WorldWideScience

Sample records for compression elasticity analysis

  1. Indentation of elastically soft and plastically compressible solids

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo; Van der Giessen, E.

    2015-01-01

    rapidly for small deviations from plastic incompressibility and then decreases rather slowly for values of the plastic Poisson's ratio less than 0.25. For both soft elasticity and plastic compressibility, the main reason for the lower values of indentation hardness is related to the reduction......The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking...... rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plastic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce...

  2. Indentation of elastically soft and plastically compressible solids

    NARCIS (Netherlands)

    Needleman, A.; Tvergaard, V.; Van der Giessen, E.

    The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking

  3. Investigations on the visco-elastic behaviour of a human healthy heel pad: in vivo compression tests and numerical analysis

    DEFF Research Database (Denmark)

    Matteoli, Sara; Fontanella, Chiara G.; Carniel, Emanuele L.

    2013-01-01

    The aim of this study was to investigate the viscoelastic behaviour of the human heel pad by comparing the stress–relaxation curves obtained from a compression device used on an in vivo heel pad with those obtained from a threedimensional computer-based subject-specific heel pad model subjected...... numerical analyses were performed to interpret the mechanical response of heel tissues, with loading conditions and displacement rate in agreement with experimental tests. The heel tissues showed a non-linear, viscoelastic behaviour described by characteristic hysteretic curves, stress......–relaxation and viscous recovery phenomena. The reliability of the investigations was validated by the interpretation of the mechanical response of heel tissues under the application of three pistons with diameter of 15, 20 and 40 mm, at the same displacement rate of about 1.7 mm/s. The maximum and minimum relative...

  4. Developing the elastic modulus measurement of asphalt concrete using the compressive strength test

    Science.gov (United States)

    Setiawan, Arief; Suparma, Latif Budi; Mulyono, Agus Taufik

    2017-11-01

    Elastic modulus is a fundamental property of an asphalt mixture. An analytical method of the elastic modulus is needed to determine the thickness of flexible pavement. It has a role as one of the input values on a stress-strain analysis in the finite element method. The aim of this study was to develop the measurement of the elastic modulus by using compressive strength testing. This research used a set of specimen mold tool and Delta Dimensi software to record strain changes occurring in the proving ring of compression machine and the specimens. The elastic modulus of the five types of aggregate gradation and 2 types of asphalt were measured at optimum asphalt content. Asphalt Cement 60/70 and Elastomer Modified Asphalt (EMA) were used as a binder. Manufacturing success indicators of the specimens used void-in-the-mix (VIM) 3-5 % criteria. The success rate of the specimen manufacturing was more than 76%. Thus, the procedure and the compressive strength test equipment could be used for the measurement of the elastic modulus. The aggregate gradation and asphalt types significantly affected the elastic modulus of the asphalt concrete.

  5. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete.

    Science.gov (United States)

    Jurowski, Krystian; Grzeszczyk, Stefania

    2018-03-22

    In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete.

  6. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete

    Science.gov (United States)

    Jurowski, Krystian; Grzeszczyk, Stefania

    2018-01-01

    In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete. PMID:29565830

  7. Comparison of Elastic Modulus and Compressive Strength of Ariadent and Harvard Polycarboxylate Cement and Vitremer Resin Modified Glass Ionomer

    Directory of Open Access Journals (Sweden)

    Ahmadian Khoshemehr Leila

    2009-09-01

    Full Text Available Background: Luting agents are used to attach indirect restoration into or on the tooth. Poor mechanical properties of cement may be a cause of fracture of this layer and lead to caries and restoration removal. The purpose of this study was to compare the elastic modulus and compressive strength of Ariadent (A Poly and Harvard polycarboxylate (H Poly cements and Vitremer resin modified glass ionomer (RGl.Materials & Methods: In this experimental study 15 specimens were prepared form each experimental cement in Laboratory of Tehran Oil Refining Company. The cylindrical specimens were compressed in Instron machine after 24 hours. Elastic modulus and compressive strength were calculated from stress/strain curve of each specimen. One way ANOVA and Tukey tests were used for statistical analysis and P values<0.05 were considered to be statistically significant.Results: The mean elastic modulus and mean compressive strength were 2.2 GPa and 87.8MPa in H poly, 2.4 GPa and 56.5 MPa in A Poly, and 0.8GPa and 105.6 MPa in RGI, respectively. Statistical analysis showed that compressive strength and elastic modulus of both polycarboxylate cements were significantly different from hybrid ionomer (P<0.05, but the difference between elastic modulus of two types of polycarboxilate cements was not statistically significant. Compressive strength of two polycarboxilate cements were significantly different (P<0.05. Conclusion: An ideal lutting agent must have the best mechanical properties. Between the tested luttins RGl cement had the lowest elastic modulus and the highest compressive strength, but the A poly cement had the highest elastic modulus and the lowest compressive strength. Therefore none of them was the best.

  8. Analysis by compression

    DEFF Research Database (Denmark)

    Meredith, David

    MEL is a geometric music encoding language designed to allow for musical objects to be encoded parsimoniously as sets of points in pitch-time space, generated by performing geometric transformations on component patterns. MEL has been implemented in Java and coupled with the SIATEC pattern...... discovery algorithm to allow for compact encodings to be generated automatically from in extenso note lists. The MEL-SIATEC system is founded on the belief that music analysis and music perception can be modelled as the compression of in extenso descriptions of musical objects....

  9. Finite element approximation of a new variational principle for compressible and incompressible linear isotropic elasticity

    International Nuclear Information System (INIS)

    Franca, L.P.; Stenberg, R.

    1989-06-01

    Stability conditions are described to analyze a variational formulation emanating from a variational principle for linear isotropic elasticity. The variational principle is based on four dependent variables (namely, the strain tensor, augmented stress, pressure and displacement) and is shown to be valid for any compressibility including the incompressible limit. An improved convergence error analysis is established for a Galerkin-least-squares method based upon these four variables. The analysis presented establishes convergence for a wide choice of combinations of finite element interpolations. (author) [pt

  10. MODULUS OF ELASTICITY AND HARDNESS OF COMPRESSION AND OPPOSITE WOOD CELL WALLS OF MASSON PINE

    Directory of Open Access Journals (Sweden)

    Yanhui Huang,

    2012-05-01

    Full Text Available Compression wood is commonly found in Masson pine. To evaluate the mechanical properties of the cell wall of Masson pine compression and opposite wood, nanoindentation was used. The results showed that the average values of hardness and cell wall modulus of elasticity of opposite wood were slightly higher than those of compression wood. With increasing age of the annual ring, the modulus of elasticity showed a negative correlation with microfibril angle, but a weak correlation was observed for hardness. In opposite and compression wood from the same annual ring, the differences in average values of modulus of elasticity and hardness were small. These slight differences were explained by the change of microfibril angle (MFA, the press-in mode of nanoindentation, and the special structure of compression wood. The mechanical properties were almost the same for early, transition, and late wood in a mature annual ring of opposite wood. It can therefore be inferred that the average modulus of elasticity (MOE and hardness of the cell walls in a mature annual ring were not being affected by cell wall thickness.

  11. The variation in elastic modulus throughout the compression of foam materials

    International Nuclear Information System (INIS)

    Sun, Yongle; Amirrasouli, B.; Razavi, S.B.; Li, Q.M.; Lowe, T.; Withers, P.J.

    2016-01-01

    We present a comprehensive experimental study of the variation in apparent unloading elastic modulus of polymer (largely elastic), aluminium (largely plastic) and fibre-reinforced cement (quasi-brittle) closed-cell foams throughout uniaxial compression. The results show a characteristic “zero-yield-stress” response and thereafter a rapid increase in unloading modulus during the supposedly “elastic” regime of the compressive stress–strain curve. The unloading modulus then falls with strain due to the localised cell-wall yielding or failure in the pre-collapse stage and the progressive cell crushing in the plateau stage, before rising sharply during the densification stage which is associated with global cell crushing and foam compaction. A finite element model based on the actual 3D cell structure of the aluminium foam imaged by X-ray computed tomography (CT) predicts an approximately linear fall of elastic modulus from zero strain until a band of collapsed cells forms. It shows that the subsequent gradual decrease in modulus is caused by the progressive collapse of cells. The elastic modulus rises sharply after the densification initiation strain has been reached. However, the elastic modulus is still well below that of the constituent material even when the “fully” dense state is approached. This work highlights the fact that the unloading elastic modulus varies throughout compression and challenges the idea that a constant elastic modulus can be applied in a homogenised foam model. It is suggested that the most representative value of elastic modulus may be obtained by extrapolating the measured unloading modulus to zero strain.

  12. Elastic-plastic transition on rotating spherical shells in dependence of compressibility

    Directory of Open Access Journals (Sweden)

    Thakur Pankaj

    2017-01-01

    Full Text Available The purpose of this paper is to establish the mathematical model on the elastic-plastic transitions occurring in the rotating spherical shells based on compressibility of materials. The paper investigates the elastic-plastic stresses and angular speed required to start yielding in rotating shells for compressible and incompressible materials. The paper is based on the non-linear transition theory of elastic-plastic shells given by B.R. Seth. The elastic-plastic transition obtained is treated as an asymptotic phenomenon at critical points & the solution obtained at these points generates stresses. The solution obtained does not require the use of semi-empirical yield condition like Tresca or Von Mises or other certain laws. Results are obtained numerically and depicted graphically. It has been observed that Rotating shells made of the incompressible material are on the safer side of the design as compared to rotating shells made of compressible material. The effect of density variation has been discussed numerically on the stresses. With the effect of density variation parameter, rotating spherical shells start yielding at the internal surface with the lower values of the angular speed for incompressible/compressible materials.

  13. Elastic-plastic behaviour of thick-walled containers considering plastic compressibility

    International Nuclear Information System (INIS)

    Betten, J.; Frosch, H.G.

    1983-01-01

    In this paper the elastic-plastic behaviour of thick-walled pressure vessels with internal and external pressure is studied. To describe the mechanical behaviour of isotropic, plastic compressible materials we use a plastic potential which is a single-valued function of the principle stresses. For cylinders and spheres an analytic expression for the computation of stresses and residual stresses is specified. Afterwards the strains are calculated by using the finite difference method. Some examples will high-light the influence of the plastic compressibility on the behaviour of pressure vessels. (orig.) [de

  14. Compressive Strength and Modulus of Elasticity of Concrete with Cubed Waste Tire Rubbers as Coarse Aggregates

    Science.gov (United States)

    Haryanto, Y.; Hermanto, N. I. S.; Pamudji, G.; Wardana, K. P.

    2017-11-01

    One feasible solution to overcome the issue of tire disposal waste is the use of waste tire rubber to replace aggregate in concrete. We have conducted an experimental investigation on the effect of rubber tire waste aggregate in cuboid form on the compressive strength and modulus of elasticity of concrete. The test was performed on 72 cylindrical specimens with the height of 300 mm and diameter of 150 mm. We found that the workability of concrete with waste tire rubber aggregate has increased. The concrete density with waste tire rubber aggregate was decreased, and so was the compressive strength. The decrease of compressive strength is up to 64.34%. If the content of waste tire rubber aggregate is more than 40%, then the resulting concrete cannot be categorized as structural concrete. The modulus of elasticity decreased to 59.77%. The theoretical equation developed to determine the modulus of elasticity of concrete with rubber tire waste aggregate has an accuracy of 84.27%.

  15. Birefringence and incipient plastic deformation in elastically overdriven [100] CaF2 under shock compression

    Science.gov (United States)

    Li, Y.; Zhou, X. M.; Cai, Y.; Liu, C. L.; Luo, S. N.

    2018-04-01

    [100] CaF2 single crystals are shock-compressed via symmetric planar impact, and the flyer plate-target interface velocity histories are measured with a laser displacement interferometry. The shock loading is slightly above the Hugoniot elastic limit to investigate incipient plasticity and its kinetics, and its effects on optical properties and deformation inhomogeneity. Fringe patterns demonstrate different features in modulation of fringe amplitude, including birefringence and complicated modulations. The birefringence is attributed to local lattice rotation accompanying incipient plasticity. Spatially resolved measurements show inhomogeneity in deformation, birefringence, and fringe pattern evolutions, most likely caused by the inhomogeneity associated with lattice rotation and dislocation slip. Transiently overdriven elastic states are observed, and the incubation time for incipient plasticity decreases inversely with increasing overdrive by the elastic shock.

  16. Compressibility Analysis of the Tongue During Speech

    National Research Council Canada - National Science Library

    Unay, Devrim

    2001-01-01

    .... In this paper, 3D compression and expansion analysis of the tongue will be presented. Patterns of expansion and compression have been compared for different syllables and various repetitions of each syllable...

  17. Elastic-Plastic Behaviour of Ultrasonic Assisted Compression of Polyvinyl Chloride (PVC) Foam

    Science.gov (United States)

    Muhalim, N. A. D.; Hassan, M. Z.; Daud, Y.

    2018-04-01

    The present study aims to investigate the elastic-plastic behaviour of ultrasonic assisted compression of PVC closed-cell foam. A series of static and ultrasonic compression test of PVC closed-cell foam were conducted at a constant cross head speed of 30 mm/min on dry surface condition. For quasi-static test, specimen was compressed between two rigid platens using universal testing machine. In order to evaluate the specimen behavior under ultrasonic condition, specimen was placed between a specifically design double-slotted block horn and rigid platen. The horn was designed and fabricated prior to the test as a medium to transmit the ultrasonic vibration from the ultrasonic transducer to the working specimen. It was tuned to a frequency of 19.89 kHz in longitudinal mode and provided an average oscillation amplitude at 6 µm on the uppermost surface. Following, the characteristics of stress-strain curves for quasi-static and ultrasonic compression tests were analyzed. It was found that the compressive stress was significantly reduced at the onset of superimposed ultrasonic vibration during plastic deformation.

  18. Elastic-plastic-creep analysis of shells

    International Nuclear Information System (INIS)

    Pai, D.H.

    1979-01-01

    This paper presents the recent experience of a designer/fabricator of nuclear heat transport components in the area of elastic-plastic-creep analysis of shell-like structures. A brief historical perspective is first given to highlight the evolution leading to the present industry practice. The ASME elevated temperature design criteria will be discussed followed by examples of actual computations performed to support the design/analysis and fabrication of a breeder reactor component in which a substantial amount of elastic-plastic-creep analysis was performed. Mathematical challenges encountered by the design analyst in these problems will be highlighted. Developmental needs and future trends will then be given

  19. Structural, elastic, and electronic properties of compressed ZnP{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hong-Mei [School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 (China); Li, Yan-Ling, E-mail: ylli@jsnu.edu.cn [School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 (China); Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zeng, Zhi [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2013-06-15

    The structural, elastic and electronic properties of compressed ZnP{sub 2} were investigated by first-principles total energy calculations. The optimized equilibrium structural parameters agree well with those of experiments for α-ZnP{sub 2} and β-ZnP{sub 2} at zero pressure. α-ZnP{sub 2} transforms into I4{sub 1}/22 phase (referred as γ-ZnP{sub 2}) at 11 GPa, which is an indirect band-gap (∼0.78 eV) semiconductor. Space group of low pressure phase is the subgroup of that of high pressure phase. The calculated elastic constants for α-ZnP{sub 2} and β-ZnP{sub 2} at zero pressure as well as γ-ZnP{sub 2} at phase transition pressure determine their stability mechanically. Phonon calculation confirms dynamical stability of γ-ZnP{sub 2}.

  20. Elastic behavior of MFI-type zeolites: 3 – Compressibility of silicalite and mutinaite

    International Nuclear Information System (INIS)

    Quartieri, Simona; Arletti, Rossella; Vezzalini, Giovanna; Di Renzo, Francesco; Dmitriev, Vladimir

    2012-01-01

    We report the results of an in-situ synchrotron X-ray powder diffraction study – performed using silicone oil as “non-penetrating” pressure transmitting medium – of the elastic behavior of three zeolites with MFI-type framework: the natural zeolite mutinaite and two silicalites (labeled A and B) synthesized under different conditions. While in mutinaite no symmetry change is observed as a function of pressure, a phase transition from monoclinic (P2 1 /n) to orthorhombic (Pnma) symmetry occurs at about 1.0 GPa in the silicalite samples. This phase transition is irreversible upon decompression. The second order bulk moduli of silicalite A and silicalite B, calculated after the fulfillment of the phase transition, are: K 0 =18.2(2) and K 0 =14.3 (2) GPa, respectively. These values makes silicalite the most compressible zeolite among those up to now studied in silicone oil. The structural deformations induced by HP in silicalite A were investigated by means of complete Rietveld structural refinements, before and after the phase transition, at P amb and 0.9 GPa, respectively. The elastic behaviors of the three MFI-type zeolites here investigated were compared with those of Na-ZSM-5 and H-ZSM-5, studied in similar experimental conditions: the two silicalites – which are the phases with the highest Si/Al ratios and hence the lowest extraframework contents – show the highest compressibility. On the contrary, the most rigid material is mutinaite, which has a very complex extraframework composition characterized by a high number of cations and water molecules. - Graphical abstract: High-pressure behavior of silicalite compressed in silicone oil: projection of the structure along the [0 1 0] direction at Pamb(a), 0.9 GPa (b). (c) Comparison of the unit-cell volume variations as a function of pressure for mutinaite, H-ZSM5, Na-ZSM5, silicalite A, and silicalite B compressed in silicone oil. Highlights: ► X-ray powder diffraction study of silicalite and mutinaite

  1. Elastic behavior of MFI-type zeolites: 3 - Compressibility of silicalite and mutinaite

    Energy Technology Data Exchange (ETDEWEB)

    Quartieri, Simona, E-mail: squartieri@unime.it [Dipartimento di Scienze della Terra, Universita di Messina, Viale Ferdinando Stagno d' Alcontres 31, 98166 Messina S. Agata (Italy); Arletti, Rossella [Dipartimento di Scienze Mineralogiche e Petrologiche, Via Valperga Caluso 35, 10125 Torino (Italy); Vezzalini, Giovanna [Dipartimento di Scienze della Terra, Universita di Modena e Reggio Emilia, Via S. Eufemia 19, 41100 Modena (Italy); Di Renzo, Francesco [Institut Charles Gerhardt de Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1, 8 rue Ecole Normale, 34296 Montpellier (France); Dmitriev, Vladimir [Swiss-Norwegian Beam Line at ESRF, BP220, 38043 Grenoble Cedex (France)

    2012-07-15

    We report the results of an in-situ synchrotron X-ray powder diffraction study - performed using silicone oil as 'non-penetrating' pressure transmitting medium - of the elastic behavior of three zeolites with MFI-type framework: the natural zeolite mutinaite and two silicalites (labeled A and B) synthesized under different conditions. While in mutinaite no symmetry change is observed as a function of pressure, a phase transition from monoclinic (P2{sub 1}/n) to orthorhombic (Pnma) symmetry occurs at about 1.0 GPa in the silicalite samples. This phase transition is irreversible upon decompression. The second order bulk moduli of silicalite A and silicalite B, calculated after the fulfillment of the phase transition, are: K{sub 0}=18.2(2) and K{sub 0}=14.3 (2) GPa, respectively. These values makes silicalite the most compressible zeolite among those up to now studied in silicone oil. The structural deformations induced by HP in silicalite A were investigated by means of complete Rietveld structural refinements, before and after the phase transition, at P{sub amb} and 0.9 GPa, respectively. The elastic behaviors of the three MFI-type zeolites here investigated were compared with those of Na-ZSM-5 and H-ZSM-5, studied in similar experimental conditions: the two silicalites - which are the phases with the highest Si/Al ratios and hence the lowest extraframework contents - show the highest compressibility. On the contrary, the most rigid material is mutinaite, which has a very complex extraframework composition characterized by a high number of cations and water molecules. - Graphical abstract: High-pressure behavior of silicalite compressed in silicone oil: projection of the structure along the [0 1 0] direction at Pamb(a), 0.9 GPa (b). (c) Comparison of the unit-cell volume variations as a function of pressure for mutinaite, H-ZSM5, Na-ZSM5, silicalite A, and silicalite B compressed in silicone oil. Highlights: Black-Right-Pointing-Pointer X-ray powder

  2. Elastic stresses and plastic deformations in 'Santa Clara' tomato fruits caused by package dependent compression

    Directory of Open Access Journals (Sweden)

    PEREIRA ADRIANA VARGAS

    2000-01-01

    Full Text Available The objective of this work was to study the fruit compression behavior aiming to develop new tomato packages. Deformations caused by compression forces were observed inside packages and in individual 'Santa Clara' tomato fruit. The forces applied by a transparent acrylic lever to the fruit surface caused pericarp deformation and the flattened area was proportional to the force magnitude. The deformation was associated to the reduction in the gas volume (Vg, caused by expulsion of the air from the loculus cavity and reduction in the intercellular air volume of the pericarp. As ripening advanced, smaller fractions of the Vg reduced by the compressive force were restored after the stress was relieved. The lack of complete Vg restoration was an indication of permanent plastic deformations of the stressed cells. Vg regeneration (elastic recovery was larger in green fruits than in the red ones. The ratio between the applied force and the flattened area (flattening pressure, which depends on cell turgidity, decreased during ripening. Fruit movements associated with its depth in the container were observed during storage in a transparent glass container (495 x 355 x 220 mm. The downward movement of the fruits was larger in the top layers because these movements seem to be driven by a summation of the deformation of many fruits in all layers.

  3. Calculation of elastic-plastic strain ranges for fatigue analysis based on linear elastic stresses

    International Nuclear Information System (INIS)

    Sauer, G.

    1998-01-01

    Fatigue analysis requires that the maximum strain ranges be known. These strain ranges are generally computed from linear elastic analysis. The elastic strain ranges are enhanced by a factor K e to obtain the total elastic-plastic strain range. The reliability of the fatigue analysis depends on the quality of this factor. Formulae for calculating the K e factor are proposed. A beam is introduced as a computational model for determining the elastic-plastic strains. The beam is loaded by the elastic stresses of the real structure. The elastic-plastic strains of the beam are compared with the beam's elastic strains. This comparison furnishes explicit expressions for the K e factor. The K e factor is tested by means of seven examples. (orig.)

  4. Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression.

    Science.gov (United States)

    Stokes, Ian A F; Laible, Jeffrey P; Gardner-Morse, Mack G; Costi, John J; Iatridis, James C

    2011-01-01

    Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force-time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity.

  5. Influence of wood moisture content on the modulus of elasticity in compression parallel to the grain

    Directory of Open Access Journals (Sweden)

    Diogo Aparecido Lopes Silva

    2012-04-01

    Full Text Available Brazilian Standard ABNT NBR7190:1997 for timber structures design, adopts a first degree equation to describe the influence of wood moisture content. Periodically, when necessary, the referred standard is revised in order to analyze inconsistencies and to adopt considerations according new realities verified. So, the present paper aims to examine the adequacy of its equation which corrects to 12% of moisture the values of rigidity properties obtained on experimental tests. To quantify the moisture influence on modulus of elasticity, it was applied tests of compression parallel to the grain for six specimens of different strength classes, considering nominal moisture of 12; 20; 25; 30%. As results, modulus of elasticity in the moisture range 25-30% showed statistically equivalents, and was obtained a first degree equation to correlate the studied variables which leads to statically equivalent estimations when compared with results by ABNT NBR7190:1997 equation. However, it was indicated to maintain the current expression for the next text of the referred document review, without prejudice to statistical significance of the estimates.

  6. Stages of destruction and elastic compression of granular nanoporous carbon medium at high pressures

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Ledenyov, O.P.; Bobrova, N.B.; Chupikov, A.A.

    2015-01-01

    The granular nanoporous carbon medium, made of the cylindrical coal granules of the adsorbent of CKT-3, at an influence by the high pressures from 1 MPa to 3 GPa has been researched. The eight consecutive stages of the material's specific volume change, which is characterized by a certain dependence of the volume change on the pressure change, have been registered. It is shown that there is a linear dependence on the double log-log plot of the material's specific volume change on the pressure for an every stage of considered process. The two stages are clearly distinguished: a stage of material's mechanical destruction, and a stage of elastic compression of material without the disintegration of structure at a nano-scale. The hysteresis dependence of the material's specific volume change on the pressure change at the pressure decrease is observed. The small disperse coal dust particles jettisoning between the high pressure cell and the base plate was observed, resulting in the elastic stress reduction in relation to the small disperse coal dust particles volume. The obtained research data can be used to improve the designs of air filters for the radioactive chemical elements absorption at the NPP with the aims to protect the environment

  7. Current prescribing patterns of elastic compression stockings post-deep venous thrombosis.

    LENUS (Irish Health Repository)

    Roche-Nagle, G

    2012-02-01

    OBJECTIVES: Post-thrombotic syndrome (PTS) is a complication of deep vein thrombosis (DVT) characterized by chronic pain, swelling and heaviness, and may result in ulceration. Elastic compression stockings (ECS) worn daily after DVT appear to reduce the incidence and severity of PTS. The aims of our study were to investigate practices and perceptions of DVT patients and physicians regarding the use of ECS after DVT. METHODS: Two surveys were conducted. The first was sent to 225 staff and trainee clinicians and the second was administered to 150 DVT patients. RESULTS: The results demonstrated that the majority of senior staff (75%) believed that ECS were effective in preventing PTS and in managing venous symptoms. However, this was in contrast with junior trainees (21%) (P < 0.05). This resulted in only 63% of patients being prescribed ECS post-DVT. There was a lack of consensus as regards the optimal timing of initiation of ECS, duration of therapy and compression strength. Nearly all DVT patients who were prescribed ECS purchased them, 74% wore them daily, and most (61%) reported that ECS relieved swelling and symptoms. Physicians correctly predicted the main reasons for non-compliance, but misjudged the scale of patient compliance with ECS. CONCLUSIONS: Our findings suggest that there is a lack of consensus among doctors regarding ECS use after DVT and widespread education regarding the latest evidence of the benefit of ECS after DVT.

  8. Stress analysis of shear/compression test

    International Nuclear Information System (INIS)

    Nishijima, S.; Okada, T.; Ueno, S.

    1997-01-01

    Stress analysis has been made on the glass fiber reinforced plastics (GFRP) subjected to the combined shear and compression stresses by means of finite element method. The two types of experimental set up were analyzed, that is parallel and series method where the specimen were compressed by tilted jigs which enable to apply the combined stresses, to the specimen. Modified Tsai-Hill criterion was employed to judge the failure under the combined stresses that is the shear strength under the compressive stress. The different failure envelopes were obtained between the two set ups. In the parallel system the shear strength once increased with compressive stress then decreased. On the contrary in the series system the shear strength decreased monotonicly with compressive stress. The difference is caused by the different stress distribution due to the different constraint conditions. The basic parameters which control the failure under the combined stresses will be discussed

  9. Thermodynamic analysis of elastic-plastic deformation

    International Nuclear Information System (INIS)

    Lubarda, V.

    1981-01-01

    The complete set of constitutive equations which fully describes the behaviour of material in elastic-plastic deformation is derived on the basis of thermodynamic analysis of the deformation process. The analysis is done after the matrix decomposition of the deformation gradient is introduced into the structure of thermodynamics with internal state variables. The free energy function, is decomposed. Derive the expressions for the stress response, entropy and heat flux, and establish the evolution equation. Finally, we establish the thermodynamic restrictions of the deformation process. (Author) [pt

  10. Hydrogen analysis by elastic recoil spectrometry

    International Nuclear Information System (INIS)

    Tirira, J.; Trocellier, P.

    1989-01-01

    An absolute, quantitative procedure was developed to determine the hydrogen content and to describe its concentration profile in the near-surface region of solids. The experimental technique used was the elastic recoil detection analysis of protons induced by 4 He beam bombardment in the energy range <=1.8 MeV. The hydrogen content was calculated using a new recoil cross section expression. The analyses were performed in silicon crystals implanted with hydrogen at 10 keV. The implantation dose was evaluated with an accuracy of 10% and the hydrogen depth profile with that of +-10 nm around 200 nm. (author) 10 refs.; 3 figs

  11. ELASTIC-PLASTIC AND RESIDUAL STRESS ANALYSIS OF AN ALUMINUM DISC UNDER INTERNAL PRESSURES

    Directory of Open Access Journals (Sweden)

    Numan Behlül BEKTAŞ

    2004-02-01

    Full Text Available This paper deals with elastic-plastic stress analysis of a thin aluminum disc under internal pressures. An analytical solution is performed for satisfying elastic-plastic stress-strain relations and boundary conditions for small plastic deformations. The Von-Mises Criterion is used as a yield criterion, and elastic perfectly plastic material is assumed. Elastic-plastic and residual stress distributions are obtained from inner radius to outer radius, and they are presented in tables and figures. All radial stress components, ?r, are compressive, and they are highest at the inner radius. All tangential stress components, ??, are tensile, and they are highest where the plastic deformation begins. Magnitude of the tangential residual stresses is higher than those the radial residual stresses.

  12. An analysis of price competitiveness of CNG (compressed natural gas) versus gasoline: estimation of the elasticities of demand by CNG in a recent period in Brazil; Uma analise da competitividade de preco do GNV (Gas Natural Veicular) frente a gasolina: estimacao das elasticidades da demanda por GNV no Brasil no periodo recente

    Energy Technology Data Exchange (ETDEWEB)

    Iootty, Mariana; Pinto Junior, Helder; Roppa, Bruna; Biasi, Guilherme de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Economia

    2004-07-01

    One of the main determinants to the expansion of natural gas on the Brazilian domestic market is its price. Hence, it is important to analyze the price competitiveness of natural gas vis-a-vis its competitors. The current paper focuses on the market of natural gas in vehicles (the compressed natural gas - CNG), and uses co-integration techniques to estimate the price-elasticity of CNG, the cross-elasticity of CNG and gasoline, and the income-elasticity. The results suggest that price is a relevant factor in the long-run, while in the short-run income is the most significant determinant of the demand variation. In addition, the paper also shows an imperfect substitutability between CNG and gasoline. (author)

  13. Use of customised pressure-guided elastic bandages to improve efficacy of compression bandaging for venous ulcers.

    Science.gov (United States)

    Sermsathanasawadi, Nuttawut; Chatjaturapat, Choedpong; Pianchareonsin, Rattana; Puangpunngam, Nattawut; Wongwanit, Chumpol; Chinsakchai, Khamin; Ruangsetakit, Chanean; Mutirangura, Pramook

    2017-08-01

    Compression bandaging is a major treatment of chronic venous ulcers. Its efficacy depends on the applied pressure, which is dependent on the skill of the individual applying the bandage. To improve the quality of bandaging by reducing the variability in compression bandage interface pressures, we changed elastic bandages into a customised version by marking them with circular ink stamps, applied when the stretch achieves an interface pressure between 35 and 45 mmHg. Repeated applications by 20 residents of the customised bandage and non-marked bandage to one smaller and one larger leg were evaluated by measuring the sub-bandage pressure. The results demonstrated that the target pressure range is more often attained with the customised bandage compared with the non-marked bandage. The customised bandage improved the efficacy of compression bandaging for venous ulcers, with optimal sub-bandage pressure. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  14. Compressive Elasticity of Three-Dimensional Nanofiber Matrix Directs Mesenchymal Stem Cell Differentiation to Vascular Cells with Endothelial or Smooth Muscle Cell Markers

    OpenAIRE

    Wingate, Kathryn; Bonani, Walter; Tan, Yan; Bryant, Stephanie J.; Tan, Wei

    2012-01-01

    The importance of mesenchymal stem cell (MSC) in vascular regeneration is becoming increasingly recognized. However, few in vitro studies have been performed to identify the effects of environmental elasticity on the differentiation of MSC into vascular cell types. We utilized electrospinning and photopolymerization techniques to fabricate a 3D PEGdma nanofiber hydrogel matrix with a tunable elasticity for use as a cellular substrate. Compression testing demonstrated that the elastic modulus ...

  15. Elastic recoil detection analysis of ferroelectric films

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, W.B.; Johnston, P.N.; Walker, S.R.; Bubb, I.F. [Royal Melbourne Inst. of Tech., VIC (Australia); Scott, J.F. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    There has been considerable progress in developing SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub O.7}Sr{sub O.3}TiO{sub 3} (BST) ferroelectric films for use as nonvolatile memory chips and for capacitors in dynamic random access memories (DRAMs). Ferroelectric materials have a very large dielectric constant ( {approx} 1000), approximately one hundred times greater than that of silicon dioxide. Devices made from these materials have been known to experience breakdown after a repeated voltage pulsing. It has been suggested that this is related to stoichiometric changes within the material. To accurately characterise these materials Elastic Recoil Detection Analysis (ERDA) is being developed. This technique employs a high energy heavy ion beam to eject nuclei from the target and uses a time of flight and energy dispersive (ToF-E) detector telescope to detect these nuclei. The recoil nuclei carry both energy and mass information which enables the determination of separate energy spectra for individual elements or for small groups of elements In this work ERDA employing 77 MeV {sup 127}I ions has been used to analyse Strontium Bismuth Tantalate thin films at the heavy ion recoil facility at ANSTO, Lucas Heights. 9 refs., 5 figs.

  16. Elastic recoil detection analysis of ferroelectric films

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, W B; Johnston, P N; Walker, S R; Bubb, I F [Royal Melbourne Inst. of Tech., VIC (Australia); Scott, J F [New South Wales Univ., Kensington, NSW (Australia); Cohen, D D; Dytlewski, N [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    There has been considerable progress in developing SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub O.7}Sr{sub O.3}TiO{sub 3} (BST) ferroelectric films for use as nonvolatile memory chips and for capacitors in dynamic random access memories (DRAMs). Ferroelectric materials have a very large dielectric constant ( {approx} 1000), approximately one hundred times greater than that of silicon dioxide. Devices made from these materials have been known to experience breakdown after a repeated voltage pulsing. It has been suggested that this is related to stoichiometric changes within the material. To accurately characterise these materials Elastic Recoil Detection Analysis (ERDA) is being developed. This technique employs a high energy heavy ion beam to eject nuclei from the target and uses a time of flight and energy dispersive (ToF-E) detector telescope to detect these nuclei. The recoil nuclei carry both energy and mass information which enables the determination of separate energy spectra for individual elements or for small groups of elements In this work ERDA employing 77 MeV {sup 127}I ions has been used to analyse Strontium Bismuth Tantalate thin films at the heavy ion recoil facility at ANSTO, Lucas Heights. 9 refs., 5 figs.

  17. Numerical simulation of the interaction between a nonlinear elastic structure and compressible flow by the discontinuous Galerkin method

    Czech Academy of Sciences Publication Activity Database

    Kosík, Adam; Feistauer, M.; Hadrava, Martin; Horáček, Jaromír

    2015-01-01

    Roč. 267, September (2015), s. 382-396 ISSN 0096-3003 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : discontinuous Galerkin method * nonlinear elasticity * compressible viscous flow * fluid–structure interaction Subject RIV: BI - Acoustics Impact factor: 1.345, year: 2015 http://www.sciencedirect.com/science/article/pii/S0096300315002453/pdfft?md5=02d46bc730e3a7fb8a5008aaab1da786&pid=1-s2.0-S0096300315002453-main.pdf

  18. Multilevel analysis of elastic morphology: The mantis shrimp's spring.

    Science.gov (United States)

    Rosario, M V; Patek, S N

    2015-09-01

    Spring systems, whether natural or engineered, are composed of compliant and rigid regions. Biological springs are often similar to monolithic structures that distribute compliance and rigidity across the whole system. For example, to confer different amounts of compliance in distinct regions within a single structure, biological systems typically vary regional morphology through thickening or elongation. Here, we analyze the monolithic spring in mantis shrimp (Stomatopoda) raptorial appendages to rapidly acquire or process prey. We quantified the shape of cross-sections of the merus segment of the raptorial appendage. We also examined specific regions of the merus that are hypothesized to either store elastic energy or provide structural support to permit energy storage in other regions of the system. We found that while all mantis shrimp contain thicker ventral bars in distal cross-sections, differences in thickness are more pronounced in high-impact "smasher" mantis shrimp than in the slower-striking "spearer" mantis shrimp. We also found that spearer cross-sections are more circular while those of smashers are more eccentric with elongation along the dorso-ventral axis. The results suggest that the regional thickening of ventral bars provides structural support for resisting spring compression and also reduces flexural stiffness along the system's long axis. This multilevel morphological analysis offers a foundation for understanding the evolution and mechanics of monolithic systems in biology. © 2015 Wiley Periodicals, Inc.

  19. Elastic behavior of MFI-type zeolites: Compressibility of H-ZSM-5 in penetrating and non-penetrating media

    International Nuclear Information System (INIS)

    Quartieri, Simona; Montagna, Gabriele; Arletti, Rossella; Vezzalini, Giovanna

    2011-01-01

    The elastic behavior of H-ZSM-5 was investigated by in-situ synchrotron X-ray powder diffraction, using both silicone oil (s.o.) and (16:3:1) methanol:ethanol:water (m.e.w.) as 'non-penetrating' and 'penetrating' pressure transmitting media, respectively. From P amb to 6.2 GPa the volume reduction observed in s.o. is 16.6%. This testifies that H-ZSM-5 is one of the most flexible microporous materials up to now compressed in s.o. Volume reduction observed in m.e.w. up to 7.6 GPa is 14.6%. A strong increase in the total electron number of the extraframework system, due to the penetration of water/alcohol molecules in the pores, is observed in m.e.w. This effect is the largest up to now observed in zeolites undergoing this phenomenon without cell volume expansion. The higher compressibility in s.o. than in m.e.w. can be ascribed to the penetration of the extra-water/alcohol molecules, which stiffen the structure and contrast the channel deformations. - Graphical abstract: High-pressure behavior of H-ZSM-5 compressed in (16:3:1) methanol:ethanol:water: (a) projection of the structure along the [0 1 0] direction at P amb , 2 GPa and after pressure release to original ambient conditions (P amb (rev)), and (b) P-dependence of the extraframework content expressed as total number of electrons (gray square represents the number of the extraframework electrons at P amb after decompression). Highlights: → X-ray powder diffraction study of H-ZSM-5 compressibility. → H-ZSM-5 is one of the softest porous material compressed in silicon oil. → Penetration of additional water/alcohol molecules upon compression in m.e.w. → Extra molecules contribute to stiffen the structure and to contrast HP effects.

  20. Haemodynamic Performance of Low Strength Below Knee Graduated Elastic Compression Stockings in Health, Venous Disease, and Lymphoedema.

    Science.gov (United States)

    Lattimer, C R; Kalodiki, E; Azzam, M; Geroulakos, G

    2016-07-01

    To test the in vivo haemodynamic performance of graduated elastic compression (GEC) stockings using air-plethysmography (APG) in healthy volunteers (controls) and patients with varicose veins (VVs), post-thrombotic syndrome (PTS), or lymphoedema. Responsiveness data were used to determine which group benefited the most from GEC. There were 12 patients per group compared using no compression, knee-length Class 1 (18-21 mmHg) compression, and Class 2 (23-32 mmHg) compression. Stocking/leg interface pressures (mmHg) were measured supine in two places using an air-sensor transducer. Stocking performance parameters, investigated before and after GEC, included the standard APG tests (working venous volume [wVV], venous filling index [VFI], venous drainage index [VDI], ejection fraction [EF]) and the occlusion plethysmography tests (incremental pressure causing the maximal increase in calf volume [IPMIV], outflow fraction [OF]). Results were expressed as median and interquartile range. Significant graduated compression was achieved in all four groups with higher interface pressures at the ankle. Only the VVs patients had a significant reduction in their wVV (without: 133 [109-146] vs. class1: 93 [74-113] mL) and the VFI (without: 4.6 [3-7.1] vs. class1: 3.1 [1.9-5] mL/s), both at p <.05. The IPMIV improved significantly in all groups except in the PTS group (p <.05). The OF improved only in the controls (without: 43 [38-51] vs. class1: 50 [48-53] %) and the VVs patients (without: 47 [39-58] vs. class1: 56 [50-64] %), both at p <.05. There were no significant differences in the VDI or the EF with GEC. Compression dose-response relationships were not observed. Patients with varicose veins improved the most, whereas those with PTS improved the least. Performance seemed to depend more on disease pathophysiology than compression strength. However, the lack of responsiveness to compression strength may be related to the low external pressures used. Stocking performance tests

  1. Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales.

    Science.gov (United States)

    Loveridge-Smith, A; Allen, A; Belak, J; Boehly, T; Hauer, A; Holian, B; Kalantar, D; Kyrala, G; Lee, R W; Lomdahl, P; Meyers, M A; Paisley, D; Pollaine, S; Remington, B; Swift, D C; Weber, S; Wark, J S

    2001-03-12

    We have used x-ray diffraction with subnanosecond temporal resolution to measure the lattice parameters of orthogonal planes in shock compressed single crystals of silicon (Si) and copper (Cu). Despite uniaxial compression along the (400) direction of Si reducing the lattice spacing by nearly 11%, no observable changes occur in planes with normals orthogonal to the shock propagation direction. In contrast, shocked Cu shows prompt hydrostaticlike compression. These results are consistent with simple estimates of plastic strain rates based on dislocation velocity data.

  2. MRI analysis of vascular compressive trigeminal neuralgia

    International Nuclear Information System (INIS)

    Tang Ling; Chai Weimin; Song Qi; Ling Huawei; Miao Fei; Chen Kemin

    2006-01-01

    Objective: To analyze the offending vessels of vascular compressive trigeminal neuralgia by magnetic resonance tomographic angiography (MRTA). Methods: MRTA images of 235 asymptomatic trigeminal nerves and 147 symptomatic trigeminal nerves were analyzed by two radiologists who were blinded to the clinical findings. Judgment was made on if there were some vessels close to the trigeminal nerve. The diameter of the offending vessel, the distance from the offending vessel's contact point to the pons and the direction of the vessel toward the nerve were also recorded at the same time. Group t-test and Chi-Square test were used for statistics. Results: Two hundred and forty-two trigeminal nerves of all 382 nerves can be detected offending vessels on MRTA images, 111 of 242 trigeminal nerves were asymptomatic, the rest 131 were symptomatic. Statistical analysis indicated that the distance from the offending vessel's contact point to the pons in symptomatic group (the median is 2 mm) was shorter than that in the asymptomatic group (the median is 4 mm) (P<0.01). In 89.3% cases (117/131) of the symptomatic group the angle between the vessel and the nerve is larger than 45 degree, but only in 67.6% cases (75/111) in the asymptomatic group the angle is larger than 45 degree. That means significant difference is between the two groups (P<0.01). Vessel-nerve compression can be seen in 1 case of asymptomatic group (0.4%, 1/235) and 45 eases in symptomatic group (30.6%, 45/147). The vessel-nerve compression rate of the symptomatic group was much higher than that of the asymptomatic group (P<0.01). Conclusion: MR is a useful tool to evaluate the offending vessels of vascular compressive trigeminal neuralgia. The distance from the offending vessel's contact point to the pons and the direction of the vessel toward the nerve are related to the onset of vascular compressive trigeminal neuralgia. (authors)

  3. Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles

    Science.gov (United States)

    Wu, H. I.; Spence, R. D.; Sharpe, P. J.; Goeschl, J. D.

    1985-01-01

    The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.

  4. The first-principles calculations for the elastic properties of Zr2Al under compression

    International Nuclear Information System (INIS)

    Yuan Xiaoli; Wei Dongqing; Chen Xiangrong; Zhang Qingming; Gong Zizheng

    2011-01-01

    Graphical abstract: The calculated elastic constants C ij as a function of pressure P. Display Omitted Research highlights: → It is found that the five independent elastic constants increase monotonically with pressure. C 11 and C 33 vary rapidly as pressure increases, C 13 and C 12 becomes moderate. However, C 44 increases comparatively slowly with pressure. Figure shows excellent satisfaction of the calculated elastic constants of Zr 2 Al to these equations and hence in our calculation, the Zr 2 Al is mechanically stable at pressure up to 100 GPa. - Abstract: The first-principles calculations were applied to investigate the structural, elastic constants of Zr 2 Al alloy with increasing pressure. These properties are based on the plane wave pseudopotential density functional theory (DFT) method within the generalized gradient approximation (GGA) for exchange and correlation. The result of the heat of formation of Zr 2 Al crystal investigated is in excellent consistent with results from other study. The anisotropy, the shear modulus, and Young's modulus for the ideal polycrystalline Zr 2 Al are also studied. It is found that (higher) pressure can significantly improve the ductility of Zr 2 Al. Moreover, the elastic constants of Zr 2 Al increase monotonically and the anisotropies decrease with the increasing pressure. Finally, it is observed that Zr d electrons are mainly contributed to the density of states at the Fermi level.

  5. Music analysis and point-set compression

    DEFF Research Database (Denmark)

    Meredith, David

    A musical analysis represents a particular way of understanding certain aspects of the structure of a piece of music. The quality of an analysis can be evaluated to some extent by the degree to which knowledge of it improves performance on tasks such as mistake spotting, memorising a piece...... as the minimum description length principle and relates closely to certain ideas in the theory of Kolmogorov complexity. Inspired by this general principle, the hypothesis explored in this paper is that the best ways of understanding (or explanations for) a piece of music are those that are represented...... by the shortest possible descriptions of the piece. With this in mind, two compression algorithms are presented, COSIATEC and SIATECCompress. Each of these algorithms takes as input an in extenso description of a piece of music as a set of points in pitch-time space representing notes. Each algorithm...

  6. ANALYSIS OF A RIGID WALL IN AN ELASTIC WEIGHTY HALF-PLANE

    Directory of Open Access Journals (Sweden)

    K. V. Dmitrieva

    2016-01-01

    Full Text Available The analysis of stress-strain state of a rigid wall in an elastic weighty half-plane with a broken outline is carried out. To this end, the auxiliary problem of displacements definition in an elastic weighty quarter-plane was solved. Ritz method derived a formula to determine the displacements of elastic flat wedge boundaries in view of its own weight. On the basis of the received expressions the algorithm of displacements definition of a crack in an elastic weighty half-plane with a broken outline is developed. Analytical calculation of a rigid vertical wall located in an elastic weighty half-plane under the influence of a horizontal load, carried out by two methods: by Zhemochkin's method and finite difference method. In the problem statement an elastic half-plane is considered a model of the soil medium, therefore, only compressive normal stresses can arise on the connection of the wall with the elastic base. This assumption implies occurrence of discontinuities soil medium, and leads for the wall to an emergence of two dividing points of boundary conditions. The determination of the boundaries contact of the wall with the elastic half-plane, are not known in advance, is performed by iteratively way at each step set the position of dividing points of boundary conditions and the system of canonical equations of a corresponding method is written.  If tensile stresses appear in wall-base contact and/or there is overlap of the crack edges occurs, then proceeds to the next iteration. Analysis of the results shows that the bending moment and shear forces in sections of the rigid wall in a broken weighty half-plane differ slightly from the same diagrams constructed for a rigid wall in an elastic weightless half-plane. The verification of the results of analytical calculation with the results received by using the LIRA 9.6 that implements the finite element method is obtained. The calculation results for the rigid wall in an elastic weighty half

  7. Relationship between radial compressive modulus of elasticity and shear modulus of wood

    Science.gov (United States)

    Jen Y. Liu; Robert J. Ross

    2005-01-01

    Wood properties in transverse compression are difficult to determine because of such factors as anatomical complexity, specimen geometry, and loading conditions. The mechanical properties of wood, considered as an anisotropic or orthotropic material, are related by certain tensor transformation rules when the reference coordinate system changes its orientation. In this...

  8. [Application of compression equipment using the "form memory" effect and super-elasticity of titanium nickelide in surgery for rectal cancer].

    Science.gov (United States)

    Vlasov, A A; Vazhenin, A V; Plotnikov, V V; Spirev, V V; Chinarev, Iu B

    2010-01-01

    The study is concerned with development of equipment for forming circular compression intestinal anastomosis using the "form memory" effect and super-elasticity of titanium nickelide. A sequence of technological operations is suggested, experimental tests and clinical trials carried out and immediate and end-results for anterior resection in rectal cancer are evaluated. Compression equipment for forming colorectal anastomosis proved reliable in long-term operation.

  9. Micro-Mechanical Analysis About Kink Band in Carbon Fiber/Epoxy Composites Under Longitudinal Compression

    Science.gov (United States)

    Zhang, Mi; Guan, Zhidong; Wang, Xiaodong; Du, Shanyi

    2017-10-01

    Kink band is a typical phenomenon for composites under longitudinal compression. In this paper, theoretical analysis and finite element simulation were conducted to analyze kink angle as well as compressive strength of composites. Kink angle was considered to be an important character throughout longitudinal compression process. Three factors including plastic matrix, initial fiber misalignment and rotation due to loading were considered for theoretical analysis. Besides, the relationship between kink angle and fiber volume fraction was improved and optimized by theoretical derivation. In addition, finite element models considering fiber stochastic strength and Drucker-Prager constitutive model for matrix were conducted in ABAQUS to analyze kink band formation process, which corresponded with the experimental results. Through simulation, the loading and failure procedure can be evidently divided into three stages: elastic stage, softening stage, and fiber break stage. It also shows that kink band is a result of fiber misalignment and plastic matrix. Different values of initial fiber misalignment angle, wavelength and fiber volume fraction were considered to explore the effects on compressive strength and kink angle. Results show that compressive strength increases with the decreasing of initial fiber misalignment angle, the decreasing of initial fiber misalignment wavelength and the increasing of fiber volume fraction, while kink angle decreases in these situations. Orthogonal array in statistics was also built to distinguish the effect degree of these factors. It indicates that initial fiber misalignment angle has the largest impact on compressive strength and kink angle.

  10. Determination of hoop direction effective elastic moduli of non-circular profile, fiber reinforced polymer composite sewer liner pipes from lateral ring compression tests

    International Nuclear Information System (INIS)

    Czél, Gergely; Takács, Dénes

    2015-01-01

    A new material property determination method is presented for the calculation of effective elastic moduli of non-circular ring specimens cut from filament wound oval profile polymer composite sewer liner pipes. The hoop direction elastic moduli was determined using the test results obtained from ring compression tests, which is a very basic setup, and requires no special equipment. Calculations were executed for many different oval profiles, and diagrams were constructed, from which the cross section dependent C_e_f_f constants can be taken. The new method was validated by the comparison of tests and finite element analysis results. The calculation method and the diagrams are essential design tools for engineers, and a big step forward in sizing non-circular profile liner pipes. - Highlights: • A simple modulus measurement method is presented for non-circular ring specimens. • The evaluation method is validated against a finite element model. • Profile shape dependent constants are presented for a wide range of cross-sections. • A set of charts with the constants are provided to aid design engineers.

  11. Numerical simulation of fluid-structure interaction of compressible flow and elastic structure

    Czech Academy of Sciences Publication Activity Database

    Hasnedlová, J.; Feistauer, M.; Horáček, Jaromír; Kosík, A.; Kučera, V.

    2013-01-01

    Roč. 95, Suppl 1 (2013), s. 343-361 ISSN 0010-485X R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : fluid–structure interaction * compressible flow * discontinuous Galerkin finite element method * coupling algorithms Subject RIV: BI - Acoustics Impact factor: 1.055, year: 2013 http://link.springer.com/article/10.1007%2Fs00607-012-0240-x

  12. Effect of crosslinker length on the elastic and compression modulus of poly(acrylamide) nanocomposite hydrogels

    International Nuclear Information System (INIS)

    Zaragoza, J; Chang, A; Asuri, P

    2017-01-01

    Polymer hydrogelshave shown to exhibit improved properties upon the addition of nanoparticles; however, the mechanical underpinnings behind these enhancements have not been fully elucidated. Moreover, fewer studies have focused on developing an understanding of how polymer parameters affect the nanoparticle-mediated enhancements. In this study, we investigated the elastic properties of silica nanoparticle-reinforced poly(acrylamide) hydrogels synthesized using crosslinkers of various lengths. Crosslinker length positively affected the mechanical properties of hydrogels that were synthesized with or without nanoparticles. However the degree of nanoparticle enhancement was negatively correlated to crosslinker length. Our findings enable the understanding of the respective roles of nanoparticle and polymer properties on nanoparticle-mediated enhancement of hydrogels and thereby the development of next-generation nanocomposite materials. (paper)

  13. Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature

    Science.gov (United States)

    Austin, Ryan A.

    2018-01-01

    The effect of temperature on the dynamic flow behavior of aluminum is considered in the context of precursor wave decay measurements and simulations. In this regard, a dislocation-based model of high-rate metal plasticity is brought into agreement with previous measurements of evolving wave profiles at 300 to 933 K, wherein the amplification of the precursor structure with temperature arises naturally from the dislocation mechanics treatment. The model suggests that the kinetics of inelastic flow and stress relaxation are governed primarily by phonon scattering and radiative damping (sound wave emission from dislocation cores), both of which intensify with temperature. The manifestation of these drag effects is linked to low dislocation density ahead of the precursor wave and the high mobility of dislocations in the face-centered cubic lattice. Simulations performed using other typical models of shock wave plasticity do not reproduce the observed temperature-dependence of elastic/plastic wave structure.

  14. Elastic-plastic mechanical constitutive description for rock salt triaxial compression

    International Nuclear Information System (INIS)

    Butcher, B.M.

    1981-06-01

    A model for the time-independent part of the mechanical deformation of rock salt from the Waste Isolation Pilot Plant Site in southeastern New Mexico is presented. A recently published creep model was first used to correct conventional triaxial compression data for time-dependent deformation. The experimental data was from tests at a loading rate of approximately 11.9 N/s, 23 0 C, and confining pressures from 0 to -20.7 MPa. The corrected time-independent curves were then used to determine material constants for the model. Generalization to a three-dimensional plasticity-failure theory using a general constitutive relation proposed by Rudnicki and Rice was also performed. 7 figures, 3 tables

  15. Elastic Modulus of Foamcrete in Compression and Bending at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available This paper will presents the experimental results that have been performed to examine and characterize the mechanical properties of foamcrete at elevated temperatures. Foamcrete of 650 and 1000 kg/m 3 density were cast and tested under compression and bending. The tests were done at room temperature, 100, 200, 300, 400, 500, and 600°C. The results of this study consistently demonstrated that the loss in stiffness for cement based material like foamcrete at elevated temperatures occurs predominantly after about 95°C, regardless of density. This indicates that the primary mechanism causing stiffness degradation is microcracking, which occurs as water expands and evaporates from the porous body. As expected, reducing the density of LFC reduces its strength and stiffness. However, for LFC of different densities, the normalised strength-temperature and stiffnesstemperature relationships are very similar.

  16. Nonlinear analysis of flexible plates lying on elastic foundation

    Directory of Open Access Journals (Sweden)

    Trushin Sergey

    2017-01-01

    Full Text Available This article describes numerical procedures for analysis of flexible rectangular plates lying on elastic foundation. Computing models are based on the theory of plates with account of transverse shear deformations. The finite difference energy method of discretization is used for reducing the initial continuum problem to finite dimensional problem. Solution procedures for nonlinear problem are based on Newton-Raphson method. This theory of plates and numerical methods have been used for investigation of nonlinear behavior of flexible plates on elastic foundation with different properties.

  17. On asymptotic analysis of spectral problems in elasticity

    Directory of Open Access Journals (Sweden)

    S.A. Nazarov

    Full Text Available The three-dimensional spectral elasticity problem is studied in an anisotropic and inhomogeneous solid with small defects, i.e., inclusions, voids, and microcracks. Asymptotics of eigenfrequencies and the corresponding elastic eigenmodes are constructed and justified. New technicalities of the asymptotic analysis are related to variable coefficients of differential operators, vectorial setting of the problem, and usage of intrinsic integral characteristics of defects. The asymptotic formulae are developed in a form convenient for application in shape optimization and inverse problems.

  18. Vibrational analysis of submerged cylindrical shells based on elastic foundations

    International Nuclear Information System (INIS)

    Shah, A.G.; Naeem, M.N.

    2014-01-01

    In this study a vibration analysis was performed of an isotropic cylindrical shell submerged in fluid, resting on Winkler and Pasternak elastic foundations for simply supported boundary condition. Love's thin shell theory was exploited for strain- and curvature- displacement relationship. Shell problem was solved by using wave propagation approach. Influence of fluid and Winkler as well as Pasternak elastic foundations were studied on the natural frequencies of submerged isotropic cylindrical shells. Results were validated by comparing with the existing results in literature. Vibration, Submerged cylindrical shell, Love's thin shell theory, Wave propagation method, Winkler and Pasternak foundations. (author)

  19. Analysis, design and elastic tailoring of composite rotor blades

    Science.gov (United States)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    The development of structural models for composite rotor blades is summarized. The models are intended for use in design analysis for the purpose of exploring the potential of elastic tailoring. The research was performed at the Center for Rotary Wing Aircraft Technology.

  20. Music analysis and point-set compression

    DEFF Research Database (Denmark)

    Meredith, David

    2015-01-01

    COSIATEC, SIATECCompress and Forth’s algorithm are point-set compression algorithms developed for discovering repeated patterns in music, such as themes and motives that would be of interest to a music analyst. To investigate their effectiveness and versatility, these algorithms were evaluated...... on three analytical tasks that depend on the discovery of repeated patterns: classifying folk song melodies into tune families, discovering themes and sections in polyphonic music, and discovering subject and countersubject entries in fugues. Each algorithm computes a compressed encoding of a point......-set representation of a musical object in the form of a list of compact patterns, each pattern being given with a set of vectors indicating its occurrences. However, the algorithms adopt different strategies in their attempts to discover encodings that maximize compression.The best-performing algorithm on the folk...

  1. Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers.

    Science.gov (United States)

    Wingate, K; Bonani, W; Tan, Y; Bryant, S J; Tan, W

    2012-04-01

    The importance of mesenchymal stem cells (MSC) in vascular regeneration is becoming increasingly recognized. However, few in vitro studies have been performed to identify the effects of environmental elasticity on the differentiation of MSC into vascular cell types. Electrospinning and photopolymerization techniques were used to fabricate a three-dimensional (3-D) polyethylene glycol dimethacrylate nanofiber hydrogel matrix with tunable elasticity for use as a cellular substrate. Compression testing demonstrated that the elastic modulus of the hydrated 3-D matrices ranged from 2 to 15 kPa, similar to the in vivo elasticity of the intima basement membrane and media layer. MSC seeded on rigid matrices (8-15 kPa) showed an increase in cell area compared with those seeded on soft matrices (2-5 kPa). Furthermore, the matrix elasticity guided the cells to express different vascular-specific phenotypes with high differentiation efficiency. Around 95% of MSC seeded on the 3-D matrices with an elasticity of 3 kPa showed Flk-1 endothelial markers within 24h, while only 20% of MSC seeded on the matrices with elasticity >8 kPa demonstrated Flk-1 marker. In contrast, ∼80% of MSC seeded on 3-D matrices with elasticity >8 kPa demonstrated smooth muscle α-actin marker within 24h, while fewer than 10% of MSC seeded on 3-D matrices with elasticity elasticity of the substrate could be a powerful tool for vascular tissue regeneration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Elastic analysis of beam support impact

    International Nuclear Information System (INIS)

    Salmon, M.A.; Verma, V.K.; Youtsos, T.G.

    1982-01-01

    The effect of gaps present in the seismic supports of nuclear piping systems has been studied with the use of such large general purpose analysis codes as ANSYS. Exact analytical solutions to two simple beam impact problems are obtained to serve as benchmarks for the evaluation of the ability of such codes to model impact between beam elements and their supports. Bernoulli-Euler beam theory and modal analysis are used to obtain analytical solutions for the motion of simply supported and fixed ended beams after impact with a spring support at midspan. The solutions are valid up to the time the beam loses contact with the spring support. Numerical results are obtained which show that convergence for both contact force and bending moment at the point of impact is slower as spring stiffness is increased. Finite element solutions obtained with ANSYS are compared to analytical results and good agreement is obtained

  3. What is the existing evidence supporting the efficacy of compression bandage systems containing both elastic and inelastic components (mixed-component systems)? A systematic review.

    Science.gov (United States)

    Welsh, Lynn

    2017-05-01

    To analyse current evidence on the efficacy of bandage systems containing both elastic and inelastic components (mixed-component systems). International consensus on the efficacy of types of compression systems is difficult to achieve; however, mixed-component systems are being promoted as combining the best properties of both elastic and inelastic bandage systems and increasingly being used to treat venous leg ulcers in practice. A systematic literature review. Search terms such as venous leg ulcer, varicose ulcer, leg ulcer, compression, bandage, elastic, inelastic, short stretch, healing rate, interface pressure, mixed component, two-layer, four-layer and multi-layer were used in database and hand searches in several combinations. Limits were set for years 2005-March 2015 and English-language publications. A total of 475 studies were identified at initial search, and following elimination from abstract and title, this was reduced to 7. A further study was identified on Google Scholar, bringing the final number of studies fitting inclusion criteria to 8. The following subgroups relating to outcomes of efficacy were identified: ulcer healing, maintenance of interface pressure, slippage, ease of application and patient quality of life. Mixed-component systems were found to have comparable ulcer healing rates to alternative compression systems and be easy to apply; have similar abilities to maintain pressure as four-layer bandages and better abilities than short-stretch bandages; have less slippage than alternative systems; and to be significantly associated with several favourable quality of life outcomes. Clinician skill in bandage application was an uncontrolled variable in all eight papers included in the review, which may limit reliability of findings. This review synthesises existing evidence on the efficacy of mixed-component systems and encourages clinicians to regard them as an effective alternative to purely elastic or inelastic compression systems

  4. Computer program for compressible flow network analysis

    Science.gov (United States)

    Wilton, M. E.; Murtaugh, J. P.

    1973-01-01

    Program solves problem of an arbitrarily connected one dimensional compressible flow network with pumping in the channels and momentum balancing at flow junctions. Program includes pressure drop calculations for impingement flow and flow through pin fin arrangements, as currently found in many air cooled turbine bucket and vane cooling configurations.

  5. Analysis of a combined Rankine-vapour-compression refrigeration cycle

    International Nuclear Information System (INIS)

    Aphornratana, Satha; Sriveerakul, Thanarath

    2010-01-01

    This paper describes a theoretical analysis of a heat-powered refrigeration cycle, a combined Rankine-vapour-compression refrigeration cycle. This refrigeration cycle combines an Organic Rankine Cycle and a vapour-compression cycle. The cycle can be powered by low grade thermal energy as low as 60 deg. C and can produce cooling temperature as low as -10 deg. C. In the analysis, two combined Rankine-vapour-compression refrigeration cycles were investigated: the system with R22 and the system with R134a. Calculated COP values between 0.1 and 0.6 of both the systems were found.

  6. Compressible turbulent flows: aspects of prediction and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, R. [TU Muenchen, Garching (Germany). Fachgebiet Stroemungsmechanik

    2007-03-15

    Compressible turbulent flows are an important element of high-speed flight. Boundary layers developing along fuselage and wings of an aircraft and along engine compressor and turbine blades are compressible and mostly turbulent. The high-speed flow around rockets and through rocket nozzles involves compressible turbulence and flow separation. Turbulent mixing and combustion in scramjet engines is another example where compressibility dominates the flow physics. Although compressible turbulent flows have attracted researchers since the fifties of the last century, they are not completely understood. Especially interactions between compressible turbulence and combustion lead to challenging, yet unsolved problems. Direct numerical simulation (DNS) and large-eddy simulation (LES) represent modern powerful research tools which allow to mimic such flows in great detail and to analyze underlying physical mechanisms, even those which cannot be accessed by the experiment. The present lecture provides a short description of these tools and some of their numerical characteristics. It then describes DNS and LES results of fully-developed channel and pipe flow and highlights effects of compressibility on the turbulence structure. The analysis of pressure fluctuations in such flows with isothermal cooled walls leads to the conclusion that the pressure-strain correlation tensor decreases in the wall layer and that the turbulence anisotropy increases, since the mean density falls off relative to the incompressible flow case. Similar increases in turbulence anisotropy due to compressibility are observed in inert and reacting temporal mixing layers. The nature of the pressure fluctuations is however two-facetted. While inert compressible mixing layers reveal wave-propagation effects in the pressure and density fluctuations, compressible reacting mixing layers seem to generate pressure fluctuations that are controlled by the time-rate of change of heat release and mean density

  7. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    KAUST Repository

    Mohamed, Mamdouh S.

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  8. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    KAUST Repository

    Mohamed, Mamdouh S.; Larson, Ben C.; Tischler, Jon Z.; El-Azab, Anter

    2015-01-01

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  9. Elastic-plastic analysis of the SS-3 tensile specimen

    International Nuclear Information System (INIS)

    Majumdar, S.

    1998-01-01

    Tensile tests of most irradiated specimens of vanadium alloys are conducted using the miniature SS-3 specimen which is not ASTM approved. Detailed elastic-plastic finite element analysis of the specimen was conducted to show that, as long as the ultimate to yield strength ratio is less than or equal to 1.25 (which is satisfied by many irradiated materials), the stress-plastic strain curve obtained by using such a specimen is representative of the true material behavior

  10. On the concept of elasticity used in some fast reactor accident analysis codes

    International Nuclear Information System (INIS)

    Malmberg, T.

    1975-01-01

    The analysis to be presented will restrict attention to the elastic part of the elastic-plastic constitutive equation used in several Fast Reactor Accident Analysis Codes and originally applied by M.L. Wilkins: Calculation of Elastic-Plastic Flow, UCRL-7322, Rev. 1, Jan. 1969. It is shown that the used elasticity concept is within the frame of hypo-elasticity. On the basis of a test found by Bernstein it is proven that the state of stress is generally depending on the path of deformation. Therefore this concept of elasticity is not compatible with finite elasticity. For several simple deformation processes this special hypo-elastic constitutive equation is integrated to give a stress-strain relation. The path-dependence of this relation is demonstrated. Further the phenomenon of hypo-elastic yield under shear deformation is pointed out. The relevance to modelling material behaviour in primary containment analysis is discussed

  11. On the concept of elasticity used in some fast reactor accident analysis codes

    International Nuclear Information System (INIS)

    Malmberg, T.

    1975-01-01

    The analysis presented restricts attention to the elastic part of the elastic-plastic equation used in several Fast Reactor Accident Analysis Codes and originally applied by M.L. Wilkins: Calculation of Elastic-Plastic Flow, UCRL-7322, Rev. 1, Jan 1969. It is shown that the used elasticity concept is within the frame of hypo-elasticity. On the basis of a test found by Bernstein it is proven that the state of stress is generally depending on the path of deformation. Therefore this concept of elasticity is not compatible with finite elasticity. For several deformation processes this special hypo-elastic constitutive equation is integrated to give a stress-strain relation. The path-dependence of this relation is demonstrated. Further the phenomenon of hypo-elastic yield under shear deformation is pointed out. The relevance to modelling material behaviour in primary containment analysis is discussed. (Auth.)

  12. Elastic-plastic dynamic analysis of a reactor building

    International Nuclear Information System (INIS)

    Umemura, Hajime; Tanaka, Hiroshi.

    1976-01-01

    The basic characteristics of the dynamic response of a reactor building to severe earthquake ground motion are very important for the evaluation of the safety of nuclear plant systems. A computer program for elastic-plastic dynamic analysis of reactor buildings using lumped mass models is developed. The box and cylindrical walls of boiling water reactor buildings are treated as vertical beams. The nonlinear moment-rotation and shear force-shear deformation relationships of walls are based in part upon the experiments of prototype structures. The geometrical non-linearity of the soil rocking spring due to foundation separation is also considered. The nonlinear equation of motion is expressed in incremental form using tangent stiffness matrices, following the algorithm developed by E.L. Wilson et al. The damping matrix in the equation is formulated as the combination of the energy evaluation method and Penzien-Wilson's approach to accomodate the different characteristics of soil and building damping. The analysis examples and the comparison of elastic and elastic-plastic analysis results are presented. (auth.)

  13. Multiple scattering problems in heavy ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Johnston, P.N.; El Bouanani, M.; Stannard, W.B.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Siegele, R.

    1998-01-01

    A number of groups use Heavy Ion Elastic Recoil Detection Analysis (HIERDA) to study materials science problems. Nevertheless, there is no standard methodology for the analysis of HIERDA spectra. To overcome this deficiency we have been establishing codes for 2-dimensional data analysis. A major problem involves the effects of multiple and plural scattering which are very significant, even for quite thin (∼100 nm) layers of the very heavy elements. To examine the effects of multiple scattering we have made comparisons between the small-angle model of Sigmund et al. and TRIM calculations. (authors)

  14. Modeling, Analysis, and Control of a Hypersonic Vehicle with Significant Aero-Thermo-Elastic-Propulsion Interactions: Elastic, Thermal and Mass Uncertainty

    Science.gov (United States)

    Khatri, Jaidev

    This thesis examines themodeling, analysis, and control system design issues for scramjet powered hypersonic vehicles. A nonlinear three degrees of freedom longitudinal model which includes aero-propulsion-elasticity effects was used for all analyses. This model is based upon classical compressible flow and Euler-Bernouli structural concepts. Higher fidelity computational fluid dynamics and finite element methods are needed for more precise intermediate and final evaluations. The methods presented within this thesis were shown to be useful for guiding initial control relevant design. The model was used to examine the vehicle's static and dynamic characteristics over the vehicle's trimmable region. The vehicle has significant longitudinal coupling between the fuel equivalency ratio (FER) and the flight path angle (FPA). For control system design, a two-input two-output plant (FER - elevator to speed-FPA) with 11 states (including 3 flexible modes) was used. Velocity, FPA, and pitch were assumed to be available for feedback. Aerodynamic heat modeling and design for the assumed TPS was incorporated to original Bolender's model to study the change in static and dynamic properties. De-centralized control stability, feasibility and limitations issues were dealt with the change in TPS elasticity, mass and physical dimension. The impact of elasticity due to TPS mass, TPS physical dimension as well as prolonged heating was also analyzed to understand performance limitations of de-centralized control designed for nominal model.

  15. Non-linear elastic thermal stress analysis with phase changes

    International Nuclear Information System (INIS)

    Amada, S.; Yang, W.H.

    1978-01-01

    The non-linear elastic, thermal stress analysis with temperature induced phase changes in the materials is presented. An infinite plate (or body) with a circular hole (or tunnel) is subjected to a thermal loading on its inner surface. The peak temperature around the hole reaches beyond the melting point of the material. The non-linear diffusion equation is solved numerically using the finite difference method. The material properties change rapidly at temperatures where the change of crystal structures and solid-liquid transition occur. The elastic stresses induced by the transient non-homogeneous temperature distribution are calculated. The stresses change remarkably when the phase changes occur and there are residual stresses remaining in the plate after one cycle of thermal loading. (Auth.)

  16. Analysis of biogas compression system dynamics

    International Nuclear Information System (INIS)

    Morini, Mirko; Pinelli, Michele; Venturini, Mauro

    2009-01-01

    The use of biogas for energy production has progressively increased in recent years, due to an increasing interest both in agricultural and energy policies of many industrialized countries. Biogas compression by means of natural gas infrastructure seems the most immediate solution, but could also lead to problems due to the different physical properties of the two gases. In this paper, a non-linear one-dimensional modular dynamic model is developed and used for the simulation of compression system transient behavior. The arrangement consists of a main line, where the compressor operates, and an anti-surge control, which consists of a recycle loop activated by a fast acting valve. Different maneuvers (start-up, normal operation, emergency shutdown and operating point variation) are simulated by using two different working fluids (methane and biogas). Simulations prove that the design of the surge protection system should consider the fluid to be elaborated. Moreover, system predisposition to surge increases as the ratio between system volumes and the inertia of the rotating masses increases.

  17. Diffraction stress analysis of thin films; investigating elastic grain interaction

    International Nuclear Information System (INIS)

    Kumar, A.

    2005-12-01

    This work is dedicated to the investigation of specimens exhibiting anisotropic microstructures (and thus macroscopic elastic anisotropy) and/or inhomogeneous microstructures, as met near surfaces and in textured materials. The following aspects are covered: (i) Analysis of specimens with direction-dependent (anisotropic) elastic grain-interaction. Elastic grain-interaction determines the distribution of stresses and strains over the (crystallographically) differently oriented grains of a mechanically stressed polycrystal and the mechanical and diffraction (X-ray) elastic constants (relating (diffraction) lattice strains to mechanical stresses). Grain interaction models that allow for anisotropic, direction-dependent grain interaction have been developed very recently. The notion 'direction-dependent' grain-interaction signifies that different grain-interaction constraints prevail along different directions in a specimen. Practical examples of direction-dependent grain interaction are the occurrence of surface anisotropy in thin films and the surface regions of bulk polycrystals and the occurrence of grain-shape (morphological) texture. In this work, for the first time, stress analyses of thin films have been performed on the basis of these newly developed grain-interaction models. It has also been demonstrated that the identification of the (dominant) source of direction-dependent grain interaction is possible. The results for the grain interaction have been discussed in the light of microstructural investigations of the specimens by microscopic techniques. (ii) Analysis of specimens with depth gradients: Diffraction stress analysis can be hindered if gradients of the stress state, the composition or the microstructure occur in the specimen under investigation, as the so-called information depth varies in the course of a traditional stress measurement: Ambiguous results are thus generally obtained. In this work, a strategy for stress measurements at fixed

  18. An analysis of hypercritical states in elastic and inelastic systems

    Science.gov (United States)

    Kowalczk, Maciej

    The author raises a wide range of problems whose common characteristic is an analysis of hypercritical states in elastic and inelastic systems. the article consists of two basic parts. The first part primarily discusses problems of modelling hypercritical states, while the second analyzes numerical methods (so-called continuation methods) used to solve non-linear problems. The original approaches for modelling hypercritical states found in this article include the combination of plasticity theory and an energy condition for cracking, accounting for the variability and cyclical nature of the forms of fracture of a brittle material under a die, and the combination of plasticity theory and a simplified description of the phenomenon of localization along a discontinuity line. The author presents analytical solutions of three non-linear problems for systems made of elastic/brittle/plastic and elastic/ideally plastic materials. The author proceeds to discuss the analytical basics of continuation methods and analyzes the significance of the parameterization of non-linear problems, provides a method for selecting control parameters based on an analysis of the rank of a rectangular matrix of a uniform system of increment equations, and also provides a new method for selecting an equilibrium path originating from a bifurcation point. The author provides a general outline of continuation methods based on an analysis of the rank of a matrix of a corrective system of equations. The author supplements his theoretical solutions with numerical solutions of non-linear problems for rod systems and problems of the plastic disintegration of a notched rectangular plastic plate.

  19. comparative analysis of the compressive strength of hollow

    African Journals Online (AJOL)

    user

    2016-04-02

    Apr 2, 2016 ... Previous analysis showed that cavity size and number on one hand and combinations thickness affect the compressive strength of hollow sandcrete blocks. Series arrangement of the cavities is common but parallel arrangement has been recommended. This research performed a comparative analysis of ...

  20. Projecting meat and cereals demand for China based on a meta-analysis of income elasticities

    OpenAIRE

    Zhou, De; Yu, Xiaohua; Abler, David; Chen, Danhong

    2014-01-01

    There are many projections for China’s food demand, and the projection results differ significantly from each other. Different values for income elasticities could be a major reason. This study projects meat and cereals demand for China based on a meta-analysis of the income elasticity estimates using a collection of 143 and 240 income elasticity estimates for cereals and meat products, respectively, from 36 primary studies. We find that income elasticities for most cereals (general cereals, ...

  1. [Comparing clinical effects of titanic elastic nail and locking compression pine fixation in treating subtrochanteric fractures in older children].

    Science.gov (United States)

    Zhu, Kang-xiang; Yin, Shan-qing

    2013-12-01

    To explore optimal choice of surgical treatment for subtrochanteric fractures in older children. A retrospective study of 36 older children with subtrochanteric fractures was performed between January 2010 and January 2012. Among them, 18 patients (11 males and 7 females) aged from 7 to 13 years old with an average of 9.4 were treated with titanic elastic nail (TEN) fixation, 4 cases were Type II A, 3 cases were II B, 2 cases were II C, 4 cases were III A, 3 cases were III B according to Seinsheimer classification. Eighteen patients (10 males and 8 females) aged was from 8 to 13 years with an average of 9.6 were treated with locking compression pine (LCP) fixation, and 3 cases were Type II A, 4 cases were II B, 3 cases were II C, 4 cases were IIIA, 2 cases were III B. Fracture healing time, postoperative complications (including wound infection, failure and breakage of internal fixtion, deformities of angular on the sagittal view, deformities of coxa vara) and recovery of hip joint function were observed and recorded. All children were followed up from 15 to 36 months with an average of 21. Fracture were all healed, the time ranged from 7 to 16 weeks (mean 9.5). Three cases in TEN group occurred mild deformities of angular on the sagittal view, 3 cases occurred deformities of coxa vara and 2 cases occurred limb shortening; while 1 case occurred mild deformities of angular on the sagittal view, and no deformities of coxa vara and limb shortening occurred in LCP group. No early close of epiphyseal injury, avascular necrosis of femoral head occurred. Clinical efficacy were evaluated by Sanders standard, 14 cases got excellent results, 3 cases were moderate in LCP group, while 9 cases in excellent, 4 in moderate in TEN group. There were no significant differences between two group in recovery of hip joint function and complications. For the treatment of subtrochanteric fractures in older children,the efficacy of LCP fixation is better than that of TFN fixation, which

  2. Managment oriented analysis of sediment yield time compression

    Science.gov (United States)

    Smetanova, Anna; Le Bissonnais, Yves; Raclot, Damien; Nunes, João P.; Licciardello, Feliciana; Le Bouteiller, Caroline; Latron, Jérôme; Rodríguez Caballero, Emilio; Mathys, Nicolle; Klotz, Sébastien; Mekki, Insaf; Gallart, Francesc; Solé Benet, Albert; Pérez Gallego, Nuria; Andrieux, Patrick; Moussa, Roger; Planchon, Olivier; Marisa Santos, Juliana; Alshihabi, Omran; Chikhaoui, Mohamed

    2016-04-01

    The understanding of inter- and intra-annual variability of sediment yield is important for the land use planning and management decisions for sustainable landscapes. It is of particular importance in the regions where the annual sediment yield is often highly dependent on the occurrence of few large events which produce the majority of sediments, such as in the Mediterranean. This phenomenon is referred as time compression, and relevance of its consideration growths with the increase in magnitude and frequency of extreme events due to climate change in many other regions. So far, time compression has ben studied mainly on events datasets, providing high resolution, but (in terms of data amount, required data precision and methods), demanding analysis. In order to provide an alternative simplified approach, the monthly and yearly time compressions were evaluated in eight Mediterranean catchments (of the R-OSMed network), representing a wide range of Mediterranean landscapes. The annual sediment yield varied between 0 to ~27100 Mg•km-2•a-1, and the monthly sediment yield between 0 to ~11600 Mg•km-2•month-1. The catchment's sediment yield was un-equally distributed at inter- and intra-annual scale, and large differences were observed between the catchments. Two types of time compression were distinguished - (i) the inter-annual (based on annual values) and intra- annual (based on monthly values). Four different rainfall-runoff-sediment yield time compression patterns were observed: (i) no time-compression of rainfall, runoff, nor sediment yield, (ii) low time compression of rainfall and runoff, but high compression of sediment yield, (iii) low compression of rainfall and high of runoff and sediment yield, and (iv) low, medium and high compression of rainfall, runoff and sediment yield. All four patterns were present at inter-annual scale, while at intra-annual scale only the two latter were present. This implies that high sediment yields occurred in

  3. Compressive Sensing: Analysis of Signals in Radio Astronomy

    Directory of Open Access Journals (Sweden)

    Gaigals G.

    2013-12-01

    Full Text Available The compressive sensing (CS theory says that for some kind of signals there is no need to keep or transfer all the data acquired accordingly to the Nyquist criterion. In this work we investigate if the CS approach is applicable for recording and analysis of radio astronomy (RA signals. Since CS methods are applicable for the signals with sparse (and compressible representations, the compressibility of RA signals is verified. As a result, we identify which RA signals can be processed using CS, find the parameters which can improve or degrade CS application to RA results, describe the optimum way how to perform signal filtering in CS applications. Also, a range of virtual LabVIEW instruments are created for the signal analysis with the CS theory.

  4. Elastic properties

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1983-01-01

    This chapter investigates the following five aspects of engineering-material solid-state elastic constants: general properties, interrelationships, relationships to other physical properties, changes during cooling from ambient to near-zero temperature, and near-zero-temperature behavior. Topics considered include compressibility, bulk modulus, Young's modulus, shear modulus, Poisson's ratio, Hooke's law, elastic-constant measuring methods, thermodynamic potentials, higher-order energy terms, specific heat, thermal expansivity, magnetic materials, structural phase transitions, polymers, composites, textured aggregates, and other-phenomena correlations. Some of the conclusions concerning polycrystalline elastic properties and their temperature dependence are: elastic constants are physical, not mechanical, properties which relate thermodynamically to other physical properties such as specific heat and thermal expansivity; elastic constants at low temperatures are nearly temperature independent, as required by the third law of thermodynamics; and elastic constants can be used to study directional properties of materials, such as textured aggregates and composites

  5. Effect of Cyclic Dynamic Compressive Loading on Chondrocytes and Adipose-Derived Stem Cells Co-Cultured in Highly Elastic Cryogel Scaffolds

    Directory of Open Access Journals (Sweden)

    Chih-Hao Chen

    2018-01-01

    Full Text Available In this study, we first used gelatin/chondroitin-6-sulfate/hyaluronan/chitosan highly elastic cryogels, which showed total recovery from large strains during repeated compression cycles, as 3D scaffolds to study the effects of cyclic dynamic compressive loading on chondrocyte gene expression and extracellular matrix (ECM production. Dynamic culture of porcine chondrocytes was studied at 1 Hz, 10% to 40% strain and 1 to 9 h/day stimulation duration, in a mechanical-driven multi-chamber bioreactor for 14 days. From the experimental results, we could identify the optimum dynamic culture condition (20% and 3 h/day to enhance the chondrocytic phenotype of chondrocytes from the expression of marker (Col I, Col II, Col X, TNF-α, TGF-β1 and IGF-1 genes by quantitative real-time polymerase chain reactions (qRT-PCR and production of ECM (GAGs and Col II by biochemical analysis and immunofluorescence staining. With up-regulated growth factor (TGF-β1 and IGF-1 genes, co-culture of chondrocytes with porcine adipose-derived stem cells (ASCs was employed to facilitate chondrogenic differentiation of ASCs during dynamic culture in cryogel scaffolds. By replacing half of the chondrocytes with ASCs during co-culture, we could obtain similar production of ECM (GAGs and Col II and expression of Col II, but reduced expression of Col I, Col X and TNF-α. Subcutaneous implantation of cells/scaffold constructs in nude mice after mono-culture (chondrocytes or ASCs or co-culture (chondrocytes + ASCs and subject to static or dynamic culture condition in vitro for 14 days was tested for tissue-engineering applications. The constructs were retrieved 8 weeks post-implantation for histological analysis by Alcian blue, Safranin O and Col II immunohistochemical staining. The most abundant ectopic cartilage tissue was found for the chondrocytes and chondrocytes + ASCs groups using dynamic culture, which showed similar neo-cartilage formation capability with half of the

  6. Verification and sensitivity analysis on the elastic stiffness of the leaf type holddown spring assembly

    International Nuclear Information System (INIS)

    Song, Kee Nam

    1998-01-01

    The elastic formula of leaf type hold down spring(HDS) assembly is verified by comparing the values of elastic stiffness with the characteristic test results of the HDS's specimens. The comparisons show that the derived elastic stiffness formula is useful in reliably estimating the elastic stiffness of leaf type HDS assembly. The elastic stiffness sensitivity of leaf type HDS assembly is analyzed using the formula and its gradient vectors obtained from the mid-point formula. As a result of sensitivity analysis, the elastic stiffness sensitivity with respect to each design variable is quantified and design variables of large sensitivity are identified. Among the design variables, leaf thickness is identified as the most sensitive design variable to the elastic of leaf type HDS assembly. In addition, the elastic stiffness sensitivity, with respect to design variable, is in power-law type correlation to the base thickness of the leaf. (author)

  7. Thermo-elastic-plastic analysis for elastic component under high temperature fatigue crack growth rate

    Science.gov (United States)

    Ali, Mohammed Ali Nasser

    The research project presents a fundamental understanding of the fatigue crack growth mechanisms of AISI 420 martensitic stainless steel, based on the comparison analysis between the theoretical and numerical modelling, incorporating research findings under isothermal fatigue loading for solid cylindrical specimen and the theoretical modelling with the numerical simulation for tubular specimen when subjected to cyclic mechanical loading superimposed by cyclic thermal shock.The experimental part of this research programme studied the fatigue stress-life data for three types of surface conditions specimen and the isothermal stress-controlled fatigue testing at 300 °C - 600 °C temperature range. It is observed that the highest strength is obtained for the polished specimen, while the machined specimen shows lower strength, and the lowest strength is the notched specimen due to the high effect of the stress concentration. The material behaviour at room and high temperatures shows an initial hardening, followed by slow extension until fully plastic saturation then followed by crack initiation and growth eventually reaching the failure of the specimen, resulting from the dynamic strain ageing occurred from the transformation of austenitic microstructure to martensite and also, the nucleation of precipitation at grain boundaries and the incremental temperature increase the fatigue crack growth rate with stress intensity factor however, the crack growth rate at 600 °C test temperature is less than 500 °C because of the creep-fatigue taking place.The theoretical modelling presents the crack growth analysis and stress and strain intensity factor approaches analysed in two case studies based on the addition of thermo-elastic-plastic stresses to the experimental fatigue applied loading. Case study one estimates the thermal stresses superimposed sinusoidal cyclic mechanical stress results in solid cylinder under isothermal fatigue simulation. Case study two estimates the

  8. Elastic recoil detection analysis of hydrogen in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Winzell, T R.H.; Whitlow, H J [Lund Univ. (Sweden); Bubb, I F; Short, R; Johnston, P N [Royal Melbourne Inst. of Tech., VIC (Australia)

    1997-12-31

    Elastic recoil detection analysis (ERDA) of hydrogen in thick polymeric films has been performed using 2.5 MeV He{sup 2+} ions from the tandem accelerator at the Royal Melbourne Institute of Technology. The technique enables the use of the same equipment as in Rutherford backscattering analysis, but instead of detecting the incident backscattered ion, the lighter recoiled ion is detected at a small forward angle. The purpose of this work is to investigate how selected polymers react when irradiated by helium ions. The polymers are to be evaluated for their suitability as reference standards for hydrogen depth profiling. Films investigated were Du Pont`s Kapton and Mylar, and polystyrene. 11 refs., 3 figs.

  9. Elastic recoil detection analysis of hydrogen in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Winzell, T.R.H.; Whitlow, H.J. [Lund Univ. (Sweden); Bubb, I.F.; Short, R.; Johnston, P.N. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1996-12-31

    Elastic recoil detection analysis (ERDA) of hydrogen in thick polymeric films has been performed using 2.5 MeV He{sup 2+} ions from the tandem accelerator at the Royal Melbourne Institute of Technology. The technique enables the use of the same equipment as in Rutherford backscattering analysis, but instead of detecting the incident backscattered ion, the lighter recoiled ion is detected at a small forward angle. The purpose of this work is to investigate how selected polymers react when irradiated by helium ions. The polymers are to be evaluated for their suitability as reference standards for hydrogen depth profiling. Films investigated were Du Pont`s Kapton and Mylar, and polystyrene. 11 refs., 3 figs.

  10. Analysis of elastic scattering at low momentum transfer

    International Nuclear Information System (INIS)

    Pumplin, J.

    1991-11-01

    A method for analyzing high energy elastic scattering data is described, which improves on previous methods to extract σ tot , σ el , B, and ρ=ReM(0)/ImM(0) from experiment by properly allowing for the curvature of 1ndσ/dt with t. The method is used to make a critical analysis of data at √s=19.4, 546, and 1800 GeV. It is found that previous analyses systematically underestimate the forward slope B. The large value of ρ obtained by UA4 at √s=546 GeV is shown to be doubtful. The method described here should aid in the analysis of forthcoming data from UA4/2 and E710. (orig.)

  11. Finite element elastic-plastic analysis of LMFBR components

    International Nuclear Information System (INIS)

    Levy, A.; Pifko, A.; Armen, H. Jr.

    1978-01-01

    The present effort involves the development of computationally efficient finite element methods for accurately predicting the isothermal elastic-plastic three-dimensional response of thick and thin shell structures subjected to mechanical and thermal loads. This work will be used as the basis for further development of analytical tools to be used to verify the structural integrity of liquid metal fast breeder reactor (LMFBR) components. The methods presented here have been implemented into the three-dimensional solid element module (HEX) of the Grumman PLANS finite element program. These methods include the use of optimal stress points as well as a variable number of stress points within an element. This allows monitoring the stress history at many points within an element and hence provides an accurate representation of the elastic-plastic boundary using a minimum number of degrees of freedom. Also included is an improved thermal stress analysis capability in which the temperature variation and corresponding thermal strain variation are represented by the same functional form as the displacement variation. Various problems are used to demonstrate these improved capabilities. (Auth.)

  12. Angular distributions of elastic and quasi elastic heavy-ion collisions. Pattern analysis

    International Nuclear Information System (INIS)

    Da Silveira, R.

    1980-06-01

    The emergence, as well as the evolution, of the most typical patterns observed in the angular distributions of elastic scattering and surface transfer between heavy-nuclei, is discussed. Starting from the semi-classical approximation, Thom's classification theorem is evoked to further illuminate the connection between these patterns and the collision parameters

  13. Digital image sequence processing, compression, and analysis

    CERN Document Server

    Reed, Todd R

    2004-01-01

    IntroductionTodd R. ReedCONTENT-BASED IMAGE SEQUENCE REPRESENTATIONPedro M. Q. Aguiar, Radu S. Jasinschi, José M. F. Moura, andCharnchai PluempitiwiriyawejTHE COMPUTATION OF MOTIONChristoph Stiller, Sören Kammel, Jan Horn, and Thao DangMOTION ANALYSIS AND DISPLACEMENT ESTIMATION IN THE FREQUENCY DOMAINLuca Lucchese and Guido Maria CortelazzoQUALITY OF SERVICE ASSESSMENT IN NEW GENERATION WIRELESS VIDEO COMMUNICATIONSGaetano GiuntaERROR CONCEALMENT IN DIGITAL VIDEOFrancesco G.B. De NataleIMAGE SEQUENCE RESTORATION: A WIDER PERSPECTIVEAnil KokaramVIDEO SUMMARIZATIONCuneyt M. Taskiran and Edward

  14. Postbuckling Analysis Of A Rectangular Plate Loaded In Compression

    Directory of Open Access Journals (Sweden)

    Havran Jozef

    2015-12-01

    Full Text Available The stability analysis of a thin rectangular plate loaded in compression is presented. The nonlinear FEM equations are derived from the minimum total potential energy principle. The peculiarities of the effects of the initial imperfections are investigated using the user program. Special attention is paid to the influence of imperfections on the post-critical buckling mode. The FEM computer program using a 48 DOF element has been used for analysis. Full Newton-Raphson procedure has been applied.

  15. Thermodynamic and aerodynamic meanline analysis of wet compression in a centrifugal compressor

    International Nuclear Information System (INIS)

    Kang, Jeong Seek; Cha, Bong Jun; Yang, Soo Seok

    2006-01-01

    Wet compression means the injection of water droplets into the compressor of gas turbines. This method decreases the compression work and increases the turbine output by decreasing the compressor exit temperature through the evaporation of water droplets inside the compressor. Researches on wet compression, up to now, have been focused on the thermodynamic analysis of wet compression where the decrease in exit flow temperature and compression work is demonstrated. This paper provides thermodynamic and aerodynamic analysis on wet compression in a centrifugal compressor for a microturbine. The meanline dry compression performance analysis of centrifugal compressor is coupled with the thermodynamic equation of wet compression to get the meanline performance of wet compression. The most influencing parameter in the analysis is the evaporative rate of water droplets. It is found that the impeller exit flow temperature and compression work decreases as the evaporative rate increases. And the exit flow angle decreases as the evaporative rate increases

  16. Quality Aware Compression of Electrocardiogram Using Principal Component Analysis.

    Science.gov (United States)

    Gupta, Rajarshi

    2016-05-01

    Electrocardiogram (ECG) compression finds wide application in various patient monitoring purposes. Quality control in ECG compression ensures reconstruction quality and its clinical acceptance for diagnostic decision making. In this paper, a quality aware compression method of single lead ECG is described using principal component analysis (PCA). After pre-processing, beat extraction and PCA decomposition, two independent quality criteria, namely, bit rate control (BRC) or error control (EC) criteria were set to select optimal principal components, eigenvectors and their quantization level to achieve desired bit rate or error measure. The selected principal components and eigenvectors were finally compressed using a modified delta and Huffman encoder. The algorithms were validated with 32 sets of MIT Arrhythmia data and 60 normal and 30 sets of diagnostic ECG data from PTB Diagnostic ECG data ptbdb, all at 1 kHz sampling. For BRC with a CR threshold of 40, an average Compression Ratio (CR), percentage root mean squared difference normalized (PRDN) and maximum absolute error (MAE) of 50.74, 16.22 and 0.243 mV respectively were obtained. For EC with an upper limit of 5 % PRDN and 0.1 mV MAE, the average CR, PRDN and MAE of 9.48, 4.13 and 0.049 mV respectively were obtained. For mitdb data 117, the reconstruction quality could be preserved up to CR of 68.96 by extending the BRC threshold. The proposed method yields better results than recently published works on quality controlled ECG compression.

  17. Analysis of compressive fracture in rock using statistical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Blair, S.C.

    1994-12-01

    Fracture of rock in compression is analyzed using a field-theory model, and the processes of crack coalescence and fracture formation and the effect of grain-scale heterogeneities on macroscopic behavior of rock are studied. The model is based on observations of fracture in laboratory compression tests, and incorporates assumptions developed using fracture mechanics analysis of rock fracture. The model represents grains as discrete sites, and uses superposition of continuum and crack-interaction stresses to create cracks at these sites. The sites are also used to introduce local heterogeneity. Clusters of cracked sites can be analyzed using percolation theory. Stress-strain curves for simulated uniaxial tests were analyzed by studying the location of cracked sites, and partitioning of strain energy for selected intervals. Results show that the model implicitly predicts both development of shear-type fracture surfaces and a strength-vs-size relation that are similar to those observed for real rocks. Results of a parameter-sensitivity analysis indicate that heterogeneity in the local stresses, attributed to the shape and loading of individual grains, has a first-order effect on strength, and that increasing local stress heterogeneity lowers compressive strength following an inverse power law. Peak strength decreased with increasing lattice size and decreasing mean site strength, and was independent of site-strength distribution. A model for rock fracture based on a nearest-neighbor algorithm for stress redistribution is also presented and used to simulate laboratory compression tests, with promising results.

  18. Informational analysis for compressive sampling in radar imaging.

    Science.gov (United States)

    Zhang, Jingxiong; Yang, Ke

    2015-03-24

    Compressive sampling or compressed sensing (CS) works on the assumption of the sparsity or compressibility of the underlying signal, relies on the trans-informational capability of the measurement matrix employed and the resultant measurements, operates with optimization-based algorithms for signal reconstruction and is thus able to complete data compression, while acquiring data, leading to sub-Nyquist sampling strategies that promote efficiency in data acquisition, while ensuring certain accuracy criteria. Information theory provides a framework complementary to classic CS theory for analyzing information mechanisms and for determining the necessary number of measurements in a CS environment, such as CS-radar, a radar sensor conceptualized or designed with CS principles and techniques. Despite increasing awareness of information-theoretic perspectives on CS-radar, reported research has been rare. This paper seeks to bridge the gap in the interdisciplinary area of CS, radar and information theory by analyzing information flows in CS-radar from sparse scenes to measurements and determining sub-Nyquist sampling rates necessary for scene reconstruction within certain distortion thresholds, given differing scene sparsity and average per-sample signal-to-noise ratios (SNRs). Simulated studies were performed to complement and validate the information-theoretic analysis. The combined strategy proposed in this paper is valuable for information-theoretic orientated CS-radar system analysis and performance evaluation.

  19. Harmonic analysis in integrated energy system based on compressed sensing

    International Nuclear Information System (INIS)

    Yang, Ting; Pen, Haibo; Wang, Dan; Wang, Zhaoxia

    2016-01-01

    Highlights: • We propose a harmonic/inter-harmonic analysis scheme with compressed sensing theory. • Property of sparseness of harmonic signal in electrical power system is proved. • The ratio formula of fundamental and harmonic components sparsity is presented. • Spectral Projected Gradient-Fundamental Filter reconstruction algorithm is proposed. • SPG-FF enhances the precision of harmonic detection and signal reconstruction. - Abstract: The advent of Integrated Energy Systems enabled various distributed energy to access the system through different power electronic devices. The development of this has made the harmonic environment more complex. It needs low complexity and high precision of harmonic detection and analysis methods to improve power quality. To solve the shortages of large data storage capacities and high complexity of compression in sampling under the Nyquist sampling framework, this research paper presents a harmonic analysis scheme based on compressed sensing theory. The proposed scheme enables the performance of the functions of compressive sampling, signal reconstruction and harmonic detection simultaneously. In the proposed scheme, the sparsity of the harmonic signals in the base of the Discrete Fourier Transform (DFT) is numerically calculated first. This is followed by providing a proof of the matching satisfaction of the necessary conditions for compressed sensing. The binary sparse measurement is then leveraged to reduce the storage space in the sampling unit in the proposed scheme. In the recovery process, the scheme proposed a novel reconstruction algorithm called the Spectral Projected Gradient with Fundamental Filter (SPG-FF) algorithm to enhance the reconstruction precision. One of the actual microgrid systems is used as simulation example. The results of the experiment shows that the proposed scheme effectively enhances the precision of harmonic and inter-harmonic detection with low computing complexity, and has good

  20. Morphing continuum analysis of energy transfer in compressible turbulence

    Science.gov (United States)

    Cheikh, Mohamad Ibrahim; Wonnell, Louis B.; Chen, James

    2018-02-01

    A shock-preserving finite volume solver with the generalized Lax-Friedrichs splitting flux for morphing continuum theory (MCT) is presented and verified. The numerical MCT solver is showcased in a supersonic turbulent flow with Mach 2.93 over an 8∘ compression ramp. The simulation results validated MCT with experiments as an alternative for modeling compressible turbulence. The required size of the smallest mesh cell for the MCT simulation is shown to be almost an order larger than that in a similar direct numerical simulation study. The comparison shows MCT is a much more computationally friendly theory than the classical Navier-Stokes equations. The dynamics of energy cascade at the length scale of individual eddies is illuminated through the subscale rotation introduced by MCT. In this regard, MCT provides a statistical averaging procedure for capturing energy transfer in compressible turbulence, not found in classical fluid theories. Analysis of the MCT results show the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding eddy rotational energy fluctuations, indicating a multiscale transfer of energy. In conclusion, MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources.

  1. Elastic Plastic Fracture Analysis of an Aluminum COPV Liner

    Science.gov (United States)

    Forth, Scott; Gregg, Bradley; Bailey, Nathaniel

    2012-01-01

    Onboard any space-launch vehicle, composite over-wrapped pressure vessels (COPVs) may be utilized by propulsion or environmental control systems. The failure of a COPV has the potential to be catastrophic, resulting in the loss of vehicle, crew or mission. The latest COPV designs have reduced the wall-thickness of the metallic liner to the point where the material strains plastically during operation. At this time, the only method to determine the damage tolerance lifetime (safe-life) of a plastically responding metallic liner is through full-scale COPV testing. Conducting tests costs substantially more and can be far more time consuming than performing an analysis. As a result of this cost, there is a need to establish a qualifying process through the use of a crack growth analysis tool. This paper will discuss fracture analyses of plastically responding metallic liners in COPVs. Uni-axial strain tests have been completed on laboratory specimens to collect elastic-plastic crack growth data. This data has been modeled with the crack growth analysis tool, NASGRO 6.20 to predict the response of laboratory specimens and subsequently the complexity of a COPV.

  2. COMPARATIVE STUDY BETWEEN TITANIUM ELASTIC NAILING (TENS AND DYNAMIC COMPRESSION PLATING (DCP IN THE TREATMENT OF FEMORAL DIAPHYSEAL FRACTURES IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Ramasubba Reddy

    2015-08-01

    Full Text Available BACKGROUND : Orthopaedic surgeons have long maintained that all children who have sustained a diaphyseal fracture of femur recover with c onservative treatment, given the excellent remodeling ability of immature bone in children. Angulations, shortenings and malrotations are not always corrected by conservative treatment. Of many surgical options, titanium elastic nailing has been the newer implant which is being used regularly. Although good results have been reported with elastic intramedullary nails, plate fixation continues to be a viable alternative in surgical treatment of femoral shaft fractures. However there are not many studies comp aring the efficiency of titanium elastic nailing and plating for femoral diaphyseal fractures in pediatric age group. AIM : The present study aims to compare the surgical management of diaphyseal fractures of femur in children with Dynamic Compression Plati ng versus Titanium Elastic Nailing. DESIGN : This is a prospective study . MATERIALS AND METHODS : This prospective study was conducted in a tertiary hospital. Patients who presented to the out - patient department and casualty of the hospital with femoral diap hyseal fractures during April 2012 to June 2014 were considered for the study. Subjects fulfilling the predetermined inclusion and exclusion criteria were included in the study. STATISTICAL METHODS : Fisher Exact test, Chi - Square Test, Student t test (Two t ailed, independent . RESULTS : Patients in the age group of 6 - 14 years were considered for the study, Patients were divided into two groups and treated with DCP/TENS. The duration of surgery, hospital stay, and, amount of blood loss was minimal in TENS grou p. Callus was seen early in TENS group. Radiological union was early in TENS group by 2 - 3 weeks. Outcome was better in patients treated with TENS (Excellent - 70%; Satisfactory – 30%; Poor - 0% in comparison to DCP (Excellent - 70%; Satisfactory - 25%; Poor - 5%. CO NCLUSION : TENS

  3. Elastic-plastic fracture analysis of carbon steel piping using the latest CEGB R6 approach

    International Nuclear Information System (INIS)

    Kanno, S.; Hasegawa, K.; Shimizu, T.; Kobayashi, H.

    1991-01-01

    The elastic-plastic fracture of carbon steel piping having various pipe diameters and circumferential crack angles and subjected to a bending moment is analyzed using the latest United Kingdom Central Electricity Generating Board R6 approach. The elastic-plastic fracture criterion must be applied instead of the plastic collapse criterion with increase of the pipe diameter and the crack angle. A simplified elastic-plastic fracture analysis procedure based on the R6 approach is proposed. (author)

  4. Meta-Analysis of Price Elasticity for Urban Domestic Water Consumption in Iran

    Directory of Open Access Journals (Sweden)

    Mina Tajabadi

    2018-03-01

    Full Text Available Price elasticity plays a critical role in determining water tariff and its system. Many economic decision makers and researchers have estimated demand function for different cities in order to predict the associated income and price elasticity. In this research we reviewed 20 studies on urban domestic water demand function from which 63 price elasticity values were obtained. Since the price elasticity values obtained from these studies had significant statistical differences, the aim of this research is to determine the effective factors in price elasticity values as well as to analyze differences in such values using meta-analysis technique. The meta-analysis technique focuses on variation in water price elasticity results. The statistical meta-analysis technique focuses on two main objectives of publication bias or publication heterogeneity in reported results. The results indicated that publication bias is negligible while publication heterogeneity is significant. The major factors affecting price elasticity values are classified into 4 categories including theoretical, model, data and socio-geographical specifications. The result indicated that variables such as income, time-series datasets, natural logarithm function and use of stone-geary theory which is the basis for predicting many domestic water demand functions, significantly overestimate the price elasticity values. Also the geographical condition of the region, population density and use of OLS technique to estimate the demand parameters underestimates the price elasticity values.

  5. Spectral analysis of viscous static compressible fluid equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)

    2001-05-25

    It is generally assumed that the study of the spectrum of the linearized Navier-Stokes equations around a static state will provide information about the stability of the equilibrium. This is obvious for inviscid barotropic compressible fluids by the self-adjoint character of the relevant operator, and rather easy for viscous incompressible fluids by the compact character of the resolvent. The viscous compressible linearized system, both for periodic and homogeneous Dirichlet boundary problems, satisfies neither condition, but it does turn out to be the generator of an immediately continuous, almost stable semigroup, which justifies the analysis of the spectrum as predictive of the initial behaviour of the flow. As for the spectrum itself, except for a unique negative finite accumulation point, it is formed by eigenvalues with negative real part, and nonreal eigenvalues are confined to a certain bounded subset of complex numbers. (author)

  6. Free vibration analysis of elastically supported Timoshenko columns ...

    Indian Academy of Sciences (India)

    , concen- trated mass ... linear equations of motion for transverse vibrations of a simply supported beam carrying con- centrated ... a cantilever Timoshenko beam with a rigid tip mass. Ferreira .... Figure 3. Free body diagram of elastic support.

  7. Correction for Poisson's effect in an elastic analysis of low cycle fatigue

    International Nuclear Information System (INIS)

    Roche, R.; Moulin, D.

    1984-05-01

    Fatigue behaviour is essentially dependent on the real strain range, but the current practice is the use of elastic analysis. In low cycle fatigue conditions where inelastic strains predominate, elastic analysis never gives the real value of the strain range. In order to use these results some corrections are necessary. One of these corrections is due to the Poisson's effect (the Poisson ratio in inelastic behaviour is higher than in elastic behaviour). In this paper a method of correction of this effect is proposed. It consists in multiplying the results of the elastic analysis by a coefficient called Kν. A method to draw curves giving this coefficient Kν as a function of results of elastic analysis is developped. Only simple analytical computations using the unixial cyclic curve are needed to draw these curves. Examples are given. The proposed method is very convenient and low cost effective [fr

  8. comparison of elastic-plastic FE method and engineering method for RPV fracture mechanics analysis

    International Nuclear Information System (INIS)

    Sun Yingxue; Zheng Bin; Zhang Fenggang

    2009-01-01

    This paper described the FE analysis of elastic-plastic fracture mechanics for a crack in RPV belt line using ABAQUS code. It calculated and evaluated the stress intensity factor and J integral of crack under PTS transients. The result is also compared with that by engineering analysis method. It shows that the results using engineering analysis method is a little larger than the results using FE analysis of 3D elastic-plastic fracture mechanics, thus the engineering analysis method is conservative than the elastic-plastic fracture mechanics method. (authors)

  9. Analysis of elastic interactions of hadrons at high energies

    International Nuclear Information System (INIS)

    Yuldashev, B.S.; Fazilova, Z.F.; Ismatov, E.I.; Kurmanbai, M.S.; Ajniyazova, G.T.; Tskhay, K.V.; Medeuova, A.B.

    2004-01-01

    Study of elastic interactions of hadrons at high energies if of great interest due to the fact that the amplitude of this process is the simplest, and at the same time, it is a fundamental object for theoretical and experimental researches. Study of this process allows one to have a quantitative check of various theories and models, and to make a critical selection. By using of fundamental property of theory - unitarity condition of scattering matrix - elastic scattering can be connected with inelastic reaction. Based on S-channel unitarity condition expressing elastic amplitude via inelastic overlapping function, to study the latter, as well as to describe the experimentally measured characteristics of hadron-nucleon interactions at high-energies, as well as for results prediction. By using experimental data on differential cross-section of elastic scattering of hadrons at various energies and by theoretical information on ratio of a real part and an imaginary part of scattering amplitude δ(t) the t-dependence of inelastic and elastic overlapping functions is studied. Influence of a zigzag form of differential cross-section of elastic pp(p) scattering on profile function and inelastic overlapping function to violation of geometric scaling was studied. In frames of the scaling the general expressions for s- and t-dependences of inelastic overlapping function are derived. Comparison of this function in three elastic scattering models was carried out. It was demonstrated that one would need to assume that hadrons become blacker at central part in order to correctly describe experimental angular distribution data. Dependence of differential cross-section on transfer momentum square for elastic hadrons scattering at energies of ISR and SPS in the model of inelastic overlapping function is studied. (author)

  10. Experimental Analysis on Autonomic Strategies for Cloud Elasticity

    OpenAIRE

    Dupont , Simon; Lejeune , Jonathan; Alvares , Frederico; Ledoux , Thomas

    2015-01-01

    International audience; In spite of the indubitable advantages of elasticity in Cloud infrastructures, some technical and conceptual limitations are still to be considered. For instance , resource start up time is generally too long to react to unexpected workload spikes. Also, the billing cycles' granularity of existing pricing models may incur consumers to suffer from partial usage waste. We advocate that the software layer can take part in the elasticity process as the overhead of software...

  11. Analysis of elastic interactions of hadrons at high energies

    International Nuclear Information System (INIS)

    Fazylov, M.I.; Yuldashev, B.S.; Azhniyazova, G.T.; Ismatov, E.I.; Sartbay, T.; Kurmanbay, M.S.; Tskhay, K.V.

    2004-01-01

    Full text: Study of elastic interactions of hadrons at high energies if of great interest due to the fact that the amplitude of this process is the simplest, and at the same time, it is a fundamental object for theoretical and experimental researches. Study of this process allows one to have a quantitative check of various theories and models, and to make a critical selection. By using of fundamental property of theory - unitarity condition of scattering matrix - elastic scattering can be connected with inelastic reaction. Based on S-channel unitarity condition expressing elastic amplitude via inelastic overlapping function, to study the latter, as well as to describe the experimentally measured characteristics of hadron-nucleon interactions at high-energies, as well as for results prediction. By using experimental data on differential cross-section of elastic scattering of hadrons at various energies and by theoretical information on ratio of a real part and an imaginary part of scattering amplitude δ(t) the t-dependence of inelastic and elastic overlapping functions is studied. Influence of a zigzag form of differential cross-section of elastic pp(p) scattering on profile function and inelastic overlapping function to violation of geometric scaling was studied. In frames of the scaling the general expressions for s- and t-dependences of inelastic overlapping function are derived. Comparison of this function in three elastic scattering models was carried out. It was demonstrated that one would need to assume that hadrons become blacker at central part in order to correctly describe experimental angular distribution data. Dependence of differential cross-section on transfer momentum square for elastic hadrons scattering at energies of ISR and SPS in the model of inelastic overlapping function is studied

  12. A modal analysis of carbon nanotube using elastic network model

    International Nuclear Information System (INIS)

    Kim, Min Hyeok; Seo, Sang Jae; Lim, Byeong Soo; Choi, Jae Boong; Kim, Moon Ki; Liu, Wing Kam

    2012-01-01

    Although it is widely known that both size and chirality play significant roles in vibration behaviors of single walled carbon nanotubes (SWCNTs), there haven't been yet enough studies specifying the relationship between structure and vibration mode shape of SWCNTs. We have analyzed the chirality and length dependence of SWCNT by using normal mode analysis based elastic network model in which all interatomic interactions of the given SWCNTs structure are represented by a network of linear spring connections. As this method requires relatively short computation time compared to molecular dynamics simulation, we can efficiently analyze vibration behavior of SWCNTs. To ensure the relationship between SWCNT structure and its vibration mode shapes, we simulated more than one hundred SWCNTs having different types of chirality and length. Results indicated that the first two major mode shapes are bending and breathing. The minimum length of nanotube for maintaining the bending mode does not depend on chirality but on its diameter. Our simulations pointed out that there is a critical aspect ratio between diameter and length to determine vibration mode shapes, and it can be empirically formulated as a function of nanotube length and diameter. Therefore, uniformity control is the most important premise in order to utilize vibration features of SWCNTs. It is also expected that the obtained vibration aspect will play an important role in designing nanotube based devices such as resonators and sensors more accurately

  13. Stochastic Bifurcation Analysis of an Elastically Mounted Flapping Airfoil

    Directory of Open Access Journals (Sweden)

    Bose Chandan

    2018-01-01

    Full Text Available The present paper investigates the effects of noisy flow fluctuations on the fluid-structure interaction (FSI behaviour of a span-wise flexible wing modelled as a two degree-of-freedom elastically mounted flapping airfoil. In the sterile flow conditions, the system undergoes a Hopf bifurcation as the free-stream velocity exceeds a critical limit resulting in a stable limit-cycle oscillation (LCO from a fixed point response. On the other hand, the qualitative dynamics changes from a stochastic fixed point to a random LCO through an intermittent state in the presence of irregular flow fluctuations. The probability density function depicts the most probable system state in the phase space. A phenomenological bifurcation (P-bifurcation analysis based on the transition in the topology associated with the structure of the joint probability density function (pdf of the response variables has been carried out. The joint pdf corresponding to the stochastic fixed point possesses a Dirac delta function like structure with a sharp single peak around zero. As the mean flow speed crosses the critical value, the joint pdf bifurcates to a crater-like structure indicating the occurrence of a P-bifurcation. The intermittent state is characterized by the co-existence of the unimodal as well as the crater like structure.

  14. A theoretical analysis of price elasticity of energy demand in multistage energy conversion systems

    International Nuclear Information System (INIS)

    Lowe, R.

    2003-01-01

    The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases. (author)

  15. A theoretical analysis of price elasticity of energy demand in multi-stage energy conversion systems

    International Nuclear Information System (INIS)

    Lowe, Robert

    2003-01-01

    The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases

  16. Spatial compression algorithm for the analysis of very large multivariate images

    Science.gov (United States)

    Keenan, Michael R [Albuquerque, NM

    2008-07-15

    A method for spatially compressing data sets enables the efficient analysis of very large multivariate images. The spatial compression algorithms use a wavelet transformation to map an image into a compressed image containing a smaller number of pixels that retain the original image's information content. Image analysis can then be performed on a compressed data matrix consisting of a reduced number of significant wavelet coefficients. Furthermore, a block algorithm can be used for performing common operations more efficiently. The spatial compression algorithms can be combined with spectral compression algorithms to provide further computational efficiencies.

  17. Mathematical analysis of compressive/tensile molecular and nuclear structures

    Science.gov (United States)

    Wang, Dayu

    Mathematical analysis in chemistry is a fascinating and critical tool to explain experimental observations. In this dissertation, mathematical methods to present chemical bonding and other structures for many-particle systems are discussed at different levels (molecular, atomic, and nuclear). First, the tetrahedral geometry of single, double, or triple carbon-carbon bonds gives an unsatisfying demonstration of bond lengths, compared to experimental trends. To correct this, Platonic solids and Archimedean solids were evaluated as atoms in covalent carbon or nitrogen bond systems in order to find the best solids for geometric fitting. Pentagonal solids, e.g. the dodecahedron and icosidodecahedron, give the best fit with experimental bond lengths; an ideal pyramidal solid which models covalent bonds was also generated. Second, the macroscopic compression/tension architectural approach was applied to forces at the molecular level, considering atomic interactions as compressive (repulsive) and tensile (attractive) forces. Two particle interactions were considered, followed by a model of the dihydrogen molecule (H2; two protons and two electrons). Dihydrogen was evaluated as two different types of compression/tension structures: a coaxial spring model and a ring model. Using similar methods, covalent diatomic molecules (made up of C, N, O, or F) were evaluated. Finally, the compression/tension model was extended to the nuclear level, based on the observation that nuclei with certain numbers of protons/neutrons (magic numbers) have extra stability compared to other nucleon ratios. A hollow spherical model was developed that combines elements of the classic nuclear shell model and liquid drop model. Nuclear structure and the trend of the "island of stability" for the current and extended periodic table were studied.

  18. A simplified approach for ratcheting analysis in structures with elastic follow-up

    International Nuclear Information System (INIS)

    Berton, M.N.; Cabrillat, M.T.

    1991-01-01

    In the framework of an elastic analysis, the RCC-MR design code uses the concept of the efficiency diagram to assess the behaviour of a structure relatively to ratcheting. This diagram was obtained from a lot of experimental results and allows to cover many reactor situations. However this approach needs to classify stresses between primary and secondary stresses and for a few cases, in particular for structures with significant elastic follow-up, this classification is not obvious. After a recall of elastic follow-up definition and a few considerations on the way to evaluate it, an approach is proposed to take it into account in an elastic analysis verifying the avoidance of ratcheting. An experimental program has been developed to study this interaction between elastic follow-up and ratcheting. The first results are presented together with interpretations with the proposed method. (author)

  19. Finite element analysis of reticulated ceramics under compression

    International Nuclear Information System (INIS)

    D’Angelo, Claudio; Ortona, Alberto; Colombo, Paolo

    2012-01-01

    Graphical abstract: - Abstract: This paper shows how finite element analysis can be used to study the effect of the morphological features of reticulated ceramics on their mechanical properties under compression. Quantitative morphological data, obtained by X-ray computed tomography (XCT) for a commercially available Si–SiC foam produced by the replica method, have been linked to a set of computer generated cells in which one morphological parameter was varied at a time. The findings indicate how the modification of some morphological features, which depend on the careful selection of appropriate and specific processing parameters, would enable the production of ceramic foams possessing higher strength for a given total porosity value.

  20. Basic functions and bilateral estimatesin the stability problems of elastic non-uniformly compressed rods expressed in terms of bending moments with additional conditions

    Directory of Open Access Journals (Sweden)

    Kupavtsev Vladimir Vladimirovich

    2014-02-01

    Full Text Available The method of two-sided evaluations is extended to the problems of stability of an elastic non-uniformly compressed rod, the variation formulations of which may be presented in terms of internal bending moments with uniform integral conditions. The problems are considered, in which one rod end is fixed and the other rod end is either restraint or pivoted, or embedded into a support which may be shifted in a transversal direction.For the substantiation of the lower evaluations determination, a sequence of functionals is constructed, the minimum values of which are the lower evaluations for the minimum critical value of the loading parameter of the rod, and the calculation process is reduced to the determination of the maximum eigenvalues of modular matrices. The matrix elements are expressed in terms of integrals of basic functions depending on the type of fixation of the rod ends. The basic functions, with the accuracy up to a linear polynomial, are the same as the bending moments arising with the bifurcation of the equilibrium of a rod with a constant cross-section compressed by longitudinal forces at the rod ends. The calculation of the upper evaluation is reduced to the determination of the maximum eigenvalue of the matrix, which almost coincides with one of the elements of the modular matrices. It is noted that the obtained upper bound evaluation is not worse thanthe evaluation obtained by the Ritz method with the use of the same basic functions.

  1. Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene.

    Science.gov (United States)

    Yang, X X; Li, J W; Zhou, Z F; Wang, Y; Yang, L W; Zheng, W T; Sun, Chang Q

    2012-01-21

    From the perspective of bond relaxation and bond vibration, we have formulated the Raman phonon relaxation of graphene, under the stimuli of the number-of-layers, the uni-axial strain, the pressure, and the temperature, in terms of the response of the length and strength of the representative bond of the entire specimen to the applied stimuli. Theoretical unification of the measurements clarifies that: (i) the opposite trends of the Raman shifts, which are due to the number-of-layers reduction, of the G-peak shift and arises from the vibration of a pair of atoms, while the D- and the 2D-peak shifts involve the z-neighbor of a specific atom; (ii) the tensile strain-induced phonon softening and phonon-band splitting arise from the asymmetric response of the C(3v) bond geometry to the C(2v) uni-axial bond elongation; (iii) the thermal softening of the phonons originates from bond expansion and weakening; and (iv) the pressure stiffening of the phonons results from bond compression and work hardening. Reproduction of the measurements has led to quantitative information about the referential frequencies from which the Raman frequencies shift as well as the length, energy, force constant, Debye temperature, compressibility and elastic modulus of the C-C bond in graphene, which is of instrumental importance in the understanding of the unusual behavior of graphene.

  2. Thermo-mechanical vibration analysis of annular and circular graphene sheet embedded in an elastic medium

    Directory of Open Access Journals (Sweden)

    M. Mohammadi

    Full Text Available In this study, the vibration behavior of annular and circular graphene sheet coupled with temperature change and under in-plane pre-stressed is studied. Influence of the surrounding elastic medium 011 the fundamental frequencies of the single-layered graphene sheets (SLGSs is investigated. Both Winkler-type and Pasternak- type models are employed to simulate the interaction of the graphene sheets with a surrounding elastic medium. By using the nonlocal elasticity theory the governing equation is derived for SLGSs. The closed-form solution for frequency vibration of circular graphene sheets lias been obtained and nonlocal parameter, inplane pre-stressed, the parameters of elastic medium and temperature change appears into arguments of Bessel functions. The results are subsequently compared with valid result reported in the literature and the molecular dynamics (MD results. The effects of the small scale, pre-stressed, mode number, temperature change, elastic medium and boundary conditions on natural frequencies are investigated. The non-dimensional frequency decreases at high temperature case with increasing the temperature change for all boundary conditions. The effect of temperature change 011 the frequency vibration becomes the opposite at high temperature case in compression with the low temperature case. The present research work thus reveals that the nonlocal parameter, boundary conditions and temperature change have significant effects on vibration response of the circular nanoplates. The present results can be used for the design of the next generation of nanodevices that make use of the thermal vibration properties of the graphene.

  3. Double folding model analysis of elastic scattering of halo nucleus ...

    Indian Academy of Sciences (India)

    carried out which provide valuable insight for improving our understanding of nuclear reactions. One of the interesting aspects is to understand the effect of the halo structure, on elastic scattering cross-sections at near-Coulomb barrier energies in reactions induced by neutron halo nuclei and weakly bound radioactive ...

  4. Bayesian Analysis of Demand Elasticity in the Italian Electricity Market

    Directory of Open Access Journals (Sweden)

    Maria Chiara D'Errico

    2015-09-01

    Full Text Available The liberalization of the Italian electricity market is a decade old. Within these last ten years, the supply side has been extensively analyzed, but not the demand side. The aim of this paper is to provide a new method for estimation of the demand elasticity, based on Bayesian methods applied to the Italian electricity market. We used individual demand bids data in the day-ahead market in the Italian Power Exchange (IPEX, for 2011, in order to construct an aggregate demand function at the hourly level. We took into account the existence of both elastic and inelastic bidders on the demand side. The empirical results show that elasticity varies significantly during the day and across periods of the year. In addition, the elasticity hourly distribution is clearly skewed and more so in the daily hours. The Bayesian method is a useful tool for policy-making, insofar as the regulator can start with a priori historical information on market behavior and estimate actual market outcomes in response to new policy actions.

  5. Study and analysis of wavelet based image compression techniques

    African Journals Online (AJOL)

    user

    Discrete Wavelet Transform (DWT) is a recently developed compression ... serve emerging areas of mobile multimedia and internet communication, ..... In global thresholding the best trade-off between PSNR and compression is provided by.

  6. Cyclic elastic analysis of a PWR nozzle subjected to a repeated thermal shock

    International Nuclear Information System (INIS)

    Locci, J.M.; Prost, J.P.

    1979-01-01

    In the primary piping system of a PWR nuclear power plant, some nozzles are subjected to strong thermal shocks due to sudden thermal variations in the internal water flow. The thermal gradients are sufficiently high to induce general elastic plastic behaviour. The design of these nozzles using the simplified elastic plastic analysis given in the ASME III Code NB-3200 generally leads to a very high usage factor. The aim of this work is to show by giving an example that a complete cyclic elastic plastic analysis makes it possible to considerably reduce the usage factor. (orig.)

  7. A comparison of time-history elastic plastic piping analysis with measurement

    International Nuclear Information System (INIS)

    Scavuzzo, R.J.; Sansalone, K.H.

    1992-01-01

    The GE/ETEC Green piping system was subjected to high seismic inputs from hydraulic sleds at each pipe foundation. These inputs were high enough to force bending stresses into the plastic regime. Strain gages recorded the pipe response at various positions within the system. The ABAQUS finite element code was used to model this piping system and the dynamic input. Problems associated with the dynamic input are discussed. Various types of finite elements were evaluated for accurancy. Both an elastic time-history analysis and an elastic-plastic time-history analysis of the system were conducted. Results of these analyses are compared to each other and the experimental data. These comparisons indicated that elastic analysis of dynamic strains are conservative at all points of comparison and that there is good agreement between the nonlinear elastic-plastic analysis and experimental data. (orig.)

  8. Mathematical theory of compressible viscous fluids analysis and numerics

    CERN Document Server

    Feireisl, Eduard; Pokorný, Milan

    2016-01-01

    This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematic...

  9. Practical approach on gas pipeline compression system availability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sidney Pereira dos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Kurz, Rainer; Lubomirsky, Matvey [Solar Turbines, San Diego, CA (United States)

    2009-12-19

    Gas pipeline projects traditionally have been designed based on load factor and steady state flow. This approach exposes project sponsors to project sustainability risks due to potential losses of revenues and transportation contract penalties related to pipeline capacity shortage as consequence of compressor unit's unavailability. Such unavailability should previously be quantified during the design phase. This paper presents a case study and a methodology that highlights the practical benefits of applying Monte Carlo simulation for the compression system availability analysis in conjunction with quantitative risk analysis and economic feasibility study. Project economics main variables and their impacts on the project NPV (Net Present Value) are evaluated with their respective statistics distribution to quantify risk and support decision makers to adopt mitigating measures to guarantee competitiveness while protecting project sponsors from otherwise unpredictable risks. This practical approach is compared to load factor approach and the results are presented and evaluated. (author)

  10. Characterization of High Temperature Modulus of Elasticity of Lightweight Foamed Concrete under Static Flexural and Compression: An Experimental Investigations

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available This paper focused on an experimental works that have been performed to examine the young’s modulus of foamed concrete at elevated temperatures up to 600°C. Foamed concrete of 650 and 1000 kg/m3 density were cast and tested under compression and bending. The experimental results of this study consistently demonstrated that the loss in stiffness for cement based material like foamed concrete at elevated temperatures occurs predominantly after about 95°C, regardless of density. This indicates that the primary mechanism causing stiffness degradation is microcracking, which occurs as water expands and evaporates from the porous body. As expected, reducing the density of LFC reduces its strength and stiffness. However, for LFC of different densities, the normalised strength-temperature and stiffness-temperature relationships are very similar.

  11. Elastic-plastic deformation of anhydrite and polyhalite as determined from quasi-static triaxial compression tests

    International Nuclear Information System (INIS)

    Pfiefle, T.W.; Senseny, P.E.

    1981-05-01

    Constant stress-rate triaxial compression experiments were performed on specimens of anhydrite and polyhalite at low confining pressure and at two temperatures. The loading rate was 5.75 x 10 -2 MPa s -1 ; the confining pressures were 1, 5, 10, and 20 MPa and the two temperatures were 25 0 C and 100 0 C. The specimens were loaded to failure in a soft testing machine so that failure occurred at peak stress. Results from these experiments were used to construct yield envelopes, failure envelopes and stress-strain curves, and to determine mechanical properties. Yield, determined by the onset of dilatancy, occurs at about sixty percent of peak stress. The effect of temperature on both the yield and failure envelopes is negligible. The polyhalite specimens were found to be about twice as strong as the anhydrite specimens. The stress-strain data were fitted to a constitutive law

  12. Elasticity analysis by MR elastography using the instantaneous frequency method

    International Nuclear Information System (INIS)

    Oshiro, Osamu; Suga, Mikio; Minato, Kotaro; Okamoto, Jun; Takizawa, Osamu; Matsuda, Tetsuya; Komori, Masaru; Takahashi, Takashi

    2000-01-01

    This paper describes a calculation method for estimating the elasticity of human organs using magnetic resonance elastography (MRE) images. The method is based on the instantaneous frequency method, which is very sensitive to noise. Therefore, the proposed method also incorporates a noise-reduction function. In the instantaneous frequency method, Fourier transform is applied to the measurement signal. Then, inverse Fourier transform is performed after the negative frequency component is set to zero. In the proposed method, noise is reduced by processing in which the positive higher frequency component is also set to zero before inverse Fourier transform is performed. First, we conducted a simulation study and confirmed the applicability of this method and the noise reduction function. Next, we carried out a phantom experiment and demonstrated that elasticity images could be generated, with the gray level corresponding to the local frequency in MRE images. (author)

  13. Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams

    Science.gov (United States)

    Ebrahimi, Farzad; Reza Barati, Mohammad

    2016-09-01

    In this work, a size-dependent curved beam model is developed to take into account the effects of nonlocal stresses on the buckling behavior of curved magneto-electro-elastic FG nanobeams for the first time. The governing differential equations are derived based on the principle of virtual work and Euler-Bernoulli beam theory. The power-law function is employed to describe the spatially graded magneto-electro-elastic properties. By extending the radius of the curved nanobeam to infinity, the results of straight nonlocal FG beams can be rendered. The effects of magnetic potential, electric voltage, opening angle, nonlocal parameter, power-law index and slenderness ratio on buckling loads of curved MEE-FG nanobeams are studied.

  14. Modelling Analysis of Forestry Input-Output Elasticity in China

    Directory of Open Access Journals (Sweden)

    Guofeng Wang

    2016-01-01

    Full Text Available Based on an extended economic model and space econometrics, this essay analyzed the spatial distributions and interdependent relationships of the production of forestry in China; also the input-output elasticity of forestry production were calculated. Results figure out there exists significant spatial correlation in forestry production in China. Spatial distribution is mainly manifested as spatial agglomeration. The output elasticity of labor force is equal to 0.6649, and that of capital is equal to 0.8412. The contribution of land is significantly negative. Labor and capital are the main determinants for the province-level forestry production in China. Thus, research on the province-level forestry production should not ignore the spatial effect. The policy-making process should take into consideration the effects between provinces on the production of forestry. This study provides some scientific technical support for forestry production.

  15. Elastic-plastic analysis of the toroidal field coil inner leg of the compact ignition tokamak

    International Nuclear Information System (INIS)

    Horie, T.

    1987-07-01

    Elastic-plastic analyses were made for the inner leg of the Compact Ignition Tokamak toroidal field (TF) coil, which is made of copper-Inconel composite material. From the result of the elastic-plastic analysis, the effective Young's moduli of the inner leg were determined by the analytical equations. These Young's moduli are useful for the three-dimensional, elastic, overall TF coil analysis. Comparison among the results of the baseline design (R = 1.324 m), the bucked pressless design, the 1.527-m major radius design, and the 1.6-m major radius design was also made, based on the elastic-plastic TF coil inner leg analyses

  16. Thermo-fluid dynamic analysis of wet compression process

    International Nuclear Information System (INIS)

    Mohan, Abhay; Kim, Heuy Dong; Chidambaram, Palani Kumar; Suryan, Abhilash

    2016-01-01

    Wet compression systems increase the useful power output of a gas turbine by reducing the compressor work through the reduction of air temperature inside the compressor. The actual wet compression process differs from the conventional single phase compression process due to the presence of latent heat component being absorbed by the evaporating water droplets. Thus the wet compression process cannot be assumed isentropic. In the current investigation, the gas-liquid two phase has been modeled as air containing dispersed water droplets inside a simple cylinder-piston system. The piston moves in the axial direction inside the cylinder to achieve wet compression. Effects on the thermodynamic properties such as temperature, pressure and relative humidity are investigated in detail for different parameters such as compression speeds and overspray. An analytical model is derived and the requisite thermodynamic curves are generated. The deviations of generated thermodynamic curves from the dry isentropic curves (PV γ = constant) are analyzed

  17. Thermo-fluid dynamic analysis of wet compression process

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Abhay; Kim, Heuy Dong [School of Mechanical Engineering, Andong National University, Andong (Korea, Republic of); Chidambaram, Palani Kumar [FMTRC, Daejoo Machinery Co. Ltd., Daegu (Korea, Republic of); Suryan, Abhilash [Dept. of Mechanical Engineering, College of Engineering Trivandrum, Kerala (India)

    2016-12-15

    Wet compression systems increase the useful power output of a gas turbine by reducing the compressor work through the reduction of air temperature inside the compressor. The actual wet compression process differs from the conventional single phase compression process due to the presence of latent heat component being absorbed by the evaporating water droplets. Thus the wet compression process cannot be assumed isentropic. In the current investigation, the gas-liquid two phase has been modeled as air containing dispersed water droplets inside a simple cylinder-piston system. The piston moves in the axial direction inside the cylinder to achieve wet compression. Effects on the thermodynamic properties such as temperature, pressure and relative humidity are investigated in detail for different parameters such as compression speeds and overspray. An analytical model is derived and the requisite thermodynamic curves are generated. The deviations of generated thermodynamic curves from the dry isentropic curves (PV{sup γ} = constant) are analyzed.

  18. Analysis of Elastic-Plastic J Integrals for 3-Dimensional Cracks Using Finite Element Alternating Method

    International Nuclear Information System (INIS)

    Park, Jai Hak

    2009-01-01

    SGBEM(Symmetric Galerkin Boundary Element Method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. In the proposed method, arbitrarily shaped three-dimensional crack problems can be solved by alternating between the crack solution in an infinite body and the finite element solution without a crack. In the previous study, the SGBEM-FEM alternating method was extended further in order to solve elastic-plastic crack problems and to obtain elastic-plastic stress fields. For the elastic-plastic analysis the algorithm developed by Nikishkov et al. is used after modification. In the algorithm, the initial stress method is used to obtain elastic-plastic stress and strain fields. In this paper, elastic-plastic J integrals for three-dimensional cracks are obtained using the method. For that purpose, accurate values of displacement gradients and stresses are necessary on an integration path. In order to improve the accuracy of stress near crack surfaces, coordinate transformation and partitioning of integration domain are used. The coordinate transformation produces a transformation Jacobian, which cancels the singularity of the integrand. Using the developed program, simple three-dimensional crack problems are solved and elastic and elastic-plastic J integrals are obtained. The obtained J integrals are compared with the values obtained using a handbook solution. It is noted that J integrals obtained from the alternating method are close to the values from the handbook

  19. Elastic orthorhombic anisotropic parameter inversion: An analysis of parameterization

    KAUST Repository

    Oh, Juwon; Alkhalifah, Tariq Ali

    2016-01-01

    The resolution of a multiparameter full-waveform inversion (FWI) is highly influenced by the parameterization used in the inversion algorithm, as well as the data quality and the sensitivity of the data to the elastic parameters because the scattering patterns of the partial derivative wavefields (PDWs) vary with parameterization. For this reason, it is important to identify an optimal parameterization for elastic orthorhombic FWI by analyzing the radiation patterns of the PDWs for many reasonable model parameterizations. We have promoted a parameterization that allows for the separation of the anisotropic properties in the radiation patterns. The central parameter of this parameterization is the horizontal P-wave velocity, with an isotropic scattering potential, influencing the data at all scales and directions. This parameterization decouples the influence of the scattering potential given by the P-wave velocity perturbation fromthe polar changes described by two dimensionless parameter perturbations and from the azimuthal variation given by three additional dimensionless parameters perturbations. In addition, the scattering potentials of the P-wave velocity perturbation are also decoupled from the elastic influences given by one S-wave velocity and two additional dimensionless parameter perturbations. The vertical S-wave velocity is chosen with the best resolution obtained from S-wave reflections and converted waves, little influence on P-waves in conventional surface seismic acquisition. The influence of the density on observed data can be absorbed by one anisotropic parameter that has a similar radiation pattern. The additional seven dimensionless parameters describe the polar and azimuth variations in the P- and S-waves that we may acquire, with some of the parameters having distinct influences on the recorded data on the earth's surface. These characteristics of the new parameterization offer the potential for a multistage inversion from high symmetry

  20. Elastic orthorhombic anisotropic parameter inversion: An analysis of parameterization

    KAUST Repository

    Oh, Juwon

    2016-09-15

    The resolution of a multiparameter full-waveform inversion (FWI) is highly influenced by the parameterization used in the inversion algorithm, as well as the data quality and the sensitivity of the data to the elastic parameters because the scattering patterns of the partial derivative wavefields (PDWs) vary with parameterization. For this reason, it is important to identify an optimal parameterization for elastic orthorhombic FWI by analyzing the radiation patterns of the PDWs for many reasonable model parameterizations. We have promoted a parameterization that allows for the separation of the anisotropic properties in the radiation patterns. The central parameter of this parameterization is the horizontal P-wave velocity, with an isotropic scattering potential, influencing the data at all scales and directions. This parameterization decouples the influence of the scattering potential given by the P-wave velocity perturbation fromthe polar changes described by two dimensionless parameter perturbations and from the azimuthal variation given by three additional dimensionless parameters perturbations. In addition, the scattering potentials of the P-wave velocity perturbation are also decoupled from the elastic influences given by one S-wave velocity and two additional dimensionless parameter perturbations. The vertical S-wave velocity is chosen with the best resolution obtained from S-wave reflections and converted waves, little influence on P-waves in conventional surface seismic acquisition. The influence of the density on observed data can be absorbed by one anisotropic parameter that has a similar radiation pattern. The additional seven dimensionless parameters describe the polar and azimuth variations in the P- and S-waves that we may acquire, with some of the parameters having distinct influences on the recorded data on the earth\\'s surface. These characteristics of the new parameterization offer the potential for a multistage inversion from high symmetry

  1. Bayesian Analysis of Demand Elasticity in the Italian Electricity Market

    OpenAIRE

    D'Errico, Maria; Bollino, Carlo

    2015-01-01

    The liberalization of the Italian electricity market is a decade old. Within these last ten years, the supply side has been extensively analyzed, but not the demand side. The aim of this paper is to provide a new method for estimation of the demand elasticity, based on Bayesian methods applied to the Italian electricity market. We used individual demand bids data in the day-ahead market in the Italian Power Exchange (IPEX), for 2011, in order to construct an aggregate demand function at the h...

  2. Statistical analysis of elastic beam with unilateral frictionless supports

    International Nuclear Information System (INIS)

    Feijoo, R.A.; Barbosa, H.J.C.

    1983-06-01

    A variational formulation of the elastic beam problem with unilateral frictionless supports is presented. It is shown that the solution of this problem can be characterized as the solution of a variational inequality or as the solution of the constrained minimum of the total potential energy of the structure. THe finite dimensional counterpart of this variational formulation is obtained using the finite element method, and the Gauss-Seidel method with projection and overrelaxation can be used to obtain an approximate solution. In order to show the numerical performance of the present approach some numerical examples are also presented. (Author) [pt

  3. Material-Point Method Analysis of Bending in Elastic Beams

    DEFF Research Database (Denmark)

    Andersen, Søren Mikkel; Andersen, Lars

    2007-01-01

    The aim of this paper is to test different types of spatial interpolation for the material-point method. The interpolations include quadratic elements and cubic splines. A brief introduction to the material-point method is given. Simple liner-elastic problems are tested, including the classical...... cantilevered beam problem. As shown in the paper, the use of negative shape functions is not consistent with the material-point method in its current form, necessitating other types of interpolation such as cubic splines in order to obtain smoother representations of field quantities. It is shown...

  4. Material-point Method Analysis of Bending in Elastic Beams

    DEFF Research Database (Denmark)

    Andersen, Søren Mikkel; Andersen, Lars

    The aim of this paper is to test different types of spatial interpolation for the materialpoint method. The interpolations include quadratic elements and cubic splines. A brief introduction to the material-point method is given. Simple liner-elastic problems are tested, including the classical...... cantilevered beam problem. As shown in the paper, the use of negative shape functions is not consistent with the material-point method in its current form, necessitating other types of interpolation such as cubic splines in order to obtain smoother representations of field quantities. It is shown...

  5. Investigations of homologous disaccharides by elastic incoherent neutron scattering and wavelet multiresolution analysis

    Energy Technology Data Exchange (ETDEWEB)

    Magazù, S.; Migliardo, F. [Dipartimento di Fisica e di Scienze della Terra dell’, Università degli Studi di Messina, Viale F. S. D’Alcontres 31, 98166 Messina (Italy); Vertessy, B.G. [Institute of Enzymology, Hungarian Academy of Science, Budapest (Hungary); Caccamo, M.T., E-mail: maccamo@unime.it [Dipartimento di Fisica e di Scienze della Terra dell’, Università degli Studi di Messina, Viale F. S. D’Alcontres 31, 98166 Messina (Italy)

    2013-10-16

    Highlights: • Innovative multiresolution wavelet analysis of elastic incoherent neutron scattering. • Elastic Incoherent Neutron Scattering measurements on homologues disaccharides. • EINS wavevector analysis. • EINS temperature analysis. - Abstract: In the present paper the results of a wavevector and thermal analysis of Elastic Incoherent Neutron Scattering (EINS) data collected on water mixtures of three homologous disaccharides through a wavelet approach are reported. The wavelet analysis allows to compare both the spatial properties of the three systems in the wavevector range of Q = 0.27 Å{sup −1} ÷ 4.27 Å{sup −1}. It emerges that, differently from previous analyses, for trehalose the scalograms are constantly lower and sharper in respect to maltose and sucrose, giving rise to a global spectral density along the wavevector range markedly less extended. As far as the thermal analysis is concerned, the global scattered intensity profiles suggest a higher thermal restrain of trehalose in respect to the other two homologous disaccharides.

  6. Dislocations and point defects in hydrostatically compressed crystal

    International Nuclear Information System (INIS)

    Kosevich, A.M.; Tokij, V.V.; Strel'tsov, V.A.

    1978-01-01

    Within the framework of the theory of finite deformations, the elastic fields are considered, which are induced by the sources of internal stresses in a crystal compressed under a high pressure. In the case of a hydrostatically compressed crystal with defects, the use of a variation principle is discussed. Using the smallness of distorsions, the linear theory of elastic fields of defects in the crystal compressed under a high pressure, is developed. An analysis of the main relationships of the theory results in the following conclusion: in a course of the linear approximation the taking into account of the hydrostatic pressure brings to the renorming of the elasticity moduli and to the replacing of the hydrostatic parameters of defects by their values in the compressed crystal. That conclusion allows the results of the elasticity linear theory of the crystal with defects to be used to the full extent

  7. Asymptotic techniques in elastic-plastic analysis of structures

    International Nuclear Information System (INIS)

    Sayir, M.

    1983-01-01

    Elastic-plastic structures can nowadays be analyzed with the powerful numerical procedures of the finite element method. Nevertheless, in many engineering applications, analytical expressions capable of predicting with sufficient accuracy the stress distributions, the extent of the plastic zones and the load displacement behaviour could be of great practical value. For simple structures and loading stages not too far from the elastic limit, such analytical expressions may be obtained by using perturbation methods and asymptotic expansions. A small dimensionless parameter epsilon is defined as the ratio of a length characterizing the extent of the narrow plastic zone, to a conveniently chosen typical dimension of the structure. Stresses and displacements are formally expanded as asymptotic series in terms of powers of epsilon. For each order of magnitude, the exact basic relations lead to a separate set of simplified differential equations which can be integrated analytically or numerically by using standard procedures. The method is very general and can be applied to several classes of plastic behaviour and of structural problems. Three examples of very simple structures are chosen in particular to illustrate the applicability of the perturbation method to engineering problems. (orig./RW)

  8. Dynamics of layered reinforced concrete beam on visco-elastic foundation with different resistances of concrete and reinforcement to tension and compression

    Science.gov (United States)

    Nemirovsky, Y. V.; Tikhonov, S. V.

    2018-03-01

    Originally, fundamentals of the theory of limit equilibrium and dynamic deformation of building metal and reinforced concrete structures were created by A. A. Gvozdev [1] and developed by his followers [4, 5, 6, 7, 11, 12]. Forming the basis for the calculation, the model of an ideal rigid-plastic material has enabled to determine in many cases the ultimate load bearing capacity and upper (kinematically possible) or lower (statically valid) values for a wide class of different structures with quite simple methods. At the same time, applied to concrete structures the most important property of concrete to significantly differently resist tension and compression was not taken into account [10]. This circumstance was considered in [3] for reinforced concrete beams under conditions of quasistatic loading. The deformation is often accompanied by resistance of the environment in construction practice [8, 9]. In [2], the dynamics of multi-layered concrete beams on visco-elastic foundation under the loadings of explosive type is considered. In this work we consider the case which is often encountered in practical applications when the loadings weakly change in time.

  9. Structural analysis of compression helical spring used in suspension system

    Science.gov (United States)

    Jain, Akshat; Misra, Sheelam; Jindal, Arun; Lakhian, Prateek

    2017-07-01

    The main aim of this work has to develop a helical spring for shock absorber used in suspension system which is designed to reduce shock impulse and liberate kinetic energy. In a vehicle, it increases comfort by decreasing amplitude of disturbances and it improves ride quality by absorbing and dissipating energy. When a vehicle is in motion on a road and strikes a bump, spring comes into action quickly. After compression, spring will attempt to come to its equilibrium state which is on level road. Helical springs can be made lighter with more strength by reducing number of coils and increasing the area. In this research work, a helical spring is modeled and analyzed to substitute the existing steel spring which is used in suspension. By using different materials, stress and deflection of helical spring can be varied. Comparability between existing spring and newly replaced spring is used to verify the results. For finding detailed stress distribution, finite element analysis is used to find stresses and deflection in both the helical springs. Finite element analysis is a method which is used to find proximate solutions of a physical problem defined in a finite domain. In this research work, modeling of spring is accomplished using Solid Works and analysis on Ansys.

  10. The analysis of indiference and the price elasticity of demand between different categories of agricultural products

    Directory of Open Access Journals (Sweden)

    Vukadinović Predrag

    2017-01-01

    Full Text Available In this paper, the analysis of the price elasticity of demand of four different categories of agricultural products in the Republic of Serbia was described. Differentiating the price and demand of these products by sales points, and using the least squares approximation method, the elasticity for all different agricultural categories was expressed in the functional form. According to this, the coefficients of elasticity of the price and demand were computed and between different agricultural categories were analyzed. The results we obtained show that the market of agricultural products in Serbia is mostly inelastic because the coefficients of inelasticity and indifference of demand to change of prices, are dominant. The influence of factors on the elasticity of demand that are not of price character, proved to be very pronounced. The relationship of the two segments of agricultural market (markets and shops was also analysed and it was demonstrated that these two segments have a slight correlation.

  11. Fatigue analysis - computation of the actual strain range using elastic calculation

    International Nuclear Information System (INIS)

    Roche, R.L.

    1987-04-01

    The design codes used in nuclear industry do not contain all the same rules allowing to deduce from an elastic calculation the actual deformation variation. Knowledge of strain range is needed for fatigue analysis. Elastic calculation does not give the actual range. The aim of this paper is discussing ways to correct elastic results and proposing a practical method to do it. Two corrections are required. The first one is related to elastic follow up effect when shakedown is not obtained (correction on secondary stress). The second one is related to stress raisers effect (correction on peak stress). It is shown that NEUBER's rule is not convenient for the second correction when shakedown is not fulfilled [fr

  12. Monte Carlo analysis of highly compressed fissile assemblies. Pt. 1

    International Nuclear Information System (INIS)

    Raspet, R.; Baird, G.E.

    1978-01-01

    Laserinduced fission of highly compressed bare fissionable spheres is analyzed using Monte Carlo techniques. The critical mass and critical radius as a function of density are calculated and the fission energy yield is calculated and compared with the input laser energy necessary to achieve compression to criticality. (orig.) [de

  13. Statistical Analysis of Compression Methods for Storing Binary Image for Low-Memory Systems

    Directory of Open Access Journals (Sweden)

    Roman Slaby

    2013-01-01

    Full Text Available The paper is focused on the statistical comparison of the selected compression methods which are used for compression of the binary images. The aim is to asses, which of presented compression method for low-memory system requires less number of bytes of memory. For assessment of the success rates of the input image to binary image the correlation functions are used. Correlation function is one of the methods of OCR algorithm used for the digitization of printed symbols. Using of compression methods is necessary for systems based on low-power micro-controllers. The data stream saving is very important for such systems with limited memory as well as the time required for decoding the compressed data. The success rate of the selected compression algorithms is evaluated using the basic characteristics of the exploratory analysis. The searched samples represent the amount of bytes needed to compress the test images, representing alphanumeric characters.

  14. Integrated analysis of energy transfers in elastic-wave turbulence.

    Science.gov (United States)

    Yokoyama, Naoto; Takaoka, Masanori

    2017-08-01

    In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.

  15. Multi scale analysis of ITER pre-compression rings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ben, E-mail: ben.park@sener.es [SENER Ingeniería y Sistemas S.A., Barcelona (Spain); Foussat, Arnaud [ITER Organization, St. Paul-Lez-Durance (France); Rajainmaki, Hannu [Fusion for Energy, Barcelona (Spain); Knaster, Juan [IFMIF, Aomori (Japan)

    2013-10-15

    Highlights: • A multi-scale analysis approach employing various scales of ABAQUS FEM models have been used to calculate the response and performance of the rings. • We have studied the effects of various defects on the performance of the rings under the operating temperatures and loading that will be applied to the PCRs. • The multi scale analysis results are presented here. -- Abstract: The Pre-compression Rings of ITER (PCRs) represent one of the largest and most highly stressed composite structures ever designed for long term operation at 4 K. Six rings, each 5 m in diameter and 337 mm × 288 mm in cross-section, will be manufactured from S2 fiber-glass/epoxy composite and installed three at the top and three at the bottom of the eighteen D shaped toroidal field (TF) coils to apply a total centripetal pre-load of 70 MN per TF coil. The composite rings will be fabricated with a high content (65% by volume) of S2 fiber-glass in an epoxy resin matrix. During the manufacture emphasis will be placed on obtaining a structure with a very low void content and minimal presence of critical defects, such as delaminations. This paper presents a unified framework for the multi-scale analysis of the composite structure of the PCRs. A multi-scale analysis approach employing various scales of ABAQUS FEM models and other analysis tools have been used to calculate the response and performance of the rings over the design life of the structure. We have studied the effects of various defects on the performance of the rings under the operating temperatures and loading that will be applied to the PCRs. The results are presented here.

  16. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim D.; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...

  17. An Airline-Based Multilevel Analysis of Airfare Elasticity for Passenger Demand

    Science.gov (United States)

    Castelli, Lorenzo; Ukovich, Walter; Pesenti, Raffaele

    2003-01-01

    Price elasticity of passenger demand for a specific airline is estimated. The main drivers affecting passenger demand for air transportation are identified. First, an Ordinary Least Squares regression analysis is performed. Then, a multilevel analysis-based methodology to investigate the pattern of variation of price elasticity of demand among the various routes of the airline under study is proposed. The experienced daily passenger demands on each fare-class are grouped for each considered route. 9 routes were studied for the months of February and May in years from 1999 to 2002, and two fare-classes were defined (business and economy). The analysis has revealed that the airfare elasticity of passenger demand significantly varies among the different routes of the airline.

  18. Polarisation analysis of elastic neutron scattering using a filter spectrometer on a pulsed source

    International Nuclear Information System (INIS)

    Mayers, J.; Williams, W.G.

    1981-05-01

    The experimental and theoretical aspects of the polarisation analysis technique in elastic neutron scattering are described. An outline design is presented for a filter polarisation analysis spectrometer on the Rutherford Laboratory Spallation Neutron Source and estimates made of its expected count rates and resolution. (author)

  19. Exergy Analysis of the Revolving Vane Compressed Air Engine

    Directory of Open Access Journals (Sweden)

    Alison Subiantoro

    2016-01-01

    Full Text Available Exergy analysis was applied to a revolving vane compressed air engine. The engine had a swept volume of 30 cm3. At the benchmark conditions, the suction pressure was 8 bar, the discharge pressure was 1 bar, and the operating speed was 3,000 rev·min−1. It was found that the engine had a second-law efficiency of 29.6% at the benchmark conditions. The contributors of exergy loss were friction (49%, throttling (38%, heat transfer (12%, and fluid mixing (1%. A parametric study was also conducted. The parameters to be examined were suction reservoir pressure (4 to 12 bar, operating speed (2,400 to 3,600 rev·min−1, and rotational cylinder inertia (0.94 to 2.81 g·mm2. The study found that a higher suction reservoir pressure initially increased the second-law efficiency but then plateaued at about 30%. With a higher operating speed and a higher cylinder inertia, second-law efficiency decreased. As compared to suction pressure and operating speed, cylinder inertia is the most practical and significant to be modified.

  20. Fatigue assessment by the RCC-MR design rules: remarks on the elastic analysis

    International Nuclear Information System (INIS)

    Taleb, L.; Sidoroff, F.

    1999-01-01

    According to RCC--MR (French rules for mechanical engineering design of FBR), fatigue life assessment is based on the evaluation of the equivalent elastoplastic strain range resulting from a given cyclic loading. Two methods can be used according to whether an elastoplastic or an elastic structure analysis is performed. The elastic analysis is of course more attractive for it avoids a heavy iterative elastoplastic analysis and an expensive identification of the material behavior from mechanical tests. On the other hand it relies on some empirical extrapolation rules from the elastic to the real case. The purpose of the present paper is to draw attention to some limitations of this procedure. In particular attention will be focused on two points: 1, the classification of the applied stress into primary and secondary parts is essential and it is shown that the thermal stresses which are often considered as secondary may in some cases play a primary role; 2. the Neuber's rule which is used to evaluate the plastic strain from the elastic stress will be shown to be significantly wrong for some special configurations. This is in fact essentially related to situations where the elastic follow up effect is important. (authors)

  1. New trends in applied harmonic analysis sparse representations, compressed sensing, and multifractal analysis

    CERN Document Server

    Cabrelli, Carlos; Jaffard, Stephane; Molter, Ursula

    2016-01-01

    This volume is a selection of written notes corresponding to courses taught at the CIMPA School: "New Trends in Applied Harmonic Analysis: Sparse Representations, Compressed Sensing and Multifractal Analysis". New interactions between harmonic analysis and signal and image processing have seen striking development in the last 10 years, and several technological deadlocks have been solved through the resolution of deep theoretical problems in harmonic analysis. New Trends in Applied Harmonic Analysis focuses on two particularly active areas that are representative of such advances: multifractal analysis, and sparse representation and compressed sensing. The contributions are written by leaders in these areas, and covers both theoretical aspects and applications. This work should prove useful not only to PhD students and postdocs in mathematics and signal and image processing, but also to researchers working in related topics.

  2. Green Power voluntary purchases: Price elasticity and policy analysis

    International Nuclear Information System (INIS)

    Mewton, Ross T.; Cacho, Oscar J.

    2011-01-01

    Green Power schemes offer electricity from renewable energy sources to customers for a higher price than ordinary electricity. This study examines the demand characteristics of Green Power in Australia and policies which could increase its sales. A sample of 250 pooled time series and cross sectional observations was used to estimate a statistically significant elasticity of demand for Green Power with respect to price of -0.96 with a 95% confidence interval of ±68%. The wide variation in market penetration between jurisdictions and between countries for Green Power, and the low awareness of Green Power found by surveys indicate that Green Power sales could be increased by appropriate marketing and government policies. The most cost effective means to increase sales was found to be advertising campaigns although only one Australian example was found, in the state of Victoria in 2005. It was also found that full tax deductibility of the Green Power premium to residential customers, exemption from the Goods and Services Tax and a tax rebate for Green Power are all probably less cost effective for promoting sales than direct government purchase of Green Power, in terms of cost per unit of increased sales.

  3. Elastic-plastic analysis of tube expansion in tubesheets

    International Nuclear Information System (INIS)

    Kasraie, B.; O'Donnell, W.J.; Porowski, J.S.; Selz, A.

    1983-01-01

    Conditions for expansion of tubes in tubesheets are often determined by the test. The tightness of the joint and pull out force are used as criteria for evaluation of the results. For closely spaced tubes, it is also necessary to control development of the plastic regions in the ligaments surrounding the tube being expanded. High local strains may occur and excessive distortion may result if the expansion of the tube is continued beyond the admissible limits. Elastic-plastic finite element analyses are performed herein in order to establish conditions for rolling of the tubes in tubesheets of low ligament efficiency. Such penetration patterns are often required in the design of tubular reactors for catalytic processes. The model considered includes individual tube expansion in tubesheets with triangular penetration patterns. The effect of prior expansion of the neighboring tubes is also evaluated. Gap elements are used to model the initial clearance of the tube in the hole. Development of the plastic zones and distortion of the ligaments is monitored during radial expansion of the tube diameter. The residual stresses between the tube and the hole surface and the history of gap closing after removal of the expansion tool are determined. The effect of axial extension of the tube on the tube thinning is determined. Tube thinning is often used as a measure of tube expansion in manufacturing processes. For the analyzed ligament efficiency, reliable joints are obtained for a thinning range within 2% to 3%

  4. Analysis of competitive power market with constant elasticity function

    International Nuclear Information System (INIS)

    Nguyen, D.H.M.; Wong, K.P.

    2003-01-01

    A solution method, for competitive power markets formulated as a Cournot game, that allows equilibrium to be determined without an explicit model of aggregated demand is presented. The method determines market equilibrium for all feasible demand conditions and thus provides a perspective on the market, independent of representative demand function, that reveals the inherent tendencies of producers in the market. Numerical solutions are determined by use of the new controlled genetic algorithm and constraint handling techniques. The solutions give production and demand elasticity distributions of the market at any feasible equilibrium price and volume. The solution distributions evaluated for the market with unspecified demand functions, were found to be consistent with previous results obtained from markets with specific demand functions. The ability of the new approach to all, and arbitrary, solutions allow specific markets to be examined, as well as very general observations to be made. Generally it was observed that: no inherent price constraint exists; price is more volatile for low volumes and high prices; market dominance and power are unaffected by price; and inelastic demand can give rise to equilibrium with lower price than responsive demand. (Author)

  5. Green Power voluntary purchases: Price elasticity and policy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mewton, Ross T., E-mail: rtmewton@hotmail.co [University of New England (Australia); Cacho, Oscar J. [School of Business Economics and Public Policy, School of Economics, University of New England, Armidale, NSW 2351 (Australia)

    2011-01-15

    Green Power schemes offer electricity from renewable energy sources to customers for a higher price than ordinary electricity. This study examines the demand characteristics of Green Power in Australia and policies which could increase its sales. A sample of 250 pooled time series and cross sectional observations was used to estimate a statistically significant elasticity of demand for Green Power with respect to price of -0.96 with a 95% confidence interval of {+-}68%. The wide variation in market penetration between jurisdictions and between countries for Green Power, and the low awareness of Green Power found by surveys indicate that Green Power sales could be increased by appropriate marketing and government policies. The most cost effective means to increase sales was found to be advertising campaigns although only one Australian example was found, in the state of Victoria in 2005. It was also found that full tax deductibility of the Green Power premium to residential customers, exemption from the Goods and Services Tax and a tax rebate for Green Power are all probably less cost effective for promoting sales than direct government purchase of Green Power, in terms of cost per unit of increased sales.

  6. Green Power voluntary purchases. Price elasticity and policy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mewton, Ross T. [University of New England (Australia); Cacho, Oscar J. [School of Business Economics and Public Policy, School of Economics, University of New England, Armidale, NSW 2351 (Australia)

    2011-01-15

    Green Power schemes offer electricity from renewable energy sources to customers for a higher price than ordinary electricity. This study examines the demand characteristics of Green Power in Australia and policies which could increase its sales. A sample of 250 pooled time series and cross sectional observations was used to estimate a statistically significant elasticity of demand for Green Power with respect to price of -0.96 with a 95% confidence interval of {+-}68%. The wide variation in market penetration between jurisdictions and between countries for Green Power, and the low awareness of Green Power found by surveys indicate that Green Power sales could be increased by appropriate marketing and government policies. The most cost effective means to increase sales was found to be advertising campaigns although only one Australian example was found, in the state of Victoria in 2005. It was also found that full tax deductibility of the Green Power premium to residential customers, exemption from the Goods and Services Tax and a tax rebate for Green Power are all probably less cost effective for promoting sales than direct government purchase of Green Power, in terms of cost per unit of increased sales. (author)

  7. Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation

    Science.gov (United States)

    Jandaghian, A. A.; Rahmani, O.

    2016-03-01

    In this study, free vibration analysis of magneto-electro-thermo-elastic (METE) nanobeams resting on a Pasternak foundation is investigated based on nonlocal theory and Timoshenko beam theory. Coupling effects between electric, magnetic, mechanical and thermal loading are considered to derive the equations of motion and distribution of electrical potential and magnetic potential along the thickness direction of the METE nanobeam. The governing equations and boundary conditions are obtained using the Hamilton principle and discretized via the differential quadrature method (DQM). Numerical results reveal the effects of the nonlocal parameter, magneto-electro-thermo-mechanical loading, Winkler spring coefficients, Pasternak shear coefficients and height-to-length ratio on the vibration characteristics of METE nanobeams. It is observed that the natural frequency is dependent on the magnetic, electric, temperature, elastic medium, small-scale coefficient, and height-to-length ratio. These results are useful in the mechanical analysis and design of smart nanostructures constructed from magneto-electro-thermo-elastic materials.

  8. Simplified method for elastic plastic analysis of material presenting bilinear kinematic hardening

    International Nuclear Information System (INIS)

    Roche, R.

    1983-12-01

    A simplified method for elastic plastic analysis is presented. Material behavior is assumed to be elastic plastic with bilinear kinematic hardening. The proposed method give a strain-stress field fullfilling material constitutive equations, equations of equilibrium and continuity conditions. This strain-stress is obtained through two linear computations. The first one is the conventional elastic analysis of the body submitted to the applied load. The second one use tangent matrix (tangent Young's modulus and Poisson's ratio) for the determination of an additional stress due to imposed initial strain. Such a method suits finite elements computer codes, the most useful result being plastic strains resulting from the applied loading (load control or deformation control). Obviously, there is not unique solution, for stress-strain field is not depending only of the applied load, but of the load history. Therefore, less pessimistic solutions can be got by one or two additional linear computations [fr

  9. A meta-analysis on the price elasticity of energy demand

    International Nuclear Information System (INIS)

    Labandeira, Xavier; Labeaga, José M.; López-Otero, Xiral

    2017-01-01

    Price elasticities of energy demand have become increasingly relevant in estimating the socio-economic and environmental effects of energy policies or other events that influence the price of energy goods. Since the 1970s, a large number of academic papers have provided both short and long-term price elasticity estimates for different countries using several models, data and estimation techniques. Yet the literature offers a rather wide range of estimates for the price elasticities of demand for energy. This paper quantitatively summarizes the recent, but sizeable, empirical evidence to facilitate a sounder economic assessment of (in some cases policy-related) energy price changes. It uses meta-analysis to identify the main factors affecting short and long term elasticity results for energy, in general, as well as for specific products, i.e., electricity, natural gas, gasoline, diesel and heating oil. - Highlights: • An updated and wider meta-analysis on price elasticities of energy demand. • Energy goods are shown to be price inelastic both in the short and long-term. • Results are relevant for a proper design and implementation of energy policies. • Our results refer to energy, as a whole, and specific energy goods.

  10. Analysis of Usefulness of a Fuzzy Transform for Industrial Data Compression

    International Nuclear Information System (INIS)

    Sztyber, Anna

    2014-01-01

    This paper presents the first part of an ongoing work on detailed analysis of compression algorithms and development of an algorithm for implementation in a real industrial data processing system. Fuzzy transforms give promising results in an image compression. The main aim of this paper is to test the possibility of an application of the fuzzy transforms to the industrial data compression. Test are carried out on the data from DAMADICS benchmark. Comparison is provided with a piecewise linear compression, which is nowadays the standard in the industry. The last section contains discussion of the obtained results and plans for the future work

  11. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    International Nuclear Information System (INIS)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-01-01

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  12. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-04-15

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  13. Theoretical basis for a transient thermal elastic-plastic stress analysis of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    Hsu, T.R.; Bertels, A.W.M.; Banerjee, S.; Harrison, W.C.

    1976-07-01

    This report presents the theoretical basis for a transient thermal elastic-plastic stress analysis of a nuclear reactor fuel element subject to severe transient thermo-mechanical loading. A finite element formulation is used for both the non-linear stress analysis and thermal analysis. These two major components are linked together to form an integrated program capable of predicting fuel element transient behaviour in two dimensions. Specific case studies are presented to illustrate capabilities of the analysis. (author)

  14. Three dimensional vibration and bending analysis of carbon nanotubes embedded in elastic medium based on theory of elasticity

    Directory of Open Access Journals (Sweden)

    M. Shaban

    Full Text Available This paper studies free vibration and bending behavior of singlewalled carbon nanotubes (SWCNTs embedded on elastic medium based on three-dimensional theory of elasticity. To accounting the size effect of carbon nanotubes, non-local theory is adopted to shell model. The nonlocal parameter is incorporated into all constitutive equations in three dimensions. The surrounding medium is modeled as two-parameter elastic foundation. By using Fourier series expansion in axial and circumferential direction, the set of coupled governing equations are reduced to the ordinary differential equations in thickness direction. Then, the state-space method as an efficient and accurate method is used to solve the resulting equations analytically. Comprehensive parametric studies are carried out to show the influences of the nonlocal parameter, radial and shear elastic stiffness, thickness-to-radius ratio and radiusto-length ratio.

  15. Cost-effectiveness analysis of treatments for vertebral compression fractures.

    Science.gov (United States)

    Edidin, Avram A; Ong, Kevin L; Lau, Edmund; Schmier, Jordana K; Kemner, Jason E; Kurtz, Steven M

    2012-07-01

    Vertebral compression fractures (VCFs) can be treated by nonsurgical management or by minimally invasive surgical treatment including vertebroplasty and balloon kyphoplasty. The purpose of the present study was to characterize the cost to Medicare for treating VCF-diagnosed patients by nonsurgical management, vertebroplasty, or kyphoplasty. We hypothesized that surgical treatments for VCFs using vertebroplasty or kyphoplasty would be a cost-effective alternative to nonsurgical management for the Medicare patient population. Cost per life-year gained for VCF patients in the US Medicare population was compared between operated (kyphoplasty and vertebroplasty) and non-operated patients and between kyphoplasty and vertebroplasty patients, all as a function of patient age and gender. Life expectancy was estimated using a parametric Weibull survival model (adjusted for comorbidities) for 858 978 VCF patients in the 100% Medicare dataset (2005-2008). Median payer costs were identified for each treatment group for up to 3 years following VCF diagnosis, based on 67 018 VCF patients in the 5% Medicare dataset (2005-2008). A discount rate of 3% was used for the base case in the cost-effectiveness analysis, with 0% and 5% discount rates used in sensitivity analyses. After accounting for the differences in median costs and using a discount rate of 3%, the cost per life-year gained for kyphoplasty and vertebroplasty patients ranged from $US1863 to $US6687 and from $US2452 to $US13 543, respectively, compared with non-operated patients. The cost per life-year gained for kyphoplasty compared with vertebroplasty ranged from -$US4878 (cost saving) to $US2763. Among patients for whom surgical treatment was indicated, kyphoplasty was found to be cost effective, and perhaps even cost saving, compared with vertebroplasty. Even for the oldest patients (85 years of age and older), both interventions would be considered cost effective in terms of cost per life-year gained.

  16. FRICTION ANALYSIS ON SCRATCH DEFORMATION MODES OF VISCO-ELASTIC-PLASTIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Budi Setiyana

    2013-11-01

    Full Text Available Understanding of abrasion resistance and associated surfaces deformation mechanisms is of primary importance in materials engineering and design. Instrumented scratch testing has proven to be a useful tool for characterizing the abrasion resistance of materials. Using a conical indenter in a scratch test may result in different deformation modes, like as elastic deformation, ironing, ductile ploughing and cutting. This paper presents the friction analysis of some deformation modes of visco-elastic-plastic behaving polymer materials, especially PEEK (poly ether ether ketone.In general, it is accepted that the friction consist of an adhesion and a deformation component, which can be assumed to be independent to each others. During a scratch test, the friction coefficient is influenced by some parameters, such as the sharpness of indenter, the deformation modes and the degree of elastic recovery. Results show that the adhesion component strongly influences the friction in the elastic and ironing deformation mode (scratching with a blunt cone, friction for the cutting deformation mode (scratching with a sharp cone is dominantly influenced by the deformation component. From the analysis, it can be concluded that the adhesion friction model is suitable for ironing - elastic deformation mode and the deformation friction model with elastic recovery is good for cutting mode. Moreover, the ductile ploughing mode is combination of the adhesion and plastic deformation friction model. ANALISIS FRIKSI PADA BENTUK DEFORMASI AKIBAT GORESAN PADA MATERIAL VISKO-ELASTIK-PLASTIK. Pemahaman tentang ketahanan abrasi dan deformasi permukaan  yang  menyertainya merupakan hal yang penting dalam rekayasa dan disain material. Peralatan uji gores terbukti ampuh untuk menyatakan ketahanan abrasi dari material. Pemakaian indenter kerucut dalam uji gores akan menghasilkan beberapa bentuk deformasi seperti halnya deformasi elastik, penyetrikaan, plowing dan pemotongan

  17. Analysis on soil compressibility changes of samples stabilized with lime

    Directory of Open Access Journals (Sweden)

    Elena-Andreea CALARASU

    2016-12-01

    Full Text Available In order to manage and control the stability of buildings located on difficult foundation soils, several techniques of soil stabilization were developed and applied worldwide. Taking into account the major significance of soil compressibility on construction durability and safety, the soil stabilization with a binder like lime is considered one of the most used and traditional methods. The present paper aims to assess the effect of lime content on soil geotechnical parameters, especially on compressibility ones, based on laboratory experimental tests, for several soil categories in admixture with different lime dosages. The results of this study indicate a significant improvement of stabilized soil parameters, such as compressibility and plasticity, in comparison with natural samples. The effect of lime stabilization is related to an increase of soil structure stability by increasing the bearing capacity.

  18. Towards an Aero-Propulso-Servo-Elasticity Analysis of a Commercial Supersonic Transport

    Science.gov (United States)

    Connolly, Joseph W.; Kopasakis, George; Chwalowski, Pawel; Sanetrik, Mark D.; Carlson, Jan-Renee; Silva, Walt A.; McNamara, Jack

    2016-01-01

    This paper covers the development of an aero-propulso-servo-elastic (APSE) model using computational fluid dynamics (CFD) and linear structural deformations. The APSE model provides the integration of the following two previously developed nonlinear dynamic simulations: a variable cycle turbofan engine and an elastic supersonic commercial transport vehicle. The primary focus of this study is to provide a means to include relevant dynamics of a turbomachinery propulsion system into the aeroelastic studies conducted during a vehicle design, which have historically neglected propulsion effects. A high fidelity CFD tool is used here for the integration platform. The elastic vehicle neglecting the propulsion system serves as a comparison of traditional approaches to the APSE results. An overview of the methodology is presented for integrating the propulsion system and elastic vehicle. Static aeroelastic analysis comparisons between the traditional and developed APSE models for a wing tip detection indicate that the propulsion system impact on the vehicle elastic response could increase the detection by approximately ten percent.

  19. ELATE: an open-source online application for analysis and visualization of elastic tensors

    International Nuclear Information System (INIS)

    Gaillac, Romain; Coudert, François-Xavier; Pullumbi, Pluton

    2016-01-01

    We report on the implementation of a tool for the analysis of second-order elastic stiffness tensors, provided with both an open-source Python module and a standalone online application allowing the visualization of anisotropic mechanical properties. After describing the software features, how we compute the conventional elastic constants and how we represent them graphically, we explain our technical choices for the implementation. In particular, we focus on why a Python module is used to generate the HTML web page with embedded Javascript for dynamical plots. (paper)

  20. Using general-purpose compression algorithms for music analysis

    DEFF Research Database (Denmark)

    Louboutin, Corentin; Meredith, David

    2016-01-01

    General-purpose compression algorithms encode files as dictionaries of substrings with the positions of these strings’ occurrences. We hypothesized that such algorithms could be used for pattern discovery in music. We compared LZ77, LZ78, Burrows–Wheeler and COSIATEC on classifying folk song...... in the input data, COSIATEC outperformed LZ77 with a mean F1 score of 0.123, compared with 0.053 for LZ77. However, when the music was processed a voice at a time, the F1 score for LZ77 more than doubled to 0.124. We also discovered a significant correlation between compression factor and F1 score for all...

  1. Digitally controlled measurement of sonic elastic moduli and internal friction by phase analysis

    International Nuclear Information System (INIS)

    O'Brien, M.H.; Hunter, O. Jr.; Rasmussen, M.D.; Skank, H.D.

    1983-01-01

    An automated system is described for measuring internal friction and elastic moduli using sonic resonance techniques. This mirocomputer-controlled device does phase angle analysis in addition to traditional decay and peak-width internal friction measurement. The apparatus may be programmed to make measurements at any sequence of temperatures between room temperature and 1600 0 C

  2. Elastic-plastic analysis of an axi-symmetric problem by a finite element method

    International Nuclear Information System (INIS)

    Isozaki, Toshikuni

    1984-06-01

    Generally speaking, many structures are designed and fabricated on the basis of an axi-symmetric structure. Finite Element Method is the capable method to solve these axi-symmetric problems beyond the elastic limit. As the first step to solve these problems, the computer program for the elastic-plastic analysis of the axi-symmetric problem is composed. The basic program is based upon that described in Zienkiewicz's text book to solve the elastic plane stress problem, taking the plastic stress matrix by Yamada's method into consideration and it is converted to solve the axi-symmetric problem. For the verification of the program, the plane strain problem of a cylindrical tube under internal pressure was solved. The computed results were compared with those shown in ADINA's user's manual. They showed close agreement. (author)

  3. An analysis of heat field of metal sheet during elastic-plastic deformation

    International Nuclear Information System (INIS)

    Li, S.X.; Huang, Y.; Shih, C.H.

    1985-08-01

    This paper describes the application of the finite element analysis to calculate the temperature distribution generated during the process of elastic-plastic deformation. A better agreement is found between the results of heat field computed by use of the finite element analysis and that measured by use of an infrared camera. The results indicate that the method of finite element analysis used for heat field evaluation is reliable. (author)

  4. Analysis of axial compressive loaded beam under random support excitations

    Science.gov (United States)

    Xiao, Wensheng; Wang, Fengde; Liu, Jian

    2017-12-01

    An analytical procedure to investigate the response spectrum of a uniform Bernoulli-Euler beam with axial compressive load subjected to random support excitations is implemented based on the Mindlin-Goodman method and the mode superposition method in the frequency domain. The random response spectrum of the simply supported beam subjected to white noise excitation and to Pierson-Moskowitz spectrum excitation is investigated, and the characteristics of the response spectrum are further explored. Moreover, the effect of axial compressive load is studied and a method to determine the axial load is proposed. The research results show that the response spectrum mainly consists of the beam's additional displacement response spectrum when the excitation is white noise; however, the quasi-static displacement response spectrum is the main component when the excitation is the Pierson-Moskowitz spectrum. Under white noise excitation, the amplitude of the power spectral density function decreased as the axial compressive load increased, while the frequency band of the vibration response spectrum increased with the increase of axial compressive load.

  5. An improvement analysis on video compression using file segmentation

    Science.gov (United States)

    Sharma, Shubhankar; Singh, K. John; Priya, M.

    2017-11-01

    From the past two decades the extreme evolution of the Internet has lead a massive rise in video technology and significantly video consumption over the Internet which inhabits the bulk of data traffic in general. Clearly, video consumes that so much data size on the World Wide Web, to reduce the burden on the Internet and deduction of bandwidth consume by video so that the user can easily access the video data.For this, many video codecs are developed such as HEVC/H.265 and V9. Although after seeing codec like this one gets a dilemma of which would be improved technology in the manner of rate distortion and the coding standard.This paper gives a solution about the difficulty for getting low delay in video compression and video application e.g. ad-hoc video conferencing/streaming or observation by surveillance. Also this paper describes the benchmark of HEVC and V9 technique of video compression on subjective oral estimations of High Definition video content, playback on web browsers. Moreover, this gives the experimental ideology of dividing the video file into several segments for compression and putting back together to improve the efficiency of video compression on the web as well as on the offline mode.

  6. Analysis of tractable distortion metrics for EEG compression applications

    International Nuclear Information System (INIS)

    Bazán-Prieto, Carlos; Blanco-Velasco, Manuel; Cruz-Roldán, Fernando; Cárdenas-Barrera, Julián

    2012-01-01

    Coding distortion in lossy electroencephalographic (EEG) signal compression methods is evaluated through tractable objective criteria. The percentage root-mean-square difference, which is a global and relative indicator of the quality held by reconstructed waveforms, is the most widely used criterion. However, this parameter does not ensure compliance with clinical standard guidelines that specify limits to allowable noise in EEG recordings. As a result, expert clinicians may have difficulties interpreting the resulting distortion of the EEG for a given value of this parameter. Conversely, the root-mean-square error is an alternative criterion that quantifies distortion in understandable units. In this paper, we demonstrate that the root-mean-square error is better suited to control and to assess the distortion introduced by compression methods. The experiments conducted in this paper show that the use of the root-mean-square error as target parameter in EEG compression allows both clinicians and scientists to infer whether coding error is clinically acceptable or not at no cost for the compression ratio. (paper)

  7. Design and analysis of compressed sensing radar detectors

    NARCIS (Netherlands)

    Anitori, L.; Maleki, A.; Otten, M.P.G.; Baraniuk, R.G.; Hoogeboom, P.

    2013-01-01

    We consider the problem of target detection from a set of Compressed Sensing (CS) radar measurements corrupted by additive white Gaussian noise. We propose two novel architectures and compare their performance by means of Receiver Operating Characteristic (ROC) curves. Using asymptotic arguments and

  8. Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-10-01

    In this article, a nonlocal four-variable refined plate theory is developed to examine the buckling behavior of nanoplates made of magneto-electro-elastic functionally graded (MEE-FG) materials resting on Winkler-Pasternak foundation. Material properties of nanoplate change in spatial coordinate based on power-law distribution. The nonlocal governing equations are deduced by employing the Hamilton principle. For various boundary conditions, the analytical solutions of nonlocal MEE-FG plates for buckling problem will be obtained based on an exact solution approach. Finally, dependency of buckling response of MEE-FG nanoplate on elastic foundation parameters, magnetic potential, external electric voltage, various boundary conditions, small scale parameter, power-law index, plate side-to-thickness ratio and aspect ratio will be figure out. These results can be advantageous for the mechanical analysis and design of intelligent nanoscale structures constructed from magneto-electro-thermo-elastic functionally graded materials.

  9. Elastic-plastic failure analysis of pressure burst tests of thin toroidal shells

    International Nuclear Information System (INIS)

    Jones, D.P.; Holliday, J.E.; Larson, L.D.

    1998-07-01

    This paper provides a comparison between test and analysis results for bursting of thin toroidal shells. Testing was done by pressurizing two toroidal shells until failure by bursting. An analytical criterion for bursting is developed based on good agreement between structural instability predicted by large strain-large displacement elastic-plastic finite element analysis and observed burst pressure obtained from test. The failures were characterized by loss of local stability of the membrane section of the shells consistent with the predictions from the finite element analysis. Good agreement between measured and predicted burst pressure suggests that incipient structural instability as calculated by an elastic-plastic finite element analysis is a reasonable way to calculate the bursting pressure of thin membrane structures

  10. Multiparametric amplitude analysis with on-line compression using adaptive orthogonal transform

    Energy Technology Data Exchange (ETDEWEB)

    Morhac, M; Matousek, V; Turzo, I

    1996-12-31

    The new method of multiparameter amplitude analysis with on-line compression is developed. The proposed method decreases the memory needed to store multidimensional histograms. Examples of employing the algorithms for three-dimensional spectra are presented. 5 refs.

  11. Elastic-plastic analysis using an efficient formulation of the finite element method

    International Nuclear Information System (INIS)

    Aamodt, B.; Mo, O.

    1975-01-01

    Based on the flow theory of plasticity, the von Mises or the Tresca yield criterion and the isotropic hardening law, an incremental stiffness relationship can be established for a finite element model of the elasto-plastic structure. However, instead of including all degrees of freedom and all finite elements of the total model in a nonlinear solution process, a separation of elastic and plastic parts of the structure can be carried out. Such a separation can be obtained by identifying elastic parts of the structure as 'elastic' superelements and elasto-plastic parts of the structure as 'elasto-plastic' superelements. Also, it may be of advantage to use several levels of superelements in modelling the elastic parts of the structure. For the 'elasto-plastic' superelements the specific plastic computations such as updating of the incremental stiffness matrix and subsequent reduction (i.e. static condensation of all degrees of freedom being local to the superelements) have to be carried out repeatedly during the nonlinear solution process. The solution of the nonlinear equations is performed utilizing a combination of load incrementation and equilibrium interations. The present method of analysis is demonstrated for two larger examples of elasto-plastic analysis. (Auth.)

  12. Elastic-plastic analysis of fracture mechanics test specimens. Part 2

    International Nuclear Information System (INIS)

    Talja, H.; Wallin, K.

    1984-12-01

    This is second part of the report of the research program 'Comparisons between computational and experimental elastic-plastic results' started at the Technical Research Centre of Finland in 1981. The first part of the research program was reported earlier and contained a two dimensional linear elastic finite element analysis of four specimen geometries (CT, RCT, ASTM-3P and Charpy-V) and testing and elastic-plastic analysis of the specimen (EGF71; 1TCT, material A 542). In this report the second part of the program containing the testing and 2-D elastic-plastic analyses of five specimens is described. The four specimen geometries mentioned above and two different materials (stainless steel AISI 304 and ferrite pressure vessel steel A533B) are considered. The following comparisons are presented in the report: load vs. load displacement curves, J-integral, crack opening displacement (COD), J vs. COD and the size of the plastic zone. The agreement between the computational and experimental results is quite good. Complete agreement can be achieved only with 3-dimensional calculation models. (author)

  13. Elastic-plastic-creep analysis of brazed carbon-carbon/OFHC divertor tile concepts for TPX

    International Nuclear Information System (INIS)

    Chin, E.; Reis, E.E.

    1995-01-01

    The 7.5 MW/m 2 heat flux requirements for the TPX divertor necessitate the use of high conductivity carbon-carbon (C-C) tiles that are brazed to annealed copper (OFHC) coolant tubes. Significant residual stresses are developed in the C-C tiles during the braze process due to large differences in the thermal expansion coefficients between these materials. Analyses which account for only the elastic-plastic strains developed in the OFHC tube may not accurately characterize the behavior of the tube during brazing. The elevated temperature creep behavior of the copper coolant tubes intuitively should reduce the calculated residual stresses in the C-C tiles. Two divertor tile concepts, the monoblock and the archblock, were analyzed for residual stress using 2-D finite element analysis for elastic-plastic-creep behavior of the OFHC tube during an assumed braze cooldown cycle. The results show that the inclusion of elevated temperature creep effects decrease the calculated residual stresses by only about 10% when compared to those analyses in which only elastic-plastic behavior of the OFHC is accounted for. The primary reason that creep effects at higher temperatures are not more significant is due to the low yield stress and nearly flat-top stress-strain curve of annealed OFHC. Since high temperature creep plays less of a role in the residual stress levels than previously thought, future scoping studies can be done in an elastic-plastic analysis with confidence that the stresses will be within approximately 10% of an elastic-plastic-creep analysis

  14. Vapour and air bubble collapse analysis in viscous compressible water

    Directory of Open Access Journals (Sweden)

    Gil Bazanini

    2001-01-01

    Full Text Available Numerical simulations of the collapse of bubbles (or cavities are shown, using the finite difference method, taking into account the compressibility of the liquid, expected to occur in the final stages of the collapse process. Results are compared with experimental and theoretical data for incompressible liquids, to see the influence of the compressibility of the water in the bubble collapse. Pressure fields values are calculated in an area of 800 x 800 mm, for the case of one bubble under the hypothesis of spherical symmetry. Results are shown as radius versus time curves for the collapse (to compare collapse times, and pressure curves in the plane, for pressure fields. Such calculations are new because of their general point of view, since the existing works do not take into account the existence of vapour in the bubble, neither show the pressure fields seen here. It is also expected to see the influence of the compressibility of the water in the collapse time, and in the pressure field, when comparing pressure values.

  15. ALFA detector, Background removal and analysis for elastic events

    CERN Document Server

    Belaloui, Nazim

    2017-01-01

    I worked on the ALFA project, which has the aim to measure the total cross section in PP collisions as a function of t, the momentum transfer by measuring the scattering angle of the protons. This measurement is done for all available energies; so far 7, 8 and 13 TeV. There are many analysis steps and we have focused on enhancing the signal-to-noise ratio. First of all I tried to be more familiar with ROOT, worked on understanding the code used to access to the data, plotting histograms, then cutting-off background.

  16. Elastic, plastic, fracture analysis of masonry arches: A multi-span bridge case study

    Science.gov (United States)

    Lacidogna, Giuseppe; Accornero, Federico

    2018-01-01

    In this work a comparison is presented between elastic, plastic, and fracture analysis of the monumental arch bridge of Porta Napoli, Taranto (Italy). By means of a FEM model and applying the Mery's Method, the behavior of the curved structure under service loads is verified, while considering the Safe Theorem approach byHeyman, the ultimate carrying capacity of the structure is investigated. Moreover, by using Fracture Mechanics concepts, the damage process which takes place when the conditions assessed through linear elastic analysis are no longer valid, and before the set-in of the conditions established by means of the plastic limit analysis, is numerically analyzed. The study of these transitions returns an accurate and effective whole service life assessment of the Porta Napoli masonry arch bridge.

  17. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

    Science.gov (United States)

    Hocking, Erica G.; Wereley, Norman M.

    2013-01-01

    Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30-80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible.

  18. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

    International Nuclear Information System (INIS)

    Hocking, Erica G; Wereley, Norman M

    2013-01-01

    Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30–80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible. (paper)

  19. Study on elastic-plastic deformation analysis using a cyclic stress-strain curve

    International Nuclear Information System (INIS)

    Igari, Toshihide; Setoguchi, Katsuya; Yamauchi, Masafumi

    1983-01-01

    This paper presents the results of the elastic-plastic deformation analysis using a cyclic stress-strain curve with an intention to apply this method for predicting the low-cycle fatigue life. Uniaxial plastic cycling tests were performed on 2 1/4Cr-1Mo steel to investigate the correspondence between the cyclic stress-strain curve and the hysteresis loop, and also to determine what mathematical model should be used for analysis of deformation at stress reversal. Furthermore, a cyclic in-plane bending test was performed on a flat plate to clarify the validity of the cyclic stress-strain curve-based theoretical analysis. The results obtained are as follows: (1) The cyclic stress-strain curve corresponds nearly to the ascending curve of hysteresis loop scaled by a factor of 1/2 for both stress and strain. Therefore, the cyclic stress-strain curve can be determined from the shape of hysteresis loop, for simplicity. (2) To perform the elastic-plastic deformation analysis using the cyclic stress-strain curve is both practical and effective for predicting the cyclic elastic-plastic deformation of structures at the stage of advanced cycles. And Masing model can serve as a suitable mathematical model for such a deformation analysis. (author)

  20. Analysis of elastic strain and crystallographic texture in poled rhombohedral PZT ceramics

    International Nuclear Information System (INIS)

    Hall, D.A.; Steuwer, A.; Cherdhirunkorn, B.; Mori, T.; Withers, P.J.

    2006-01-01

    The elastic strain and crystallographic texture of a rhombohedral lead zirconate titanate ceramic have been characterised in the remanent state, after poling, using high-energy synchrotron X-ray diffraction as a function of the grain orientation ψ relative to the poling direction. It is observed that the (2 0 0) diffraction peak exhibits pronounced shifts as a function of ψ, indicating an elastic lattice strain, while others ({1 1 1}, {1 1 2} and {2 2 0}) show marked changes in intensity as a result of preferred ferroelectric domain orientation. It is shown that the (2 0 0) peak is not affected by the domain switching itself but rather acts like an elastic macrostrain sensor. A simple Eshelby analysis is used to demonstrate that both the elastic strain and texture vary systematically with ψ according to the factor (3cos 2 ψ - 1). This angular dependence is evaluated through micromechanics modelling. The physical meaning of the texture variations with ψ is also discussed

  1. Variable Frame Rate and Length Analysis for Data Compression in Distributed Speech Recognition

    DEFF Research Database (Denmark)

    Kraljevski, Ivan; Tan, Zheng-Hua

    2014-01-01

    This paper addresses the issue of data compression in distributed speech recognition on the basis of a variable frame rate and length analysis method. The method first conducts frame selection by using a posteriori signal-to-noise ratio weighted energy distance to find the right time resolution...... length for steady regions. The method is applied to scalable source coding in distributed speech recognition where the target bitrate is met by adjusting the frame rate. Speech recognition results show that the proposed approach outperforms other compression methods in terms of recognition accuracy...... for noisy speech while achieving higher compression rates....

  2. Compressive Online Robust Principal Component Analysis with Multiple Prior Information

    DEFF Research Database (Denmark)

    Van Luong, Huynh; Deligiannis, Nikos; Seiler, Jürgen

    -rank components. Unlike conventional batch RPCA, which processes all the data directly, our method considers a small set of measurements taken per data vector (frame). Moreover, our method incorporates multiple prior information signals, namely previous reconstructed frames, to improve these paration...... and thereafter, update the prior information for the next frame. Using experiments on synthetic data, we evaluate the separation performance of the proposed algorithm. In addition, we apply the proposed algorithm to online video foreground and background separation from compressive measurements. The results show...

  3. MPEG-2 Compressed-Domain Algorithms for Video Analysis

    Directory of Open Access Journals (Sweden)

    Hesseler Wolfgang

    2006-01-01

    Full Text Available This paper presents new algorithms for extracting metadata from video sequences in the MPEG-2 compressed domain. Three algorithms for efficient low-level metadata extraction in preprocessing stages are described. The first algorithm detects camera motion using the motion vector field of an MPEG-2 video. The second method extends the idea of motion detection to a limited region of interest, yielding an efficient algorithm to track objects inside video sequences. The third algorithm performs a cut detection using macroblock types and motion vectors.

  4. Analysis of the elastic scattering of negative muons from atomic hydrogen

    International Nuclear Information System (INIS)

    Muller, R.J.

    1977-01-01

    The total elastic cross section and the transport cross section for the scattering of negative muons from the hydrogen atom is determined by making a partial wave analysis of the elastic scattering amplitude. An effective Schrodinger equation for the muon-hydrogen system is obtained, using a static model of the field of the hydrogen atom, and its numerical solution allows the phase shifts for fifty partial waves to be obtained over a wide range of energies. A polarization potential term is then included, and the results of the scattering from the effective potential obtained are compared with the results from the static field. The results show a substantial effect of the polarization in the cross sections at low energy. The analysis of the low energy behavior of the phase shifts indicates that a substantial number of bound states for the muon exist in both the static and the static + polarization fields of hydrogen

  5. Analysis of elastic-plastic dynamic response of reinforced concrete frame structure

    International Nuclear Information System (INIS)

    Li Zhongcheng

    2009-01-01

    Based on a set of data from seismic response test on an R/C frame, a force-based R/C beam fibre model with non-linear material properties and bond-slip effects are presented firstly in this paper, and then the applications to the tested R/C frame are presented to illustrate the model characteristics and to show the accuracy of seismic analysis including consideration of non-linear factors. It can be concluded that the elastic-plastic analysis is a potential step toward the accurate modelling for the dynamic analyses of R/C structures. Especially for the seismic safety re-evaluation of the existing NPPs, the elastic-plastic methodology with consideration of different non-linearities should be involved. (author)

  6. Fatigue analysis - computation of the actual strain range using elastic calculations (factor Ke)

    International Nuclear Information System (INIS)

    Roche, R.L.

    1987-01-01

    Pressure vessels are not eternal, their life is not endless, but must be long enough for profitable use. Fatigue is the most important damage limiting life time. It is due to variable loading and especially to deformation-controlled loading like thermal dilatation (thermal stress). Hence, it is of prime importance to perform an fatigue analysis in the design phase in order to be sure the pressure vessel life meet requirement of the design specification. It is also useful to perform such an analysis for assessing the remaining life. To compute the fatigue damage, knowledge of the strain range is needed. As calculation taking into account non linear behavior of the material are very expensive and not always reliable, the current practice is using elastic computation. The aim of this paper is to discuss the methods for correcting the elastically calculated strain range and to propose a sound and practical method

  7. The effect of inclusions on macroscopic composite elasticity: A systematic finite-element analysis of constituent and bulk elastic properties

    International Nuclear Information System (INIS)

    Yoneda, A; Sohag, F H

    2010-01-01

    The bulk physical properties of composite systems are difficult to predict - even when the properties of the constituent materials in the system are well known. We conducted a finite-element method simulation to examine the inclusion effect by substituting an inclusion phase (second phase) into a host phase (first phase). We have organized the simulation results as a function of the elasticity of host and inclusion phases. In this procedure, special attention was paid to the initial change of elastic constants as the inclusion volume ratio was varied. To accomplish this, we introduced a new parameter D ij defined as the derivatives of the normalized stiffness elastic constant over the inclusion volume ratio. We succeeded in obtaining useful systematic formulations for D ij . These formulations are expected to be applicable to the study of composite systems in many disciplines, such as geophysics, mechanics, material engineering, and biology. The present results provide much more effective constraints on the physical properties of composite systems, like rocks, than traditional methods, such as the Voigt-Reuss bounds.

  8. Elastic properties of rigid fiber-reinforced composites

    Science.gov (United States)

    Chen, J.; Thorpe, M. F.; Davis, L. C.

    1995-05-01

    We study the elastic properties of rigid fiber-reinforced composites with perfect bonding between fibers and matrix, and also with sliding boundary conditions. In the dilute region, there exists an exact analytical solution. Around the rigidity threshold we find the elastic moduli and Poisson's ratio by decomposing the deformation into a compression mode and a rotation mode. For perfect bonding, both modes are important, whereas only the compression mode is operative for sliding boundary conditions. We employ the digital-image-based method and a finite element analysis to perform computer simulations which confirm our analytical predictions.

  9. A new method of on-line multiparameter amplitude analysis with compression

    International Nuclear Information System (INIS)

    Morhac, M.; matousek, V.

    1996-01-01

    An algorithm of one-line multidimensional amplitude analysis with compression using fast adaptive orthogonal transform is presented in the paper. The method is based on a direct modification of multiplication coefficients of the signal flow graph of the fast Cooley-Tukey's algorithm. The coefficients are modified according to a reference vector representing the processed data. The method has been tested to compress three parameter experimental nuclear data. The efficiency of the derived adaptive transform is compared with classical orthogonal transforms. (orig.)

  10. Cloud solution for histopathological image analysis using region of interest based compression.

    Science.gov (United States)

    Kanakatte, Aparna; Subramanya, Rakshith; Delampady, Ashik; Nayak, Rajarama; Purushothaman, Balamuralidhar; Gubbi, Jayavardhana

    2017-07-01

    Recent technological gains have led to the adoption of innovative cloud based solutions in medical imaging field. Once the medical image is acquired, it can be viewed, modified, annotated and shared on many devices. This advancement is mainly due to the introduction of Cloud computing in medical domain. Tissue pathology images are complex and are normally collected at different focal lengths using a microscope. The single whole slide image contains many multi resolution images stored in a pyramidal structure with the highest resolution image at the base and the smallest thumbnail image at the top of the pyramid. Highest resolution image will be used for tissue pathology diagnosis and analysis. Transferring and storing such huge images is a big challenge. Compression is a very useful and effective technique to reduce the size of these images. As pathology images are used for diagnosis, no information can be lost during compression (lossless compression). A novel method of extracting the tissue region and applying lossless compression on this region and lossy compression on the empty regions has been proposed in this paper. The resulting compression ratio along with lossless compression on tissue region is in acceptable range allowing efficient storage and transmission to and from the Cloud.

  11. Compression and shear properties of elastomeric bearing using finite element analysis

    Directory of Open Access Journals (Sweden)

    2Faculty of Science and Technology, Chiang Mai Rajabhat University, Muang, Chiang Mai, 50300 Thailand.

    2006-09-01

    Full Text Available Standard size samples of four natural rubber compounds, varying the amount of carbon black from 10 to 70 phr, were characterised under uniaxial compression and simple shear tests in order to obtain the strain energy function constants. These constants were then used as hyperelastic material constants for the Windows-based finite element package (COSMOS/M version 1.75. The investigated bearings, made with those NR compounds, had the approximate area and thickness of 50x106 mm2 and 50 mm respectively. Each compound of bearing consisted of four different values of shape factor ranging from about 0.33 to 1.70, according to the number of reinforcing plates in the bearing. Three deformation modes of compression, shear and compression-shear were predicted. Good agreement was found between twelve compression model predictions and the corresponding experimental values of bearings, containing 10, 20 and 40 phr of carbon black and each of which consisted of four different layers of reinforcing metal plates (0, 1, 2 and 3 layers. On the other hand, deviation from the predicted valve was clearly seen in the 70 phr black bearing case. The percentage difference increased with respect to the increasing number of reinforcing plates or the rising shape factor. Therefore, the improved FEA model was supplemented with an imaginary elastic glue layer between the rubber block and metal plate as glue failure compensation. The optimum value of the elastic layers modulus is 8 MPa while the thickness of the layer depends on the total thickness or total volume of rubber block. This model can predict the 70 phr carbon black bearings, having shape factor ranging from 0.5 to 2.35 for 11 cases. The FEA prediction of shear behaviour agrees well with the experimental data for all four bearing compounds and there is no effect of shape factor on shear stress. Moreover, shear stress does not depend on the compressive force applied to like bearing before shear and the FEA results

  12. Elastic buckling analysis for composite stiffened panels and other structures subjected to biaxial inplane loads

    Science.gov (United States)

    Viswanathan, A. V.; Tamekuni, M.

    1973-01-01

    An exact linear analysis method is presented for predicting buckling of structures with arbitrary uniform cross section. The structure is idealized as an assemblage of laminated plate-strip elements, curved and planar, and beam elements. Element edges normal to the longitudinal axes are assumed to be simply supported. Arbitrary boundary conditions may be specified on any external longitudinal edge of plate-strip elements. The structure or selected elements may be loaded in any desired combination of inplane transverse compression or tension side load and axial compression load. The analysis simultaneously considers all possible modes of instability and is applicable for the buckling of laminated composite structures. Numerical results correlate well with the results of previous analysis methods.

  13. Self-management by firm, non-elastic adjustable compression wrap device [Translation of Druckmessungen unter Klettverschluss-Kompression - Selbstbehandlung durch feste, unelastische Beinwickelung

    OpenAIRE

    Giovanni Mosti; Hugo Partsch

    2017-01-01

    Severe forms of chronic venous insufficiency and lymphedema require strong compression-pressure, which exceeds the pressure exerted by medical compression stockings (>40 mmHg). The aim was to investigate if patients are able to apply a Velcro-band compression device (Circaid Juxta Lite™) themselves with sufficient pressure. Thirty-one patients (CEAP C6=23, C5=5, C3=2, mixed ulcer=1) applied Juxta Lite™ on their own legs after a short instruction and were asked to readjust the pressure by thei...

  14. Analysis of the transient compressible vapor flow in heat pipes

    Science.gov (United States)

    Jang, J. H.; Faghri, A.; Chang, W. S.

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  15. Analysis of the transient compressible vapor flow in heat pipe

    International Nuclear Information System (INIS)

    Jang, J.H.; Faghri, A.; Chang, W.S.

    1989-07-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures

  16. Analysis of the transient compressible vapor flow in heat pipe

    Science.gov (United States)

    Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  17. Reliability analysis of the epidural spinal cord compression scale.

    Science.gov (United States)

    Bilsky, Mark H; Laufer, Ilya; Fourney, Daryl R; Groff, Michael; Schmidt, Meic H; Varga, Peter Paul; Vrionis, Frank D; Yamada, Yoshiya; Gerszten, Peter C; Kuklo, Timothy R

    2010-09-01

    The evolution of imaging techniques, along with highly effective radiation options has changed the way metastatic epidural tumors are treated. While high-grade epidural spinal cord compression (ESCC) frequently serves as an indication for surgical decompression, no consensus exists in the literature about the precise definition of this term. The advancement of the treatment paradigms in patients with metastatic tumors for the spine requires a clear grading scheme of ESCC. The degree of ESCC often serves as a major determinant in the decision to operate or irradiate. The purpose of this study was to determine the reliability and validity of a 6-point, MR imaging-based grading system for ESCC. To determine the reliability of the grading scale, a survey was distributed to 7 spine surgeons who participate in the Spine Oncology Study Group. The MR images of 25 cervical or thoracic spinal tumors were distributed consisting of 1 sagittal image and 3 axial images at the identical level including T1-weighted, T2-weighted, and Gd-enhanced T1-weighted images. The survey was administered 3 times at 2-week intervals. The inter- and intrarater reliability was assessed. The inter- and intrarater reliability ranged from good to excellent when surgeons were asked to rate the degree of spinal cord compression using T2-weighted axial images. The T2-weighted images were superior indicators of ESCC compared with T1-weighted images with and without Gd. The ESCC scale provides a valid and reliable instrument that may be used to describe the degree of ESCC based on T2-weighted MR images. This scale accounts for recent advances in the treatment of spinal metastases and may be used to provide an ESCC classification scheme for multicenter clinical trial and outcome studies.

  18. Simplified elastic-plastic analysis of reinforced concrete structures - design method for self-restraining stress

    International Nuclear Information System (INIS)

    Aihara, S.; Atsumi, K.; Ujiie, K.; Satoh, S.

    1981-01-01

    Self-restraining stresses generate not only moments but also axial forces. Therefore the moment and force equilibriums of cross section are considered simultaneously, in combination with other external forces. Thus, under this theory, two computer programs are prepared for. Using these programs, the design procedures which considered the reduction of self-restraining stress, become easy if the elastic design stresses, which are separated normal stresses and self-restraining stresses, are given. Numerical examples are given to illustrate the application of the simplified elastic-plastic analysis and to study its effectiveness. First this method is applied to analyze an upper shielding wall in MARK-2 type's Reactor building. The results are compared with those obtained by the elastic-plastic analysis of Finite Element Method. From this comparison it was confirmed that the method described, had adequate accuracy for re-bar design. As a second example, Mat slab of Reactor building is analyzed. The quantity of re-bars calculated by this method, comes to about two third of re-bars less than those required when self-restraining stress is considered as normal stress. Also, the self-restraining stress reduction factor is about 0.5. (orig./HP)

  19. Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation

    International Nuclear Information System (INIS)

    Jandaghian, A A; Rahmani, O

    2016-01-01

    In this study, free vibration analysis of magneto-electro-thermo-elastic (METE) nanobeams resting on a Pasternak foundation is investigated based on nonlocal theory and Timoshenko beam theory. Coupling effects between electric, magnetic, mechanical and thermal loading are considered to derive the equations of motion and distribution of electrical potential and magnetic potential along the thickness direction of the METE nanobeam. The governing equations and boundary conditions are obtained using the Hamilton principle and discretized via the differential quadrature method (DQM). Numerical results reveal the effects of the nonlocal parameter, magneto-electro-thermo-mechanical loading, Winkler spring coefficients, Pasternak shear coefficients and height-to-length ratio on the vibration characteristics of METE nanobeams. It is observed that the natural frequency is dependent on the magnetic, electric, temperature, elastic medium, small-scale coefficient, and height-to-length ratio. These results are useful in the mechanical analysis and design of smart nanostructures constructed from magneto-electro-thermo-elastic materials. (paper)

  20. Dynamic analysis of aircraft impact using the linear elastic finite element codes FINEL, SAP and STARDYNE

    International Nuclear Information System (INIS)

    Lundsager, P.; Krenk, S.

    1975-08-01

    The static and dynamic response of a cylindrical/ spherical containment to a Boeing 720 impact is computed using 3 different linear elastic computer codes: FINEL, SAP and STARDYNE. Stress and displacement fields are shown together with time histories for a point in the impact zone. The main conclusions from this study are: - In this case the maximum dynamic load factors for stress and displacements were close to 1, but a static analysis alone is not fully sufficient. - More realistic load time histories should be considered. - The main effects seem to be local. The present study does not indicate general collapse from elastic stresses alone. - Further study of material properties at high rates is needed. (author)

  1. Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations

    International Nuclear Information System (INIS)

    Civalek, Omer; Acar, Mustafa Hilmi

    2007-01-01

    The method of discrete singular convolution (DSC) is used for the bending analysis of Mindlin plates on two-parameter elastic foundations for the first time. Two different realizations of singular kernels, such as the regularized Shannon's delta (RSD) kernel and Lagrange delta sequence (LDS) kernel, are selected as singular convolution to illustrate the present algorithm. The methodology and procedures are presented and bending problems of thick plates on elastic foundations are studied for different boundary conditions. The influence of foundation parameters and shear deformation on the stress resultants and deflections of the plate have been investigated. Numerical studies are performed and the DSC results are compared well with other analytical solutions and some numerical results

  2. China's medical savings accounts: an analysis of the price elasticity of demand for health care.

    Science.gov (United States)

    Yu, Hao

    2017-07-01

    Although medical savings accounts (MSAs) have drawn intensive attention across the world for their potential in cost control, there is limited evidence of their impact on the demand for health care. This paper is intended to fill that gap. First, we built up a dynamic model of a consumer's problem of utility maximization in the presence of a nonlinear price schedule embedded in an MSA. Second, the model was implemented using data from a 2-year MSA pilot program in China. The estimated price elasticity under MSAs was between -0.42 and -0.58, i.e., higher than that reported in the literature. The relatively high price elasticity suggests that MSAs as an insurance feature may help control costs. However, the long-term effect of MSAs on health costs is subject to further analysis.

  3. Wave propagation analysis of a size-dependent magneto-electro-elastic heterogeneous nanoplate

    Science.gov (United States)

    Ebrahimi, Farzad; Dabbagh, Ali; Reza Barati, Mohammad

    2016-12-01

    The analysis of the wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanoplate is carried out in the framework of a refined higher-order plate theory. In order to take into account the small-scale influence, the nonlocal elasticity theory of Eringen is employed. Furthermore, the material properties of the nanoplate are considered to be variable through the thickness based on the power-law form. Nonlocal governing equations of the MEE-FG nanoplate have been derived using Hamilton's principle. The results of the present study have been validated by comparing them with previous researches. An analytical solution of governing equations is performed to obtain wave frequencies, phase velocities and escape frequencies. The effect of different parameters, such as wave number, nonlocal parameter, gradient index, magnetic potential and electric voltage on the wave dispersion characteristics of MEE-FG nanoscale plates is studied in detail.

  4. Elastic-plastic analysis of part-through crack propagation in piping and pressure vessels

    International Nuclear Information System (INIS)

    Souza, L.A. de; Ebecken, N.F.F.

    1986-01-01

    The shell structures, often used in the construction of reservoirs, pipings, pressure vessels, nuclear power plants, etc, with part-through crack along its thickness, are analysed, using a computer system developed by the finite element method. The surface is discretized with three-dimensional quadratic elements, degenerated in its mid-surface, such the fracture is simulated by scalar elements (non linear springs). The results are analysed by the stress intensity factor K Sub(I) and the strain energy release rate, which is known as J-integral. The analysis is performed in the elastic and elastic-plastic regime. The basic hipothesis and the formulation adopted in the derivation of the scalar elements are also shown. (Author) [pt

  5. Price and income elasticities of crude oil import demand in South Africa. A cointegration analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ziramba, Emmanuel [Department of Economics, University of South Africa, P.O Box 392, Unisa 0003 (South Africa)

    2010-12-15

    This paper examines the demand for imported crude oil in South Africa as a function of real income and the price of crude oil over the period 1980-2006. We carried out the Johansen co integration multivariate analysis to determine the long-run income and price elasticities. A unique long-run cointegration relationship exists between crude oil imports and the explanatory variables. The short-run dynamics are estimated by specifying a general error correction model. The estimated long-run price and income elasticities of -0.147 and 0.429 suggest that import demand for crude oil is price and income inelastic. There is also evidence of unidirectional long-run causality running from real GDP to crude oil imports. (author)

  6. Elastic Stress Analysis of Rotating Functionally Graded Annular Disk of Variable Thickness Using Finite Difference Method

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Jalali

    2018-01-01

    Full Text Available Elastic stress analysis of rotating variable thickness annular disk made of functionally graded material (FGM is presented. Elasticity modulus, density, and thickness of the disk are assumed to vary radially according to a power-law function. Radial stress, circumferential stress, and radial deformation of the rotating FG annular disk of variable thickness with clamped-clamped (C-C, clamped-free (C-F, and free-free (F-F boundary conditions are obtained using the numerical finite difference method, and the effects of the graded index, thickness variation, and rotating speed on the stresses and deformation are evaluated. It is shown that using FG material could decrease the value of radial stress and increase the radial displacement in a rotating thin disk. It is also demonstrated that increasing the rotating speed can strongly increase the stress in the FG annular disk.

  7. SPECTRUM analysis of multispectral imagery in conjunction with wavelet/KLT data compression

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.N.; Brislawn, C.M.

    1993-12-01

    The data analysis program, SPECTRUM, is used for fusion, visualization, and classification of multi-spectral imagery. The raw data used in this study is Landsat Thematic Mapper (TM) 7-channel imagery, with 8 bits of dynamic range per channel. To facilitate data transmission and storage, a compression algorithm is proposed based on spatial wavelet transform coding and KLT decomposition of interchannel spectral vectors, followed by adaptive optimal multiband scalar quantization. The performance of SPECTRUM clustering and visualization is evaluated on compressed multispectral data. 8-bit visualizations of 56-bit data show little visible distortion at 50:1 compression and graceful degradation at higher compression ratios. Two TM images were processed in this experiment: a 1024 x 1024-pixel scene of the region surrounding the Chernobyl power plant, taken a few months before the reactor malfunction, and a 2048 x 2048 image of Moscow and surrounding countryside.

  8. Some fundamental definitions of the elastic parameters for homogeneous isotropic linear elastic materials in pavement design and analysis

    CSIR Research Space (South Africa)

    De Beer, Morris

    2008-07-01

    Full Text Available - wave and ρ the material density. The elastic moduli P-wave modulus, M, is defined so that M = K + 4µ / 3 and M can then be determined by Equation 11, with a known speed Vp P MV 2 ρ = (11) It should however also... gas (such as air within compacted road materials), the adiabatic bulk modulus KS is approximately given by pKS κ= (4) Where: κ is the adiabatic index, (sometimes calledγ ); p is the pressure. In a fluid (such as moisture...

  9. Potku – New analysis software for heavy ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Arstila, K.; Julin, J.; Laitinen, M.I.; Aalto, J.; Konu, T.; Kärkkäinen, S.; Rahkonen, S.; Raunio, M.; Itkonen, J.; Santanen, J.-P.; Tuovinen, T.; Sajavaara, T.

    2014-01-01

    Time-of-flight elastic recoil detection (ToF-ERD) analysis software has been developed. The software combines a Python-language graphical front-end with a C code computing back-end in a user-friendly way. The software uses a list of coincident time-of-flight–energy (ToF–E) events as an input. The ToF calibration can be determined with a simple graphical procedure. The graphical interface allows the user to select different elements and isotopes from a ToF–E histogram and to convert the selections to individual elemental energy and depth profiles. The resulting sample composition can be presented as relative or absolute concentrations by integrating the depth profiles over user-defined ranges. Beam induced composition changes can be studied by displaying the event-based data in fractions relative to the substrate reference data. Optional angular input data allows for kinematic correction of the depth profiles. This open source software is distributed under the GPL license for Linux, Mac, and Windows environments

  10. Potku – New analysis software for heavy ion elastic recoil detection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Arstila, K., E-mail: kai.arstila@jyu.fi [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä (Finland); Julin, J.; Laitinen, M.I. [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä (Finland); Aalto, J.; Konu, T.; Kärkkäinen, S.; Rahkonen, S.; Raunio, M.; Itkonen, J.; Santanen, J.-P.; Tuovinen, T. [Department of Mathematical Information Technology, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä (Finland); Sajavaara, T. [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä (Finland)

    2014-07-15

    Time-of-flight elastic recoil detection (ToF-ERD) analysis software has been developed. The software combines a Python-language graphical front-end with a C code computing back-end in a user-friendly way. The software uses a list of coincident time-of-flight–energy (ToF–E) events as an input. The ToF calibration can be determined with a simple graphical procedure. The graphical interface allows the user to select different elements and isotopes from a ToF–E histogram and to convert the selections to individual elemental energy and depth profiles. The resulting sample composition can be presented as relative or absolute concentrations by integrating the depth profiles over user-defined ranges. Beam induced composition changes can be studied by displaying the event-based data in fractions relative to the substrate reference data. Optional angular input data allows for kinematic correction of the depth profiles. This open source software is distributed under the GPL license for Linux, Mac, and Windows environments.

  11. Faster tissue interface analysis from Raman microscopy images using compressed factorisation

    Science.gov (United States)

    Palmer, Andrew D.; Bannerman, Alistair; Grover, Liam; Styles, Iain B.

    2013-06-01

    The structure of an artificial ligament was examined using Raman microscopy in combination with novel data analysis. Basis approximation and compressed principal component analysis are shown to provide efficient compression of confocal Raman microscopy images, alongside powerful methods for unsupervised analysis. This scheme allows the acceleration of data mining, such as principal component analysis, as they can be performed on the compressed data representation, providing a decrease in the factorisation time of a single image from five minutes to under a second. Using this workflow the interface region between a chemically engineered ligament construct and a bone-mimic anchor was examined. Natural ligament contains a striated interface between the bone and tissue that provides improved mechanical load tolerance, a similar interface was found in the ligament construct.

  12. Multiple Regression Analysis of Unconfined Compression Strength of Mine Tailings Matrices

    Directory of Open Access Journals (Sweden)

    Mahmood Ali A.

    2017-01-01

    Full Text Available As part of a novel approach of sustainable development of mine tailings, experimental and numerical analysis is carried out on newly formulated tailings matrices. Several physical characteristic tests are carried out including the unconfined compression strength test to ascertain the integrity of these matrices when subjected to loading. The current paper attempts a multiple regression analysis of the unconfined compressive strength test results of these matrices to investigate the most pertinent factors affecting their strength. Results of this analysis showed that the suggested equation is reasonably applicable to the range of binder combinations used.

  13. Application of the Modified Vlasov Model to the Free Vibration Analysis of Thick Plates Resting on Elastic Foundations

    OpenAIRE

    Ozgan, Korhan; Daloglu, Ayse T.

    2009-01-01

    The Modified Vlasov Model is applied to the free vibration analysis of thick plates resting on elastic foundations. The effects of the subsoil depth, plate dimensions and their ratio, the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on elastic foundations are investigated. A four-noded, twelve degrees of freedom quadrilateral finite element (PBQ4) is used for plate bending analysis based on Mindlin plate theory which is effectively appli...

  14. Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation

    International Nuclear Information System (INIS)

    Yas, M.H.; Samadi, N.

    2012-01-01

    This study deals with free vibrations and buckling analysis of nanocomposite Timoshenko beams reinforced by single-walled carbon nanotubes (SWCNTs) resting on an elastic foundation. The SWCNTs are assumed to be aligned and straight with a uniform layout. Four different carbon nanotubes (CNTs) distributions including uniform and three types of functionally graded distributions of CNTs through the thickness are considered. The rule of mixture is used to describe the effective material properties of the nanocomposite beams. The governing equations are derived through using Hamilton's principle and then solved by using the generalized differential quadrature method (GDQM). Natural frequencies and critical buckling load are obtained for nanocomposite beams with different boundary conditions. Effects of several parameters, such as nanotube volume fraction, foundation stiffness parameters, slenderness ratios, CNTs distribution and boundary conditions on both natural frequency and critical buckling load are investigated. The results indicate that the above-mentioned parameters play a very important role on the free vibrations and buckling characteristics of the beam. Highlights: ► Beams with FG-X distribution have highest fundamental frequency. ► Beams with FG-X distribution have highest critical buckling load. ► Using elastic foundation, lead to increase the natural frequency. ► Using elastic foundation, lead to increase the critical buckling load. ► Increasing CNT volume fraction, lead to increase the natural frequency.

  15. Price and income elasticities of crude oil import demand in South Africa: A cointegration analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ziramba, Emmanuel, E-mail: zirame@unisa.ac.z [Department of Economics, University of South Africa, P.O Box 392, Unisa 0003 (South Africa)

    2010-12-15

    This paper examines the demand for imported crude oil in South Africa as a function of real income and the price of crude oil over the period 1980-2006. We carried out the Johansen co integration multivariate analysis to determine the long-run income and price elasticities. A unique long-run cointegration relationship exists between crude oil imports and the explanatory variables. The short-run dynamics are estimated by specifying a general error correction model. The estimated long-run price and income elasticities of -0.147 and 0.429 suggest that import demand for crude oil is price and income inelastic. There is also evidence of unidirectional long-run causality running from real GDP to crude oil imports. - Research Highlights: {yields}The paper examines the demand for imported crude oil in South Africa over the period 1980-2006. {yields} The estimated long-run price and income elasticities are -0.147 and 0.429, respectively. {yields} There is evidence of unidirectional long-run causality running from real GDP to crude oil imports.

  16. Price and income elasticities of crude oil import demand in South Africa: A cointegration analysis

    International Nuclear Information System (INIS)

    Ziramba, Emmanuel

    2010-01-01

    This paper examines the demand for imported crude oil in South Africa as a function of real income and the price of crude oil over the period 1980-2006. We carried out the Johansen co integration multivariate analysis to determine the long-run income and price elasticities. A unique long-run cointegration relationship exists between crude oil imports and the explanatory variables. The short-run dynamics are estimated by specifying a general error correction model. The estimated long-run price and income elasticities of -0.147 and 0.429 suggest that import demand for crude oil is price and income inelastic. There is also evidence of unidirectional long-run causality running from real GDP to crude oil imports. - Research Highlights: →The paper examines the demand for imported crude oil in South Africa over the period 1980-2006. → The estimated long-run price and income elasticities are -0.147 and 0.429, respectively. → There is evidence of unidirectional long-run causality running from real GDP to crude oil imports.

  17. Elastic-plastic analysis of high speed rotors with no plane of symmetry

    International Nuclear Information System (INIS)

    Anantha Ramu, S.

    1981-01-01

    A general method of analysis of elastic plastic shells has been developed. The material of the shell is assumed to obey von Mises yield condition and a stress strain law on the basis of deformation theory of plasticity. The method permits an easy iterative solution of the complete set of coupled nonlinear differential equations. The iterative procedure is essentially the solution of the elastic problem several times with different sets of loads. The solution finally yields among other things, the location of the elastic-plastic boundary in the shell wall. The second approach suggested is a three-dimensional hexahedral isoparametric solid element. The computer program developed is capable of modelling perfectly plastic, bilinear as well as nonlinear strain hardening behaviour of materials. As an example, a radial impeller is analysed by both the approaches by idealizing it as a rotating conical shell. The complete history of plastification of the shell wall as the speed increases is determined. The results of both approaches are found to be in good agreement with each other. (orig./HP)

  18. Experimental investigation on the fracture behaviour of black shale by acoustic emission monitoring and CT image analysis during uniaxial compression

    Science.gov (United States)

    Wang, Y.; Li, C. H.; Hu, Y. Z.

    2018-04-01

    Plenty of mechanical experiments have been done to investigate the deformation and failure characteristics of shale; however, the anisotropic failure mechanism has not been well studied. Here, laboratory Uniaxial Compressive Strength tests on cylindrical shale samples obtained by drilling at different inclinations to bedding plane were performed. The failure behaviours of the shale samples were studied by real-time acoustic emission (AE) monitoring and post-test X-ray computer tomography (CT) analysis. The experimental results suggest that the pronounced bedding planes of shale have a great influence on the mechanical properties and AE patterns. The AE counts and AE cumulative energy release curves clearly demonstrate different morphology, and the `U'-shaped curve relationship between the AE counts, AE cumulative energy release and bedding inclination was first documented. The post-test CT image analysis shows the crack patterns via 2-D image reconstructions, an index of stimulated fracture density is defined to represent the anisotropic failure mode of shale. What is more, the most striking finding is that the AE monitoring results are in good agreement with the CT analysis. The structural difference in the shale sample is the controlling factor resulting in the anisotropy of AE patterns. The pronounced bedding structure in the shale formation results in an anisotropy of elasticity, strength and AE information from which the changes in strength dominate the entire failure pattern of the shale samples.

  19. Numerical analysis of the spacer grids' compression strength

    Energy Technology Data Exchange (ETDEWEB)

    Schettino, C.F.M.; Gouvea, J.P.; Medeiros, N., E-mail: carlosschettino@inb.gov.br, E-mail: jpg@metal.eeimvr.uff.br [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Programa de Engenharia Metalurgica

    2013-07-01

    Among the components of the fuel assembly, the spacer grids play an important structural role during the energy generation process, mainly for their requirement to have enough structural strength to withstand lateral impact loads, due to fuel assembly shipping/handling and due to forces outcome from postulated accidents (earthquake and LOCA). This requirement ensures a proper geometry for cooling and for guide thimble straightness in the fuel assembly. In this way, the understanding of the macroscopic mechanical behavior of this component becomes essential even to any subsequent geometrical modifications to optimize the flue assemblies' structural behavior. In the present work, three-dimensional finite element models destined to provide consistent predictions of 16X16-type spacer grids lateral strength were proposed. Firstly, buckling tests based on results available in the literature were performed to establish a methodology for spacer grid finite element-based modeling. The, by considering a spacer grid interesting geometry and some possible variations associated to its fabrication, tolerance, the proposed numerical models were submitted to compression conditions to calculate the buckling force. Also, these models were validated for comparison with experimental buckling load results. Comparison of buckling predictions combined to observations of actual and simulated deformed spacer grids geometries permitted to verify the consistency and applicability of the proposed models. Thus, these numerical results show a good agreement between the and the experimental results. (author)

  20. Numerical analysis of the spacer grids' compression strength

    International Nuclear Information System (INIS)

    Schettino, C.F.M.; Gouvea, J.P.; Medeiros, N.

    2013-01-01

    Among the components of the fuel assembly, the spacer grids play an important structural role during the energy generation process, mainly for their requirement to have enough structural strength to withstand lateral impact loads, due to fuel assembly shipping/handling and due to forces outcome from postulated accidents (earthquake and LOCA). This requirement ensures a proper geometry for cooling and for guide thimble straightness in the fuel assembly. In this way, the understanding of the macroscopic mechanical behavior of this component becomes essential even to any subsequent geometrical modifications to optimize the flue assemblies' structural behavior. In the present work, three-dimensional finite element models destined to provide consistent predictions of 16X16-type spacer grids lateral strength were proposed. Firstly, buckling tests based on results available in the literature were performed to establish a methodology for spacer grid finite element-based modeling. The, by considering a spacer grid interesting geometry and some possible variations associated to its fabrication, tolerance, the proposed numerical models were submitted to compression conditions to calculate the buckling force. Also, these models were validated for comparison with experimental buckling load results. Comparison of buckling predictions combined to observations of actual and simulated deformed spacer grids geometries permitted to verify the consistency and applicability of the proposed models. Thus, these numerical results show a good agreement between the and the experimental results. (author)

  1. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete.

    Science.gov (United States)

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-03-18

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions.

  2. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim D.; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat s...... layers, Fracture mechanics, Crack closure, Steady state crack propagation.......An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...... results for the fracture mechanical properties have been obtained, and these are applied in a study of the effect of contacting crack faces. Special attention has been given to analyse conditions under which steady state propagation of buckling driven delamination takes place. Keywords: Delamination, Thin...

  3. Compression-recovery model of absorptive glass mat (AGM) separator guided by X-ray micro-computed tomography analysis

    Science.gov (United States)

    Kameswara Rao, P. V.; Rawal, Amit; Kumar, Vijay; Rajput, Krishn Gopal

    2017-10-01

    Absorptive glass mat (AGM) separators play a key role in enhancing the cycle life of the valve regulated lead acid (VRLA) batteries by maintaining the elastic characteristics under a defined level of compression force with the plates of the electrodes. Inevitably, there are inherent challenges to maintain the required level of compression characteristics of AGM separators during the charge and discharge of the battery. Herein, we report a three-dimensional (3D) analytical model for predicting the compression-recovery behavior of AGM separators by formulating a direct relationship with the constituent fiber and structural parameters. The analytical model of compression-recovery behavior of AGM separators has successfully included the fiber slippage criterion and internal friction losses. The presented work uses, for the first time, 3D data of fiber orientation from X-ray micro-computed tomography, for predicting the compression-recovery behavior of AGM separators. A comparison has been made between the theoretical and experimental results of compression-recovery behavior of AGM samples with defined fiber orientation characteristics. In general, the theory agreed reasonably well with the experimental results of AGM samples in both dry and wet states. Through theoretical modeling, fiber volume fraction was established as one of the key structural parameters that modulates the compression hysteresis of an AGM separator.

  4. Applicability of finite element method to collapse analysis of steel connection under compression

    International Nuclear Information System (INIS)

    Zhou, Zhiguang; Nishida, Akemi; Kuwamura, Hitoshi

    2010-01-01

    It is often necessary to study the collapse behavior of steel connections. In this study, the limit load of the steel pyramid-to-tube socket connection subjected to uniform compression was investigated by means of FEM and experiment. The steel connection was modeled using 4-node shell element. Three kinds of analysis were conducted: linear buckling, nonlinear buckling and modified Riks method analysis. For linear buckling analysis the linear eigenvalue analysis was done. For nonlinear buckling analysis, eigenvalue analysis was performed for buckling load in a nonlinear manner based on the incremental stiffness matrices, and nonlinear material properties and large displacement were considered. For modified Riks method analysis compressive load was loaded by using the modified Riks method, and nonlinear material properties and large displacement were considered. The results of FEM analyses were compared with the experimental results. It shows that nonlinear buckling and modified Riks method analyses are more accurate than linear buckling analysis because they employ nonlinear, large-deflection analysis to estimate buckling loads. Moreover, the calculated limit loads from nonlinear buckling and modified Riks method analysis are close. It can be concluded that modified Riks method analysis is more effective for collapse analysis of steel connection under compression. At last, modified Riks method analysis is used to do the parametric studies of the thickness of the pyramid. (author)

  5. Meta-Analysis of the Oil Price Elasticity of the GDP for Policy Analysis: Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Leiby, Paul Newsome [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, David Charles [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oladosu, Gbadebo A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Uria Martinez, Rocio [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Megan M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Given the important role of oil in economic activities, policy makers are interested in estimates of the potential damage to the economy from oil price shocks, particularly during periods of rapid and large increases that accompany severe shocks. Such estimates are needed to quantify the economic costs of oil price shocks, and to evaluate the potential benefits of alternative policy responses. Although research on the economic impacts of oil price shocks is extensive and has generally found that large increases in oil prices exert negative economic impacts, the range of estimates, summarized by the oil price elasticity of the GDP or other aggregate measure of economic activity, is very wide. There are also conditions under which the relationship between the oil price and the economy could be positive. The range of estimates of the oil price elasticity of the GDP for the United States is typified by averages from the studies of Hamilton (2005, 2012) and Kilian and Vigfusson (2014), in which the implied elasticities were -0.014 to - 0.069 and +0.004 to -0.052, respectively. We employ a meta-regression approach to systematically summarize available estimates of the oil price elasticity of the GDP for oil importing economies, and examine the role of key factors. The resulting regression model was used to estimate the oil price elasticity of the GDP for the United States. Based on this we estimate the mean elasticity for the United States at -0.0238, with a 68% confidence interval of -0.0075 to -0.0402, four quarters after a shock.

  6. Exergy and exergoeconomic analysis of a Compressed Air Energy Storage combined with a district energy system

    International Nuclear Information System (INIS)

    Bagdanavicius, Audrius; Jenkins, Nick

    2014-01-01

    Highlights: • CAES and CAES with thermal storage systems were investigated. • The potential for using heat generated during the compression stage was analysed. • CAES-TS has the potential to be used both as energy storage and heat source. • CAES-TS could be a useful tool for balancing overall energy demand and supply. - Abstract: The potential for using heat generated during the compression stage of a Compressed Air Energy Storage system was investigated using exergy and exergoeconomic analysis. Two Compressed Air Energy Storage systems were analysed: Compressed Air Energy Storage (CAES) and Compressed Air Energy Storage combined with Thermal Storage (CAES-TS) connected to a district heating network. The maximum output of the CAES was 100 MWe and the output of the CAES-TS was 100 MWe and 105 MWth. The study shows that 308 GW h/year of electricity and 466 GW h/year of fuel are used to generate 375 GW h/year of electricity. During the compression of air 289 GW h/year of heat is generated, which is wasted in the CAES and used for district heating in the CAES-TS system. Energy efficiency of the CAES system was around 48% and the efficiency of CAES-TS was 86%. Exergoeconomic analysis shows that the exergy cost of electricity generated in the CAES was 13.89 ¢/kW h, and the exergy cost of electricity generated in the CAES-TS was 11.20 ¢/kW h. The exergy cost of heat was 22.24 ¢/kW h in the CAES-TS system. The study shows that CAES-TS has the potential to be used both as energy storage and heat source and could be a useful tool for balancing overall energy demand and supply

  7. Finite Element Analysis of Three-Dimensional (3D Auxetic Textile Composite under Compression

    Directory of Open Access Journals (Sweden)

    Jifang Zeng

    2018-03-01

    Full Text Available This paper reports a finite element (FE analysis of three-dimensional (3D auxetic textile composite by using commercial software ANSYS 15 under compression. The two-dimensional (2D FE model was first developed and validated by experiment. Then, the validated model was used to evaluate effects of structural parameters and constituent material properties. For the comparison, 3D non-auxetic composite that was made with the same constituent materials and structural parameters, but with different yarn arrangement in the textile structure was also analyzed at the same time. The analysis results showed that the auxetic and non-auxetic composites have different compression behaviors and the auxetic composite has better the energy absorption capacity than the non-auxetic composite under the same compression stress. The study has provided us a guidance to design and fabricate auxetic composites with the required mechanical behavior by appropriately selecting structural parameters and constituent materials.

  8. The MUSIC algorithm for sparse objects: a compressed sensing analysis

    International Nuclear Information System (INIS)

    Fannjiang, Albert C

    2011-01-01

    The multiple signal classification (MUSIC) algorithm, and its extension for imaging sparse extended objects, with noisy data is analyzed by compressed sensing (CS) techniques. A thresholding rule is developed to augment the standard MUSIC algorithm. The notion of restricted isometry property (RIP) and an upper bound on the restricted isometry constant (RIC) are employed to establish sufficient conditions for the exact localization by MUSIC with or without noise. In the noiseless case, the sufficient condition gives an upper bound on the numbers of random sampling and incident directions necessary for exact localization. In the noisy case, the sufficient condition assumes additionally an upper bound for the noise-to-object ratio in terms of the RIC and the dynamic range of objects. This bound points to the super-resolution capability of the MUSIC algorithm. Rigorous comparison of performance between MUSIC and the CS minimization principle, basis pursuit denoising (BPDN), is given. In general, the MUSIC algorithm guarantees to recover, with high probability, s scatterers with n=O(s 2 ) random sampling and incident directions and sufficiently high frequency. For the favorable imaging geometry where the scatterers are distributed on a transverse plane MUSIC guarantees to recover, with high probability, s scatterers with a median frequency and n=O(s) random sampling/incident directions. Moreover, for the problems of spectral estimation and source localizations both BPDN and MUSIC guarantee, with high probability, to identify exactly the frequencies of random signals with the number n=O(s) of sampling times. However, in the absence of abundant realizations of signals, BPDN is the preferred method for spectral estimation. Indeed, BPDN can identify the frequencies approximately with just one realization of signals with the recovery error at worst linearly proportional to the noise level. Numerical results confirm that BPDN outperforms MUSIC in the well-resolved case while

  9. Homotopy perturbation method for free vibration analysis of beams on elastic foundation

    International Nuclear Information System (INIS)

    Ozturk, Baki; Coskun, Safa Bozkurt; Koc, Mehmet Zahid; Atay, Mehmet Tarik

    2010-01-01

    In this study, the homotopy perturbation method (HPM) is applied for free vibration analysis of beam on elastic foundation. This numerical method is applied on a previously available case study. Analytical solutions and frequency factors are evaluated for different ratios of axial load N acting on the beam to Euler buckling load, N r . The application of HPM for the particular problem in this study gives results which are in excellent agreement with both analytical solutions and the variational iteration method (VIM) solutions for the case considered in this study and the differential transform method (DTM) results available in the literature.

  10. Limitations to depth resolution in high-energy, heavy-ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Elliman, R.G.; Palmer, G.R.; Ophel, T.R.; Timmers, H.

    1998-01-01

    The depth resolution of heavy-ion elastic recoil detection analysis was examined for Al and Co thin films ranging in thickness from 100 to 400 nm. Measurements were performed with 154 MeV Au ions as the incident beam, and recoils were detected using a gas ionisation detector. Energy spectra were extracted for the Al and Co recoils and the depth resolution determined as a function of film thickness from the width of the high- and low- energy edges. These results were compared with theoretical estimates calculated using the computer program DEPTH. (authors)

  11. Wavelet Approach to Data Analysis, Manipulation, Compression, and Communication

    National Research Council Canada - National Science Library

    Chui, Charles K

    2007-01-01

    ...: firstly, mathematical theories and methods, as well as construction of basis functions, for multi-level approximation and analysis, with emphasis on scattered data interpolation and representation, were developed...

  12. Determination of the compressive yield strength for nano-grained YAG transparent ceramic by XRD analysis

    International Nuclear Information System (INIS)

    Wang, H.M.; Jiang, J.S.; Huang, Z.Y.; Chen, Y.; Liu, K.; Lu, Z.W.; Qi, J.Q.; Li, F.; He, D.W.; Lu, T.C.; Wang, Q.Y.

    2016-01-01

    Nano-grained ceramics have their unique mechanical characteristics that are not commonly found in their coarse-grained counterparts. In this study, nano-grained YAG transparent ceramics (NG-YAG) were prepared by low-temperature high-pressure technique (LTHP). The peak profile analysis of the X-ray diffraction was employed to investigate the compressive yield strength of NG-YAG. During the temperature at 450 °C, the residual micro-strain (RMS) increased with increasing loading pressure. However when the loading pressure was exceeded to 4.0 GPa the RMS exhibited a severe negative slop. The temperature effects on the compressive yield strength were also studied. It shows that the compressive yield strength of NG-YAG is 4.0 GPa and 5.0 GPa respectively at 450 °C and 350 °C. More importantly according to this investigation, a feasible technique to study the nano-grained ceramics is provided. - Graphical abstract: Fig. 2 shows the significant slope changes of calculated residual micro-strain (RMS) associated with five selected pressure-temperature conditions. Another the grain size estimated from Scherrer's formula, especially when it changes with the pressure-temperature condition is also plotted in Fig. 2. - Highlights: • Prepared the nano-grained YAG transparent ceramic by high pressure technique. • Obtained the compressive yield with different temperature. • Obtained the compressive yield of nano-grained YAG transparent ceramic.

  13. Elastic-plastic stress analysis and ASME code evaluation of a bottomhead penetration in a reactor pressure vessel

    International Nuclear Information System (INIS)

    Ranganath, S.

    1979-01-01

    Nuclear pressure vessel components are designed to meet the requirements of Section III of the ASME Boiler and Pressure Vessel Code. Specifically, the design must satisfy the limits on stress range and fatigue usage prescribed in NB-3200, Section III ASME Code for the various design and operating conditions for the component. The Code requirements assure that the component does not experience gross yielding and that in general, elastic shakedown occurs following cyclic loading. When elastic stress analysis is performed this can be shown by meeting the limits in the Code on Primary and Primary plus Secondary (P+Q) stress intensities. However, when the P+Q limits cannot be met and elastic Shakedown cannot be demonstrated, plastic analysis may be performed to meet the requirements of the Code. This paper describes the elastic-plastic stress analysis of a Boiling Water Reactor Vessel bottom head in-core penetration and illustrates how plastic analysis can be used in ASME Code evaluations to show Code compliance. Details of the thermal analysis, elastic-plastic stress analysis and fatigue evaluation are presented and it is shown that the in-core penetration satisfies the code requirements. 6 refs

  14. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Barui, Srimanta; Chatterjee, Subhomoy; Mandal, Sourav [Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore (India); Center of Excellence and Innovation in Biotechnology-' Translational Centre on Biomaterials for Orthopaedic and Dental Applications' , Materials Research Center, Indian Institute of Science, Bangalore (India); Kumar, Alok [Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore (India); Basu, Bikramjit, E-mail: bikram@mrc.iisc.ernet.in [Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore (India); Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore (India); Center of Excellence and Innovation in Biotechnology-' Translational Centre on Biomaterials for Orthopaedic and Dental Applications' , Materials Research Center, Indian Institute of Science, Bangalore (India)

    2017-01-01

    The osseointegration of metallic implants depends on an effective balance among designed porosity to facilitate angiogenesis, tissue in-growth and bone-mimicking elastic modulus with good strength properties. While addressing such twin requirements, the present study demonstrates a low temperature additive manufacturing based processing strategy to fabricate Ti-6Al-4V scaffolds with designed porosity using inkjet-based 3D powder printing (3DPP). A novel starch-based aqueous binder was prepared and the physico-chemical parameters such as pH, viscosity, and surface tension were optimized for drop-on-demand (DOD) based thermal inkjet printing. Micro-computed tomography (micro-CT) of sintered scaffolds revealed a 57% total porosity in homogeneously porous scaffold and 45% in the gradient porous scaffold with 99% interconnectivity among the micropores. Under uniaxial compression testing, the strength of homogeneously porous and gradient porous scaffolds were ~ 47 MPa and ~ 90 MPa, respectively. The progressive failure in homogeneously porous scaffold was recorded. In parallel to experimental measurements, finite element (FE) analyses have been performed to study the stress distribution globally and also locally around the designed pores. Consistent with FE analyses, a higher elastic modulus was recorded with gradient porous scaffolds (~ 3 GPa) than the homogenously porous scaffolds (~ 2 GPa). While comparing with the existing literature reports, the present work, for the first time, establishes ‘direct powder printing methodology’ of Ti-6Al-4V porous scaffolds with biomedically relevant microstructural and mechanical properties. Also, a new FE analysis approach, based on the critical understanding of the porous architecture using micro-CT results, is presented to realistically predict the compression response of porous scaffolds. - Highlights: • Binder physics and process parameters in inkjet 3D printing of Ti-6Al-4V • Phase assembly and detailed microstructure

  15. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis

    International Nuclear Information System (INIS)

    Barui, Srimanta; Chatterjee, Subhomoy; Mandal, Sourav; Kumar, Alok; Basu, Bikramjit

    2017-01-01

    The osseointegration of metallic implants depends on an effective balance among designed porosity to facilitate angiogenesis, tissue in-growth and bone-mimicking elastic modulus with good strength properties. While addressing such twin requirements, the present study demonstrates a low temperature additive manufacturing based processing strategy to fabricate Ti-6Al-4V scaffolds with designed porosity using inkjet-based 3D powder printing (3DPP). A novel starch-based aqueous binder was prepared and the physico-chemical parameters such as pH, viscosity, and surface tension were optimized for drop-on-demand (DOD) based thermal inkjet printing. Micro-computed tomography (micro-CT) of sintered scaffolds revealed a 57% total porosity in homogeneously porous scaffold and 45% in the gradient porous scaffold with 99% interconnectivity among the micropores. Under uniaxial compression testing, the strength of homogeneously porous and gradient porous scaffolds were ~ 47 MPa and ~ 90 MPa, respectively. The progressive failure in homogeneously porous scaffold was recorded. In parallel to experimental measurements, finite element (FE) analyses have been performed to study the stress distribution globally and also locally around the designed pores. Consistent with FE analyses, a higher elastic modulus was recorded with gradient porous scaffolds (~ 3 GPa) than the homogenously porous scaffolds (~ 2 GPa). While comparing with the existing literature reports, the present work, for the first time, establishes ‘direct powder printing methodology’ of Ti-6Al-4V porous scaffolds with biomedically relevant microstructural and mechanical properties. Also, a new FE analysis approach, based on the critical understanding of the porous architecture using micro-CT results, is presented to realistically predict the compression response of porous scaffolds. - Highlights: • Binder physics and process parameters in inkjet 3D printing of Ti-6Al-4V • Phase assembly and detailed microstructure

  16. Mechanical analysis of single myocyte contraction in a 3-D elastic matrix.

    Directory of Open Access Journals (Sweden)

    John Shaw

    Full Text Available Cardiac myocytes experience mechanical stress during each heartbeat. Excessive mechanical stresses under pathological conditions cause functional and structural remodeling that lead to heart diseases, yet the precise mechanisms are still incompletely understood. To study the cellular and molecular level mechanotransduction mechanisms, we developed a new 'cell-in-gel' experimental system to exert multiaxial (3-D stresses on a single myocyte during active contraction.Isolated myocytes are embedded in an elastic hydrogel to simulate the mechanical environment in myocardium (afterload. When electrically stimulated, the in-gel myocyte contracts while the matrix resists shortening and broadening of the cell, exerting normal and shear stresses on the cell. Here we provide a mechanical analysis, based on the Eshelby inclusion problem, of the 3-D strain and stress inside and outside the single myocyte during contraction in an elastic matrix.(1 The fractional shortening of the myocyte depends on the cell's geometric dimensions and the relative stiffness of the cell to the gel. A slender or softer cell has less fractional shortening. A myocyte of typical dimensions embedded in a gel of similar elastic stiffness can contract only 20% of its load-free value. (2 The longitudinal stress inside the cell is about 15 times the transverse stress level. (3 The traction on the cell surface is highly non-uniform, with a maximum near its ends, showing 'hot spots' at the location of intercalated disks. (4 The mechanical energy expenditure of the myocyte increases with the matrix stiffness in a monotonic and nonlinear manner.Our mechanical analyses provide analytic solutions that readily lend themselves to parametric studies. The resulting 3-D mapping of the strain and stress states serve to analyze and interpret ongoing cell-in-gel experiments, and the mathematical model provides an essential tool to decipher and quantify mechanotransduction mechanisms in cardiac

  17. The relationship between 3D bone architectural parameters and elastic moduli of three orthogonal directions predicted from finite elements analysis

    International Nuclear Information System (INIS)

    Park, Kwan Soo; Lee, Sam Sun; Huh, Kyung Hoe; Yi, Wan Jin; Heo, Min Suk; Choi, Soon Chul

    2008-01-01

    To investigate the relationship between 3D bone architectural parameters and direction-related elastic moduli of cancellous bone of mandibular condyle. Two micro-pigs (Micro-pigR, PWG Genetics Korea) were used. Each pig was about 12 months old and weighing around 44 kg. 31 cylindrical bone specimen were obtained from cancellous bone of condyles for 3D analysis and measured by micro-computed tomography. Six parameters were trabecular thickness (Tb.Th), bone specific surface (BS/BV), percent bone volume (BV/TV), structure model index (SMI), degree of anisotropy (DA) and 3-dimensional fractal dimension (3DFD). Elastic moduli of three orthogonal directions (superiorinferior (SI), medial-lateral (ML), andterior-posterior (AP) direction) were calculated through finite element analysis. Elastic modulus of superior-inferior direction was higher than those of other directions. Elastic moduli of 3 orthogonal directions showed different correlation with 3D architectural parameters. Elastic moduli of SI and ML directions showed significant strong to moderate correlation with BV/TV, SMI and 3DFD. Elastic modulus of cancellous bone of pig mandibular condyle was highest in the SI direction and it was supposed that the change into plate-like structure of trabeculae was mainly affected by increase of trabeculae of SI and ML directions.

  18. Experimental and numerical analysis of pre-compressed masonry walls in two-way-bending with second order effects

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Gabriele, E-mail: milani@stru.polimi.it [Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico diMilano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Olivito, Renato S. [Dipartimento di Ingegneria Civile - Università della Calabria Via P Bucci 39 B - 87036 RENDE (CS) (Italy); Tralli, Antonio [Department of Engineering, University of Ferrara, Via Saragat 1, 44100 Ferrara (Italy)

    2014-10-06

    The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model.

  19. Experimental and numerical analysis of pre-compressed masonry walls in two-way-bending with second order effects

    International Nuclear Information System (INIS)

    Milani, Gabriele; Olivito, Renato S.; Tralli, Antonio

    2014-01-01

    The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model

  20. Self-management by firm, non-elastic adjustable compression wrap device [Translation of Druckmessungen unter Klettverschluss-Kompression - Selbstbehandlung durch feste, unelastische Beinwickelung

    Directory of Open Access Journals (Sweden)

    Giovanni Mosti

    2017-09-01

    Full Text Available Severe forms of chronic venous insufficiency and lymphedema require strong compression-pressure, which exceeds the pressure exerted by medical compression stockings (>40 mmHg. The aim was to investigate if patients are able to apply a Velcro-band compression device (Circaid Juxta Lite™ themselves with sufficient pressure. Thirty-one patients (CEAP C6=23, C5=5, C3=2, mixed ulcer=1 applied Juxta Lite™ on their own legs after a short instruction and were asked to readjust the pressure by their subjective feeling. Sub- bandage pressure was measured after application and 24 h later. In 30 patients without arterial occlusive disease the median sub- bandage pressure values on day 1 and day 2 were 44,5 mmHg (IQR 42-48, and 46 mmHg (IQR 44-48,25 respectively. One patient with an arterialvenous leg ulcer showed pressures of 34 and 36 mmHg. All measured pressure values corresponded to the pursued target range, demonstrating that adequate self application of Velcro bands is feasible and that patents can maintain this pressure by re-adjustment. Source: this paper is an abridged translation of Mosti G, Partsch H. Druckmessungen unter Klettverschluss-Kompression - Selbstbehandlung durch feste, unelastische Beinwickelung. Vasomed 2017;5:212-6.

  1. Fracture Analysis of Debonded Sandwich Columns Under Axial Compression

    DEFF Research Database (Denmark)

    May, A.; Avilés, F.; Berggreen, Christian

    A sandwich structure consists of two strong and stiff face sheets bonded to a weak low density core. The large separation between the face sheets provides increased bending rigidity and strength at low weight cost. Thus, sandwich structures frequently present better mechanical properties than...... monolithic structures of the same weight. The vast range of applications of such materials includes wind turbines, marine, and aerospace industries. In this work, geometrically nonlinear finite element analysis is conducted to investigate the fracture parameters and debond propagation of sandwich columns...

  2. Nonlinear elastic waves in materials

    CERN Document Server

    Rushchitsky, Jeremiah J

    2014-01-01

    The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...

  3. Thermal modal analysis of novel non-pneumatic mechanical elastic wheel based on FEM and EMA

    Science.gov (United States)

    Zhao, Youqun; Zhu, Mingmin; Lin, Fen; Xiao, Zhen; Li, Haiqing; Deng, Yaoji

    2018-01-01

    A combination of Finite Element Method (FEM) and Experiment Modal Analysis (EMA) have been employed here to characterize the structural dynamic response of mechanical elastic wheel (ME-Wheel) operating under a specific thermal environment. The influence of high thermal condition on the structural dynamic response of ME-Wheel is investigated. The obtained results indicate that the EMA results are in accordance with those obtained using the proposed Finite Element (FE) model, indicting the high reliability of this FE model applied in analyzing the modal of ME-Wheel working under practical thermal environment. It demonstrates that the structural dynamic response of ME-Wheel operating under a specific thermal condition can be predicted and evaluated using the proposed analysis method, which is beneficial for the dynamic optimization design of the wheel structure to avoid tire temperature related vibration failure and improve safety of tire.

  4. Linear elastic obstacles: analysis of experimental results in the case of stress dependent pre-exponentials

    International Nuclear Information System (INIS)

    Surek, T.; Kuon, L.G.; Luton, M.J.; Jones, J.J.

    1975-01-01

    For the case of linear elastic obstacles, the analysis of experimental plastic flow data is shown to have a particularly simple form when the pre-exponential factor is a single-valued function of the modulus-reduced stress. The analysis permits the separation of the stress and temperature dependence of the strain rate into those of the pre-exponential factor and the activation free energy. As a consequence, the true values of the activation enthalpy, volume and entropy also are obtained. The approach is applied to four sets of experimental data, including Zr, and the results for the pre-exponential term are examined for self-consistency in view of the assumed functional dependence

  5. Complementary scattered and recoiled ion data from TOF-E heavy ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Johnston, P.N.; El Bouanani, M.; Stannard, W.B.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Siegele, R.

    1998-01-01

    The advantage of Time of Flight and Energy (ToF-E) Heavy Ion Elastic Recoil Detection Analysis (HIERDA) over Rutherford Backscattering (RBS) analysis is its mass and energy dispersive capabilities. The mass resolution of ToF-E HIERDA deteriorates for very heavy elements. The limitation is related to the poor energy resolution of Si detectors for heavy ions. While the energy spectra from ToF-E HIERDA data are normally used to extract depth profiles, this work discusses the benefits of using the time spectra of both the recoiled and the scattered ions for depth profiling. The simulation of the complementary scattered and recoiled ion time spectra improves depth profiling and reduced current limitations when dealing with very heavy ions, such as Pt, Bi, Ta. (authors)

  6. Quantitative analysis of retina layer elasticity based on automatic 3D segmentation (Conference Presentation)

    Science.gov (United States)

    He, Youmin; Qu, Yueqiao; Zhang, Yi; Ma, Teng; Zhu, Jiang; Miao, Yusi; Humayun, Mark; Zhou, Qifa; Chen, Zhongping

    2017-02-01

    Age-related macular degeneration (AMD) is an eye condition that is considered to be one of the leading causes of blindness among people over 50. Recent studies suggest that the mechanical properties in retina layers are affected during the early onset of disease. Therefore, it is necessary to identify such changes in the individual layers of the retina so as to provide useful information for disease diagnosis. In this study, we propose using an acoustic radiation force optical coherence elastography (ARF-OCE) system to dynamically excite the porcine retina and detect the vibrational displacement with phase resolved Doppler optical coherence tomography. Due to the vibrational mechanism of the tissue response, the image quality is compromised during elastogram acquisition. In order to properly analyze the images, all signals, including the trigger and control signals for excitation, as well as detection and scanning signals, are synchronized within the OCE software and are kept consistent between frames, making it possible for easy phase unwrapping and elasticity analysis. In addition, a combination of segmentation algorithms is used to accommodate the compromised image quality. An automatic 3D segmentation method has been developed to isolate and measure the relative elasticity of every individual retinal layer. Two different segmentation schemes based on random walker and dynamic programming are implemented. The algorithm has been validated using a 3D region of the porcine retina, where individual layers have been isolated and analyzed using statistical methods. The errors compared to manual segmentation will be calculated.

  7. Finite Element Analysis of the Pseudo-elastic Behavior of Shape Memory Alloy Truss and Beam

    Directory of Open Access Journals (Sweden)

    Kamal M. Bajoria

    2010-07-01

    Full Text Available The pseudo-elastic behavior of Shape memory alloy (SMA truss and cantilever beam are investigated. Brinson’s one-dimensional material model, which uses the twinned and detwinned martensite fractions separately as internal variables, is applied in the algorithm to establish the SMA stress-strain characteristics. This material model also incorporates different young’s modulus for austenitic and martensite phase to represent the true SMA characteristics. In this model, a cosine function was used to express the evolution of the stress induced martensite fractions during the forward and reverse martensite phase transformation. A finite element formulation for the SMA truss member considering the geometric nonlinearity is proposed and the results are compared with the corresponding linear analysis. As a step forward, a finite element formulation for an SMA cantilever beam with an applied end moment is proposed. The load displacement characteristic for both the loading and unloading phases are considered to check the full pseudo-elastic hysteretic loop. In the numerical investigation, the stress-strain variation along the beam depth is also examined during the loading and unloading process to investigate the forward and reverse martensite phase transformation phenomena. Newton-Raphson’s iterative method is applied to get convergence to the equilibrium for each loading steps. During a complete loading-unloading process, the temperature is kept constant as the model is essentially an isothermal model. Numerical simulation is performed considering two different temperatures to demonstrate the effect of temperature on the hysteretic loop.

  8. Adaptive, Small-Rotation-Based, Corotational Technique for Analysis of 2D Nonlinear Elastic Frames

    Directory of Open Access Journals (Sweden)

    Jaroon Rungamornrat

    2014-01-01

    Full Text Available This paper presents an efficient and accurate numerical technique for analysis of two-dimensional frames accounted for both geometric nonlinearity and nonlinear elastic material behavior. An adaptive remeshing scheme is utilized to optimally discretize a structure into a set of elements where the total displacement can be decomposed into the rigid body movement and one possessing small rotations. This, therefore, allows the force-deformation relationship for the latter part to be established based on small-rotation-based kinematics. Nonlinear elastic material model is integrated into such relation via the prescribed nonlinear moment-curvature relationship. The global force-displacement relation for each element can be derived subsequently using corotational formulations. A final system of nonlinear algebraic equations along with its associated gradient matrix for the whole structure is obtained by a standard assembly procedure and then solved numerically by Newton-Raphson algorithm. A selected set of results is then reported to demonstrate and discuss the computational performance including the accuracy and convergence of the proposed technique.

  9. Analysis of Quasi-Elastic e-n and e-p Scattering from Deuterium

    Science.gov (United States)

    Balsamo, Alexander; Gilfoyle, Gerard; CLAS12 Collaboration

    2017-09-01

    One of Jefferson Lab's goals is to unravel the quark-gluon structure of nuclei. We will use the ratio, R, of electron-neutron to electron-proton scattering on deuterium to probe the magnetic form factor of the neutron. We have developed an end-to-end analysis from simulation to extraction of R in quasi-elastic kinematics for an approved experiment with the CLAS12 detector. We focus on neutrons detected in the CLAS12 calorimeters and protons measured with the CLAS12 forward detector. Events were generated with the Quasi-Elastic Event Generator (QUEEG) and passed through the Monte Carlo code gemc to simulate the CLAS12 response. These simulated events were reconstructed using the latest CLAS12 Common Tools. We first match the solid angle for e-n and e-p events. The electron information is used to predict the path of both a neutron and proton through CLAS12. If both particles interact in CLAS12 the e-n and e-p events have the same solid angle. We select QE events by searching for nuclei near the predicted position. An angular cut between the predicted 3-momentum of the nucleon and the measured value, θpq, separates QE and inelastic events. We will show the simulated R as a function of the four-momentum transfer Q2. Work supported by the University of Richmond and the US Department of Energy.

  10. Semimicroscopic analysis of 6Li+28Si elastic scattering at 76 to 318 MeV

    Science.gov (United States)

    Hassanain, M. A.; Anwar, M.; Behairy, Kassem O.

    2018-04-01

    Using the α-cluster structure of colliding nuclei, the elastic scattering of 6Li+28Si at energies from 76 to 318 MeV has been investigated by the use of the real folding cluster approach. The results of the cluster analysis are compared with those obtained by the CDM3Y6 effective density- and energy-dependent nucleon-nucleon (NN) interaction based upon G -matrix elements of the M3Y-Paris potential. A Woods-Saxon (WS) form was used for the imaginary potential. For all energies and derived potentials, the diffraction region was well reproduced, except at Elab=135 and 154 MeV at large angle. These results suggest that the addition of the surface (DWS) imaginary potential term to the volume imaginary potential is essential for a correct description of the refractive structure of the 6Li elastic scattering distribution at these energies. The energy dependence of the total reaction cross sections and that of the real and imaginary volume integrals is also discussed.

  11. Analysis and computation of the elastic wave equation with random coefficients

    KAUST Repository

    Motamed, Mohammad

    2015-10-21

    We consider the stochastic initial-boundary value problem for the elastic wave equation with random coefficients and deterministic data. We propose a stochastic collocation method for computing statistical moments of the solution or statistics of some given quantities of interest. We study the convergence rate of the error in the stochastic collocation method. In particular, we show that, the rate of convergence depends on the regularity of the solution or the quantity of interest in the stochastic space, which is in turn related to the regularity of the deterministic data in the physical space and the type of the quantity of interest. We demonstrate that a fast rate of convergence is possible in two cases: for the elastic wave solutions with high regular data; and for some high regular quantities of interest even in the presence of low regular data. We perform numerical examples, including a simplified earthquake, which confirm the analysis and show that the collocation method is a valid alternative to the more traditional Monte Carlo sampling method for approximating quantities with high stochastic regularity.

  12. Born reflection kernel analysis and wave-equation reflection traveltime inversion in elastic media

    KAUST Repository

    Wang, Tengfei

    2017-08-17

    Elastic reflection waveform inversion (ERWI) utilize the reflections to update the low and intermediate wavenumbers in the deeper part of model. However, ERWI suffers from the cycle-skipping problem due to the objective function of waveform residual. Since traveltime information relates to the background model more linearly, we use the traveltime residuals as objective function to update background velocity model using wave equation reflected traveltime inversion (WERTI). The reflection kernel analysis shows that mode decomposition can suppress the artifacts in gradient calculation. We design a two-step inversion strategy, in which PP reflections are firstly used to invert P wave velocity (Vp), followed by S wave velocity (Vs) inversion with PS reflections. P/S separation of multi-component seismograms and spatial wave mode decomposition can reduce the nonlinearity of inversion effectively by selecting suitable P or S wave subsets for hierarchical inversion. Numerical example of Sigsbee2A model validates the effectiveness of the algorithms and strategies for elastic WERTI (E-WERTI).

  13. Construction and analysis of compressible flow calculation algorithms

    International Nuclear Information System (INIS)

    Desideri, Jean-Antoine

    1993-01-01

    The aim of this study is to give a theoretical rationale of a 'paradox' related to the behavior at the stagnation point of some numerical solutions obtained by conventional methods for Eulerian non-equilibrium flows. This 'paradox' concerns the relationship between the solutions given by equilibrium and non-equilibrium models and was raised by several experts during the 'Workshop on Hypersonic Flows for Reentry Problems, Part 1. Antibes 1990'. In the first part, we show that equilibrium conditions are reached at the stagnation point and we analyse the sensitivity of these equilibrium conditions to the flow variables. In the second part, we develop an analysis of the behavior of the mathematical solution to an Eulerian non-equilibrium flow in the vicinity of the stagnation point, which gives an explanation to the described 'paradox'. Then, a numerical procedure, integrating the species convection equations projected on the stagnation point streamline in a Lagrangian time approach, gives a numerical support to the theoretical predictions. We also propose two numerical integration procedures, that allow us to recompute, starting from the equilibrium conditions at the stagnation point, the flow characteristics at the body. The validity limits of these procedures are discussed and the results obtained for a Workshop test-case are compared with the results given by several contributors. Finally, we survey briefly the influence of the local behavior of the solution on the coupling technique to a boundary layer calculation. (author) [fr

  14. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors.

    Science.gov (United States)

    Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong

    2015-01-01

    Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.

  15. Systematic feasibility analysis of a quantitative elasticity estimation for breast anatomy using supine/prone patient postures.

    Science.gov (United States)

    Hasse, Katelyn; Neylon, John; Sheng, Ke; Santhanam, Anand P

    2016-03-01

    Breast elastography is a critical tool for improving the targeted radiotherapy treatment of breast tumors. Current breast radiotherapy imaging protocols only involve prone and supine CT scans. There is a lack of knowledge on the quantitative accuracy with which breast elasticity can be systematically measured using only prone and supine CT datasets. The purpose of this paper is to describe a quantitative elasticity estimation technique for breast anatomy using only these supine/prone patient postures. Using biomechanical, high-resolution breast geometry obtained from CT scans, a systematic assessment was performed in order to determine the feasibility of this methodology for clinically relevant elasticity distributions. A model-guided inverse analysis approach is presented in this paper. A graphics processing unit (GPU)-based linear elastic biomechanical model was employed as a forward model for the inverse analysis with the breast geometry in a prone position. The elasticity estimation was performed using a gradient-based iterative optimization scheme and a fast-simulated annealing (FSA) algorithm. Numerical studies were conducted to systematically analyze the feasibility of elasticity estimation. For simulating gravity-induced breast deformation, the breast geometry was anchored at its base, resembling the chest-wall/breast tissue interface. Ground-truth elasticity distributions were assigned to the model, representing tumor presence within breast tissue. Model geometry resolution was varied to estimate its influence on convergence of the system. A priori information was approximated and utilized to record the effect on time and accuracy of convergence. The role of the FSA process was also recorded. A novel error metric that combined elasticity and displacement error was used to quantify the systematic feasibility study. For the authors' purposes, convergence was set to be obtained when each voxel of tissue was within 1 mm of ground-truth deformation. The authors

  16. Application of the Modified Vlasov Model to the Free Vibration Analysis of Thick Plates Resting on Elastic Foundations

    Directory of Open Access Journals (Sweden)

    Korhan Ozgan

    2009-01-01

    Full Text Available The Modified Vlasov Model is applied to the free vibration analysis of thick plates resting on elastic foundations. The effects of the subsoil depth, plate dimensions and their ratio, the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on elastic foundations are investigated. A four-noded, twelve degrees of freedom quadrilateral finite element (PBQ4 is used for plate bending analysis based on Mindlin plate theory which is effectively applied to the analysis of thin and thick plates when selective reduced integration technique is used. The first ten natural frequency parameters are presented in tabular and graphical forms to show the effects of the parameters considered in the study. It is concluded that the effect of the subsoil depth on the frequency parameters of the plates on elastic foundation is generally larger than that of the other parameters considered in the study.

  17. Surface accuracy analysis and mathematical modeling of deployable large aperture elastic antenna reflectors

    Science.gov (United States)

    Coleman, Michael J.

    One class of deployable large aperture antenna consists of thin light-weight parabolic reflectors. A reflector of this type is a deployable structure that consists of an inflatable elastic membrane that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. A design may not hold the parabolic shape to within a desired tolerance due to an elastic deformation of the surface, particularly near the rim. We can compute the equilibrium configuration of the reflector system using an optimization-based solution procedure that calculates the total system energy and determines a configuration of minimum energy. Analysis of the equilibrium configuration reveals the behavior of the reflector shape under various loading conditions. The pressure, film strain energy, tendon strain energy, and gravitational energy are all considered in this analysis. The surface accuracy of the antenna reflector is measured by an RMS calculation while the reflector phase error component of the efficiency is determined by computing the power density at boresight. Our error computation methods are tailored for the faceted surface of our model and they are more accurate for this particular problem than the commonly applied Ruze Equation. Previous analytical work on parabolic antennas focused on axisymmetric geometries and loads. Symmetric equilibria are not assumed in our analysis. In addition, this dissertation contains two principle original findings: (1) the typical supporting tendon system tends to flatten a parabolic reflector near its edge. We find that surface accuracy can be significantly improved by fixing the edge of the inflated reflector to a rigid structure; (2) for large membranes assembled from flat sheets of thin material, we demonstrate that the surface accuracy of the resulting inflated membrane reflector can be improved by altering the cutting pattern of the flat components. Our findings demonstrate that the proper choice

  18. Thermal analysis of near-isothermal compressed gas energy storage system

    International Nuclear Information System (INIS)

    Odukomaiya, Adewale; Abu-Heiba, Ahmad; Gluesenkamp, Kyle R.; Abdelaziz, Omar; Jackson, Roderick K.; Daniel, Claus; Graham, Samuel; Momen, Ayyoub M.

    2016-01-01

    Highlights: • A novel, high-efficiency, scalable, near-isothermal, energy storage system is introduced. • A comprehensive analytical physics-based model for the system is presented. • Efficiency improvement is achieved via heat transfer enhancement and use of waste heat. • Energy storage roundtrip efficiency (RTE) of 82% and energy density of 3.59 MJ/m"3 is shown. - Abstract: Due to the increasing generation capacity of intermittent renewable electricity sources and an electrical grid ill-equipped to handle the mismatch between electricity generation and use, the need for advanced energy storage technologies will continue to grow. Currently, pumped-storage hydroelectricity and compressed air energy storage are used for grid-scale energy storage, and batteries are used at smaller scales. However, prospects for expansion of these technologies suffer from geographic limitations (pumped-storage hydroelectricity and compressed air energy storage), low roundtrip efficiency (compressed air energy storage), and high cost (batteries). Furthermore, pumped-storage hydroelectricity and compressed air energy storage are challenging to scale-down, while batteries are challenging to scale-up. In 2015, a novel compressed gas energy storage prototype system was developed at Oak Ridge National Laboratory. In this paper, a near-isothermal modification to the system is proposed. In common with compressed air energy storage, the novel storage technology described in this paper is based on air compression/expansion. However, several novel features lead to near-isothermal processes, higher efficiency, greater system scalability, and the ability to site a system anywhere. The enabling features are utilization of hydraulic machines for expansion/compression, above-ground pressure vessels as the storage medium, spray cooling/heating, and waste-heat utilization. The base configuration of the novel storage system was introduced in a previous paper. This paper describes the results

  19. On the Distance Dependence of the Price Elasticity of Telecommunications Demand; Meta-analysis, and Alternative Theoretical Backgrounds

    NARCIS (Netherlands)

    Ouwersloot, Hans; Rietveld, Piet

    1997-01-01

    The positive correlation between the absolute price elasticity of telecommunications demand and the distance of the calling relation is well known. In this paper we first present a meta-analysis of existing studies to buttress the distance dependence empirically. The analysis confirms the existence

  20. DELIMINATE--a fast and efficient method for loss-less compression of genomic sequences: sequence analysis.

    Science.gov (United States)

    Mohammed, Monzoorul Haque; Dutta, Anirban; Bose, Tungadri; Chadaram, Sudha; Mande, Sharmila S

    2012-10-01

    An unprecedented quantity of genome sequence data is currently being generated using next-generation sequencing platforms. This has necessitated the development of novel bioinformatics approaches and algorithms that not only facilitate a meaningful analysis of these data but also aid in efficient compression, storage, retrieval and transmission of huge volumes of the generated data. We present a novel compression algorithm (DELIMINATE) that can rapidly compress genomic sequence data in a loss-less fashion. Validation results indicate relatively higher compression efficiency of DELIMINATE when compared with popular general purpose compression algorithms, namely, gzip, bzip2 and lzma. Linux, Windows and Mac implementations (both 32 and 64-bit) of DELIMINATE are freely available for download at: http://metagenomics.atc.tcs.com/compression/DELIMINATE. sharmila@atc.tcs.com Supplementary data are available at Bioinformatics online.

  1. Analysis of spastic gait in cervical myelopathy: Linking compression ratio to spatiotemporal and pedobarographic parameters.

    Science.gov (United States)

    Nagai, Taro; Takahashi, Yasuhito; Endo, Kenji; Ikegami, Ryo; Ueno, Ryuichi; Yamamoto, Kengo

    2018-01-01

    Gait dysfunction associated with spasticity and hyperreflexia is a primary symptom in patients with compression of cervical spinal cord. The objective of this study was to link maximum compression ratio (CR) to spatiotemporal/pedobarographic parameters. Quantitative gait analysis was performed by using a pedobarograph in 75 elderly males with a wide range of cervical compression severity. CR values were characterized on T1-weighted magnetic resonance imaging (MRI). Statistical significances in gait analysis parameters (speed, cadence, stride length, step with, and toe-out angle) were evaluated among different CR groups by the non-parametric Kruskal-Wallis test followed by the Mann-Whitney U test using Bonferroni correction. The Spearman test was performed to verify correlations between CR and gait parameters. The Kruskal-Wallis test revealed significant decline in gait speed and stride length and significant increase in toe-out angle with progression of cervical compression myelopathy. The post-hoc Mann-Whitney U test showed significant differences in these parameters between the control group (0.45test revealed that CR was significantly correlated with speed, cadence, stride length, and toe-out angle. Gait speed, stride length, and toe-out angle can serve as useful indexes for evaluating progressive gait abnormality in cervical myelopathy. Our findings suggest that CR≤0.25 is associated with significantly poorer gait performance. Nevertheless, future prospective studies are needed to determine a potential benefit from decompressive surgery in such severe compression patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Experimental validation of finite element analysis of human vertebral collapse under large compressive strains.

    Science.gov (United States)

    Hosseini, Hadi S; Clouthier, Allison L; Zysset, Philippe K

    2014-04-01

    Osteoporosis-related vertebral fractures represent a major health problem in elderly populations. Such fractures can often only be diagnosed after a substantial deformation history of the vertebral body. Therefore, it remains a challenge for clinicians to distinguish between stable and progressive potentially harmful fractures. Accordingly, novel criteria for selection of the appropriate conservative or surgical treatment are urgently needed. Computer tomography-based finite element analysis is an increasingly accepted method to predict the quasi-static vertebral strength and to follow up this small strain property longitudinally in time. A recent development in constitutive modeling allows us to simulate strain localization and densification in trabecular bone under large compressive strains without mesh dependence. The aim of this work was to validate this recently developed constitutive model of trabecular bone for the prediction of strain localization and densification in the human vertebral body subjected to large compressive deformation. A custom-made stepwise loading device mounted in a high resolution peripheral computer tomography system was used to describe the progressive collapse of 13 human vertebrae under axial compression. Continuum finite element analyses of the 13 compression tests were realized and the zones of high volumetric strain were compared with the experiments. A fair qualitative correspondence of the strain localization zone between the experiment and finite element analysis was achieved in 9 out of 13 tests and significant correlations of the volumetric strains were obtained throughout the range of applied axial compression. Interestingly, the stepwise propagating localization zones in trabecular bone converged to the buckling locations in the cortical shell. While the adopted continuum finite element approach still suffers from several limitations, these encouraging preliminary results towards the prediction of extended vertebral

  3. Elastic forward analysis using sup 7 Li ions A useful tool for H and light elements determination

    CERN Document Server

    Romero, S; Murillo, G; Berdejo, H M

    2002-01-01

    Films of CN sub x /Si, TiN sub x /AISI 304 and AlO sub x /Si were analyzed with sup 7 Li ions from 4.0 to 4.5 MeV and an experimental arrangement that, through detection of scattered projectiles and recoils by a single detector, allows quantification of H, light elements and heavier ones. A discussion is presented of the capabilities of Rutherford backscattering spectrometry (RBS) and conventional elastic recoil detection analysis (ERDA) compared to elastic forward analysis.

  4. Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1992-01-01

    A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  5. Microarray BASICA: Background Adjustment, Segmentation, Image Compression and Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jianping Hua

    2004-01-01

    Full Text Available This paper presents microarray BASICA: an integrated image processing tool for background adjustment, segmentation, image compression, and analysis of cDNA microarray images. BASICA uses a fast Mann-Whitney test-based algorithm to segment cDNA microarray images, and performs postprocessing to eliminate the segmentation irregularities. The segmentation results, along with the foreground and background intensities obtained with the background adjustment, are then used for independent compression of the foreground and background. We introduce a new distortion measurement for cDNA microarray image compression and devise a coding scheme by modifying the embedded block coding with optimized truncation (EBCOT algorithm (Taubman, 2000 to achieve optimal rate-distortion performance in lossy coding while still maintaining outstanding lossless compression performance. Experimental results show that the bit rate required to ensure sufficiently accurate gene expression measurement varies and depends on the quality of cDNA microarray images. For homogeneously hybridized cDNA microarray images, BASICA is able to provide from a bit rate as low as 5 bpp the gene expression data that are 99% in agreement with those of the original 32 bpp images.

  6. Finite-element analysis of elastic sound-proof coupling thermal state

    Science.gov (United States)

    Tsyss, V. G.; Strokov, I. M.; Sergaeva, M. Yu

    2018-01-01

    The aim is in calculated determining of the elastic rubber-metal element thermal state of soundproof coupling ship shafting under variable influence during loads in time. Thermal coupling calculation is performed with finite element method using NX Simens software with Nastran solver. As a result of studies, the following results were obtained: - a volumetric picture of the temperature distribution over the array of the deformed coupling body is obtained; - time to reach steady-state thermal coupling mode has been determined; - dependences of maximum temperature and time to reach state on the established operation mode on rotation frequency and ambient temperature are determined. The findings prove the conclusion that usage of finite element analysis modern software can significantly speed up problem solving.

  7. Mathematical and numerical analysis of hyper-elastic systems and introduction of plasticity

    International Nuclear Information System (INIS)

    Kluth, G.

    2008-12-01

    The goal is to model mathematically and numerically the dynamic phenomenons for solids in finite plasticity. We suggest a model that we call hyper-elasto-plastic based on hyper-elastic systems of conservation laws and on the use of an equation of state that we have constructed so as to achieve the plastic yield criterion of Von Mises. This model gives exact (analytic) solutions with shock split to flyer-plate experiments. The mathematical analysis of this model is done (hyperbolicity, characteristic fields, involutions and entropy). In the numerical part, we give 1D and 2D Lagrangian schemes which satisfy an entropy criterion. Moreover, thanks to a special discretization of the equations on deformation gradient, we satisfy some discrete involutions. In this work, the degeneracy of the solid model into hydrodynamic models is studied at the continuous level, and achieved at the numerical one. On different problems, we show the validity of our model and our numerical schemes. (author)

  8. Analysis of pp and pp-bar elastic scattering amplitudes at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, E.; Kodama, T.; Kohara, A.K. [Universidade Federal do Rio de Janeiro (IF/UFRJ), RJ (Brazil). Inst. de Fisica

    2012-07-01

    Full text: A careful analysis of high energies elastic scattering data at 7 TeV for pp, 1800 - 1950 GeV for pp-bar and 540 -541 GeV for pp-bar in terms of its amplitudes has been performed as natural extension of previous analysis for lower energies. The disentanglement of the real and imaginary parts is written consistently with constraints from dispersion relations for amplitudes and for slopes, and also satisfying the universal asymptotic behavior for large |t| values due to the three gluon Exchange process. Values for the imaginary and real slopes and for the total cross section at 7 TeV, 1800-1950 GeV and 540-541 GeV are presented, and the shape of the differential cross section at 14 TeV, with a dip/bump structure more marked and at a smaller values of |t| is predicted. It is predicted that future measurements at large |t| will be connected smoothly with the perturbative tail observed in the interval 5.5 to 14.2 GeV{sup 2} at lower energies and that a marked dip would be observed in pp-bar scattering near this tail range. It is stressed for the consistent description of elastic pp and pp-bar data and pointed out the importance of the future measurements in the Coulomb interference range and in the transition range to the perturbative tail where the perturbative and non-perturbative effects appears together. (author)

  9. Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution

    International Nuclear Information System (INIS)

    Baltacioglu, A.K.; Civalek, O.; Akgoez, B.; Demir, F.

    2011-01-01

    This paper presents nonlinear static analysis of a rectangular laminated composite thick plate resting on nonlinear two-parameter elastic foundation with cubic nonlinearity. The plate formulation is based on first-order shear deformation theory (FSDT). The governing equation of motion for a rectangular laminated composite thick plate is derived by using the von Karman equation. The nonlinear static deflections of laminated plates on elastic foundation are investigated using the discrete singular convolution method. The effects of foundation and geometric parameters of plates on nonlinear deflections are investigated. The validity of the present method is demonstrated by comparing the present results with those available in the literature. - Highlights: → Large deflection analysis of laminated composite plates are investigated. → As foundation, nonlinear elastic models have been used firstly. → The effects of three-parameter foundation are investigated in detail.

  10. Analysis of stress fields and elastic energies in the vicinity of nanograin boundaries using the disclination approach

    Science.gov (United States)

    Sukhanov, Ivan I.; Ditenberg, Ivan A.

    2017-12-01

    The paper provides a theoretical analysis of elastic stresses and elastic energy distribution in nanostructured metal materials in the vicinity of nanograin boundaries with a high partial disclination density. The analysis demonstrates the stress field distribution in disclination grain boundary configurations as a function of nanograin size, taking into account the superposition of these stresses in screening the disclination pile-ups. It is found that the principal stress tensor components reach maximum values only in disclination planes P ≈ E/25 and that the stress gradients peak at nodal points ∂P/∂x ≈ 0.08E nm-1. The shear stress components are localized within the physical grain size, and the specific elastic energy distribution for such configurations reveals characteristic local maxima which can be the cause for physical broadening of nanograin boundaries.

  11. Elastic and inelastic methods of piping systems analysis: a preliminary review

    International Nuclear Information System (INIS)

    Reich, M.; Esztergar, E.P.; Spence, J.; Boyle, J.; Chang, T.Y.

    1975-02-01

    A preliminary review of the methods used for elastic and inelastic piping system analysis is presented. The following principal conclusions are reached: techniques for the analysis of complex piping systems operating in the high temperature creep regime should be further developed; accurate analysis of a complete pipework system in creep using the ''complete shell finite element methods'' is not feasible at the present, and the ''reduced shell finite element method'' still requires excessive computer time and also requires further investigation regarding the compatibility problems associated with the pipe bend element, particularly when applied to cases involving general loading conditions; and with the current size of proposed high temperature systems requiring the evaluation of long-term operating life (30 to 40 years), it is important to adopt a simplified analysis method. A design procedure for a simplified analysis method based on currently available techniques applied in a three-stage approach is outlined. The work required for implementation of these procedures together with desirable future developments are also briefly discussed. Other proposed simplified approximations also are reviewed in the text. 101 references. (U.S.)

  12. Development of Compressive Failure Strength for Composite Laminate Using Regression Analysis Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Keon [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of)

    2016-10-15

    This paper provides the compressive failure strength value of composite laminate developed by using regression analysis method. Composite material in this document is a Carbon/Epoxy unidirection(UD) tape prepreg(Cycom G40-800/5276-1) cured at 350°F(177°C). The operating temperature is –60°F~+200°F(-55°C - +95°C). A total of 56 compression tests were conducted on specimens from eight (8) distinct laminates that were laid up by standard angle layers (0°, +45°, –45° and 90°). The ASTM-D-6484 standard was used for test method. The regression analysis was performed with the response variable being the laminate ultimate fracture strength and the regressor variables being two ply orientations (0° and ±45°)

  13. Development of Compressive Failure Strength for Composite Laminate Using Regression Analysis Method

    International Nuclear Information System (INIS)

    Lee, Myoung Keon; Lee, Jeong Won; Yoon, Dong Hyun; Kim, Jae Hoon

    2016-01-01

    This paper provides the compressive failure strength value of composite laminate developed by using regression analysis method. Composite material in this document is a Carbon/Epoxy unidirection(UD) tape prepreg(Cycom G40-800/5276-1) cured at 350°F(177°C). The operating temperature is –60°F~+200°F(-55°C - +95°C). A total of 56 compression tests were conducted on specimens from eight (8) distinct laminates that were laid up by standard angle layers (0°, +45°, –45° and 90°). The ASTM-D-6484 standard was used for test method. The regression analysis was performed with the response variable being the laminate ultimate fracture strength and the regressor variables being two ply orientations (0° and ±45°)

  14. Functional Group Analysis for Diesel-like Mixing-Controlled Compression Ignition Combustion Blendstocks

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Daniel J.; McCormick, Robert L.; Polikarpov, Evgueni; Fioroni, Gina; George, Anthe; Albrecht, Karl O.

    2016-12-30

    This report addresses the suitability of hydrocarbon and oxygenate functional groups for use as a diesel-like fuel blending component in an advanced, mixing-controlled, compression ignition combustion engine. The functional groups are chosen from those that could be derived from a biomass feedstock, and represent a full range of chemistries. This first systematic analysis of functional groups will be of value to all who are pursuing new bio-blendstocks for diesel-like fuels.

  15. Shock wave compression of hexagonal-close-packed metal single crystals: Time-dependent, anisotropic elastic-plastic response of beryllium

    International Nuclear Information System (INIS)

    Winey, J. M.; Gupta, Y. M.

    2014-01-01

    Understanding and modeling the response of hcp metals to high stress impulsive loading is challenging because the lower crystal symmetry, compared to cubic metals, results in a significantly more complex material response. To gain insight into the inelastic deformation of hcp metals subjected to high dynamic stresses, shock wave compression of single crystals provides a useful approach because different inelastic deformation mechanisms can be examined selectively by shock compression along different crystal orientations. As a representative example, we report, here, on wave propagation simulations for beryllium (Be) single crystals shocked along the c-axis, a-axis, and several low-symmetry directions to peak stresses reaching 7 GPa. The simulations utilized a time-dependent, anisotropic material model that incorporated dislocation dynamics, deformation twinning, and shear cracking based descriptions of inelastic deformation. The simulation results showed good overall agreement with measured wave profiles for all the different crystal orientations examined [Pope and Johnson, J. Appl. Phys. 46, 720 (1975)], including features arising from wave mode coupling due to the highly anisotropic inelastic response of Be. This good agreement demonstrates that the measured profiles can be understood in terms of dislocation slip along basal, prismatic, and pyramidal planes, together with deformation twinning along (101 ¯ 2) planes. Our results show that the response of shocked Be single crystals involves the simultaneous operation of multiple, distinct inelastic deformation mechanisms for all orientations except the c-axis. For shocked c-axis Be, the measured wave profiles do not provide good discrimination between pyramidal slip and other inelastic deformation mechanisms, such as shear cracking. The findings presented here provide insight into the complex inelastic deformation response of shocked Be single crystals and are expected to be useful for other hcp crystals. More

  16. Determinants of Advertising Effectiveness: The Development of an International Advertising Elasticity Database and a Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Sina Henningsen

    2011-12-01

    Full Text Available Increasing demand for marketing accountability requires an efficient allocation of marketing expenditures. Managers who know the elasticity of their marketing instruments can allocate their budgets optimally. Meta-analyses offer a basis for deriving benchmark elasticities for advertising. Although they provide a variety of valuable insights, a major shortcoming of prior meta-analyses is that they report only generalized results as the disaggregated raw data are not made available. This problem is highly relevant because coding of empirical studies, at least to a certain extent, involves subjective judgment. For this reason, meta-studies would be more valuable if researchers and practitioners had access to disaggregated data allowing them to conduct further analyses of individual, e.g., product-level-specific, interests. We are the first to address this gap by providing (1 an advertising elasticity database (AED and (2 empirical generalizations about advertising elasticities and their determinants. Our findings indicate that the average current-period advertising elasticity is 0.09, which is substantially smaller than the value 0f 0.12 that was recently reported by Sethuraman, Tellis, and Briesch (2011. Furthermore, our meta-analysis reveals a wide range of significant determinants of advertising elasticity. For example, we find that advertising elasticities are higher (i for hedonic and experience goods than for other goods; (ii for new than for established goods; (iii when advertising is measured in gross rating points (GRP instead of absolute terms; and (iv when the lagged dependent or lagged advertising variable is omitted.

  17. Cloud Optimized Image Format and Compression

    Science.gov (United States)

    Becker, P.; Plesea, L.; Maurer, T.

    2015-04-01

    Cloud based image storage and processing requires revaluation of formats and processing methods. For the true value of the massive volumes of earth observation data to be realized, the image data needs to be accessible from the cloud. Traditional file formats such as TIF and NITF were developed in the hay day of the desktop and assumed fast low latency file access. Other formats such as JPEG2000 provide for streaming protocols for pixel data, but still require a server to have file access. These concepts no longer truly hold in cloud based elastic storage and computation environments. This paper will provide details of a newly evolving image storage format (MRF) and compression that is optimized for cloud environments. Although the cost of storage continues to fall for large data volumes, there is still significant value in compression. For imagery data to be used in analysis and exploit the extended dynamic range of the new sensors, lossless or controlled lossy compression is of high value. Compression decreases the data volumes stored and reduces the data transferred, but the reduced data size must be balanced with the CPU required to decompress. The paper also outlines a new compression algorithm (LERC) for imagery and elevation data that optimizes this balance. Advantages of the compression include its simple to implement algorithm that enables it to be efficiently accessed using JavaScript. Combing this new cloud based image storage format and compression will help resolve some of the challenges of big image data on the internet.

  18. Study of elasticity and limit analysis of joints and branch pipe tee connections

    International Nuclear Information System (INIS)

    Plancq, David

    1997-01-01

    The industrial context of this study is the behaviour and sizing the pipe joints in PWR and fast neutron reactors. Two aspects have been approached in this framework. The first issue is the elastic behaviour of the pipe joining with a plane or spherical surface or with another pipe in order to get a better understanding of this components usually modelled in classical calculations in a very simplified way. We focused our search on the bending of an intersecting pipe. In the case of the intersection with a plane surface we have conducted our study on the basis of literature results. In the case of intersection on a spherical surface we have also solved entirely the problem by using a sphere shell description different from that usually utilized. Finally, we give an approach to obtain a simple result for the bending of branch pipe tee joints allowing the formulation of a specific finite element. The second issue approached is the limit analysis which allows characterising the plastic failure of this structures and defining reference constraints. This constraints are used in numerous applications. We mention here the rules of pipe sizing and analyzing under primary load, the mechanics of cracks and the definition of global plasticity criteria. To solve this problem we concentrated our studies on the development of a new calculation techniques for the limit load called elastic compensation method (ECM). We have tested it on a large number of classical structures and on the branch pipe tee connections. We propose also a very simple result regarding the lower limit of the bending of a tee junction

  19. Applications of computer simulation, nuclear reactions and elastic scattering to surface analysis of materials

    Directory of Open Access Journals (Sweden)

    Pacheco de Carvalho, J. A.

    2008-08-01

    Full Text Available This article involves computer simulation and surface analysis by nuclear techniques, which are non-destructive. Both the “energy method of analysis” for nuclear reactions and elastic scattering are used. Energy spectra are computer simulated and compared with experimental data, giving target composition and concentration profile information. The method is successfully applied to thick flat targets of graphite, quartz and sapphire and targets containing thin films of aluminium oxide. Depth profiles of 12C and 16O nuclei are determined using (d,p and (d,α deuteron induced reactions. Rutherford and resonance elastic scattering of (4He+ ions are also used.

    Este artículo trata de simulación por ordenador y del análisis de superficies mediante técnicas nucleares, que son no destructivas. Se usa el “método de análisis en energia” para reacciones nucleares, así como el de difusión elástica. Se simulan en ordenador espectros en energía que se comparan com datos experimentales, de lo que resulta la obención de información sobre la composición y los perfiles de concentración de la muestra. Este método se aplica con éxito em muestras espesas y planas de grafito, cuarzo y zafiro y muestras conteniendo películas finas de óxido de aluminio. Se calculan perfiles en profundidad de núcleos de 12C y de 16O a través de reacciones (d,p y (d,α inducidas por deuterones. Se utiliza también la difusión elástica de iones (4He+, tanto a Rutherford como resonante.

  20. Price elasticity of on- and off-premises demand for alcoholic drinks: A Tobit analysis.

    Science.gov (United States)

    Jiang, Heng; Livingston, Michael; Room, Robin; Callinan, Sarah

    2016-06-01

    Understanding how price policies will affect alcohol consumption requires estimates of the impact of price on consumption among different types of drinkers and across different consumption settings. This study aims to estimate how changes in price could affect alcohol demand across different beverages, different settings (on-premise, e.g., bars, restaurants and off-premise, e.g., liquor stores, supermarkets), and different levels of drinking and income. Tobit analysis is employed to estimate own- and cross-price elasticities of alcohol demand among 11 subcategories of beverage based on beverage type and on- or off-premise supply, using cross-sectional data from the Australian arm of the International Alcohol Control Survey 2013. Further elasticity estimates were derived for sub-groups of drinkers based on their drinking and income levels. The results suggest that demand for nearly every subcategory of alcohol significantly responds to its own price change, except for on-premise spirits and ready-to-drink spirits. The estimated demand for off-premise beverages is more strongly affected by own price changes than the same beverages in on-premise settings. Demand for off-premise regular beer and off-premise cask wine is more price responsive than demand for other beverages. Harmful drinkers and lower income groups appear more price responsive than moderate drinkers and higher income groups. Our findings suggest that alcohol price policies, such as increasing alcohol taxes or introducing a minimum unit price, can reduce alcohol demand. Price appears to be particularly effective for reducing consumption and as well as alcohol-related harm among harmful drinkers and lower income drinkers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Analysis and Computation of Acoustic and Elastic Wave Equations in Random Media

    KAUST Repository

    Motamed, Mohammad

    2014-01-06

    We propose stochastic collocation methods for solving the second order acoustic and elastic wave equations in heterogeneous random media and subject to deterministic boundary and initial conditions [1, 4]. We assume that the medium consists of non-overlapping sub-domains with smooth interfaces. In each sub-domain, the materials coefficients are smooth and given or approximated by a finite number of random variable. One important example is wave propagation in multi-layered media with smooth interfaces. The numerical scheme consists of a finite difference or finite element method in the physical space and a collocation in the zeros of suitable tensor product orthogonal polynomials (Gauss points) in the probability space. We provide a rigorous convergence analysis and demonstrate different types of convergence of the probability error with respect to the number of collocation points under some regularity assumptions on the data. In particular, we show that, unlike in elliptic and parabolic problems [2, 3], the solution to hyperbolic problems is not in general analytic with respect to the random variables. Therefore, the rate of convergence is only algebraic. A fast spectral rate of convergence is still possible for some quantities of interest and for the wave solutions with particular types of data. We also show that the semi-discrete solution is analytic with respect to the random variables with the radius of analyticity proportional to the grid/mesh size h. We therefore obtain an exponential rate of convergence which deteriorates as the quantity h p gets smaller, with p representing the polynomial degree in the stochastic space. We have shown that analytical results and numerical examples are consistent and that the stochastic collocation method may be a valid alternative to the more traditional Monte Carlo method. Here we focus on the stochastic acoustic wave equation. Similar results are obtained for stochastic elastic equations.

  2. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.

    Science.gov (United States)

    Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping

    2015-10-01

    We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.

  3. A meta-analysis of the price elasticity of gasoline demand. A SUR approach

    NARCIS (Netherlands)

    Brons, M.R.E.; Nijkamp, P.; Pels, E.; Rietveld, P.

    2008-01-01

    Automobile gasoline demand can be expressed as a multiplicative function of fuel efficiency, mileage per car and car ownership. This implies a linear relationship between the price elasticity of total fuel demand and the price elasticities of fuel efficiency, mileage per car and car ownership. In

  4. A Meta-analysis of the Price Elasticity of Gasoline Demand. A System of Equations Approach

    NARCIS (Netherlands)

    Brons, Martijn; Nijkamp, Peter; Pels, Eric; Rietveld, Piet

    2006-01-01

    Automobile gasoline demand can be expressed as a multiplicative function of fuel efficiency, mileage per car and car ownership. This implies a linear relationship between the price elasticity of total fuel demand and the price elasticities of fuel efficiency, mileage per car and car ownership. In

  5. Analysis of price and income elasticities for cereals food crops in an ...

    African Journals Online (AJOL)

    The objective of the study is to estimate the price and income elasticities of cereals food crops in the study area. The results of the price and income elasticities of demand suggest that urban households in general are responsive to changes in own price and income in adjusting their consumption patterns. It was shown that ...

  6. The Faraday Pavilion: activating bending in the design and analysis of an elastic gridshell

    DEFF Research Database (Denmark)

    Nicholas, Paul; Lafuente Hernandez, Elisa; Gengnagel, Christoph

    2013-01-01

    This paper reports the architectural and engineering design, and construction, of The Faraday Pavilion, a GFRP elastic gridshell with an irregular grid topology. Gridshell structures are self-formed through an erection process in which they are elastically deformed, and the prediction and steering...

  7. Charge-symmetry-breaking effects from phase-shift analysis of elastic πsup(+-4)He scattering

    International Nuclear Information System (INIS)

    Khankhasayev, M.Kh.; Nichitiu, F.; Sapozhnikov, M.G.

    1986-01-01

    A phase-shift analysis of elastic πsup(+-4)He scattering at energies 20-160 MeV was performed to determine pure hadronic phase shifts. No statistically significant difference between the hadronic phase shifts deduced from π +4 He and π -4 He scattering was observed. (orig.)

  8. High-energy elastic recoil detection heavy ions for light element analysis

    International Nuclear Information System (INIS)

    Goppelt-Langer, P.; Yamamoto, S.; Takeshita, H.; Aoki, Y.; Naramoto, H.

    1994-01-01

    The detection of light and medium heavy elements in not homogeneous solids is a severe problem in ion beam analysis. Heavy elements can be detected by the well established Rutherford backscattering technique (RBS). In a homogeneous host material most impurities can be easily analyzed by secondary ion mass spectroscopy (SIMS). Some isotopes ( 3 He, 6 Li, 10 B) can be measured by nuclear reaction analysis (NRA) using thermal neutrons inducing (n, p) or (n, α) reactions. Others can be detected by energetic ion beams by nuclear reactions (e.g. 15 N( 1 H, αγ) 12 C for analysis of hydrogen). A high content of H, D or T can be also determined by elastic recoil detection using an energetic He beam. The latter technique has been developed to a universal method for detection of light and heavy elements in any target, using a high energetic heavy ion beam and a detector system, which is able to identify the recoils and delivers energy and position of the particles. (author)

  9. Temporal compression of soil erosion processes. A regional analysis of USLE database

    International Nuclear Information System (INIS)

    Gonzalez-Hidalgo, J. C.; Luis, M.; Lopez-Bermudez, F.

    2009-01-01

    When John Thornes and Denis Brunsden wrote in 1977 How often one hears the researcher (and no less the undergraduate) complain that after weeks of observation nothing happened only to learn that, the day after his departure, a flood caused unprecedented erosion and channel changes (Thrones and Brunsden, 1977, p. 57), they were focussing to important problems in Geomorphology: the extreme events and time compression of geomorphological processes. Time compression is a fundamental characteristic of geomorphological processes, some times produced by extreme events. Extreme events are rare events, defined by deviation from mean values. But from magnitude-frequency analysis we know that few events, not necessarily extreme, are able to produce a high amount of geomorphological work. finally time compression of geomorphological processes can be focused by the analysis of largest events defined by ranks, not magnitude. We have analysed the effects of largest events on total soil erosion by using 594 erosion plots from USLE database. Plots are located in different climate regions of USA and have different length of records. The 10 largest daily events mean contribution value is 60% of total soil erosion. There exist a relationship between such percentage and total daily erosive events recorded. The pattern seems to be independent of climate conditions. We discuss the nature of such relationship and the implications in soil erosion research. (Author) 17 refs.

  10. Scalable parallel elastic-plastic finite element analysis using a quasi-Newton method with a balancing domain decomposition preconditioner

    Science.gov (United States)

    Yusa, Yasunori; Okada, Hiroshi; Yamada, Tomonori; Yoshimura, Shinobu

    2018-04-01

    A domain decomposition method for large-scale elastic-plastic problems is proposed. The proposed method is based on a quasi-Newton method in conjunction with a balancing domain decomposition preconditioner. The use of a quasi-Newton method overcomes two problems associated with the conventional domain decomposition method based on the Newton-Raphson method: (1) avoidance of a double-loop iteration algorithm, which generally has large computational complexity, and (2) consideration of the local concentration of nonlinear deformation, which is observed in elastic-plastic problems with stress concentration. Moreover, the application of a balancing domain decomposition preconditioner ensures scalability. Using the conventional and proposed domain decomposition methods, several numerical tests, including weak scaling tests, were performed. The convergence performance of the proposed method is comparable to that of the conventional method. In particular, in elastic-plastic analysis, the proposed method exhibits better convergence performance than the conventional method.

  11. Design Concepts of Polycarbonate-Based Intervertebral Lumbar Cages: Finite Element Analysis and Compression Testing

    Directory of Open Access Journals (Sweden)

    J. Obedt Figueroa-Cavazos

    2016-01-01

    Full Text Available This work explores the viability of 3D printed intervertebral lumbar cages based on biocompatible polycarbonate (PC-ISO® material. Several design concepts are proposed for the generation of patient-specific intervertebral lumbar cages. The 3D printed material achieved compressive yield strength of 55 MPa under a specific combination of manufacturing parameters. The literature recommends a reference load of 4,000 N for design of intervertebral lumbar cages. Under compression testing conditions, the proposed design concepts withstand between 7,500 and 10,000 N of load before showing yielding. Although some stress concentration regions were found during analysis, the overall viability of the proposed design concepts was validated.

  12. Analysis of Large-Strain Extrusion Machining with Different Chip Compression Ratios

    Directory of Open Access Journals (Sweden)

    Wen Jun Deng

    2012-01-01

    Full Text Available Large-Strain Extrusion Machining (LSEM is a novel-introduced process for deforming materials to very high plastic strains to produce ultra-fine nanostructured materials. Before the technique can be exploited, it is important to understand the deformation behavior of the workpiece and its relationship to the machining parameters and friction conditions. This paper reports finite-element method (FEM analysis of the LSEM process to understand the evolution of temperature field, effective strain, and strain rate under different chip compression ratios. The cutting and thrust forces are also analyzed with respect to time. The results show that LSEM can produce very high strains by changing in the value of chip compression ratio, thereby enabling the production of nanostructured materials. The shape of the chip produced by LSEM can also be geometrically well constrained.

  13. An analysis of gasoline demand elasticities at the national and local levels in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Crotte, Amado [Mexican Ministry of Communications and Transport, Mexico City (Mexico); Noland, Robert B. [Alan M. Voorhees Transportation Center, E. J. Bloustein School of Planning and Public Policy, Rutgers University, New Brunswick, NJ 08901 (United States); Graham, Daniel J. [Centre for Transport Studies, Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ London (United Kingdom)

    2010-08-15

    The majority of evidence on gasoline demand elasticities is derived from models based on national data. Since the largest growth in population is now taking place in cities in the developing world it is important that we understand whether this national evidence is applicable to demand conditions at the local level. The aim of this paper is to estimate and compare gasoline per vehicle demand elasticities at the national and local levels in Mexico. National elasticities with respect to price, income, vehicle stock and metro fares are estimated using both a time series cointegration model and a panel GMM model for Mexican states. Estimates for Mexico City are derived by modifying national estimates according to mode shares as suggested by, and by estimating a panel Within Groups model with data aggregated by borough. Although all models agree on the sign of the elasticities the magnitudes differ greatly. Elasticities change over time and differ between the national and local levels, with smaller price responses in Mexico City. In general, price elasticities are smaller than those reported in the gasoline demand surveys, a pattern previously found in developing countries. The fact that income and vehicle stock elasticities increase over time may suggest that vehicles are being used more intensively in recent years and that Mexico City residents are purchasing larger vehicles. Elasticities with respect to metro fares are negligible, which suggests little substitution between modes. Finally, the fact that fuel efficiency elasticities are smaller than vehicle stock elasticities suggests that vehicle stock size, rather than its composition, has a larger impact on gasoline consumption in Mexico City. (author)

  14. An analysis of gasoline demand elasticities at the national and local levels in Mexico

    International Nuclear Information System (INIS)

    Crotte, Amado; Noland, Robert B.; Graham, Daniel J.

    2010-01-01

    The majority of evidence on gasoline demand elasticities is derived from models based on national data. Since the largest growth in population is now taking place in cities in the developing world it is important that we understand whether this national evidence is applicable to demand conditions at the local level. The aim of this paper is to estimate and compare gasoline per vehicle demand elasticities at the national and local levels in Mexico. National elasticities with respect to price, income, vehicle stock and metro fares are estimated using both a time series cointegration model and a panel GMM model for Mexican states. Estimates for Mexico City are derived by modifying national estimates according to mode shares as suggested by, and by estimating a panel Within Groups model with data aggregated by borough. Although all models agree on the sign of the elasticities the magnitudes differ greatly. Elasticities change over time and differ between the national and local levels, with smaller price responses in Mexico City. In general, price elasticities are smaller than those reported in the gasoline demand surveys, a pattern previously found in developing countries. The fact that income and vehicle stock elasticities increase over time may suggest that vehicles are being used more intensively in recent years and that Mexico City residents are purchasing larger vehicles. Elasticities with respect to metro fares are negligible, which suggests little substitution between modes. Finally, the fact that fuel efficiency elasticities are smaller than vehicle stock elasticities suggests that vehicle stock size, rather than its composition, has a larger impact on gasoline consumption in Mexico City. (author)

  15. A co-integration analysis of the price and income elasticities of energy demand in Turkish agriculture

    International Nuclear Information System (INIS)

    Tuerkekul, Berna; Unakitan, Goekhan

    2011-01-01

    Agriculture has an important role in every country's development. Particularly, the contribution of agriculture to development and competitiveness is increasing with agricultural productivity growth. Productivity, in turn, is closely associated with direct and indirect use of energy as an input. Therefore, the importance of energy in agriculture cannot be denied as one of the basic inputs to the economic growth process. Following the importance of energy in Turkish agriculture, this study aims to estimate the long- and short-run relationship of energy consumption, agricultural GDP, and energy prices via co-integration and error correction (ECM) analysis. Annual data from 1970 to 2008 for diesel and electricity consumptions are utilized to estimate long-run and short-run elasticities. According to ECM analysis, for the diesel demand model, the long-run income and price elasticities were calculated as 1.47 and -0.38, respectively. For the electricity demand model, income and price elasticities were calculated at 0.19 and -0.72, respectively, in the long run. Briefly, in Turkey, support for energy use in agriculture should be continued in order to ensure sustainability in agriculture, increase competitiveness in international markets, and balance farmers' income. - Research highlights: → We estimate the long and short run elasticities for diesel and electricity demands in agriculture. → The long-run income and price elasticities calculated as 1.47 and 0.38, respectively for diesel. → The long run Income and price elasticities calculated as 0.19 and 0.72 for electricity.

  16. A co-integration analysis of the price and income elasticities of energy demand in Turkish agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Tuerkekul, Berna, E-mail: berna.turkekul@ege.edu.t [Department of Agricultural Economics, Faculty of Agriculture, Ege University, 35100 Izmir (Turkey); Unakitan, Goekhan, E-mail: unakitan@nku.edu.t [Department of Agricultural Economics, Faculty of Agriculture, Namik Kemal University, Tekirdag (Turkey)

    2011-05-15

    Agriculture has an important role in every country's development. Particularly, the contribution of agriculture to development and competitiveness is increasing with agricultural productivity growth. Productivity, in turn, is closely associated with direct and indirect use of energy as an input. Therefore, the importance of energy in agriculture cannot be denied as one of the basic inputs to the economic growth process. Following the importance of energy in Turkish agriculture, this study aims to estimate the long- and short-run relationship of energy consumption, agricultural GDP, and energy prices via co-integration and error correction (ECM) analysis. Annual data from 1970 to 2008 for diesel and electricity consumptions are utilized to estimate long-run and short-run elasticities. According to ECM analysis, for the diesel demand model, the long-run income and price elasticities were calculated as 1.47 and -0.38, respectively. For the electricity demand model, income and price elasticities were calculated at 0.19 and -0.72, respectively, in the long run. Briefly, in Turkey, support for energy use in agriculture should be continued in order to ensure sustainability in agriculture, increase competitiveness in international markets, and balance farmers' income. - Research highlights: {yields} We estimate the long and short run elasticities for diesel and electricity demands in agriculture. {yields} The long-run income and price elasticities calculated as 1.47 and 0.38, respectively for diesel. {yields} The long run Income and price elasticities calculated as 0.19 and 0.72 for electricity.

  17. Zirconium elasticity modules

    International Nuclear Information System (INIS)

    Vavra, G.

    1978-01-01

    Considered are the limit and the intermediate values of the Young modulus E, modulus of shear G and of linear modulus of compression K obtainable at various temperatures (4.2 to 1133 K) for single crystals of α-zirconium. Determined and presented are the corrected isotropic elasticity characteristics of E, G, K over the above range of temperatures of textured and non-textured α-Zr

  18. Accessing the dynamics of end-grafted flexible polymer chains by atomic force-electrochemical microscopy. Theoretical modeling of the approach curves by the elastic bounded diffusion model and Monte Carlo simulations. Evidence for compression-induced lateral chain escape.

    Science.gov (United States)

    Abbou, Jeremy; Anne, Agnès; Demaille, Christophe

    2006-11-16

    The dynamics of a molecular layer of linear poly(ethylene glycol) (PEG) chains of molecular weight 3400, bearing at one end a ferrocene (Fc) label and thiol end-grafted at a low surface coverage onto a gold substrate, is probed using combined atomic force-electrochemical microscopy (AFM-SECM), at the scale of approximately 100 molecules. Force and current approach curves are simultaneously recorded as a force-sensing microelectrode (tip) is inserted within the approximately 10 nm thick, redox labeled, PEG chain layer. Whereas the force approach curve gives access to the structure of the compressed PEG layer, the tip-current, resulting from tip-to-substrate redox cycling of the Fc head of the chain, is controlled by chain dynamics. The elastic bounded diffusion model, which considers the motion of the Fc head as diffusion in a conformational field, complemented by Monte Carlo (MC) simulations, from which the chain conformation can be derived for any degree of confinement, allows the theoretical tip-current approach curve to be calculated. The experimental current approach curve can then be very satisfyingly reproduced by theory, down to a tip-substrate separation of approximately 2 nm, using only one adjustable parameter characterizing the chain dynamics: the effective diffusion coefficient of the chain head. At closer tip-substrate separations, an unpredicted peak is observed in the experimental current approach curve, which is shown to find its origin in a compression-induced escape of the chain from within the narrowing tip-substrate gap. MC simulations provide quantitative support for lateral chain elongation as the escape mechanism.

  19. Memory Efficient Sequence Analysis Using Compressed Data Structures (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Jared

    2011-10-13

    Wellcome Trust Sanger Institute's Jared Simpson on Memory efficient sequence analysis using compressed data structures at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  20. Non-linear elastic deformations

    CERN Document Server

    Ogden, R W

    1997-01-01

    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  1. Intrinsic Dynamics Analysis of a DNA Octahedron by Elastic Network Model

    Directory of Open Access Journals (Sweden)

    Guang Hu

    2017-01-01

    Full Text Available DNA is a fundamental component of living systems where it plays a crucial role at both functional and structural level. The programmable properties of DNA make it an interesting building block for the construction of nanostructures. However, molecular mechanisms for the arrangement of these well-defined DNA assemblies are not fully understood. In this paper, the intrinsic dynamics of a DNA octahedron has been investigated by using two types of Elastic Network Models (ENMs. The application of ENMs to DNA nanocages include the analysis of the intrinsic flexibilities of DNA double-helices and hinge sites through the calculation of the square fluctuations, as well as the intrinsic collective dynamics in terms of cross-collective map calculation coupled with global motions analysis. The dynamics profiles derived from ENMs have then been evaluated and compared with previous classical molecular dynamics simulation trajectories. The results presented here revealed that ENMs can provide useful insights into the intrinsic dynamics of large DNA nanocages and represent a useful tool in the field of structural DNA nanotechnology.

  2. Elastic extension of a local analysis facility on external clouds for the LHC experiments

    Science.gov (United States)

    Ciaschini, V.; Codispoti, G.; Rinaldi, L.; Aiftimiei, D. C.; Bonacorsi, D.; Calligola, P.; Dal Pra, S.; De Girolamo, D.; Di Maria, R.; Grandi, C.; Michelotto, D.; Panella, M.; Taneja, S.; Semeria, F.

    2017-10-01

    The computing infrastructures serving the LHC experiments have been designed to cope at most with the average amount of data recorded. The usage peaks, as already observed in Run-I, may however originate large backlogs, thus delaying the completion of the data reconstruction and ultimately the data availability for physics analysis. In order to cope with the production peaks, the LHC experiments are exploring the opportunity to access Cloud resources provided by external partners or commercial providers. In this work we present the proof of concept of the elastic extension of a local analysis facility, specifically the Bologna Tier-3 Grid site, for the LHC experiments hosted at the site, on an external OpenStack infrastructure. We focus on the Cloud Bursting of the Grid site using DynFarm, a newly designed tool that allows the dynamic registration of new worker nodes to LSF. In this approach, the dynamically added worker nodes instantiated on an OpenStack infrastructure are transparently accessed by the LHC Grid tools and at the same time they serve as an extension of the farm for the local usage.

  3. Mapping residual stresses in PbWO4 crystals using photo-elastic analysis

    International Nuclear Information System (INIS)

    Lebeau, M.; Gobbi, L.; Majni, G.; Paone, N.; Pietroni, P.; Rinaldi, D.

    2005-01-01

    Large scintillating crystals are affected by internal stresses induced by the crystal growth temperature gradient remanence. Cutting boules (ingots) into finished crystal shapes allows for a partial tension relaxation but residual stresses remain the main cause of breaking. Quality control of residual stresses is essential in the application of Scintillating Crystals to high-energy physics calorimeters (e.g. CMS ECAL at CERN LHC). In this context the industrial process optimisation towards stress reduction is mandatory. We propose a fast technique for testing samples during the production process in order to evaluate the residual stress distribution after the first phases of mechanical processing. We mapped the stress distribution in PbWO 4 slabs cut from the same production boule. The analysis technique is based on the stress intensity determination using the photo-elastic properties of the samples. The stress distribution is mapped in each sample. The analysis shows that there are regions of high residual tension close to the seed position and at the boule periphery. These results should allow for adapting the industrial process to producing crystals with lower residual stresses

  4. Review of structure damping values for elastic seismic analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Hashimoto, P.S.; Steele, L.K.; Johnson, J.J.; Mensing, R.W.

    1993-03-01

    Current US Nuclear Regulatory Commission guidance on structure damping values for elastic seismic design analysis of nuclear power plants are contained in Regulatory Guide 1.61 (R.G. 1.61). The objectives of the study described in this report are to investigate the adequacy of R.G1.61 structure damping values based on currently available data, and to recommend revisions to R.G. 1.61 as appropriate. Measured structure damping values, and associated structure, foundation, excitation, and input/response parameters, were collected and compiled. These data were analyzed to identify the parameters that significantly influence structure damping and to quantify structure damping in terms of these parameters. Based on this study, current R.G. 1.61 damping values for structure design are either adequate, or require only minor revision, depending on the structure material. More explicit guidance on structure damping values for seismic analysis to determine input to equipment has been prepared, along with other recommendations to improve the applicability of R.G. 1.61

  5. Determination of elastic mechanical characteristics of surface coatings from analysis of signals obtained by impulse excitation

    Science.gov (United States)

    Nyaguly, E.; Craştiu, I.; Deac, S.; Gozman-Pop, C.; Drăgănescu, G.; Bereteu, L.

    2018-01-01

    Most of the surface coatings are based on the synthetic polymers, which are substances composed from very large molecules that form tough, flexible, adhesive films when applied to surfaces. The other components of surface coverings materials are pigments that provide colour, opacity, gloss and other properties. Surface coatings are two-phase composite materials: constitute a polymer matrix on the one side, and on the other side of the pigments and additives dispersed in the matrix. Their role is not only aesthetically but also to ensure anticorrosive protection or even improve some mechanical properties of coated surfaces. In this paper it will follow, starting from the mechanical properties of the substrate, the metallic sheet in general, to determine the new properties of the assembly of substrate and the two coating layers, also the determination of mechanical properties of the layers. From the analysis of vibroacoustic signals obtained by the impulse excitation of the sample, one can determine the elasticity modulus. These results come to validate the results based on finite element analysis (FEA) of the same samples.

  6. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: An Economic Analysis.

    Science.gov (United States)

    2016-01-01

    Untreated vertebral compression fractures can have serious clinical consequences and impose a considerable impact on patients' quality of life and on caregivers. Since non-surgical management of these fractures has limited effectiveness, vertebral augmentation procedures are gaining acceptance in clinical practice for pain control and fracture stabilization. The objective of this analysis was to determine the cost-effectiveness and budgetary impact of kyphoplasty or vertebroplasty compared with non-surgical management for the treatment of vertebral compression fractures in patients with cancer. We performed a systematic review of health economic studies to identify relevant studies that compare the cost-effectiveness of kyphoplasty or vertebroplasty with non-surgical management for the treatment of vertebral compression fractures in adults with cancer. We also performed a primary cost-effectiveness analysis to assess the clinical benefits and costs of kyphoplasty or vertebroplasty compared with non-surgical management in the same population. We developed a Markov model to forecast benefits and harms of treatments, and corresponding quality-adjusted life years and costs. Clinical data and utility data were derived from published sources, while costing data were derived using Ontario administrative sources. We performed sensitivity analyses to examine the robustness of the results. In addition, a 1-year budget impact analysis was performed using data from Ontario administrative sources. Two scenarios were explored: (a) an increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario, maintaining the current proportion of kyphoplasty versus vertebroplasty; and (b) no increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario but an increase in the proportion of kyphoplasties versus vertebroplasties. The base case considered each of kyphoplasty and vertebroplasty

  7. Linear analysis using secants for materials with temperature dependent nonlinear elastic modulus and thermal expansion properties

    Science.gov (United States)

    Pepi, John W.

    2017-08-01

    Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.

  8. A renormalization group scaling analysis for compressible two-phase flow

    International Nuclear Information System (INIS)

    Chen, Y.; Deng, Y.; Glimm, J.; Li, G.; Zhang, Q.; Sharp, D.H.

    1993-01-01

    Computational solutions to the Rayleigh--Taylor fluid mixing problem, as modeled by the two-fluid two-dimensional Euler equations, are presented. Data from these solutions are analyzed from the point of view of Reynolds averaged equations, using scaling laws derived from a renormalization group analysis. The computations, carried out with the front tracking method on an Intel iPSC/860, are highly resolved and statistical convergence of ensemble averages is achieved. The computations are consistent with the experimentally observed growth rates for nearly incompressible flows. The dynamics of the interior portion of the mixing zone is simplified by the use of scaling variables. The size of the mixing zone suggests fixed-point behavior. The profile of statistical quantities within the mixing zone exhibit self-similarity under fixed-point scaling to a limited degree. The effect of compressibility is also examined. It is found that, for even moderate compressibility, the growth rates fail to satisfy universal scaling, and moreover, increase significantly with increasing compressibility. The growth rates predicted from a renormalization group fixed-point model are in a reasonable agreement with the results of the exact numerical simulations, even for flows outside of the incompressible limit

  9. Price elasticity of demand of non-cigarette tobacco products: a systematic review and meta-analysis.

    Science.gov (United States)

    Jawad, Mohammed; Lee, John Tayu; Glantz, Stanton; Millett, Christopher

    2018-01-23

    To systematically review the price elasticity of demand of non-cigarette tobacco products. Medline, Embase, EconLit and the Web of Science without language or time restrictions. Two reviewers screened title and abstracts, then full texts, independently and in duplicate. We based eligibility criteria on study design (interventional or observational), population (individuals or communities without geographic restrictions), intervention (price change) and outcome (change in demand). We abstracted data on study features, outcome measures, statistical approach, and single best own- and cross-price elasticity estimates with respect to cigarettes. We conducted a random effects meta-analysis for estimates of similar product, outcome and country income level. For other studies we reported median elasticities by product and country income level. We analysed 36 studies from 15 countries yielding 125 elasticity estimates. A 10% price increase would reduce demand by: 8.3% for cigars (95% CI 2.9 to 13.8), 6.4% for roll your owns (95% CI 4.3 to 8.4), 5.7% for bidis (95% CI 4.3 to 7.1) and 2.1% for smokeless tobacco (95% CI -0.6 to 4.8). Median price elasticities for all ten products were also negative. Results from few studies that examined cross-price elasticity suggested a positive substitution effect between cigarette and non-cigarette tobacco products. There is sufficient evidence in support of the effectiveness of price increases to reduce consumption of non-cigarette tobacco products as it is for cigarettes. Positive substitutability between cigarette and non-cigarette tobacco products suggest that tax and price increases need to be simultaneous and comparable across all tobacco products. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Structural evaluation method for class 1 vessels by using elastic-plastic finite element analysis in code case of JSME rules on design and construction

    International Nuclear Information System (INIS)

    Asada, Seiji; Hirano, Takashi; Nagata, Tetsuya; Kasahara, Naoto

    2008-01-01

    A structural evaluation method by using elastic-plastic finite element analysis has been developed and published as a code case of Rules on Design and Construction for Nuclear Power Plants (The First Part: Light Water Reactor Structural Design Standard) in the JSME Codes for Nuclear Power Generation Facilities. Its title is 'Alternative Structural Evaluation Criteria for Class 1 Vessels Based on Elastic-Plastic Finite Element Analysis' (NC-CC-005). This code case applies elastic-plastic analysis to evaluation of such failure modes as plastic collapse, thermal ratchet, fatigue and so on. Advantage of this evaluation method is free from stress classification, consistently use of Mises stress and applicability to complex 3-dimensional structures which are hard to be treated by the conventional stress classification method. The evaluation method for plastic collapse has such variation as the Lower Bound Approach Method, Twice-Elastic-Slope Method and Elastic Compensation Method. Cyclic Yield Area (CYA) based on elastic analysis is applied to screening evaluation of thermal ratchet instead of secondary stress evaluation, and elastic-plastic analysis is performed when the CYA screening criteria is not satisfied. Strain concentration factors can be directly calculated based on elastic-plastic analysis. (author)

  11. Proposal for element size and time increment selection guideline by 3-D finite element method for elastic waves propagation analysis

    International Nuclear Information System (INIS)

    Ishida, Hitoshi; Meshii, Toshiyuki

    2008-01-01

    This paper proposes a guideline for selection of element size and time increment by 3-D finite element method, which is applied to elastic wave propagation analysis for a long distance of a large structure. An element size and a time increment are determined by quantitative evaluation of strain, which must be 0 on the analysis model with a uniform motion, caused by spatial and time discretization. (author)

  12. Dynamic Response Analysis of Microflow Electrochemical Sensors with Two Types of Elastic Membrane

    Directory of Open Access Journals (Sweden)

    Qiuzhan Zhou

    2016-05-01

    Full Text Available The Molecular Electric Transducer (MET, widely applied for vibration measurement, has excellent sensitivity and dynamic response at low frequencies. The elastic membrane in the MET is a significant factor with an obvious effect on the performance of the MET in the low frequency domain and is the focus of this paper. In simulation experiments, the elastic membrane and the reaction cavity of the MET were analysed in a model based on the multiphysics finite element method. Meanwhile, the effects caused by the elastic membrane elements are verified in this paper. With the numerical simulation and practical experiments, a suitable elastic membrane can be designed for different cavity structures. Thus, the MET can exhibit the best dynamic response characteristics to measure the vibration signals. With the new method presented in this paper, it is possible to develop and optimize the characteristics of the MET effectively, and the dynamic characteristics of the MET can be improved in a thorough and systematic manner.

  13. Analysis and computation of the elastic wave equation with random coefficients

    KAUST Repository

    Motamed, Mohammad; Nobile, Fabio; Tempone, Raul

    2015-01-01

    We consider the stochastic initial-boundary value problem for the elastic wave equation with random coefficients and deterministic data. We propose a stochastic collocation method for computing statistical moments of the solution or statistics

  14. Born reflection kernel analysis and wave-equation reflection traveltime inversion in elastic media

    KAUST Repository

    Wang, Tengfei; Cheng, Jiubing

    2017-01-01

    Elastic reflection waveform inversion (ERWI) utilize the reflections to update the low and intermediate wavenumbers in the deeper part of model. However, ERWI suffers from the cycle-skipping problem due to the objective function of waveform residual

  15. In-Plane free Vibration Analysis of an Annular Disk with Point Elastic Support

    OpenAIRE

    Bashmal, S.; Bhat, R.; Rakheja, S.

    2011-01-01

    In-plane free vibrations of an elastic and isotropic annular disk with elastic constraints at the inner and outer boundaries, which are applied either along the entire periphery of the disk or at a point are investigated. The boundary characteristic orthogonal polynomials are employed in the Rayleigh-Ritz method to obtain the frequency parameters and the associated mode shapes. Boundary characteristic orthogonal polynomials are generated for the free boundary conditions of the disk while arti...

  16. On the limitations introduced by energy spread in elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Szilagyi, E.

    2001-01-01

    Improvements in experimental techniques have led to monolayer depth resolution in heavy ion elastic recoil detection analysis (HI-ERDA). Evaluation of the spectra, however, is not trivial. The spectra, using even the best experimental set-up, are subject to finite energy resolution of both extrinsic and intrinsic origin. A proper account for energy spread is necessary to extract the correct depth profile from the measured spectra. With calculation of the correct energy (or depth) resolution of a given method, one can decide in advance whether or not the method will resolve details of interest in the depth profile. To achieve the best depth resolution, it is also possible to find optimum parameters for the experiments. The limitations introduced by the energy spread effects are discussed. An example for simulation is shown for high energy resolution HI-ERDA measurements. Satisfactory agreement between the simulated and the measured HI-ERDA spectra taken by 60 MeV 127 I 23+ ions on highly oriented pyrolythic graphite (HOPG) sample is found, in spite of the non-equilibrium charge state of the recoils and the difference in the stopping powers caused by the given charge state of the incident ion and the recoil, which are not taken into account. To achieve more precise data evaluation these effects should be included in simulation codes, or all the subspectra corresponding to different recoils charge states should be measured and summed

  17. On the limitations introduced by energy spread in elastic recoil detection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, E. E-mail: szilagyi@rmki.kfki.hu

    2001-07-01

    Improvements in experimental techniques have led to monolayer depth resolution in heavy ion elastic recoil detection analysis (HI-ERDA). Evaluation of the spectra, however, is not trivial. The spectra, using even the best experimental set-up, are subject to finite energy resolution of both extrinsic and intrinsic origin. A proper account for energy spread is necessary to extract the correct depth profile from the measured spectra. With calculation of the correct energy (or depth) resolution of a given method, one can decide in advance whether or not the method will resolve details of interest in the depth profile. To achieve the best depth resolution, it is also possible to find optimum parameters for the experiments. The limitations introduced by the energy spread effects are discussed. An example for simulation is shown for high energy resolution HI-ERDA measurements. Satisfactory agreement between the simulated and the measured HI-ERDA spectra taken by 60 MeV {sup 127}I{sup 23+} ions on highly oriented pyrolythic graphite (HOPG) sample is found, in spite of the non-equilibrium charge state of the recoils and the difference in the stopping powers caused by the given charge state of the incident ion and the recoil, which are not taken into account. To achieve more precise data evaluation these effects should be included in simulation codes, or all the subspectra corresponding to different recoils charge states should be measured and summed.

  18. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nohyu; Yang, Seung Yong [School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2016-02-15

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

  19. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    International Nuclear Information System (INIS)

    Kim, Nohyu; Yang, Seung Yong

    2016-01-01

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method

  20. How can cells sense the elasticity of a substrate? An analysis using a cell tensegrity model

    Directory of Open Access Journals (Sweden)

    G De Santis

    2011-10-01

    Full Text Available A eukaryotic cell attaches and spreads on substrates, whether it is the extracellular matrix naturally produced by the cell itself, or artificial materials, such as tissue-engineered scaffolds. Attachment and spreading require the cell to apply forces in the nN range to the substrate via adhesion sites, and these forces are balanced by the elastic response of the substrate. This mechanical interaction is one determinant of cell morphology and, ultimately, cell phenotype. In this paper we use a finite element model of a cell, with a tensegrity structure to model the cytoskeleton of actin filaments and microtubules, to explore the way cells sense the stiffness of the substrate and thereby adapt to it. To support the computational results, an analytical 1D model is developed for comparison. We find that (i the tensegrity hypothesis of the cytoskeleton is sufficient to explain the matrix-elasticity sensing, (ii cell sensitivity is not constant but has a bell-shaped distribution over the physiological matrix-elasticity range, and (iii the position of the sensitivity peak over the matrix-elasticity range depends on the cytoskeletal structure and in particular on the F-actin organisation. Our model suggests that F-actin reorganisation observed in mesenchymal stem cells (MSCs in response to change of matrix elasticity is a structural-remodelling process that shifts the sensitivity peak towards the new value of matrix elasticity. This finding discloses a potential regulatory role of scaffold stiffness for cell differentiation.

  1. MODEL TESTS AND 3D ELASTIC FINITE ELEMENT ANALYSIS FOR STEEL PIPE PILES WITH WINGS IN STALLED IN SOIL CEMENT COLUMN

    Science.gov (United States)

    Tamai, Toshiyuki; Teramoto, Shuntarou; Kimura, Makoto

    Steel pipe piles with wings installed in soil cement column is a composite foundation of pile consisting of soil improvement with cement and steel pipe with wings. This type of pile shows higher vertical bearing capacity when compared to steel pipe piles that are installed without soil cement. It is thought the wings contribute to higher bearing capacity of this type of piles. The wings are also thought to play the role of structural unification of pile foundations and load transfer. In this study, model test and 3D elastic finite element analysis was carried out in order to elucidate the effect of wings on the structural unification of pile foundation and the load transfer mechanism. Firstly, the model test was carried out in order to grasp the influence of pile with and without wings, the shape of wings of the pile and the unconfined compression strength of the soil cement on the structural unification of the pile foundation. The numerical analysis of the model test was then carried out on the intermediate part of the pile foundation with wings and mathematical model developed. Finally load tran sfer mechanism was checked for the entire length of the pile through this mathematical model and the load sharing ratio of the wings and stress distribution occurring in the soil cement clarified. In addition, the effect of the wing interval on the structural unification of the pile foundation and load transfer was also checked and clarified.

  2. Pattern-based compression of multi-band image data for landscape analysis

    CERN Document Server

    Myers, Wayne L; Patil, Ganapati P

    2006-01-01

    This book describes an integrated approach to using remotely sensed data in conjunction with geographic information systems for landscape analysis. Remotely sensed data are compressed into an analytical image-map that is compatible with the most popular geographic information systems as well as freeware viewers. The approach is most effective for landscapes that exhibit a pronounced mosaic pattern of land cover. The image maps are much more compact than the original remotely sensed data, which enhances utility on the internet. As value-added products, distribution of image-maps is not affected by copyrights on original multi-band image data.

  3. pyPcazip: A PCA-based toolkit for compression and analysis of molecular simulation data

    Directory of Open Access Journals (Sweden)

    Ardita Shkurti

    2016-01-01

    Full Text Available The biomolecular simulation community is currently in need of novel and optimised software tools that can analyse and process, in reasonable timescales, the large generated amounts of molecular simulation data. In light of this, we have developed and present here pyPcazip: a suite of software tools for compression and analysis of molecular dynamics (MD simulation data. The software is compatible with trajectory file formats generated by most contemporary MD engines such as AMBER, CHARMM, GROMACS and NAMD, and is MPI parallelised to permit the efficient processing of very large datasets. pyPcazip is a Unix based open-source software (BSD licenced written in Python.

  4. Mode coupling analysis of coherent quasi-elastic neutron scattering from fluorite-type materials approaching the superionic transition

    International Nuclear Information System (INIS)

    Chaturvedi, D.K.; Tosi, M.P.

    1987-08-01

    Neutron scattering experiments on SrCl 2 , CaF 2 and PbF 2 have shown that intensity and width of the coherent diffuse quasi-elastic spectrum increase rapidly with temperature into the fast-ion conducting phase, the main feature in the integrated quasi-elastic intensity being a peak just beyond the (200) point along the (100) direction in scattering wave vector space. The Zwanzig-Mori memory function formalism is used in this work to analyze the quasi-elastic scattering cross section from charge density fluctuations in terms of anharmonic couplings between the vibrational modes of the crystal. The two- and three-mode channels are examined for compatibility with the quasi-elastic neutron scattering evidence, on the basis of (i) energy and momentum conservation and van Hove singularity arguments and (ii) measured phonon dispersion curves along the main symmetry directions in SrCl 2 , CaF 2 , SrF 2 and BaF 2 . The analysis identifies a specific microscopic role for the Raman-active optic branches. The eigenvectors of the relevant Raman-active and partner modes in the three-mode channel describe relative displacements of the two halogens in the unit cell superposed on relative displacements of the halogen and alkaline earth components. This microscopic picture is thus consistent with the superionic transition being associated with the onset of dynamic disorder in the anionic component of the crystal. (author). 13 refs, 2 tabs

  5. Estimating the price elasticity of beer: meta-analysis of data with heterogeneity, dependence, and publication bias.

    Science.gov (United States)

    Nelson, Jon P

    2014-01-01

    Precise estimates of price elasticities are important for alcohol tax policy. Using meta-analysis, this paper corrects average beer elasticities for heterogeneity, dependence, and publication selection bias. A sample of 191 estimates is obtained from 114 primary studies. Simple and weighted means are reported. Dependence is addressed by restricting number of estimates per study, author-restricted samples, and author-specific variables. Publication bias is addressed using funnel graph, trim-and-fill, and Egger's intercept model. Heterogeneity and selection bias are examined jointly in meta-regressions containing moderator variables for econometric methodology, primary data, and precision of estimates. Results for fixed- and random-effects regressions are reported. Country-specific effects and sample time periods are unimportant, but several methodology variables help explain the dispersion of estimates. In models that correct for selection bias and heterogeneity, the average beer price elasticity is about -0.20, which is less elastic by 50% compared to values commonly used in alcohol tax policy simulations. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Strain fluctuations and elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1982-03-01

    It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.

  7. A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods

    Energy Technology Data Exchange (ETDEWEB)

    Petitpas, G [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benard, P [Universite du Quebec a Trois-Rivieres (Canada); Klebanoff, L E [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Xiao, J [Universite du Quebec a Trois-Rivieres (Canada); Aceves, S M [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-07-01

    While conventional low-pressure LH₂ dewars have existed for decades, advanced methods of cryogenic hydrogen storage have recently been developed. These advanced methods are cryo-compression and cryo-adsorption hydrogen storage, which operate best in the temperature range 30–100 K. We present a comparative analysis of both approaches for cryogenic hydrogen storage, examining how pressure and/or sorbent materials are used to effectively increase onboard H₂ density and dormancy. We start by reviewing some basic aspects of LH₂ properties and conventional means of storing it. From there we describe the cryo-compression and cryo-adsorption hydrogen storage methods, and then explore the relationship between them, clarifying the materials science and physics of the two approaches in trying to solve the same hydrogen storage task (~5–8 kg H₂, typical of light duty vehicles). Assuming that the balance of plant and the available volume for the storage system in the vehicle are identical for both approaches, the comparison focuses on how the respective storage capacities, vessel weight and dormancy vary as a function of temperature, pressure and type of cryo-adsorption material (especially, powder MOF-5 and MIL-101). By performing a comparative analysis, we clarify the science of each approach individually, identify the regimes where the attributes of each can be maximized, elucidate the properties of these systems during refueling, and probe the possible benefits of a combined “hybrid” system with both cryo-adsorption and cryo-compression phenomena operating at the same time. In addition the relationships found between onboard H₂ capacity, pressure vessel and/or sorbent mass and dormancy as a function of rated pressure, type of sorbent material and fueling conditions are useful as general designing guidelines in future engineering efforts using these two hydrogen storage approaches.

  8. A meta-analysis of the price elasticity of gasoline demand. A SUR approach

    Energy Technology Data Exchange (ETDEWEB)

    Brons, Martijn; Rietveld, Piet [Department of Spatial Economics, Vrije Universiteit, De Boelelaan 1105, 1081 HV Amsterdam (Netherlands); Tinbergen Institute Amsterdam (TIA), Roetersstraat 31, 1018 WB Amsterdam (Netherlands); Nijkamp, Peter [Department of Spatial Economics, Vrije Universiteit, De Boelelaan 1105, 1081 HV Amsterdam (Netherlands); Tinbergen Institute Amsterdam (TIA), Roetersstraat 31, 1018 WB Amsterdam (Netherlands); The Netherlands Organisation of Scientific Research (NWO), postbus 93138 - 2509 AC Den Haag (Netherlands); Pels, Eric [Department of Spatial Economics, Vrije Universiteit, De Boelelaan 1105, 1081 HV Amsterdam (Netherlands)

    2008-09-15

    Automobile gasoline demand can be expressed as a multiplicative function of fuel efficiency, mileage per car and car ownership. This implies a linear relationship between the price elasticity of total fuel demand and the price elasticities of fuel efficiency, mileage per car and car ownership. In this meta-analytical study we aim to investigate and explain the variation in empirical estimates of the price elasticity of gasoline demand. A methodological novelty is that we use the linear relationship between the elasticities to develop a meta-analytical estimation approach based on a Seemingly Unrelated Regression (SUR) model with Cross Equation Restrictions. This approach enables us to combine observations of different elasticities and thus increase our sample size. Furthermore, it allows for a more detailed interpretation of our meta-regression results. The empirical results of the study demonstrate that the SUR approach leads to more precise results (i.e., lower standard errors) than a standard meta-analytical approach. We find that, with mean short run and long run price elasticities of - 0.34 and - 0.84, respectively, the demand for gasoline is not very price sensitive. Both in the short and the long run, the impact of a change in the gasoline price on demand is mainly driven by responses in fuel efficiency and mileage per car and to a slightly lesser degree by changes in car ownership. Furthermore, we find that study characteristics relating to the geographic area studied, the year of the study, the type of data used, the time horizon and the functional specification of the demand equation have a significant impact on the estimated value of the price elasticity of gasoline demand. (author)

  9. A meta-analysis of the price elasticity of gasoline demand. A SUR approach

    International Nuclear Information System (INIS)

    Brons, Martijn; Rietveld, Piet; Nijkamp, Peter; Pels, Eric

    2008-01-01

    Automobile gasoline demand can be expressed as a multiplicative function of fuel efficiency, mileage per car and car ownership. This implies a linear relationship between the price elasticity of total fuel demand and the price elasticities of fuel efficiency, mileage per car and car ownership. In this meta-analytical study we aim to investigate and explain the variation in empirical estimates of the price elasticity of gasoline demand. A methodological novelty is that we use the linear relationship between the elasticities to develop a meta-analytical estimation approach based on a Seemingly Unrelated Regression (SUR) model with Cross Equation Restrictions. This approach enables us to combine observations of different elasticities and thus increase our sample size. Furthermore, it allows for a more detailed interpretation of our meta-regression results. The empirical results of the study demonstrate that the SUR approach leads to more precise results (i.e., lower standard errors) than a standard meta-analytical approach. We find that, with mean short run and long run price elasticities of - 0.34 and - 0.84, respectively, the demand for gasoline is not very price sensitive. Both in the short and the long run, the impact of a change in the gasoline price on demand is mainly driven by responses in fuel efficiency and mileage per car and to a slightly lesser degree by changes in car ownership. Furthermore, we find that study characteristics relating to the geographic area studied, the year of the study, the type of data used, the time horizon and the functional specification of the demand equation have a significant impact on the estimated value of the price elasticity of gasoline demand. (author)

  10. Thermo-Elastic Analysis of Internally Cooled Structures Using a Higher Order Theory

    Science.gov (United States)

    Arnold, Steven M.; Bednarcyk, Brett A.; Aboudi, Jacob

    2001-01-01

    This paper presents the results of a study on the thermomechanical behavior of internally cooled silicon nitride structures. Silicon nitride is under consideration for elevated temperature aerospace engine applications. and techniques for lowering the operating temperature of structures composed of this material are under development. Lowering the operating temperature provides a large payoff in terms of fatigue life and may be accomplished through the use of thermal barrier coatings (TBC's) and the novel concept of included cooling channels. Herein, an in-depth study is performed on the behavior of a flame-impinged silicon nitride plate with a TBC and internal channels cooled by forced air. The analysis is performed using the higher order theory for functionally graded materials (HOTFGM), which has been developed through NASA Glenn Research Center funding over the past several years. HOTFGM was chosen over the traditional finite element approach as a prelude to an examination of functionally graded silicon nitride structures for which HOTFGM is ideally suited. To accommodate the analysis requirement% of the internally cooled plate problem, two crucial enhancements were made to the two-dimensional Cartesian-based version of HOTFGM. namely, incorporation of internal boundary capabilities and incorporation of convective boundary conditions. Results indicate the viability and large benefits of cooling the plate via forced air through cooling channels. Furthermore, cooling can positively impact the stress and displacement fields present in the plate, yielding an additional payoff in terms of fatigue life. Finally, a spin-off capability resulted from inclusion of internal boundaries within HOTFGM; the ability to simulate the thermo-elastic response of structures with curved surfaces. This new capability is demonstrated, and through comparison with an analytical solution, shown to be viable and accurate.

  11. Buckling analysis for axially compressed flat plates, structural sections, and stiffened plates reinforced with laminated composites

    Science.gov (United States)

    Viswanathan, A. V.; Soong, T.; Miller, R. E., Jr.

    1971-01-01

    A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked plate and beam elements. Plates are idealized as multilayered orthotropic elements. Structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply-supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections, and stiffened plates is investigated. Buckling loads are the lowest of all possible general and local failure modes, and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections, and stiffened plates including boron-reinforced structures are discussed. In general correlations are reasonably good.

  12. Neural Network for Principal Component Analysis with Applications in Image Compression

    Directory of Open Access Journals (Sweden)

    Luminita State

    2007-04-01

    Full Text Available Classical feature extraction and data projection methods have been extensively investigated in the pattern recognition and exploratory data analysis literature. Feature extraction and multivariate data projection allow avoiding the "curse of dimensionality", improve the generalization ability of classifiers and significantly reduce the computational requirements of pattern classifiers. During the past decade a large number of artificial neural networks and learning algorithms have been proposed for solving feature extraction problems, most of them being adaptive in nature and well-suited for many real environments where adaptive approach is required. Principal Component Analysis, also called Karhunen-Loeve transform is a well-known statistical method for feature extraction, data compression and multivariate data projection and so far it has been broadly used in a large series of signal and image processing, pattern recognition and data analysis applications.

  13. Economic analysis of the water demand in the hotels and restaurants sector: Shadow prices and elasticities

    Science.gov (United States)

    Angulo, Ana; Atwi, Majed; Barberán, Ramón; Mur, Jesús

    2014-08-01

    Despite the growing economic importance of tourism, and its impact on relative water shortage, little is known about the role that water plays in the productive process of hotels and restaurants and, therefore, the possible implications of water demand management policy for this sector. This study aims to fill this gap. It is based on the microdata of 676 firms in the sector, operating in the city of Zaragoza (Spain) for a 12 year period. Based on the Translog cost function, we estimate the shadow price of water in the short run and, from a long-run perspective, its direct price elasticity, its cross elasticities relative to labor, capital, and supplies, and its elasticity with respect to the level of output. The results obtained show that water provides sector firms returns that are on average higher than its price, although in the case of hotels the margin is really narrow. This situation provides policy makers with a margin for applying price increases without affecting the sector's viability, with some caution in the case of hotels. Water demand elasticity equals -0.38 in the case of hotels, but it is not significant in the case of restaurants and bar-cafes; hence, only in hotels is there potential for influencing water use patterns, encouraging the resource's conservation through pricing policy. Moreover, capital is a substitutive factor of water, and the elasticity of water with respect to output is 0.40, all of which should also be considered by policy makers in water resource management.

  14. Study on elastic-plastic behaviour of inclusions in cold drawn wire by using reverse analysis and nanoindentation test

    Directory of Open Access Journals (Sweden)

    Lee Kyung-Hun

    2015-01-01

    Full Text Available The purpose of this study is to investigate the elastic-plastic behavior of inclusions, i.e. SiO2 particles, in cold drawn wire using reverse analysis and nanoindentation test. First, the nanoindentation tests were performed to obtain indentation load P – penetration depth h curves. Second, the reverse analysis which is consisted of various dimensionless functions including change in E∗/σr, Wp/Wt and n was used to extract the elastic-plastic properties of the indented inclusions and metals from indentation responses. To verify the accuracy of calculated properties, uniaxial tensile tests were performed for different materials which are AISI 1045 and AISI 1080. Results (E, σy, n of tensile tests for each material were also compared with those of nanoindentation tests.

  15. An investigation of elastic-plastic seismic analysis of piping systems under high level of earthquake motion

    International Nuclear Information System (INIS)

    Liu, T.H.; Patel, R.B.; Condrac, R.

    1993-01-01

    The current design by rules of the ASME Section III Code for the nuclear power plant piping system is principally based on the elastic design concept Such design often results in a more rigid piping system, structurally, that may not be so desirable from the viewpoint of long term plant operation. The so called 'elastic design' approach has failed to utilize the ductility that steel pipe exhibits, and therefore, the resulting system maintains a great deal of reserve margin in seismic design. This study does not attempt to assess the amount of this reserve margin but provides some findings and discussions with respect to dynamic inelastic analysis results in the piping system design. Using a test correlation analysis it was found that, while the analytical tools that exist are conservative for low strain levels, further studies with loadings at high strain levels are recommended for a more reasonable design. (author)

  16. Elasticity theory and applications

    CERN Document Server

    Saada, Adel S; Hartnett, James P; Hughes, William F

    2013-01-01

    Elasticity: Theory and Applications reviews the theory and applications of elasticity. The book is divided into three parts. The first part is concerned with the kinematics of continuous media; the second part focuses on the analysis of stress; and the third part considers the theory of elasticity and its applications to engineering problems. This book consists of 18 chapters; the first of which deals with the kinematics of continuous media. The basic definitions and the operations of matrix algebra are presented in the next chapter, followed by a discussion on the linear transformation of points. The study of finite and linear strains gradually introduces the reader to the tensor concept. Orthogonal curvilinear coordinates are examined in detail, along with the similarities between stress and strain. The chapters that follow cover torsion; the three-dimensional theory of linear elasticity and the requirements for the solution of elasticity problems; the method of potentials; and topics related to cylinders, ...

  17. Understanding deformation mechanisms during powder compaction using principal component analysis of compression data.

    Science.gov (United States)

    Roopwani, Rahul; Buckner, Ira S

    2011-10-14

    Principal component analysis (PCA) was applied to pharmaceutical powder compaction. A solid fraction parameter (SF(c/d)) and a mechanical work parameter (W(c/d)) representing irreversible compression behavior were determined as functions of applied load. Multivariate analysis of the compression data was carried out using PCA. The first principal component (PC1) showed loadings for the solid fraction and work values that agreed with changes in the relative significance of plastic deformation to consolidation at different pressures. The PC1 scores showed the same rank order as the relative plasticity ranking derived from the literature for common pharmaceutical materials. The utility of PC1 in understanding deformation was extended to binary mixtures using a subset of the original materials. Combinations of brittle and plastic materials were characterized using the PCA method. The relationships between PC1 scores and the weight fractions of the mixtures were typically linear showing ideal mixing in their deformation behaviors. The mixture consisting of two plastic materials was the only combination to show a consistent positive deviation from ideality. The application of PCA to solid fraction and mechanical work data appears to be an effective means of predicting deformation behavior during compaction of simple powder mixtures. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Understanding compressive deformation behavior of porous Ti using finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Sandipan; Khutia, Niloy [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur (India); Das, Debdulal [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur (India); Das, Mitun, E-mail: mitun@cgcri.res.in [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Balla, Vamsi Krishna [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Bandyopadhyay, Amit [W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States); Chowdhury, Amit Roy, E-mail: arcbesu@gmail.com [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur (India)

    2016-07-01

    In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples. - Highlights: • Porous CP-Ti samples fabricated using additive manufacturing technique • Compressive deformation behavior of porous samples closely matches with micro-CT and RVE based analysis • In vitro studies showed better cell proliferation with time on porous CP-Ti surfaces.

  19. Understanding compressive deformation behavior of porous Ti using finite element analysis

    International Nuclear Information System (INIS)

    Roy, Sandipan; Khutia, Niloy; Das, Debdulal; Das, Mitun; Balla, Vamsi Krishna; Bandyopadhyay, Amit; Chowdhury, Amit Roy

    2016-01-01

    In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples. - Highlights: • Porous CP-Ti samples fabricated using additive manufacturing technique • Compressive deformation behavior of porous samples closely matches with micro-CT and RVE based analysis • In vitro studies showed better cell proliferation with time on porous CP-Ti surfaces

  20. Biomechanical Property of a Newly Designed Assembly Locking Compression Plate: Three-Dimensional Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Jiang-Jun Zhou

    2017-01-01

    Full Text Available In this study, we developed and validated a refined three-dimensional finite element model of middle femoral comminuted fracture to compare the biomechanical stability after two kinds of plate fixation: a newly designed assembly locking compression plate (NALCP and a locking compression plate (LCP. CT data of a male volunteer was converted to middle femoral comminuted fracture finite element analysis model. The fracture was fixated by NALCP and LCP. Stress distributions were observed. Under slow walking load and torsion load, the stress distribution tendency of the two plates was roughly uniform. The anterolateral femur was the tension stress area, and the bone block shifted toward the anterolateral femur. Maximum stress was found on the lateral border of the number 5 countersink of the plate. Under a slow walking load, the NALCP maximum stress was 2.160e+03 MPa and the LCP was 8.561e+02 MPa. Under torsion load, the NALCP maximum stress was 2.260e+03 MPa and the LCP was 6.813e+02 MPa. Based on those results of finite element analysis, the NALCP can provide adequate mechanical stability for comminuted fractures, which would help fixate the bone block and promote bone healing.

  1. [Particle Size and Number Density Online Analysis for Particle Suspension with Polarization-Differentiation Elastic Light Scattering Spectroscopy].

    Science.gov (United States)

    Chen, Wei-kang; Fang, Hui

    2016-03-01

    The basic principle of polarization-differentiation elastic light scattering spectroscopy based techniques is that under the linear polarized light incidence, the singlely scattered light from the superficial biological tissue and diffusively scattered light from the deep tissue can be separated according to the difference of polarization characteristics. The novel point of the paper is to apply this method to the detection of particle suspension and, to realize the simultaneous measurement of its particle size and number density in its natural status. We design and build a coaxial cage optical system, and measure the backscatter signal at a specified angle from a polystyrene microsphere suspension. By controlling the polarization direction of incident light with a linear polarizer and adjusting the polarization direction of collected light with another linear polarizer, we obtain the parallel polarized elastic light scattering spectrum and cross polarized elastic light scattering spectrum. The difference between the two is the differential polarized elastic light scattering spectrum which include only the single scattering information of the particles. We thus compare this spectrum to the Mie scattering calculation and extract the particle size. We then also analyze the cross polarized elastic light scattering spectrum by applying the particle size already extracted. The analysis is based on the approximate expressions taking account of light diffusing, from which we are able to obtain the number density of the particle suspension. We compare our experimental outcomes with the manufacturer-provided values and further analyze the influence of the particle diameter standard deviation on the number density extraction, by which we finally verify the experimental method. The potential applications of the method include the on-line particle quality monitoring for particle manufacture as well as the fat and protein density detection of milk products.

  2. Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies. PART II - numerical realization, limit analysis

    Czech Academy of Sciences Publication Activity Database

    Čermák, M.; Haslinger, Jaroslav; Kozubek, T.; Sysala, Stanislav

    2015-01-01

    Roč. 95, č. 12 (2015), s. 1348-1371 ISSN 0044-2267 R&D Projects: GA ČR GA13-18652S Institutional support: RVO:68145535 Keywords : frictionless contact * alternating direction method of multipliers * limit load analysis * elastic-perfect analplasticity Subject RIV: BA - General Mathematics Impact factor: 1.293, year: 2015 http://onlinelibrary.wiley.com/doi/10.1002/zamm.201400069/epdf

  3. Experimental determination of third-order elastic constants of diamond.

    Science.gov (United States)

    Lang, J M; Gupta, Y M

    2011-03-25

    To determine the nonlinear elastic response of diamond, single crystals were shock compressed along the [100], [110], and [111] orientations to 120 GPa peak elastic stresses. Particle velocity histories and elastic wave velocities were measured by using laser interferometry. The measured elastic wave profiles were used, in combination with published acoustic measurements, to determine the complete set of third-order elastic constants. These constants represent the first experimental determination, and several differ significantly from those calculated by using theoretical models.

  4. Quantitative analysis of the energy distributions of electrons backscattered elastically from polyethylene

    International Nuclear Information System (INIS)

    Tőkési, K.; Varga, D.; Berényi, Z.

    2015-01-01

    We present results of theoretical and experimental studies of the spectra of electrons backscattered elastically from polyethylene in the primary energy range between 1 and 5 keV. The experiments were performed using a high energy resolution electron spectroscopy. The theoretical interpretation is based on a Monte Carlo simulation of the recoil and Doppler effects. The separation between the carbon and hydrogen peak in the energy distributions is shown as a function of the primary electron energy. The simulations give many partial distributions separately, depending on the number of elastic scatterings (single, and multiple scatterings of different types). We show our results for intensity ratios, peak shifts and broadenings. We also present detailed analytical calculations for the main parameters of a single scattering. Finally, we present a qualitative comparison with the experimental data. We find our resulting energy distribution of elastically scattered electrons to be in good agreement with our measurements

  5. Modeling and analysis of waves in a heat conducting thermo-elastic plate of elliptical shape

    Directory of Open Access Journals (Sweden)

    R. Selvamani

    Full Text Available Wave propagation in heat conducting thermo elastic plate of elliptical cross-section is studied using the Fourier expansion collocation method based on Suhubi's generalized theory. The equations of motion based on two-dimensional theory of elasticity is applied under the plane strain assumption of generalized thermo elastic plate of elliptical cross-sections composed of homogeneous isotropic material. The frequency equations are obtained by using the boundary conditions along outer and inner surface of elliptical cross-sectional plate using Fourier expansion collocation method. The computed non-dimensional frequency, velocity and quality factor are plotted in dispersion curves for longitudinal and flexural (symmetric and antisymmetric modes of vibrations.

  6. Free vibration analysis of elastic structures submerged in an infinite or semi-infinite fluid domain by means of a coupled FE-BE solver

    Science.gov (United States)

    Zheng, Chang-Jun; Bi, Chuan-Xing; Zhang, Chuanzeng; Gao, Hai-Feng; Chen, Hai-Bo

    2018-04-01

    The vibration behavior of thin elastic structures can be noticeably influenced by the surrounding water, which represents a kind of heavy fluid. Since the feedback of the acoustic pressure onto the structure cannot be neglected in this case, a strong coupled scheme between the structural and fluid domains is usually required. In this work, a coupled finite element and boundary element (FE-BE) solver is developed for the free vibration analysis of structures submerged in an infinite fluid domain or a semi-infinite fluid domain with a free water surface. The structure is modeled by the finite element method (FEM). The compressibility of the fluid is taken into account, and hence the Helmholtz equation serves as the governing equation of the fluid domain. The boundary element method (BEM) is employed to model the fluid domain, and a boundary integral formulation with a half-space fundamental solution is used to satisfy the Dirichlet boundary condition on the free water surface exactly. The resulting nonlinear eigenvalue problem (NEVP) is converted into a small linear one by using a contour integral method. Adequate modifications are suggested to improve the efficiency of the contour integral method and avoid missing the eigenfrequencies of interest. The Burton-Miller method is used to filter out the fictitious eigenfrequencies of the boundary integral formulations. Numerical examples are given to demonstrate the accuracy and applicability of the developed eigensolver, and also show that the fluid-loading effect strongly depends on both the water depth and the mode shapes.

  7. In vitro comparative analysis of resistance to compression of laboratory resin composites and a ceramic system

    Directory of Open Access Journals (Sweden)

    Montenegro Alexandre

    2010-01-01

    Full Text Available Background: Restorative materials must be capable not only of restoring the patient′s masticatory function, but also to rescue the self-esteem of those maculated by a disharmonious smile. Among the esthetic materials available on the market, the choice frequently lies between ceramic or indirect laboratory resin restorations. Aim: This study assessed the resistance to compression of two laboratory resins found on the market, namely Artglass ® and Targis ® , considering Omega 900 ® ceramic from Vita as control. Materials and Methods: With the aid of stainless steel matrices, with internal dimensions of 8.0 mm diameter at the base, 9.0 mm in the top portion and 4.0 mm height, 15 test specimens were made, being 5 of each material to be tested. The test specimens were kept in distilled water for 72 hours and submitted to an axial load by the action of a point with a rounded tip 2 mm in diameter, adapted to an EMIC 500 universal test machine. The compression speed was 0.5 mm/min, with a load cell capacity of 200 Kgf. Results: The means of the results were calculated in kilogram-force (Kgf. The results found were treated by analysis of variance (ANOVA and the differences found among the groups were identified by the Tukey test (5%. Conclusion: It was observed that the material Omega 900 ® offered significantly greater resistance to compression than the other two materials, which did not present statistically significant difference between them.

  8. Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations

    International Nuclear Information System (INIS)

    Hartmann, Niklas; Vöhringer, O.; Kruck, C.; Eltrop, L.

    2012-01-01

    Highlights: ► We modeled several configurations of an adiabatic Compressed Air Energy Storage (CAES) plant. ► We analyzed changes in efficiency of these configurations under varying operating conditions. ► The efficiency of the adiabatic CAES plant can reach about 70% for the isentropic configuration. ► In the polytropic case, the efficiency is about 10% lower (at about 60%) than in the isentropic configuration. ► The efficiency is highest for a two-stage CAES configuration and highly dependent on the cooling and heating demand. - Abstract: In this paper, the efficiency of one full charging and discharging cycle of several adiabatic Compressed Air Energy Storage (CAES) configurations are analyzed with the help of an energy balance. In the second step main driving factors for the efficiency of the CAES configurations are examined with the help of sensitivity analysis. The results show that the efficiency of the polytropic configuration is about 60%, which is considerable lower than literature values of an adiabatic CAES of about 70%. The high value of 70% is only reached for the isentropic (ideal) configuration. Key element to improve the efficiency is to develop high temperature thermal storages (>600 °C) and temperature resistant materials for compressors. The highest efficiency is delivered by the two-stage adiabatic CAES configuration. In this case the efficiency varies between 52% and 62%, depending on the cooling and heating demand. If the cooling is achieved by natural sources (such as a river), a realistic estimation of the efficiency of adiabatic Compressed Air Energy Storages (without any greenhouse gas emissions due to fuel consumption) is about 60%.

  9. Elastic recoil detection analysis for the determination of hydrogen concentration profiles in switchable mirrors

    International Nuclear Information System (INIS)

    Huisman, M.C.; Molen, S.J. van der; Vis, R.D.

    1999-01-01

    Switchable mirrors [J.N. Huiberts, R. Griessen, J.H. Rector, R.J. Wijngaarden, J.P. Dekker, D.G. de Groot, N.J. Koeman, Nature 380 (1996) 231; J.N Huiberts, J.H. Rector, R.J. Wijngaarden, S. Jetten, D. de Groot, B. Dam, N.J.. Koeman, R. Griessen, B. Hjoervarsson, S Olafsson, Y.S. Cho, J. Alloys and Compounds 239 (1996) 158; F.J.A. den Broeder, S.J. van der Molen, M. Kremers, J. N. Huiberts, D.G. Nagengast, A.T.M. van Gogh, W.H. Huisman, N. J. Koeman, B. Dam, J.H. Rector, S. Plota, M. Haaksma, R.M.N. Hanzen, R.M. Jungblut, P.A. Duine, R. Griessen, Nature 394 (1998) 656] made of thin films of Y, La or rare-earth (RE) metals exhibit spectacular changes in their optical and electrical properties upon hydrogen loading. The study of these materials has indicated that the occurring phenomena are highly sensitive to the actual hydrogen concentration in these materials. In this paper elastic recoil detection analysis (ERDA) is used as a tool to measure hydrogen concentrations on a micrometer scale. The measurements have been performed using a 4 He 2+ ion beam from a 1.7 MV Pelletron accelerator. The ion beam can be focused routinely to a spot size of approximately 10 μm 2 . The experimental set-up enables the simultaneous measurement of Rutherford backscattering spectrometry (RBS) as well as particle induced X-ray emission (PIXE) spectra, which provide complementary information. The results of ERDA measurements on laterally diffused YH x (0< x<3) samples with a qualitatively known hydrogen concentration profile are presented and discussed. The calibration of the microbeam set-up and possible improvement of the measurement technique are described

  10. Elastic recoil detection analysis for the determination of hydrogen concentration profiles in switchable mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Huisman, M.C. E-mail: huisman@nat.vu.nl; Molen, S.J. van der; Vis, R.D

    1999-09-02

    Switchable mirrors [J.N. Huiberts, R. Griessen, J.H. Rector, R.J. Wijngaarden, J.P. Dekker, D.G. de Groot, N.J. Koeman, Nature 380 (1996) 231; J.N Huiberts, J.H. Rector, R.J. Wijngaarden, S. Jetten, D. de Groot, B. Dam, N.J.. Koeman, R. Griessen, B. Hjoervarsson, S Olafsson, Y.S. Cho, J. Alloys and Compounds 239 (1996) 158; F.J.A. den Broeder, S.J. van der Molen, M. Kremers, J. N. Huiberts, D.G. Nagengast, A.T.M. van Gogh, W.H. Huisman, N. J. Koeman, B. Dam, J.H. Rector, S. Plota, M. Haaksma, R.M.N. Hanzen, R.M. Jungblut, P.A. Duine, R. Griessen, Nature 394 (1998) 656] made of thin films of Y, La or rare-earth (RE) metals exhibit spectacular changes in their optical and electrical properties upon hydrogen loading. The study of these materials has indicated that the occurring phenomena are highly sensitive to the actual hydrogen concentration in these materials. In this paper elastic recoil detection analysis (ERDA) is used as a tool to measure hydrogen concentrations on a micrometer scale. The measurements have been performed using a {sup 4}He{sup 2+} ion beam from a 1.7 MV Pelletron accelerator. The ion beam can be focused routinely to a spot size of approximately 10 {mu}m{sup 2}. The experimental set-up enables the simultaneous measurement of Rutherford backscattering spectrometry (RBS) as well as particle induced X-ray emission (PIXE) spectra, which provide complementary information. The results of ERDA measurements on laterally diffused YH{sub x} (0

  11. Processing Maple Syrup with a Vapor Compression Distiller: An Economic Analysis

    Science.gov (United States)

    Lawrence D. Garrett

    1977-01-01

    A test of vapor compression distillers for processing maple syrup revealed that: (1) vapor compression equipment tested evaporated 1 pound of water with .047 pounds of steam equivalent (electrical energy); open-pan evaporators of similar capacity required 1.5 pounds of steam equivalent (oil energy) to produce 1 pound of water; (2) vapor compression evaporation produced...

  12. Cement Leakage in Percutaneous Vertebral Augmentation for Osteoporotic Vertebral Compression Fractures: Analysis of Risk Factors.

    Science.gov (United States)

    Xie, Weixing; Jin, Daxiang; Ma, Hui; Ding, Jinyong; Xu, Jixi; Zhang, Shuncong; Liang, De

    2016-05-01

    The risk factors for cement leakage were retrospectively reviewed in 192 patients who underwent percutaneous vertebral augmentation (PVA). To discuss the factors related to the cement leakage in PVA procedure for the treatment of osteoporotic vertebral compression fractures. PVA is widely applied for the treatment of osteoporotic vertebral fractures. Cement leakage is a major complication of this procedure. The risk factors for cement leakage were controversial. A retrospective review of 192 patients who underwent PVA was conducted. The following data were recorded: age, sex, bone density, number of fractured vertebrae before surgery, number of treated vertebrae, severity of the treated vertebrae, operative approach, volume of injected bone cement, preoperative vertebral compression ratio, preoperative local kyphosis angle, intraosseous clefts, preoperative vertebral cortical bone defect, and ratio and type of cement leakage. To study the correlation between each factor and cement leakage ratio, bivariate regression analysis was employed to perform univariate analysis, whereas multivariate linear regression analysis was employed to perform multivariate analysis. The study included 192 patients (282 treated vertebrae), and cement leakage occurred in 100 vertebrae (35.46%). The vertebrae with preoperative cortical bone defects generally exhibited higher cement leakage ratio, and the leakage is typically type C. Vertebrae with intact cortical bones before the procedure tend to experience type S leakage. Univariate analysis showed that patient age, bone density, number of fractured vertebrae before surgery, and vertebral cortical bone were associated with cement leakage ratio (Pcement leakage are bone density and vertebral cortical bone defect, with standardized partial regression coefficients of -0.085 and 0.144, respectively. High bone density and vertebral cortical bone defect are independent risk factors associated with bone cement leakage.

  13. The analysis of the elastic scattering of 11Be and 6Li by adiabatic approximation

    International Nuclear Information System (INIS)

    Takagi, S.

    2000-01-01

    The unstable nuclei, particularly, the neutron halo nuclei which exist near by the neutron dripline, are recently one of the interesting topics in the nuclear physics. By the adiabatic approximation, R. C. Jhonson et al. have reproduced the experimental differential cross-section of the elastic scattering of the neutron halo nucleus 11 Be (+ l2 C) [1]. We have applied their method to the elastic scattering of another nucleus 6 Li which is not a halo nucleus but has the cluster structure as 11 Be. But it couldn't reproduce the experimental data, so that the method of Johnson et al. is poor in the case of 6 Li. (author)

  14. Electricity consumption in G7 countries: A panel cointegration analysis of residential demand elasticities

    International Nuclear Information System (INIS)

    Narayan, Paresh Kumar; Smyth, Russell; Prasad, Arti

    2007-01-01

    This article applies recently developed panel unit root and panel cointegration techniques to estimate the long-run and short-run income and price elasticities for residential demand for electricity in G7 countries. The panel results indicate that in the long-run residential demand for electricity is price elastic and income inelastic. The study concludes that from an environmental perspective there is potential to use pricing policies in the G7 countries to curtail residential electricity demand, and thus curb carbon emissions, in the long run. (author)

  15. Analysis of elastic scattering in anti pp interactions at 22.4 Gev/c

    International Nuclear Information System (INIS)

    Batyunya, E.V.; Boguslavskij, I.V.; Bruntsko, D.

    1985-01-01

    Results are presented on measuring the anti pp elastic scattering differential cross section at 22.4 GeV/c over a region of 0.05 2 . The results have been obtained from pictures of the HBC ''Ludmila''. The total elastic cross section σsub(el)=9.0+-0.3 mb and the slope parameter b(s, t=0)=13.1+-0.8 GeVsup(-2) have been found from the data approximated by a quadratic exponential function. The results are compared with the data at similar energies

  16. ELASTICITY of SHORT FIBRE REINFORCED POLYAMIDE: MORPHOLOGICAL AND NUMERICAl ANALYSIS OF FIBRE ORIENTATION EFFECTS

    Directory of Open Access Journals (Sweden)

    Francesca Cosmi

    2010-10-01

    Full Text Available The fatigue behaviour of injection moulded short fibre reinforced polymers depends upon fibre orientation, as shown in experiments conducted with notched specimens injected through different injection gates. The different fatigue behaviour is mainly related to the different local elastic properties, as determined by the different fibre orientation patterns, resulting into different strain distributions. In order to quantify the relationship between fibre orientation and elastic constants, the Cell Method was applied to volumes extracted from the specimens, reconstructed by micro-tomography.

  17. Phase-shift analysis in pion-/sup 4/He elastic scattering. [60 to 260 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Falomkin, I V; Nichitiu, F; Sapozhnikov, M G; Shcherbakov, YU A [Joint Inst. for Nuclear Research, Dubna (USSR); Balestra, F; Bollini, E [Turin Univ. (Italy). Istituto di Fisica

    1978-02-21

    An energy-independent phase-shift analysis (PSA) of the elastic scattering of pions on /sup 4/He, in the energy range 60 to 260 MeV has been performed. All possible solutions, arising from the phase-shift analysis ambiguity, have been analyzed. Particular care has been taken in the choice of the physical solution. The calculated phase shifts have been compared with the results of the energy-dependent phase-shift analysis (EDPSA) and with the optical-model predictions.

  18. Analysis of the Thermo-Elastic Response of Space Reflectors to Simulated Space Environment

    Science.gov (United States)

    Allegri, G.; Ivagnes, M. M.; Marchetti, M.; Poscente, F.

    2002-01-01

    The evaluation of space environment effects on materials and structures is a key matter to develop a proper design of long duration missions: since a large part of satellites operating in the earth orbital environment are employed for telecommunications, the development of space antennas and reflectors featured by high dimensional stability versus space environment interactions represents a major challenge for designers. The structural layout of state of the art space antennas and reflectors is very complex, since several different sensible elements and materials are employed: particular care must be placed in evaluating the actual geometrical configuration of the reflectors operating in the space environment, since very limited distortions of the designed layout can produce severe effects on the quality of the signal both received and transmitted, especially for antennas operating at high frequencies. The effects of thermal loads due to direct sunlight exposition and to earth and moon albedo can be easily taken into account employing the standard methods of structural analysis: on the other hand the thermal cycling and the exposition to the vacuum environment produce a long term damage accumulation which affects the whole structure. The typical effects of the just mentioned exposition are the outgassing of polymeric materials and the contamination of the exposed surface, which can affect sensibly the thermo-mechanical properties of the materials themselves and, therefore, the structural global response. The main aim of the present paper is to evaluate the synergistic effects of thermal cycling and of the exposition to high vacuum environment on an innovative antenna developed by Alenia Spazio S.p.a.: to this purpose, both an experimental and numerical research activity has been developed. A complete prototype of the antenna has been exposed to the space environment simulated by the SAS facility: this latter is constituted by an high vacuum chamber, equipped by

  19. High-speed video analysis improves the accuracy of spinal cord compression measurement in a mouse contusion model.

    Science.gov (United States)

    Fournely, Marion; Petit, Yvan; Wagnac, Éric; Laurin, Jérôme; Callot, Virginie; Arnoux, Pierre-Jean

    2018-01-01

    Animal models of spinal cord injuries aim to utilize controlled and reproducible conditions. However, a literature review reveals that mouse contusion studies using equivalent protocols may show large disparities in the observed impact force vs. cord compression relationship. The overall purpose of this study was to investigate possible sources of bias in these measurements. The specific objective was to improve spinal cord compression measurements using a video-based setup to detect the impactor-spinal cord time-to-contact. A force-controlled 30kDyn unilateral contusion at C4 vertebral level was performed in six mice with the Infinite Horizon impactor (IH). High-speed video was used to determine the time-to-contact between the impactor tip and the spinal cord and to compute the related displacement of the tip into the tissue: the spinal cord compression and the compression ratio. Delayed time-to-contact detection with the IH device led to an underestimation of the cord compression. Compression values indicated by the IH were 64% lower than those based on video analysis (0.33mm vs. 0.88mm). Consequently, the mean compression ratio derived from the device was underestimated when compared to the value derived from video analysis (22% vs. 61%). Default time-to-contact detection from the IH led to significant errors in spinal cord compression assessment. Accordingly, this may explain some of the reported data discrepancies in the literature. The proposed setup could be implemented by users of contusion devices to improve the quantative description of the primary injury inflicted to the spinal cord. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Thermodynamic analysis of a variable compression ratio diesel engine running with palm oil methyl ester

    International Nuclear Information System (INIS)

    Debnath, Biplab K.; Sahoo, Niranjan; Saha, Ujjwal K.

    2013-01-01

    Highlights: ► Energy and exergy analysis of palm oil methyl ester (POME) run diesel engine. ► Engine was run at various compression ratios (CRs) and injection timings (ITs). ► POME can recover around 26% of the energy supplied by the fuel. ► CR rise and IT change cause shaft energy per unit fuel supply to increase. ► CR of 18 and IT of 20°BTDC reduce more entropy generation. - Abstract: The present work is set to explore the effect of compression ratio (CR) and injection timing (IT) on energy and exergy potential of a palm oil methyl ester (POME) run diesel engine. Experiments are carried out in a single cylinder, direct injection, water cooled variable compression ratio diesel engine at a constant peed of 1500 rpm under a full load of 4.24 bar brake mean effective pressure (BMEP). The study involves four different CRs of 16, 17, 17.5 and 18; and three different ITs of 20°, 23° and 28°BTDC. Here, the CR of 17.5 and IT of 23°BTDC are the standard ones. The energy analysis performed for the experimental data includes shaft power, energy input through fuel, output by cooling water and exhaust, uncounted loss per unit time. Side by side, the effects of varying CR and IT on peak pressure, peak heat release rate, brake thermal efficiency and exhaust gas temperature are also studied. The exergy analysis is carried out for availability input, shaft, cooling water and exhaust availability, availability destruction and entropy generation. It shows that higher values of CR increase the shaft availability and cooling water availability, however, they decrease the exhaust flow availability. The retardation and advancement of IT give similar results. The exergy analysis also shows that with the increase of CR, the injection retardation and advancement increase the shaft availability and exergy efficiency, while it reduces the exergy destruction. The entropy generation is also reduced for the similar CR and IT modifications.

  1. Finite Element Analysis of Aluminum Honeycombs Subjected to Dynamic Indentation and Compression Loads

    Directory of Open Access Journals (Sweden)

    A.S.M. Ayman Ashab

    2016-03-01

    Full Text Available The mechanical behavior of aluminum hexagonal honeycombs subjected to out-of-plane dynamic indentation and compression loads has been investigated numerically using ANSYS/LS-DYNA in this paper. The finite element (FE models have been verified by previous experimental results in terms of deformation pattern, stress-strain curve, and energy dissipation. The verified FE models have then been used in comprehensive numerical analysis of different aluminum honeycombs. Plateau stress, σpl, and dissipated energy (EI for indentation and EC for compression have been calculated at different strain rates ranging from 102 to 104 s−1. The effects of strain rate and t/l ratio on the plateau stress, dissipated energy, and tearing energy have been discussed. An empirical formula is proposed to describe the relationship between the tearing energy per unit fracture area, relative density, and strain rate for honeycombs. Moreover, it has been found that a generic formula can be used to describe the relationship between tearing energy per unit fracture area and relative density for both aluminum honeycombs and foams.

  2. Energy and Exergy Analysis of Ocean Compressed Air Energy Storage Concepts

    Directory of Open Access Journals (Sweden)

    Vikram C. Patil

    2018-01-01

    Full Text Available Optimal utilization of renewable energy resources needs energy storage capability in integration with the electric grid. Ocean compressed air energy storage (OCAES can provide promising large-scale energy storage. In OCAES, energy is stored in the form of compressed air under the ocean. Underwater energy storage results in a constant-pressure storage system which has potential to show high efficiency compared to constant-volume energy storage. Various OCAES concepts, namely, diabatic, adiabatic, and isothermal OCAES, are possible based on the handling of heat in the system. These OCAES concepts are assessed using energy and exergy analysis in this paper. Roundtrip efficiency of liquid piston based OCAES is also investigated using an experimental liquid piston compressor. Further, the potential of improved efficiency of liquid piston based OCAES with use of various heat transfer enhancement techniques is investigated. Results show that adiabatic OCAES shows improved efficiency over diabatic OCAES by storing thermal exergy in thermal energy storage and isothermal OCAES shows significantly higher efficiency over adiabatic and diabatic OCAES. Liquid piston based OCAES is estimated to show roundtrip efficiency of about 45% and use of heat transfer enhancement in liquid piston has potential to improve roundtrip efficiency of liquid piston based OCAES up to 62%.

  3. Statistical motion vector analysis for object tracking in compressed video streams

    Science.gov (United States)

    Leny, Marc; Prêteux, Françoise; Nicholson, Didier

    2008-02-01

    Compressed video is the digital raw material provided by video-surveillance systems and used for archiving and indexing purposes. Multimedia standards have therefore a direct impact on such systems. If MPEG-2 used to be the coding standard, MPEG-4 (part 2) has now replaced it in most installations, and MPEG-4 AVC/H.264 solutions are now being released. Finely analysing the complex and rich MPEG-4 streams is a challenging issue addressed in that paper. The system we designed is based on five modules: low-resolution decoder, motion estimation generator, object motion filtering, low-resolution object segmentation, and cooperative decision. Our contributions refer to as the statistical analysis of the spatial distribution of the motion vectors, the computation of DCT-based confidence maps, the automatic motion activity detection in the compressed file and a rough indexation by dedicated descriptors. The robustness and accuracy of the system are evaluated on a large corpus (hundreds of hours of in-and outdoor videos with pedestrians and vehicles). The objective benchmarking of the performances is achieved with respect to five metrics allowing to estimate the error part due to each module and for different implementations. This evaluation establishes that our system analyses up to 200 frames (720x288) per second (2.66 GHz CPU).

  4. Hydro-elastic analysis and optimization of a composite marine propeller

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral; Berggreen, Christian; Andersen, Poul

    2010-01-01

    The present paper addresses the design and optimization of a flexible composite marine propeller. The aim is to tailor the laminate to control the deformed shape of the blade and consequently the developed thrust. The development of a hydro-elastic model is presented, and the laminate lay-up which...

  5. Lamb Production Costs: Analyses of Composition and Elasticities Analysis of Lamb Production Costs

    Directory of Open Access Journals (Sweden)

    C. Raineri

    2015-08-01

    Full Text Available Since lamb is a commodity, producers cannot control the price of the product they sell. Therefore, managing production costs is a necessity. We explored the study of elasticities as a tool for basing decision-making in sheep production, and aimed at investigating the composition and elasticities of lamb production costs, and their influence on the performance of the activity. A representative sheep production farm, designed in a panel meeting, was the base for calculation of lamb production cost. We then performed studies of: i costs composition, and ii cost elasticities for prices of inputs and for zootechnical indicators. Variable costs represented 64.15% of total cost, while 21.66% were represented by operational fixed costs, and 14.19% by the income of the factors. As for elasticities to input prices, the opportunity cost of land was the item to which production cost was more sensitive: a 1% increase in its price would cause a 0.2666% increase in lamb cost. Meanwhile, the impact of increasing any technical indicator was significantly higher than the impact of rising input prices. A 1% increase in weight at slaughter, for example, would reduce total cost in 0.91%. The greatest obstacle to economic viability of sheep production under the observed conditions is low technical efficiency. Increased production costs are more related to deficient zootechnical indexes than to high expenses.

  6. Analysis of elastic-plastic problems using edge-based smoothed finite element method

    International Nuclear Information System (INIS)

    Cui, X.Y.; Liu, G.R.; Li, G.Y.; Zhang, G.Y.; Sun, G.Y.

    2009-01-01

    In this paper, an edge-based smoothed finite element method (ES-FEM) is formulated for stress field determination of elastic-plastic problems using triangular meshes, in which smoothing domains associated with the edges of the triangles are used for smoothing operations to improve the accuracy and the convergence rate of the method. The smoothed Galerkin weak form is adopted to obtain the discretized system equations, and the numerical integration becomes a simple summation over the edge-based smoothing domains. The pseudo-elastic method is employed for the determination of stress field and Hencky's total deformation theory is used to define effective elastic material parameters, which are treated as field variables and considered as functions of the final state of stress fields. The effective elastic material parameters are then obtained in an iterative manner based on the strain controlled projection method from the uniaxial material curve. Some numerical examples are investigated and excellent results have been obtained demonstrating the effectivity of the present method.

  7. Analysis of HD Journal Bearings Considering Elastic Deformation and Non-Newtonian Rabinowitsch Fluid Model

    Directory of Open Access Journals (Sweden)

    J. Javorova

    2016-06-01

    Full Text Available The purpose of this paper is to study the performance of a finite length journal bearing, taking into account effects of non-Newtonian Rabinowitsch flow rheology and elastic deformations of the bearing liner. According to the Rabinowitsch fluid model, the cubic-stress constitutive equation is used to account for the non-Newtonian effects of pseudoplastic and dilatant lubricants. Integrating the continuity equation across the film, the nonlinear non-Newtonian Reynolds-type equation is derived. The elasticity part of the problem is solved on the base of Vlassov model of an elastic foundation. The numerical solution of the modified Reynolds equation is carried out by using FDM with over-relaxation technique. The results for steady state bearing performance characteristics have been calculated for various values of nonlinear factor and elasticity parameters. It was concluded that in comparison with the Newtonian lubricants, higher values of film pressure and load carrying capacity have been obtained for dilatant lubricants, while the case was reversed for pseudoplastic lubricants.

  8. Flexural modeling of the elastic lithosphere at an ocean trench: A parameter sensitivity analysis using analytical solutions

    Science.gov (United States)

    Contreras-Reyes, Eduardo; Garay, Jeremías

    2018-01-01

    The outer rise is a topographic bulge seaward of the trench at a subduction zone that is caused by bending and flexure of the oceanic lithosphere as subduction commences. The classic model of the flexure of oceanic lithosphere w (x) is a hydrostatic restoring force acting upon an elastic plate at the trench axis. The governing parameters are elastic thickness Te, shear force V0, and bending moment M0. V0 and M0 are unknown variables that are typically replaced by other quantities such as the height of the fore-bulge, wb, and the half-width of the fore-bulge, (xb - xo). However, this method is difficult to implement with the presence of excessive topographic noise around the bulge of the outer rise. Here, we present an alternative method to the classic model, in which lithospheric flexure w (x) is a function of the flexure at the trench axis w0, the initial dip angle of subduction β0, and the elastic thickness Te. In this investigation, we apply a sensitivity analysis to both methods in order to determine the impact of the differing parameters on the solution, w (x). The parametric sensitivity analysis suggests that stable solutions for the alternative approach requires relatively low β0 values (rise bulge. The alternative method is a more suitable approach, assuming that accurate geometric information at the trench axis (i.e., w0 and β0) is available.

  9. Phase-shift-analysis approach to elastic neutron scattering from /sup 12/C between 9 and 12 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W. (Tuebingen Univ. (Germany, F.R.). Physikalisches Inst.); Walter, R.L.; Byrd, R.C. (Duke Univ., Durham, NC (USA). Dept. of Physics; Triangle Universities Nuclear Lab., Durham, NC (USA))

    1985-03-01

    The excitation energy, spin and parity of levels in /sup 13/C have been determined for excitation energies between 13 and 16 MeV via a phase-shift analysis of the measured total cross section, elastic differential cross section and analysing power for n + /sup 12/C in the neutron energy range from 8.9 to 12.0 MeV. New analysing power measurements are reported for this energy range. The present and previous experimental data are well described by the phase shifts obtained. The non-elastic cross section for n + /sup 12/C predicted from the phase shifts is in good agreement with the ENDF/B-V evaluation. The need for further experimental data is pointed out.

  10. Phase-shift-analysis approach to elastic neutron scattering from 12C between 9 and 12 MeV

    International Nuclear Information System (INIS)

    Tornow, W.

    1985-01-01

    The excitation energy, spin and parity of levels in 13 C have been determined for excitation energies between 13 and 16 MeV via a phase-shift analysis of the measured total cross section, elastic differential cross section and analysing power for n + 12 C in the neutron energy range from 8.9 to 12.0 MeV. New analysing power measurements are reported for this energy range. The present and previous experimental data are well described by the phase shifts obtained. The non-elastic cross section for n + 12 C predicted from the phase shifts is in good agreement with the ENDF/B-V evaluation. The need for further experimental data is pointed out. (author)

  11. FOAMED CEMENT COMPOSITES: DETECTION OF THE MODULUS OF ELASTICITY USING DIC ANALYSIS AND COMPARISON WITH OTHER METHODS

    Directory of Open Access Journals (Sweden)

    Jakub Ďureje

    2017-11-01

    Full Text Available A modulus of elasticity was determined for eight differently foamed cement paste samples. Samples were loaded in the laboratory by a hydraulic press. The force acting on the sample was read directly from the laboratory press. Digital Image Correlation (DIC analysis were used to draw deformations. Before loading pressure test was applied a random contrast pattern to the samples. Samples were captured by the camera in a one-second interval during the loading pressure test. The images were edited in the Adobe Photoshop Lightroom and then evaluated using Ncorr software. The result is a vertical and horizontal shift field. On the basis of the results obtained, it was possible to calculate the modulus of elasticity of each sample.

  12. Analysis of Thermo-Elastic Fracture Problem during Aluminium Alloy MIG Welding Using the Extended Finite Element Method

    Directory of Open Access Journals (Sweden)

    Kuanfang He

    2017-01-01

    Full Text Available The thermo-elastic fracture problem and equations are established for aluminium alloy Metal Inert Gas (MIG welding, which include a moving heat source and a thermoelasticity equation with the initial and boundary conditions for a plate structure with a crack. The extended finite element method (XFEM is implemented to solve the thermo-elastic fracture problem of a plate structure with a crack under the effect of a moving heat source. The combination of the experimental measurement and simulation of the welding temperature field is done to verify the model and solution method. The numerical cases of the thermomechanical parameters and stress intensity factors (SIFs of the plate structure in the welding heating and cooling processes are investigated. The research results provide reference data and an approach for the analysis of the thermomechanical characteristics of the welding process.

  13. Structured Sparse Principal Components Analysis With the TV-Elastic Net Penalty.

    Science.gov (United States)

    de Pierrefeu, Amicie; Lofstedt, Tommy; Hadj-Selem, Fouad; Dubois, Mathieu; Jardri, Renaud; Fovet, Thomas; Ciuciu, Philippe; Frouin, Vincent; Duchesnay, Edouard

    2018-02-01

    Principal component analysis (PCA) is an exploratory tool widely used in data analysis to uncover the dominant patterns of variability within a population. Despite its ability to represent a data set in a low-dimensional space, PCA's interpretability remains limited. Indeed, the components produced by PCA are often noisy or exhibit no visually meaningful patterns. Furthermore, the fact that the components are usually non-sparse may also impede interpretation, unless arbitrary thresholding is applied. However, in neuroimaging, it is essential to uncover clinically interpretable phenotypic markers that would account for the main variability in the brain images of a population. Recently, some alternatives to the standard PCA approach, such as sparse PCA (SPCA), have been proposed, their aim being to limit the density of the components. Nonetheless, sparsity alone does not entirely solve the interpretability problem in neuroimaging, since it may yield scattered and unstable components. We hypothesized that the incorporation of prior information regarding the structure of the data may lead to improved relevance and interpretability of brain patterns. We therefore present a simple extension of the popular PCA framework that adds structured sparsity penalties on the loading vectors in order to identify the few stable regions in the brain images that capture most of the variability. Such structured sparsity can be obtained by combining, e.g., and total variation (TV) penalties, where the TV regularization encodes information on the underlying structure of the data. This paper presents the structured SPCA (denoted SPCA-TV) optimization framework and its resolution. We demonstrate SPCA-TV's effectiveness and versatility on three different data sets. It can be applied to any kind of structured data, such as, e.g., -dimensional array images or meshes of cortical surfaces. The gains of SPCA-TV over unstructured approaches (such as SPCA and ElasticNet PCA) or structured approach

  14. Loss of shear strength in polycrystalline tungsten under shock compression

    International Nuclear Information System (INIS)

    Dandekar, D.P.

    1976-01-01

    A reexamination of existing data on shock compression of polycrystalline tungsten at room temperature indicates that tungsten may be an exception to the common belief that metals do not behave like elastic-isotropic solids under shock compression

  15. Investigation of Nonlinear Site Response and Seismic Compression from Case History Analysis and Laboratory Testing

    Science.gov (United States)

    Yee, Eric

    In this thesis I address a series of issues related to ground failure and ground motions during earthquakes. A major component is the evaluation of cyclic volumetric strain behavior of unsaturated soils, more commonly known as seismic compression, from advanced laboratory testing. Another major component is the application of nonlinear and equivalent linear ground response analyses to large-strain problems involving highly nonlinear dynamic soil behavior. These two components are merged in the analysis of a truly unique and crucial field case history of nonlinear site response and seismic compression. My first topic concerns dynamic soil testing for relatively small strain dynamic soil properties such as threshold strains, gammatv. Such testing is often conducted using specialized devices such as dual-specimen simple-shear, as devices configured for large strain testing produce noisy signals in the small strain range. Working with a simple shear device originally developed for large-strain testing, I extend its low-strain capabilities by characterizing noisy signals and utilizing several statistical methods to extract meaningful responses in the small strain range. I utilize linear regression of a transformed variable to estimate the cyclic shear strain from a noisy signal and the confidence interval on its amplitude. I utilize Kernel regression with the Nadaraya-Watson estimator and a Gaussian kernel to evaluate vertical strain response. A practical utilization of these techniques is illustrated by evaluating threshold shear strains for volume change with a procedure that takes into account uncertainties in the measured shear and vertical strains. My second topic concerns the seismic compression characteristics of non-plastic and low-plasticity silty sands with varying fines content (10 ≤ FC ≤ 60%). Simple shear testing was performed on various sand-fines mixtures at a range of modified Proctor relative compaction levels ( RC) and degrees-of-saturation (S

  16. Thermodynamic analysis of a novel hybrid wind-solar-compressed air energy storage system

    International Nuclear Information System (INIS)

    Ji, Wei; Zhou, Yuan; Sun, Yu; Zhang, Wu; An, Baolin; Wang, Junjie

    2017-01-01

    Highlights: • We present a novel hybrid wind-solar-compressed air energy storage system. • Wind and solar power are transformed into stable electric energy and hot water. • The system output electric power is 8053 kWh with an exergy efficiency of 65.4%. • Parametric sensitivity analysis is presented to optimize system performance. - Abstract: Wind and solar power have embraced a strong development in recent years due to the energy crisis in China. However, owing to their nature of fluctuation and intermittency, some power grid management problems can be caused. Therefore a novel hybrid wind-solar-compressed air energy storage (WS-CAES) system was proposed to solve the problems. The WS-CAES system can store unstable wind and solar power for a stable output of electric energy and hot water. Also, combined with organic Rankin cycle (ORC), the cascade utilization of energy with different qualities was achieved in the WS-CAES system. Aiming to obtain the optimum performance, the analysis of energy, exergy and parametric sensitivity were all conducted for this system. Furthermore, exergy destruction ratio of each component in the WS-CAES system was presented. The results show that the electric energy storage efficiency, round trip efficiency and exergy efficiency can reach 87.7%, 61.2% and 65.4%, respectively. Meanwhile, the parameters analysis demonstrates that the increase of ambient temperature has a negative effect on the system performance, while the increase of turbine inlet temperature has a positive effect. However, when the air turbine inlet pressure varies, there is a tradeoff between the system performance and the energy storage density.

  17. Vibrations And Stability Of Bernoulli-Euler And Timoshenko Beams On Two-Parameter Elastic Foundation

    Directory of Open Access Journals (Sweden)

    Obara P.

    2014-12-01

    Full Text Available The vibration and stability analysis of uniform beams supported on two-parameter elastic foundation are performed. The second foundation parameter is a function of the total rotation of the beam. The effects of axial force, foundation stiffness parameters, transverse shear deformation and rotatory inertia are incorporated into the accurate vibration analysis. The work shows very important question of relationships between the parameters describing the beam vibration, the compressive force and the foundation parameters. For the free supported beam, the exact formulas for the natural vibration frequencies, the critical forces and the formula defining the relationship between the vibration frequency and the compressive forces are derived. For other conditions of the beam support conditional equations were received. These equations determine the dependence of the frequency of vibration of the compressive force for the assumed parameters of elastic foundation and the slenderness of the beam.

  18. Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis

    Science.gov (United States)

    Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil

    2016-05-01

    This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.

  19. Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials

    International Nuclear Information System (INIS)

    Tessier, Michael J.; Floros, Michael C.; Bouzidi, Laziz; Narine, Suresh S.

    2016-01-01

    Adiabatic compressed air energy storage is an emerging energy storage technology with excellent power and storage capacities. Currently, efficiencies are approximately 70%, in part due to the issue of heat loss during the compression stage. An exergy analysis is presented on a novel adiabatic compressed air energy storage system design utilizing a cascade of PCMs (phase change materials) for waste heat storage and recovery. The melting temperatures and enthalpies of the PCMs were optimized for this system and were shown to be dependent on the number of PCMs, the number of compression stages, and the maximum compression ratio. Efficiencies of storage and recovery using this approach are predicted to be as high as 85%, a 15% increase over current designs which do not incorporate PCMs. - Highlights: • A compressed air energy storage plant using phase change materials is proposed. • Increasing number of phase change materials increases roundtrip exergy efficiency. • A thermodynamic model allows melting points and latent heats required to be predicted.

  20. An analysis of the efficacy of bag-valve-mask ventilation and chest compression during different compression-ventilation ratios in manikin-simulated paediatric resuscitation.

    Science.gov (United States)

    Kinney, S B; Tibballs, J

    2000-01-01

    The ideal chest compression and ventilation ratio for children during performance of cardiopulmonary resuscitation (CPR) has not been determined. The efficacy of chest compression and ventilation during compression ventilation ratios of 5:1, 10:2 and 15:2 was examined. Eighteen nurses, working in pairs, were instructed to provide chest compression and bag-valve-mask ventilation for 1 min with each ratio in random on a child-sized manikin. The subjects had been previously taught paediatric CPR within the last 3 or 5 months. The efficacy of ventilation was assessed by measurement of the expired tidal volume and the number of breaths provided. The rate of chest compression was guided by a metronome set at 100/min. The efficacy of chest compressions was assessed by measurement of the rate and depth of compression. There was no significant difference in the mean tidal volume or the percentage of effective chest compressions delivered for each compression-ventilation ratio. The number of breaths delivered was greatest with the ratio of 5:1. The percentage of effective chest compressions was equal with all three methods but the number of effective chest compressions was greatest with a ratio of 5:1. This study supports the use of a compression-ventilation ratio of 5:1 during two-rescuer paediatric cardiopulmonary resuscitation.

  1. Economic analysis of using above ground gas storage devices for compressed air energy storage system

    Science.gov (United States)

    Liu, Jinchao; Zhang, Xinjing; Xu, Yujie; Chen, Zongyan; Chen, Haisheng; Tan, Chunqing

    2014-12-01

    Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis. The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number. The LCCs of the three types are comprehensively analyzed and compared. The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types. This study may serve as a reference for designing large-scale CAES systems.

  2. COMBUSTION ANALYSIS OF ALGAL OIL METHYL ESTER IN A DIRECT INJECTION COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    HARIRAM V.

    2013-02-01

    Full Text Available Algal oil methyl ester was derived from microalgae (Spirulina sp. The microalga was cultivated in BG 11 media composition in a photobioreactor. Upon harvesting, the biomass was filtered and dried. The algal oil was obtained by a two step solvent extraction method using hexane and ether solvent. Cyclohexane was added to biomass to expel the remaining algal oil. By this method 92% of algal oil is obtained. Transesterification process was carried out to produce AOME by adding sodium hydroxide and methanol. The AOME was blended with straight diesel in 5%, 10% and 15% blend ratio. Combustion parameters were analyzed on a Kirloskar single cylinder direct injection compression ignition engine. The cylinder pressure characteristics, the rate of pressure rise, heat release analysis, performance and emissions were studied for straight diesel and the blends of AOME’s. AOME 15% blend exhibits significant variation in cylinder pressure and rate of heat release.

  3. Failure analysis of a helical compression spring for a heavy vehicle's suspension system

    Directory of Open Access Journals (Sweden)

    Youli Zhu

    2014-10-01

    Full Text Available This paper analyzed why a compression coil spring fractured at the transition position from the bearing coil to the first active coil in service, while the nominal stress here should always be much less than that at the inside coil position of a fully active coil. Visual observations indicated that a wear scar was formed on the first active coil and the fracture surface showed radiating ridges emanating from the wear scar. Scanning electron microscopy examination showed crescent shaped region and beach marks, typical of fatigue failure. ZnCaph phosphate layer and painting around the contact zone were worn out due to contact and friction and resulted in corrosion and corrosion pits induced local stress concentration. Stress analysis indicated severe stress singularities at the edges of the contact zone, which facilitated cycle slip and fatigue crack nucleation. Recommendations were also made for improving the fatigue performance of the suspension springs.

  4. Advanced exergy analysis of a R744 booster refrigeration system with parallel compression

    DEFF Research Database (Denmark)

    Gullo, Paride; Elmegaard, Brian; Cortella, Giovanni

    2016-01-01

    In this paper, the advanced exergy analysis was applied to a R744 booster refrigeration system with parallel compression taking into account the design external temperatures of 25 degrees C and 35 degrees C, as well as the operating conditions of a conventional European supermarket. The global...... efficiencies of all the chosen compressors were extrapolated from some manufactures' data and appropriated optimization procedures of the performance of the investigated solution were implemented.According to the results associated with the conventional exergy evaluation, the gas cooler/condenser, the HS (high...... stage) compressor and the MT (medium temperature) display cabinet exhibited the highest enhancement potential. The further splitting of their corresponding exergy destruction rates into their different parts and the following assessment of the interactions among the components allowed figuring out...

  5. Thermoeconomic cost analysis of CO_2 compression and purification unit in oxy-combustion power plants

    International Nuclear Information System (INIS)

    Jin, Bo; Zhao, Haibo; Zheng, Chuguang

    2015-01-01

    Highlights: • Thermoeconomic cost analysis for CO_2 compression and purification unit is conducted. • Exergy cost and thermoeconomic cost occur in flash separation and mixing processes. • Unit exergy costs for flash separator and multi-stream heat exchanger are identical. • Multi-stage CO_2 compressor contributes to the minimum unit exergy cost. • Thermoeconomic performance for optimized CPU is enhanced. - Abstract: High CO_2 purity products can be obtained from oxy-combustion power plants through CO_2 compression and purification unit (CPU) based on phase separation method. To identify cost formation process and potential energy savings for CPU, detailed thermoeconomic cost analysis based on structure theory of thermoeconomics is applied to an optimized CPU (with double flash separators). It is found that the largest unit exergy cost occurs in the first separation process while the multi-stage CO_2 compressor contributes to the minimum unit exergy cost. In two flash separation processes, unit exergy costs for the flash separator and multi-stream heat exchanger are identical but their unit thermoeconomic costs are different once monetary cost for each device is considered. For cost inefficiency occurring in CPU, it mainly derives from large exergy costs and thermoeconomic costs in the flash separation and mixing processes. When compared with an unoptimized CPU, thermoeconomic performance for the optimized CPU is enhanced and the maximum reduction of 5.18% for thermoeconomic cost is attained. To achieve cost effective operation, measures should be taken to improve operations of the flash separation and mixing processes.

  6. Ultimate refrigerating conditions, behavior turning and a thermodynamic analysis for absorption–compression hybrid refrigeration cycle

    International Nuclear Information System (INIS)

    Zheng Danxing; Meng Xuelin

    2012-01-01

    Highlights: ► Two novel fundamental concepts of the absorption refrigeration cycle were proposed. ► The interaction mechanism of compressor pressure increasing with other key-parameters was investigated. ► A set of optimal operating condition of hybrid refrigeration cycle was found. ► A simulation and investigation for R134a-DMF hybrid refrigeration cycle was performed. - Abstract: The absorption–compression hybrid refrigeration cycle has been considered as an effective approach to reduce the mechanical work consumption by using low-grade heat, such as solar energy. This work aims at studying the thermodynamic mechanism of the hybrid refrigeration cycle. Two fundamental concepts have been proposed, which are the ultimate refrigerating temperature (or the ultimate temperature lift) and the behavior turning. On the basis of that, the interaction mechanism of compressor pressure increasing with other key-parameters and the impact of compressor pressure increasing on the cycle performance have been investigated. The key-parameters include the concentration difference, the circulation ratio of working fluid, etc. The work points out that the hybrid refrigeration cycle performance varies with the change of compressor outlet pressure and depends on which one achieves dominance in the hybrid refrigeration cycle, the absorption sub-system or the compression sub-system. The behavior turning point during parameters changing corresponds to a maximum value of the heat powered coefficient of performance. In this case, the hybrid refrigeration cycle performance is optimal because the low-grade heat utilization is the most effective. In addition, to validate the theoretical analysis, a solar hybrid refrigeration cycle with R134a–DMF as working pair was simulated. The Peng–Robinson equation of state was adopted to calculate thermophysical properties when the reliability assessment of the prediction models on the available literature data of R134a–DMF system had been

  7. Phase shift analysis of pion-nucleon elastic scattering from the threshold to 2.5 GeV

    International Nuclear Information System (INIS)

    Ayed, Rachid.

    1976-10-01

    An energy-independent phase-shift analysis of pion-nucleon elastic scattering is performed from threshold to 2.5 GeV/c 2 masses. It uses a coherent set of data (cross sections and polarizations for the 3 final states: π + p, π - p and π 0 n) constructed from a considerable number (approximately 30000) of experimental points. Empirical criteria of smoothness behavior with energy of the partial waves allowed to obtain a unique solution, i.e. one set of phases shifts (up to I waves) at each energy. The consistency of the solution has been checked by a dispersion relation on the B invariant amplitude. The partial amplitudes obtained have been fitted separately, as a function of energy, in order to extract resonance from background. New resonances of small elasticity have been identified. Parameters (mass, width and elasticity) of all resonant states are given. A dynamical interpretation of the resonance is discussed and their recurrence in the Chew-Frautschi plot are shown [fr

  8. Free vibration analysis of a multiple rotating nano-beams system based on the Eringen nonlocal elasticity theory

    Energy Technology Data Exchange (ETDEWEB)

    Ghafarian, M.; Ariaei, A., E-mail: ariaei@eng.ui.ac.ir [Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2016-08-07

    The free vibration analysis of a multiple rotating nanobeams' system applying the nonlocal Eringen elasticity theory is presented. Multiple nanobeams' systems are of great importance in nano-optomechanical applications. At nanoscale, the nonlocal effects become non-negligible. According to the nonlocal Euler-Bernoulli beam theory, the governing partial differential equations are derived by incorporating the nonlocal scale effects. Assuming a structure of n parallel nanobeams, the vibration of the system is described by a coupled set of n partial differential equations. The method involves a change of variables to uncouple the equations and the differential transform method as an efficient mathematical technique to solve the nonlocal governing differential equations. Then a number of parametric studies are conducted to assess the effect of the nonlocal scaling parameter, rotational speed, boundary conditions, hub radius, and the stiffness coefficients of the elastic interlayer media on the vibration behavior of the coupled rotating multiple-carbon-nanotube-beam system. It is revealed that the bending vibration of the system is significantly influenced by the rotational speed, elastic mediums, and the nonlocal scaling parameters. This model is validated by comparing the results with those available in the literature. The natural frequencies are in a reasonably good agreement with the reported results.

  9. Microscopic cluster model analysis of 14O+p elastic scattering

    International Nuclear Information System (INIS)

    Baye, D.; Descouvemont, P.; Leo, F.

    2005-01-01

    The 14 O+p elastic scattering is discussed in detail in a fully microscopic cluster model. The 14 O cluster is described by a closed p shell for protons and a closed p3/2 subshell for neutrons in the translation-invariant harmonic-oscillator model. The exchange and spin-orbit parameters of the effective forces are tuned on the energy levels of the 15 C mirror system. With the generator-coordinate and microscopic R-matrix methods, phase shifts and cross sections are calculated for the 14 O+p elastic scattering. An excellent agreement is found with recent experimental data. A comparison is performed with phenomenological R-matrix fits. Resonances properties in 15 F are discussed

  10. Quasi-static analysis of elastic behavior for some systems having higher fracture densities.

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.; Aydin, A.

    2009-10-15

    Elastic behavior of geomechanical systems with interacting (but not intersecting) fractures is treated using generalizations of the Backus and the Schoenberg-Muir methods for analyzing layered systems whose layers are intrinsically anisotropic due to locally aligned fractures. By permitting the axis of symmetry of the locally anisotropic compliance matrix for individual layers to differ from that of the layering direction, we derive analytical formulas for interacting fractured regions with arbitrary orientations to each other. This procedure provides a systematic tool for studying how contiguous, but not yet intersecting, fractured domains interact, and provides a direct (though approximate) means of predicting when and how such interactions lead to more dramatic weakening effects and ultimately to failure of these complicated systems. The method permits decomposition of the system elastic behavior into specific eigenmodes that can all be analyzed, and provides a better understanding about which of these specific modes are expected to be most important to the evolving failure process.

  11. Analysis of the angular distributions of elastically scattered neutrons for 235U

    International Nuclear Information System (INIS)

    Sukhovitskij, E.Sh.; Benderskij, A.R.; Konshin, V.A.

    1976-01-01

    Experimental data on the angular distributions of 0.5-15 MeV neutrons elastically scattered by 235 U nuclei are analysed on the basis of Bessel functions and Legendre polynomial expansions. The advantages of the method are that there are no negative cross-sections and relatively few expansion coefficients and that experimental data on scattering at 0 0 and 180 0 are not needed. (author)

  12. Geothermal-Related Thermo-Elastic Fracture Analysis by Numerical Manifold Method

    OpenAIRE

    Jun He; Quansheng Liu; Zhijun Wu; Yalong Jiang

    2018-01-01

    One significant factor influencing geothermal energy exploitation is the variation of the mechanical properties of rock in high temperature environments. Since rock is typically a heterogeneous granular material, thermal fracturing frequently occurs in the rock when the ambient temperature changes, which can greatly influence the geothermal energy exploitation. A numerical method based on the numerical manifold method (NMM) is developed in this study to simulate the thermo-elastic fracturing ...

  13. Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas

    Energy Technology Data Exchange (ETDEWEB)

    Roy S. Baty, F. Farassat, John A. Hargreaves

    2007-05-25

    Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.

  14. Elastic tripping analysis of corroded stiffeners in stiffened plate with irregular surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rahbarranji, Ahmad [AmirKabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-09-15

    Tripping of stiffeners is one of the buckling modes of stiffened panels which could rapidly lead to its catastrophic failure. Loss of thickness in the web and flange of stiffeners due to corrosion reduces elastic buckling strength. It is common practice to assume a uniform thickness reduction for corroded surfaces. To estimate the remaining strength of a corroded structure, a much higher level of accuracy is required since corroded surfaces are irregular. Finite element method is employed to analyze elastic tripping stress of corroded stiffeners with irregular surfaces. Comparing the results with elastic tripping stress of un-corroded stiffener, a reduction factor is introduced. It is found that for flat-bars and angle-bars the reduction factor increases by increasing corrosion loss; however, for tee-bars remains almost unchanged. Surface roughness has no significant effect on reduction of tripping Euler stress of angle-bars and flat-bars; however, it has an effect on reduction of tripping Euler stress of small flat-bars. For high values of corrosion loss, reduction of tripping Euler stress is higher in flat-bars than angle-bars. Corrosion at the mid-length or ends of flat-bars is more detrimental than full length. Corrosion at the ends of angle-bars is more detrimental than full length and mid-length.

  15. Blasting Vibration Safety Criterion Analysis with Equivalent Elastic Boundary: Based on Accurate Loading Model

    Directory of Open Access Journals (Sweden)

    Qingwen Li

    2015-01-01

    Full Text Available In the tunnel and underground space engineering, the blasting wave will attenuate from shock wave to stress wave to elastic seismic wave in the host rock. Also, the host rock will form crushed zone, fractured zone, and elastic seismic zone under the blasting loading and waves. In this paper, an accurate mathematical dynamic loading model was built. And the crushed zone as well as fractured zone was considered as the blasting vibration source thus deducting the partial energy for cutting host rock. So this complicated dynamic problem of segmented differential blasting was regarded as an equivalent elastic boundary problem by taking advantage of Saint-Venant’s Theorem. At last, a 3D model in finite element software FLAC3D accepted the constitutive parameters, uniformly distributed mutative loading, and the cylindrical attenuation law to predict the velocity curves and effective tensile curves for calculating safety criterion formulas of surrounding rock and tunnel liner after verifying well with the in situ monitoring data.

  16. Compressed-air: results of an analysis made for the Clariant company; Ergebnisse der Druckluftanalyse Clariant

    Energy Technology Data Exchange (ETDEWEB)

    Radgen, R. [Fraunhofer-Institut fuer Systemund Innovationsforschung (ISI), Karlsruhe (Germany); Stadelmann, B. [Hochschule fuer Technik und Architektur Luzern (HTA), Horw (Switzerland)

    2005-05-15

    This comprehensive, illustrated report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined the compressed-air supply at the facilities of the Clariant company in Muttenz, Switzerland. The various compressors and compressed-air installations in the company's facilities are described and detailed technical data is presented. The control of these systems and the distribution of the compressed air is discussed. Needs, usage and consumption of compressed air is analysed at macro and detail levels. Leakage is looked at as is the dimensioning of the distribution systems. Finally, possibilities for making savings are presented.

  17. A Low-Stress, Elastic, and Improved Hardness Hydrogenated Amorphous Carbon Film

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2015-01-01

    Full Text Available The evolution of hydrogenated amorphous carbon films with fullerene-like microstructure was investigated with a different proportion of hydrogen supply in deposition. The results showed at hydrogen flow rate of 50 sccm, the deposited films showed a lower compressive stress (lower 48.6%, higher elastic recovery (higher 19.6%, near elastic recovery rate 90%, and higher hardness (higher 7.4% compared with the films deposited without hydrogen introduction. Structural analysis showed that the films with relatively high sp2 content and low bonded hydrogen content possessed high hardness, elastic recovery rate, and low compressive stress. It was attributed to the curved graphite microstructure, which can form three-dimensional covalently bonded network.

  18. Development of High Speed Imaging and Analysis Techniques Compressible Dynamics Stall

    Science.gov (United States)

    Chandrasekhara, M. S.; Carr, L. W.; Wilder, M. C.; Davis, Sanford S. (Technical Monitor)

    1996-01-01

    Dynamic stall has limited the flight envelope of helicopters for many years. The problem has been studied in the laboratory as well as in flight, but most research, even in the laboratory, has been restricted to surface measurement techniques such as pressure transducers or skin friction gauges, except at low speed. From this research, it became apparent that flow visualization tests performed at Mach numbers representing actual flight conditions were needed if the complex physics associated with dynamic stall was to be properly understood. However, visualization of the flow field during compressible conditions required carefully aligned and meticulously reconstructed holographic interferometry. As part of a long-range effort focused on exposing of the physics of compressible dynamic stall, a research wind tunnel was developed at NASA Ames Research Center which permits visual access to the full flow field surrounding an oscillating airfoil during compressible dynamic stall. Initially, a stroboscopic schlieren technique was used for visualization of the stall process, but the primary research tool has been point diffraction interferometry(PDI), a technique carefully optimized for use in th is project. A review of the process of development of PDI will be presented in the full paper. One of the most valuable aspects of PDI is the fact that interferograms are produced in real time on a continuous basis. The use of a rapidly-pulsed laser makes this practical; a discussion of this approach will be presented in the full paper. This rapid pulsing(up to 40,000 pulses/sec) produces interferograms of the rapidly developing dynamic stall field in sufficient resolution(both in space and time) that the fluid physics of the compressible dynamic stall flowfield can be quantitatively determined, including the gradients of pressure in space and time. This permits analysis of the influence of the effect of pitch rate, Mach number, Reynolds number, amplitude of oscillation, and other

  19. A proposal for a determination method of element division on an analytical model for finite element elastic waves propagation analysis

    International Nuclear Information System (INIS)

    Ishida, Hitoshi; Meshii, Toshiyuki

    2010-01-01

    This study proposes an element size selection method named the 'Impact-Meshing (IM) method' for a finite element waves propagation analysis model, which is characterized by (1) determination of element division of the model with strain energy in the whole model, (2) static analysis (dynamic analysis in a single time step) with boundary conditions which gives a maximum change of displacement in the time increment and inertial (impact) force caused by the displacement change. In this paper, an example of application of the IM method to 3D ultrasonic wave propagation problem in an elastic solid is described. These examples showed an analysis result with a model determined by the IM method was convergence and calculation time for determination of element subdivision was reduced to about 1/6 by the IM Method which did not need determination of element subdivision by a dynamic transient analysis with 100 time steps. (author)

  20. Enhancement and prediction of modulus of elasticity of palm kernel shell concrete

    International Nuclear Information System (INIS)

    Alengaram, U. Johnson; Mahmud, Hilmi; Jumaat, Mohd Zamin

    2011-01-01

    Research highlights: → Micro-pores of size 16-24 μm were found on the outer surface of palm kernel shell. → Infilling of pores by mineral admixtures was evident. → Sand content influenced both modulus of elasticity and compressive strength. → Proposed equation predicts modulus of elasticity within ±1.5 kN/mm 2 of test results. -- Abstract: This paper presents results of an investigation conducted to enhance and predict the modulus of elasticity (MOE) of palm kernel shell concrete (PKSC). Scanning electron microscopic (SEM) analysis on palm kernel shell (PKS) was conducted. Further, the effect of varying sand and PKS contents and mineral admixtures (silica fume and fly ash) on compressive strength and MOE was investigated. The variables include water-to-binder (w/b) and sand-to-cement (s/c) ratios. Nine concrete mixes were prepared, and tests on static and dynamic moduli of elasticity and compressive strength were conducted. The SEM result showed presence of large number of micro-pores on PKS. The mineral admixtures uniformly filled the micro-pores on the outer surface of PKS. Further, the increase in sand content coupled with reduction in PKS content enhanced the compressive strength and static MOE: The highest MOE recorded in this investigation, 11 kN/mm 2 , was twice that previously published. Moreover, the proposed equation based on CEB/FIP code formula appears to predict the MOE close to the experimental values.

  1. Reliability analysis and optimisation of subsea compression system facing operational covariate stresses

    International Nuclear Information System (INIS)

    Okaro, Ikenna Anthony; Tao, Longbin

    2016-01-01

    This paper proposes an enhanced Weibull-Corrosion Covariate model for reliability assessment of a system facing operational stresses. The newly developed model is applied to a Subsea Gas Compression System planned for offshore West Africa to predict its reliability index. System technical failure was modelled by developing a Weibull failure model incorporating a physically tested corrosion profile as stress in order to quantify the survival rate of the system under additional operational covariates including marine pH, temperature and pressure. Using Reliability Block Diagrams and enhanced Fusell-Vesely formulations, the whole system was systematically decomposed to sub-systems to analyse the criticality of each component and optimise them. Human reliability was addressed using an enhanced barrier weighting method. A rapid degradation curve is obtained on a subsea system relative to the base case subjected to a time-dependent corrosion stress factor. It reveals that subsea system components failed faster than their Mean time to failure specifications from Offshore Reliability Database as a result of cumulative marine stresses exertion. The case study demonstrated that the reliability of a subsea system can be systematically optimised by modelling the system under higher technical and organisational stresses, prioritising the critical sub-systems and making befitting provisions for redundancy and tolerances. - Highlights: • Novel Weibull Corrosion-Covariate model for reliability analysis of subsea assets. • Predict the accelerated degradation profile of a subsea gas compression. • An enhanced optimisation method based on Fusell-Vesely decomposition process. • New optimisation approach for smoothening of over- and under-designed components. • Demonstrated a significant improvement in producing more realistic failure rate.

  2. Elastic properties of Gum Metal

    International Nuclear Information System (INIS)

    Kuramoto, Shigeru; Furuta, Tadahiko; Hwang, Junghwan; Nishino, Kazuaki; Saito, Takashi

    2006-01-01

    In situ X-ray diffraction measurements under tensile loading and dynamic mechanical analysis were performed to investigate the mechanisms of elastic deformation in Gum Metal. Tensile stress-strain curves for Gum Metal indicate that cold working substantially decreases the elastic modulus while increasing the yield strength, thereby confirming nonlinearity in the elastic range. The gradient of each curve decreased continuously to about one-third its original value near the elastic limit. As a result of this decrease in elastic modulus and nonlinearity, elastic deformability reaches 2.5% after cold working. Superelasticity is attributed to stress-induced martensitic transformations, although the large elastic deformation in Gum Metal is not accompanied by a phase transformation

  3. The Dynamic Response of an Euler-Bernoulli Beam on an Elastic Foundation by Finite Element Analysis using the Exact Stiffness Matrix

    International Nuclear Information System (INIS)

    Kim, Jeong Soo; Kim, Moon Kyum

    2012-01-01

    In this study, finite element analysis of beam on elastic foundation, which received great attention of researchers due to its wide applications in engineering, is performed for estimating dynamic responses of shallow foundation using exact stiffness matrix. First, element stiffness matrix based on the closed solution of beam on elastic foundation is derived. Then, we performed static finite element analysis included exact stiffness matrix numerically, comparing results from the analysis with some exact analysis solutions well known for verification. Finally, dynamic finite element analysis is performed for a shallow foundation structure under rectangular pulse loading using trapezoidal method. The dynamic analysis results exist in the reasonable range comparing solution of single degree of freedom problem under a similar condition. The results show that finite element analysis using exact stiffness matrix is evaluated as a good tool of estimating the dynamic response of structures on elastic foundation.

  4. Microlattices as architected thin films: Analysis of mechanical properties and high strain elastic recovery

    Directory of Open Access Journals (Sweden)

    Kevin J. Maloney

    2013-08-01

    Full Text Available Ordered periodic microlattices with densities from 0.5 mg/cm3 to 500 mg/cm3 are fabricated by depositing various thin film materials (Au, Cu, Ni, SiO2, poly(C8H4F4 onto sacrificial polymer lattice templates. Young's modulus and strength are measured in compression and the density scaling is determined. At low relative densities, recovery from compressive strains of 50% and higher is observed, independent of lattice material. An analytical model is shown to accurately predict the transition between recoverable “pseudo-superelastic” and irrecoverable plastic deformation for all constituent materials. These materials are of interest for energy storage applications, deployable structures, and for acoustic, shock, and vibration damping.

  5. Elastic Properties of Lithium Disilicate Versus Feldspathic Inlays: Effect on the Bonding by 3D Finite Element Analysis.

    Science.gov (United States)

    Trindade, Flávia Zardo; Valandro, Luiz Felipe; de Jager, Niek; Bottino, Marco Antônio; Kleverlaan, Cornelis Johannes

    2016-10-03

    To determine the elastic properties of five ceramic systems with different compositions (lithium disilicate vs. feldspathic ceramics) and processing methods and compare the stress distribution in premolars in the interface with inlays made with these systems loaded with the maximum normal bite force (665 N) using 3D finite element analysis (FEA). The elastic properties of five ceramic restoration materials (IPS e.max Press, IPS e.max CAD, Vita PM9, Vita Mark II, Vita VM7) were obtained using the ultrasonic pulse-echo method. Three-dimensional FEA simplified models of maxillary premolars restored with these ceramic materials were created. The models were loaded with a load at the two nodes on the occlusal surface in the middle of the tooth, 2 mm from the outside of the tooth, simulating a loading ball with a radius of 6 mm. The means values of density (g/cm³), Young's modulus (GPa), and Poison's ratio was 2.6 ± 0.3, 82.3 ± 18.3, and 0.22 ± 0.01 for IPS e.max Press; 2.3 ± 0.1, 83.5 ± 15.0, and 0.21 ± 0.01 for IPS e.max CAD; 2.5 ± 0.1, 44.4 ± 11.5, and 0.26 ± 0.08 for PM9; 2.4 ± 0.1, 70.6 ± 4.9, and 0.22 ± 0.01 for Vitamark II; 2.4 ± 0.1, 63.3 ± 3.9, and 0.23 ± 0.01 for VM7, respectively. The 3D FEA showed the tensile stress at the interface between the tooth and the inlay was dependent on the elastic properties of the materials, since the Vita PM9 and IPS e.max CAD ceramics presented the lowest and the highest stress concentration in the interface, respectively. The elastic properties of ceramic materials were influenced by composition and processing methods, and these differences influenced the stress concentration at the bonding interface between tooth and restoration. The lower the elastic modulus of inlays, the lower is the stress concentration at the bonding interfaces. © 2016 by the American College of Prosthodontists.

  6. Why Electricity Demand Is Highly Income-Elastic in Spain: A Cross-Country Comparison Based on an Index-Decomposition Analysis

    Directory of Open Access Journals (Sweden)

    Julián Pérez-García

    2017-03-01

    Full Text Available Since 1990, Spain has had one of the highest elasticities of electricity demand in the European Union. We provide an in-depth analysis into the causes of this high elasticity, and we examine how these same causes influence electricity demand in other European countries. To this end, we present an index-decomposition analysis of growth in electricity demand which allows us to identify three key factors in the relationship between gross domestic product (GDP and electricity demand: (i structural change; (ii GDP growth; and (iii intensity of electricity use. Our findings show that the main differences in electricity demand elasticities across countries and time are accounted for by the fast convergence in residential per capita electricity consumption. This convergence has almost concluded, and we expect the Spanish energy demand elasticity to converge to European standards in the near future.

  7. Salary Compression: A Time-Series Ratio Analysis of ARL Position Classifications

    Science.gov (United States)

    Seaman, Scott

    2007-01-01

    Although salary compression has previously been identified in such professional schools as engineering, business, and computer science, there is now evidence of salary compression among Association of Research Libraries members. Using salary data from the "ARL Annual Salary Survey", this study analyzes average annual salaries from 1994-1995…

  8. Comparative study of finite element method, isogeometric analysis, and finite volume method in elastic wave propagation of stress discontinuities

    Czech Academy of Sciences Publication Activity Database

    Berezovski, A.; Kolman, Radek; Blažek, Jiří; Kopačka, Ján; Gabriel, Dušan; Plešek, Jiří

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] R&D Projects: GA ČR(CZ) GAP101/11/0288; GA ČR(CZ) GAP101/12/2315 Institutional support: RVO:61388998 Keywords : elastic wave propagation * finite element method * isogeometric analysis * finite volume method * stress discontinuities * spurious oscillations Subject RIV: JR - Other Machinery http://www.ndt.net/events/ECNDT2014/app/content/Paper/25_Berezovski_Rev1.pdf

  9. Assessment of stress-strain data suitable for finite-element elastic--plastic analysis of shipping containers

    International Nuclear Information System (INIS)

    Rack, H.J.; Knorovsky, G.A.

    1978-09-01

    Stress-strain data which describes the influence of strain rate and temperature on the mechanical response of materials presently being used for light water reactor fuel shipping containers have been assembled. Selection of data has been limited to that which is suitable for use in finite-element elastic--plastic analysis of shipping containers (e.g., they must include complete material history profiles). Based on this information, recommendations have been made for further work which is required to complete the necessary data base

  10. Identification of multiple cracks in 2D elasticity by means of the reciprocity principle and cluster analysis

    Science.gov (United States)

    Shifrin, Efim I.; Kaptsov, Alexander V.

    2018-01-01

    An inverse 2D elastostatic problem is considered. It is assumed that an isotropic, linear elastic body can contain a finite number of rectilinear, well-separated cracks. The surfaces of the cracks are assumed to be free of the loads. A method is developed for reconstruction the cracks by means of the applied loads and displacements on the boundary of the body, obtained in a single static test. The method is based on the reciprocity principle, elements of the theory of distributions, and cluster analysis. Numerical examples are considered.

  11. Effects of errors in velocity tilt on maximum longitudinal compression during neutralized drift compression of intense beam pulses: II. Analysis of experimental data of the Neutralized Drift Compression eXperiment-I (NDCX-I)

    International Nuclear Information System (INIS)

    Massidda, Scott; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.; Lidia, Steven M.; Seidl, Peter; Friedman, Alex

    2012-01-01

    Neutralized drift compression offers an effective means for particle beam focusing and current amplification with applications to heavy ion fusion. In the Neutralized Drift Compression eXperiment-I (NDCX-I), a non-relativistic ion beam pulse is passed through an inductive bunching module that produces a longitudinal velocity modulation. Due to the applied velocity tilt, the beam pulse compresses during neutralized drift. The ion beam pulse can be compressed by a factor of more than 100; however, errors in the velocity modulation affect the compression ratio in complex ways. We have performed a study of how the longitudinal compression of a typical NDCX-I ion beam pulse is affected by the initial errors in the acquired velocity modulation. Without any voltage errors, an ideal compression is limited only by the initial energy spread of the ion beam, ΔΕ b . In the presence of large voltage errors, δU⪢ΔE b , the maximum compression ratio is found to be inversely proportional to the geometric mean of the relative error in velocity modulation and the relative intrinsic energy spread of the beam ions. Although small parts of a beam pulse can achieve high local values of compression ratio, the acquired velocity errors cause these parts to compress at different times, limiting the overall compression of the ion beam pulse.

  12. Effects of prolonged compression on the variations of haemoglobin oxygenation-assessment by spectral analysis of reflectance spectrophotometry signals

    International Nuclear Information System (INIS)

    Li, Zengyong; Tam, Eric W C; Mak, Arthur F T; Lau, Roy Y C

    2006-01-01

    The consequences of rhythmical flow motion for nutrition and the oxygen supply to tissue are largely unknown. In this study, the periodic variations of haemoglobin oxygenation in compressed and uncompressed skin were evaluated with a reflection spectrometer using an in vivo Sprague-Dawley rat model. Skin compression was induced over the trochanter area by a locally applied external pressure of 13.3 kPa (100 mmHg) via a specifically designed pneumatic indentor. A total of 19 rats were used in this study. The loading duration is 6 h per day for four consecutive days. Haemoglobin oxygenation variations were quantified using spectral analysis based on wavelets' transformation. The results found that in both compressed and uncompressed skin, periodic variations of the haemoglobin oxygenation were characterized by two frequencies in the range of 0.01-0.05 Hz and 0.15-0.4 Hz. These frequency ranges coincide with those of the frequency range of the endothelial-related metabolic and myogenic activities found in the flow motion respectively. Tissue compression following the above loading schedule induced a significant decrease in the spectral amplitudes of frequency interval 0.01-0.05 Hz during the pre-occlusion period on day 3 and day 4 as compared to that on day 1 (p 2 consumption rates of arteriolar walls. The modification of vessel wall oxygen consumption might substantially affect the available oxygen supply to the compressed tissue. This mechanism might be involved in the process leading to pressure ulcer formation

  13. Optical model analysis for 30MeV polarized proton elastic scattering

    International Nuclear Information System (INIS)

    Pham, D.-L.; Swiniarski, R. de.

    1977-05-01

    The proton elastic scattering cross sections and analyzing powers at 30MeV have been used to derive optical model parameters for ten elements from 10 B to 32 S. A set of average geometrical parameters (rsub(o)=1.10fm, rsub(LS)=1.0fm and asub(I)=0.60fm) is found to give good fits to the entire data, the other geometrical parameters being rsub(I)=(1.35+-0.15)fm, asub(o)=(0.75+-0.10)fm and asub(LS)=(0.35+-0.07)fm. The dynamical parameters with fixed geometry are presented

  14. Systematic analysis of α elastic scattering with the São Paulo potential

    Energy Technology Data Exchange (ETDEWEB)

    Charry-Pastrana, F. E., E-mail: feecharrypa@unal.edu.co; Pinilla, E. C. [Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Física, Grupo de Física Nuclear, Carrera 45 No. 26-85, Edificio Uriel Gutiérrez, Bogotá D.C., Código Postal 111321 (Colombia)

    2016-07-07

    We describe systematically by collision energy and target mass, alpha elastic scattering angular distributions by using the São Paulo potential as the real part of the optical potential. The imaginary part is proportional to the real one by a factor N{sub i}. We find this parameter by fitting the theoretical angular distributions to the experimental cross sections through a χ{sup 2} minimization. The N{sub i} and their respective uncertainties, σ{sub Ni}, fall in the range 0.4 ≤ N{sub i} ± σ{sub N{sub i}} ≤ 0.8 for all the systems studied.

  15. Analysis of the Quasi-Elastic Scattering of Neutrons in Hydrogenous Liquids

    International Nuclear Information System (INIS)

    Porohit, S.N.

    1966-11-01

    A critical discussion of the quasi-elastic scattering of neutrons by incoherent (hydrogenous) liquids is presented. Using the line shape expression a comparative discussion of several phenomenological models has been carried out. Extension of the Singwi-Sjoelander zero phonon expression, for the jump-diffusion model, so as to include the one phonon expression has also been given. For a delayed diffusion model a complete treatment of S(K, ω) is presented. Along the lines of the macroscopic diffusion cooling, a microscopic diffusion cooling effect in fluids is speculated

  16. Analysis of the Quasi-Elastic Scattering of Neutrons in Hydrogenous Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Porohit, S N [Nuclear Science and Engineering Dept., Rensselaer Polytechnique Inst., Troy, NY (United States)

    1966-11-15

    A critical discussion of the quasi-elastic scattering of neutrons by incoherent (hydrogenous) liquids is presented. Using the line shape expression a comparative discussion of several phenomenological models has been carried out. Extension of the Singwi-Sjoelander zero phonon expression, for the jump-diffusion model, so as to include the one phonon expression has also been given. For a delayed diffusion model a complete treatment of S(K, {omega}) is presented. Along the lines of the macroscopic diffusion cooling, a microscopic diffusion cooling effect in fluids is speculated.

  17. Buckling Analysis of Rectangular Plates with Variable Thickness Resting on Elastic Foundation

    International Nuclear Information System (INIS)

    Viswanathan, K K; Aziz, Z A; Navaneethakrishnan, P V

    2015-01-01

    Buckling of rectangular plates of variable thickness resting in elastic foundation is analysed using a quintic spline approximation technique. The thickness of the plate varies in the direction of one edge and the variations are assumed to be linear, exponential and sinusoidal. The plate is subjected to in plane load of two opposite edges. The buckling load and the mode shapes of buckling are computed from the eigenvalue problem that arises. Detailed parametric studies are made with different boundary conditions and the results are presented through the diagram and discussed

  18. The boundary integral equations method for analysis of high-frequency vibrations of an elastic layer

    Czech Academy of Sciences Publication Activity Database

    Sorokin, S.; Kolman, Radek; Kopačka, Ján

    2017-01-01

    Roč. 87, č. 4 (2017), s. 737-750 ISSN 0939-1533 R&D Projects: GA ČR(CZ) GA16-03823S; GA MŠk(CZ) EF15_003/0000493 Institutional support: RVO:61388998 Keywords : an elastic layer * symmetric and skew-symmetric waves * the Green’s matrix * boundary integral equations * eigen frequencies Subject RIV: BI - Acoustics OBOR OECD: Acoustics Impact factor: 1.490, year: 2016 https://link.springer.com/article/10.1007/s00419-016-1220-y

  19. Statistical analysis of the hydrodynamic pressure in the near field of compressible jets

    International Nuclear Information System (INIS)

    Camussi, R.; Di Marco, A.; Castelain, T.

    2017-01-01

    Highlights: • Statistical properties of pressure fluctuations retrieved through wavelet analysis • Time delay PDFs approximated by a log-normal distribution • Amplitude PDFs approximated by a Gamma distribution • Random variable PDFs weakly dependent upon position and Mach number. • A general stochastic model achieved for the distance dependency - Abstract: This paper is devoted to the statistical characterization of the pressure fluctuations measured in the near field of a compressible jet at two subsonic Mach numbers, 0.6 and 0.9. The analysis is focused on the hydrodynamic pressure measured at different distances from the jet exit and analyzed at the typical frequency associated to the Kelvin–Helmholtz instability. Statistical properties are retrieved by the application of the wavelet transform to the experimental data and the computation of the wavelet scalogram around that frequency. This procedure highlights traces of events that appear intermittently in time and have variable strength. A wavelet-based event tracking procedure has been applied providing a statistical characterization of the time delay between successive events and of their energy level. On this basis, two stochastic models are proposed and validated against the experimental data in the different flow conditions

  20. Analysis of potassium nitrate purification with recovery of solvent through single effect mechanical vapor compression

    Directory of Open Access Journals (Sweden)

    Kiprotich E. Kosgey

    2017-12-01

    Full Text Available Analysis of purification of potassium nitrate with incorporation of single effect mechanical vapor compressor for solvent recovery was done. Analysis focused on the effect of concentration and temperature of mother liquor on the energy efficiency of the process and the amount of recovered solvent. Performance coefficient of mechanical vapor compressor ranged between 1.5 and 7.5 depending primarily on the temperature of mother liquor. It was found that with increase in temperature of mother liquor through pre-heating, the power of the compressor, compression ratio and amount of heat supplied to the evaporator decrease. For a 40% concentrated feed solution and mother liquor temperature above 80 °C, performance coefficient is higher than 4. It is therefore concluded that preheating mother liquor and reduction of the effect of concentration of both mother liquor and concentrated waste stream through other methods reduces the power consumption of purification process. Keywords: Performance coefficient, Mother liquor, Concentrated solution, Recovered solvent, Boiling point elevation, Mechanical vapor compressor

  1. Elasticity in Elastics-An in-vitro study.

    Science.gov (United States)

    Kamisetty, Supradeep Kumar; Nimagadda, Chakrapani; Begam, Madhoom Ponnachi; Nalamotu, Raghuveer; Srivastav, Trilok; Gs, Shwetha

    2014-04-01

    analyzed with student independent - t test, analysis of variance and the Tukey - HSD test at p elastics had greater cross sectional area than latex elastics in all types of elastics. Forestadent heavy elastics had grater cross sectional area than GAC and Glenroe. There was no statistically significant difference in the internal diameter in between all type of elastics. Forestadent non latex elastics had greater breaking force compared to GAC and Glenroe elastics. Forces generated by the elastics decreased over 48 hours to an average load approximating 65-75% of the manufacturer's values. Force degradation was greater in non latex elastics compared to latex elastics. The results of the study demonstrated that the clinical choice of elastics should be based on the patient's medical history and the specific mechanical properties of the type of elastic. How to cite the article: Kamisetty SK, Nimagadda C, Begam MP, Nalamotu R, Srivastav T, Shwetha GS. Elasticity in Elastics-An in-vitro study. J Int Oral Health 2014;6(2):96-105.

  2. Elastic Beanstalk

    CERN Document Server

    Vliet, Jurg; Wel, Steven; Dowd, Dara

    2011-01-01

    While it's always been possible to run Java applications on Amazon EC2, Amazon's Elastic Beanstalk makes the process easier-especially if you understand how it works beneath the surface. This concise, hands-on book not only walks you through Beanstalk for deploying and managing web applications in the cloud, you'll also learn how to use this AWS tool in other phases of development. Ideal if you're a developer familiar with Java applications or AWS, Elastic Beanstalk provides step-by-step instructions and numerous code samples for building cloud applications on Beanstalk that can handle lots

  3. Probability Analysis of the Wave-Slamming Pressure Values of the Horizontal Deck with Elastic Support

    Science.gov (United States)

    Zuo, Weiguang; Liu, Ming; Fan, Tianhui; Wang, Pengtao

    2018-06-01

    This paper presents the probability distribution of the slamming pressure from an experimental study of regular wave slamming on an elastically supported horizontal deck. The time series of the slamming pressure during the wave impact were first obtained through statistical analyses on experimental data. The exceeding probability distribution of the maximum slamming pressure peak and distribution parameters were analyzed, and the results show that the exceeding probability distribution of the maximum slamming pressure peak accords with the three-parameter Weibull distribution. Furthermore, the range and relationships of the distribution parameters were studied. The sum of the location parameter D and the scale parameter L was approximately equal to 1.0, and the exceeding probability was more than 36.79% when the random peak was equal to the sample average during the wave impact. The variation of the distribution parameters and slamming pressure under different model conditions were comprehensively presented, and the parameter values of the Weibull distribution of wave-slamming pressure peaks were different due to different test models. The parameter values were found to decrease due to the increased stiffness of the elastic support. The damage criterion of the structure model caused by the wave impact was initially discussed, and the structure model was destroyed when the average slamming time was greater than a certain value during the duration of the wave impact. The conclusions of the experimental study were then described.

  4. Hydraulic pressure pulses with elastic and plastic structural flexibility: test and analysis (LWBR Development Program)

    International Nuclear Information System (INIS)

    Schwirian, R.E.

    1978-03-01

    Pressure pulse tests were conducted with a flexible test section in a test vessel filled with room temperature water. The pressure pulses were generated with a drop hammer and piston pulse generator and were of a sufficient magnitude to cause plastic deformation of the test section. Because of the strong pressure relief effect of the deforming test section, pressure pulse magnitudes were below 265 psig in magnitude and had durations of 50 to 55 msecs. Calculations performed with the FLASH-35 bi-linear hysteresis model of structural deformation show good agreement with experiment. In particular, FLASH 35 adequately predicts the decrease in peak pressure and the increase in pulse duration due to elastic and plastic deformation of the test section. Predictions of flexible member motion are good, but are less satisfactory than the pressure pulse results due to uncertainties in the values of yield point and beyond yield stiffness used to model the various flexible members. Coupled with this is a strong sensitivity of the FLASH 35 predictions to the values of yield point and beyond yield stiffness chosen for the various flexible members. The test data versus calculation comparisons presented here provide preliminary qualification for FLASH 35 calculations of transient hydraulic pressures and pressure differentials in the presence of flexible structural members which deform both elastically and plastically

  5. Coupled electrostatic-elastic analysis for topology optimization using material interpolation

    International Nuclear Information System (INIS)

    Alwan, A; Ananthasuresh, G K

    2006-01-01

    In this paper, we present a novel analytical formulation for the coupled partial differential equations governing electrostatically actuated constrained elastic structures of inhomogeneous material composition. We also present a computationally efficient numerical framework for solving the coupled equations over a reference domain with a fixed finiteelement mesh. This serves two purposes: (i) a series of problems with varying geometries and piece-wise homogeneous and/or inhomogeneous material distribution can be solved with a single pre-processing step (ii) topology optimization methods can be easily implemented by interpolating the material at each point in the reference domain from a void to a dielectric or a conductor. This is attained by considering the steady-state electrical current conduction equation with a 'leaky capacitor' model instead of the usual electrostatic equation. This formulation is amenable for both static and transient problems in the elastic domain coupled with the quasi-electrostatic electric field. The procedure is numerically implemented on the COMSOL Multiphysics (registered) platform using the weak variational form of the governing equations. Examples have been presented to show the accuracy and versatility of the scheme. The accuracy of the scheme is validated for the special case of piece-wise homogeneous material in the limit of the leaky-capacitor model approaching the ideal case

  6. In-Plane free Vibration Analysis of an Annular Disk with Point Elastic Support

    Directory of Open Access Journals (Sweden)

    S. Bashmal

    2011-01-01

    Full Text Available In-plane free vibrations of an elastic and isotropic annular disk with elastic constraints at the inner and outer boundaries, which are applied either along the entire periphery of the disk or at a point are investigated. The boundary characteristic orthogonal polynomials are employed in the Rayleigh-Ritz method to obtain the frequency parameters and the associated mode shapes. Boundary characteristic orthogonal polynomials are generated for the free boundary conditions of the disk while artificial springs are used to account for different boundary conditions. The frequency parameters for different boundary conditions of the outer edge are evaluated and compared with those available in the published studies and computed from a finite element model. The computed mode shapes are presented for a disk clamped at the inner edge and point supported at the outer edge to illustrate the free in-plane vibration behavior of the disk. Results show that addition of point clamped support causes some of the higher modes to split into two different frequencies with different mode shapes.

  7. The Faraday Pavilion: activating bending in the design and analysis of an elastic gridshell

    DEFF Research Database (Denmark)

    Nicholas, Paul; Lafuente Hernandez, Elisa; Gengnagel, Christoph

    2013-01-01

    This paper reports the architectural and engineering design, and construction, of The Faraday Pavilion, a GFRP elastic gridshell with an irregular grid topology. Gridshell structures are self-formed through an erection process in which they are elastically deformed, and the prediction and steerin......, which while complementary have important differences relating to the interaction with the design of the structure, differences in the definition of supports, connections and elements, the speed of calculation and the magnitude and precision of the results....... and light-weight design approach to bending active structures is not currently developed. In this paper, we introduce an approach to the architectural design of a bending active structure whereby the shell form and grid topology are determined by simulation. Particular features are that the grid topology...... is not pre-described, but rather emerges as part of the simulation, and that different calculative models relating to the material, element and structural scales are solved and synthesized by extending the technique of dynamic relaxation. Secondly, the results of this design modelling are provided...

  8. On the harmonic analysis of the elastic scattering amplitude of two spinless particles at fixed momentum transfer

    International Nuclear Information System (INIS)

    Viano, G.A.

    1980-01-01

    The harmonic analysis of the elastic scattering amplitude F(s,t) of two spinless particles, at fixed t<0, is here revisited using the non-euclidean Fourier analysis in the sense of Helgason, and the approach of Ehrenpresis to the special functions. With these techniques it is possible to derive the Fourier and Laplace transforms for the scattering amplitude. Indeed these transforms are obtained by projecting the amplitude on functions which play a role similar to that played by the exponentials on the real line; here we show how to construct these functions, using essentially geometrical tools. Since the harmonic analysis is a decomposition which separates the dynamics from the symmetry of the problem, we obtain an explicit geometrical characterization of those terms which reflect the symmetry

  9. Comparison of elastic and inelastic analysis and test results for the defense high level waste shipping cask

    International Nuclear Information System (INIS)

    Zimmer, A.; Koploy, M.A.; Madsen, M.M.

    1991-01-01

    In the early 1980s, the US DOE/Defense Programs (DOE/DP) initiated a project to develop a safe and efficient transportation system for defense high level waste (DHLW). A long-standing objective of the DHLW transportation project is to develop a truck cask that represents the leading edge of cask technology as well as fully complies with all applicable DOE, Nuclear Regulatory Commission, and DOT regulations. General Atomics designed the DHLW Truck Shipping Cask using state-of-the-art analytical techniques verified by model testing performed by Sandia National Labs. (SNL). The analytical techniques include two approaches, inelastic analysis and elastic analysis. This paper will compare the results of the two analytical approaches and with model testing results. The purpose of this work is to provide data to support licensing of the DHLW cask and to support the acceptance by the NRC of inelastic analysis as a tool in packaging design and licensing

  10. Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory

    Science.gov (United States)

    Ghadiri, Majid; Safarpour, Hamed

    2016-09-01

    In this paper, size-dependent effect of an embedded magneto-electro-elastic (MEE) nanoshell subjected to thermo-electro-magnetic loadings on free vibration behavior is investigated. Also, the surrounding elastic medium has been considered as the model of Winkler characterized by the spring. The size-dependent MEE nanoshell is investigated on the basis of the modified couple stress theory. Taking attention to the first-order shear deformation theory (FSDT), the modeled nanoshell and its equations of motion are derived using principle of minimum potential energy. The accuracy of the presented model is validated with some cases in the literature. Finally, using the Navier-type method, an analytical solution of governing equations for vibration behavior of simply supported MEE cylindrical nanoshell under combined loadings is presented and the effects of material length scale parameter, temperature changes, external electric potential, external magnetic potential, circumferential wave numbers, constant of spring, shear correction factor and length-to-radius ratio of the nanoshell on natural frequency are identified. Since there has been no research about size-dependent analysis MEE cylindrical nanoshell under combined loadings based on FSDT, numerical results are presented to be served as benchmarks for future analysis of MEE nanoshells using the modified couple stress theory.

  11. CCAN and TCAN - 1 1/2-D compressible-flow and time-dependent codes for conductor analysis

    International Nuclear Information System (INIS)

    Gierszewski, P.J.; Wan, A.S.; Yang, T.F.

    1983-01-01

    This report documents the computer programs CCAN (steady-state Compressible flow Conductor ANalysis) and TCAN (Time-dependent incompressible-flow Conductor ANalysis). These codes calculate temperature, pressure, power and other engineering quantities along the length of an actively-cooled electrical conductor. Present versions contain detailed property information for copper and aluminum conductors; and gaseous helium, liquid nitrogen and water coolants. CCAN and TCAN are available on the NMFECC CDC 7600

  12. SBKF Modeling and Analysis Plan: Buckling Analysis of Compression-Loaded Orthogrid and Isogrid Cylinders

    Science.gov (United States)

    Lovejoy, Andrew E.; Hilburger, Mark W.

    2013-01-01

    This document outlines a Modeling and Analysis Plan (MAP) to be followed by the SBKF analysts. It includes instructions on modeling and analysis formulation and execution, model verification and validation, identifying sources of error and uncertainty, and documentation. The goal of this MAP is to provide a standardized procedure that ensures uniformity and quality of the results produced by the project and corresponding documentation.

  13. DNABIT Compress - Genome compression algorithm.

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  14. Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules

    Science.gov (United States)

    Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; Schoff, M.; Shuldberg, C.; Landen, O. L.; Glenzer, S. H.; Falcone, R. W.; Gericke, D. O.; Döppner, T.

    2018-03-01

    We investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the charge state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Finally, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.

  15. Sensitivity analysis for the energy performance assessment of hybrid compressed air energy storage systems

    International Nuclear Information System (INIS)

    Briola, Stefano; Di Marco, Paolo; Gabbrielli, Roberto; Riccardi, Juri

    2017-01-01

    Highlights: •A sensitivity analysis and DOE of the complete hybrid CAES are carried out. •The influence of the storage site volume on performance indicators is negligible. •The performances increase with the decrease of the compressor outlet pressure. •The performances are correlated for each temperature increase in combustion chamber. •Hybridization of Huntorf implies a significant increase of its first law efficiency. -- Abstract: A detailed mathematical model was developed for the complete Hybrid Compressed Air Energy Storage (H-CAES) configuration with underground storage site and liquid thermal energy storage, operating with a sequence of processes (charging, holding and discharging with respective duration) in arbitrary order. A sensitivity analysis was carried out in order to calculate several performance indicators of the complete H-CAES configuration, in relation to the simultaneous change of several process parameters. The methodology “Design of Experiments” was applied to the results of the sensitivity analysis in order to calculate the main effects of each process parameter on each performance indicator. The influence of the storage site volume on each performance indicator is negligible. The reduction of the compressor group outlet pressure and of the turbine group power allows a more effective thermodynamic utilization both of the energy stored by the compressors and of the overall energy supplied to the plant. Furthermore, the former utilization is more effective by an increase of the gas temperature in the combustion chambers, whereas the latter utilization is worsened. Moreover, as case study, the existing diabatic CAES plant of Huntorf was modified by introducing a diathermic oil thermal storage. This plant is suitable to operate according to a partial hybrid configuration by the deactivation of the heat exchanger located upstream of the low pressure turbine. The thermodynamic utilization of the overall energy supplied to the plant

  16. Multi-objective optimization and exergoeconomic analysis of a combined cooling, heating and power based compressed air energy storage system

    International Nuclear Information System (INIS)

    Yao, Erren; Wang, Huanran; Wang, Ligang; Xi, Guang; Maréchal, François

    2017-01-01

    Highlights: • A novel tri-generation based compressed air energy storage system. • Trade-off between efficiency and cost to highlight the best compromise solution. • Components with largest irreversibility and potential improvements highlighted. - Abstract: Compressed air energy storage technologies can improve the supply capacity and stability of the electricity grid, particularly when fluctuating renewable energies are massively connected. While incorporating the combined cooling, heating and power systems into compressed air energy storage could achieve stable operation as well as efficient energy utilization. In this paper, a novel combined cooling, heating and power based compressed air energy storage system is proposed. The system combines a gas engine, supplemental heat exchangers and an ammonia-water absorption refrigeration system. The design trade-off between the thermodynamic and economic objectives, i.e., the overall exergy efficiency and the total specific cost of product, is investigated by an evolutionary multi-objective algorithm for the proposed combined system. It is found that, with an increase in the exergy efficiency, the total product unit cost is less affected in the beginning, while rises substantially afterwards. The best trade-off solution is selected with an overall exergy efficiency of 53.04% and a total product unit cost of 20.54 cent/kWh, respectively. The variation of decision variables with the exergy efficiency indicates that the compressor, turbine and heat exchanger preheating the inlet air of turbine are the key equipment to cost-effectively pursuit a higher exergy efficiency. It is also revealed by an exergoeconomic analysis that, for the best trade-off solution, the investment costs of the compressor and the two heat exchangers recovering compression heat and heating up compressed air for expansion should be reduced (particularly the latter), while the thermodynamic performance of the gas engine need to be improved

  17. A Feasibility Study for Measuring Accurate Chest Compression Depth and Rate on Soft Surfaces Using Two Accelerometers and Spectral Analysis

    Directory of Open Access Journals (Sweden)

    Sofía Ruiz de Gauna

    2016-01-01

    Full Text Available Background. Cardiopulmonary resuscitation (CPR feedback devices are being increasingly used. However, current accelerometer-based devices overestimate chest displacement when CPR is performed on soft surfaces, which may lead to insufficient compression depth. Aim. To assess the performance of a new algorithm for measuring compression depth and rate based on two accelerometers in a simulated resuscitation scenario. Materials and Methods. Compressions were provided to a manikin on two mattresses, foam and sprung, with and without a backboard. One accelerometer was placed on the chest and the second at the manikin’s back. Chest displacement and mattress displacement were calculated from the spectral analysis of the corresponding acceleration every 2 seconds and subtracted to compute the actual sternal-spinal displacement. Compression rate was obtained from the chest acceleration. Results. Median unsigned error in depth was 2.1 mm (4.4%. Error was 2.4 mm in the foam and 1.7 mm in the sprung mattress (p<0.001. Error was 3.1/2.0 mm and 1.8/1.6 mm with/without backboard for foam and sprung, respectively (p<0.001. Median error in rate was 0.9 cpm (1.0%, with no significant differences between test conditions. Conclusion. The system provided accurate feedback on chest compression depth and rate on soft surfaces. Our solution compensated mattress displacement, avoiding overestimation of compression depth when CPR is performed on soft surfaces.

  18. On the characterisation of the dynamic compressive behaviour of silicon carbides subjected to isentropic compression experiments

    Directory of Open Access Journals (Sweden)

    Zinszner Jean-Luc

    2015-01-01

    Full Text Available Ceramic materials are commonly used as protective materials particularly due to their very high hardness and compressive strength. However, the microstructure of a ceramic has a great influence on its compressive strength and on its ballistic efficiency. To study the influence of microstructural parameters on the dynamic compressive behaviour of silicon carbides, isentropic compression experiments have been performed on two silicon carbide grades using a high pulsed power generator called GEPI. Contrary to plate impact experiments, the use of the GEPI device and of the lagrangian analysis allows determining the whole loading path. The two SiC grades studied present different Hugoniot elastic limit (HEL due to their different microstructures. For these materials, the experimental technique allowed evaluating the evolution of the equivalent stress during the dynamic compression. It has been observed that these two grades present a work hardening more or less pronounced after the HEL. The densification of the material seems to have more influence on the HEL than the grain size.

  19. Elastic stability of cylindrical shells with soft elastic cores: Biomimicking natural tubular structures

    Science.gov (United States)

    Karam, Gebran Nizar

    1994-01-01

    Thin walled cylindrical shell structures are widespread in nature: examples include plant stems, porcupine quills, and hedgehog spines. All have an outer shell of almost fully dense material supported by a low density, cellular core. In nature, all are loaded in combination of axial compression and bending: failure is typically by buckling. Natural structures are often optimized. Here we have analyzed the elastic buckling of a thin cylindrical shell supported by an elastic core to show that this structural configuration achieves significant weight saving over a hollow cylinder. The results of the analysis are compared with data from an extensive experimental program on uniaxial compression and four point bending tests on silicone rubber shells with and without compliant foam cores. The analysis describes the results of the mechanical tests well. Characterization of the microstructures of several natural tubular structures with foamlike cores (plant stems, quills, and spines) revealed them to be close to the optimal configurations predicted by the analytical model. Biomimicking of natural cylindrical shell structures and evolutionary design processes may offer the potential to increase the mechanical efficiency of engineering cylindrical shells.

  20. ANALYSIS OF OPERATING PARAMETERS AND INDICATORS OF A COMPRESSION IGNITION ENGINE FUELLED WITH LPG

    Directory of Open Access Journals (Sweden)

    Krzysztof GARBALA

    2016-12-01

    Full Text Available This article presents the possibilities for using alternative fuels to power vehicles equipped with compression ignition (CI engines (diesel. Systems for using such fuels have been discussed. Detailed analysis and research covered the LPG STAG autogas system, which is used to power dual-fuel engine units (LPG+diesel. A description of the operation of the autogas system and installation in a vehicle has been presented. The basic algorithms of the controller, which is an actuating element of the whole system, have been discussed. Protection systems of a serial production engine unit to guarantee its factorycontrolled durability standards have been presented. A long-distance test drive and examinations of the engine over 150,000 km in a Toyota Hilux have been performed. Operating parameters and performance indicators of the engine with STAG LPG+diesel fuelling have been verified. Directions and perspectives for the further development of such a system in diesel-powered cars have been also indicated.

  1. Performance, emission and combustion analysis of a compression ignition engine using biofuel blends

    Directory of Open Access Journals (Sweden)

    Ors Ilker

    2017-01-01

    Full Text Available This study aimed to investigate the effects on performance, emission, and combustion characteristics of adding biodiesel and bioethanol to diesel fuel. Diesel fuel and blend fuels were tested in a water-cooled compression ignition engine with direct injection. Test results showed that brake specific fuel consumption and volumetric efficiency increased by about 30.6% and 3.7%, respectively, with the addition of bioethanol to binary blend fuels. The results of the blend fuel’s combustion analysis were similar to the diesel fuel’s results. Bioethanol increased maximal in-cylinder pressure compared to biodiesel and diesel fuel at both 1400 rpm and 2800 rpm. Emissions of CO increased by an amount of about 80% for fuels containing a high level of bioethanol when compared to CO emissions for diesel fuel. Using biodiesel, NO emissions increased by an average of 31.3%, HC emissions decreased by an average of 39.25%, and smoke opacity decreased by an average of 6.5% when compared with diesel fuel. In addition, when using bioethanol, NO emissions and smoke opacity decreased by 55% and 17% on average, respectively, and HC emissions increased by an average of 53% compared with diesel fuel.

  2. Well-to-Wheels Analysis of Compressed Natural Gas and Ethanol from Municipal Solid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Uisung [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2016-10-01

    The amount of municipal solid waste (MSW) generated in the United States was estimated at 254 million wet tons in 2013, and around half of that generated waste was landfilled. There is a huge potential in recovering energy from that waste, since around 60% of landfilled material is biomass-derived waste that has high energy content. In addition, diverting waste for fuel production avoids huge fugitive emissions from landfills, especially uncontrolled CH4 emissions, which are the third largest anthropogenic CH4 source in the United States. Lifecycle analysis (LCA) is typically used to evaluate the environmental impact of alternative fuel production pathways. LCA of transportation fuels is called well-to-wheels (WTW) and covers all stages of the fuel production pathways, from feedstock recovery (well) to vehicle operation (wheels). In this study, the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET®) model developed by Argonne National Laboratory is used to evaluate WTW greenhouse gas (GHG) emissions and fossil fuel consumption of waste-derived fuels. Two waste-to-energy (WTE) pathways have been evaluated – one for compressed natural gas (CNG) production using food waste via anaerobic digestion, and the other for ethanol production from yard trimmings via fermentation processes. Because the fuel production pathways displace current waste management practices (i.e., landfilling waste), we use a marginal approach that considers only the differences in emissions between the counterfactual case and the alternative fuel production case.

  3. Microstructural evolution of uranium dioxide following compression creep tests: An EBSD and image analysis study

    Energy Technology Data Exchange (ETDEWEB)

    Iltis, X., E-mail: xaviere.iltis@cea.fr [CEA, DEN, DEC, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Gey, N. [Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3), CNRS UMR 7239, Université de Lorraine, Ile du Saulcy, 57045 Metz Cedex 1 (France); Cagna, C. [CEA, DEN, DEC, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Hazotte, A. [Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3), CNRS UMR 7239, Université de Lorraine, Ile du Saulcy, 57045 Metz Cedex 1 (France); Sornay, Ph. [CEA, DEN, DEC, Cadarache, 13108 Saint-Paul-Lez-Durance (France)

    2015-01-15

    Highlights: • Image analysis and EBSD are performed on creep tested UO{sub 2} pellets. • Development of intergranular voids, with increasing strain, is quantified. • EBSD evidences a sub-structuration process within the grains and quantifies it. • Creep mechanisms are discussed on the basis of these results. - Abstract: Sintered UO{sub 2} pellets with relatively large grains (∼25 μm) are tested at 1500 °C under a compressive stress of 50 MPa, at different deformation levels up to 12%. Electron Back Scattered Diffraction (EBSD) is used to follow the evolution, with deformation, of grains (size, shape, orientation) and sub-grains. Image analyses of SEM images are performed to characterize emergence of a population of micron size voids. For the considered microstructure and test conditions, the results show that the deformation process of UO{sub 2} globally corresponds to grain boundary sliding, partly accommodated by a dislocational creep within the grains, leading to a highly sub-structured state.

  4. Graded compression ultrasonography and computed tomography in acute colonic diverticulitis: Meta-analysis of test accuracy

    International Nuclear Information System (INIS)

    Lameris, Wytze; Randen, Adrienne van; Bipat, Shandra; Stoker, Jaap; Bossuyt, Patrick M.M.; Boermeester, Marja A.

    2008-01-01

    The purpose was to investigate the diagnostic accuracy of graded compression ultrasonography (US) and computed tomography (CT) in diagnosing acute colonic diverticulitis (ACD) in suspected patients. We performed a systematic review and meta-analysis of the accuracy of CT and US in diagnosing ACD. Study quality was assessed with the QUADAS tool. Summary estimates of sensitivity and specificity were calculated using a bivariate random effects model. Six US studies evaluated 630 patients, and eight CT studies evaluated 684 patients. Overall, their quality was moderate. We did not identify meaningful sources of heterogeneity in the study results. Summary sensitivity estimates were 92% (95% CI: 80%-97%) for US versus 94% (95%CI: 87%-97%) for CT (p = 0.65). Summary specificity estimates were 90% (95%CI: 82%-95%) for US versus 99% (95%CI: 90%-100%) for CT (p = 0.07). For the identification of alternative diseases sensitivity ranged between 33% and 78% for US and between 50% and 100% for CT. The currently best available evidence shows no statistically significant difference in accuracy of US and CT in diagnosing ACD. Therefore, both US and CT can be used as initial diagnostic tool until new evidence is brought forward. However, CT is more likely to identify alternative diseases. (orig.)

  5. Zero-dimensional analysis of burn control with compression-decompression

    International Nuclear Information System (INIS)

    Okamoto, Masao; Ohnishi, Masami

    1983-01-01

    A simple but realistic method of active feedback control of a self-ignited tokamak reactor by major radius compression-decompression is presented, in which the thermal fusion output power and the ion temperature are envisaged as the variables that could be adopted as object of control. Error inherent in the measuring system for the controlled variable is taken into account in the analysis. Numerical calculations based on a point reactor model are performed, which indicate that the proposed method of control is capable of completely suppressing thermal runaway without involving any significant change in the major radius or in the fusion output power. Matching the reactor output to changes in load is shown also to be possible from a numerical example. The thermal stability of an igniting plasma governed by this feedback control is analyzed without prescribing any particular transport scaling. It is revealed that the control is achievable for a suitably chosen gain even with a response time lag longer than the thermal runaway time. Strong dependence of the stability on the scaling law is indicated. (author)

  6. Energy Analysis of Decoders for Rakeness-Based Compressed Sensing of ECG Signals.

    Science.gov (United States)

    Pareschi, Fabio; Mangia, Mauro; Bortolotti, Daniele; Bartolini, Andrea; Benini, Luca; Rovatti, Riccardo; Setti, Gianluca

    2017-12-01

    In recent years, compressed sensing (CS) has proved to be effective in lowering the power consumption of sensing nodes in biomedical signal processing devices. This is due to the fact the CS is capable of reducing the amount of data to be transmitted to ensure correct reconstruction of the acquired waveforms. Rakeness-based CS has been introduced to further reduce the amount of transmitted data by exploiting the uneven distribution to the sensed signal energy. Yet, so far no thorough analysis exists on the impact of its adoption on CS decoder performance. The latter point is of great importance, since body-area sensor network architectures may include intermediate gateway nodes that receive and reconstruct signals to provide local services before relaying data to a remote server. In this paper, we fill this gap by showing that rakeness-based design also improves reconstruction performance. We quantify these findings in the case of ECG signals and when a variety of reconstruction algorithms are used either in a low-power microcontroller or a heterogeneous mobile computing platform.

  7. Analysis of Compression Algorithm in Ground Collision Avoidance Systems (Auto-GCAS)

    Science.gov (United States)

    Schmalz, Tyler; Ryan, Jack

    2011-01-01

    Automatic Ground Collision Avoidance Systems (Auto-GCAS) utilizes Digital Terrain Elevation Data (DTED) stored onboard a plane to determine potential recovery maneuvers. Because of the current limitations of computer hardware on military airplanes such as the F-22 and F-35, the DTED must be compressed through a lossy technique called binary-tree tip-tilt. The purpose of this study is to determine the accuracy of the compressed data with respect to the original DTED. This study is mainly interested in the magnitude of the error between the two as well as the overall distribution of the errors throughout the DTED. By understanding how the errors of the compression technique are affected by various factors (topography, density of sampling points, sub-sampling techniques, etc.), modifications can be made to the compression technique resulting in better accuracy. This, in turn, would minimize unnecessary activation of A-GCAS during flight as well as maximizing its contribution to fighter safety.

  8. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells

    DEFF Research Database (Denmark)

    Yang, Tie; Bragheri, Francesca; Nava, Giovanni

    2016-01-01

    We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental ap...

  9. Compression stockings

    Science.gov (United States)

    Call your health insurance or prescription plan: Find out if they pay for compression stockings. Ask if your durable medical equipment benefit pays for compression stockings. Get a prescription from your doctor. Find a medical equipment store where they can ...

  10. Stress State Analysis and Failure Mechanisms of Masonry Columns Reinforced with FRP under Concentric Compressive Load

    OpenAIRE

    Jiří Witzany; Radek Zigler

    2016-01-01

    The strengthening and stabilization of damaged compressed masonry columns with composites based on fabrics of high-strength fibers and epoxy resin, or polymer-modified cement mixtures, belongs to novel, partially non-invasive and reversible progressive methods. The stabilizing and reinforcing effect of these fabrics significantly applies to masonry structures under concentric compressive loading whose failure mechanism is characterized by the appearance and development of vertical tensile cra...

  11. The comparative analysis of the compressible plasma streams generated in QSPA from the various gases

    International Nuclear Information System (INIS)

    Kozlov, A.N.; Drukarenko, S.P.; Seytkhalilova, E.I.; Velichkin, M.A.; Solyakov, D.G.

    2012-01-01

    The numerical research of streams dynamics in the channel and the compressible flows at the QSPA output is carried out for the plasma generated from hydrogen, helium, argon and xenon. The MHD equations in the one-fluid approach taking into account the final conductivity of medium, the heat conductivity and the effective losses of radiation energy underlie the numerical model of the two-dimensional axisymmetric plasma flows. Features of the compressible plasma streams generated from various gases are revealed.

  12. Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System

    OpenAIRE

    Shane D. Inder; Mehrdad Khamooshi

    2017-01-01

    Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored fo...

  13. Bi-orthogonality conditions for power flow analysis in fluid-loaded elastic cylindrical shells

    DEFF Research Database (Denmark)

    Ledet, Lasse; Sorokin, Sergey V.; Larsen, Jan Balle

    2015-01-01

    The paper addresses the classical problem of time-harmonic forced vibrations of a fluid-loaded cylindrical shell considered as a multi-modal waveguide carrying infinitely many waves. Firstly, a modal method for formulation of Green’s matrix is derived by means of modal decomposition. The method...... builds on the recent advances on bi-orthogonality conditions for multi-modal waveguides, which are derived here for an elastic fluid-filled cylindrical shell. Subsequently, modal decomposition is applied to the bi-orthogonality conditions to formulate explicit algebraic equations to express the modal...... vibro-acoustic waveguide is subjected to separate pressure and velocity acoustical excitations. Further, it has been found and justified that the bi-orthogonality conditions can be used as a ’root finder’ to solve the dispersion equation. Finally, it is discussed how to predict the response of a fluid...

  14. Nearside-farside analysis of aligned heavy-ion elastic scattering

    International Nuclear Information System (INIS)

    Heck, K.; Grawert, G.; Mukhopadhyay, D.

    1985-01-01

    The nearside-farside decomposition of scattering amplitudes is brought to bear upon analysing powers for polarized heavy-ion elastic scattering. Results for aligned 7 Li on 58 Ni and on 12 C show that at an incident centre-of-mass energy slightly above the Coulomb barrier all observables provide a clear signature of a nearside-dominated process. This is in consonance with the so-called shape-effect ideology which relates second-rank analysing powers with the orientation of aligned, deformed projectiles solely at the point of closest approach. At higher energies, however, the advent of Fraunhofer interference as observed in cross section and analysing powers is found to be coupled with increasing deviations from the shape-effect relations. (orig.)

  15. Experimental studies and microscopic analysis of the elastic scattering of low energy nucleons

    International Nuclear Information System (INIS)

    Tarrats-Saugnac, Annie.

    1982-05-01

    Data on the elastic scattering of low energy nucleons (between 20 and 40 MeV) by nuclei distributed throughout the entire mass table are examined in the framework of a microscopic approach. Two major problems occur at these low energies which do not occur at higher energies: the Pauli principle limits the interaction possibilities of projectiles with bound nucleons in the nucleus; it is not possible to neglect the antisymmetrization between projectiles and nucleon targets resulting in the addition of a nonlocal term to the potential. A quadratic moment approximation is used. As regards the inhibition of reactions inside the nucleus by the Pauli principle, an effective interaction with a relatively simple analytical form and easy to use for systematic analyses was determined [fr

  16. Advanced development of BEM for elastic and inelastic dynamic analysis of solids

    Science.gov (United States)

    Banerjee, P. K.; Ahmad, S.; Wang, H. C.

    1989-01-01

    Direct Boundary Element formulations and their numerical implementation for periodic and transient elastic as well as inelastic transient dynamic analyses of two-dimensional, axisymmetric and three-dimensional solids are presented. The inelastic formulation is based on an initial stress approach and is the first of its kind in the field of Boundary Element Methods. This formulation employs the Navier-Cauchy equation of motion, Graffi's dynamic reciprocal theorem, Stokes' fundamental solution, and the divergence theorem, together with kinematical and constitutive equations to obtain the pertinent integral equations of the problem in the time domain within the context of the small displacement theory of elastoplasticity. The dynamic (periodic, transient as well as nonlinear transient) formulations have been applied to a range of problems. The numerical formulations presented here are included in the BEST3D and GPBEST systems.

  17. Elastic-plastic fracture mechanics analysis of a pressure vessel with an axial outer surface flaw

    International Nuclear Information System (INIS)

    Aurich, D.

    1988-04-01

    Elastic-plastic finite element analyses of a test vessel (steel 1.6310=20 MnMoNi 55) with a semi-elliptical axial outer surface crack have been performed. The variations of J and CTOD along the crack front and the stresse state in the vicinity of the crack are presented. The applicability of approaches to determine J is examined. The FE results are compared with the experimental data. The results are analyzed with respect to the validity of J-controlled crack growth. It will be shown that the local ductile crack growth and, especially, the 'canoe effect' for a semi-elliptical crack can only be described correctly if local J R -curves are used which account for the varying triaxiality of the stress state along the crack front. (orig./HP) [de

  18. Nearside-farside analysis of aligned heavy-ion elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Heck, K; Grawert, G [Marburg Univ. (Germany, F.R.). Fachbereich Physik; Mukhopadhyay, D [Heidelberg Univ. (Germany, F.R.). Inst. fuer Theoretische Physik

    1985-04-22

    The nearside-farside decomposition of scattering amplitudes is brought to bear upon analysing powers for polarized heavy-ion elastic scattering. Results for aligned /sup 7/Li on /sup 58/Ni and on /sup 12/C show that at an incident centre-of-mass energy slightly above the Coulomb barrier all observables provide a clear signature of a nearside-dominated process. This is in consonance with the so-called shape-effect ideology which relates second-rank analysing powers with the orientation of aligned, deformed projectiles solely at the point of closest approach. At higher energies, however, the advent of Fraunhofer interference as observed in cross section and analysing powers is found to be coupled with increasing deviations from the shape-effect relations.

  19. Fluid elastic instability analysis of 1/6th experimental model of PFBR main vessel cooling circuit

    International Nuclear Information System (INIS)

    Jalaldeen, S.; Ravi, R.; Chellapandi, P.; Bhoje, S.B.

    1993-01-01

    In reactor assembly of Prototype Fast Breeder Reactor (PFBR), the main vessel (MV) temperature is kept below creep range i.e. less than 427 deg C by way of diverting a small fraction of core flow from the cold pool and sent through the passage between main vessel and an outer cylindrical baffle to cool the vessel. The sodium coning from this, is collected by another inner baffle and then returned to cold pool again. This system is termed as MV cooling circuit. The outer and inner baffles form feeding and restitution collectors respectively. The sodium from the feeding collector flows over the outer baffle and falls through a height of about 0.5 m before impacting on the free surface of sodium in the restitution collector. The fall of sodium may become a source of vibration of the baffles. Such vibrations have been already noted in case of SPX-I during its commissioning stage. For PFBR, the theoretical analysis was done to assess the fluid-elastic instability risks and stability charts were obtained. By this, it was concluded that the operating point (flow rate and fall height) lies within the stable zone. In order to confirm the above analysis results, a series of experiments were proposed. One preliminary experiment on 1/16 th model of MV cooling circuit has been completed. This model has also been analysed theoretically for the fluid- elastic instability, the theoretical analysis involves 2 stage computations. In the first stage, free vibration analysis with fluid structure interaction (FSI) effect for experimental model has been done using INCA (CASTEM 1985) code and all the mode shapes including sloshing are extracted. In the second stage the instability analysis is performed with the free vibration results from INCA. For the instability computations, a code WEIR has been written based on Aita's instability criteria [Aita.S. 1986

  20. Comprehensive analysis of Curie-point depths and lithospheric effective elastic thickness at Arctic Region

    Science.gov (United States)

    Lu, Y.; Li, C. F.

    2017-12-01

    Arctic Ocean remains at the forefront of geological exploration. Here we investigate its deep geological structures and geodynamics on the basis of gravity, magnetic and bathymetric data. We estimate Curie-point depth and lithospheric effective elastic thickness to understand deep geothermal structures and Arctic lithospheric evolution. A fractal exponent of 3.0 for the 3D magnetization model is used in the Curie-point depth inversion. The result shows that Curie-point depths are between 5 and 50 km. Curie depths are mostly small near the active mid-ocean ridges, corresponding well to high heat flow and active shallow volcanism. Large curie depths are distributed mainly at continental marginal seas around the Arctic Ocean. We present a map of effective elastic thickness (Te) of the lithosphere using a multitaper coherence technique, and Te are between 5 and 110 km. Te primarily depends on geothermal gradient and composition, as well as structures in the lithosphere. We find that Te and Curie-point depths are often correlated. Large Te are distributed mainly at continental region and small Te are distributed at oceanic region. The Alpha-Mendeleyev Ridge (AMR) and The Svalbard Archipelago (SA) are symmetrical with the mid-ocean ridge. AMR and SA were formed before an early stage of Eurasian basin spreading, and they are considered as conjugate large igneous provinces, which show small Te and Curie-point depths. Novaya Zemlya region has large Curie-point depths and small Te. We consider that fault and fracture near the Novaya Zemlya orogenic belt cause small Te. A series of transform faults connect Arctic mid-ocean ridge with North Atlantic mid-ocean ridge. We can see large Te near transform faults, but small Curie-point depths. We consider that although temperature near transform faults is high, but mechanically the lithosphere near transform faults are strengthened.

  1. Elastic-plastic analysis of local and integral straining behaviour in a cracked plate

    International Nuclear Information System (INIS)

    Grueter, L.; Ruettenauer, B.

    1982-01-01

    For components of the primary coolant system of the German LMFBR prototype reactor SNR-300, integrity against anticipated accidents (Bethe-Tait) has to be shown for a cracked structure. Within this programme a number of tests with cracked wide plate specimens yielding overall limit strains of approximately 15% have been run; finite element calculations have been infinated for the wide plate geometry. The paper discusses the straining behaviour of a cracked plate by considering the numerical simulation of structures strained up to such high levels. The stress-strain diagram of the weldment of the austenitic stainless steel X6 CrNi 18 at 450 0 C has been used. Plane strain and stress conditions have been prescribed. The original plate dimensions (t = thickness = 40 mm; h = height = 400 mm) have been used as well as a similar, but smaller plate of t = 8.8 mm width. The crack length is defined as 0.1 t. The results show that for a cracked plate under high plastic strain the near-crack-tip-field values still govern the structural mechanical behaviour. Concerning the absolute dimensions the effects known for elasticity retain their influence in the plastic regime; however, the crack location becomes more unimportant with increasing strain, i.e. the appropriate pure geometry factor tends to unity in the plastic regime. The center-crack, defined as 2a = 0.1 t, corresponds to an equivalent edge crack of depth a = 0.05 t in the elastic case. It can be shown that for high plastic strains this correspondence remains fully valid. (orig.)

  2. Analysis of Deformation and Equivalent Stress during Biomass Material Compression Molding

    Science.gov (United States)

    Xu, Guiying; Wei, Hetao; Zhang, Zhien; Yu, Shaohui; Wang, Congzhe; Huang, Guowen

    2018-02-01

    Ansys is adopted to analyze mold deformation and stress field distribution rule during the process of compressing biomass under pressure of 20Mpa. By means of unit selection, material property setting, mesh partition, contact pair establishment, load and constraint applying, and solver setting, the stress and strain of overall mold are analyzed. Deformation and equivalent Stress of compression structure, base, mold, and compression bar were analyzed. We can have conclusions: The distribution of stress forced on compressor is not completely uniform, where the stress at base is slightly decreased; the stress and strain of compression bar is the largest, and stress concentration my occur at top of compression bar, which goes against compression bar service life; the overall deformation of main mold is smaller; although there is slight difference between upper and lower part, the overall variation is not obvious, but the stress difference between upper and lower part of main mold is extremely large so that reaches to 10 times; the stress and strain in base decrease in circular shape, but there is still stress concentration in ledge, which goes against service life; contact stress does not distribute uniformly, there is increasing or decreasing trend in adjacent parts, which is very large in some parts. in constructing both.

  3. Additional Tension Screws Improve Stability in Elastic Stable Intramedullary Nailing: Biomechanical Analysis of a Femur Spiral Fracture Model.

    Science.gov (United States)

    Zachert, Gregor; Rapp, Marion; Eggert, Rebecca; Schulze-Hessing, Maaike; Gros, Nina; Stratmann, Christina; Wendlandt, Robert; Kaiser, Martin M

    2015-08-01

    For pediatric femoral shaft fractures, elastic stable intramedullary nailing (ESIN) is an accepted method of treatment. But problems regarding stability with shortening or axial deviation are well known in complex fracture types and heavier children. Biomechanical in vitro testing was performed to determine whether two modified osteosyntheses with an additional tension screw fixation or screw fixation alone without nails could significantly improve the stability in comparison to classical ESIN. A total of 24 synthetic adolescent-sized femoral bone models (Sawbones, 4th generation; Vashon, Washington, United States) with an identical spiral fracture (length 100 mm) were used. All grafts underwent retrograde fixation with two C-shaped steel nails (2C). Of the 24, 8 osteosyntheses were supported by one additional tension screw (2C1S) and another 8 by two screws (2S) in which the intramedullary nails were removed before testing. Each configuration underwent biomechanical testing in 4-point bending, external rotation (ER) and internal rotation (IR). Furthermore, the modifications were tested in axial physiological 9 degrees position for shifting and dynamic compression as well as dynamic load. Both screw configurations (2C1S and 2S) demonstrated a significantly higher stability in comparison to the 2C configuration in 4-point bending (anterior-posterior, 0.95 Nm/mm [2C] spiral fracture model, the stability of ESIN could be significantly improved by two modifications with additional tension screws. If transferred in clinical practice, these modifications might offer earlier weight bearing and less problems of shortening or axial deviation. Georg Thieme Verlag KG Stuttgart · New York.

  4. Chest compressions before defibrillation for out-of-hospital cardiac arrest: A meta-analysis of randomized controlled clinical trials

    Directory of Open Access Journals (Sweden)

    Meier Pascal

    2010-09-01

    Full Text Available Abstract Background Current 2005 guidelines for advanced cardiac life support strongly recommend immediate defibrillation for out-of-hospital cardiac arrest. However, findings from experimental and clinical studies have indicated a potential advantage of pretreatment with chest compression-only cardiopulmonary resuscitation (CPR prior to defibrillation in improving outcomes. The aim of this meta-analysis is to evaluate the beneficial effect of chest compression-first versus defibrillation-first on survival in patients with out-of-hospital cardiac arrest. Methods Main outcome measures were survival to hospital discharge (primary endpoint, return of spontaneous circulation (ROSC, neurologic outcome and long-term survival. Randomized, controlled clinical trials that were published between January 1, 1950, and June 19, 2010, were identified by a computerized search using SCOPUS, MEDLINE, BIOS, EMBASE, the Cochrane Central Register of Controlled Trials, International Pharmaceutical Abstracts database, and Web of Science and supplemented by conference proceedings. Random effects models were used to calculate pooled odds ratios (ORs. A subgroup analysis was conducted to explore the effects of response interval greater than 5 min on outcomes. Results A total of four trials enrolling 1503 subjects were integrated into this analysis. No difference was found between chest compression-first versus defibrillation-first in the rate of return of spontaneous circulation (OR 1.01 [0.82-1.26]; P = 0.979, survival to hospital discharge (OR 1.10 [0.70-1.70]; P = 0.686 or favorable neurologic outcomes (OR 1.02 [0.31-3.38]; P = 0.979. For 1-year survival, however, the OR point estimates favored chest compression first (OR 1.38 [0.95-2.02]; P = 0.092 but the 95% CI crossed 1.0, suggesting insufficient estimate precision. Similarly, for cases with prolonged response times (> 5 min point estimates pointed toward superiority of chest compression first (OR 1.45 [0

  5. A thermodynamically consistent model of magneto-elastic materials under diffusion at large strains and its analysis

    Science.gov (United States)

    Roubíček, Tomáš; Tomassetti, Giuseppe

    2018-06-01

    A theory of elastic magnets is formulated under possible diffusion and heat flow governed by Fick's and Fourier's laws in the deformed (Eulerian) configuration, respectively. The concepts of nonlocal nonsimple materials and viscous Cahn-Hilliard equations are used. The formulation of the problem uses Lagrangian (reference) configuration while the transport processes are pulled back. Except the static problem, the demagnetizing energy is ignored and only local non-self-penetration is considered. The analysis as far as existence of weak solutions of the (thermo) dynamical problem is performed by a careful regularization and approximation by a Galerkin method, suggesting also a numerical strategy. Either ignoring or combining particular aspects, the model has numerous applications as ferro-to-paramagnetic transformation in elastic ferromagnets, diffusion of solvents in polymers possibly accompanied by magnetic effects (magnetic gels), or metal-hydride phase transformation in some intermetallics under diffusion of hydrogen accompanied possibly by magnetic effects (and in particular ferro-to-antiferromagnetic phase transformation), all in the full thermodynamical context under large strains.

  6. An analytical method for free vibration analysis of Timoshenko beam theory applied to cracked nanobeams using a nonlocal elasticity model

    International Nuclear Information System (INIS)

    Torabi, K.; Nafar Dastgerdi, J.

    2012-01-01

    This paper is concerned with the free transverse vibration of cracked nanobeams modeled after Eringen's nonlocal elasticity theory and Timoshenko beam theory. The cracked beam is modeled as two segments connected by a rotational spring located at the cracked section. This model promotes discontinuities in rotational displacement due to bending which is proportional to bending moment transmitted by the cracked section. The governing equations of cracked nanobeams with two symmetric and asymmetric boundary conditions are derived; then these equations are solved analytically based on concerning basic standard trigonometric and hyperbolic functions. Besides, the frequency parameters and the vibration modes of cracked nanobeams for variant crack positions, crack ratio, and small scale effect parameters are calculated. The vibration solutions obtained provide a better representation of the vibration behavior of short, stubby, micro/nanobeams where the effects of small scale, transverse shear deformation and rotary inertia are significant. - Highlights: ► The free vibration analysis of cracked nanobeams is investigated. ► This study is based on the theory of nonlocal elasticity and Timoshenko beam theory. ► The small scale effect parameter greatly affects the value of natural frequencies. ► Crack reduces the natural frequencies, causes a discontinuity in the cracked section.

  7. An analytical method for free vibration analysis of Timoshenko beam theory applied to cracked nanobeams using a nonlocal elasticity model

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, K., E-mail: kvntrb@KashanU.ac.ir; Nafar Dastgerdi, J., E-mail: J.nafardastgerdi@me.iut.ac.ir

    2012-08-31

    This paper is concerned with the free transverse vibration of cracked nanobeams modeled after Eringen's nonlocal elasticity theory and Timoshenko beam theory. The cracked beam is modeled as two segments connected by a rotational spring located at the cracked section. This model promotes discontinuities in rotational displacement due to bending which is proportional to bending moment transmitted by the cracked section. The governing equations of cracked nanobeams with two symmetric and asymmetric boundary conditions are derived; then these equations are solved analytically based on concerning basic standard trigonometric and hyperbolic functions. Besides, the frequency parameters and the vibration modes of cracked nanobeams for variant crack positions, crack ratio, and small scale effect parameters are calculated. The vibration solutions obtained provide a better representation of the vibration behavior of short, stubby, micro/nanobeams where the effects of small scale, transverse shear deformation and rotary inertia are significant. - Highlights: Black-Right-Pointing-Pointer The free vibration analysis of cracked nanobeams is investigated. Black-Right-Pointing-Pointer This study is based on the theory of nonlocal elasticity and Timoshenko beam theory. Black-Right-Pointing-Pointer The small scale effect parameter greatly affects the value of natural frequencies. Black-Right-Pointing-Pointer Crack reduces the natural frequencies, causes a discontinuity in the cracked section.

  8. Mathematical methods in elasticity imaging

    CERN Document Server

    Ammari, Habib; Garnier, Josselin; Kang, Hyeonbae; Lee, Hyundae; Wahab, Abdul

    2015-01-01

    This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic...

  9. A Priori Analysis of a Compressible Flamelet Model using RANS Data for a Dual-Mode Scramjet Combustor

    Science.gov (United States)

    Quinlan, Jesse R.; Drozda, Tomasz G.; McDaniel, James C.; Lacaze, Guilhem; Oefelein, Joseph

    2015-01-01

    In an effort to make large eddy simulation of hydrocarbon-fueled scramjet combustors more computationally accessible using realistic chemical reaction mechanisms, a compressible flamelet/progress variable (FPV) model was proposed that extends current FPV model formulations to high-speed, compressible flows. Development of this model relied on observations garnered from an a priori analysis of the Reynolds-Averaged Navier-Stokes (RANS) data obtained for the Hypersonic International Flight Research and Experimentation (HI-FiRE) dual-mode scramjet combustor. The RANS data were obtained using a reduced chemical mechanism for the combustion of a JP-7 surrogate and were validated using avail- able experimental data. These RANS data were then post-processed to obtain, in an a priori fashion, the scalar fields corresponding to an FPV-based modeling approach. In the current work, in addition to the proposed compressible flamelet model, a standard incompressible FPV model was also considered. Several candidate progress variables were investigated for their ability to recover static temperature and major and minor product species. The effects of pressure and temperature on the tabulated progress variable source term were characterized, and model coupling terms embedded in the Reynolds- averaged Navier-Stokes equations were studied. Finally, results for the novel compressible flamelet/progress variable model were presented to demonstrate the improvement attained by modeling the effects of pressure and flamelet boundary conditions on the combustion.

  10. Modelling and analysis of a novel compressed air energy storage system for trigeneration based on electrical energy peak load shifting

    International Nuclear Information System (INIS)

    Lv, Song; He, Wei; Zhang, Aifeng; Li, Guiqiang; Luo, Bingqing; Liu, Xianghua

    2017-01-01

    Highlights: • A new CAES system for trigeneration based on electrical peak load shifting is proposed. • The theoretical models and the thermodynamics process are established and analyzed. • The relevant parameters influencing its performance have been discussed and optimized. • A novel energy and economic evaluation methods is proposed to evaluate the performance of the system. - Abstract: The compressed air energy storage (CAES) has made great contribution to both electricity and renewable energy. In the pursuit of reduced energy consumption and relieving power utility pressure effectively, a novel trigeneration system based on CAES for cooling, heating and electricity generation by electrical energy peak load shifting is proposed in this paper. The cooling power is generated by the direct expansion of compressed air, and the heating power is recovered in the process of compression and storage. Based on the working principle of the typical CAES, the theoretical analysis of the thermodynamic system models are established and the characteristics of the system are analyzed. A novel method used to evaluate energy and economic performance is proposed. A case study is conducted, and the economic-social and technical feasibility of the proposed system are discussed. The results show that the trigeneration system works efficiently at relatively low pressure, and the efficiency is expected to reach about 76.3% when air is compressed and released by 15 bar. The annual monetary cost saving annually is about 53.9%. Moreover, general considerations about the proposed system are also presented.

  11. Elastic scattering

    International Nuclear Information System (INIS)

    Leader, Elliot

    1991-01-01

    With very few unexplained results to challenge conventional ideas, physicists have to look hard to search for gaps in understanding. An area of physics which offers a lot more than meets the eye is elastic and diffractive scattering where particles either 'bounce' off each other, emerging unscathed, or just graze past, emerging relatively unscathed. The 'Blois' workshops provide a regular focus for this unspectacular, but compelling physics, attracting highly motivated devotees

  12. Free vibration analysis of a magneto-electro-elastic doubly-curved shell resting on a Pasternak-type elastic foundation

    International Nuclear Information System (INIS)

    Razavi, Soheil; Shooshtari, Alireza

    2014-01-01

    Free vibration of a simply-supported magneto-electro-elastic doubly-curved thin shell resting on a Pasternak foundation is investigated based on Donnell theory. The rotary inertia effect is considered in the formulation. Maxwell equations for electrostatics and magnetostatics are used to model the electric and magnetic behavior. The partial differential equations of motion are reduced to a single ordinary differential equation and an analytical relation is obtained for the natural frequency. After validation of the present study, several numerical studies is done to investigate the effects of the electric and magnetic potentials, spring and shear coefficients of the Pasternak foundation, and the geometry of the shell on the vibration frequency. (paper)

  13. Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar

    International Nuclear Information System (INIS)

    Ranjbar, Navid; Mehrali, Mehdi; Behnia, Arash; Alengaram, U. Johnson; Jumaat, Mohd Zamin

    2014-01-01

    Highlights: • Results show POFA is adaptable as replacement in FA based geopolymer mortar. • The increase in POFA/FA ratio delay of the compressive development of geopolymer. • The density of POFA based geoploymer is lower than FA based geopolymer mortar. - Abstract: This paper presents the effects and adaptability of palm oil fuel ash (POFA) as a replacement material in fly ash (FA) based geopolymer mortar from the aspect of microstructural and compressive strength. The geopolymers developed were synthesized with a combination of sodium hydroxide and sodium silicate as activator and POFA and FA as high silica–alumina resources. The development of compressive strength of POFA/FA based geopolymers was investigated using X-ray florescence (XRF), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and field emission scanning electron microscopy (FESEM). It was observed that the particle shapes and surface area of POFA and FA as well as chemical composition affects the density and compressive strength of the mortars. The increment in the percentages of POFA increased the silica/alumina (SiO 2 /Al 2 O 3 ) ratio and that resulted in reduction of the early compressive strength of the geopolymer and delayed the geopolymerization process

  14. Elastic-plastic collapse of super-elastic shock waves in face-centered-cubic solids

    International Nuclear Information System (INIS)

    Zhakhovsky, Vasily V; Demaske, Brian J; Oleynik, Ivan I; Inogamov, Nail A; White, Carter T

    2014-01-01

    Shock waves in the [110] and [111] directions of single-crystal Al samples were studied using molecular dynamics (MD) simulations. Piston-driven simulations were performed to investigate the split shock-wave regime. At low piston velocities, the material is compressed initially to a metastable over-compressed elastic state leading to a super-elastic single shock wave. This metastable elastic state later collapses to a plastic state resulting in the formation of a two-wave structure consisting of an elastic precursor followed by a slower plastic wave. The single two-zone elastic-plastic shock-wave regime appearing at higher piston velocities was studied using moving window MD. The plastic wave attains the same average speed as the elastic precursor to form a single two-zone shock wave. In this case, repeated collapse of the highly over-compressed elastic state near the plastic shock front produces ultrashort triangle pulses that provide the pressure support for the leading elastic precursor.

  15. Collusion and the elasticity of demand

    OpenAIRE

    David Collie

    2004-01-01

    The analysis of collusion in infinitely repeated Cournot oligopoly games has generally assumed that demand is linear, but this note uses constant-elasticity demand functions to investigate how the elasticity of demand affects the sustainability of collusion.

  16. Geothermal-Related Thermo-Elastic Fracture Analysis by Numerical Manifold Method

    Directory of Open Access Journals (Sweden)

    Jun He

    2018-05-01

    Full Text Available One significant factor influencing geothermal energy exploitation is the variation of the mechanical properties of rock in high temperature environments. Since rock is typically a heterogeneous granular material, thermal fracturing frequently occurs in the rock when the ambient temperature changes, which can greatly influence the geothermal energy exploitation. A numerical method based on the numerical manifold method (NMM is developed in this study to simulate the thermo-elastic fracturing of rocklike granular materials. The Voronoi tessellation is incorporated into the pre-processor of NMM to represent the grain structure. A contact-based heat transfer model is developed to reflect heat interaction among grains. Based on the model, the transient thermal conduction algorithm for granular materials is established. To simulate the cohesion effects among grains and the fracturing process between grains, a damage-based contact fracture model is developed to improve the contact algorithm of NMM. In the developed numerical method, the heat interaction among grains as well as the heat transfer inside each solid grain are both simulated. Additionally, as damage evolution and fracturing at grain interfaces are also considered, the developed numerical method is applicable to simulate the geothermal-related thermal fracturing process.

  17. Sensitivity analysis for elastic full-waveform inversion in VTI media

    KAUST Repository

    Kamath, Nishant

    2014-08-05

    Multiparameter full-waveform inversion (FWI) is generally nonunique, and the results are strongly influenced by the geometry of the experiment and the type of recorded data. Studying the sensitivity of different subsets of data to the model parameters may help in choosing an optimal acquisition design, inversion workflow, and parameterization. Here, we derive the Fréchet kernel for FWI of multicomponent data from a 2D VTI (tranversely isotropic with a vertical symmetry axis) medium. The kernel is obtained by linearizing the elastic wave equation using the Born approximation and employing the asymptotic Green\\'s function. The amplitude of the kernel (‘radiation pattern’) yields the angle-dependent energy scattered by a perturbation in a certain model parameter. The perturbations are described in terms of the P- and S-wave vertical velocities and the P-wave normal-moveout and horizontal velocities. The background medium is assumed to be homogeneous and isotropic, which allows us to obtain simple expressions for the radiation patterns corresonding to all four velocities. These patterns help explain the FWI results for multicomponent transmission data generated for Gaussian anomalies in the Thomsen parameters inserted into a homogeneous VTI medium.

  18. A global analysis of the elastic 3He scattering in the framework of the optical model

    International Nuclear Information System (INIS)

    Trost, H.J.

    1981-01-01

    The elastic scattering of 3 He at projetile energies from 10 MeV to 220 MeV on target nuclei in the mass range 10 to 208 is coherently studied in the framework of the simple optical model. It succeeds to obtain in the whole range a reasonable description by means of the usual Woods-Saxon potentials. This is illustrated by the presentation of a global mass and energy dependent potential. The light target nuclei are included in these systematics without the introduction of any special procedures. The omission of the antisymmetrization by the use of a purely local potential and the spin-orbit interaction have no important influence in the determination of the central potential. The cancelling of the discerte ambiguity is globally guaranted by the presented parametrization. The tradional sum rule 'number of projectile nucleons multiplied by nucleon-nucleus potential is equal to nucleus-nuclear potential' is not fulfilled. Starting from existing theoretical papers the properties of the global 3 He potential can be quantitatively explained. On the base of the 3 He potentials determined here and existing nucleon and deuteron potentials finally an approach to a projectile systematic is indicated. (orig.) [de

  19. Nonlocal continuum analysis of a nonlinear uniaxial elastic lattice system under non-uniform axial load

    Science.gov (United States)

    Hérisson, Benjamin; Challamel, Noël; Picandet, Vincent; Perrot, Arnaud

    2016-09-01

    The static behavior of the Fermi-Pasta-Ulam (FPU) axial chain under distributed loading is examined. The FPU system examined in the paper is a nonlinear elastic lattice with linear and quadratic spring interaction. A dimensionless parameter controls the possible loss of convexity of the associated quadratic and cubic energy. Exact analytical solutions based on Hurwitz zeta functions are developed in presence of linear static loading. It is shown that this nonlinear lattice possesses scale effects and possible localization properties in the absence of energy convexity. A continuous approach is then developed to capture the main phenomena observed regarding the discrete axial problem. The associated continuum is built from a continualization procedure that is mainly based on the asymptotic expansion of the difference operators involved in the lattice problem. This associated continuum is an enriched gradient-based or nonlocal axial medium. A Taylor-based and a rational differential method are both considered in the continualization procedures to approximate the FPU lattice response. The Padé approximant used in the continualization procedure fits the response of the discrete system efficiently, even in the vicinity of the limit load when the non-convex FPU energy is examined. It is concluded that the FPU lattice system behaves as a nonlocal axial system in dynamic but also static loading.

  20. Multichannel analysis of He*(21S)+Ne elastic and inelastic scattering in crossed atomic beams

    International Nuclear Information System (INIS)

    Martin, D.W.; Fukuyama, T.; Siska, P.E.

    1990-01-01

    State-to-state elastic and inelastic angular distribution and time-of-flight measurements are reported for the scattering of He*(2 1 S) by Ne in crossed supersonic atom beams at four collision energies in the range 0.6--2.8 kcal/mol. The inelastic collision products He+Ne*(nl), where nl=3d', 4p, 4p', 5s, 5s', and 4d, are scattered predominantly forward with respect to the direction of incidence, except for endothermic states near threshold. The data are analyzed with a numerically exact multichannel curve-crossing model that yields good agreement with experimental cross section branching fractions and total quenching and state-to-state rate constants as well as the angular measurements. The model suggests the importance of intermediate ''chaperone'' states, in which the excited electron is temporarily trapped in a d or f Rydberg Ne orbital, in channeling flux into the 4s' and 5s' upper laser states of Ne by energy transfer from He*(2s 1,3 S)