid. Tensile strength of tablets increased with compression force and the effect of Pruv decreased it in both mixtures. Tablets from the mixture of dry binders in a ratio 1:1 without the lubricant possessed highest values of tensile strength. After an addition of the lubricant, no statistically significant difference was found in this mixture between interventions of 0.5 and 1% Pruv concentrations into strength. Disintegration time increased with compression force; it was the shortest in tablets with 1% Pruv in the case of the mixture of Starch 1500 and lactitol 3:1; in the case of the mixture 1:1 it was the longest. Tablets containing acetylsalicylic acid possessed higher values of tensile strength in the case of the mixture of dry powders in a ratio of 1:1, the strength decreasing with increasing Pruv concentration. Tablets from this mixture also possessed a longer period of disintegration time which increased with increasing Pruv concentration.

  13. Financial Key Ratios


    Tănase Alin-Eliodor


    This article focuses on computing techniques starting from trial balance data regarding financial key ratios. There are presented activity, liquidity, solvency and profitability financial key ratios. It is presented a computing methodology in three steps based on a trial balance.

  14. Transmission of compressed video (United States)

    Pasch, H. L.


    An overview of video coding is presented. The aim is not to give a technical summary of possible coding techniques, but to address subjects related to video compression in general and to the transmission of compressed video in more detail. Bit rate reduction is in general possible by removing redundant information; removing information the eye does not use anyway; and reducing the quality of the video. The codecs which are used for reducing the bit rate, can be divided into two groups: Constant Bit rate Codecs (CBC's), which keep the bit rate constant, but vary the video quality; and Variable Bit rate Codecs (VBC's), which keep the video quality constant by varying the bit rate. VBC's can be in general reach a higher video quality than CBC's using less bandwidth, but need a transmission system that allows the bandwidth of a connection to fluctuate in time. The current and the next generation of the PSTN does not allow this; ATM might. There are several factors which influence the quality of video: the bit error rate of the transmission channel, slip rate, packet loss rate/packet insertion rate, end-to-end delay, phase shift between voice and video, and bit rate. Based on the bit rate of the coded video, the following classification of coded video can be made: High Definition Television (HDTV); Broadcast Quality Television (BQTV); video conferencing; and video telephony. The properties of these classes are given. The video conferencing and video telephony equipment available now and in the next few years can be divided into three categories: conforming to 1984 CCITT standard for video conferencing; conforming to 1988 CCITT standard; and conforming to no standard.

  15. Homogeneous Charge Compression Ignition Combustion of Dimethyl Ether

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr

    an increase in engine power. The use of methanol for combustion phasing control was tested successfully in a large diesel engine with common rail, in which the piston bowls were widened to give a compression ratio of 14.5. This compression ratio still allows DI CI operation with DME, but requires...... in the combustion chamber and hence the noise emitted from the engine. The study showed that minimum exposure of the cylinder liner is critical in reducing the transmitted noise. The effect of splitting the chamber into smaller volumes was tested, by shaping piston crowns with cavities. It was found that piston......This thesis is based on experimental and numerical studies on the use of dimethyl ether (DME) in the homogeneous charge compression ignition (HCCI) combustion process. The first paper in this thesis was published in 2007 and describes HCCI combustion of pure DME in a small diesel engine. The tests...

  16. Study of an anisotropic polymeric cellular material under compression loading

    Directory of Open Access Journals (Sweden)

    Mauricio Francisco Caliri Júnior


    Full Text Available This paper emphasizes the influence of micro mechanisms of failure of a cellular material on its phenomenological response. Most of the applications of cellular materials comprise a compression loading. Thus, the study focuses on the influence of the anisotropy in the mechanical behavior of cellular material under cyclic compression loadings. For this study, a Digital Image Correlation (DIC technique (named Correli was applied, as well as SEM (Scanning Electron Microscopy images were analyzed. The experimental results are discussed in detail for a closed-cell rigid poly (vinyl chloride (PVC foam, showing stress-strain curves in different directions and why the material can be assumed as transversely isotropic. Besides, the present paper shows elastic and plastic Poisson's ratios measured in different planes, explaining why the plastic Poisson's ratios approach to zero. Yield fronts created by the compression loadings in different directions and the influence of spring-back phenomenon on hardening curves are commented, also.

  17. Effective Compressibility of a Bubbly Slurry. (United States)

    Kam, S. I.; Gauglitz, P. A.; Rossen, W. R.


    The goal of this study is to fit model parameters to changes in waste level in response to barometric pressure changes in underground storage tanks at the Hanford Site. This waste compressibility is a measure of the quantity of gas, typically hydrogen and other flammable gases, that can pose a safety hazard, retained in the waste. A one-dimensional biconical-pore-network model for compressibility of a bubbly slurry is presented in a companion paper. Fitting these results to actual waste level changes in the tanks implies that bubbles in the slurry layer are long and the ratio of pore-body radius to pore-throat radius is close to 1; unfortunately, compressibility can not be quantified unambiguously from the data without additional information on pore geometry. Therefore, determining the quantity of gas in the tanks requires more than just waste-level data. The non-uniqueness of the fit is also found with two other simple models: a capillary-tube model with contact angle hysteresis and a spherical-pore model. Copyright 2001 Academic Press.

  18. Efficient Joins with Compressed Bitmap Indexes

    Energy Technology Data Exchange (ETDEWEB)

    Computational Research Division; Madduri, Kamesh; Wu, Kesheng


    We present a new class of adaptive algorithms that use compressed bitmap indexes to speed up evaluation of the range join query in relational databases. We determine the best strategy to process a join query based on a fast sub-linear time computation of the join selectivity (the ratio of the number of tuples in the result to the total number of possible tuples). In addition, we use compressed bitmaps to represent the join output compactly: the space requirement for storing the tuples representing the join of two relations is asymptotically bounded by min(h; n . cb), where h is the number of tuple pairs in the result relation, n is the number of tuples in the smaller of the two relations, and cb is the cardinality of the larger column being joined. We present a theoretical analysis of our algorithms, as well as experimental results on large-scale synthetic and real data sets. Our implementations are efficient, and consistently outperform well-known approaches for a range of join selectivity factors. For instance, our count-only algorithm is up to three orders of magnitude faster than the sort-merge approach, and our best bitmap index-based algorithm is 1.2x-80x faster than the sort-merge algorithm, for various query instances. We achieve these speedups by exploiting several inherent performance advantages of compressed bitmap indexes for join processing: an implicit partitioning of the attributes, space-efficiency, and tolerance of high-cardinality relations.

  19. Effects of turbulence compressibility and unsteadiness in compression corner flow (United States)

    Brankovic, A.; Zeman, O.


    The structure of the separated flow region over a 20 degree compression corner at a free-stream Mach number of 2.84 is investigated computationally using a Reynolds averaged Navier Stokes (R.A.N.S.) solver and kappa-epsilon model. At this Mach number and ramp angle, a steady-state recirculation region of order delta(sub o) is observed, with onset of a 'plateau' in the wall pressure distribution near the corner. At lower ramp angles, separation is negligible, while at an angle of 24 degrees, separation regions of length 2 delta(sub o) are expected. Of interest here is the response of the mathematical model to inclusion of the pressure dilatation term for turbulent kinetic energy. Compared with the experimental data of Smits and Muck (1987), steady-state computations show improvement when the pressure dilatation term is included. Unsteady computations, using both unforced and then forced inlet conditions, did not predict the oscillatory motion of the separation bubble as observed in laboratory experiments. An analysis of the separation bubble oscillation and the turbulent boundary layer (T.B.L.) frequencies for this flow suggests that the bubble oscillations are of nearly the same order as the turbulent frequencies, and therefore difficult for the model to separate and resolve.

  20. Tight bounds for top tree compression

    DEFF Research Database (Denmark)

    Bille, Philip; Fernstrøm, Finn; Gørtz, Inge Li


    We consider compressing labeled, ordered and rooted trees using DAG compression and top tree compression. We show that there exists a family of trees such that the size of the DAG compression is always a logarithmic factor smaller than the size of the top tree compression (even for an alphabet...

  1. Application specific compression : final report.

    Energy Technology Data Exchange (ETDEWEB)

    Melgaard, David Kennett; Byrne, Raymond Harry; Myers, Daniel S.; Harrison, Carol D.; Lee, David S.; Lewis, Phillip J.; Carlson, Jeffrey J.


    With the continuing development of more capable data gathering sensors, comes an increased demand on the bandwidth for transmitting larger quantities of data. To help counteract that trend, a study was undertaken to determine appropriate lossy data compression strategies for minimizing their impact on target detection and characterization. The survey of current compression techniques led us to the conclusion that wavelet compression was well suited for this purpose. Wavelet analysis essentially applies a low-pass and high-pass filter to the data, converting the data into the related coefficients that maintain spatial information as well as frequency information. Wavelet compression is achieved by zeroing the coefficients that pertain to the noise in the signal, i.e. the high frequency, low amplitude portion. This approach is well suited for our goal because it reduces the noise in the signal with only minimal impact on the larger, lower frequency target signatures. The resulting coefficients can then be encoded using lossless techniques with higher compression levels because of the lower entropy and significant number of zeros. No significant signal degradation or difficulties in target characterization or detection were observed or measured when wavelet compression was applied to simulated and real data, even when over 80% of the coefficients were zeroed. While the exact level of compression will be data set dependent, for the data sets we studied, compression factors over 10 were found to be satisfactory where conventional lossless techniques achieved levels of less than 3.

  2. Recent progress in compressible turbulence

    NARCIS (Netherlands)

    Chen, S.; Xia, Z.; Wang, Jianchun; Yang, Yantao


    In this paper, we review some recent studies on compressible turbulence conducted by the authors’ group, which include fundamental studies on compressible isotropic turbulence (CIT) and applied studies on developing a constrained large eddy simulation (CLES) for wall-bounded turbulence. In the first

  3. Streaming Compression of Hexahedral Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Isenburg, M; Courbet, C


    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  4. Polymer-induced compression of biological hydrogels (United States)

    Datta, Sujit; Preska Steinberg, Asher; Ismagilov, Rustem

    Hydrogels - such as mucus, blood clots, and the extracellular matrix - provide critical functions in biological systems. However, little is known about how their structure is influenced by many of the polymeric materials they come into contact with regularly. Here, we focus on one critically important biological hydrogel: colonic mucus. While several biological processes are thought to potentially regulate the mucus hydrogel structure, the polymeric composition of the gut environment has been ignored. We use Flory-Huggins solution theory to characterize polymer-mucus interactions. We find that gut polymers, including those small enough to penetrate the mucus hydrogel, can in fact alter mucus structure, changing its equilibrium degree of swelling and forcing it to compress. The extent of compression increases with increasing polymer concentration and size. We use experiments on mice to verify these predictions with common dietary and therapeutic gut polymers. Our results provide a foundation for investigating similar, previously overlooked, polymer-induced effects in other biological hydrogels.

  5. Optical data compression in time stretch imaging.

    Directory of Open Access Journals (Sweden)

    Claire Lifan Chen

    Full Text Available Time stretch imaging offers real-time image acquisition at millions of frames per second and subnanosecond shutter speed, and has enabled detection of rare cancer cells in blood with record throughput and specificity. An unintended consequence of high throughput image acquisition is the massive amount of digital data generated by the instrument. Here we report the first experimental demonstration of real-time optical image compression applied to time stretch imaging. By exploiting the sparsity of the image, we reduce the number of samples and the amount of data generated by the time stretch camera in our proof-of-concept experiments by about three times. Optical data compression addresses the big data predicament in such systems.

  6. Detecting double compression of audio signal (United States)

    Yang, Rui; Shi, Yun Q.; Huang, Jiwu


    MP3 is the most popular audio format nowadays in our daily life, for example music downloaded from the Internet and file saved in the digital recorder are often in MP3 format. However, low bitrate MP3s are often transcoded to high bitrate since high bitrate ones are of high commercial value. Also audio recording in digital recorder can be doctored easily by pervasive audio editing software. This paper presents two methods for the detection of double MP3 compression. The methods are essential for finding out fake-quality MP3 and audio forensics. The proposed methods use support vector machine classifiers with feature vectors formed by the distributions of the first digits of the quantized MDCT (modified discrete cosine transform) coefficients. Extensive experiments demonstrate the effectiveness of the proposed methods. To the best of our knowledge, this piece of work is the first one to detect double compression of audio signal.

  7. Binary Pulse Compression Techniques for MST Radars (United States)

    Woodman, R. F.; Sulzer, M. P.; Farley, D. T.


    In most mesosphere-stratosphere-troposphere (MST) applications pulsed radars are peak power limited and have excess average power capability. Short pulses are required for good range resolution but the problem of range biguity (signals received simultaneously from more than one altitude) sets a minimum limit on the interpulse period (IPP). Pulse compression is a echnique which allows more of the transmitter average power capacity to be used without scarificing range resolution. Binary phase coding methods for pulse compression are discussed. Many aspects of codes and decoding and their applications to MST experiments are addressed; this includes Barker codes and longer individual codes, and then complementary codes and other code sets. Software decoding, hardware decoders, and coherent integrators are also discussed.

  8. New Regenerative Cycle for Vapor Compression Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Bergander


    The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and

  9. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers. (United States)

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol


    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  10. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Lee


    Full Text Available In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter. In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  11. Modification Design of Petrol Engine for Alternative Fueling using Compressed Natural Gas

    Directory of Open Access Journals (Sweden)

    Eliezer Uchechukwu Okeke


    Full Text Available This paper is on the modification design of petrol engine for alternative fuelling using Compressed Natural Gas (CNG. It provides an analytical background in the modification design process. A petrol engine Honda CR-V 2.0 auto which has a compression ratio of 9.8 was selected as case study. In order for this petrol engine to run on CNG, its compression had to be increased. An optimal compression ratio of 11.97 was computed using the standard temperature-specific volume relationship for an isentropic compression process. This computation of compression ratio is based on an inlet air temperature of 30oC (representative of tropical ambient condition and pre-combustion temperature of 540oC (corresponding to the auto-ignition temperature of CNG. Using this value of compression ratio, a dimensional modification Quantity =1.803mm was obtained using simple geometric relationships. This value of 1.803mm is needed to increase the length of the connecting rod, the compression height of the piston or reducing the sealing plate’s thickness. After the modification process, a CNG engine of air standard efficiency 62.7% (this represents a 4.67% increase over the petrol engine, capable of a maximum power of 83.6kW at 6500rpm, was obtained.

  12. Indentation of elastically soft and plastically compressible solids

    NARCIS (Netherlands)

    Needleman, A.; Tvergaard, V.; Van der Giessen, E.

    The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking

  13. Numerical approach to solar ejector-compression refrigeration system

    Directory of Open Access Journals (Sweden)

    Zheng Hui-Fan


    Full Text Available A model was established for solar ejector-compression refrigeration system. The influence of generator temperature, middle-temperature, and evaporator temperature on the performance of the refrigerant system was analyzed. An optimal generator temperature is found for maximal energy efficiency ratio and minimal power consumption.

  14. Influence of curing regimes on compressive strength of ultra high ...

    Indian Academy of Sciences (India)

    The present paper is aimed to identify an efficient curing regime for ultra high performance concrete (UHPC), to achieve a target compressive strength more than 150 MPa, using indigenous materials. The thermal regime plays a vital role due to the limited fineness of ingredients and low water/binder ratio. By activation of the ...

  15. Compression of high-density EMG signals for trapezius and gastrocnemius muscles (United States)


    Background New technologies for data transmission and multi-electrode arrays increased the demand for compressing high-density electromyography (HD EMG) signals. This article aims the compression of HD EMG signals recorded by two-dimensional electrode matrices at different muscle-contraction forces. It also shows methodological aspects of compressing HD EMG signals for non-pinnate (upper trapezius) and pinnate (medial gastrocnemius) muscles, using image compression techniques. Methods HD EMG signals were placed in image rows, according to two distinct electrode orders: parallel and perpendicular to the muscle longitudinal axis. For the lossless case, the images obtained from single-differential signals as well as their differences in time were compressed. For the lossy algorithm, the images associated to the recorded monopolar or single-differential signals were compressed for different compression levels. Results Lossless compression provided up to 59.3% file-size reduction (FSR), with lower contraction forces associated to higher FSR. For lossy compression, a 90.8% reduction on the file size was attained, while keeping the signal-to-noise ratio (SNR) at 21.19 dB. For a similar FSR, higher contraction forces corresponded to higher SNR Conclusions The computation of signal differences in time improves the performance of lossless compression while the selection of signals in the transversal order improves the lossy compression of HD EMG, for both pinnate and non-pinnate muscles. PMID:24612604

  16. Goose`s eggshell strength at compressive loading

    Directory of Open Access Journals (Sweden)

    Šárka Nedomová


    Full Text Available The paper deals with the study of the goose eggs behaviour under compressive loading between two plates using testing device TIRATEST. The influences of the loading orientation as well as the effect of compressive velocity are studied. 226 eggs from Landes geese were chosen for the experiment. Eggs have been loaded between their poles and in the equator plane. Five different compressive velocities (0.0167, 0.167, 0.334, 1.67 and 5 mm.s-1 were used. The increase in rupture force with loading rate was observed for loading in all direction (along main axes. Dependence of the rupture force on loading rate was quantifies and described. The highest rupture force was obtained when the eggs were loaded along their axes of symmetry (X-axis. Compression in the equator plane (along the Z-axis required the least compressive force to break the eggshells. The eggshell strength was described by the rupture force, specific rupture deformation and by the absorbed energy. The rupture force is highly dependent on compression speeds. The dependence of the rupture force on the compression velocity can be described by a power function. The same is valid for the rate dependence of the energy absorbed by the egg up to the fracture. The rate sensitivity of the Goose's eggshells strength is significantly higher than that reported for the hen's eggs

  17. Similarity of compressible fluid turbomachines; Similitude des turbomachines a fluide compressible

    Energy Technology Data Exchange (ETDEWEB)

    Pluviose, M. [Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)


    Similarity laws have permitted to unify the characteristics (pressure head, flow rate-volume) of incompressible fluid turbomachines using simple laws and for any kind of fluid, any rotation regime and for homothetic machines. The question analyzed in this article is the possible extension of such laws to the case of compressible fluid turbomachines, like compressors and turbines. Content: 1 - operation characteristics; 2 - dimensional analysis: independent variable, independent reduced variables (reduced flow rate, reduced speed, Reynolds number), independent reduced variables, dependent variables, dependent reduced variables (reduced pressure ratio, reduced enthalpy variation, efficiency with respect to the isentropic, reduced internal power); 3 - direct study: families of compressible fluid turbomachines, similarity of operation, application to a centrifugal turbomachine (theoretical head power, reduced enthalpy variation, reduced speed, efficiency pressure ratio, reduced mass-flow rate); 4 - reduced characteristics: of a turbomachine family, of a given turbomachine, corrected characteristics of a given turbomachine; 5 - advantage of the compressible fluid similarity; 6 - applications: compressor of turbojet engine, two compressors in-series, turbo-charger turbine. (J.S.)

  18. Designing for Compressive Sensing: Compressive Art, Camouflage, Fonts, and Quick Response Codes (United States)


    ARL-TR-8281 ● JAN 2018 US Army Research Laboratory Designing for Compressive Sensing: Compressive Art , Camouflage, Fonts, and...Compressive Sensing: Compressive Art , Camouflage, Fonts, and Quick Response Codes by Michael L Don Weapons and Materials Research Directorate, ARL...TITLE AND SUBTITLE Designing for Compressive Sensing: Compressive Art , Camouflage, Fonts, and Quick Response Codes 5a. CONTRACT NUMBER 5b

  19. Undulation Contributions to the Area Compressibility in Lipid Bilayer Simulations (United States)

    Waheed, Qaiser; Edholm, Olle


    Abstract It is here shown that there is a considerable system size-dependence in the area compressibility calculated from area fluctuations in lipid bilayers. This is caused by the contributions to the area fluctuations from undulations. This is also the case in experiments. At present, such a contribution, in most cases, is subtracted from the experimental values to obtain a true area compressibility. This should also be done with the simulation values. Here, this is done by extrapolating area compressibility versus system size, down to very small (zero) system size, where undulations no longer exist. The area compressibility moduli obtained from such simulations do not agree with experimental true area compressibility moduli as well as the uncorrected ones from contemporary or earlier simulations, but tend, instead, to be ∼50% too large. As a byproduct, the bending modulus can be calculated from the slope of the compressibility modulus versus system-size. The values obtained in this way for the bending modulus are then in good agreement with experiment. PMID:19917229

  20. Multiple snapshot compressive beamforming

    DEFF Research Database (Denmark)

    Gerstoft, Peter; Xenaki, Angeliki; Mecklenbrauker, Christoph F.


    of source amplitudes at all hypothetical DOAs. CS is applicable even for a single observation snapshot achieving a higher resolution than conventional beamforming. For multiple snapshots, CS outperforms conventional high-resolution methods, even with coherent arrivals and at low signal-to-noise ratio....

  1. Prospects for achieving high dynamic compression with low energy (United States)

    Armstrong, Michael; Crowhurst, Jonathan; Zaug, Joseph; Bastea, Sorin; Goncharov, Alexander


    Laser driven dynamic compression experiments may, in materials with picosecond equilibration times, be possible with orders of magnitude less drive energy than currently used. As we show, the compression energy for geometrically similar experiments varies as the third power of the time scale of compression. For materials which equilibrate and can be characterized on picosecond time scales, the compression energy can be orders of magnitude smaller than the 1-100 ns scale time scale of many current experiments. The use of substantially lower compression energy is a great practical advantage in such experiments, potentially enabling the observation of extreme states of matter with table top scale laser systems. We discuss prospects for realizing this scheme in practice. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with Laboratory directed Research and Development funding (11ERD039), as well as being based on work supported as part of the EFree, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Grant No. DESC0001057.

  2. Advances in compressible turbulent mixing

    Energy Technology Data Exchange (ETDEWEB)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.


    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  3. Measuring the compression of mortality. (United States)

    Kannisto, V


    Compression of mortality is measured here in four ways: 1) by standard deviation of the age at death above the mode; 2) by standard deviation of the age at death in the highest quartile; 3) by the inter-quartile range; and 4) by the shortest age interval in which a given proportion of deaths take place. The two first-mentioned are directed at old ages, while the other two measure compression over the entire age range. The fourth alternative is recommended as the most suitable for general use and offers several variations, called the C-family of compression indicators. Applied to historical and modern populations, all four measures show convincingly that the secular transition from high to low mortality has been accompanied by general and massive compression of mortality. In recent decades, however, this development has come close to stagnation even when life expectancy continues to increase. This has happened at a level where compression is still so incomplete that the shortest age interval in which 90% of deaths occur, is 35 years. It seems unrealistic to expect human mortality ever to be compressed into so narrow an age interval that the survival curve would even approximately rectangular. It is considered useful to monitor changes in the compression of mortality because the indicators describe relevant aspects of the length of life and may acquire new significance as indicators of population heterogeneity.

  4. Measuring the compression of mortality

    Directory of Open Access Journals (Sweden)


    Full Text Available Compression of mortality is measured here in four ways: (1 by standard deviation of the age at death above the mode; (2 by standard deviation of the age at death in the highest quartile; (3 by the inter-quartile range; and (4 by the shortest age interval in which a given proportion of deaths take place. The two first-mentioned are directed at old ages while the other two measure compression over the entire age range. The fourth alternative is recommended as the most suitable for general use and offers several variations, called the C-family of compression indicators. Applied to historical and modern populations, all four measures show convincingly that the secular transition from high to low mortality has been accompanied by general and massive compression of mortality. In recent decades, however, this development has come close to stagnation even when life expectancy continues to increase. This has happened at a level where compression is still so incomplete that the shortest age interval in which 90 percent of deaths occur, is more than 35 years. It seems unrealistic to expect human mortality ever to be compressed into so narrow an age interval that the survival curve would be even approximately rectangular. It is considered useful to monitor changes in the compression of mortality because the indicators describe relevant aspects of the length of life and may acquire new significance as indicators of population heterogeneity.

  5. DCT and DST Based Image Compression for 3D Reconstruction (United States)

    Siddeq, Mohammed M.; Rodrigues, Marcos A.


    This paper introduces a new method for 2D image compression whose quality is demonstrated through accurate 3D reconstruction using structured light techniques and 3D reconstruction from multiple viewpoints. The method is based on two discrete transforms: (1) A one-dimensional Discrete Cosine Transform (DCT) is applied to each row of the image. (2) The output from the previous step is transformed again by a one-dimensional Discrete Sine Transform (DST), which is applied to each column of data generating new sets of high-frequency components followed by quantization of the higher frequencies. The output is then divided into two parts where the low-frequency components are compressed by arithmetic coding and the high frequency ones by an efficient minimization encoding algorithm. At decompression stage, a binary search algorithm is used to recover the original high frequency components. The technique is demonstrated by compressing 2D images up to 99% compression ratio. The decompressed images, which include images with structured light patterns for 3D reconstruction and from multiple viewpoints, are of high perceptual quality yielding accurate 3D reconstruction. Perceptual assessment and objective quality of compression are compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results show that the proposed compression method is superior to both JPEG and JPEG2000 concerning 3D reconstruction, and with equivalent perceptual quality to JPEG2000.

  6. Compressed baled alfalfa hay for primiparous and multiparous dairy cows. (United States)

    Beauchemin, K A; Rode, L M


    Compressed baled alfalfa hay was fed to cows, and the effects on productivity, chewing activities, and digestion were measured using a replicated 4 x 4 Latin square design. Cows received second-cutting alfalfa hay (20% CP; 40% NDF) from either compressed or standard small rectangular bales at two forage to concentrate ratios (35:65 and 65:35, DM basis). Compressed hay did not affect milk yield, although milk fat content was higher (2.90 vs. 2.68%). Higher concentrate diets increased milk yield (32.2 vs. 28.3 kg/d), lowered milk fat (2.66 vs. 2.91%), and increased milk protein (3.16 vs. 2.99%) and lactose (5.06 vs. 4.99%) with no interaction between concentrate proportion and hay type. Cows fed compressed bales spent less time eating per kilogram of DM and NDF consumed than cows fed standard bales, but rumination time was unaffected by forage processing. For cows fed both types of hay, digestibilities of DM, ADF, and NDF were similar; ruminal liquid outflow rates also were similar, but rate of particulate passage from the reticulo-rumen was greater for cows receiving compressed hay. Compressing alfalfa hay did not adversely affect forage quality but increased the ease of shipping and handling and minimized storage space requirements. This process may be beneficial when higher milk fat content is desirable or when cows have limited time to consume forage.

  7. Extreme dynamic compression with a low energy laser pulse (United States)

    Armstrong, Michael R.; Crowhurst, Jonathan C.; Zaug, Joseph M.; Radousky, Harry B.


    Here we review the scaling of pulse energy with duration for sub-ns laser-driven dynamic compression experiments, which suggests that extreme pressures (multiple Mbar) might be achieved in rapidly equilibrating materials with substantially lower energy than used in traditional experiments. For instance, conventional scaling of pressure with laser intensity indicates that pressures well into the multiple Mbar range should be accessible by compressing with a hundreds of picosecond duration drive pulse with some tens of mJ of energy - orders of magnitude less than required for conventional experiments. Via a related scaling argument, we also show that the throughput of time-resolved pulsed x-ray dynamic compression experiments (such as those performed at x-ray free electron lasers) varies as the inverse square of the time scale of the experiment. The strong variation of throughput with the scale of the experiment should be a significant consideration in the design of such experiments - to obtain high throughput, the time scale of compression should be no longer than required (via material equilibration) to achieve the desired final material state.

  8. Compression of the Inferior Vena Cava in Bowel Obstruction

    Directory of Open Access Journals (Sweden)

    Alessandro Cina


    Full Text Available Introduction. We investigated whether (a the inferior vena cava (IVC is compressed in bowel obstruction and (b some tracts are more compressed than others. Methods. Two groups of abdominal computed tomography (CT examinations were collected retrospectively. Group O ( scans were positive for bowel obstruction, group C ( scans were negative for diseases. IVC anteroposterior and lateral diameters (APD, LAD were assessed at seven levels. Results. In group C, IVC section had an elliptic shape (APD/LAD: .76 ± .14, the area of which increased gradually from 1.9 (confluence of the iliac veins to 3.1 cm2/m2 of BSA (confluence of the hepatic veins with a significant narrowing in the hepatic section. In group O, bowel obstruction caused a compression of IVC (APD/LAD: .54 ± .17. Along its course, IVC section area increased from 1.3 to 2.5 cm2/m2. At ROC curve analysis, an APD/LAD ratio lower than 0.63 above the confluence of the iliac veins discriminated between O and C groups with sensitivity of 74% and specificity of 96%. Conclusions. Bowel obstruction caused a compression of IVC, which involved its entire course except for the terminal section. APD/LAD ratio may be useful to monitor the degree of compression.

  9. Dynamic compressive response of bovine liver tissues. (United States)

    Pervin, Farhana; Chen, Weinong W; Weerasooriya, Tusit


    This study aims to experimentally determine the strain rate effects on the compressive stress-strain behavior of bovine liver tissues. Fresh liver tissues were used to make specimens for mechanical loading. Experiments at quasi-static strain rates were conducted at 0.01 and 0.1 s(-1). Intermediate-rate experiments were performed at 1, 10, and 100 s(-1). High strain rate (1000, 2000, and 3000 s(-1)) experiments were conducted using a Kolsky bar modified for soft material characterization. A hollow transmission bar with semi-conductor strain gages was used to sense the weak forces from the soft specimens. Quartz-crystal force transducers were used to monitor valid testing conditions on the tissue specimens. The experiment results show that the compressive stress-strain response of the liver tissue is non-linear and highly rate-sensitive, especially when the strain rate is in the Kolsky bar range. The tissue stiffens significantly with increasing strain rate. The responses from liver tissues along and perpendicular to the liver surface were consistent, indicating isotropic behavior. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Nonlinear Frequency Compression: Effects on Sound Quality Ratings of Speech and Music

    National Research Council Canada - National Science Library

    Parsa, Vijay; Scollie, Susan; Glista, Danielle; Seelisch, Andreas


    ...) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing...

  11. Impedance of tissue-mimicking phantom material under compression

    Directory of Open Access Journals (Sweden)

    Barry Belmont


    Full Text Available The bioimpedance of tissues under compression is a field in need of study. While biological tissues can become compressed in a myriad of ways, very few experiments have been conducted to describe the relationship between the passive electrical properties of a material (impedance/admittance during mechanical deformation. Of the investigations that have been conducted, the exodus of fluid from samples under compression has been thought to be the cause of changes in impedance, though until now was not measured directly. Using a soft tissue-mimicking phantom material (tofu whose passive electrical properties are a function of the conducting fluid held within its porous structure, we have shown that the mechanical behavior of a sample under compression can be measured through bioimpedance techniques.

  12. Should compression of coded waveforms be done before or after focusing

    DEFF Research Database (Denmark)

    Bjerngaard, R.T.; Jensen, Jørgen Arendt


    In medical ultrasound signal-to-noise ratio improvements of approximately 15-20 dB can be achieved by using coded waveforms. Exciting the transducer with an encoded waveform necessitates compression of the response which is computationally demanding. This paper investigates the possibility...... of reducing the workload without introducing errors. Ne 1 compression ltrations (convolutions) can be saved by inverting the precedence of compression and beamforming (called post-compression), when Ne is the number of transducer elements. Postcompression with dynamic receive focusing will theoretically...

  13. Electromechanical behavior of a novel dielectric elastomer sensor for compressive force detection (Conference Presentation) (United States)

    Liu, Junjie; Mao, Guoyong; Huang, Xiaoqiang; Zou, Zhanan; Qu, Shaoxing; Wang, Peng


    Dielectric elastomers (DEs) have been extensively studied as DE actuators, DE generators, and DE sensors. Compared with DE actuators and generators, DE sensing application has the advantage that it is no need for high voltage. However, to realize the high sensitivity of the DE sensor, a well-designed structure is essential. A typical DE sensor consists of DE membrane covered by compliant electrodes on both sides. Expanding in the area and shrinking in the thickness of DE membrane subjected to external force will lead to the increasement of the capacitance. We propose a novel DE sensor to detect compressive force. The DE sensor consists of three layers. The two layers of outside can penetrate each other to deform the middle layer and achieve high sensitivity for compressive force measurement. This sensor consists of a series of sensor elements made of DE membrane with out-of-plane deformation. Each sensor element experiences highly inhomogeneous large deformation to obtain high sensitivity. We conduct the experiment to optimize the performance of the sensor element, and also the corresponding theoretical analysis is developed. The effects of the prestretches and the aspect ratios of the sensor element on the sensitivity are achieved. The soft sensor composed of a series of such sensor elements may comply with complicated surfaces and can be used to detect both the total value and the distribution of the compressive force exerted on the surface. Furthermore, the reliability of the sensor element is studied by additional experimental investigation. The experiment shows that the sensor element operates steadily after 2000 cyclic loadings. This study provides guidance for the design and performance analysis of soft sensors. This work has been published in the Journal of Applied Mechanics, 82(10), No. 101004 (2015).

  14. Asymmetry of the multifidus muscle in lumbar radicular nerve compression

    Energy Technology Data Exchange (ETDEWEB)

    Farshad, Mazda; Gerber, Christian; Farshad-Amacker, Nadja A.; Dietrich, Tobias J.; Laufer-Molnar, Viviane; Min, Kan [Balgrist University Hospital, University of Zuerich, Zuerich (Switzerland)


    The multifidus muscle is the only paraspinal lumbar muscle that is innervated by a single nerve root. This study aimes to evaluate if the asymmetry of the multifidus muscle is related to the severity of compression of the nerve root or the duration of radiculopathy. MRI scans of 79 patients with symptomatic single level, unilateral, lumbar radiculopathy were reviewed for this retrospective case series with a nested case-control study. The cross-sectional area (CSA) of the multifidus muscle and the perpendicular distance of the multifidus to the lamina (MLD) were measured bilaterally by two radiologists and set into relation to the severity of nerve compression, duration of radiculopathy and probability of an indication for surgical decompression. In 67 recessal and 12 foraminal symptomatic nerve root compressions, neither the MLD ratio (severe 1.19 ± 0.55 vs less severe nerve compression: 1.12 ± 0.30, p = 0.664) nor the CSA ratio (severe 1 ± 0.16 vs less severe 0.98 ± 0.13, p = 0.577) nor the duration of symptoms significantly correlated with the degree of nerve compression. MR measurements of multifidus were not different in patients with (n = 20) and those without (n = 59) clinical muscle weakness in the extremity caused by nerve root compression. A MLD >1.5 was, however, associated with the probability of an indication for surgical decompression (OR 3, specificity 92 %, PPV 73 %). Asymmetry of the multifidus muscle correlates with neither the severity nor the duration of nerve root compression in the lumbar spine. Severe asymmetry with substantial multifidus atrophy seems associated with the probability of an indication of surgical decompression. (orig.)

  15. Influence of Compacting Rate on the Properties of Compressed Earth Blocks

    Directory of Open Access Journals (Sweden)

    Humphrey Danso


    Full Text Available Compaction of blocks contributes significantly to the strength properties of compressed earth blocks. This paper investigates the influence of compacting rates on the properties of compressed earth blocks. Experiments were conducted to determine the density, compressive strength, splitting tensile strength, and erosion properties of compressed earth blocks produced with different rates of compacting speed. The study concludes that although the low rate of compaction achieved slightly better performance characteristics, there is no statistically significant difference between the soil blocks produced with low compacting rate and high compacting rate. The study demonstrates that there is not much influence on the properties of compressed earth blocks produced with low and high compacting rates. It was further found that there are strong linear correlations between the compressive strength test and density, and density and the erosion. However, a weak linear correlation was found between tensile strength and compressive strength, and tensile strength and density.

  16. [Effects of real-time audiovisual feedback on secondary-school students' performance of chest compressions]. (United States)

    Abelairas-Gómez, Cristian; Rodríguez-Núñez, Antonio; Vilas-Pintos, Elisardo; Prieto Saborit, José Antonio; Barcala-Furelos, Roberto


    To describe the quality of chest compressions performed by secondary-school students trained with a realtime audiovisual feedback system. The learners were 167 students aged 12 to 15 years who had no prior experience with cardiopulmonary resuscitation (CPR). They received an hour of instruction in CPR theory and practice and then took a 2-minute test, performing hands-only CPR on a child mannequin (Prestan Professional Child Manikin). Lights built into the mannequin gave learners feedback about how many compressions they had achieved and clicking sounds told them when compressions were deep enough. All the learners were able to maintain a steady enough rhythm of compressions and reached at least 80% of the targeted compression depth. Fewer correct compressions were done in the second minute than in the first (P=.016). Real-time audiovisual feedback helps schoolchildren aged 12 to 15 years to achieve quality chest compressions on a mannequin.

  17. Compressed imagery detection rate through map seeking circuit, and histogram of oriented gradient pattern recognition (United States)

    Newtson, Kathy A.; Creusere, Charles C.


    This research investigates the features retained after image compression for automatic pattern recognition purposes. Many raw images with vehicles in them were collected for these experiments. These raw images were significantly compressed using open-source JPEG and JPEG2000 compression algorithms. The original and compressed images are processed with a Map Seeking Circuit (MSC) pattern recognition algorithm, as well as a Histogram of Oriented Gradient (HOG) with Support Vector Machine (SVM) pattern recognition program. Detection rates are given for these images that demonstrates the feature extraction capabilities as well as false alarm rates when the compression was increased. JPEG2000 compression results show preservation of the features needed for automatic pattern recognition which was better than the JPEG standard image compression results.

  18. Testing panels in shear and biaxial compression (United States)

    Neary, J. K.


    Hydraulic jacks simultaneously apply torsion, axial compression, and lateral compression to structural panels. Jacks are suitable for testing large panels used in aircraft, lightweight trucks, and buses.

  19. Compressive sensing for urban radar

    CERN Document Server

    Amin, Moeness


    With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki

  20. Speech Waveform Compression Using Robust Adaptive Voice Activity Detection for Nonstationary Noise

    Directory of Open Access Journals (Sweden)

    Syed WaheeduddinQ


    Full Text Available The voice activity detection (VAD is crucial in all kinds of speech applications. However, almost all existing VAD algorithms suffer from the nonstationarity of both speech and noise. To combat this difficulty, we propose a new voice activity detector, which is based on the Mel-energy features and an adaptive threshold related to the signal-to-noise ratio (SNR estimates. In this paper, we first justify the robustness of the Bayes classifier using the Mel-energy features over that using the Fourier spectral features in various noise environments. Then, we design an algorithm using the dynamic Mel-energy estimator and the adaptive threshold, which depends on the SNR estimates. In addition, a realignment scheme is incorporated to correct the sparse-and-spurious noise estimates. Numerous simulations are carried out to evaluate the performance of our proposed VAD method and the comparisons are made with a couple of existing representative schemes, namely, the VAD using the likelihood ratio test with Fourier spectral energy features and that based on the enhanced time-frequency parameters. Three types of noises, namely, white noise (stationary, babble noise (nonstationary, and vehicular noise (nonstationary were artificially added by the computer for our experiments. As a result, our proposed VAD algorithm significantly outperforms other existing methods as illustrated by the corresponding receiver operating characteristics (ROC curves. Finally, we demonstrate one of the major applications, namely, speech waveform compression associated with our new robust VAD scheme and quantify the effectiveness in terms of compression efficiency.

  1. Speech Waveform Compression Using Robust Adaptive Voice Activity Detection for Nonstationary Noise

    Directory of Open Access Journals (Sweden)

    Hsiao-Chun Wu


    Full Text Available The voice activity detection (VAD is crucial in all kinds of speech applications. However, almost all existing VAD algorithms suffer from the nonstationarity of both speech and noise. To combat this difficulty, we propose a new voice activity detector, which is based on the Mel-energy features and an adaptive threshold related to the signal-to-noise ratio (SNR estimates. In this paper, we first justify the robustness of the Bayes classifier using the Mel-energy features over that using the Fourier spectral features in various noise environments. Then, we design an algorithm using the dynamic Mel-energy estimator and the adaptive threshold, which depends on the SNR estimates. In addition, a realignment scheme is incorporated to correct the sparse-and-spurious noise estimates. Numerous simulations are carried out to evaluate the performance of our proposed VAD method and the comparisons are made with a couple of existing representative schemes, namely, the VAD using the likelihood ratio test with Fourier spectral energy features and that based on the enhanced time-frequency parameters. Three types of noises, namely, white noise (stationary, babble noise (nonstationary, and vehicular noise (nonstationary were artificially added by the computer for our experiments. As a result, our proposed VAD algorithm significantly outperforms other existing methods as illustrated by the corresponding receiver operating characteristics (ROC curves. Finally, we demonstrate one of the major applications, namely, speech waveform compression associated with our new robust VAD scheme and quantify the effectiveness in terms of compression efficiency.

  2. Ginger compress therapy for adults with osteoarthritis. (United States)

    Therkleson, Tessa


    This paper is a report of a study to explicate the phenomenon of ginger compresses for people with osteoarthritis. Osteoarthritis is claimed to be the leading cause of musculoskeletal pain and disability in Western society. Management ideally combines non-pharmacological strategies, including complementary therapies and pain-relieving medication. Ginger has been applied externally for over a thousand years in China to manage arthritis symptoms. Husserlian phenomenological methodology was used and the data were collected in 2007. Ten purposively selected adults who had suffered osteoarthritis for at least a year kept daily diaries and made drawings, and follow-up interviews and telephone conversations were conducted. Seven themes were identified in the data: (1) Meditative-like stillness and relaxation of thoughts; (2) Constant penetrating warmth throughout the body; (3) Positive change in outlook; (4) Increased energy and interest in the world; (5) Deeply relaxed state that progressed to a gradual shift in pain and increased interest in others; (6) Increased suppleness within the body and (7) More comfortable, flexible joint mobility. The essential experience of ginger compresses exposed the unique qualities of heat, stimulation, anti-inflammation and analgesia. Nurses could consider this therapy as part of a holistic treatment for people with osteoarthritis symptoms. Controlled research is needed with larger numbers of older people to explore further the effects of the ginger compress therapy. © 2010 Blackwell Publishing Ltd.

  3. Strength of Iron Under Dynamic Compression (United States)

    Gleason, Arianna; Bolme, Cindy; Merkel, Sebastien; Ramos, Kyle; Nagler, Bob; Galtier, Eric; Lee, Hae Ja; Granados, Eduardo; Hashim, Akel; Rittman, Dylan; Mao, Wendy


    Strength, defined as the maximum shear stress that can be sustained before plastic (ductile) flow, is a fundamental materials property that is difficult to measure directly or predict using theoretical calculations. Similarly, textures in polycrystals provide important information regarding the plastic behavior and identification of dominant twinning or slip mechanisms. Here we present experiments performed at the Matter in Extreme Conditions end-station at the Linac Coherent Light Source, SLAC combining a laser-driven dynamic compression pump and X-ray free electron laser (XFEL) probe to measure the strength of iron up to 220 GPa under dynamic compression. Adopting an experimental geometry similar to that of radial diffraction, we measured diffraction at 65° to the shock propagation direction and cover 180° azimuth range in an X-ray transmission geometry. From the time-resolved X-ray diffraction (XRD) we measure line-shifts in hcp-Fe and see the development of marked preferred orientation on compression following the principal Hugoniot. An assessment of our resolution for measuring the magnitude of deviatoric strain (Q) finds it to be 0.001. This enables the ability to resolve bulk strengths in iron as low as 1 GPa.

  4. Compression for venous leg ulcers. (United States)

    O'Meara, Susan; Cullum, Nicky A; Nelson, E Andrea


    Around one percent of people in industrialised countries will suffer from a leg ulcer at some time. The majority of these leg ulcers are due to problems in the veins, resulting in an accumulation of blood in the legs. Leg ulcers arising from venous problems are called venous (varicose or stasis) ulcers. The main treatment has been a firm compression garment (bandage or stocking) in order to aid venous return. There is a large number of compression garments available and it is unclear whether they are effective in treating venous ulcers and which compression garment is the most effective. To undertake a systematic review of all randomised controlled trials of the clinical effectiveness of compression bandage or stocking systems in the treatment of venous leg ulceration.Specific questions addressed by the review are:1. Does the application of compression bandages or stockings aid venous ulcer healing? 2. Which compression bandage or stocking system is the most effective? For this update we searched the Cochrane Wounds Group Specialised Register (14/10/08); The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library Issue 4 2008); Ovid MEDLINE (1950 to October Week 1 2008); Ovid EMBASE (1980 to 2008 Week 41) and Ovid CINAHL (1982 to October Week 1 2008). No date or language restrictions were applied. Randomised controlled trials recruiting people with venous leg ulceration that evaluated any type of compression bandage system or compression hosiery were eligible for inclusion. Comparators included no compression (e.g. primary dressing alone, non-compressive bandage) or an alternative type of compression. Trials had to report an objective measure of ulcer healing in order to be included (primary outcome for the review). Secondary outcomes of the review included ulcer recurrence, costs, quality of life, pain, adverse events and withdrawals. There was no restriction on date, language or publication status of trials. Details of eligible studies were

  5. Nerve level traumatic brain injury in in vivo/in vitro experiments. (United States)

    Matsui, Yasuhiro; Nishimoto, Tetsuya


    The number of traffic deaths in Japan was 4,914 in 2009. Since the head was the most common site of injury in traffic accidents (2,302, 47%), traumatic brain injury causes the fatalities in these accidents. The aim of the present study was to quantify micro injuries in the animal brain for gaining insight and understanding of the human brain injury tolerance. Using porcine brain matter, in vitro stress relaxation experiments and in vivo impact experiments were conducted. In both experiments, the distribution of the damage ratio of the transverse to longitudinal length of cells, hereafter, referred to as an aspect ratio, in the brain matter under loading was examined. In the in vitro stress relaxation experiments, specimens were compressed vertically with a compression velocity of 1 mm/s, and the displacement was held for 140 sec when the compression strain reached the target strain. In the experiments, there were five categories of compression strain: 10, 20, 30, 40, and 50 percent. Regarding the aspect ratio of the cell body, it was 1.5 or less in a no-load condition. On the other hand, it was observed to be greater than 1.5 in the results from the experiments if the compression strain was 30% or more. The results from the experiments show that a compression strain between 20% and 30% corresponds to the threshold for the extremely deformed cell at the micro level. In the in vivo impact experiments, pigs in an unconscious state were exposed through craniotomy, and their exposed brains were hit with a ram at a low speed of 3.3 m/s and a high speed of 7.2 m/s, respectively. It was revealed that the number of cells in which the aspect ratio was greater than 1.5 increased if the impact is provided under the high speed. At the same time, the results indicated that cell deformation was dependent on the ram velocity in the brain matter. Thus, the compression strain on the entire brain from the direction of the force applied to the brain may be one criterion for assessment

  6. Efficient Lossy Compression for Compressive Sensing Acquisition of Images in Compressive Sensing Imaging Systems

    Directory of Open Access Journals (Sweden)

    Xiangwei Li


    Full Text Available Compressive Sensing Imaging (CSI is a new framework for image acquisition, which enables the simultaneous acquisition and compression of a scene. Since the characteristics of Compressive Sensing (CS acquisition are very different from traditional image acquisition, the general image compression solution may not work well. In this paper, we propose an efficient lossy compression solution for CS acquisition of images by considering the distinctive features of the CSI. First, we design an adaptive compressive sensing acquisition method for images according to the sampling rate, which could achieve better CS reconstruction quality for the acquired image. Second, we develop a universal quantization for the obtained CS measurements from CS acquisition without knowing any a priori information about the captured image. Finally, we apply these two methods in the CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate that the proposed solution improves the rate-distortion performance by 0.4~2 dB comparing with current state-of-the-art, while maintaining a low computational complexity.

  7. Compressed sensing for distributed systems

    CERN Document Server

    Coluccia, Giulio; Magli, Enrico


    This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to...

  8. Comparison of Artificial Compressibility Methods (United States)

    Kiris, Cetin; Housman, Jeffrey; Kwak, Dochan


    Various artificial compressibility methods for calculating the three-dimensional incompressible Navier-Stokes equations are compared. Each method is described and numerical solutions to test problems are conducted. A comparison based on convergence behavior, accuracy, and robustness is given.

  9. Compressibility effects in turbulence modeling (United States)

    Rubesin, M. W.


    Numerical turbulence modeling is discussed with attention given to fluid property variations caused by compressibility in an adiabatic flow. The models are considered in terms of integral quantities expressed by ordinary differential equations and by those formulated as partial differential equations. Compressibility corrections for both integral and partial differential methods are reviewed. Eddy-viscosity models are explored for their capability to characterize the mass-weighted Reynolds stress, which can be accounted for with primitive and/or mass-weighted variables. Compressible flow simulations are currently constrained to low Re and zero mean dilation. The effects of compressibility are defined in wave number space by resolving the Fourier transforms of the velocity vectors into components which are perpendicular and parallel to the wave number vector. Statistical correlations then permit obtaining a value for each contribution.

  10. Data compression techniques applied to high resolution high frame rate video technology (United States)

    Hartz, William G.; Alexovich, Robert E.; Neustadter, Marc S.


    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended.

  11. Synthetic aperture radar signal data compression using block adaptive quantization (United States)

    Kuduvalli, Gopinath; Dutkiewicz, Melanie; Cumming, Ian


    This paper describes the design and testing of an on-board SAR signal data compression algorithm for ESA's ENVISAT satellite. The Block Adaptive Quantization (BAQ) algorithm was selected, and optimized for the various operational modes of the ASAR instrument. A flexible BAQ scheme was developed which allows a selection of compression ratio/image quality trade-offs. Test results show the high quality of the SAR images processed from the reconstructed signal data, and the feasibility of on-board implementation using a single ASIC.

  12. Multichannel EEG compression: wavelet-based image and volumetric coding approach. (United States)

    Srinivasan, K; Dauwels, J; Ramasubba, M R


    In this paper, lossless and near-lossless compression algorithms for multichannel electroencephalogram signals (EEG) are presented based on image and volumetric coding. Multichannel EEG signals have significant correlation among spatially adjacent channels; moreover, EEG signals are also correlated across time. Suitable representations are proposed to utilize those correlations effectively. In particular, multichannel EEG is represented either in the form of image (matrix) or volumetric data (tensor), next a wavelet transform is applied to those EEG representations. The compression algorithms are designed following the principle of lossy plus residual coding, consisting of a wavelet-based lossy coding layer followed by arithmetic coding on the residual. Such approach guarantees a specifiable maximum error between original and reconstructed signals. The compression algorithms are applied to three different EEG datasets, each with different sampling rate and resolution. The proposed multichannel compression algorithms achieve attractive compression ratios compared to algorithms that compress individual channels separately.

  13. Compressibility effects on Rayleigh–Taylor instability in a vertical inhomogeneous rotating plasma

    Directory of Open Access Journals (Sweden)

    G.A. Hoshoudy


    Full Text Available Compressibility effects on Rayleigh–Taylor instability in inhomogeneous plasma rotating uniformly in an external vertical magnetic field have been investigated. Using the exponential density distribution and in the presence of a fixed boundary condition, the linear growth rate is obtained for a finite compressible plasma layer. As well as the linear growth rate of a heavy compressible plasma layer supported by a lighter one is obtained. It is shown that, in the case of a finite compressible plasma layer and in the absence of an external magnetic field the system is always instable, while in the presence of an external magnetic field the system capitulates to the stability role that plays it. In the case of two compressible plasma layers, the compressibility (the ratio of specific heat values has a stabilizing role that increases with the presence of an external vertical magnetic field. While the equilibrium pressure at the interface has an instability effect on the growth rates.

  14. Sub-grid combustion modeling for compressible two-phase reacting flows (United States)

    Sankaran, Vaidyanathan


    A generic formulation for modeling the turbulent combustion in compressible, high Reynolds number, two-phase; reacting flows has been developed and validated. A sub-grid mixing/combustion model called Linear Eddy Mixing (LEM) model has been extended to compressible flows and used inside the framework of Large Eddy Simulation (LES) in this LES-LEM approach. The LES-LEM approach is based on the proposition that the basic mechanistic distinction between the convective and the molecular effects should be preserved for accurate prediction of complex flow-fields such as those encountered in many combustion systems. Liquid droplets (represented by computational parcels) are tracked using the Lagrangian approach wherein the Newton's equation of motion for the discrete particles are integrated explicitly in the Eulerian gas field. The gas phase LES velocity fields are used to estimate the instantaneous gas velocity at the droplet location. Drag effects due to the droplets on the gas phase and the heat transfer between the gas and the liquid phase are explicitly included. Thus, full coupling is achieved between the two phases in the simulation. Validation of the compressible LES-LEM approach is conducted by simulating the flow-field in an operational General Electric Aircraft Engines combustor (LM6000). The results predicted using the proposed approach compares well with the experiments and a conventional (G-equation) thin-flame model. Particle tracking algorithms used in the present study are validated by simulating droplet laden temporal mixing layers. Quantitative and qualitative comparison with the results of spectral DNS exhibits good agreement. Simulations using the current LES-LEM for freely propagating partially premixed flame in a droplet-laden isotropic turbulent field correctly captures the flame structure in the partially premixed flames. Due to the strong spatial variation of equivalence ratio a broad flame similar to a premixed flame is realized. The current

  15. The Compressive Strength of High-Performance Concrete and Ultrahigh-Performance

    Directory of Open Access Journals (Sweden)

    E. H. Kadri


    Full Text Available The compressive strength of silica fume concretes was investigated at low water-cementitious materials ratios with a naphthalene sulphonate superplasticizer. The results show that partial cement replacement up to 20% produce, higher compressive strengths than control concretes, nevertheless the strength gain is less than 15%. In this paper we propose a model to evaluate the compressive strength of silica fume concrete at any time. The model is related to the water-cementitious materials and silica-cement ratios. Taking into account the author's and other researchers’ experimental data, the accuracy of the proposed model is better than 5%.

  16. Spark ignition engine performance and emissions in a high compression engine using biogas and methane mixtures without knock occurrence

    Directory of Open Access Journals (Sweden)

    Gómez Montoya Juan Pablo


    Full Text Available With the purpose to use biogas in an internal combustion engine with high compression ratio and in order to get a high output thermal efficiency, this investigation used a diesel engine with a maximum output power 8.5 kW, which was converted to spark ignition mode to use it with gaseous fuels. Three fuels were used: Simulated biogas, biogas enriched with 25% and 50% methane by volume. After conversion, the output power of the engine decreased by 17.64% when using only biogas, where 7 kW was the new maximum output power of the engine. The compression ratio was kept at 15.5:1, and knocking did not occur during engine operation. Output thermal efficiency operating the engine in SI mode with biogas enriched with 50% methane was almost the same compared with the engine running in diesel-biogas dual mode at full load and was greater at part loads. The dependence of the diesel pilot was eliminated when biogas was used in the engine converted in SI mode. The optimum condition of experiment for the engine without knocking was using biogas enriched with 50% methane, with 12 degrees of spark timing advance and equivalence ratio of 0.95, larger output powers and higher values of methane concentration lead the engine to knock operation. The presence of CO2 allows operating engines at high compression ratios with normal combustion conditions. Emissions of nitrogen oxides, carbon monoxide and unburnt methane all in g/kWh decreased when the biogas was enriched with 50% methane.

  17. Weighted Transition Based Reordering, Columnwise Bit Filling, and Difference Vector: A Power-Aware Test Data Compression Method

    Directory of Open Access Journals (Sweden)

    Usha Mehta


    Full Text Available Test data compression is the major issues for the external testing of IP core-based SoC. From a large pool of diverse available techniques for compression, run length-based schemes are most appropriate for IP cores. To improve the compression and to reduce the test power, the test data processing schemes like “don't care bit filling” and “reordering” which do not require any modification in internal structure and do not demand use of any test development tool can be used for SoC-containing IP cores with hidden structure. The proposed “Weighted Transition Based Reordering-Columnwise Bit Filling-Difference Vector (WTR-CBF-DV” is a modification to earlier proposed “Hamming Distance based Reordering—Columnwise Bit Filling and Difference vector.” This new method aims not only at very high compression but also aims at shift in test power reduction without any significant on-chip area overhead. The experiment results on ISCAS89 benchmark circuits show that the test data compression ratio has significantly improved for each case. It is also noteworthy that, in most of the case, this scheme does not involve any extra silicon area overhead compared to the base code with which it used. For few cases, it requires an extra XOR gate and feedback path only. As application of this scheme increases run length of zeroes in test set, as a result, the number of transitions during scan shifting is reduced. This may lower scan power. The proposed scheme can be easily integrated into the existing industrial flow.

  18. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells

    DEFF Research Database (Denmark)

    Yang, Tie; Bragheri, Francesca; Nava, Giovanni


    We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental....... Results indicate that MDA-MB231 has both higher acoustic compressibility and higher optical deformability than MCF7, but statistical analysis shows that optical deformability and acoustic compressibility are not correlated parameters. This result suggests the possibility to use them to analyze...

  19. Study of compressed baryonic matter at FAIR: JINR participation (United States)

    Derenovskaya, O.; Kurilkin, P.; Gusakov, Yu.; Ivanov, V.; Ladygin, V.; Ladygina, N.; Malakhov, A.; Peshekhonov, V.; Zinchenko, A.


    The scientific goal of the CBM (Compressed Baryonic Matter) experiment at FAIR (Darmstadt) is to explore the phase diagram of strongly interacting matter at highest baryon densities. The physics program of the CBM experiment is complimentary to the programs to be realized at MPD and BMN facilities at NICA and will start with beam derived by the SIS100 synchrotron. The results of JINR participation in the development of different sub-projects of the CBM experiment are presented.


    Directory of Open Access Journals (Sweden)

    V. A. Batura


    Full Text Available Subject of Research. The paper deals with creation and research of method for increasing stability at JPEG compressing of digital watermarks embedded in still images. Method. A new algorithm of digital watermarking for still images which embeds digital watermark into a still image via modification of frequency coefficients for Hadamard discrete transformation is presented. The choice of frequency coefficients for embedding of a digital watermark is based on existence of sharp change of their values after modification at the maximum compression of JPEG. The choice of blocks of pixels for embedding is based on the value of their entropy. The new algorithm was subjected to the analysis of resistance to an image compression, noising, filtration, change of size, color and histogram equalization. Elham algorithm possessing a good resistance to JPEG compression was chosen for comparative analysis. Nine gray-scale images were selected as objects for protection. Obscurity of the distortions embedded in them was defined on the basis of the peak value of a signal to noise ratio which should be not lower than 43 dB for obscurity of the brought distortions. Resistibility of embedded watermark was determined by the Pearson correlation coefficient, which value should not be below 0.5 for the minimum allowed stability. The algorithm of computing experiment comprises: watermark embedding into each test image by the new algorithm and Elham algorithm; introducing distortions to the object of protection; extracting of embedded information with its subsequent comparison with the original. Parameters of the algorithms were chosen so as to provide approximately the same level of distortions introduced into the images. Main Results. The method of preliminary processing of digital watermark presented in the paper makes it possible to reduce significantly the volume of information embedded in the still image. The results of numerical experiment have shown that the

  1. Computational simulation of breast compression based on segmented breast and fibroglandular tissues on magnetic resonance images (United States)

    Shih, Tzu-Ching; Chen, Jeon-Hor; Liu, Dongxu; Nie, Ke; Sun, Lizhi; Lin, Muqing; Chang, Daniel; Nalcioglu, Orhan; Su, Min-Ying


    This study presents a finite element-based computational model to simulate the three-dimensional deformation of a breast and fibroglandular tissues under compression. The simulation was based on 3D MR images of the breast, and craniocaudal and mediolateral oblique compression, as used in mammography, was applied. The geometry of the whole breast and the segmented fibroglandular tissues within the breast were reconstructed using triangular meshes by using the Avizo® 6.0 software package. Due to the large deformation in breast compression, a finite element model was used to simulate the nonlinear elastic tissue deformation under compression, using the MSC.Marc® software package. The model was tested in four cases. The results showed a higher displacement along the compression direction compared to the other two directions. The compressed breast thickness in these four cases at a compression ratio of 60% was in the range of 5-7 cm, which is a typical range of thickness in mammography. The projection of the fibroglandular tissue mesh at a compression ratio of 60% was compared to the corresponding mammograms of two women, and they demonstrated spatially matched distributions. However, since the compression was based on magnetic resonance imaging (MRI), which has much coarser spatial resolution than the in-plane resolution of mammography, this method is unlikely to generate a synthetic mammogram close to the clinical quality. Whether this model may be used to understand the technical factors that may impact the variations in breast density needs further investigation. Since this method can be applied to simulate compression of the breast at different views and different compression levels, another possible application is to provide a tool for comparing breast images acquired using different imaging modalities--such as MRI, mammography, whole breast ultrasound and molecular imaging--that are performed using different body positions and under different compression

  2. On savings ratio.


    Xiaochuan, Z.


    This paper explores the factors that affect saving and consumption behaviours, in a context where some believe that the high savings ratio of the East Asia and oil-producing countries is one major cause for the global imbalances and the crisis. The paper elaborates on the factors behind the high savings ratios in East Asia and oil producing countries and low savings ratios in the United States. It argues that the high savings in East Asia can mainly be explained by cultural and structural fac...

  3. Compressed sensing MRI via fast linearized preconditioned alternating direction method of multipliers. (United States)

    Chen, Shanshan; Du, Hongwei; Wu, Linna; Jin, Jiaquan; Qiu, Bensheng


    The challenge of reconstructing a sparse medical magnetic resonance image based on compressed sensing from undersampled k-space data has been investigated within recent years. As total variation (TV) performs well in preserving edge, one type of approach considers TV-regularization as a sparse structure to solve a convex optimization problem. Nevertheless, this convex optimization problem is both nonlinear and nonsmooth, and thus difficult to handle, especially for a large-scale problem. Therefore, it is essential to develop efficient algorithms to solve a very broad class of TV-regularized problems. In this paper, we propose an efficient algorithm referred to as the fast linearized preconditioned alternating direction method of multipliers (FLPADMM), to solve an augmented TV-regularized model that adds a quadratic term to enforce image smoothness. Because of the separable structure of this model, FLPADMM decomposes the convex problem into two subproblems. Each subproblem can be alternatively minimized by augmented Lagrangian function. Furthermore, a linearized strategy and multistep weighted scheme can be easily combined for more effective image recovery. The method of the present study showed improved accuracy and efficiency, in comparison to other methods. Furthermore, the experiments conducted on in vivo data showed that our algorithm achieved a higher signal-to-noise ratio (SNR), lower relative error (Rel.Err), and better structural similarity (SSIM) index in comparison to other state-of-the-art algorithms. Extensive experiments demonstrate that the proposed algorithm exhibits superior performance in accuracy and efficiency than conventional compressed sensing MRI algorithms.

  4. Double-compression method for biomedical images (United States)

    Antonenko, Yevhenii A.; Mustetsov, Timofey N.; Hamdi, Rami R.; Małecka-Massalska, Teresa; Orshubekov, Nurbek; DzierŻak, RóŻa; Uvaysova, Svetlana


    This paper describes a double compression method (DCM) of biomedical images. A comparison of image compression factors in size JPEG, PNG and developed DCM was carried out. The main purpose of the DCM - compression of medical images while maintaining the key points that carry diagnostic information. To estimate the minimum compression factor an analysis of the coding of random noise image is presented.

  5. On the compressive behavior of an FDM Steward Platform part

    Directory of Open Access Journals (Sweden)

    Nectarios Vidakis


    Full Text Available Acrylonitrile–butadiene–styrene (ABS is commonly used material in the fused deposition modeling (FDM process. In this work, ABS and ABS plus parts were built with different building parameters and they were tested according to the ASTM D695 standard. Compression strength results were compared to stock ABS material values. The fracture surfaces of selected specimens were examined under a Scanning Electron Microscope (SEM, to determine the failure mode of the filament strands. Following this a Steward Platform part was tested under compression in a tensile testing machine. The experimental results were employed to develop a finite element model of the Steward Platform part, in order to determine the maximum force the part can withstand. The Finite Element Model results were in good agreement with the values measured in the Steward Platform part compressive tests, demonstrating that the model developed is reliable. In these experiments, it was found that ABS parts build with a larger layer thickness showed lower compressive strength, which ABS plus did not show. ABS specimens on average developed about half the compressive strength of the ABS plus specimens, while the ABS plus specimens showed lower compressive strength values than stock ABS material.

  6. Adult-like processing of time-compressed speech by newborns: A NIRS study

    Directory of Open Access Journals (Sweden)

    Cécile Issard


    Full Text Available Humans can adapt to a wide range of variations in the speech signal, maintaining an invariant representation of the linguistic information it contains. Among them, adaptation to rapid or time-compressed speech has been well studied in adults, but the developmental origin of this capacity remains unknown. Does this ability depend on experience with speech (if yes, as heard in utero or as heard postnatally, with sounds in general or is it experience-independent? Using near-infrared spectroscopy, we show that the newborn brain can discriminate between three different compression rates: normal, i.e. 100% of the original duration, moderately compressed, i.e. 60% of original duration and highly compressed, i.e. 30% of original duration. Even more interestingly, responses to normal and moderately compressed speech are similar, showing a canonical hemodynamic response in the left temporoparietal, right frontal and right temporal cortex, while responses to highly compressed speech are inverted, showing a decrease in oxyhemoglobin concentration. These results mirror those found in adults, who readily adapt to moderately compressed, but not to highly compressed speech, showing that adaptation to time-compressed speech requires little or no experience with speech, and happens at an auditory, and not at a more abstract linguistic level.

  7. Difference and ratio plots

    DEFF Research Database (Denmark)

    Svendsen, Anders Jørgen; Holmskov, U; Bro, Peter


    hitherto unnoted differences between controls and patients with either rheumatoid arthritis or systemic lupus erythematosus. For this we use simple, but unconventional, graphic representations of the data, based on difference plots and ratio plots. Differences between patients with Burkitt's lymphoma...... and systemic lupus erythematosus from another previously published study (Macanovic, M. and Lachmann, P.J. (1979) Clin. Exp. Immunol. 38, 274) are also represented using ratio plots. Our observations indicate that analysis by regression analysis may often be misleading....

  8. Gas turbine power plant with supersonic shock compression ramps (United States)

    Lawlor, Shawn P [Bellevue, WA; Novaresi, Mark A [San Diego, CA; Cornelius, Charles C [Kirkland, WA


    A gas turbine engine. The engine is based on the use of a gas turbine driven rotor having a compression ramp traveling at a local supersonic inlet velocity (based on the combination of inlet gas velocity and tangential speed of the ramp) which compresses inlet gas against a stationary sidewall. The supersonic compressor efficiently achieves high compression ratios while utilizing a compact, stabilized gasdynamic flow path. Operated at supersonic speeds, the inlet stabilizes an oblique/normal shock system in the gasdynamic flow path formed between the rim of the rotor, the strakes, and a stationary external housing. Part load efficiency is enhanced by use of a lean pre-mix system, a pre-swirl compressor, and a bypass stream to bleed a portion of the gas after passing through the pre-swirl compressor to the combustion gas outlet. Use of a stationary low NOx combustor provides excellent emissions results.

  9. Isentropic compression studies using the NHMFL single turn

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, Douglas G [Los Alamos National Laboratory; Mielke, Charles [Los Alamos National Laboratory; Rodriguez, George [Los Alamos National Laboratory; Rickel, Dwight [Los Alamos National Laboratory


    Magnetic isentropic compression experiments (ICE) provide the most accurate shock free compression data for materials at megabar stresses. Recent ICE experiments performed on the Sandia Z-machine (Asay, 1999) and at the Los Alamos High Explosive Pulsed Power facility (Tasker, 2006) are providing our nation with data on material properties in extreme dynamic high stress environments. The LANL National High Magnetic Field Laboratory (NHMFL) can offer a less complex ICE experiment at high stresses (up to {approx}1Mbar) with a high sample throughput and relatively low cost. This is not to say that the NHMFL technique will replace the other methods but rather complement them. For example, NHMFL-ICE is ideal for the development of advanced diagnostics, e.g., to detect phase changes. We will discuss the physics of the NHMFL-ICE experiments and present data from the first proof-of-principle experiments that were performed in September 2010.

  10. Building indifferentiable compression functions from the PGV compression functions

    DEFF Research Database (Denmark)

    Gauravaram, P.; Bagheri, Nasour; Knudsen, Lars Ramkilde


    , Rogaway and Shrimpton formally proved this result in the ideal cipher model. However, in the indifferentiability security framework introduced by Maurer, Renner and Holenstein, all these 12 schemes are easily differentiable from a fixed input-length random oracle (FIL-RO) even when their underlying block...... are indifferentiable from a FIL-RO. To our knowledge, this is the first result showing that two independent block ciphers are sufficient to design indifferentiable single-block-length compression functions.......Preneel, Govaerts and Vandewalle (PGV) analysed the security of single-block-length block cipher based compression functions assuming that the underlying block cipher has no weaknesses. They showed that 12 out of 64 possible compression functions are collision and (second) preimage resistant. Black...

  11. Towards personalized compression in mammography: A comparison study between pressure- and force-standardization

    Energy Technology Data Exchange (ETDEWEB)

    Groot, Jerry E. de, E-mail: [Academic Medical Center, Room L0-151, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Academic Medical Center, Department of Biomedical Engineering & Physics, P.O. Box 22660, 1100 DD Amsterdam (Netherlands); Branderhorst, Woutjan, E-mail: [Academic Medical Center, Department of Biomedical Engineering & Physics, P.O. Box 22660, 1100 DD Amsterdam (Netherlands); Sigmascreening B.V., Meibergdreef 45, 1105 BA Amsterdam (Netherlands); Grimbergen, Cornelis A., E-mail: [Academic Medical Center, Department of Biomedical Engineering & Physics, P.O. Box 22660, 1100 DD Amsterdam (Netherlands); Sigmascreening B.V., Meibergdreef 45, 1105 BA Amsterdam (Netherlands); Heeten, Gerard J. den, E-mail: [Academic Medical Center, Department of Radiology, P.O. Box 22660, 1100 DD Amsterdam (Netherlands); LRCB Dutch Reference Center for Screening, P.O. Box 6873, 6503 GJ Nijmegen (Netherlands); Broeders, Mireille J.M., E-mail: [Radboud University Medical Center, Department for Health Evidence, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); LRCB Dutch Reference Center for Screening, P.O. Box 6873, 6503 GJ Nijmegen (Netherlands)


    Highlights: •In mammographic compression of the breast no quantitative standards or guidelines are available. •Women with small breasts receive higher pressures and express higher pain scores. •Compression can be personalized by applying the same pressure to all breasts. •New technology is validated which enables pressure-standardized compression. •Pain scores are reduced without affecting absorbed glandular dose or image quality. -- Abstract: Objective: To compare a conventional 14 decanewton (daN) force-standardized compression protocol with a personalized 10 kilopascal (kPa) pressure-standardized protocol. Methods: A new add-on contact area detector, which enables pressure-standardized compression, is validated in a double-blinded intra-individual comparison study. Breast screening participants (433) received one craniocaudal (CC) and one mediolateral oblique (MLO) compression for both breasts. Three of these compressions were force-standardized, and one, blinded and randomly assigned, was pressure-standardized. Participants scored their pain experience on an 11-point numerical rating scale (NRS). Three experienced breast-screening radiologists, blinded for compression protocol, indicated which images required retakes. Results: An unanticipated under-compression issue that occurred at forces below 5 daN was effectively solved with minimal extra radiographer training during the study. For pressure-standardized compressions obtained at 5 daN or more, the compressed breasts thickness increased on average 4.2% (MLO)—6.3% (CC), average pain scores were reduced by 10% (MLO)—17% (CC) and the proportion of women experiencing severe pain (NRS ≥ 7) was reduced by 27% (MLO)—32% (CC), compared with force-standardized compressions (all p-values <0.05). Average glandular dose (AGD) and proportions of retakes were similar for both protocols. Conclusion: Pressure-standardized compressions resulted in AGD values and a retake proportion similar to force

  12. 76 FR 4338 - Research and Development Strategies for Compressed & Cryo-Compressed Hydrogen Storage Workshops (United States)


    ... Research and Development Strategies for Compressed & Cryo- Compressed Hydrogen Storage Workshops AGENCY... hosting two days of workshops on compressed and cryo-compressed hydrogen storage in the Washington, DC... perspectives, and overviews of carbon fiber development and recent costs analyses. The cryo-compressed hydrogen...

  13. Osmosis and Surface Area to Volume Ratio. (United States)

    Barrett, D. R. B.


    Describes an experiment designed to help students understand the concepts of osmosis and surface area to volume ratio (SA:VOL). The task for students is to compare water uptake in different sizes of potato cubes and relate differences to their SA:VOL ratios. (JN)

  14. Compression and Predictive Distributions for Large Alphabets (United States)

    Yang, Xiao

    Data generated from large alphabet exist almost everywhere in our life, for example, texts, images and videos. Traditional universal compression algorithms mostly involve small alphabets and assume implicitly an asymptotic condition under which the extra bits induced in the compression process vanishes as an infinite number of data come. In this thesis, we put the main focus on compression and prediction for large alphabets with the alphabet size comparable or larger than the sample size. We first consider sequences of random variables independent and identically generated from a large alphabet. In particular, the size of the sample is allowed to be variable. A product distribution based on Poisson sampling and tiling is proposed as the coding distribution, which highly simplifies the implementation and analysis through independence. Moreover, we characterize the behavior of the coding distribution through a condition on the tail sum of the ordered counts, and apply it to sequences satisfying this condition. Further, we apply this method to envelope classes. This coding distribution provides a convenient method to approximately compute the Shtarkov's normalized maximum likelihood (NML) distribution. And the extra price paid for this convenience is small compared to the total cost. Furthermore, we find this coding distribution can also be used to calculate the NML distribution exactly. And this calculation remains simple due to the independence of the coding distribution. Further, we consider a more realistic class---the Markov class, and in particular, tree sources. A context tree based algorithm is designed to describe the dependencies among the contexts. It is a greedy algorithm which seeks for the greatest savings in codelength when constructing the tree. Compression and prediction of individual counts associated with the contexts uses the same coding distribution as in the i.i.d case. Combining these two procedures, we demonstrate a compression algorithm based

  15. An overview of semantic compression (United States)

    Schmalz, Mark S.


    We live in such perceptually rich natural and manmade environments that detection and recognition of objects is mediated cerebrally by attentional filtering, in order to separate objects of interest from background clutter. In computer models of the human visual system, attentional filtering is often restricted to early processing, where areas of interest (AOIs) are delineated around anomalies of interest, then the pixels within each AOI's subtense are isolated for later processing. In contrast, the human visual system concurrently detects many targets at multiple levels (e.g., retinal center-surround filters, ganglion layer feature detectors, post-retinal spatial filtering, and cortical detection / filtering of features and objects, to name but a few processes). Intracranial attentional filtering appears to play multiple roles, including clutter filtration at all levels of processing - thus, we process individual retinal cell responses, early filtering response, and so forth, on up to