WorldWideScience

Sample records for compression elasticity analysis

  1. Compression analysis of rectangular elastic layers bonded between rigid plates

    Energy Technology Data Exchange (ETDEWEB)

    Hsiang-Chuan Tsai [National Taiwan University of Science and Technology, Taipei (China). Dept. of Construction Engineering

    2005-06-01

    An elastic layer bonded between two rigid plates has higher compression stiffness than the elastic layer without bonding. While the finite element method can be applied to calculate the stiffness, the compression stiffness of bonded rectangular layers derived through a theoretical approach in this paper provides a convenient way for parametric study. Based on two kinematics assumptions, the governing equation for the mean pressure is derived from the equilibrium equations. Using the approximate shear boundary condition, the mean pressure is solved and the compression stiffness of the bonded rectangular layer is then established in an explicit single-series form. Through the solved pressure, the horizontal displacements are derived from the corresponding equilibrium equations, from which the shear stress on the bonding surface can be found. It is found that the effect of the rectangular aspect on the compression stiffness is significant only when Poisson's ratio is near 0.5. For the smaller Poisson's ratio, the compression stiffness of the rectangular layer can be approximated by the formula for the infinite-strip layer of the same shape factor. (author)

  2. Analysis and simulation of high strain compression of anisotropic open-cell elastic foams

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    By elongating the regular Kelvin model in one direction and keeping unchanged in the other two directions,the anisotropic model was constructed.Then,the simplified periodic structural cell was obtained according to the periodicity and symmetry of the model in the whole space.Using the half-strut element and elastic deflection theory to analyze the mechanical behavior as were adopted in the previous studies,this paper obtained the theoretical expressions for the compressive stress and strain as well as the corresponding curves in the rise and transverse directions.In addition,the theoretical results were examined by the finite element simulation.Results indicated that the theoretical analysis was very close to the finite element simulation when the strain was not too high,which confirmed the validity of theoretical analysis.At the same time,the anisotropy was shown to have a significant effect on the mechanical properties of open-cell foams.As the anisotropy ratio increased,the compressive stress was improved in the rise direction but dropped in the transverse direction under the same strain.

  3. Topographic mapping and compression elasticity analysis of skinned cardiac muscle fibers in vitro with atomic force microscopy and nanoindentation.

    Science.gov (United States)

    Zhu, Jie; Sabharwal, Tanya; Kalyanasundaram, Aruna; Guo, Lianhong; Wang, Guodong

    2009-09-18

    Surface topography and compression elasticity of bovine cardiac muscle fibers in rigor and relaxing state have been studied with atomic force microscopy. Characteristic sarcomere patterns running along the longitudinal axis of the fibers were clearly observed, and Z-lines, M-lines, I-bands, and A-bands can be distinguished through comparing with TEM images and force curves. AFM height images of fibers had shown a sarcomere length of 1.22+/-0.02 microm (n=5) in rigor with a significant 9% increase in sarcomere length in relaxing state (1.33+/-0.03 microm, n=5), indicating that overlap moves with the changing physiological conditions. Compression elasticity curves along with sarcomere locations have been taken by AFM compression processing. Coefficient of Z-line, I-band, Overlap, and M-line are 25+/-2, 8+/-1, 10+/-1, and 17+/-1.5 pN/nm respectively in rigor state, and 18+/-2.5, 4+/-0.5, 6+/-1, and 11+/-0.5 pN/nm respectively in relaxing state. Young's Modulus in Z-line, I-band, Overlap, and M-line are 115+/-12, 48+/-9, 52+/-8, and 90+/-12 kPa respectively in rigor, and 98+/-10, 23+/-4, 42+/-4, and 65+/-7 kPa respectively in relaxing state. The elasticity curves have shown a similar appearance to the section analysis profile of AFM height images of sarcomere and the distance between adjacent largest coefficient and Young's Modulus is equal to the sarcomere length measured from the AFM height images using section analysis, indicating that mechanic properties of fibers have a similar periodicity to the topography of fibers.

  4. Topographic Mapping and Compression Elasticity Analysis of Skinned Cardiac Muscle Fibers in Vitro with Atomic Force Microscopy and Nanoindentation

    OpenAIRE

    2009-01-01

    Surface topography and compression elasticity of bovine cardiac muscle fibers in rigor and relaxing state has been studied with atomic force microscopy. Characteristic sarcomere patterns running along the longitudinal axis of the fibers were clearly observed, and Z-lines, M-lines, I-bands, and A-bands can be distinguished through comparing with TEM images and force curves. AFM height images of fibers had shown a sarcomere length of 1.22±0.02μm (n=5) in rigor with a significant 9% increase in ...

  5. Indentation of elastically soft and plastically compressible solids

    DEFF Research Database (Denmark)

    Needleman, A.; Tvergaard, Viggo; Van der Giessen, E.

    2015-01-01

    The effect of soft elasticity, i.e., a relatively small value of the ratio of Young's modulus to yield strength and plastic compressibility on the indentation of isotropically hardening elastic-viscoplastic solids is investigated. Calculations are carried out for indentation of a perfectly sticking...... rigid sharp indenter into a cylinder modeling indentation of a half space. The material is characterized by a finite strain elastic-viscoplastic constitutive relation that allows for plastic as well as elastic compressibility. Both soft elasticity and plastic compressibility significantly reduce...... the ratio of nominal indentation hardness to yield strength. A linear relation is found between the nominal indentation hardness and the logarithm of the ratio of Young's modulus to yield strength, but with a different coefficient than reported in previous studies. The nominal indentation hardness decreases...

  6. Analysis of Intrinsic Stability Criteria for Isotropic Third-Order Green Elastic and Compressible Neo-Hookean Solids

    Science.gov (United States)

    2014-03-01

    simulation. Physica D 240, 841–858. Clayton, J., McDowell, D., 2004. Homogenized finite elastoplasticity and damage : theory and computations. Mech... damaged solids), the onset of material instability depends on strain, but in linear elastic solids, material stability is independent of strain and simply... damage in polycrystals. Theor. Appl. Fract. Mech. 45, 163–185. Clayton, J., 2008. A model for deformation and fragmentation in crushable brittle solids

  7. The role of elastic compressibility in dynamic subduction models

    Science.gov (United States)

    Austmann, Walter; Govers, Rob; Burov, Evgenii

    2014-05-01

    Recent advances in geodynamic numerical models show a trend towards more realistic rheologies. The Earth is no longer modeled as a purely viscous fluid, but the effects of, for example, elasticity and plasticity are also included. However, by making such improvements, it is essential to include these more complex rheologies in a consistent way. Specifically, compressibility needs also to be included, an effect that is commonly neglected in numerical models. Recently, we showed that the effect of elastic compressibility is significant. This was done for a gravity driven cylinder in a homogeneous Maxwell fluid bounded by closed boundaries. For a fluid with a realistic compressibility (Poisson ratio equals 0.3), the settling velocity showed a discrepancy with the semi-analytical steady state incompressible solution of approximately 40%. The motion of the fluid was no longer restricted by a small region around the cylinder, but the motion of the cylinder compressed also the fluid near the bottom boundary. This compression decreased the resistance on the cylinder and resulted in a larger settling velocity. Here, we examine the influence of elastic compressibility in an oceanic subduction setting. The slab is driven by slab pull and a far field prescribed plate motion. Preliminary results indicate that elastic compressibility has a significant effect on the fluid motion. Differences with respect to nearly incompressible solution are most significant near material boundaries. In line with our earlier findings, the flow is increased in regions of confined flow, such as the mantle wedge or the subduction channel. As a consequence, an increasing compressibility results in a larger slab velocity. We seek to identify surface observables, such as topography and plate motion, that allow us to distinguish the compressible and incompressible behavior.

  8. Investigations on the visco-elastic behaviour of a human healthy heel pad: in vivo compression tests and numerical analysis

    DEFF Research Database (Denmark)

    Matteoli, Sara; Fontanella, Chiara G.; Carniel, Emanuele L.;

    2013-01-01

    The aim of this study was to investigate the viscoelastic behaviour of the human heel pad by comparing the stress–relaxation curves obtained from a compression device used on an in vivo heel pad with those obtained from a threedimensional computer-based subject-specific heel pad model subjected...... to external compression. The three-dimensional model was based on the anatomy revealed by magnetic resonance imaging of a 31-year-old healthy female. The calcaneal fat pad tissue was described with a viscohyperelastic model, while a fibre-reinforced hyperelastic model was formulated for the skin. All......–relaxation and viscous recovery phenomena. The reliability of the investigations was validated by the interpretation of the mechanical response of heel tissues under the application of three pistons with diameter of 15, 20 and 40 mm, at the same displacement rate of about 1.7 mm/s. The maximum and minimum relative...

  9. Skin blood flow with elastic compressive extravehicular activity space suit.

    Science.gov (United States)

    Tanaka, Kunihiko; Gotoh, Taro M; Morita, Hironobu; Hargens, Alan R

    2003-10-01

    During extravehicular activity (EVA), current space suits are pressurized with 100% oxygen at approximately 222 mmHg. A tight elastic garment, or mechanical counter pressure (MCP) suit that generates pressure by compression, may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with negative ambient pressure with an MCP sleeve. The MCP glove and sleeve generated pressures similar to the current space suit. MCP remained constant during negative pressure due to unchanged elasticity of the material. Decreased skin capillary blood flow and temperature during MCP compression was counteracted by greater negative pressure or a smaller pressure differential.

  10. Nonlinear surface waves in soft, weakly compressible elastic media.

    Science.gov (United States)

    Zabolotskaya, Evgenia A; Ilinskii, Yurii A; Hamilton, Mark F

    2007-04-01

    Nonlinear surface waves in soft, weakly compressible elastic media are investigated theoretically, with a focus on propagation in tissue-like media. The model is obtained as a limiting case of the theory developed by Zabolotskaya [J. Acoust. Soc. Am. 91, 2569-2575 (1992)] for nonlinear surface waves in arbitrary isotropic elastic media, and it is consistent with the results obtained by Fu and Devenish [Q. J. Mech. Appl. Math. 49, 65-80 (1996)] for incompressible isotropic elastic media. In particular, the quadratic nonlinearity is found to be independent of the third-order elastic constants of the medium, and it is inversely proportional to the shear modulus. The Gol'dberg number characterizing the degree of waveform distortion due to quadratic nonlinearity is proportional to the square root of the shear modulus and inversely proportional to the shear viscosity. Simulations are presented for propagation in tissue-like media.

  11. Inelastic compression legging produces gradient compression and significantly higher skin surface pressures compared with an elastic compression stocking.

    Science.gov (United States)

    Kline, Cassie N; Macias, Brandon R; Kraus, Emily; Neuschwander, Timothy B; Angle, Niren; Bergan, John; Hargens, Alan R

    2008-01-01

    The purposes of this study were to (1) investigate compression levels beneath an inelastic legging equipped with a new pressure-adjustment system, (2) compare the inelastic compression levels with those provided by a well-known elastic stocking, and (3) evaluate each support's gradient compression production. Eighteen subjects without venous reflux and 12 patients with previously documented venous reflux received elastic and inelastic compression supports sized for the individual. Skin surface pressures under the elastic (Sigvaris 500, 30-40 mm Hg range, Sigvaris, Inc., Peachtree City, GA) and inelastic (CircAid C3 with Built-in-Pressure System [BPS], CircAid Medical Products, San Diego, CA) supports were measured using a calibrated Tekscan I-Scan device (Tekscan, Inc., Boston, MA). The elastic stocking produced significantly lower skin surface pressures than the inelastic legging. Mean pressures (+/- standard error) beneath the elastic stocking were 26 +/- 2 and 23 +/- 1 mm Hg at the ankle and below-knee regions, respectively. Mean pressures (+/- standard error) beneath the inelastic legging with the BPS were 50 +/- 3 and 38 +/- 2 mm Hg at the ankle and below-knee regions, respectively. Importantly, our study indicates that only the inelastic legging with the BPS produces significant ankle to knee gradient compression (p = .001).

  12. Sulcus formation in a compressed elastic half space

    Science.gov (United States)

    Biggins, John; Mahadevan, L.

    2012-02-01

    When a block of rubber, biological tissue or other soft material is subject to substantial compression, its surfaces undergo a folding instability. Rather than having a smooth profile, these folds contain cusps and hence have been called creases or sulcii rather than wrinkles. The stability of a compressed surface was first investigated by Biot (1965), assuming the strains associated with the instability were small. However, the compression threshold predicted with this approach is substantially too high. I will introduce a family of analytic area preserving maps that contain cusps (and hence points of infinite strain) that save energy before the linear stability threshold even at vanishing amplitude. This establishes that there is a region before the linear stability threshold is reached where the system is unstable to infinitesimal perturbations, but that this instability is quintessentially non-linear and cannot be found with linear strain elasticity.

  13. The compression of a heavy floating elastic film.

    Science.gov (United States)

    Jambon-Puillet, Etienne; Vella, Dominic; Protière, Suzie

    2016-11-23

    We study the effect of film density on the uniaxial compression of thin elastic films at a liquid-fluid interface. Using a combination of experiments and theory, we show that dense films first wrinkle and then fold as the compression is increased, similarly to what has been reported when the film density is neglected. However, we highlight the changes in the shape of the fold induced by the film's own weight and extend the model of Diamant and Witten [Phys. Rev. Lett., 2011, 107, 164302] to understand these changes. In particular, we suggest that it is the weight of the film that breaks the up-down symmetry apparent from previous models, but elusive experimentally. We then compress the film beyond the point of self-contact and observe a new behaviour dependent on the film density: the single fold that forms after wrinkling transitions into a closed loop after self-contact, encapsulating a cylindrical droplet of the upper fluid. The encapsulated drop either causes the loop to bend upward or to sink deeper as the compression is increased, depending on the relative buoyancy of the drop-film combination. We propose a model to qualitatively explain this behaviour. Finally, we discuss the relevance of the different buckling modes predicted in previous theoretical studies and highlight the important role of surface tension in the shape of the fold that is observed from the side-an aspect that is usually neglected in theoretical analyses.

  14. Comparison of Elastic Modulus and Compressive Strength of Ariadent and Harvard Polycarboxylate Cement and Vitremer Resin Modified Glass Ionomer

    Directory of Open Access Journals (Sweden)

    Ahmadian Khoshemehr Leila

    2009-09-01

    Full Text Available Background: Luting agents are used to attach indirect restoration into or on the tooth. Poor mechanical properties of cement may be a cause of fracture of this layer and lead to caries and restoration removal. The purpose of this study was to compare the elastic modulus and compressive strength of Ariadent (A Poly and Harvard polycarboxylate (H Poly cements and Vitremer resin modified glass ionomer (RGl.Materials & Methods: In this experimental study 15 specimens were prepared form each experimental cement in Laboratory of Tehran Oil Refining Company. The cylindrical specimens were compressed in Instron machine after 24 hours. Elastic modulus and compressive strength were calculated from stress/strain curve of each specimen. One way ANOVA and Tukey tests were used for statistical analysis and P values<0.05 were considered to be statistically significant.Results: The mean elastic modulus and mean compressive strength were 2.2 GPa and 87.8MPa in H poly, 2.4 GPa and 56.5 MPa in A Poly, and 0.8GPa and 105.6 MPa in RGI, respectively. Statistical analysis showed that compressive strength and elastic modulus of both polycarboxylate cements were significantly different from hybrid ionomer (P<0.05, but the difference between elastic modulus of two types of polycarboxilate cements was not statistically significant. Compressive strength of two polycarboxilate cements were significantly different (P<0.05. Conclusion: An ideal lutting agent must have the best mechanical properties. Between the tested luttins RGl cement had the lowest elastic modulus and the highest compressive strength, but the A poly cement had the highest elastic modulus and the lowest compressive strength. Therefore none of them was the best.

  15. Numerical Modeling of the Compression Process of Elastic Open-cell Foams

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The random models of open-cell foams that can reflect the actual cell geometrical properties are constructed with the Voronoi technique. The compression process of elastic open-cell foams is simulated with the nonlinear calculation module of finite element analysis program. In order to get the general results applicable to this kind of materials, the dimensionless compressive stress is used and the stress-strain curves of foam models with different geometrical properties are obtained. Then, the influences of open-cell geometrical properties, including the shape of strut cross section, relative density and cell shape irregularity, on the compressive nonlinear mechanical performance are analyzed. In addition, the numerical results are compared with the predicted results of cubic staggering model. Numerical results indicate that the simulated results reflect the compressive process of foams quite well and the geometrical properties of cell have significant influences on the nonlinear mechanical behavior of foams.

  16. Compressive Strength and Static Modulus of Elasticity of Periwinkle Shell Ash Blended Cement Concrete

    Directory of Open Access Journals (Sweden)

    Akaninyene Afangide Umoh

    2012-12-01

    Full Text Available The study examined the effect of periwinkle shell ash as supplementary cementitious material on the compressive strength and static modulus of elasticity of concrete with a view to comparing it’s established relation with an existing model. The shells were calcined at a temperature of 800oC. Specimens were prepared from a mix of designed strength 25N/mm2. The replacement of cement with periwinkle shell ash (PSA was at five levels of 0, 10, 20, 30 and 40% by volume. A total of 90 cubical and cylindrical specimens each were cast and tested at 7, 14, 28, 90, 120 and 180 days. The results revealed that the PSA met the minimum chemical and physical requirements for class C Pozzolans. The compressive strength of the PSA blended cement concrete increased with increase in curing age up to 180 days but decreased as the PSA content increased. The design strength was attained with 10%PSA content at the standard age of 28 days. The static modulus of elasticity of PSA blended cement concrete was observed to increase with increased in curing age and decreases with PSA content. In all the curing ages 0%PSA content recorded higher value than the blended cement concrete. The statistical analysis indicated that the percentage PSA replacement and the curing age have significant effect on the properties of the concrete at 95% confidence level. The relation between compressive strength and static modulus of elasticity fitted into existing model for normal-weight concrete.

  17. An analytical description for the elastic compression of metallic polyhedral nanoparticles

    Directory of Open Access Journals (Sweden)

    L. Yang

    2016-08-01

    Full Text Available Metallic nanoparticles are usually polyhedrons instead of perfect spheres, which presents a challenge to characterize their elastic response. In the present paper, the elastic compression of truncated octahedral nanoparticles is investigated through finite element calculations and atomic simulations. An analytical expression of load is obtained for octahedral particles, which is linearly proportional to indent depth, instead of the 3/2 power law relation predicted by Hertzian model for elastic sphere. Comparisons with molecular dynamics simulations demonstrate that the obtained relation can predict the elastic response of polyhedral nanoparticles. This study is helpful to measure the elastic properties of polyhedral nanoparticles, and characterize their elastic response.

  18. ON THE ORIENTATION OF BUCKLING DIRECTION OF ANISOTROPIC ELASTIC PLATE UNDER UNIAXIAL COMPRESSION

    Institute of Scientific and Technical Information of China (English)

    Zhang Yitong

    2001-01-01

    The theory of small deformation superimposed on a large deformation of an elastic solid is used to investigate the buckling of anisotropic elastic plate under uniaxial compression. The buckling direction (the direction of buckling wave) is generally not aligned with the compression direction. The equation for determining the buckling direction is obtained. It is found that the out-of-plane buckling of anisotropic elastic plate is possible and both buckling conditions for flexural and extensional modes are presented. As a specific case of buckling of anisotropic elastic plate, the buckling of an orthotropic elastic plate subjected to a compression in a direction that forms an arbitrary angle with an elastic principal axis of the materials is analyzed. It is found that the buckling direction depends on the angle between the compression direction and the principal axis of the materials, the critical compressive force and plate-thickness parameters.In the case that the compression direction is aligned with the principal axis of the materials, the buckling direction will be aligned with the compression one irrespective of critical compressive force and plate-thickness.

  19. Compressed Submanifold Multifactor Analysis.

    Science.gov (United States)

    Luu, Khoa; Savvides, Marios; Bui, Tien; Suen, Ching

    2016-04-14

    Although widely used, Multilinear PCA (MPCA), one of the leading multilinear analysis methods, still suffers from four major drawbacks. First, it is very sensitive to outliers and noise. Second, it is unable to cope with missing values. Third, it is computationally expensive since MPCA deals with large multi-dimensional datasets. Finally, it is unable to maintain the local geometrical structures due to the averaging process. This paper proposes a novel approach named Compressed Submanifold Multifactor Analysis (CSMA) to solve the four problems mentioned above. Our approach can deal with the problem of missing values and outliers via SVD-L1. The Random Projection method is used to obtain the fast low-rank approximation of a given multifactor dataset. In addition, it is able to preserve the geometry of the original data. Our CSMA method can be used efficiently for multiple purposes, e.g. noise and outlier removal, estimation of missing values, biometric applications. We show that CSMA method can achieve good results and is very efficient in the inpainting problem as compared to [1], [2]. Our method also achieves higher face recognition rates compared to LRTC, SPMA, MPCA and some other methods, i.e. PCA, LDA and LPP, on three challenging face databases, i.e. CMU-MPIE, CMU-PIE and Extended YALE-B.

  20. Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium.

    Science.gov (United States)

    Shen, Hui-Shen

    2010-06-01

    Buckling and postbuckling analysis is presented for axially compressed microtubules (MTs) embedded in an elastic matrix of cytoplasm. The microtubule is modeled as a nonlocal shear deformable cylindrical shell which contains small scale effects. The surrounding elastic medium is modeled as a Pasternak foundation. The governing equations are based on higher order shear deformation shell theory with a von Kármán-Donnell-type of kinematic nonlinearity and include the extension-twist and flexural-twist couplings. The thermal effects are also included and the material properties are assumed to be temperature-dependent. The small scale parameter e (0) a is estimated by matching the buckling load from their vibrational behavior of MTs with the numerical results obtained from the nonlocal shear deformable shell model. The numerical results show that buckling load and postbuckling behavior of MTs are very sensitive to the small scale parameter e (0) a. The results reveal that the MTs under axial compressive loading condition have an unstable postbuckling path, and the lateral constraint has a significant effect on the postbuckling response of a microtubule when the foundation stiffness is sufficiently large.

  1. Elastic-viscoplastic field at mixed-mode interface crack-tip under compression and shear

    Institute of Scientific and Technical Information of China (English)

    梁文彦; 王振清; 刘方; 刘晓铎

    2014-01-01

    For a compression-shear mixed mode interface crack, it is difficult to solve the stress and strain fields considering the material viscosity, the crack-tip singularity, the frictional effect, and the mixed loading level. In this paper, a mechanical model of the dynamic propagation interface crack for the compression-shear mixed mode is proposed using an elastic-viscoplastic constitutive model. The governing equations of propagation crack interface at the crack-tip are given. The numerical analysis is performed for the interface crack of the compression-shear mixed mode by introducing a displacement function and some boundary conditions. The distributed regularities of stress field of the interface crack-tip are discussed with several special parameters. The final results show that the viscosity effect and the frictional contact effect on the crack surface and the mixed-load parameter are important factors in studying the mixed mode interface crack-tip fields. These fields are controlled by the viscosity coefficient, the Mach number, and the singularity exponent.

  2. A Model for Compression-Weakening Materials and the Elastic Fields due to Contractile Cells

    CERN Document Server

    Rosakis, Phoebus; Ravichandran, Guruswami

    2014-01-01

    We construct a homogeneous, nonlinear elastic constitutive law, that models aspects of the mechanical behavior of inhomogeneous fibrin networks. Fibers in such networks buckle when in compression. We model this as a loss of stiffness in compression in the stress-strain relations of the homogeneous constitutive model. Problems that model a contracting biological cell in a finite matrix are solved. It is found that matrix displacements and stresses induced by cell contraction decay slower (with distance from the cell) in a compression weakening material, than linear elasticity would predict. This points toward a mechanism for long-range cell mechanosensing. In contrast, an expanding cell would induce displacements that decay faster than in a linear elastic matrix.

  3. A model for compression-weakening materials and the elastic fields due to contractile cells

    Science.gov (United States)

    Rosakis, Phoebus; Notbohm, Jacob; Ravichandran, Guruswami

    2015-12-01

    We construct a homogeneous, nonlinear elastic constitutive law that models aspects of the mechanical behavior of inhomogeneous fibrin networks. Fibers in such networks buckle when in compression. We model this as a loss of stiffness in compression in the stress-strain relations of the homogeneous constitutive model. Problems that model a contracting biological cell in a finite matrix are solved. It is found that matrix displacements and stresses induced by cell contraction decay slower (with distance from the cell) in a compression weakening material than linear elasticity would predict. This points toward a mechanism for long-range cell mechanosensing. In contrast, an expanding cell would induce displacements that decay faster than in a linear elastic matrix.

  4. On the identification of the eggshell elastic properties under quasistatic compression

    Directory of Open Access Journals (Sweden)

    Jana Simeonovová

    2004-01-01

    Full Text Available The problem of the identification of the elastic properties of eggshell, i.e. the evaluation of the Young's modulus and Poisson's ratio is solved. The eggshell is considered as a rotational shell. The experiments on the egg compression under quasistatic loading have been conducted. During these experiments a strain on the eggshell surface has been recorded. By the mutual comparison between experimental and theoretical values of strains the influence of the elastic constants has been demonstrated.

  5. A theory of static friction between homogeneous surfaces based on compressible elastic smooth microscopic inclines

    CERN Document Server

    Thun, Freeman Chee Siong; Chan, Kin Sung

    2014-01-01

    We develop a theory of static friction by modeling the homogeneous surfaces of contact as being composed of a regular array of compressible elastic smooth microscopic inclines. Static friction is thought of as the resistance due to having to push the load over these smooth microscopic inclines that share a common inclination angle. As the normal force between the surfaces increases, the microscopic inclines would be compressed elastically. Consequently, the coefficient of static friction does not remain constant but becomes smaller for a larger normal force, since the load would then only need to be pushed over smaller angles. However, a larger normal force would also increase the effective compressed area between the surfaces, as such the pressure is distributed over this larger effective compressed area. The relationship between the normal force and the common angle is therefore non-linear. Overall, static friction is shown to depend on the normal force, apparent contact area, Young's modulus, and the compr...

  6. Propagation, reflection, and transmission of SH-waves in slightly compressible, finitely deformed elastic media

    Institute of Scientific and Technical Information of China (English)

    M. CHATTERJEE; A. CHATTOPADHYAY

    2015-01-01

    The propagation, reflection, and transmission of SH waves in slightly com-pressible, finitely deformed elastic media are considered in this paper. The dispersion relation for SH-wave propagation in slightly compressible, finitely deformed layer over-lying a slightly compressible, finitely deformed half-space is derived. The present paper also deals with the reflection and refraction (transmission) phenomena due to the SH wave incident at the plane interface between two distinct slightly compressible, finitely deformed elastic media. The closed form expressions for the amplitude ratios of reflection and refraction coefficients of the reflected and refracted SH waves are obtained from suit-able boundary conditions. For the numerical discussions, we consider the Neo-Hookean form of a strain energy function. The phase speed curves, the variations of reflection, and transmission coefficients with the angle of incidence, and the plots of the slowness sections are presented by means of graphs.

  7. MODULUS OF ELASTICITY AND HARDNESS OF COMPRESSION AND OPPOSITE WOOD CELL WALLS OF MASSON PINE

    Directory of Open Access Journals (Sweden)

    Yanhui Huang,

    2012-05-01

    Full Text Available Compression wood is commonly found in Masson pine. To evaluate the mechanical properties of the cell wall of Masson pine compression and opposite wood, nanoindentation was used. The results showed that the average values of hardness and cell wall modulus of elasticity of opposite wood were slightly higher than those of compression wood. With increasing age of the annual ring, the modulus of elasticity showed a negative correlation with microfibril angle, but a weak correlation was observed for hardness. In opposite and compression wood from the same annual ring, the differences in average values of modulus of elasticity and hardness were small. These slight differences were explained by the change of microfibril angle (MFA, the press-in mode of nanoindentation, and the special structure of compression wood. The mechanical properties were almost the same for early, transition, and late wood in a mature annual ring of opposite wood. It can therefore be inferred that the average modulus of elasticity (MOE and hardness of the cell walls in a mature annual ring were not being affected by cell wall thickness.

  8. Buckling Analysis of Debonded Sandwich Panel Under Compression

    Science.gov (United States)

    Sleight, David W.; Wang, John T.

    1995-01-01

    A sandwich panel with initial through-the-width debonds is analyzed to study the buckling of its faceskin when subject to an in-plane compressive load. The debonded faceskin is modeled as a beam on a Winkler elastic foundation in which the springs of the elastic foundation represent the sandwich foam. The Rayleigh-Ritz and finite-difference methods are used to predict the critical buckling load for various debond lengths and stiffnesses of the sandwich foam. The accuracy of the methods is assessed with a plane-strain finite-element analysis. Results indicate that the elastic foundation approach underpredicts buckling loads for sandwich panels with isotropic foam cores.

  9. Acoustic Localization in Weakly Compressible Elastic Media Permeated with Air Bubbles

    Institute of Scientific and Technical Information of China (English)

    LIANG Bin; ZHU Zhe-Min; CHENG Jian-Chun

    2006-01-01

    @@ The propagation of longitudinal acoustic waves in weakly compressible elastic media permeated with air bubbles is investigated on the basis of the radial pulsation equation of a single bubble. The multiple scattering of waves in such media is rigorously described by using a self-consistent approach.

  10. CAVITY FORMATION AT THE CENTER OF A SPHERE COMPOSED OF TWO COMPRESSIBLE HYPER-ELASTIC MATERIALS

    Institute of Scientific and Technical Information of China (English)

    任九生; 程昌钧; 朱正佑

    2003-01-01

    The cavitated bifurcation problem in a solid sphere composed of two compressible hyper-elastic materials under a uniform boundary radial stretch was examined.The solutions, including the trivial solution and the cavitated solutions, were obtained.The bifurcation curves and the stress contributions subsequent to cavitation were discussed.The phenomena of the right and the left bifurcations as well as the catastrophe and concentration of stresses are observed. The stability of solutions is discussed through the energy comparison.

  11. Elastic or inelastic compression in patients with leg ulcer and restricted mobility?

    Directory of Open Access Journals (Sweden)

    Giovanni Mosti

    2013-11-01

    Full Text Available In patients with leg ulcer and restricted mobility, compression with elastic material is often preferred based on the concept that it is more effective as it exerts a sustained higher resting pressure while inelastic material is believed to exert a very low resting pressure and to work only during movement. The aim of this study is to demonstrate that elastic and inelastic material can exert similar pressure at rest and that inelastic material can produce a much higher pressure during sitting and light exercise in ulcer patients with restricted mobility. In 30 patients (12 men, 18 women mean age 76.3±9.1 years, range 63-80 with leg ulcers and severely reduced mobility we applied consecutively elastic and inelastic bandages with the same resting pressure of 40 mmHg. Pressure changes were measured while the patient was sitting and standing and during active and passive muscle contractions. The pressure differences between standing and supine and sitting and supine position were calculated as well as between muscle systole and diastole during active and passive contractions. Starting with the same resting pressure inelastic bandages produce significantly higher pressure peaks in the sitting and standing position and during the muscular systole both during active and passive exercise compared to elastic bandages (P<0.001. The results show that inelastic bandages, applied with the same pressure as elastic bandages at rest, will exert much higher pressures even during minimal or passively induced muscle contractions. The concept that elastic compression should be used in patients with reduced mobility needs to be reconsidered.

  12. Maximum-Entropy Meshfree Method for Compressible and Near-Incompressible Elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, A; Puso, M A; Sukumar, N

    2009-09-04

    Numerical integration errors and volumetric locking in the near-incompressible limit are two outstanding issues in Galerkin-based meshfree computations. In this paper, we present a modified Gaussian integration scheme on background cells for meshfree methods that alleviates errors in numerical integration and ensures patch test satisfaction to machine precision. Secondly, a locking-free small-strain elasticity formulation for meshfree methods is proposed, which draws on developments in assumed strain methods and nodal integration techniques. In this study, maximum-entropy basis functions are used; however, the generality of our approach permits the use of any meshfree approximation. Various benchmark problems in two-dimensional compressible and near-incompressible small strain elasticity are presented to demonstrate the accuracy and optimal convergence in the energy norm of the maximum-entropy meshfree formulation.

  13. Acoustic localization in weakly compressible elastic media containing random air bubbles.

    Science.gov (United States)

    Liang, Bin; Cheng, Jian-chun

    2007-01-01

    We study theoretically the propagation of longitudinal wave in weakly compressible elastic media containing random air bubbles by using a self-consistent method. By inspecting the scattering cross section of an individual bubble and estimating the mean free paths of the elastic wave propagating in the bubbly weakly compressible media, the mode conversion is numerically proved negligible as the longitudinal wave is scattered by the bubbles. On the basis of the bubble dynamic equation, the wave propagation is solved rigorously with the multiple scattering effects incorporated. In a range of frequency slightly above the bubble resonance frequency, the acoustic localization in such a class of media is theoretically identified with even a very small volume fraction of bubbles. We present a method by analyzing the spatial correlation of wave field to identify the phenomenon of localization, which turns out to be effective. The sensibility of the features of localization to the structure parameters is numerically investigated. The spatial distribution of acoustic energy is also studied and the results show that the waves are trapped within a spatial domain adjacent to the source when localization occurs.

  14. Lateral compliance of a compressed rod supported by an elastic foundation, with application to micro-electronic and fibre-optic structures

    Energy Technology Data Exchange (ETDEWEB)

    Suhir, E [Electrical Engineering, University of California, Santa Cruz, CA (United States); Mechanical Engineering, University of Maryland, College Park, MD (United States); ERS Co., 727 Alvina Ct., Los Altos, CA 94024 (United States)

    2008-01-07

    In some optical fibre (OF) structures (such as, e.g. dual-coated OF interconnects) or in carbon-nano-fibre (CNF) arrays embedded into elastic media (e.g. when these arrays are used in heat removal devices), the OFs or the CNFs can be idealized as cantilever beams (rods) that experience both axial compression and lateral loading. We show that axial compression can increase considerably the compliance of the OF or the CNF with respect to the lateral loading. We develop simple predictive models for the assessment of this effect. The analysis is limited to small (pre-buckling) deflections of the structural elements in question.

  15. Elastic stresses and plastic deformations in 'Santa Clara' tomato fruits caused by package dependent compression

    Directory of Open Access Journals (Sweden)

    PEREIRA ADRIANA VARGAS

    2000-01-01

    Full Text Available The objective of this work was to study the fruit compression behavior aiming to develop new tomato packages. Deformations caused by compression forces were observed inside packages and in individual 'Santa Clara' tomato fruit. The forces applied by a transparent acrylic lever to the fruit surface caused pericarp deformation and the flattened area was proportional to the force magnitude. The deformation was associated to the reduction in the gas volume (Vg, caused by expulsion of the air from the loculus cavity and reduction in the intercellular air volume of the pericarp. As ripening advanced, smaller fractions of the Vg reduced by the compressive force were restored after the stress was relieved. The lack of complete Vg restoration was an indication of permanent plastic deformations of the stressed cells. Vg regeneration (elastic recovery was larger in green fruits than in the red ones. The ratio between the applied force and the flattened area (flattening pressure, which depends on cell turgidity, decreased during ripening. Fruit movements associated with its depth in the container were observed during storage in a transparent glass container (495 x 355 x 220 mm. The downward movement of the fruits was larger in the top layers because these movements seem to be driven by a summation of the deformation of many fruits in all layers.

  16. Expansion of spherical cavity of strain-softening materials with different elastic moduli of tension and compression

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An expansion theory of spherical cavities in strain-softening materials with different moduli of tension and compression was presented. For geomaterials, two controlling parameters were introduced to take into account the different moduli and strain-softening properties. By means of elastic theory with different moduli and stress-softening models, g. eneral solutions calculating Tresca and Mohr-Coulomb materials' stress and displacement fields of expansion of spherical cavity were derived. The effects caused by different elastic moduli in tensile and compression and strain-softening rates on stress and displacement fields and development of plastic zone of expansion of cavity were analyzed. The results show that the ultimate expansion pressure,stress and displacement fields and development of plastic zone vary with the different elastic moduli and strain-softening properties. If classical elastic theory is adopted and strain-softening properties are neglected, rather large errors may be the result.

  17. Relation between Modulus of Elasticity and Compressive Strength of Ultrahigh-Strength Mortar with Mixed Silicon Carbide as Fine Aggregate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ultrahigh-strength mortar mixed surface-oxidized silicon carbide as a fine aggregate was prepared by means of press-casting followed by curing in an autoclave. The relation between modulus of elasticity up to 111 GPa and compressive strength up to 360 MPa of mortar mixed silicon carbide was discussed and it was revealed that the contributions of the aggregate hardness and of the interfacial strength between the aggregate and the cement paste on the elasticity of mortar were imporant.

  18. Probabilistic analysis of linear elastic cracked structures

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper presents a probabilistic methodology for linear fracture mechanics analysis of cracked structures. The main focus is on probabilistic aspect related to the nature of crack in material. The methodology involves finite element analysis; statistical models for uncertainty in material properties, crack size, fracture toughness and loads; and standard reliability methods for evaluating probabilistic characteristics of linear elastic fracture parameter. The uncertainty in the crack size can have a significant effect on the probability of failure, particularly when the crack size has a large coefficient of variation. Numerical example is presented to show that probabilistic methodology based on Monte Carlo simulation provides accurate estimates of failure probability for use in linear elastic fracture mechanics.

  19. Shock Compression of Metal Crystals: A Comparison of Eulerian and Lagrangian Elastic-Plastic Theories

    Science.gov (United States)

    2014-11-01

    temperature equation-of-state (EOS) [ Luscher et al., 2013] for the pressure. For isotropic (e.g., untextured polycrystalline) solids, nonlinear elasticity...elastoplasticity [ Luscher et al., 2013]. 1450048-12 2nd Reading October 15, 2014 11:4 WSPC-255-IJAM S1758-8251 1450048 Shock Compression of Metal Crystals...Clayton, 2011; Luscher et al., 2013] S̄ = ∂Ū ∂E = ∂Ψ̄ ∂E = JFE−1σFE−T, θ = ∂Ū/∂η, η = −∂Ψ̄/∂θ, χ̄ = −∂Ψ̄/∂ζ, (3.7) c̄θ̇ = ∑ α τ̄αγ̇α + θ ∂S̄ ∂θ : Ė

  20. Postpartum Varicose Veins: Supplementation with Pycnogenol or Elastic Compression-A 12-Month Follow-Up.

    Science.gov (United States)

    Belcaro, Gianni; Dugall, Mark; Luzzi, Roberta; Ippolito, Edmondo; Cesarone, M Rosaria

    2017-03-01

    This open registry aimed to evaluate the clinical evolution of postpartum varicose veins (VVs), in healthy women after the second pregnancy, how these veins regain shape and competence, and possible treatments. The registry included two groups of women: (1) those who used elastic compression stockings, and (2) who used an oral venotonic agent (Pycnogenol, 100 mg/d). A total of 12 evaluation targets were established. Minor symptoms were scored in an analogue scale line. A visual analogue scale line evaluated the overall satisfaction relative to elastic compression or Pycnogenol. Overall 133 women completed the registry evaluation with at least 3 months of follow-up. The resulting two registry groups were comparable. At 3 and 6 months in the Pycnogenol group the number of veins and incompetent sites were lower. At 6 months there were 13.3% of patients with edema in controls versus 3.2% in the Pycnogenol group. Spider veins decreased in Pycnogenol patients. Cramps and other minor symptoms were less common in the Pycnogenol group. In both groups there was a significant improvement at 6 months with better results in the Pycnogenol group. The need for treatment was limited with a decreased need for sclerotherapy, surgery, and conservative treatments in the Pycnogenol group. The overall satisfaction was higher among Pycnogenol patients, and compliance was optimal. Re-evaluation at 12 months indicated that the variations in VVs and spider vein clusters and the associated symptoms did not change. Most remodeling appeared to happen within 6 months after the pregnancy. It was concluded that the use of Pycnogenol improves signs/symptoms of postpartum VVs, and venous function and shape seem to return faster to prepartum, physiological pattern with its use.

  1. Elastic-Waveform Inversion with Compressive Sensing for Sparse Seismic Data

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Youzuo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Huang, Lianjie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-26

    Accurate velocity models of compressional- and shear-waves are essential for geothermal reservoir characterization and microseismic imaging. Elastic-waveform inversion of multi-component seismic data can provide high-resolution inversion results of subsurface geophysical properties. However, the method requires seismic data acquired using dense source and receiver arrays. In practice, seismic sources and/or geophones are often sparsely distributed on the surface and/or in a borehole, such as 3D vertical seismic profiling (VSP) surveys. We develop a novel elastic-waveform inversion method with compressive sensing for inversion of sparse seismic data. We employ an alternating-minimization algorithm to solve the optimization problem of our new waveform inversion method. We validate our new method using synthetic VSP data for a geophysical model built using geologic features found at the Raft River enhanced-geothermal-system (EGS) field. We apply our method to synthetic VSP data with a sparse source array and compare the results with those obtained with a dense source array. Our numerical results demonstrate that the velocity mode ls produced with our new method using a sparse source array are almost as accurate as those obtained using a dense source array.

  2. Asymptotic bifurcation solutions for compressions of a clamped nonlinearly elastic rectangle: transition region and barrelling to a corner-like profile

    CERN Document Server

    Dai, H H

    2009-01-01

    Buckling and barrelling instabilities in the uniaxial compressions of an elastic rectangle have been studied by many authors under lubricated end conditions. However, in practice it is very difficult to realize such conditions due to friction. Here, we study the compressions of a two-dimensional nonlinearly elastic rectangle under clamped end conditions.

  3. Current prescribing patterns of elastic compression stockings post-deep venous thrombosis.

    LENUS (Irish Health Repository)

    Roche-Nagle, G

    2012-02-01

    OBJECTIVES: Post-thrombotic syndrome (PTS) is a complication of deep vein thrombosis (DVT) characterized by chronic pain, swelling and heaviness, and may result in ulceration. Elastic compression stockings (ECS) worn daily after DVT appear to reduce the incidence and severity of PTS. The aims of our study were to investigate practices and perceptions of DVT patients and physicians regarding the use of ECS after DVT. METHODS: Two surveys were conducted. The first was sent to 225 staff and trainee clinicians and the second was administered to 150 DVT patients. RESULTS: The results demonstrated that the majority of senior staff (75%) believed that ECS were effective in preventing PTS and in managing venous symptoms. However, this was in contrast with junior trainees (21%) (P < 0.05). This resulted in only 63% of patients being prescribed ECS post-DVT. There was a lack of consensus as regards the optimal timing of initiation of ECS, duration of therapy and compression strength. Nearly all DVT patients who were prescribed ECS purchased them, 74% wore them daily, and most (61%) reported that ECS relieved swelling and symptoms. Physicians correctly predicted the main reasons for non-compliance, but misjudged the scale of patient compliance with ECS. CONCLUSIONS: Our findings suggest that there is a lack of consensus among doctors regarding ECS use after DVT and widespread education regarding the latest evidence of the benefit of ECS after DVT.

  4. Explicit mixed strain-displacement finite elements for compressible and quasi-incompressible elasticity and plasticity

    Science.gov (United States)

    Cervera, M.; Lafontaine, N.; Rossi, R.; Chiumenti, M.

    2016-09-01

    This paper presents an explicit mixed finite element formulation to address compressible and quasi-incompressible problems in elasticity and plasticity. This implies that the numerical solution only involves diagonal systems of equations. The formulation uses independent and equal interpolation of displacements and strains, stabilized by variational subscales. A displacement sub-scale is introduced in order to stabilize the mean-stress field. Compared to the standard irreducible formulation, the proposed mixed formulation yields improved strain and stress fields. The paper investigates the effect of this enhancement on the accuracy in problems involving strain softening and localization leading to failure, using low order finite elements with linear continuous strain and displacement fields ( P1 P1 triangles in 2D and tetrahedra in 3D) in conjunction with associative frictional Mohr-Coulomb and Drucker-Prager plastic models. The performance of the strain/displacement formulation under compressible and nearly incompressible deformation patterns is assessed and compared to analytical solutions for plane stress and plane strain situations. Benchmark numerical examples show the capacity of the mixed formulation to predict correctly failure mechanisms with localized patterns of strain, virtually free from any dependence of the mesh directional bias. No auxiliary crack tracking technique is necessary.

  5. Elasticity

    CERN Document Server

    Soutas-Little, Robert William

    2010-01-01

    According to the author, elasticity may be viewed in many ways. For some, it is a dusty, classical subject . . . to others it is the paradise of mathematics."" But, he concludes, the subject of elasticity is really ""an entity itself,"" a unified subject deserving comprehensive treatment. He gives elasticity that full treatment in this valuable and instructive text. In his preface, Soutas-Little offers a brief survey of the development of the theory of elasticity, the major mathematical formulation of which was developed in the 19th century after the first concept was proposed by Robert Hooke

  6. Effect of Cylinder Size on the Modulus of Elasticity and Compressive Strength of Concrete from Static and Dynamic Tests

    Directory of Open Access Journals (Sweden)

    Byung Jae Lee

    2015-01-01

    Full Text Available The primary objective of this study is to investigate the effects of cylinder size (150 by 300 mm and 100 by 200 mm on empirical equations that relate static elastic moduli and compressive strength and static and dynamic elastic moduli of concrete. For the purposes, two sets of one hundred and twenty concrete cylinders, 150 by 300 mm and 100 by 200 mm, were prepared from three different mixtures with target compressive strengths of 30, 35, and 40 MPa. Static and dynamic tests were performed at 4, 7, 14, and 28 days to evaluate compressive strength and static and dynamic moduli of cylinders. The effects of the two different cylinder sizes were investigated through experiments in this study and database collected from the literature. For normal strength concrete (≤40 MPa, the two different cylinder sizes do not result in significant differences in test results including experimental variability, compressive strength, and static and dynamic elastic moduli. However, it was observed that the size effect became substantial in high strength concrete greater than 40 MPa. Therefore, special care is still needed to compare the static and dynamic properties of high strength concrete from the two different cylinder sizes.

  7. Cylindrical lateral depth-sensing indentation testing of thin transversely isotropic elastic films: Incompressible and weakly compressible materials

    CERN Document Server

    Argatov, I

    2015-01-01

    An indentation testing method, which utilizes lateral contact of a long cylindrical indenter, is developed for a thin transversely isotropic incompressible elastic film deposited onto a smooth rigid substrate. It is assumed that the material symmetry plane is orthogonal to the substrate surface, and the film thickness is small compared to the cylinder indenter length. The presented testing methodology is based on a least squares best fit of the first-order asymptotic model to the depth-sensing indentation data for recovering three independent elastic moduli which characterize an incompressible transversely isotropic material. The case of a weakly compressible material, which is important for biological tissues, is also discussed.

  8. Effects of Elastic Edge Restraints and Initial Prestress on the Buckling Response of Compression-Loaded Composite Panels

    Science.gov (United States)

    Hilburger, Mark W.; Nemeth, Michael P.; Riddick, Jaret C.; Thornburgh, Robert P.

    2004-01-01

    A parametric study of the effects of test-fixture-induced initial prestress and elastic edge restraints on the prebuckling and buckling responses of a compression-loaded, quasi-isotropic curved panel is presented. The numerical results were obtained by using a geometrically nonlinear finite element analysis code with high-fidelity models. The results presented show that a wide range of prebuckling and buckling behavior can be obtained by varying parameters that represent circumferential loaded-edge restraint and rotational unloaded-edge restraint provided by a test fixture and that represent the mismatch in specimen and test-fixture radii of curvature. For a certain range of parameters, the panels exhibit substantial nonlinear prebuckling deformations that yield buckling loads nearly twice the corresponding buckling load predicted by a traditional linear bifurcation buckling analysis for shallow curved panels. In contrast, the results show another range of parameters exist for which the nonlinear prebuckling deformations either do not exist or are relatively benign, and the panels exhibit buckling loads that are nearly equal to the corresponding linear bifurcation buckling load. Overall, the results should also be of particular interest to scientists, engineers, and designers involved in simulating flight-hardware boundary conditions in structural verification and certification tests, involved in validating structural analysis tools, and interested in tailoring buckling performance.

  9. Statistical Mechanical Analysis of Compressed Sensing Utilizing Correlated Compression Matrix

    CERN Document Server

    Takeda, Koujin

    2010-01-01

    We investigate a reconstruction limit of compressed sensing for a reconstruction scheme based on the L1-norm minimization utilizing a correlated compression matrix with a statistical mechanics method. We focus on the compression matrix modeled as the Kronecker-type random matrix studied in research on multi-input multi-output wireless communication systems. We found that strong one-dimensional correlations between expansion bases of original information slightly degrade reconstruction performance.

  10. A Closed-form Solution to Finite Bending of a Compressible Elastic-perfectly Plastic Rectangular Block

    Directory of Open Access Journals (Sweden)

    H. Xiao

    2003-01-01

    Full Text Available The self-consistent Eulerian rate-type elastoplastic model based on the logarithmic rate is used to study finite bending of a compressible elastic-perfectly plastic rectangular block. It is found that an explicit closed-form solution for this typical inhomogeneous finite deformation , mode may be available in a general case of compressible deformation with a stretch normal to the bending plane, where the maximum circumferential stretch at the outer surface serves as an Independent parameter. Expressions are given for the bending angle, the bending moment, the the outer and the inner radii, and the radii of the two moving elastic-plastic interfaces, etc. The exact stress distribution on any circumferential cross-section of the deformed block is accordingly determined.

  11. Error analysis for matrix elastic-net regularization algorithms.

    Science.gov (United States)

    Li, Hong; Chen, Na; Li, Luoqing

    2012-05-01

    Elastic-net regularization is a successful approach in statistical modeling. It can avoid large variations which occur in estimating complex models. In this paper, elastic-net regularization is extended to a more general setting, the matrix recovery (matrix completion) setting. Based on a combination of the nuclear-norm minimization and the Frobenius-norm minimization, we consider the matrix elastic-net (MEN) regularization algorithm, which is an analog to the elastic-net regularization scheme from compressive sensing. Some properties of the estimator are characterized by the singular value shrinkage operator. We estimate the error bounds of the MEN regularization algorithm in the framework of statistical learning theory. We compute the learning rate by estimates of the Hilbert-Schmidt operators. In addition, an adaptive scheme for selecting the regularization parameter is presented. Numerical experiments demonstrate the superiority of the MEN regularization algorithm.

  12. In-situ neutron diffraction of LaCoO3 perovskite under uniaxial compression. II. Elastic properties

    Science.gov (United States)

    Lugovy, Mykola; Aman, Amjad; Chen, Yan; Orlovskaya, Nina; Kuebler, Jakob; Graule, Thomas; Reece, Michael J.; Ma, Dong; Stoica, Alexandru D.; An, Ke

    2014-07-01

    Calculations of elastic constants and development of elastic anisotropy under uniaxial compression in originally isotropic polycrystalline LaCoO3 perovskite are reported. The lattice strains in individual (hkl) planes as well as average lattice strain were determined both for planes oriented perpendicular and parallel to the loading direction using in-situ neutron diffraction. Utilizing average lattice strains as well as lattice strains along the a and c crystallographic directions, an attempt was made to determine Poisson's ratio of LaCoO3, which was then compared with that measured using an impulse excitation technique. The elastic constants were calculated and Young's moduli of LaCoO3 single crystal in different crystallographic directions were estimated.

  13. In-situ neutron diffraction of LaCoO{sub 3} perovskite under uniaxial compression. II. Elastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Lugovy, Mykola [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Institute for Problems of Materials Science, Kiev 03142 (Ukraine); Aman, Amjad; Orlovskaya, Nina, E-mail: Nina.Orlovskaya@ucf.edu [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Chen, Yan [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kuebler, Jakob; Graule, Thomas [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for High Performance Ceramics, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Reece, Michael J. [The School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS (United Kingdom); Ma, Dong; Stoica, Alexandru D.; An, Ke [Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-07-07

    Calculations of elastic constants and development of elastic anisotropy under uniaxial compression in originally isotropic polycrystalline LaCoO{sub 3} perovskite are reported. The lattice strains in individual (hkl) planes as well as average lattice strain were determined both for planes oriented perpendicular and parallel to the loading direction using in-situ neutron diffraction. Utilizing average lattice strains as well as lattice strains along the a and c crystallographic directions, an attempt was made to determine Poisson's ratio of LaCoO{sub 3}, which was then compared with that measured using an impulse excitation technique. The elastic constants were calculated and Young's moduli of LaCoO{sub 3} single crystal in different crystallographic directions were estimated.

  14. Experimental and theoretical study of the buckling of narrow thin plates on an elastic foundation under compression

    Science.gov (United States)

    Kurguzov, V. D.; Demeshkin, A. G.

    2016-05-01

    The paper describes the processes of elastic deformation of thin films under mechanical loading. The film is modeled longitudinally by a compressed plate arranged on an elastic foundation. A computer model of the buckling of the narrow thin plate with a delamination portion located on an elastic foundation is constructed. This paper also touches upon the supercritical behavior of the plate-substrate system. The experiments on the axial compression of a metal strip adhered to a rubber plate are performed, and 2 to 7 buckling modes are obtained therein. The critical loads and buckling modes obtained in the numerical calculations are compared with the experimental data. It is shown that there is the possibility of progressive delamination of the metal plate from the foundation if the critical load is exceeded. It is found that the use of the proposed approach, which, in contrast to other approaches, accounts for the elastic deformation of the substrate, causes the dependence between the critical bending stress and the stiffness of the foundation.

  15. An analysis of price competitiveness of CNG (compressed natural gas) versus gasoline: estimation of the elasticities of demand by CNG in a recent period in Brazil; Uma analise da competitividade de preco do GNV (Gas Natural Veicular) frente a gasolina: estimacao das elasticidades da demanda por GNV no Brasil no periodo recente

    Energy Technology Data Exchange (ETDEWEB)

    Iootty, Mariana; Pinto Junior, Helder; Roppa, Bruna; Biasi, Guilherme de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Economia

    2004-07-01

    One of the main determinants to the expansion of natural gas on the Brazilian domestic market is its price. Hence, it is important to analyze the price competitiveness of natural gas vis-a-vis its competitors. The current paper focuses on the market of natural gas in vehicles (the compressed natural gas - CNG), and uses co-integration techniques to estimate the price-elasticity of CNG, the cross-elasticity of CNG and gasoline, and the income-elasticity. The results suggest that price is a relevant factor in the long-run, while in the short-run income is the most significant determinant of the demand variation. In addition, the paper also shows an imperfect substitutability between CNG and gasoline. (author)

  16. Acoustic signal analysis of underwater elastic cylinder

    Institute of Scientific and Technical Information of China (English)

    LI Xiukun; YANG Shi'e

    2001-01-01

    The echoes of underwater elastic cylinder comprise two types of acoustic components: Geometrical scattering waves and elastic scattering waves. The transfer function is appropriate to characterize the echo of targets. And the discrete wavelet transform of amplitude spectrum is presented and used to identify the resonant components of underwater targets.PACS numbers: 43.30, 43.60

  17. Buckling analysis of planar compression micro-springs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing; Sui, Li; Shi, Gengchen [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Science and Technology on Electromechanical Dynamic Control Laboratory, 5 South Street Zhongguancun, Haidian 100081, Beijing (China)

    2015-04-15

    Large compression deformation causes micro-springs buckling and loss of load capacity. We analyzed the impact of structural parameters and boundary conditions for planar micro-springs, and obtained the change rules for the two factors that affect buckling. A formula for critical buckling deformation of micro-springs under compressive load was derived based on elastic thin plate theory. Results from this formula were compared with finite element analysis results but these did not always correlate. Therefore, finite element analysis is necessary for micro-spring buckling analysis. We studied the variation of micro-spring critical buckling deformation caused by four structural parameters using ANSYS software under two constraint conditions. The simulation results show that when an x-direction constraint is added, the critical buckling deformation increases by 32.3-297.9%. The critical buckling deformation decreases with increase in micro-spring arc radius or section width and increases with increase in micro-spring thickness or straight beam width. We conducted experiments to confirm the simulation results, and the experimental and simulation trends were found to agree. Buckling analysis of the micro-spring establishes a theoretical foundation for optimizing micro-spring structural parameters and constraint conditions to maximize the critical buckling load.

  18. Elastic moduli and strength of nanocrystalline cubic BC2N from x-ray diffraction under nonhydrostatic compression

    Science.gov (United States)

    Dong, Haini; He, Duanwei; Duffy, Thomas S.; Zhao, Yusheng

    2009-01-01

    The stress behavior of nanocrystalline cubic boron carbon nitride (c-BC2N) was investigated using radial and axial x-ray diffractions in the diamond-anvil cell under nonhydrostatic compression up to ~100 GPa. The radial x-ray diffraction (RXRD) data yield a bulk modulus K0=276±20GPa with a fixed pressure derivative K0'=3.4 at ψ=54.7° , which corresponds to the hydrostatic compression curve. The bulk modulus obtained from axial x-ray diffraction (AXRD) gives a value of 420±11GPa . A comparative study of the observed compression curves from radial and axial diffractions shows that the ruby-fluorescence pressure scale may reflect the maximum stress under nonhydrostatic compression. It was found that nanocrystalline c-BC2N sample could support a maximum differential stress of ~38 GPa when it started to yield at ~66 GPa under uniaxial compression. Moreover, the aggregate elastic moduli of the nanocrystalline c-BC2N have been determined from the RXRD data at high pressures.

  19. Elastic recoil detection analysis of ferroelectric films

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, W.B.; Johnston, P.N.; Walker, S.R.; Bubb, I.F. [Royal Melbourne Inst. of Tech., VIC (Australia); Scott, J.F. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    There has been considerable progress in developing SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub O.7}Sr{sub O.3}TiO{sub 3} (BST) ferroelectric films for use as nonvolatile memory chips and for capacitors in dynamic random access memories (DRAMs). Ferroelectric materials have a very large dielectric constant ( {approx} 1000), approximately one hundred times greater than that of silicon dioxide. Devices made from these materials have been known to experience breakdown after a repeated voltage pulsing. It has been suggested that this is related to stoichiometric changes within the material. To accurately characterise these materials Elastic Recoil Detection Analysis (ERDA) is being developed. This technique employs a high energy heavy ion beam to eject nuclei from the target and uses a time of flight and energy dispersive (ToF-E) detector telescope to detect these nuclei. The recoil nuclei carry both energy and mass information which enables the determination of separate energy spectra for individual elements or for small groups of elements In this work ERDA employing 77 MeV {sup 127}I ions has been used to analyse Strontium Bismuth Tantalate thin films at the heavy ion recoil facility at ANSTO, Lucas Heights. 9 refs., 5 figs.

  20. Atomic Force Analysis of Elastic Deformations of CD

    Directory of Open Access Journals (Sweden)

    A. Kuzmenko

    2013-12-01

    Full Text Available The procedure for the determination of elastic parameters according to reference nanometer lithographic marks by atomic force microscopy on samples with up to microscopic sizes is proposed. Analysis of dynamic changes of elastic characteristics that makes it possible to establish the critical rotation velocity of a CD without plastic deformations has been made.

  1. review of elastic analys ew of elastic analysis of box girder bridges

    African Journals Online (AJOL)

    eobe

    arch efforts in publis thods and experimental studies related to the elastic analysis of box girde ..... from this method were used to develop design charts to determine the ..... the analysis and design of thin-walled beams, Tech. Rep. No. 42440 ...

  2. Axisymmetric smooth contact for an elastic isotropic infinite hollow cylinder compressed by an outer rigid ring with circular profile

    Institute of Scientific and Technical Information of China (English)

    A.Avci; A.Bulu; A.Yapici

    2006-01-01

    A contact problem for an infinitely long hollow cylinder is considered.The cylinder is compressed by an outer rigid ring with a circular profile.The material of the cylinder is linearly elastic and isotropic.The extent of the contact region and the pressure distribution are sought.Governing equations of the elasticity theory for the axisymmetric problem in cylindrical coordinates are solved by Fourier transfoms and general expressions for the displacements are obtained.Using the boundary conditions,the formulation is reduced to a singular integral equation.This equation is solved by using the Gaussian quadrature.Then the pressure distribution on the contact region is determined.Numerical results for the contact pressure and the distance characterizing the contact area are given in graphical form.

  3. Multilevel analysis of elastic morphology: The mantis shrimp's spring.

    Science.gov (United States)

    Rosario, M V; Patek, S N

    2015-09-01

    Spring systems, whether natural or engineered, are composed of compliant and rigid regions. Biological springs are often similar to monolithic structures that distribute compliance and rigidity across the whole system. For example, to confer different amounts of compliance in distinct regions within a single structure, biological systems typically vary regional morphology through thickening or elongation. Here, we analyze the monolithic spring in mantis shrimp (Stomatopoda) raptorial appendages to rapidly acquire or process prey. We quantified the shape of cross-sections of the merus segment of the raptorial appendage. We also examined specific regions of the merus that are hypothesized to either store elastic energy or provide structural support to permit energy storage in other regions of the system. We found that while all mantis shrimp contain thicker ventral bars in distal cross-sections, differences in thickness are more pronounced in high-impact "smasher" mantis shrimp than in the slower-striking "spearer" mantis shrimp. We also found that spearer cross-sections are more circular while those of smashers are more eccentric with elongation along the dorso-ventral axis. The results suggest that the regional thickening of ventral bars provides structural support for resisting spring compression and also reduces flexural stiffness along the system's long axis. This multilevel morphological analysis offers a foundation for understanding the evolution and mechanics of monolithic systems in biology. © 2015 Wiley Periodicals, Inc.

  4. Evaluation of Compressive Strength and Stiffness of Grouted Soils by Using Elastic Waves

    Directory of Open Access Journals (Sweden)

    In-Mo Lee

    2014-01-01

    Full Text Available Cement grouted soils, which consist of particulate soil media and cementation agents, have been widely used for the improvement of the strength and stiffness of weak ground and for the prevention of the leakage of ground water. The strength, elastic modulus, and Poisson’s ratio of grouted soils have been determined by classical destructive methods. However, the performance of grouted soils depends on several parameters such as the distribution of particle size of the particulate soil media, grouting pressure, curing time, curing method, and ground water flow. In this study, elastic wave velocities are used to estimate the strength and elastic modulus, which are generally obtained by classical strength tests. Nondestructive tests by using elastic waves at small strain are conducted before and during classical strength tests at large strain. The test results are compared to identify correlations between the elastic wave velocity measured at small strain and strength and stiffness measured at large strain. The test results show that the strength and stiffness have exponential relationship with elastic wave velocities. This study demonstrates that nondestructive methods by using elastic waves may significantly improve the strength and stiffness evaluation processes of grouted soils.

  5. Relativistic analysis of proton elastic scattering

    Science.gov (United States)

    El Nohy, N. A.; El-Hammamy, M. N.; Yoseph, S. I.; Abdel-Moneim, A. M.

    2015-04-01

    The Dirac equation as the relevant wave equation, is used in modified DWUCK4 program to calculate the elastic scattering cross section throughout the energy range suitable for relativistic treatment of proton elastic scattering by nuclei 40Ca, 58Ni, 90Zr and 208Pb. A good fit to the experimental data is presented. The real and imaginary potentials are well determined and behave regularly with energy. The behaviour of the real central effective potential shows the development of a "wine-bottle" shape in the transition energy region and the persistence of a small attractive potential in the nuclear surface region, even at 800 MeV.

  6. An analysis of various elastic net algorithms

    NARCIS (Netherlands)

    J.H. van den Berg (Jan); J.H. Geselschap

    1995-01-01

    textabstractThe Elastic Net Algorithm (ENA) for solving the Traveling Salesman Problem is analyzed applying statistical mechanics. Using some general properties of the free energy function of stochastic Hopfield Neural Networks, we argue why Simic's derivation of the ENA from a Hopfield network

  7. Effect of lightweight aggregate intrinsic Strength on lightweight concrete compressive strength and modulus of elasticity

    Directory of Open Access Journals (Sweden)

    Videla, C.

    2002-03-01

    Full Text Available The study of Structural Lightweight Concrete (SLC, which is a material generally composed of cement, water and lightweight aggregate, has been mainly focused on developing particular cases. Then, the main objective of this research was to generalise the knowledge of this type of material. Particularly, the effect of replacing conventional coarse aggregate by lightweight aggregate on mechanical properties of concrete was studied. SLC may be conceived as a two -phase material. The first phase, composed of cement, water and siliceous natural sand, is called the "resistant phase", and contributes to the structural strength. The second phase is the lightweight phase, comprised of coarse lightweight aggregate, and it is meant to decrease the concrete density. In this way it would be possible to describe the mechanical behaviour of concrete, based on lightweight aggregate and the cement mortar parameters. The obtained results allow for the proposition of relationships between mechanical properties of SLC (such as compressive strength and modulus of elasticity and the constituent materials properties and amount. At the same time, an easily measured index representing the structural capability of lightweight aggregate is also proposed, this index allows to estimate the potential mechanical properties of concrete which could be obtained by using a particular aggregate.

    El estudio del Hormigón Ligero Estructural (HLE, material compuesto generalmente por cemento, agua y árido ligero, ha estado enfocado principalmente al desarrollo de casos particulares. Por lo anterior, el objetivo principal de esta investigación fue generalizar el conocimiento sobre este material. En particular, la meta de este trabajo fue estudiar el efecto que tiene el reemplazo de árido convencional por un árido ligero, en las propiedades mecánicas del hormigón. El modelo aplicado conceptualiza al HLE como un material de dos fases, una denominada "soportante", constituida

  8. Numerical and Analytical Analysis of Elastic Rotor Natural Frequency

    Directory of Open Access Journals (Sweden)

    Adis J. Muminovic

    2014-11-01

    Full Text Available In this paper simulation model which enables quick analysis of elastic rotor natural frequency modes is developed using Matlab. This simulation model enables users to get dependency diagram of natural frequency in relation to diameter and length of the rotor,density of the material or modulus of elasticity. Testing of the model is done using numerical analysis in SolidWorks software.

  9. Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles

    Science.gov (United States)

    Wu, H. I.; Spence, R. D.; Sharpe, P. J.; Goeschl, J. D.

    1985-01-01

    The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.

  10. ANALYSIS OF A RIGID WALL IN AN ELASTIC WEIGHTY HALF-PLANE

    Directory of Open Access Journals (Sweden)

    K. V. Dmitrieva

    2016-01-01

    Full Text Available The analysis of stress-strain state of a rigid wall in an elastic weighty half-plane with a broken outline is carried out. To this end, the auxiliary problem of displacements definition in an elastic weighty quarter-plane was solved. Ritz method derived a formula to determine the displacements of elastic flat wedge boundaries in view of its own weight. On the basis of the received expressions the algorithm of displacements definition of a crack in an elastic weighty half-plane with a broken outline is developed. Analytical calculation of a rigid vertical wall located in an elastic weighty half-plane under the influence of a horizontal load, carried out by two methods: by Zhemochkin's method and finite difference method. In the problem statement an elastic half-plane is considered a model of the soil medium, therefore, only compressive normal stresses can arise on the connection of the wall with the elastic base. This assumption implies occurrence of discontinuities soil medium, and leads for the wall to an emergence of two dividing points of boundary conditions. The determination of the boundaries contact of the wall with the elastic half-plane, are not known in advance, is performed by iteratively way at each step set the position of dividing points of boundary conditions and the system of canonical equations of a corresponding method is written.  If tensile stresses appear in wall-base contact and/or there is overlap of the crack edges occurs, then proceeds to the next iteration. Analysis of the results shows that the bending moment and shear forces in sections of the rigid wall in a broken weighty half-plane differ slightly from the same diagrams constructed for a rigid wall in an elastic weightless half-plane. The verification of the results of analytical calculation with the results received by using the LIRA 9.6 that implements the finite element method is obtained. The calculation results for the rigid wall in an elastic weighty half

  11. Myths and Truths of Nitinol Mechanics: Elasticity and Tension-Compression Asymmetry

    Science.gov (United States)

    Bucsek, Ashley N.; Paranjape, Harshad M.; Stebner, Aaron P.

    2016-09-01

    Two prevalent myths of Nitinol mechanics are examined: (1) Martensite is more compliant than austenite; (2) Texture-free Nitinol polycrystals do not exhibit tension-compression asymmetry. By reviewing existing literature, the following truths are revealed: (1) Martensite crystals may be more compliant, equally stiff, or stiffer than austenite crystals, depending on the orientation of the applied load. The Young's Modulus of polycrystalline Nitinol is not a fixed number—it changes with both processing and in operando deformations. Nitinol martensite prefers to behave stiffer under compressive loads and more compliant under tensile loads. (2) Inelastic Nitinol martensite deformation in and of itself is asymmetric, even for texture-free polycrystals. Texture-free Nitinol polycrystals also exhibit tension-compression transformation asymmetry.

  12. Music analysis and point-set compression

    DEFF Research Database (Denmark)

    Meredith, David

    A musical analysis represents a particular way of understanding certain aspects of the structure of a piece of music. The quality of an analysis can be evaluated to some extent by the degree to which knowledge of it improves performance on tasks such as mistake spotting, memorising a piece...... as the minimum description length principle and relates closely to certain ideas in the theory of Kolmogorov complexity. Inspired by this general principle, the hypothesis explored in this paper is that the best ways of understanding (or explanations for) a piece of music are those that are represented...... by the shortest possible descriptions of the piece. With this in mind, two compression algorithms are presented, COSIATEC and SIATECCompress. Each of these algorithms takes as input an in extenso description of a piece of music as a set of points in pitch-time space representing notes. Each algorithm...

  13. Eikonal model analysis of elastic hadron collisions at high energies

    CERN Document Server

    Prochazka, Jiri

    2016-01-01

    Elastic collisions of protons at different energies represent main background in studying the structure of fundamental particles at the present. On the basis of standardly used model proposed by West and Yennie the protons have been then interpreted as transparent objects; elastic events have been interpreted as more central than inelastic ones. It will be shown that using eikonal model the protons may be interpreted in agreement with usual ontological conception; elastic processes being more peripheral than inelastic ones. The corresponding results (differing fundamentally from those of WY model) will be presented by analyzing the most ample elastic data set measured at ISR energy of 53 GeV. Detailed analysis of measured differential cross section will be performed and different alternatives of peripheral behavior on the basis of eikonal model will be presented. The impact of recently established electromagnetic form factors on determination of quantities specifying hadron interaction determined from the fit...

  14. Nonlinear visco-elastic finite element analysis of different porcelain veneers configuration.

    Science.gov (United States)

    Sorrentino, Roberto; Apicella, Davide; Riccio, Carlo; Gherlone, Enrico; Zarone, Fernando; Aversa, Raffaella; Garcia-Godoy, Franklin; Ferrari, Marco; Apicella, Antonio

    2009-11-01

    This study is aimed at evaluating the biomechanical behavior of feldspathic versus alumina porcelain veneers. A 3D numerical model of a maxillary central incisor, with the periodontal ligament (PDL) and the alveolar bone was generated. Such model was made up of four main volumes: dentin, enamel, cement layer and veneer. Incisors restored with alumina and feldspathic porcelain veneers were compared with a natural sound tooth (control). Enamel, cementum, cancellous and cortical bone were considered as isotropic elastic materials; on the contrary, the tubular structure of dentin was designed as elastic orthotropic. The nonlinear visco-elatic behavior of the PDL was considered. The veneer volumes were coupled with alumina and feldspathic porcelain mechanical properties. The adhesive layers were modeled in the FE environment using spring elements. A 50N load applied at 60 degrees angle with tooth longitudinal axis was applied and validated. Compressive stresses were concentrated on the external surface of the buccal side of the veneer close to the incisal margin; such phenomenon was more evident in the presence of alumina. Tensile stresses were negligible when compared to compressive ones. Alumina and feldspathic ceramic were characterized by a different biomechanical behavior in terms of elastic deformations and stress distributions. The ultimate strength of both materials was not overcome in the performed analysis.

  15. Elastic sequence correlation for human action analysis.

    Science.gov (United States)

    Wang, Li; Cheng, Li; Wang, Liang

    2011-06-01

    This paper addresses the problem of automatically analyzing and understanding human actions from video footage. An "action correlation" framework, elastic sequence correlation (ESC), is proposed to identify action subsequences from a database of (possibly long) video sequences that are similar to a given query video action clip. In particular, we show that two well-known algorithms, namely approximate pattern matching in computer and information sciences and dynamic time warping (DTW) method in signal processing, are special cases of our ESC framework. The proposed framework is applied to two important real-world applications: action pattern retrieval, as well as action segmentation and recognition, where, on average, its run time speed (in matlab) is about 3.3 frames per second. In addition, comparing with the state-of-the-art algorithms on a number of challenging data sets, our approach is demonstrated to perform competitively.

  16. Shattering and Compressing Networks for Centrality Analysis

    CERN Document Server

    Sarıyüce, Ahmet Erdem; Kaya, Kamer; Çatalyürek, Ümit V

    2012-01-01

    Who is more important in a network? Who controls the flow between the nodes or whose contribution is significant for connections? Centrality metrics play an important role while answering these questions. The betweenness metric is useful for network analysis and implemented in various tools. Since it is one of the most computationally expensive kernels in graph mining, several techniques have been proposed for fast computation of betweenness centrality. In this work, we propose and investigate techniques which compress a network and shatter it into pieces so that the rest of the computation can be handled independently for each piece. Although we designed and tuned the shattering process for betweenness, it can be adapted for other centrality metrics in a straightforward manner. Experimental results show that the proposed techniques can be a great arsenal to reduce the centrality computation time for various types of networks.

  17. Micro-Mechanical Analysis About Kink Band in Carbon Fiber/Epoxy Composites Under Longitudinal Compression

    Science.gov (United States)

    Zhang, Mi; Guan, Zhidong; Wang, Xiaodong; Du, Shanyi

    2016-12-01

    Kink band is a typical phenomenon for composites under longitudinal compression. In this paper, theoretical analysis and finite element simulation were conducted to analyze kink angle as well as compressive strength of composites. Kink angle was considered to be an important character throughout longitudinal compression process. Three factors including plastic matrix, initial fiber misalignment and rotation due to loading were considered for theoretical analysis. Besides, the relationship between kink angle and fiber volume fraction was improved and optimized by theoretical derivation. In addition, finite element models considering fiber stochastic strength and Drucker-Prager constitutive model for matrix were conducted in ABAQUS to analyze kink band formation process, which corresponded with the experimental results. Through simulation, the loading and failure procedure can be evidently divided into three stages: elastic stage, softening stage, and fiber break stage. It also shows that kink band is a result of fiber misalignment and plastic matrix. Different values of initial fiber misalignment angle, wavelength and fiber volume fraction were considered to explore the effects on compressive strength and kink angle. Results show that compressive strength increases with the decreasing of initial fiber misalignment angle, the decreasing of initial fiber misalignment wavelength and the increasing of fiber volume fraction, while kink angle decreases in these situations. Orthogonal array in statistics was also built to distinguish the effect degree of these factors. It indicates that initial fiber misalignment angle has the largest impact on compressive strength and kink angle.

  18. The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber.

    Science.gov (United States)

    Dahl, Kris Noel; Kahn, Samuel M; Wilson, Katherine L; Discher, Dennis E

    2004-09-15

    Mechanical properties of the nuclear envelope have implications for cell and nuclear architecture as well as gene regulation. Using isolated Xenopus oocyte nuclei, we have established swelling conditions that separate the intact nuclear envelope (membranes, pore complexes and underlying lamin filament network) from nucleoplasm and the majority of chromatin. Swelling proves reversible with addition of high molecular mass dextrans. Micropipette aspiration of swollen and unswollen nuclear envelopes is also reversible and yields a network elastic modulus, unaffected by nucleoplasm, that averages 25 mN/m. Compared to plasma membranes of cells, the nuclear envelope is much stiffer and more resilient. Our results suggest that the nuclear lamina forms a compressed network shell of interconnected rods that is extensible but limited in compressibility from the native state, thus acting as a 'molecular shock absorber'. In light of the conservation of B-type lamins in metazoan evolution, the mechanical properties determined in this investigation suggest physical mechanisms by which mutated lamins can either destabilize nuclear architecture or influence nuclear responses to mechanical signals in Emery-Dreifuss muscular dystrophy, cardiomyopathy, progeria syndromes (premature 'aging') and other laminopathies.

  19. Light scattering study of the "pseudo-layer" compression elastic constant in a twist-bend nematic liquid crystal

    CERN Document Server

    Parsouzi, Z; Welch, C; Ahmed, Z; Mehl, G H; Baldwin, A R; Gleeson, J T; Lavrentovich, O D; Allender, D W; Selinger, J V; Jakli, A; Sprunt, S

    2016-01-01

    The nematic twist-bend (TB) phase, exhibited by certain achiral thermotropic liquid crystalline (LC) dimers, features a nanometer-scale, heliconical rotation of the average molecular long axis (director) with equally probable left- and right-handed domains. On meso to macroscopic scales, the TB phase may be considered as a stack of equivalent slabs or "pseudo-layers", each one helical pitch in thickness. The long wavelength fluctuation modes should then be analogous to those of a smectic-A phase, and in particular the hydrodynamic mode combining "layer" compression and bending ought to be characterized by an effective layer compression elastic constant $B_{eff}$ and average director splay constant $K_1^{eff}$. The magnitude of $K_1^{eff}$ is expected to be similar to the splay constant of an ordinary nematic LC, but due to the absence of a true mass density wave, $B_{eff}$ could differ substantially from the typical value of $\\sim 10^6$ Pa in a conventional smectic-A. Here we report the results of a dynamic l...

  20. Estimation of elastic moduli in a compressible Gibson half-space by inverting Rayleigh-wave phase velocity

    Science.gov (United States)

    Xia, J.; Xu, Y.; Miller, R.D.; Chen, C.

    2006-01-01

    A Gibson half-space model (a non-layered Earth model) has the shear modulus varying linearly with depth in an inhomogeneous elastic half-space. In a half-space of sedimentary granular soil under a geostatic state of initial stress, the density and the Poisson's ratio do not vary considerably with depth. In such an Earth body, the dynamic shear modulus is the parameter that mainly affects the dispersion of propagating waves. We have estimated shear-wave velocities in the compressible Gibson half-space by inverting Rayleigh-wave phase velocities. An analytical dispersion law of Rayleigh-type waves in a compressible Gibson half-space is given in an algebraic form, which makes our inversion process extremely simple and fast. The convergence of the weighted damping solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Calculation efficiency is achieved by reconstructing a weighted damping solution using singular value decomposition techniques. The main advantage of this algorithm is that only three parameters define the compressible Gibson half-space model. Theoretically, to determine the model by the inversion, only three Rayleigh-wave phase velocities at different frequencies are required. This is useful in practice where Rayleigh-wave energy is only developed in a limited frequency range or at certain frequencies as data acquired at manmade structures such as dams and levees. Two real examples are presented and verified by borehole S-wave velocity measurements. The results of these real examples are also compared with the results of the layered-Earth model. ?? Springer 2006.

  1. Effect of crosslinker length on the elastic and compression modulus of poly(acrylamide) nanocomposite hydrogels

    Science.gov (United States)

    Zaragoza, J.; Chang, A.; Asuri, P.

    2017-01-01

    Polymer hydrogelshave shown to exhibit improved properties upon the addition of nanoparticles; however, the mechanical underpinnings behind these enhancements have not been fully elucidated. Moreover, fewer studies have focused on developing an understanding of how polymer parameters affect the nanoparticle-mediated enhancements. In this study, we investigated the elastic properties of silica nanoparticle-reinforced poly(acrylamide) hydrogels synthesized using crosslinkers of various lengths. Crosslinker length positively affected the mechanical properties of hydrogels that were synthesized with or without nanoparticles. However the degree of nanoparticle enhancement was negatively correlated to crosslinker length. Our findings enable the understanding of the respective roles of nanoparticle and polymer properties on nanoparticle-mediated enhancement of hydrogels and thereby the development of next-generation nanocomposite materials.

  2. Nonlinear analysis of flexible plates lying on elastic foundation

    Directory of Open Access Journals (Sweden)

    Trushin Sergey

    2017-01-01

    Full Text Available This article describes numerical procedures for analysis of flexible rectangular plates lying on elastic foundation. Computing models are based on the theory of plates with account of transverse shear deformations. The finite difference energy method of discretization is used for reducing the initial continuum problem to finite dimensional problem. Solution procedures for nonlinear problem are based on Newton-Raphson method. This theory of plates and numerical methods have been used for investigation of nonlinear behavior of flexible plates on elastic foundation with different properties.

  3. Elastic tripping analysis of corroded flat-bar stiffeners

    Directory of Open Access Journals (Sweden)

    Ahmad Rahbar-Ranji

    2016-12-01

    Full Text Available Tripping of stiffeners is one of the buckling modes of stiffened panel which could rapidly lead to its catastrophic failure. Loss of thickness in web and flange due to corrosion reduces elastic buckling strength of stiffeners. It is common practice to assume a uniform thickness reduction for general corrosion. Since the real corroded plate has rough surfaces, to estimate the remaining strength of corroded structures, typically a much higher level of accuracy is required. There is a little study on strength analysis of corroded plates with rough surface especially as a function of corrosion degrees. The aim of present work is to analyze elastic tripping stress of flat bar stiffeners with both-sided corroded surfaces. Undulated surfaces are generated based on the power spectrum of the corroded surface. Elastic tripping stress is calculated using ANSYS code. Finite elements method is employed to analyze elastic tripping stress of corroded steel flat bars with both sided rough surfaces. Comparing the results with elastic tripping strength of corroded flat bars with uniform thickness, a reduction factor is proposed. It is found that reduction factor of buckling strength by uniform thickness assumption is overestimated.

  4. Comparative Analysis of Visco-elastic Models with Variable Parameters

    Directory of Open Access Journals (Sweden)

    Silviu Nastac

    2010-01-01

    Full Text Available The paper presents a theoretical comparative study for computational behaviour analysis of vibration isolation elements based on viscous and elastic models with variable parameters. The changing of elastic and viscous parameters can be produced by natural timed evolution demo-tion or by heating developed into the elements during their working cycle. It was supposed both linear and non-linear numerical viscous and elastic models, and their combinations. The results show the impor-tance of numerical model tuning with the real behaviour, as such the characteristics linearity, and the essential parameters for damping and rigidity. Multiple comparisons between linear and non-linear simulation cases dignify the basis of numerical model optimization regarding mathematical complexity vs. results reliability.

  5. Mathematical modeling of spinning elastic bodies for modal analysis.

    Science.gov (United States)

    Likins, P. W.; Barbera, F. J.; Baddeley, V.

    1973-01-01

    The problem of modal analysis of an elastic appendage on a rotating base is examined to establish the relative advantages of various mathematical models of elastic structures and to extract general inferences concerning the magnitude and character of the influence of spin on the natural frequencies and mode shapes of rotating structures. In realization of the first objective, it is concluded that except for a small class of very special cases the elastic continuum model is devoid of useful results, while for constant nominal spin rate the distributed-mass finite-element model is quite generally tractable, since in the latter case the governing equations are always linear, constant-coefficient, ordinary differential equations. Although with both of these alternatives the details of the formulation generally obscure the essence of the problem and permit very little engineering insight to be gained without extensive computation, this difficulty is not encountered when dealing with simple concentrated mass models.

  6. Elastic Modulus of Foamcrete in Compression and Bending at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available This paper will presents the experimental results that have been performed to examine and characterize the mechanical properties of foamcrete at elevated temperatures. Foamcrete of 650 and 1000 kg/m 3 density were cast and tested under compression and bending. The tests were done at room temperature, 100, 200, 300, 400, 500, and 600°C. The results of this study consistently demonstrated that the loss in stiffness for cement based material like foamcrete at elevated temperatures occurs predominantly after about 95°C, regardless of density. This indicates that the primary mechanism causing stiffness degradation is microcracking, which occurs as water expands and evaporates from the porous body. As expected, reducing the density of LFC reduces its strength and stiffness. However, for LFC of different densities, the normalised strength-temperature and stiffnesstemperature relationships are very similar.

  7. Understanding and Improving the Elastic Compressive Modulus of Fibre Reinforced Soy-Based Polyurethane Foams

    Science.gov (United States)

    Hussain, Sadakat

    Soy-based polyurethane foams (PUFs) were reinforced with fibres of different aspect ratios to improve the compressive modulus. Each of the three fibre types reinforced PUF differently. Shorter micro-crystalline cellulose fibres were found embedded inside the cell struts of PUF and reinforced them. The reinforcement was attributed to be stress transfer from the matrix to the fibre by comparing the experimental results to those predicted by micro-mechanical models for short fibre reinforced composites. The reinforced cell struts increased the overall compressive modulus of the foam. Longer glass fibres (470 microns, length) provided the best reinforcement. These fibres were found to be larger than the cell diameters. The micro-mechanical models could not predict the reinforcement provided by the longer glass fibres. The models predicted negligible reinforcement because the very low modulus PUF should not transfer load to the higher modulus fibres. However, using a finite element model, it was determined that the fibres were providing reinforcement through direct fibre interaction with each other. Intermediate length glass fibres (260 microns, length) were found to poorly reinforce the PUF and should be avoided. These fibres were too short to interact with each other and were on average too large to embed and reinforce cell struts. In order to produce natural fibre reinforced PUFs in the future, a novel device was invented. The purpose of the device is to deliver natural fibres at a constant mass flow rate. The device was found to consistently meter individual loose natural fibre tufts at a mass flow rate of 2 grams per second. However, the device is not robust and requires further development to deliver a fine stream of natural fibre that can mix and interact with the curing polymeric components of PUF. A design plan was proposed to address the remaining issues with the device.

  8. FE Analysis of Nitinol Leaf Springs Used in a Compression Anastomosis Device

    Science.gov (United States)

    Weizman, Amir; Monassevitch, Leonid; Greenberg, Kobby; Millis, Shahar; Harari, Boaz; Dar, Idan

    2011-07-01

    Reconstruction of the digestive system lumen patency (anastomosis creation) after its partial surgical removal is a common and crucial procedure. The conventional anastomosis methods use devices for mechanical suturing which are associated with high failure risk and can lead to major complications. The compression anastomosis as a sutureless method seems to be a promising alternative. However, attempts during the last two centuries have not been completely successful due to the complex character of the tissue-healing process. The specific mechanical behavior of Nitinol alloys was applied to the force element of the compression devices. These devices are becoming more widely adopted in surgery practice. The compression anastomosis device enables the anastomosis of colonic and intestinal tissue based on compression forces exerted by Nitinol leaf springs. By means of changing the strain distribution in the stressed leaves with varying moments of inertia, one can gain full control of the different stages in the force-deflection profile (i.e., linear elastic stage and the force plateau stage). The target of this study is the comparison of different Nitinol leaf geometries and evaluation of the finite elements analysis as a tool for preliminary design of such geometries. The results of this analysis allow us to establish regulation of the spring's mechanical behavior, thus controlling the anastomosis creation in the compression anastomosis device.

  9. What is the existing evidence supporting the efficacy of compression bandage systems containing both elastic and inelastic components (mixed-component systems)? A systematic review.

    Science.gov (United States)

    Welsh, Lynn

    2017-05-01

    To analyse current evidence on the efficacy of bandage systems containing both elastic and inelastic components (mixed-component systems). International consensus on the efficacy of types of compression systems is difficult to achieve; however, mixed-component systems are being promoted as combining the best properties of both elastic and inelastic bandage systems and increasingly being used to treat venous leg ulcers in practice. A systematic literature review. Search terms such as venous leg ulcer, varicose ulcer, leg ulcer, compression, bandage, elastic, inelastic, short stretch, healing rate, interface pressure, mixed component, two-layer, four-layer and multi-layer were used in database and hand searches in several combinations. Limits were set for years 2005-March 2015 and English-language publications. A total of 475 studies were identified at initial search, and following elimination from abstract and title, this was reduced to 7. A further study was identified on Google Scholar, bringing the final number of studies fitting inclusion criteria to 8. The following subgroups relating to outcomes of efficacy were identified: ulcer healing, maintenance of interface pressure, slippage, ease of application and patient quality of life. Mixed-component systems were found to have comparable ulcer healing rates to alternative compression systems and be easy to apply; have similar abilities to maintain pressure as four-layer bandages and better abilities than short-stretch bandages; have less slippage than alternative systems; and to be significantly associated with several favourable quality of life outcomes. Clinician skill in bandage application was an uncontrolled variable in all eight papers included in the review, which may limit reliability of findings. This review synthesises existing evidence on the efficacy of mixed-component systems and encourages clinicians to regard them as an effective alternative to purely elastic or inelastic compression systems

  10. Music analysis and point-set compression

    DEFF Research Database (Denmark)

    Meredith, David

    2015-01-01

    on three analytical tasks that depend on the discovery of repeated patterns: classifying folk song melodies into tune families, discovering themes and sections in polyphonic music, and discovering subject and countersubject entries in fugues. Each algorithm computes a compressed encoding of a point......COSIATEC, SIATECCompress and Forth’s algorithm are point-set compression algorithms developed for discovering repeated patterns in music, such as themes and motives that would be of interest to a music analyst. To investigate their effectiveness and versatility, these algorithms were evaluated......-set representation of a musical object in the form of a list of compact patterns, each pattern being given with a set of vectors indicating its occurrences. However, the algorithms adopt different strategies in their attempts to discover encodings that maximize compression.The best-performing algorithm on the folk...

  11. Elastic compression treatment of chronic superficial venous insufficiency of the lower limbs based on Doppler venous pressure index measurements

    Directory of Open Access Journals (Sweden)

    Leonardo Corcos

    2015-03-01

    Full Text Available Ineffectiveness or discomfort from graduated elastic compression stockings (GES in patients with chronic venous insufficiency (CVI and/or varicose veins of the lower limbs (VVLL can depend of inappropriate counter pressure applied. Counter pressure was calculated by Doppler venous pressure index (VPI. The aim of this study was to verify the value VPI in the choice of GES. A total of 1212 LL of 606 patients subjected to VPI measurements VPI correlated with the various sites of reflux (R and C of Clinical-Etiology-Anatomy-Pathophysiology (CEAP classification. The difference between standing VPI the and normal values=counter pressure to be applied by GES. Questionnaire to 96 patients with CVI/VVLL wearing GES. Mean VPI values: greater saphenous (GSV>smaller saphenous; GSV with isolated venous reflux (R at the leg>GSV at the thigh; additional R in perforators increases VPI in all the districts; superficial R increases VPI in PT. Relation between VPI/C of CEAP: P<0.05-0.0001; 81/83/96 (97.5% patients improved; 0 complained. R in GSV at the leg and in perforators increases VPI in deep veins. Few discrepancies VPI/CEAP can be expected. Standing VPI is highly predictive. The best choice of GES can be based on the VPI measurement.

  12. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    KAUST Repository

    Mohamed, Mamdouh S.

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  13. H.264/AVC Video Compressed Traces: Multifractal and Fractal Analysis

    Directory of Open Access Journals (Sweden)

    Samčović Andreja

    2006-01-01

    Full Text Available Publicly available long video traces encoded according to H.264/AVC were analyzed from the fractal and multifractal points of view. It was shown that such video traces, as compressed videos (H.261, H.263, and MPEG-4 Version 2 exhibit inherent long-range dependency, that is, fractal, property. Moreover they have high bit rate variability, particularly at higher compression ratios. Such signals may be better characterized by multifractal (MF analysis, since this approach describes both local and global features of the process. From multifractal spectra of the frame size video traces it was shown that higher compression ratio produces broader and less regular MF spectra, indicating to higher MF nature and the existence of additive components in video traces. Considering individual frames (I, P, and B and their MF spectra one can approve additive nature of compressed video and the particular influence of these frames to a whole MF spectrum. Since compressed video occupies a main part of transmission bandwidth, results obtained from MF analysis of compressed video may contribute to more accurate modeling of modern teletraffic. Moreover, by appropriate choice of the method for estimating MF quantities, an inverse MF analysis is possible, that means, from a once derived MF spectrum of observed signal it is possible to recognize and extract parts of the signal which are characterized by particular values of multifractal parameters. Intensive simulations and results obtained confirm the applicability and efficiency of MF analysis of compressed video.

  14. Elastic-plastic analysis of the SS-3 tensile specimen

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S. [Argonne National Lab., IL (United States)

    1998-09-01

    Tensile tests of most irradiated specimens of vanadium alloys are conducted using the miniature SS-3 specimen which is not ASTM approved. Detailed elastic-plastic finite element analysis of the specimen was conducted to show that, as long as the ultimate to yield strength ratio is less than or equal to 1.25 (which is satisfied by many irradiated materials), the stress-plastic strain curve obtained by using such a specimen is representative of the true material behavior.

  15. Modeling, Analysis, and Control of a Hypersonic Vehicle with Significant Aero-Thermo-Elastic-Propulsion Interactions: Elastic, Thermal and Mass Uncertainty

    Science.gov (United States)

    Khatri, Jaidev

    This thesis examines themodeling, analysis, and control system design issues for scramjet powered hypersonic vehicles. A nonlinear three degrees of freedom longitudinal model which includes aero-propulsion-elasticity effects was used for all analyses. This model is based upon classical compressible flow and Euler-Bernouli structural concepts. Higher fidelity computational fluid dynamics and finite element methods are needed for more precise intermediate and final evaluations. The methods presented within this thesis were shown to be useful for guiding initial control relevant design. The model was used to examine the vehicle's static and dynamic characteristics over the vehicle's trimmable region. The vehicle has significant longitudinal coupling between the fuel equivalency ratio (FER) and the flight path angle (FPA). For control system design, a two-input two-output plant (FER - elevator to speed-FPA) with 11 states (including 3 flexible modes) was used. Velocity, FPA, and pitch were assumed to be available for feedback. Aerodynamic heat modeling and design for the assumed TPS was incorporated to original Bolender's model to study the change in static and dynamic properties. De-centralized control stability, feasibility and limitations issues were dealt with the change in TPS elasticity, mass and physical dimension. The impact of elasticity due to TPS mass, TPS physical dimension as well as prolonged heating was also analyzed to understand performance limitations of de-centralized control designed for nominal model.

  16. Some fundamental definitions of the elastic parameters for homogeneous isotropic linear elastic materials in pavement design and analysis

    CSIR Research Space (South Africa)

    De Beer, Morris

    2008-07-01

    Full Text Available during tensile (or compressive) tests conducted on a sample of the material. Young’s Modulus is named after Thomas Young, the 18th Century British scientist. The SI unit of modulus of elasticity, E is the pascal. Given the large values typical of many... stream_source_info De Beer1_2008.pdf.txt stream_content_type text/plain stream_size 31159 Content-Encoding UTF-8 stream_name De Beer1_2008.pdf.txt Content-Type text/plain; charset=UTF-8 1 Some fundamental definitions...

  17. COMPRESSIVE AND SHEAR ANALYSIS OF RUBBER BLOCK UNDER LARGE STRAIN

    Directory of Open Access Journals (Sweden)

    K. Sridharan

    2013-01-01

    Full Text Available The Elastomeric materials have found use in a wide range of applications, including hoses, tires, gaskets, seals, vibration isolators, bearings and dock fenders. The analysis of rubber blocks for its compression and shear behavior has been carried out using the imaging techniques. The dynamic stressing and its associated change in shape of the rubber blocks during large compression are very limited as their measurements were difficult. A newly developed Machine Vision based image processing test has been effectively used to study the deformation characteristics of the rubber blocks under large strains. An extended analysis on the rubber blocks has been carried out to understand the compression and deformation behavior in static and dynamic condition and the nonlinear behavior were also characterized. The rubber blocks of distinguished geometries have shown diverse change in shape and nonlinear deformation behavior under compression/shear loading.

  18. Vibration Analysis of Timoshenko Beams on a Nonlinear Elastic Foundation

    Institute of Scientific and Technical Information of China (English)

    MO Yihua; OU Li; ZHONG Hongzhi

    2009-01-01

    The vibrations of beams on a nonlinear elastic foundation were analyzed considering the effects of transverse shear deformation and the rotational inertia of beams. A weak form quadrature element method (QEM) is used for the vibration analysis. The fundamental frequencies of beams are presented for various slenderness ratios and nonlinear foundation parameters for both slender and short beams. The results for slender beams compare well with finite element results. The analysis shows that the transverse shear de-formation and the nonlinear foundation parameter significantly affect the fundamental frequency of the beams.

  19. Analysis of coalescence behavior for compressed droplets

    Science.gov (United States)

    Choi, Sung Woong; Lee, Dong Eon; Lee, Woo Il; Kim, Han Sang

    2017-03-01

    Coalescence of droplets is a significant phenomenon, and it has been adapted to many applications such as raindrop formation, emulsion polymerization, ink-jet printing, coating, and multiphase flows. In this study, the morphological characteristics of two compressed adjacent droplets between two parallel plates were investigated to study the phenomenon of coalescence of droplets. By controlling the distance of the dispensed droplets, various results for coalescence of droplets were evaluated, especially, from the view of the minor axis, major axis, and meniscus liquid bridge of the coalesced droplet. Experimental results show that the length of the meniscus liquid bridge rapidly increases and then the rate of increase slows with time. The increase rate of the major and minor axes is largely influenced by the meniscus liquid bridge, which is mainly due to the curvature between the droplets. The numerical modeling of the coalescence of the two compressed droplets between two parallel plates was presented and simulation was conducted to realize the coalescence behavior. Comparison with numerical simulation showed that there was a good agreement with the experimental results.

  20. Analysis of Nonlinear Poro-Elastic and Poro-Visco-Elastic Models

    Science.gov (United States)

    Bociu, Lorena; Guidoboni, Giovanna; Sacco, Riccardo; Webster, Justin T.

    2016-12-01

    We consider the initial and boundary value problem for a system of partial differential equations describing the motion of a fluid-solid mixture under the assumption of full saturation. The ability of the fluid phase to flow within the solid skeleton is described by the permeability tensor, which is assumed here to be a multiple of the identity and to depend nonlinearly on the volumetric solid strain. In particular, we study the problem of the existence of weak solutions in bounded domains, accounting for non-zero volumetric and boundary forcing terms. We investigate the influence of viscoelasticity on the solution functional setting and on the regularity requirements for the forcing terms. The theoretical analysis shows that different time regularity requirements are needed for the volumetric source of linear momentum and the boundary source of traction depending on whether or not viscoelasticity is present. The theoretical results are further investigated via numerical simulations based on a novel dual mixed hybridized finite element discretization. When the data are sufficiently regular, the simulations show that the solutions satisfy the energy estimates predicted by the theoretical analysis. Interestingly, the simulations also show that, in the purely elastic case, the Darcy velocity and the related fluid energy might become unbounded if indeed the data do not enjoy the time regularity required by the theory.

  1. Elastic analysis of thermal gradient bowing in rod-type fuel elements subjected to axial thrust (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Newman, J.B.

    1968-01-01

    Thermal radient bowing of rod type fuel elements can be analyzed in terms of the deflections of a precurved beam. The fundamental aspects of an analysis of axially compressed multispan beams are given. Elasticity of supports in both axial and transverse directions is considered; the technique is applicable to problems in which the axial thrust depends on the transverse deflection as well as problems with prescribed axial thrust. The formulas presented constitute the theory for a computer program of broad applicability, not only in the analysis of fuel rod bowing, but also to almost any multispan beam, particularly when the effects of axial loads cannot be neglected. 17 references. (NSA 22: 22866)

  2. Analysis of Apparent Elasticity Constants of Woven Fabrics

    Institute of Scientific and Technical Information of China (English)

    董侠; 张建春; 张燕

    2001-01-01

    The woven fabric can be defined as orthogonal elastomer if the extension force that puts on the fabric is very small. Based on the precondition, the apparent elasticity constants of a woven fabric were analyzed theoretically in the paper. The bias angle (which is between weft yarns and extension direction ) affects apparent elasticity modulus and elasticity coefficient of the fabric in the extension direction. And the experiment describes fluxes of elasticity constants going with the bias angle of the fabric.

  3. Managment oriented analysis of sediment yield time compression

    Science.gov (United States)

    Smetanova, Anna; Le Bissonnais, Yves; Raclot, Damien; Nunes, João P.; Licciardello, Feliciana; Le Bouteiller, Caroline; Latron, Jérôme; Rodríguez Caballero, Emilio; Mathys, Nicolle; Klotz, Sébastien; Mekki, Insaf; Gallart, Francesc; Solé Benet, Albert; Pérez Gallego, Nuria; Andrieux, Patrick; Moussa, Roger; Planchon, Olivier; Marisa Santos, Juliana; Alshihabi, Omran; Chikhaoui, Mohamed

    2016-04-01

    The understanding of inter- and intra-annual variability of sediment yield is important for the land use planning and management decisions for sustainable landscapes. It is of particular importance in the regions where the annual sediment yield is often highly dependent on the occurrence of few large events which produce the majority of sediments, such as in the Mediterranean. This phenomenon is referred as time compression, and relevance of its consideration growths with the increase in magnitude and frequency of extreme events due to climate change in many other regions. So far, time compression has ben studied mainly on events datasets, providing high resolution, but (in terms of data amount, required data precision and methods), demanding analysis. In order to provide an alternative simplified approach, the monthly and yearly time compressions were evaluated in eight Mediterranean catchments (of the R-OSMed network), representing a wide range of Mediterranean landscapes. The annual sediment yield varied between 0 to ~27100 Mg•km-2•a-1, and the monthly sediment yield between 0 to ~11600 Mg•km-2•month-1. The catchment's sediment yield was un-equally distributed at inter- and intra-annual scale, and large differences were observed between the catchments. Two types of time compression were distinguished - (i) the inter-annual (based on annual values) and intra- annual (based on monthly values). Four different rainfall-runoff-sediment yield time compression patterns were observed: (i) no time-compression of rainfall, runoff, nor sediment yield, (ii) low time compression of rainfall and runoff, but high compression of sediment yield, (iii) low compression of rainfall and high of runoff and sediment yield, and (iv) low, medium and high compression of rainfall, runoff and sediment yield. All four patterns were present at inter-annual scale, while at intra-annual scale only the two latter were present. This implies that high sediment yields occurred in

  4. Elastic recoil detection analysis of hydrogen in polymers

    Energy Technology Data Exchange (ETDEWEB)

    Winzell, T.R.H.; Whitlow, H.J. [Lund Univ. (Sweden); Bubb, I.F.; Short, R.; Johnston, P.N. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1996-12-31

    Elastic recoil detection analysis (ERDA) of hydrogen in thick polymeric films has been performed using 2.5 MeV He{sup 2+} ions from the tandem accelerator at the Royal Melbourne Institute of Technology. The technique enables the use of the same equipment as in Rutherford backscattering analysis, but instead of detecting the incident backscattered ion, the lighter recoiled ion is detected at a small forward angle. The purpose of this work is to investigate how selected polymers react when irradiated by helium ions. The polymers are to be evaluated for their suitability as reference standards for hydrogen depth profiling. Films investigated were Du Pont`s Kapton and Mylar, and polystyrene. 11 refs., 3 figs.

  5. comparative analysis of the compressive strength of hollow ...

    African Journals Online (AJOL)

    user

    2016-04-02

    Apr 2, 2016 ... 1,2,3 DEPARTMENT OF CIVIL ENGINEERING, UNIVERSITY OF NIGERIA, NSUKKA, ENUGU STATE, NIGERIA ... This research performed a comparative analysis of the compressive strength ... Print ISSN: 0331-8443, Electronic ISSN: 2467-8821 ..... Journal. of Engineering Project and Production.

  6. Expanded Polystyrene Re-Expansion Analysis Following Impact Compression

    Science.gov (United States)

    2015-03-04

    USAARL Report No. 2015-08 Expanded Polystyrene Re-Expansion Analysis Following Impact Compression By Mark S. Adams Frederick Brozoski Katie...13 iv This page is intentionally left blank. 1 Introduction Expanded bead polystyrene (EPS) is widely...EPS energy attenuating liners typically have complex geometric shapes. However, the use of flat sheets of polystyrene facilitated the sample

  7. Elastic Analysis of Physisorption-Induced Substrate Deformation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-Qiao; PAN Xia-Hui; YU Shou-Wen; FENG Xi-Qiao

    2008-01-01

    Physisorption may cause a dimple on a deformable solid surface due to adsorbate-substrate interaction.The interactive force between the adsorbate and the crystal atoms depends on their distances,which may change with substrate deformation.This feature of displacement-dependence indicates that the equilibrium problem is a force-deformation coupled nonlinear procedure.In the present study,a continuum mechanics model,in which the force is considered as a function of the displacement field of the medium,is presented to calculate the physisorption-inducad deformation in a semi-infinite elastic medium.It is found that the nonlinear effect due to force-deformation coupling should be taken in consideration in the adsorbate-substrate interaction analysis.

  8. Elastic recoil detection analysis on the ANSTO heavy ion microprobe

    Science.gov (United States)

    Siegele, R.; Orlic, I.; Cohen, David D.

    2002-05-01

    The heavy ion microprobe at the Australian Nuclear Science and Technology Organisation is capable of focussing heavy ions with an ME/ q2 of up to 100 amu MeV. This makes the microprobe ideally suited for heavy ion elastic recoil detection analysis (ERDA). However, beam currents on a microprobe are usually very small, which requires a detection system with a large solid angle. We apply microbeam heavy ion ERDA using a large solid angle ΔE- E telescope with a gas ΔE detector to layered structures. We demonstrate the capability to measure oxygen and carbon with a lateral resolution of 20 μm, together with determination of the depth of the contamination in thin deposited layers.

  9. Irrigation water demand: A meta-analysis of price elasticities

    Science.gov (United States)

    Scheierling, Susanne M.; Loomis, John B.; Young, Robert A.

    2006-01-01

    Metaregression models are estimated to investigate sources of variation in empirical estimates of the price elasticity of irrigation water demand. Elasticity estimates are drawn from 24 studies reported in the United States since 1963, including mathematical programming, field experiments, and econometric studies. The mean price elasticity is 0.48. Long-run elasticities, those that are most useful for policy purposes, are likely larger than the mean estimate. Empirical results suggest that estimates may be more elastic if they are derived from mathematical programming or econometric studies and calculated at a higher irrigation water price. Less elastic estimates are found to be derived from models based on field experiments and in the presence of high-valued crops.

  10. Elastic-plastic mixed-iterative finite element analysis: Implementation and performance assessment

    Science.gov (United States)

    Sutjahjo, Edhi; Chamis, Christos C.

    1993-01-01

    An elastic-plastic algorithm based on Von Mises and associative flow criteria is implemented in MHOST-a mixed iterative finite element analysis computer program developed by NASA Lewis Research Center. The performance of the resulting elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors of 4-node quadrilateral shell finite elements are tested for elastic-plastic performance. Generally, the membrane results are excellent, indicating the implementation of elastic-plastic mixed-iterative analysis is appropriate.

  11. Numerical Analysis of Dynamic Direct Tension and Direct Compression Tests

    Science.gov (United States)

    1993-01-01

    material model employed in the nonlinear analysis is a hypoelastic model based on a uniaxial stress-strain relation (Figure 18) that is generalized to...rates. Both an elastic and inelastic concrete material model were employed in all numerical analyses. The modes of failure predicted by the numerical... models ; (2) augmenting the system by adding other typical scenarios, with the ultimate goal of expanding it into a general task-oriented system/shell; and

  12. Quality Aware Compression of Electrocardiogram Using Principal Component Analysis.

    Science.gov (United States)

    Gupta, Rajarshi

    2016-05-01

    Electrocardiogram (ECG) compression finds wide application in various patient monitoring purposes. Quality control in ECG compression ensures reconstruction quality and its clinical acceptance for diagnostic decision making. In this paper, a quality aware compression method of single lead ECG is described using principal component analysis (PCA). After pre-processing, beat extraction and PCA decomposition, two independent quality criteria, namely, bit rate control (BRC) or error control (EC) criteria were set to select optimal principal components, eigenvectors and their quantization level to achieve desired bit rate or error measure. The selected principal components and eigenvectors were finally compressed using a modified delta and Huffman encoder. The algorithms were validated with 32 sets of MIT Arrhythmia data and 60 normal and 30 sets of diagnostic ECG data from PTB Diagnostic ECG data ptbdb, all at 1 kHz sampling. For BRC with a CR threshold of 40, an average Compression Ratio (CR), percentage root mean squared difference normalized (PRDN) and maximum absolute error (MAE) of 50.74, 16.22 and 0.243 mV respectively were obtained. For EC with an upper limit of 5 % PRDN and 0.1 mV MAE, the average CR, PRDN and MAE of 9.48, 4.13 and 0.049 mV respectively were obtained. For mitdb data 117, the reconstruction quality could be preserved up to CR of 68.96 by extending the BRC threshold. The proposed method yields better results than recently published works on quality controlled ECG compression.

  13. Digital image sequence processing, compression, and analysis

    CERN Document Server

    Reed, Todd R

    2004-01-01

    IntroductionTodd R. ReedCONTENT-BASED IMAGE SEQUENCE REPRESENTATIONPedro M. Q. Aguiar, Radu S. Jasinschi, José M. F. Moura, andCharnchai PluempitiwiriyawejTHE COMPUTATION OF MOTIONChristoph Stiller, Sören Kammel, Jan Horn, and Thao DangMOTION ANALYSIS AND DISPLACEMENT ESTIMATION IN THE FREQUENCY DOMAINLuca Lucchese and Guido Maria CortelazzoQUALITY OF SERVICE ASSESSMENT IN NEW GENERATION WIRELESS VIDEO COMMUNICATIONSGaetano GiuntaERROR CONCEALMENT IN DIGITAL VIDEOFrancesco G.B. De NataleIMAGE SEQUENCE RESTORATION: A WIDER PERSPECTIVEAnil KokaramVIDEO SUMMARIZATIONCuneyt M. Taskiran and Edward

  14. Analysis of compressive fracture in rock using statistical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Blair, S.C.

    1994-12-01

    Fracture of rock in compression is analyzed using a field-theory model, and the processes of crack coalescence and fracture formation and the effect of grain-scale heterogeneities on macroscopic behavior of rock are studied. The model is based on observations of fracture in laboratory compression tests, and incorporates assumptions developed using fracture mechanics analysis of rock fracture. The model represents grains as discrete sites, and uses superposition of continuum and crack-interaction stresses to create cracks at these sites. The sites are also used to introduce local heterogeneity. Clusters of cracked sites can be analyzed using percolation theory. Stress-strain curves for simulated uniaxial tests were analyzed by studying the location of cracked sites, and partitioning of strain energy for selected intervals. Results show that the model implicitly predicts both development of shear-type fracture surfaces and a strength-vs-size relation that are similar to those observed for real rocks. Results of a parameter-sensitivity analysis indicate that heterogeneity in the local stresses, attributed to the shape and loading of individual grains, has a first-order effect on strength, and that increasing local stress heterogeneity lowers compressive strength following an inverse power law. Peak strength decreased with increasing lattice size and decreasing mean site strength, and was independent of site-strength distribution. A model for rock fracture based on a nearest-neighbor algorithm for stress redistribution is also presented and used to simulate laboratory compression tests, with promising results.

  15. Informational Analysis for Compressive Sampling in Radar Imaging

    Directory of Open Access Journals (Sweden)

    Jingxiong Zhang

    2015-03-01

    Full Text Available Compressive sampling or compressed sensing (CS works on the assumption of the sparsity or compressibility of the underlying signal, relies on the trans-informational capability of the measurement matrix employed and the resultant measurements, operates with optimization-based algorithms for signal reconstruction and is thus able to complete data compression, while acquiring data, leading to sub-Nyquist sampling strategies that promote efficiency in data acquisition, while ensuring certain accuracy criteria. Information theory provides a framework complementary to classic CS theory for analyzing information mechanisms and for determining the necessary number of measurements in a CS environment, such as CS-radar, a radar sensor conceptualized or designed with CS principles and techniques. Despite increasing awareness of information-theoretic perspectives on CS-radar, reported research has been rare. This paper seeks to bridge the gap in the interdisciplinary area of CS, radar and information theory by analyzing information flows in CS-radar from sparse scenes to measurements and determining sub-Nyquist sampling rates necessary for scene reconstruction within certain distortion thresholds, given differing scene sparsity and average per-sample signal-to-noise ratios (SNRs. Simulated studies were performed to complement and validate the information-theoretic analysis. The combined strategy proposed in this paper is valuable for information-theoretic orientated CS-radar system analysis and performance evaluation.

  16. Elastic Plastic Fracture Analysis of an Aluminum COPV Liner

    Science.gov (United States)

    Forth, Scott; Gregg, Bradley; Bailey, Nathaniel

    2012-01-01

    Onboard any space-launch vehicle, composite over-wrapped pressure vessels (COPVs) may be utilized by propulsion or environmental control systems. The failure of a COPV has the potential to be catastrophic, resulting in the loss of vehicle, crew or mission. The latest COPV designs have reduced the wall-thickness of the metallic liner to the point where the material strains plastically during operation. At this time, the only method to determine the damage tolerance lifetime (safe-life) of a plastically responding metallic liner is through full-scale COPV testing. Conducting tests costs substantially more and can be far more time consuming than performing an analysis. As a result of this cost, there is a need to establish a qualifying process through the use of a crack growth analysis tool. This paper will discuss fracture analyses of plastically responding metallic liners in COPVs. Uni-axial strain tests have been completed on laboratory specimens to collect elastic-plastic crack growth data. This data has been modeled with the crack growth analysis tool, NASGRO 6.20 to predict the response of laboratory specimens and subsequently the complexity of a COPV.

  17. A linear mixture analysis-based compression for hyperspectral image analysis

    Energy Technology Data Exchange (ETDEWEB)

    C. I. Chang; I. W. Ginsberg

    2000-06-30

    In this paper, the authors present a fully constrained least squares linear spectral mixture analysis-based compression technique for hyperspectral image analysis, particularly, target detection and classification. Unlike most compression techniques that directly deal with image gray levels, the proposed compression approach generates the abundance fractional images of potential targets present in an image scene and then encodes these fractional images so as to achieve data compression. Since the vital information used for image analysis is generally preserved and retained in the abundance fractional images, the loss of information may have very little impact on image analysis. In some occasions, it even improves analysis performance. Airborne visible infrared imaging spectrometer (AVIRIS) data experiments demonstrate that it can effectively detect and classify targets while achieving very high compression ratios.

  18. COMPARATIVE STUDY BETWEEN TITANIUM ELASTIC NAILING (TENS AND DYNAMIC COMPRESSION PLATING (DCP IN THE TREATMENT OF FEMORAL DIAPHYSEAL FRACTURES IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Ramasubba Reddy

    2015-08-01

    Full Text Available BACKGROUND : Orthopaedic surgeons have long maintained that all children who have sustained a diaphyseal fracture of femur recover with c onservative treatment, given the excellent remodeling ability of immature bone in children. Angulations, shortenings and malrotations are not always corrected by conservative treatment. Of many surgical options, titanium elastic nailing has been the newer implant which is being used regularly. Although good results have been reported with elastic intramedullary nails, plate fixation continues to be a viable alternative in surgical treatment of femoral shaft fractures. However there are not many studies comp aring the efficiency of titanium elastic nailing and plating for femoral diaphyseal fractures in pediatric age group. AIM : The present study aims to compare the surgical management of diaphyseal fractures of femur in children with Dynamic Compression Plati ng versus Titanium Elastic Nailing. DESIGN : This is a prospective study . MATERIALS AND METHODS : This prospective study was conducted in a tertiary hospital. Patients who presented to the out - patient department and casualty of the hospital with femoral diap hyseal fractures during April 2012 to June 2014 were considered for the study. Subjects fulfilling the predetermined inclusion and exclusion criteria were included in the study. STATISTICAL METHODS : Fisher Exact test, Chi - Square Test, Student t test (Two t ailed, independent . RESULTS : Patients in the age group of 6 - 14 years were considered for the study, Patients were divided into two groups and treated with DCP/TENS. The duration of surgery, hospital stay, and, amount of blood loss was minimal in TENS grou p. Callus was seen early in TENS group. Radiological union was early in TENS group by 2 - 3 weeks. Outcome was better in patients treated with TENS (Excellent - 70%; Satisfactory – 30%; Poor - 0% in comparison to DCP (Excellent - 70%; Satisfactory - 25%; Poor - 5%. CO NCLUSION : TENS

  19. Compressed Sensing for Time-Frequency Gravitational Wave Data Analysis

    CERN Document Server

    Addesso, Paolo; Marano, Stefano; Matta, Vincenzo; Principe, Maria; Pinto, Innocenzo M

    2016-01-01

    The potential of compressed sensing for obtaining sparse time-frequency representations for gravitational wave data analysis is illustrated by comparison with existing methods, as regards i) shedding light on the fine structure of noise transients (glitches) in preparation of their classification, and ii) boosting the performance of waveform consistency tests in the detection of unmodeled transient gravitational wave signals using a network of detectors affected by unmodeled noise transient

  20. Elastic wave velocity inspection for rocks by pulse compression method%脉冲压缩方法检测岩石弹性波速度

    Institute of Scientific and Technical Information of China (English)

    李长征; 张碧星; 师芳芳

    2013-01-01

    On account of existing problems in rock elastic wave velocity inspecting,such as low signal to noise ratio(SNR),difficulty in reading the prime time of echo and inspecting large volume rock,pulse compression method is proposed.Linear frequency modulation (LFM) signal is mostly used as exciting source due to its remarkable properties,such as wide bandwidth,high energy and high SNR.While receiving terminal,echo signal is filtered by a matched filter,and the compression signal of high SNR is obtained.The wide time and band characteristics of LFM signal are introduced.In addition,the pulse compression principle and digital implementation process are also analyzed.The influence of the bandwidth of transducer on exciting signal is studied; elastic wave velocity of several rocks is inspected with a conventional method and pulse compression method.The wave velocity differences of two testing methods show a limited error.The detailed implementation and calculating process of pulse compression inspecting method are also described.The advantages and prospects of the method are analyzed.Results show that pulse compression method can be applied to inspect the elastic wave velocity in rock and access engineering quality.%针对岩石弹性波速度检测信噪比低、回波信号初至时间不易判读,以及较长岩石(或混凝土)超声检测难以穿透问题,提出用脉冲压缩方法检测弹性波速度.该方法与超声脉冲法检测的不同之处是在发射端采用编码信号激励,在接收端进行匹配滤波,得到高信噪比的压缩信号.介绍线性调频信号的宽时宽带特性,分析了脉冲压缩的基本原理和数字实现过程.试验研究了换能器带宽对激发信号的影响.用常规的单脉冲法和脉冲压缩方法检测了多个岩样的弹性波速度,试验结果表明,两种检测结果差异较小.给出了脉冲压缩方法用于岩石弹性波速度检测的具体步骤和计算过程.综合分析,脉冲压缩方法检

  1. PERFORMANCE MODELING AND ANALYSIS OF BLOOD FLOW IN ELASTIC ARTERIES

    Institute of Scientific and Technical Information of China (English)

    Anil Kumar; C.L. Varshney; G.C. Sharma

    2005-01-01

    Two different non-Newtonian models for blood flow are considered, first a simple power law model displaying shear thinning viscosity, and second a generalized Maxwell model displaying both shear thinning viscosity and oscillating flow viscous-elasticity. These models are used along with a Newtonian model to study sinusoidal flow of blood in rigid and elastic straight arteries in the presence of magnetic field. The elasticity of blood does not appear to influence its flow behavior under physiological conditions in the large arteries,purely viscous shear thinning model should be quite realistic for simulating blood flow under these conditions. On using the power law model with high shear rate for sinusoidal flow simulation in elastic arteries, the mean and amplitude of the flow rate were found to be lower for a power law fluid compared to Newtonian fluid for the same pressure gradient. The governing equations have been solved by Crank-Niclson scheme. The results are interpreted in the context of blood in the elastic arteries keeping the magnetic effects in view. For physiological flow simulation in the aorta, an increase in mean wall shear stress, but a reduction in peak wall shear stress were observed for power law model compared to a Newtonian fluid model for matched flow rate wave form. Blood flow in the presence of transverse magnetic field in an elastic artery is investigated and the influence of factors such as morphology and surface irregularity is evaluated.

  2. Spectral analysis of viscous static compressible fluid equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)

    2001-05-25

    It is generally assumed that the study of the spectrum of the linearized Navier-Stokes equations around a static state will provide information about the stability of the equilibrium. This is obvious for inviscid barotropic compressible fluids by the self-adjoint character of the relevant operator, and rather easy for viscous incompressible fluids by the compact character of the resolvent. The viscous compressible linearized system, both for periodic and homogeneous Dirichlet boundary problems, satisfies neither condition, but it does turn out to be the generator of an immediately continuous, almost stable semigroup, which justifies the analysis of the spectrum as predictive of the initial behaviour of the flow. As for the spectrum itself, except for a unique negative finite accumulation point, it is formed by eigenvalues with negative real part, and nonreal eigenvalues are confined to a certain bounded subset of complex numbers. (author)

  3. Bifurcation and response analysis of a nonlinear flexible rotating disc immersed in bounded compressible fluid

    Science.gov (United States)

    Remigius, W. Dheelibun; Sarkar, Sunetra; Gupta, Sayan

    2017-03-01

    Use of heavy gases in centrifugal compressors for enhanced oil extraction have made the impellers susceptible to failures through acousto-elastic instabilities. This study focusses on understanding the dynamical behavior of such systems by considering the effects of the bounded fluid housed in a casing on a rotating disc. First, a mathematical model is developed that incorporates the interaction between the rotating impeller - modelled as a flexible disc - and the bounded compressible fluid medium in which it is immersed. The nonlinear effects arising due to large deformations of the disc have been included in the formulation so as to capture the post flutter behavior. A bifurcation analysis is carried out with the disc rotational speed as the bifurcation parameter to investigate the dynamical behavior of the coupled system and estimate the stability boundaries. Parametric studies reveal that the relative strengths of the various dissipation mechanisms in the coupled system play a significant role that affect the bifurcation route and the post flutter behavior in the acousto-elastic system.

  4. Spatial compression algorithm for the analysis of very large multivariate images

    Science.gov (United States)

    Keenan, Michael R.

    2008-07-15

    A method for spatially compressing data sets enables the efficient analysis of very large multivariate images. The spatial compression algorithms use a wavelet transformation to map an image into a compressed image containing a smaller number of pixels that retain the original image's information content. Image analysis can then be performed on a compressed data matrix consisting of a reduced number of significant wavelet coefficients. Furthermore, a block algorithm can be used for performing common operations more efficiently. The spatial compression algorithms can be combined with spectral compression algorithms to provide further computational efficiencies.

  5. 广义可压缩弹性杆方程的柯西问题%On the Cauchy problem for a generalized compressible elastic rods equation

    Institute of Scientific and Technical Information of China (English)

    易婷

    2014-01-01

    A class of nonlinear dispersive equation with Hamiltonian structure is investigated .The equa-tion have the characteristics of Camassa-Holm equation and compressible elastic rod wave equation . Through a priori estimation ,two conservation laws are given .By further studying the properties of strong solutions ,it show s that strong solution blow s up in finite time .%研究一类具有哈密顿结构的非线性扩散方程,此类方程具有Camassa-Holm方程和可压缩弹性杆波动方程的特点。通过对此方程进行先验估计,得到两个守恒量。进一步研究此类方程强解的性质,可知强解在有限的时间内爆破。

  6. Focus on Compression Stockings

    Science.gov (United States)

    ... the stocking every other day with a mild soap. Do not use Woolite™ detergent. Use warm water ... compression clothing will lose its elasticity and its effectiveness. Compression stockings last for about 4-6 months ...

  7. Design and Analysis of a Solar-Powered Compressed Air Energy Storage System

    Science.gov (United States)

    2016-12-01

    ANALYSIS OF A SOLAR-POWERED COMPRESSED AIR ENERGY STORAGE SYSTEM by Thomas H. Prinsen December 2016 Thesis Advisor: Anthony Gannon Co-Advisor...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE DESIGN AND ANALYSIS OF A SOLAR-POWERED COMPRESSED AIR ENERGY STORAGE SYSTEM 5...a two-party study that analyzed a compressed air storage system using fundamental thermodynamic principles and designed the compression phase using

  8. The entropy of the rotational conformations of (poly)isoprene molecules and its relationship to rubber elasticity and temperature increase for moderate tensile or compressive strains

    Science.gov (United States)

    Hanson, David E.; Barber, John L.; Subramanian, Gopinath

    2013-12-01

    Molecular networks comprised of crosslinked cis-1,4 polyisoprene, often referred to as "natural rubber," are one of the most common systems for the study of rubber elasticity. Under moderate tensile or compressive strain, network chains begin to assume straighter paths, as local molecular kinks are removed. Isoprene units along the chain backbone are mechanically forced from their equilibrium distributions of 18 possible rotational states into a smaller subset of states, restricted to more linear conformations with the greatest end-to-end distances. There are two consequences to this change: both the configurational entropy and average internal energy decrease. We find that the change in entropy, and resulting change in free energy, gives rise to an elastic force. We derive an expression for a chain extension force constant that we have incorporated in an explicit, three-dimensional meso-scale network simulation code. Using this force model, our simulations predict a macroscopic stress-strain relationship that closely matches published experimental values. We also predict a slight increase in temperature resulting from the change in average internal energy in the affected isoprene units that is consistent with experiments.

  9. Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene.

    Science.gov (United States)

    Yang, X X; Li, J W; Zhou, Z F; Wang, Y; Yang, L W; Zheng, W T; Sun, Chang Q

    2012-01-21

    From the perspective of bond relaxation and bond vibration, we have formulated the Raman phonon relaxation of graphene, under the stimuli of the number-of-layers, the uni-axial strain, the pressure, and the temperature, in terms of the response of the length and strength of the representative bond of the entire specimen to the applied stimuli. Theoretical unification of the measurements clarifies that: (i) the opposite trends of the Raman shifts, which are due to the number-of-layers reduction, of the G-peak shift and arises from the vibration of a pair of atoms, while the D- and the 2D-peak shifts involve the z-neighbor of a specific atom; (ii) the tensile strain-induced phonon softening and phonon-band splitting arise from the asymmetric response of the C(3v) bond geometry to the C(2v) uni-axial bond elongation; (iii) the thermal softening of the phonons originates from bond expansion and weakening; and (iv) the pressure stiffening of the phonons results from bond compression and work hardening. Reproduction of the measurements has led to quantitative information about the referential frequencies from which the Raman frequencies shift as well as the length, energy, force constant, Debye temperature, compressibility and elastic modulus of the C-C bond in graphene, which is of instrumental importance in the understanding of the unusual behavior of graphene.

  10. Reliability analysis of beams on random elastic foundations

    NARCIS (Netherlands)

    Griffiths, D.V.; Paiboon, J.; Huang, J.; Fenton, G.A.

    2012-01-01

    The classical problem of a beam on an elastic foundation has long been of practical interest to geotechnical engineers, because it provides a framework for computing deflections not only of foundations, but also of vertically oriented laterally loaded piles. The supporting soil can be modelled as an

  11. Material-point Method Analysis of Bending in Elastic Beams

    DEFF Research Database (Denmark)

    Andersen, Søren Mikkel; Andersen, Lars

    The aim of this paper is to test different types of spatial interpolation for the materialpoint method. The interpolations include quadratic elements and cubic splines. A brief introduction to the material-point method is given. Simple liner-elastic problems are tested, including the classical...

  12. Material-Point Method Analysis of Bending in Elastic Beams

    DEFF Research Database (Denmark)

    Andersen, Søren Mikkel; Andersen, Lars

    2007-01-01

    The aim of this paper is to test different types of spatial interpolation for the material-point method. The interpolations include quadratic elements and cubic splines. A brief introduction to the material-point method is given. Simple liner-elastic problems are tested, including the classical...

  13. ASYMPTOTIC ANALYSIS OF LINEARLY ELASTIC SHALLOW SHELLS WITH VARIABLE THICKNESS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The author considers a linearly elastic shallow shell with variable thickness and shows that, as the thickness of the shell goes to zero, the solution of the three-dimensional equations converges to the solution of the two-dimensional shallow shell equations with variable thickness.

  14. Hydrodynamic analysis of elastic floating collars in random waves

    Science.gov (United States)

    Bai, Xiao-dong; Zhao, Yun-peng; Dong, Guo-hai; Li, Yu-cheng

    2015-06-01

    As the main load-bearing component of fish cages, the floating collar supports the whole cage and undergoes large deformations. In this paper, a mathematical method is developed to study the motions and elastic deformations of elastic floating collars in random waves. The irregular wave is simulated by the random phase method and the statistical approach and Fourier transfer are applied to analyze the elastic response in both time and frequency domains. The governing equations of motions are established by Newton's second law, and the governing equations of deformations are obtained based on curved beam theory and modal superposition method. In order to validate the numerical model of the floating collar attacked by random waves, a series of physical model tests are conducted. Good relationship between numerical simulation and experimental observations is obtained. The numerical results indicate that the transfer function of out-of-plane and in-plane deformations increase with the increasing of wave frequency. In the frequency range between 0.6 Hz and 1.1 Hz, a linear relationship exists between the wave elevations and the deformations. The average phase difference between the wave elevation and out-of-plane deformation is 60° with waves leading and the phase between the wave elevation and in-plane deformation is 10° with waves lagging. In addition, the effect of fish net on the elastic response is analyzed. The results suggest that the deformation of the floating collar with fish net is a little larger than that without net.

  15. Automated Finite Element Analysis of Elastically-Tailored Plates

    Science.gov (United States)

    Jegley, Dawn C. (Technical Monitor); Tatting, Brian F.; Guerdal, Zafer

    2003-01-01

    A procedure for analyzing and designing elastically tailored composite laminates using the STAGS finite element solver has been presented. The methodology used to produce the elastic tailoring, namely computer-controlled steering of unidirectionally reinforced composite material tows, has been reduced to a handful of design parameters along with a selection of construction methods. The generality of the tow-steered ply definition provides the user a wide variety of options for laminate design, which can be automatically incorporated with any finite element model that is composed of STAGS shell elements. Furthermore, the variable stiffness parameterization is formulated so that manufacturability can be assessed during the design process, plus new ideas using tow steering concepts can be easily integrated within the general framework of the elastic tailoring definitions. Details for the necessary implementation of the tow-steering definitions within the STAGS hierarchy is provided, and the format of the ply definitions is discussed in detail to provide easy access to the elastic tailoring choices. Integration of the automated STAGS solver with laminate design software has been demonstrated, so that the large design space generated by the tow-steering options can be traversed effectively. Several design problems are presented which confirm the usefulness of the design tool as well as further establish the potential of tow-steered plies for laminate design.

  16. Biochemical analysis of elastic and rigid cuticles of Cirsium horridulum.

    Science.gov (United States)

    Marga, F; Pesacreta, T C; Hasenstein, K H

    2001-10-01

    The cuticle is a complex structure of soluble lipids, lipid polymers and polysaccharides. In addition to its functions to reduce water loss and provide a protective barrier, its mechanical properties may be significant to plant growth and development. We investigated the cuticle of Cirsium horridulum Michx. because of its involvement in the thigmonastic contraction of staminal filaments. The staminal filaments and portions of the style are surrounded by a highly elastic cuticle in contrast to the rigid cuticle of the corolla and leaves. Our aim was to determine if the biochemical composition affected the elasticity of the cuticle. We discovered that the ratio of carbohydrates to lipids is 1:7 in floral parts but 2:1 in leaf cuticle. Esterified cutin components represented about 80% of the cuticle and di-hydroxyhexadecanoic acids were the major monomers of cutin, regardless of origin. The cutin of elastic tissues is characterized by a higher content of tri-hydroxy monomers than the cutin of rigid tissues. The data suggest that hydroxyl groups enhance the hydrophilic character of the cuticle and contribute to cuticular elasticity.

  17. ELASTIC BEHAVIOR ANALYSIS OF 3D ANGLE-INTERLOCK WOVEN CERAMIC COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Chang Yanjun; Jiao Guiqiong; Wang Bo; Liu Wei

    2006-01-01

    A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulation and continuity in space, the cavities between adjacent yarns and the actual cross-section geometry of the yarn. Based on the laminate theory, the elastic properties of 3D angle-interlock woven ceramic composites are predicted. Different numbers of interlaced wefts have almost the same elastic moduli. The thickness of ceramic matrix has little effect on elastic moduli. When the undulation ratio increases longitudinal modulus decreases and the other Young's moduli increase. Good agreement between theoretical predictions and experimental results demonstrates the feasibility of the proposed model in analyzing the elastic properties of3D angle-interlock woven ceramic composites. The results of this paper verify the fact that the method of analyzing polyester matrix composites is suitable for woven ceramic composites.

  18. Static analysis of rectangular nanoplates using trigonometric shear deformation theory based on nonlocal elasticity theory

    National Research Council Canada - National Science Library

    Nami, Mohammad Rahim; Janghorban, Maziar

    2013-01-01

    .... In order to consider the size effects, the nonlocal elasticity theory is used. An analytical method is adopted to solve the governing equations for static analysis of simply supported nanoplates...

  19. A novel image compression-encryption hybrid algorithm based on the analysis sparse representation

    Science.gov (United States)

    Zhang, Ye; Xu, Biao; Zhou, Nanrun

    2017-06-01

    Recent advances on the compressive sensing theory were invoked for image compression-encryption based on the synthesis sparse model. In this paper we concentrate on an alternative sparse representation model, i.e., the analysis sparse model, to propose a novel image compression-encryption hybrid algorithm. The analysis sparse representation of the original image is obtained with an overcomplete fixed dictionary that the order of the dictionary atoms is scrambled, and the sparse representation can be considered as an encrypted version of the image. Moreover, the sparse representation is compressed to reduce its dimension and re-encrypted by the compressive sensing simultaneously. To enhance the security of the algorithm, a pixel-scrambling method is employed to re-encrypt the measurements of the compressive sensing. Various simulation results verify that the proposed image compression-encryption hybrid algorithm could provide a considerable compression performance with a good security.

  20. Multilayered elastic analysis formulation for surface moment loading

    CSIR Research Space (South Africa)

    Maina, JW

    2006-01-01

    Full Text Available to the action of non-uniform circular loading is presented in this paper. Results show that maximum compressive stress at the pavement surface due to triangular load was greater by 20% and 70% than results from uniformly distributed vertical load and horizontal...

  1. Characterization of High Temperature Modulus of Elasticity of Lightweight Foamed Concrete under Static Flexural and Compression: An Experimental Investigations

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2012-09-01

    Full Text Available This paper focused on an experimental works that have been performed to examine the young’s modulus of foamed concrete at elevated temperatures up to 600°C. Foamed concrete of 650 and 1000 kg/m3 density were cast and tested under compression and bending. The experimental results of this study consistently demonstrated that the loss in stiffness for cement based material like foamed concrete at elevated temperatures occurs predominantly after about 95°C, regardless of density. This indicates that the primary mechanism causing stiffness degradation is microcracking, which occurs as water expands and evaporates from the porous body. As expected, reducing the density of LFC reduces its strength and stiffness. However, for LFC of different densities, the normalised strength-temperature and stiffness-temperature relationships are very similar.

  2. Spectral analysis based on compressive sensing in nanophotonic structures.

    Science.gov (United States)

    Wang, Zhu; Yu, Zongfu

    2014-10-20

    A method of spectral sensing based on compressive sensing is shown to have the potential to achieve high resolution in a compact device size. The random bases used in compressive sensing are created by the optical response of a set of different nanophotonic structures, such as photonic crystal slabs. The complex interferences in these nanostructures offer diverse spectral features suitable for compressive sensing.

  3. ELASTIC DYNAMIC ANALYSIS OF MODERATELY THICK PLATE USING MESHLESS LRPIM

    Institute of Scientific and Technical Information of China (English)

    Ping Xia; Shuyao Long; Hongxue Cui

    2009-01-01

    A meshless local radial point interpolation method (LRPIM) for solving elastic dy-namic problems of moderately thick plates is presented in this paper. The discretized system equation of the plate is obtained using a locally weighted residual method. It uses a radial basis function (RBF) coupled with a polynomial basis function as a trial function, and uses the quartic spline function as a test function of the weighted residual method. The shape function has the properties of the Kronecker delta function, and no additional treatment is done to impose essen-tial boundary conditions. The Newmark method for solving the dynamic problem is adopted in computation. Effects of sizes of the quadrature sub-domain and influence domain on the dynamic properties are investigated. The numerical results show that the presented method can give quite accurate results for the elastic dynamic problem of the moderately thick plate.

  4. Modelling Analysis of Forestry Input-Output Elasticity in China

    Directory of Open Access Journals (Sweden)

    Guofeng Wang

    2016-01-01

    Full Text Available Based on an extended economic model and space econometrics, this essay analyzed the spatial distributions and interdependent relationships of the production of forestry in China; also the input-output elasticity of forestry production were calculated. Results figure out there exists significant spatial correlation in forestry production in China. Spatial distribution is mainly manifested as spatial agglomeration. The output elasticity of labor force is equal to 0.6649, and that of capital is equal to 0.8412. The contribution of land is significantly negative. Labor and capital are the main determinants for the province-level forestry production in China. Thus, research on the province-level forestry production should not ignore the spatial effect. The policy-making process should take into consideration the effects between provinces on the production of forestry. This study provides some scientific technical support for forestry production.

  5. Practical approach on gas pipeline compression system availability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sidney Pereira dos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Kurz, Rainer; Lubomirsky, Matvey [Solar Turbines, San Diego, CA (United States)

    2009-12-19

    Gas pipeline projects traditionally have been designed based on load factor and steady state flow. This approach exposes project sponsors to project sustainability risks due to potential losses of revenues and transportation contract penalties related to pipeline capacity shortage as consequence of compressor unit's unavailability. Such unavailability should previously be quantified during the design phase. This paper presents a case study and a methodology that highlights the practical benefits of applying Monte Carlo simulation for the compression system availability analysis in conjunction with quantitative risk analysis and economic feasibility study. Project economics main variables and their impacts on the project NPV (Net Present Value) are evaluated with their respective statistics distribution to quantify risk and support decision makers to adopt mitigating measures to guarantee competitiveness while protecting project sponsors from otherwise unpredictable risks. This practical approach is compared to load factor approach and the results are presented and evaluated. (author)

  6. Mathematical theory of compressible viscous fluids analysis and numerics

    CERN Document Server

    Feireisl, Eduard; Pokorný, Milan

    2016-01-01

    This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematic...

  7. Stability Analysis of Nonlocal Elastic Columns with Initial Imperfection

    Directory of Open Access Journals (Sweden)

    S. P. Xu

    2013-01-01

    Full Text Available Investigated herein is the postbuckling behavior of an initially imperfect nonlocal elastic column, which is simply supported at one end and subjected to an axial force at the other movable end. The governing nonlinear differential equation of the axially loaded nonlocal elastic column experiencing large deflection is first established within the framework of Eringen's nonlocal elasticity theory in order to embrace the size effect. Its semianalytical solutions by the virtue of homotopy perturbation method, as well as the successive approximation algorithm, are determined in an explicit form, through which the postbuckling equilibrium loads in terms of the end rotation angle and the deformed configuration of the column at this end rotation are predicted. By comparing the degenerated results with the exact solutions available in the literature, the validity and accuracy of the proposed methods are numerically substantiated. The size effect, as well as the initial imperfection, on the buckled configuration and the postbuckling equilibrium path is also thoroughly discussed through parametric studies.

  8. The Structural Design for Hyper-Elastic Materials Using Cfd Analysis

    Science.gov (United States)

    Park, Young-Chul; Jung, Dae-Seok; Kim, Ji-Young

    The usage of hyper-elastic material has been increasing gradually and its application has extended over a wide range of various industries. Implementing experimental and numerical methods, performance of hyper-elastic material can be predicted. Proposed in this study is the process by which the material coefficient can be obtained and applied to seat-ring of butterfly valve. Considering the mechanical properties and material conditions, optimum model was constructed and applied to obtain the coefficient by using CFD analysis.

  9. Buckling of Euler Columns with a Continuous Elastic Restraint via Homotopy Analysis Method

    Directory of Open Access Journals (Sweden)

    Aytekin Eryılmaz

    2013-01-01

    Full Text Available Homotopy Analysis Method (HAM is applied to find the critical buckling load of the Euler columns with continuous elastic restraints. HAM has been successfully applied to many linear and nonlinear, ordinary and partial, differential equations, integral equations, and difference equations. In this study, we presented the application of HAM to the critical buckling loads for Euler columns with five different support cases continuous elastic restraints. The results are compared with the analytic solutions.

  10. Investigations of homologous disaccharides by elastic incoherent neutron scattering and wavelet multiresolution analysis

    Energy Technology Data Exchange (ETDEWEB)

    Magazù, S.; Migliardo, F. [Dipartimento di Fisica e di Scienze della Terra dell’, Università degli Studi di Messina, Viale F. S. D’Alcontres 31, 98166 Messina (Italy); Vertessy, B.G. [Institute of Enzymology, Hungarian Academy of Science, Budapest (Hungary); Caccamo, M.T., E-mail: maccamo@unime.it [Dipartimento di Fisica e di Scienze della Terra dell’, Università degli Studi di Messina, Viale F. S. D’Alcontres 31, 98166 Messina (Italy)

    2013-10-16

    Highlights: • Innovative multiresolution wavelet analysis of elastic incoherent neutron scattering. • Elastic Incoherent Neutron Scattering measurements on homologues disaccharides. • EINS wavevector analysis. • EINS temperature analysis. - Abstract: In the present paper the results of a wavevector and thermal analysis of Elastic Incoherent Neutron Scattering (EINS) data collected on water mixtures of three homologous disaccharides through a wavelet approach are reported. The wavelet analysis allows to compare both the spatial properties of the three systems in the wavevector range of Q = 0.27 Å{sup −1} ÷ 4.27 Å{sup −1}. It emerges that, differently from previous analyses, for trehalose the scalograms are constantly lower and sharper in respect to maltose and sucrose, giving rise to a global spectral density along the wavevector range markedly less extended. As far as the thermal analysis is concerned, the global scattered intensity profiles suggest a higher thermal restrain of trehalose in respect to the other two homologous disaccharides.

  11. Elastic orthorhombic anisotropic parameter inversion: An analysis of parameterization

    KAUST Repository

    Oh, Ju Won

    2016-09-15

    The resolution of a multiparameter full-waveform inversion (FWI) is highly influenced by the parameterization used in the inversion algorithm, as well as the data quality and the sensitivity of the data to the elastic parameters because the scattering patterns of the partial derivative wavefields (PDWs) vary with parameterization. For this reason, it is important to identify an optimal parameterization for elastic orthorhombic FWI by analyzing the radiation patterns of the PDWs for many reasonable model parameterizations. We have promoted a parameterization that allows for the separation of the anisotropic properties in the radiation patterns. The central parameter of this parameterization is the horizontal P-wave velocity, with an isotropic scattering potential, influencing the data at all scales and directions. This parameterization decouples the influence of the scattering potential given by the P-wave velocity perturbation fromthe polar changes described by two dimensionless parameter perturbations and from the azimuthal variation given by three additional dimensionless parameters perturbations. In addition, the scattering potentials of the P-wave velocity perturbation are also decoupled from the elastic influences given by one S-wave velocity and two additional dimensionless parameter perturbations. The vertical S-wave velocity is chosen with the best resolution obtained from S-wave reflections and converted waves, little influence on P-waves in conventional surface seismic acquisition. The influence of the density on observed data can be absorbed by one anisotropic parameter that has a similar radiation pattern. The additional seven dimensionless parameters describe the polar and azimuth variations in the P- and S-waves that we may acquire, with some of the parameters having distinct influences on the recorded data on the earth\\'s surface. These characteristics of the new parameterization offer the potential for a multistage inversion from high symmetry

  12. Radial Velocity Data Analysis with Compressed Sensing Techniques

    Science.gov (United States)

    Hara, Nathan C.; Boué, G.; Laskar, J.; Correia, A. C. M.

    2016-09-01

    We present a novel approach for analysing radial velocity data that combines two features: all the planets are searched at once and the algorithm is fast. This is achieved by utilizing compressed sensing techniques, which are modified to be compatible with the Gaussian processes framework. The resulting tool can be used like a Lomb-Scargle periodogram and has the same aspect but with much fewer peaks due to aliasing. The method is applied to five systems with published radial velocity data sets: HD 69830, HD 10180, 55 Cnc, GJ 876 and a simulated very active star. The results are fully compatible with previous analysis, though obtained more straightforwardly. We further show that 55 Cnc e and f could have been respectively detected and suspected in early measurements from the Lick observatory and Hobby-Eberly Telescope available in 2004, and that frequencies due to dynamical interactions in GJ 876 can be seen.

  13. Radial Velocity Data Analysis with Compressed Sensing Techniques

    CERN Document Server

    Hara, Nathan C; Laskar, Jacques; Correia, Alexandre C M

    2016-01-01

    We present a novel approach for analysing radial velocity data that combines two features: all the planets are searched at once and the algorithm is fast. This is achieved by utilizing compressed sensing techniques, which are modified to be compatible with the Gaussian processes framework. The resulting tool can be used like a Lomb-Scargle periodogram and has the same aspect but with much fewer peaks due to aliasing. The method is applied to five systems with published radial velocity data sets: HD 69830, HD 10180, 55 Cnc, GJ 876 and a simulated very active star. The results are fully compatible with previous analysis, though obtained more straightforwardly. We further show that 55 Cnc e and f could have been respectively detected and suspected in early measurements from the Lick observatory and Hobby-Eberly Telescope available in 2004, and that frequencies due to dynamical interactions in GJ 876 can be seen.

  14. Radial velocity data analysis with compressed sensing techniques

    Science.gov (United States)

    Hara, Nathan C.; Boué, G.; Laskar, J.; Correia, A. C. M.

    2017-01-01

    We present a novel approach for analysing radial velocity data that combines two features: all the planets are searched at once and the algorithm is fast. This is achieved by utilizing compressed sensing techniques, which are modified to be compatible with the Gaussian process framework. The resulting tool can be used like a Lomb-Scargle periodogram and has the same aspect but with much fewer peaks due to aliasing. The method is applied to five systems with published radial velocity data sets: HD 69830, HD 10180, 55 Cnc, GJ 876 and a simulated very active star. The results are fully compatible with previous analysis, though obtained more straightforwardly. We further show that 55 Cnc e and f could have been respectively detected and suspected in early measurements from the Lick Observatory and Hobby-Eberly Telescope available in 2004, and that frequencies due to dynamical interactions in GJ 876 can be seen.

  15. Finite element analysis for general elastic multi-structures

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A finite element method is introduced to solve the general elastic multi-structure problem, in which the displacements on bodies, the longitudinal displacements on plates and the longitudinal displacements on beams are discretized using conforming linear elements, the rotational angles on beams are discretized using conforming elements of second order, the transverse displacements on plates and beams are discretized by the Morley elements and the Hermite elements of third order, respectively. The generalized Korn's inequality is established on related nonconforming element spaces, which implies the unique solvability of the finite element method. Finally, the optimal error estimate in the energy norm is derived for the method.

  16. Finite element analysis of weightbath hydrotraction treatment of degenerated lumbar spine segments in elastic phase.

    Science.gov (United States)

    Kurutz, M; Oroszváry, L

    2010-02-10

    3D finite element models of human lumbar functional spinal units (FSU) were used for numerical analysis of weightbath hydrotraction therapy (WHT) applied for treating degenerative diseases of the lumbar spine. Five grades of age-related degeneration were modeled by material properties. Tensile material parameters of discs were obtained by parameter identification based on in vivo measured elongations of lumbar segments during regular WHT, compressive material constants were obtained from the literature. It has been proved numerically that young adults of 40-45 years have the most deformable and vulnerable discs, while the stability of segments increases with further aging. The reasons were found by analyzing the separated contrasting effects of decreasing incompressibility and increasing hardening of nucleus, yielding non-monotonous functions of stresses and deformations in terms of aging and degeneration. WHT consists of indirect and direct traction phases. Discs show a bilinear material behaviour with higher resistance in indirect and smaller in direct traction phase. Consequently, although the direct traction load is only 6% of the indirect one, direct traction deformations are 15-90% of the indirect ones, depending on the grade of degeneration. Moreover, the ratio of direct stress relaxation remains equally about 6-8% only. Consequently, direct traction controlled by extra lead weights influences mostly the deformations being responsible for the nerve release; while the stress relaxation is influenced mainly by the indirect traction load coming from the removal of the compressive body weight and muscle forces in the water. A mildly degenerated disc in WHT shows 0.15mm direct, 0.45mm indirect and 0.6mm total extension; 0.2mm direct, 0.6mm indirect and 0.8mm total posterior contraction. A severely degenerated disc exhibits 0.05mm direct, 0.05mm indirect and 0.1mm total extension; 0.05mm direct, 0.25mm indirect and 0.3mm total posterior contraction. These

  17. Numerical analysis of elastic coated solids in line contact

    Institute of Scientific and Technical Information of China (English)

    王廷剑; 王黎钦; 古乐; 赵小力

    2015-01-01

    A line contact model of elastic coated solids is presented based on the influence coefficients (ICs) of surface displacement and stresses of coating−substrate system and the traditional contact model. The ICs of displacement and stresses are obtained from their corresponding frequency response functions (FRF) by using a conversion method based on fast Fourier transformation (FFT). The contact pressure and the stress field in the subsurface are obtained by employing conjugate gradient method (CGM) and discrete convolution fast Fourier transformation (DC-FFT). Comparison of the contact pressure and subsurface stresses obtained by the numerical method with the exact analytical solutions for Hertz contact is conducted, and the results show that the numerical solution has a very high accuracy and verify the validity of the contact model. The effect of the stiffness and thickness of coatings is further numerically studied. The result shows that the effects on contact pressure and contact width are opposite for hard and soft coatings and are intensified with the increase of coating thickness; the locations of crack initiation and propagation are different for soft and hard coatings; the risk of cracks and delaminations of coatings can be brought down by improving the lubrication condition or optimizing the non-dimensional parameterh/bh. This research offers a tool to numerically analyze the problem of elastic coated solids in line contact and make the blindness and randomness of trial-type coating design less.

  18. Vibration analysis of defective graphene sheets using nonlocal elasticity theory

    Science.gov (United States)

    Namin, S. F. Asbaghian; Pilafkan, R.

    2017-09-01

    Many papers have studied the free vibration of graphene sheets. However, all this papers assumed their atomic structure free of any defects. Nonetheless, they actually contain some defects including single vacancy, double vacancy and Stone-Wales defects. This paper, therefore, investigates the free vibration of defective graphene sheets, rather than pristine graphene sheets, via nonlocal elasticity theory. Governing equations are derived using nonlocal elasticity and the first-order shear deformation theory (FSDT). The influence of structural defects on the vibration of graphene sheets is considered by applying the mechanical properties of defective graphene sheets. Afterwards, these equations solved using generalized differential quadrature method (GDQ). The small-scale effect is applied in the governing equations of motion by nonlocal parameter. The effects of different defect types are inspected for graphene sheets with clamped or simply-supported boundary conditions on all sides. It is shown that the natural frequencies of graphene sheets decrease by introducing defects to the atomic structure. Furthermore, it is found that the number of missing atoms, shapes and distributions of structural defects play a significant role in the vibrational behavior of graphene. The effect of vacancy defect reconstruction is also discussed in this paper.

  19. Mechanical vulnerability of lower second premolar utilising visco-elastic dynamic stress analysis.

    Science.gov (United States)

    Khani, M M; Tafazzoli-Shadpour, M; Aghajani, F; Naderi, P

    2009-10-01

    Stress analysis determines vulnerability of dental tissues to external loads. Stress values depend on loading conditions, mechanical properties and constrains of structural components. The critical stress levels lead to tissue damage. The aim of this study is to analyse dynamic stress distribution of lower second premolar due to physiological cyclic loading, and dependency of pulsatile stress characteristics to visco-elastic property of dental components by finite element modelling. Results show that visco-elastic property markedly influences stress determinants in major anatomical sites including dentin, cementum-enamel and dentin-enamel junctions. Reduction of visco-elastic parameter leads to mechanical vulnerability through elevation of stress pulse amplitude, maximum stress value; and reduction of stress phase shift as a determinant of stress wave propagation. The results may be applied in situations in which visco-elasticity is reduced such as root canal therapy and post and core restoration in which teeth are more vulnerable to fracture.

  20. Nonlinear coda wave analysis of hysteretic elastic behavior in strongly scattering media

    Science.gov (United States)

    Ouarabi, M. Ait; Boubenider, F.; Gliozzi, A. S.; Scalerandi, M.

    2016-10-01

    Strongly scattering elastic media, such as consolidated granular materials, respond to ultrasonic pulse excitations with a long response signal with peculiar properties. The portion of the signal at late times, termed coda, is due to multiple scattering. It contains information about the elastic properties of the material, and it has been proven to be very sensitive to small variations in the modulus. Here we propose a technique based on a nonlinear analysis of the coda of a signal, which might be applied to quantify the nonlinear elastic response in consolidated granular media exhibiting a hysteretic elastic behavior. The method proposed allows for an intrinsic definition of the reference signal which is normally needed for applying coda-based methods.

  1. DSP Implementation of Image Compression by Multiresolutional Analysis

    Directory of Open Access Journals (Sweden)

    K. Vlcek

    1998-04-01

    Full Text Available Wavelet algorithms allow considerably higher compression rates compared to Fourier transform based methods. The most important field of applications of wavelet transforms is that the image is captured in few wavelet coefficients. The successful applications in compression of image or in series of images in both the space and the time dimensions. Compression algorithms exploit the multi-scale nature of the wavelet transform.

  2. DSP Implementation of Image Compression by Multiresolutional Analysis

    Directory of Open Access Journals (Sweden)

    K. Vlcek

    1999-09-01

    Full Text Available Wavelet algorithms allow considerably higher compression rates compared to Fourier transform based methods. The most important field of applications of wavelet transforms is that the image is captured in few wavelet coefficients. The successful applications in compression of image or in series of images in both the space and the time dimensions. Compression algorithms exploit the multi-scale nature of the wavelet transform.

  3. The nonlinear anomalous lattice elasticity associated with the high-pressure phase transition in spodumene: A high precission static compression study

    CERN Document Server

    Ullrich, A; Miletich, R; 10.1007/s00269-009-0300-8

    2010-01-01

    The high-pressure behavior of the lattice elasticity of spodumene, LiAlSi2O6, was studied by static compression in a diamond-anvil cell up to 9.3 GPa. Investigations by means of single-crystal XRD and Raman spectroscopy within the hydrostatic limits of the pressure medium focus on the pressure ranges around similar to 3.2 and similar to 7.7 GPa, which have been reported previously to comprise two independent structural phase transitions. While our measurements confirm the well-established first-order C2/c-P2(1)/c transformation at 3.19 GPa (with 1.2% volume discontinuity and a hysteresis between 0.02 and 0.06 GPa), both unit-cell dimensions and the spectral changes observed in high-pressure Raman spectra give no evidence for structural changes related to a second phase transition. Monoclinic lattice parameters and unit-cell volumes at in total 59 different pressure points have been used to re-calculate the lattice-related properties of spontaneous strain, volume strain, and the bulk moduli as a function of pr...

  4. Spectral compression algorithms for the analysis of very large multivariate images

    Science.gov (United States)

    Keenan, Michael R.

    2007-10-16

    A method for spectrally compressing data sets enables the efficient analysis of very large multivariate images. The spectral compression algorithm uses a factored representation of the data that can be obtained from Principal Components Analysis or other factorization technique. Furthermore, a block algorithm can be used for performing common operations more efficiently. An image analysis can be performed on the factored representation of the data, using only the most significant factors. The spectral compression algorithm can be combined with a spatial compression algorithm to provide further computational efficiencies.

  5. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim D.; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...... layers, Fracture mechanics, Crack closure, Steady state crack propagation....

  6. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim Dalsten; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...

  7. Delamination of Compressed thin Layers at Corners

    DEFF Research Database (Denmark)

    Clausen, Johan; Jensen, Henrik Myhre; Sørensen, Kim Dalsten

    2008-01-01

    An analysis of delamination for a thin elastic film, attached to a substrate with a corner, is carried out. The film is in compression and the analysis is performed by combining results from fracture mechanics and the theory of thin shells. The results show a very strong dependency of the angle...

  8. Statistical Analysis of Compression Methods for Storing Binary Image for Low-Memory Systems

    Directory of Open Access Journals (Sweden)

    Roman Slaby

    2013-01-01

    Full Text Available The paper is focused on the statistical comparison of the selected compression methods which are used for compression of the binary images. The aim is to asses, which of presented compression method for low-memory system requires less number of bytes of memory. For assessment of the success rates of the input image to binary image the correlation functions are used. Correlation function is one of the methods of OCR algorithm used for the digitization of printed symbols. Using of compression methods is necessary for systems based on low-power micro-controllers. The data stream saving is very important for such systems with limited memory as well as the time required for decoding the compressed data. The success rate of the selected compression algorithms is evaluated using the basic characteristics of the exploratory analysis. The searched samples represent the amount of bytes needed to compress the test images, representing alphanumeric characters.

  9. Probing Compressed Bottom Squarks with Boosted Jets and Shape Analysis

    CERN Document Server

    Dutta, Bhaskar; Hatakeyama, Kenichi; Johns, Will; Kamon, Teruki; Sheldon, Paul; Sinha, Kuver; Wu, Sean; Wu, Zhenbin

    2015-01-01

    A feasibility study is presented for the search of the lightest bottom squark (sbottom) in a compressed scenario, where its mass difference from the lightest neutralino is 5 GeV. Two separate studies are performed: $(1)$ final state containing two VBF-like tagging jets, missing transverse energy, and zero or one $b$-tagged jet; and $(2)$ final state consisting of initial state radiation (ISR) jet, missing transverse energy, and at least one $b$-tagged jet. An analysis of the shape of the missing transverse energy distribution for signal and background is performed in each case, leading to significant improvement over a cut and count analysis, especially after incorporating the consideration of systematics and pileup. The shape analysis in the VBF-like tagging jet study leads to a $3\\sigma$ exclusion potential of sbottoms with mass up to $530 \\, (380)$ GeV for an integrated luminosity of $300$ fb$^{-1}$ at 14 TeV, with $5\\%$ systematics and PU $= 0 \\, (140)$.

  10. ANALYSIS ON ACOUSTICAL SCATTERING BY A CRACKED ELASTIC STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    ZhongWeffang; WuYongdong; WuGuorong; LiangYide

    2003-01-01

    The acoustical scattering by a cracked elastic structure is studied. The mixed method of boundary element and fractal finite element is adopted to solve the cracked structure-acoustic coupling problem. The fractal two-level finite element method is employed for the cracked structure, which can reduce the degree of freedoms (DOFs) greatly, and the boundary element method is used for the exterior acoustic field which can automatically satisfy Sommerfeld's radiation condition. Numerical examples show that the resonance frequency is lower with the crack's depth increase, and that the effect on the acoustical field by the crack is particularly pronounced in the vicinity of the crack tip. This mixed method of boundary element and finite element is effective in solving the scattering problem by a cracked structure.

  11. General Analysis of Timoshenko Beams on Elastic Foundation

    Directory of Open Access Journals (Sweden)

    S. Abohadima

    2015-01-01

    Full Text Available General analytical solutions for stability, free and forced vibration of an axially loaded Timoshenko beam resting on a two-parameter foundation subjected to nonuniform lateral excitation are obtained using recursive differentiation method (RDM. Elastic restraints for rotation and translation are assumed at the beam ends to investigate the effect of support weakening on the beam behavior. However, the effects of rotational inertia and shear stress induced from the axial load are considered. The obtained solutions are verified first and then used to investigate the significance of different parameters on the beam behavior. In addition, solutions of forced vibration are analyzed to highlight the effects of excitation nonhomogeneity on the beam behavior.

  12. Axial vibration analysis of nanocones based on nonlocal elasticity theory

    Institute of Scientific and Technical Information of China (English)

    Shu-Qi Guo; Shao-Pu Yang

    2012-01-01

    Carbon nanocones have quite fascinating electronic and structural properties,whose axial vibration is seldom investigated in previous studies.In this paper,based on a nonlocal elasticity theory,a nonuniform rod model is applied to investigate the small-scale effect and the nonuniform effect on axial vibration of nanocones.Using the modified Wentzel-Brillouin-Kramers (WBK) method,an asymptotic solution is obtained for the axial vibration of general nonuniform nanorods.Then,using similar procedure,the axial vibration of nanocones is analyzed for nonuniform parameters,mode number and nonlocal parameters.Explicit expressions are derived for mode frequencies of clamped-clamped and clamped-free boundary conditions.It is found that axial vibration frequencies are highly overestimated by the classical rod model because of ignorance of the effect of small length scale.

  13. Numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity

    Science.gov (United States)

    Korepanov, V. V.; Matveenko, V. P.; Fedorov, A. Yu.; Shardakov, I. N.

    2013-07-01

    An algorithm for the numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity is considered. The algorithm is based on separation of a power-law dependence from the finite-element solution in a neighborhood of singular points in the domain under study, where singular solutions are possible. The obtained power-law dependencies allow one to conclude whether the stresses have singularities and what the character of these singularities is. The algorithm was tested for problems of classical elasticity by comparing the stress singularity exponents obtained by the proposed method and from known analytic solutions. Problems with various cases of singular points, namely, body surface points at which either the smoothness of the surface is violated, or the type of boundary conditions is changed, or distinct materials are in contact, are considered as applications. The stress singularity exponents obtained by using the models of classical and asymmetric elasticity are compared. It is shown that, in the case of cracks, the stress singularity exponents are the same for the elasticity models under study, but for other cases of singular points, the stress singularity exponents obtained on the basis of asymmetric elasticity have insignificant quantitative distinctions from the solutions of the classical elasticity.

  14. DNS and scaling law analysis of compressible turbulent channel flow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fully developed compressible turbulent channel flow (Ma=0.8,Re=3300) is numerically simulated, and the data base of turbulence is established. The s tatistics such as density_weighted mean velocity and RMS velocity fluctuations i n semi_local coordinates agree well with those from other DNS data. High order s tatistics (skewness and flatness factors) of velocity fluctuations of compressib le turbulence are reported for the first time. Compressibility effects are also discussed. Pressure_dilatation absorbs part of the kinetic energy and makes the streaks of compressible channel flow more smooth. The scaling laws of compressible channel flow are also discussed. The conclusi ons are: (a) Scaling law is found in the center area of the channel. (b) In this area, ESS is also found. (c) When Mach number is not ve ry high, compressibility has little effect on scaling exponents.

  15. Multi scale analysis of ITER pre-compression rings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ben, E-mail: ben.park@sener.es [SENER Ingeniería y Sistemas S.A., Barcelona (Spain); Foussat, Arnaud [ITER Organization, St. Paul-Lez-Durance (France); Rajainmaki, Hannu [Fusion for Energy, Barcelona (Spain); Knaster, Juan [IFMIF, Aomori (Japan)

    2013-10-15

    Highlights: • A multi-scale analysis approach employing various scales of ABAQUS FEM models have been used to calculate the response and performance of the rings. • We have studied the effects of various defects on the performance of the rings under the operating temperatures and loading that will be applied to the PCRs. • The multi scale analysis results are presented here. -- Abstract: The Pre-compression Rings of ITER (PCRs) represent one of the largest and most highly stressed composite structures ever designed for long term operation at 4 K. Six rings, each 5 m in diameter and 337 mm × 288 mm in cross-section, will be manufactured from S2 fiber-glass/epoxy composite and installed three at the top and three at the bottom of the eighteen D shaped toroidal field (TF) coils to apply a total centripetal pre-load of 70 MN per TF coil. The composite rings will be fabricated with a high content (65% by volume) of S2 fiber-glass in an epoxy resin matrix. During the manufacture emphasis will be placed on obtaining a structure with a very low void content and minimal presence of critical defects, such as delaminations. This paper presents a unified framework for the multi-scale analysis of the composite structure of the PCRs. A multi-scale analysis approach employing various scales of ABAQUS FEM models and other analysis tools have been used to calculate the response and performance of the rings over the design life of the structure. We have studied the effects of various defects on the performance of the rings under the operating temperatures and loading that will be applied to the PCRs. The results are presented here.

  16. Elastic Modulus and Stress Analysis of Porous Titanium Parts Fabricated by Selective Laser Melting

    Institute of Scientific and Technical Information of China (English)

    Junchao Li∗,Yanyan Zang; Wei Wang

    2016-01-01

    The mismatch of elasticity modulus has limited the application of titanium alloys in medical implants, and porous structures have been proved effective to deal with this problem. However, the manufacturing of porous structures has been restricted from conventional technologies. In this study, selective laser melting ( SLM) technology was employed to produce a set of Ti⁃6Al⁃4V porous samples based on cubic lattices with varying size of strut width from 200 μm to 600 μm. Then the compression tests were conducted to analyze the influence of the strut width on the elasticity modulus and the ultimate strength. The result shows both of them increases linearly with the growth of strut width or with the decrease of porosity, and the elasticity modulus of porous parts is largely reduced and actually meets the requirement of clinical application. Additionally, a finite element model was established to verify the un⁃uniform stress distribution of porous parts. It reveals that fractures always initially occur at the vertical struts along the force direction which suffer from the main deformation.

  17. Analysis of correlation coefficient filtering in elasticity imaging.

    Science.gov (United States)

    Huang, Sheng-Wen; Rubin, Jonathan M; Xie, Hua; Witte, Russell S; Jia, Congxian; Olafsson, Ragnar; O'Donnell, Matthew

    2008-11-01

    Correlation-based speckle tracking methods are commonly used in elasticity imaging to estimate displacements. In the presence of local strain, a larger window size results in larger displacement error. To reduce tracking error, we proposed a short correlation window followed by a correlation coefficient filter. Although simulation and experimental results demonstrated the efficacy of the method, it was not clear why correlation coefficient filtering reduces tracking error since tracking error increases if normalization before filtering is not applied. In this paper, we analyzed tracking errors by estimating phase variances of the cross-correlation function and the correlation coefficient at the true time lag based on statistical properties of these functions' real and imaginary parts. The role of normalization is clarified by identifying the effect of the cross-correlation function's amplitude fluctuation on the function's imaginary part. Furthermore, we present analytic forms for predicting axial displacement error as a function of strain, system parameters (signal-to-noise ratio, center frequency, and signal and noise bandwidths), and tracking parameters (window and filter sizes) for cases with and without normalization before filtering. Simulation results correspond to theory well for both noise-free cases and general cases with an empirical correction term included for strains up to 4%.

  18. Green Power voluntary purchases: Price elasticity and policy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mewton, Ross T., E-mail: rtmewton@hotmail.co [University of New England (Australia); Cacho, Oscar J. [School of Business Economics and Public Policy, School of Economics, University of New England, Armidale, NSW 2351 (Australia)

    2011-01-15

    Green Power schemes offer electricity from renewable energy sources to customers for a higher price than ordinary electricity. This study examines the demand characteristics of Green Power in Australia and policies which could increase its sales. A sample of 250 pooled time series and cross sectional observations was used to estimate a statistically significant elasticity of demand for Green Power with respect to price of -0.96 with a 95% confidence interval of {+-}68%. The wide variation in market penetration between jurisdictions and between countries for Green Power, and the low awareness of Green Power found by surveys indicate that Green Power sales could be increased by appropriate marketing and government policies. The most cost effective means to increase sales was found to be advertising campaigns although only one Australian example was found, in the state of Victoria in 2005. It was also found that full tax deductibility of the Green Power premium to residential customers, exemption from the Goods and Services Tax and a tax rebate for Green Power are all probably less cost effective for promoting sales than direct government purchase of Green Power, in terms of cost per unit of increased sales.

  19. Green Power voluntary purchases. Price elasticity and policy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mewton, Ross T. [University of New England (Australia); Cacho, Oscar J. [School of Business Economics and Public Policy, School of Economics, University of New England, Armidale, NSW 2351 (Australia)

    2011-01-15

    Green Power schemes offer electricity from renewable energy sources to customers for a higher price than ordinary electricity. This study examines the demand characteristics of Green Power in Australia and policies which could increase its sales. A sample of 250 pooled time series and cross sectional observations was used to estimate a statistically significant elasticity of demand for Green Power with respect to price of -0.96 with a 95% confidence interval of {+-}68%. The wide variation in market penetration between jurisdictions and between countries for Green Power, and the low awareness of Green Power found by surveys indicate that Green Power sales could be increased by appropriate marketing and government policies. The most cost effective means to increase sales was found to be advertising campaigns although only one Australian example was found, in the state of Victoria in 2005. It was also found that full tax deductibility of the Green Power premium to residential customers, exemption from the Goods and Services Tax and a tax rebate for Green Power are all probably less cost effective for promoting sales than direct government purchase of Green Power, in terms of cost per unit of increased sales. (author)

  20. Elastic buckling analysis of corroded stiffened plates with irregular surfaces

    Indian Academy of Sciences (India)

    Ahmad Rahbar-Ranji

    2015-02-01

    Numerical simulation is used to study the influence of corrosion damage in stiffened plates focusing on elastic buckling strength. Three-dimensional specta are used to simulate geometries of corroded surfaces and finite element method is employed for computing Euler stress of stiffened plates. The influence of corrosion patterns, amount of corrosion loss and roughness of surface are investigated. Ratio of Euler stress of corroded stiffened plate over Euler stress of un-corroded stiffened plate is used to characterize the effects of corrosion on reduction of buckling strength. Results show that reduction of buckling strength is very sensitive to the amount of corrosion loss and roughness of surface, but less sensitive to the location of corroded region. The potential for decrease in buckling strength as a consequence of corrosion is found to depend on the dominant buckling mode. Residual buckling strength is reduced by as much as 12% for the interaction of plate-web-torsional buckling mode, and by 2% for column buckling.

  1. New trends in applied harmonic analysis sparse representations, compressed sensing, and multifractal analysis

    CERN Document Server

    Cabrelli, Carlos; Jaffard, Stephane; Molter, Ursula

    2016-01-01

    This volume is a selection of written notes corresponding to courses taught at the CIMPA School: "New Trends in Applied Harmonic Analysis: Sparse Representations, Compressed Sensing and Multifractal Analysis". New interactions between harmonic analysis and signal and image processing have seen striking development in the last 10 years, and several technological deadlocks have been solved through the resolution of deep theoretical problems in harmonic analysis. New Trends in Applied Harmonic Analysis focuses on two particularly active areas that are representative of such advances: multifractal analysis, and sparse representation and compressed sensing. The contributions are written by leaders in these areas, and covers both theoretical aspects and applications. This work should prove useful not only to PhD students and postdocs in mathematics and signal and image processing, but also to researchers working in related topics.

  2. Refractive elastic scattering of carbon and oxygen nuclei The mean field analysis and Airy structures

    CERN Document Server

    Szilner, S; Basrak, Z; Freeman, R M; Haas, F; Morsad, A; Brandan, M E; Satchler, G R

    2001-01-01

    The experimental data on the $^{16}$O$+^{12}$C and $^{18}$O$+^{12}$C elastic scatterings and their optical model analysis are presented. Detailed and complete elastic angular distributions have been measured at the Strasbourg Vivitron accelerator at several energies covering the energy range between 5 and 10 MeV per nucleon. The elastic scattering angular distributions show the usual diffraction pattern and also, at larger angles, refractive effects in the form of nuclear rainbow and associated Airy structures. The optical model analysis unambiguously shows the evolution of the refractive scattering pattern. The observed structure, namely the Airy minima, can be consistently described by a nucleus-nucleus potential with a deep real part and a weakly absorptive imaginary part. The difference in absorption in the two systems is explained by an increased imaginary (mostly surface) part of the potential in the $^{18}$O$+^{12}$C system. The relation between the obtained potentials and those reported for the symmet...

  3. Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation

    Science.gov (United States)

    Jandaghian, A. A.; Rahmani, O.

    2016-03-01

    In this study, free vibration analysis of magneto-electro-thermo-elastic (METE) nanobeams resting on a Pasternak foundation is investigated based on nonlocal theory and Timoshenko beam theory. Coupling effects between electric, magnetic, mechanical and thermal loading are considered to derive the equations of motion and distribution of electrical potential and magnetic potential along the thickness direction of the METE nanobeam. The governing equations and boundary conditions are obtained using the Hamilton principle and discretized via the differential quadrature method (DQM). Numerical results reveal the effects of the nonlocal parameter, magneto-electro-thermo-mechanical loading, Winkler spring coefficients, Pasternak shear coefficients and height-to-length ratio on the vibration characteristics of METE nanobeams. It is observed that the natural frequency is dependent on the magnetic, electric, temperature, elastic medium, small-scale coefficient, and height-to-length ratio. These results are useful in the mechanical analysis and design of smart nanostructures constructed from magneto-electro-thermo-elastic materials.

  4. EXPERIMENTAL MODAL ANALYSIS OF VISCO-ELASTICALLY DAMPED STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The form of the modal analysis of viscoelastically damped structures is simplified and this simplified form is similar to the form of the modal analysis of linear viscously damped structures. As a result of this simplified form, the experimental modal analysis methods of linear viscously damped structures are applied to the experimental modal analysis of viscoelastically damped structures.

  5. Linear Stability Analysis of Compressible Channel Flow with Porous Walls

    CERN Document Server

    Rahbari, Iman

    2015-01-01

    We have investigated the effects of permeable walls, modeled by linear acoustic impedance with zero reactance, on compressible channel flow via linear stability analysis (LSA). Base flow profiles are taken from impermeable isothermal-wall laminar and turbulent channel flow simulations at bulk Reynolds number, $Re_b$= 6900 and Mach numbers, $M_b$ = 0.2, 0.5, 0.85. For a sufficiently high value of permeability, two dominant modes are excited: a bulk pressure mode, causing symmetric expulsion and suction of mass from the porous walls (Mode 0); a standing-wave-like mode, with a pressure node at the centerline (Mode 1). In the case of turbulent mean flow profiles, both modes generate additional Reynolds shear stresses augmenting the (base) turbulent ones, but concentrated in the viscous sublayer region; the trajectories of the two modes in the complex phase velocity space follow each other very closely for values of wall permeability spanning two orders of magnitude, suggesting their coexistence. The transition fr...

  6. [Chemiluminescence spectroscopic analysis of homogeneous charge compression ignition combustion processes].

    Science.gov (United States)

    Liu, Hai-feng; Yao, Ming-fa; Jin, Chao; Zhang, Peng; Li, Zhe-ming; Zheng, Zun-qing

    2010-10-01

    To study the combustion reaction kinetics of homogeneous charge compression ignition (HCCI) under different port injection strategies and intake temperature conditions, the tests were carried out on a modified single-cylinder optical engine using chemiluminescence spectroscopic analysis. The experimental conditions are keeping the fuel mass constant; fueling the n-heptane; controlling speed at 600 r x min(-1) and inlet pressure at 0.1 MPa; controlling inlet temperature at 95 degrees C and 125 degrees C, respectively. The results of chemiluminescence spectrum show that the chemiluminescence is quite faint during low temperature heat release (LTHR), and these bands spectrum originates from formaldehyde (CH2O) chemiluminescence. During the phase of later LTHR-negative temperature coefficient (NTC)-early high temperature heat release (HTHR), these bands spectrum also originates from formaldehyde (CH2O) chemiluminescence. The CO--O* continuum is strong during HTHR, and radicals such as OH, HCO, CH and CH2O appear superimposed on this CO--O* continuum. After the HTHR, the chemiluminescence intensity is quite faint. In comparison to the start of injection (SOI) of -30 degrees ATDC, the chemiluminescence intensity is higher under the SOI = -300 degrees ATDC condition due to the more intense emissions of CO--O* continuum. And more radicals of HCO and OH are formed, which also indicates a more intense combustion reaction. Similarly, more intense CO--O* continuum and more radicals of HCO and OH are emitted under higher intake temperature case.

  7. Exergy Analysis of the Revolving Vane Compressed Air Engine

    Directory of Open Access Journals (Sweden)

    Alison Subiantoro

    2016-01-01

    Full Text Available Exergy analysis was applied to a revolving vane compressed air engine. The engine had a swept volume of 30 cm3. At the benchmark conditions, the suction pressure was 8 bar, the discharge pressure was 1 bar, and the operating speed was 3,000 rev·min−1. It was found that the engine had a second-law efficiency of 29.6% at the benchmark conditions. The contributors of exergy loss were friction (49%, throttling (38%, heat transfer (12%, and fluid mixing (1%. A parametric study was also conducted. The parameters to be examined were suction reservoir pressure (4 to 12 bar, operating speed (2,400 to 3,600 rev·min−1, and rotational cylinder inertia (0.94 to 2.81 g·mm2. The study found that a higher suction reservoir pressure initially increased the second-law efficiency but then plateaued at about 30%. With a higher operating speed and a higher cylinder inertia, second-law efficiency decreased. As compared to suction pressure and operating speed, cylinder inertia is the most practical and significant to be modified.

  8. THERMODYNAMIC ANALYSIS OF REFRIGERANT MIXTURES IN VAPOR COMPRESSION REFRIGERATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Erol ARCAKLIOĞLU

    2003-02-01

    Full Text Available In this study, performance analysis of vapor-compression refrigeration system with suction/liquid line heat exchanger has been realized with the calculations of the coefficient of performance, and volumetric refrigeration capacity values using different refrigerant mixtures. Refrigerants R12, R22, and R502 of CFCs, R134a, R152a, R125, R143a, and R32 of HFCs, R600a, and R290 of HCs, and their binary, ternary, and mixtures of different mass ratios have been used as working fluids. In order to decrease global pollution due to CFCs in accordance with Montreal Protocol in 1987, it is considered to use the refrigerant mixtures of HFCs, and HCs instead of CFCs (R12, R22, and R502. For this reason, the performance comparison of the new mixtures with CFC refrigerants has been done in the frame of this study. To compare the performance values, constant temperature method has been used. Thermodynamic properties of refrigerants that were used in the performance calculations have been taken from REFPROP 6.01. For this aim, new software has written in FORTRAN programing language using sub-programs of REFPROP, and all related calculations of performance have been achieved by this software.

  9. Stability Analysis for Compliant Constant-Force Compression Mechanisms

    Directory of Open Access Journals (Sweden)

    Ikechukwu Celestine UGWUOKE

    2009-12-01

    Full Text Available Stability analysis in compliant mechanism (CM design is of utmostimportance. From a practical point of view, a CM that is unstable is of nosignificance (has no practical value. Three useful plots were considered in theevaluation of each of the dynamic models of nine configurations of compliantconstant-force compression mechanisms (CCFCMs for their stabilitycharacteristics, which includes the polar plot based on the Routh-Hurwitzstability criterion, the Bode plot, and the Nyquist diagram which considersstability in the real frequency domain. Frequency-domain stability criterion isvery useful for determining suitable approaches to adjusting the CCFCMparameters in order to increase its relative stability. The results obtained showthat the CCFCMs investigated do exhibit higher relative stability for highervalues of damping ratio, and for zero damping ratio, all the CCFCMsinvestigated were unstable. The result also show that for the CCFCMsinvestigated to be stable, damping ratio must be greater than 0.03 (ξ > 0.03and depending on what attributes are most desirable, the CCFCM parameterscan be optimized to achieve the desired results. Nyquist criterion provides uswith suitable information concerning the absolute stability and furthermore,can be utilized to define and ascertain the relative stability of a system.

  10. Finite element stress analysis of a compression mold. Final report. [Using SASL and WILSON codes

    Energy Technology Data Exchange (ETDEWEB)

    Watterson, C.E.

    1980-03-01

    Thermally induced stresses occurring in a compression mold during production molding were evaluated using finite element analysis. A complementary experimental stress analysis, including strain gages and thermocouple arrays, verified the finite element model under typical loading conditions.

  11. ASYMPTOTIC ANALYSIS OF MODE Ⅱ STATIONARY GROWTH CRACK ON ELASTIC-ELASTIC POWER LAW CREEPING BIMATERIAL INTERFACE

    Institute of Scientific and Technical Information of China (English)

    唐立强; 李永东; 刘长海

    2004-01-01

    A mechanical model was established for mode Ⅱ interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and frictional contact, asymptotic solutions of the stress and strain near tip-crack were given. Results derived indicate that the stress and strain have the same singularity, there is not the oscillatory singularity in the field; the creep power-hardening index n and the ratio of Young' s module notably influence the cracktip field in region of elastic power law creeping material and n only influences distribution of stresses and strains in region of elastic material. When n is bigger, the creeping deformation is dominant and stress fields become steady, which does not change with n.Poisson ' s ratio does not affect the distributing of the crack- tip field.

  12. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-04-15

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  13. PERFORMANCE ANALYSIS OF IMAGE COMPRESSION USING FUZZY LOGIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    Rohit Kumar Gangwar

    2014-04-01

    Full Text Available With the increase in demand, product of multimedia is increasing fast and thus contributes to insufficient network bandwidth and memory storage. Therefore image compression is more significant for reducing data redundancy for save more memory and transmission bandwidth. An efficient compression technique has been proposed which combines fuzzy logic with that of Huffman coding. While normalizing image pixel, each value of pixel image belonging to that image foreground are characterized and interpreted. The image is sub divided into pixel which is then characterized by a pair of set of approximation. Here encoding represent Huffman code which is statistically independent to produce more efficient code for compression and decoding represents rough fuzzy logic which is used to rebuilt the pixel of image. The method used here are rough fuzzy logic with Huffman coding algorithm (RFHA. Here comparison of different compression techniques with Huffman coding is done and fuzzy logic is applied on the Huffman reconstructed image. Result shows that high compression rates are achieved and visually negligible difference between compressed images and original images.

  14. CMOS Image Sensor with On-Chip Image Compression: A Review and Performance Analysis

    Directory of Open Access Journals (Sweden)

    Milin Zhang

    2010-01-01

    Full Text Available Demand for high-resolution, low-power sensing devices with integrated image processing capabilities, especially compression capability, is increasing. CMOS technology enables the integration of image sensing and image processing, making it possible to improve the overall system performance. This paper reviews the current state of the art in CMOS image sensors featuring on-chip image compression. Firstly, typical sensing systems consisting of separate image-capturing unit and image-compression processing unit are reviewed, followed by systems that integrate focal-plane compression. The paper also provides a thorough review of a new design paradigm, in which image compression is performed during the image-capture phase prior to storage, referred to as compressive acquisition. High-performance sensor systems reported in recent years are also introduced. Performance analysis and comparison of the reported designs using different design paradigm are presented at the end.

  15. New measurements and phase shift analysis of p16O elastic scattering at astrophysical energies

    Science.gov (United States)

    Dubovichenko, Sergey; Burtebayev, Nassurlla; Dzhazairov-Kakhramanov, Albert; Zazulin, Denis; Kerimkulov, Zhambul; Nassurlla, Marzhan; Omarov, Chingis; Tkachenko, Alesya; Shmygaleva, Tatyana; Kliczewski, Stanislaw; Sadykov, Turlan

    2017-01-01

    The results of new experimental measurements of p16O elastic scattering in the energy range of 0.6-1.0 MeV at angles of 40°-160° are given. Phase shift analysis of p16O elastic scattering was made using these and other experimental data on differential cross sections in excitation functions and angular distributions at energies of up to 2.5 MeV. Supported by the Ministry of Education and Science of the Republic of Kazakhstan (0073/PCF-IS-MES)

  16. ELATE: an open-source online application for analysis and visualization of elastic tensors.

    Science.gov (United States)

    Gaillac, Romain; Pullumbi, Pluton; Coudert, François-Xavier

    2016-07-13

    We report on the implementation of a tool for the analysis of second-order elastic stiffness tensors, provided with both an open-source Python module and a standalone online application allowing the visualization of anisotropic mechanical properties. After describing the software features, how we compute the conventional elastic constants and how we represent them graphically, we explain our technical choices for the implementation. In particular, we focus on why a Python module is used to generate the HTML web page with embedded Javascript for dynamical plots.

  17. ELATE: an open-source online application for analysis and visualization of elastic tensors

    Science.gov (United States)

    Gaillac, Romain; Pullumbi, Pluton; Coudert, François-Xavier

    2016-07-01

    We report on the implementation of a tool for the analysis of second-order elastic stiffness tensors, provided with both an open-source Python module and a standalone online application allowing the visualization of anisotropic mechanical properties. After describing the software features, how we compute the conventional elastic constants and how we represent them graphically, we explain our technical choices for the implementation. In particular, we focus on why a Python module is used to generate the HTML web page with embedded Javascript for dynamical plots.

  18. PARAMETRIC VARIATIONAL PRINCIPLE BASED ELASTIC-PLASTIC ANALYSIS OF COSSERAT CONTINUUM

    Institute of Scientific and Technical Information of China (English)

    Zhang Hongwu; Wang Hui; Chen Biaosong; Xie Zhaoqian

    2007-01-01

    A new algorithm is developed based on the parametric variational principle for elastic-plastic analysis of Cosserat continuum. The governing equations of the classic elastic-plastic problem are regularized by adding rotational degrees of freedom to the conventional translational degrees of freedom in conventional continuum mechanics. The parametric potential energy principle of the Cosserat theory is developed, from which the finite element formulation of the Cosserat theory and the corresponding parametric quadratic programming model are constructed. Strain localization problems are computed and the mesh independent results are obtained.

  19. METHOD OF MODEL ANALYSIS FOR FLEXIBLE HEAD IMPACTING WITH ELASTIC PLANE

    Institute of Scientific and Technical Information of China (English)

    赵桂范; 谭惠丰; 杜星文

    2003-01-01

    To consider the head is a flexible multi-layer structure and the contact-impact is flexible, the Hertz Contact Law is unsuitable for analyzing the dynamic response of human head impacts elastic plane with initial speed. In this paper, the process of head impacting with elastic plane is modeled as a response of vibrant system, and methods like mechanical network figure and mechanical impedance is taken to resolve this dynamic response problem. Based on the actual head structure, head is modeled as a vibrant model, which concludes the masses of scalp and bone in the impact area, the masses in the other part of the head and the brain, the stiffness of the head, and the damp coefficient of the scalp and brain. At the same time, the elastic plane is simplified as a vibrant model including mass, stiffness and damp. These two vibrant models are linked into one vibrant systematic model. In order to calculate the elastic deformation and the impact acceleration of the head, the models are transformed into mechanical girding figure at violent vibration point. The dynamic impact force of the system, the impact acceleration of the head, the elastic deformation of the plane and the fixed frequency of the system can be worked out by calculating the velocity impedance at the violent vibration point when the initial impact speed is known. The results fit the test data well, which proves that this method is available for the analysis of the dynamic response of the system under impact.

  20. Towards an Aero-Propulso-Servo-Elasticity Analysis of a Commercial Supersonic Transport

    Science.gov (United States)

    Connolly, Joseph W.; Kopasakis, George; Chwalowski, Pawel; Sanetrik, Mark D.; Carlson, Jan-Renee; Silva, Walt A.; McNamara, Jack

    2016-01-01

    This paper covers the development of an aero-propulso-servo-elastic (APSE) model using computational fluid dynamics (CFD) and linear structural deformations. The APSE model provides the integration of the following two previously developed nonlinear dynamic simulations: a variable cycle turbofan engine and an elastic supersonic commercial transport vehicle. The primary focus of this study is to provide a means to include relevant dynamics of a turbomachinery propulsion system into the aeroelastic studies conducted during a vehicle design, which have historically neglected propulsion effects. A high fidelity CFD tool is used here for the integration platform. The elastic vehicle neglecting the propulsion system serves as a comparison of traditional approaches to the APSE results. An overview of the methodology is presented for integrating the propulsion system and elastic vehicle. Static aeroelastic analysis comparisons between the traditional and developed APSE models for a wing tip detection indicate that the propulsion system impact on the vehicle elastic response could increase the detection by approximately ten percent.

  1. Finite element analysis of 3D elastic-plastic frictional contact problem for Cosserat materials

    Science.gov (United States)

    Zhang, S.; Xie, Z. Q.; Chen, B. S.; Zhang, H. W.

    2013-06-01

    The objective of this paper is to develop a finite element model for 3D elastic-plastic frictional contact problem of Cosserat materials. Because 3D elastic-plastic frictional contact problems belong to the unspecified boundary problems with nonlinearities in both material and geometric forms, a large number of calculations are needed to obtain numerical results with high accuracy. Based on the parametric variational principle and the corresponding quadratic programming method for numerical simulation of frictional contact problems, a finite element model is developed for 3D elastic-plastic frictional contact analysis of Cosserat materials. The problems are finally reduced to linear complementarity problems (LCP). Numerical examples show the feasibility and importance of the developed model for analyzing the contact problems of structures with materials which have micro-polar characteristics.

  2. Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm

    Directory of Open Access Journals (Sweden)

    Hyoungsuk Lee

    2014-09-01

    Full Text Available A reliable steady/transient hydro-elastic analysis is developed for flexible (composite marine propeller blade design which deforms according to its environmental load (ship speed, revolution speed, wake distribution, etc. Hydro-elastic analysis based on CFD and FEM has been widely used in the engineering field because of its accurate results however it takes large computation time to apply early propeller design stage. Therefore the analysis based on a boundary element method-Finite Element Method (BEM-FEM Fluid-Structure Interaction (FSI is introduced for computational efficiency and accuracy. The steady FSI analysis, and its application to reverse engineering, is designed for use regarding optimum geometry and ply stack design. A time domain two-way coupled transient FSI analysis is developed by considering the hydrodynamic damping ffects of added mass due to fluid around the propeller blade. The analysis makes possible to evaluate blade strength and also enable to do risk assessment by estimating the change in performance and the deformation depending on blade position in the ship's wake. To validate this hydro-elastic analysis methodology, published model test results of P5479 and P5475 are applied to verify the steady and the transient FSI analysis, respectively. As the results, the proposed steady and unsteady analysis methodology gives sufficient accuracy to apply flexible marine propeller design.

  3. The elastic dynamics analysis of band saw tightening system

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the node movement analysis of the levers of band saw tightening system is developed. A group of theoretical displacement and distortion equations of levers are presented using the Lagrange's equation. This could be the basis for the future research in the field of band saw's tightening system dynamics analysis.

  4. Elastic multiple-mass model for rotordynamic analysis of flexible electrical rotors

    Energy Technology Data Exchange (ETDEWEB)

    Werner, U. [Siemens AG, Nuernberg (Germany). Industry, Drive Technologies, Large Drives, Products R and D

    2011-12-15

    The paper presents an elastic multiple-mass model for rotordynamic analysis of flexible electrical rotors supported in sleeve bearings, considering mechanical unbalances and electromagnetic forces. This model has been especially developed for flexible electrical rotors, which operate near below or near above the first critical bending speed of the rotor. Using this simplified model, a static rotor active part eccentricity can be simulated and the orbital movement of the rotor can be calculated. Additionally, the influence of different balancing concepts - elastic balancing versus rigid balancing - on the shaft vibrations is analyzed. To verify the model, a finite element analysis was performed, which indicates a satisfactory match. On the one hand, the aim of the paper is to derive an elastic multiple-mass model for rotordynamic analysis of flexible electrical rotors for special boundary conditions. On the other hand, the aim is to show the mathematical coherences - based on a simplified model - between the rotordynamics, the oil film characteristics of the sleeve bearings, the elasticity of the rotor structure, the electromagnetics and the balancing concept. (orig.)

  5. Using general-purpose compression algorithms for music analysis

    DEFF Research Database (Denmark)

    Louboutin, Corentin; Meredith, David

    2016-01-01

    General-purpose compression algorithms encode files as dictionaries of substrings with the positions of these strings’ occurrences. We hypothesized that such algorithms could be used for pattern discovery in music. We compared LZ77, LZ78, Burrows–Wheeler and COSIATEC on classifying folk song...... melodies. A novel method was used, combining multiple viewpoints, the k-nearest-neighbour algorithm and a novel distance metric, corpus compression distance. Using single viewpoints, COSIATEC outperformed the general-purpose compressors, with a classification success rate of 85% on this task. However...... in the input data, COSIATEC outperformed LZ77 with a mean F1 score of 0.123, compared with 0.053 for LZ77. However, when the music was processed a voice at a time, the F1 score for LZ77 more than doubled to 0.124. We also discovered a significant correlation between compression factor and F1 score for all...

  6. Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2016-10-01

    In this article, a nonlocal four-variable refined plate theory is developed to examine the buckling behavior of nanoplates made of magneto-electro-elastic functionally graded (MEE-FG) materials resting on Winkler-Pasternak foundation. Material properties of nanoplate change in spatial coordinate based on power-law distribution. The nonlocal governing equations are deduced by employing the Hamilton principle. For various boundary conditions, the analytical solutions of nonlocal MEE-FG plates for buckling problem will be obtained based on an exact solution approach. Finally, dependency of buckling response of MEE-FG nanoplate on elastic foundation parameters, magnetic potential, external electric voltage, various boundary conditions, small scale parameter, power-law index, plate side-to-thickness ratio and aspect ratio will be figure out. These results can be advantageous for the mechanical analysis and design of intelligent nanoscale structures constructed from magneto-electro-thermo-elastic functionally graded materials.

  7. Development of a rapid matrix digestion technique for ultrastructural analysis of elastic fibers in the intervertebral disc.

    Science.gov (United States)

    Tavakoli, Javad; Costi, John J

    2017-07-01

    Collagen and elastic fibers are two major fibrous constituents of the annulus fibrosus (AF) in the disc that contribute to its mechanical and viscoelastic properties. It was thought that elastic fibers play no substantial role in the function and properties of the disc as these fibers were irregularly distributed. Studies that have revealed highly organized elastic fibers with different regional orientation and distribution, while being strongly crosslinked with matrix, suggesting their contribution to disc structure-function properties. These studies that were performed by light microscopic analysis of histologically prepared samples, have not been able to reveal the fine-scale architectural details of the elastic fiber network. Since elastic fibers are intermingled with other fibrous components of the disc and mostly obscured by the extracellular matrix, it is difficult to demonstrate their ultra-structural organization using scanning electron microscopy (SEM). Therefore the aim of this study was to develop a rapid matrix digestion technique for ultrastructural analysis of the disc elastic fibers. This study provides a new method for fundamental visualization of elastic fibers and their architecture in the disc. Through the ultra-structural analysis, the relationship between structure and function, as well as the role of elastic fibers on AF mechanical properties can be studied. This method may be used to develop a three-dimensional map of elastic fibers distribution within the disc, which would provide valuable information for designing tissue engineered scaffolds for AF repair and replacement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Ensemble analysis of adaptive compressed genome sequencing strategies

    Science.gov (United States)

    2014-01-01

    Background Acquiring genomes at single-cell resolution has many applications such as in the study of microbiota. However, deep sequencing and assembly of all of millions of cells in a sample is prohibitively costly. A property that can come to rescue is that deep sequencing of every cell should not be necessary to capture all distinct genomes, as the majority of cells are biological replicates. Biologically important samples are often sparse in that sense. In this paper, we propose an adaptive compressed method, also known as distilled sensing, to capture all distinct genomes in a sparse microbial community with reduced sequencing effort. As opposed to group testing in which the number of distinct events is often constant and sparsity is equivalent to rarity of an event, sparsity in our case means scarcity of distinct events in comparison to the data size. Previously, we introduced the problem and proposed a distilled sensing solution based on the breadth first search strategy. We simulated the whole process which constrained our ability to study the behavior of the algorithm for the entire ensemble due to its computational intensity. Results In this paper, we modify our previous breadth first search strategy and introduce the depth first search strategy. Instead of simulating the entire process, which is intractable for a large number of experiments, we provide a dynamic programming algorithm to analyze the behavior of the method for the entire ensemble. The ensemble analysis algorithm recursively calculates the probability of capturing every distinct genome and also the expected total sequenced nucleotides for a given population profile. Our results suggest that the expected total sequenced nucleotides grows proportional to log of the number of cells and proportional linearly with the number of distinct genomes. The probability of missing a genome depends on its abundance and the ratio of its size over the maximum genome size in the sample. The modified resource

  9. NUMERICAL SIMULATION AND ANALYSIS ON THE HEMODYNAMICS OF AN ELASTIC ANEURYSM

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jun-wei; YIN Wen-yi; DING Guang-hong; YANG Xin-jian; SHI Wan-chao; ZHANG Xiao-long

    2008-01-01

    Intracranial aneurysms are pathological dilatations which endanger people's health. Hemodynamics is thought to be an important factor in the pathogenesis and treatment of aneurysms. To date, the bulk of investigations into hemodynamics have been conducted by making use of mathematically idealized models for rigid aneurysms and associated arteries. However the walls of aneurysms and associated arteries are elastic in vivo. This study shows the differences of the simulation between elastic and rigid wall models. The numerical simulation of elastic aneurysm model is made from a representative Digital Subtraction Angiography (DSA) image and calculated with CFD software to get the wall deformation and the velocity field. Then the results are analyzed. By comparing the simulation results of the two models from their velocity vectors and shear stress distribution, many differences can be noted. The main difference exists in the distribution of velocity magnitude at some sections, with one outlet having obviously off-center distribution for the elastic wall model. The currents of the distribution of wall shear stress along the wall of aneurysm simulated in rigid and elastic wall models were similar. But there were apparent differences between the two models on the values of wall shear stress especially at the neck of aneurysm. The off-center distribution of velocity magnitude affects the distribution of wall shear stress and the exchange of substance through the wall. The analysis demonstrated clearly that the results of 2-D elastic numerical simulation were in good agreement with the clinical and pathological practice. The results of this study play an important role in the formation, growth, rupture and prognosis of an aneurysm on clinic application.

  10. comparative analysis of the compressive strength of concrete with ...

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... in compression than in tension, for structures required to carry only ... properties determine the quality of concrete [1]. Concrete is one of the .... strength concrete made with crushed brick as coarse aggregate and ... aggregates that have been produced from demolition and construction waste. According to ...

  11. Design and analysis of compressed sensing radar detectors

    NARCIS (Netherlands)

    Anitori, L.; Maleki, A.; Otten, M.P.G.; Baraniuk, R.G.; Hoogeboom, P.

    2013-01-01

    We consider the problem of target detection from a set of Compressed Sensing (CS) radar measurements corrupted by additive white Gaussian noise. We propose two novel architectures and compare their performance by means of Receiver Operating Characteristic (ROC) curves. Using asymptotic arguments and

  12. Elasticity, shear strength, and equation of state of molybdenum and gold from x-ray diffraction under nonhydrostatic compression to 24 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Thomas S. [Department of Geosciences, Princeton University, Princeton, New Jersey 08544 (United States); Shen, Guoyin [Consortium for Advanced Radiation Sources, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 (United States); Shu, Jinfu [Geophysical Laboratory and Center for High-Pressure Research, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015 (United States); Mao, Ho-Kwang [Geophysical Laboratory and Center for High-Pressure Research, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015 (United States); Hemley, Russell J. [Geophysical Laboratory and Center for High-Pressure Research, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015 (United States); Singh, Anil K. [Materials Science Division, National Aerospace Laboratories, Bangalore 5600 17, (India)

    1999-12-15

    Lattice strains were measured as a function of the angle {psi} between the diffracting plane normal and the stress axis of a diamond anvil cell in a layered sample of molybdenum and gold. The sample was compressed over the range 5-24 GPa and the lattice strains were measured using energy-dispersive x-ray diffraction. As {psi} is varied from 0 degree sign to 90 degree sign , the mean lattice parameter of molybdenum increases by up to 1.2% and that of gold increases by up to 0.7%. A linear relationship between Q(hkl), which is related to the slope of the measured d spacing versus 1-3 cos{sup 2} {psi} relation, and 3{gamma}(hkl), a function of the Miller indices of the diffracting plane, is observed for both materials as predicted by theory. The pressure dependence of the uniaxial stress t for gold from this and other recent studies is given by t=0.06+0.015P, where P is the pressure in GPa. The uniaxial stress in molybdenum can be described by t=0.46+0.13P. Using gold as an internal pressure standard, the equation of state of molybdenum depends strongly on {psi}. The bulk modulus obtained from a Birch-Murnaghan fit varies from 210 to 348 GPa as {psi} varies from 0 degree sign to 90 degree sign . However, an equation of state in good agreement with shock and ultrasonic isotherms is obtained for {psi}=54.7 degree sign where the deviatoric contribution to the lattice strain vanishes. Second-order elastic moduli for gold and molybdenum are obtained from the data. The results are generally consistent with an earlier x-ray study and with extrapolations of low-pressure ultrasonic data. The pressure dependence of the shear modulus C{sub 44} is smaller for the x-ray data than predicted by extrapolation of ultrasonic data. (c) 1999 American Institute of Physics.

  13. [Thermo-elastic stress analysis of human bones].

    Science.gov (United States)

    Krüger-Franke, M; Heiland, A; Plitz, W; Refior, H J

    1995-01-01

    The Thermoelastic Stress Analysis (THESA) is a widely used procedure in motorcar- and airplane engineering. This study investigated the reliability of THESA for stress analysis of human bone. A human femur was cyclic stressed and the resulting stress pattern was scanned from the surface of the bone by means of the thermoelastic stress measuring instrument SPATE 9000. To proof whether the scan of SPATE 9000 is equivalent to the stress distribution of human femur surface, strain gauges are used to control the results at two different regions of the femur diaphysis under equal but static conditions. It could be shown, that both measuring methods lead to corresponding results of stress pattern on human femur surface.

  14. ALFA detector, Background removal and analysis for elastic events

    CERN Document Server

    Belaloui, Nazim

    2017-01-01

    I worked on the ALFA project, which has the aim to measure the total cross section in PP collisions as a function of t, the momentum transfer by measuring the scattering angle of the protons. This measurement is done for all available energies; so far 7, 8 and 13 TeV. There are many analysis steps and we have focused on enhancing the signal-to-noise ratio. First of all I tried to be more familiar with ROOT, worked on understanding the code used to access to the data, plotting histograms, then cutting-off background.

  15. Analysis of Extruded Polystyrene Short-Term Compression Dependence on Exposure Time

    Directory of Open Access Journals (Sweden)

    Saulius VAITKUS

    2013-12-01

    Full Text Available Extruded polystyrene is extensively used in many applications such as thermal insulation, packaging, structural use and buoyancy. In order to an effective use of this material it is essential to know its behavior under compression. The research in this work was carried out by using extruded polystyrene boards (F200, F300, F400, F500 and F700 which were produced by Lithuanian and Finland manufacturers. The changes of extruded polystyrene ultimate compressive stress σcr, ultimate strain, initial modulus of elasticity and thickness were determined right away after production and after a certain exposure time of specimens. It was noticed significant changes in strength characteristics after 45 days. Compression tests and conditioning of specimens were conducted at 23 °C ±2 °C ambient temperature and 50 % ±5 % relative humidity. Regression dependences of ultimate compressive stress σcr and ultimate strain on exposure time (from 10 to 326 days were presented. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2582

  16. Multimedia Web Services Performance: Analysis and Quantification of Binary Data Compression

    Directory of Open Access Journals (Sweden)

    Amer Mohammed Al-Canaan

    2011-10-01

    Full Text Available Multimedia Web services constitute a considerable load on Internet bandwidth and on Web servers. With the increasing demand of multimedia Web services, the need to maintain a respectable QoS is a major concern for multimedia Web services’ providers. Binary data compression, lossy and lossless, increases performance gain and maintains QoS, at large and small-scale implementations. At the expense of increased CPU processing time, data compression provides a reliable solution to sustain QoS parameters such as response time, download time and server delay where bandwidth is limited.This paper presents a detailed analysis, which is based upon realistic and representative data, in order to quantify the performance gain for multimedia Web services due to the application of binary image compression. To provide data for our analysis method, we have built an image-retrieval Web service that provides a set of images in both compressed and non-compressed form. The work in this paper promotes the utilisation of multimedia compression techniques and proposes the integration of multimedia compression techniques in current Web standards such as HTTP.The analysis method and results can be extended and adapted to various service and network models, such as wireless LAN, Ad-Hoc, mobile networks, IP-telephony and distributed systems.

  17. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

    Science.gov (United States)

    Hocking, Erica G.; Wereley, Norman M.

    2013-01-01

    Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30-80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible.

  18. Dynamical Analysis of Long Fiber-Reinforced Laminated Plates with Elastically Restrained Edges

    Directory of Open Access Journals (Sweden)

    Liz G. Nallim

    2012-01-01

    Full Text Available This paper presents a variational formulation for the free vibration analysis of unsymmetrically laminated composite plates with elastically restrained edges. The study includes a micromechanics approach that allows starting the study considering each layer as constituted by long unidirectional fibers in a continuous matrix. The Mori-Tanaka method is used to predict the mechanical properties of each lamina as a function of the elastic properties of the components and of the fiber volume fraction. The resulting mechanical properties for each lamina are included in a general Ritz formulation developed to analyze the free vibration response of thick laminated anisotropic plates resting on elastic supports. Comprehensive numerical examples are computed to validate the present method, and the effects of the different mechanical and geometrical parameters on the dynamical behavior of different laminated plates are shown. New results for general unsymmetrical laminates with elastically restrained edges are also presented. The analytical approximate solution obtained in this paper can also be useful as a basis to deal with optimization problems under, for instance, frequency constraints.

  19. Crystal Plasticity Analysis on Compressive Loading of Magnesium with Suppression of Twinning

    Science.gov (United States)

    Mayama, Tsuyoshi; Ohashi, Tetsuya; Higashida, Kenji; Kawamura, Yoshihito

    The compressive loading behavior of single crystals and bicrystals of magnesium without consideration of deformation twinning has been investigated by crystal plasticity finite element analysis with the aim of fundamental understanding of kink band formation in magnesium alloys with long period stacking ordered structure (LPSO) phase. The basal plane of the single crystal model is set to be parallel to the compressive direction. The result of the compressive loading analysis of single crystals indicates the significant influence of suppression of twinning on the activation of nonbasal slip systems and stress-strain behavior. The compressive analysis of symmetric bicrystal is also performed to clarify the influence of the angle between basal plane and the loading axis. The influence of the introduction of grain boundary and the slight change of crystal orientation is discussed in terms of activated deformation modes.

  20. Statistical mechanics analysis of thresholding 1-bit compressed sensing

    CERN Document Server

    Xu, Yingying

    2016-01-01

    The one-bit compressed sensing framework aims to reconstruct a sparse signal by only using the sign information of its linear measurements. To compensate for the loss of scale information, past studies in the area have proposed recovering the signal by imposing an additional constraint on the L2-norm of the signal. Recently, an alternative strategy that captures scale information by introducing a threshold parameter to the quantization process was advanced. In this paper, we analyze the typical behavior of the thresholding 1-bit compressed sensing utilizing the replica method of statistical mechanics, so as to gain an insight for properly setting the threshold value. Our result shows that, fixing the threshold at a constant value yields better performance than varying it randomly when the constant is optimally tuned, statistically. Unfortunately, the optimal threshold value depends on the statistical properties of the target signal, which may not be known in advance. In order to handle this inconvenience, we ...

  1. Adaptive Multi-rate Compression Effects on Vowel Analysis

    Directory of Open Access Journals (Sweden)

    David eIreland

    2015-08-01

    Full Text Available Signal processing on digitally sampled vowel sounds for the detection of pathological voices has been firmly established. This work examines compression artefacts on vowel speech samples that have been compressed using the adaptive multi-rate codec at various bit-rates. Whereas previous work has used the sensitivity of machine learning algorithm to test for accuracy, this work examines the changes in the extracted speech features themselves and thus report new findings on the usefulness of a particular feature. We believe this work will have potential impact for future research on remote monitoring as the identification and exclusion of a ill-defined speech feature that has been hitherto used, will ultimately increase the robustness of the system.

  2. Adaptive Multi-Rate Compression Effects on Vowel Analysis.

    Science.gov (United States)

    Ireland, David; Knuepffer, Christina; McBride, Simon J

    2015-01-01

    Signal processing on digitally sampled vowel sounds for the detection of pathological voices has been firmly established. This work examines compression artifacts on vowel speech samples that have been compressed using the adaptive multi-rate codec at various bit-rates. Whereas previous work has used the sensitivity of machine learning algorithm to test for accuracy, this work examines the changes in the extracted speech features themselves and thus report new findings on the usefulness of a particular feature. We believe this work will have potential impact for future research on remote monitoring as the identification and exclusion of an ill-defined speech feature that has been hitherto used, will ultimately increase the robustness of the system.

  3. Discontinuous Galerkin method analysis and applications to compressible flow

    CERN Document Server

    Dolejší, Vít

    2015-01-01

    The subject of the book is the mathematical theory of the discontinuous Galerkin method (DGM), which is a relatively new technique for the numerical solution of partial differential equations. The book is concerned with the DGM developed for elliptic and parabolic equations and its applications to the numerical simulation of compressible flow. It deals with the theoretical as well as practical aspects of the DGM and treats the basic concepts and ideas of the DGM, as well as the latest significant findings and achievements in this area. The main benefit for readers and the book’s uniqueness lie in the fact that it is sufficiently detailed, extensive and mathematically precise, while at the same time providing a comprehensible guide through a wide spectrum of discontinuous Galerkin techniques and a survey of the latest efficient, accurate and robust discontinuous Galerkin schemes for the solution of compressible flow.

  4. Stress analysis of single joint rock mass under triaxial compression

    Institute of Scientific and Technical Information of China (English)

    LIU Xin-rong(刘新荣); JIANG Shu-ping(蒋树屏); LI Xiao-hong(李晓红); BAO Tai(包太)

    2004-01-01

    Based on the fundamental principle of rock mechanics, the stresses of single joint rock mass under three-dimensional compression were analyzed. The effect of the intermediate principle stress on the strength of single joint rock mass were discussed in particular. It is found that the strength of single joint rock are affected by the intermediate principal stress, which may be the main factor in some conditions.

  5. Parametric Analysis of Composite Reinforced Wood Tubes Under Axial Compression

    OpenAIRE

    Cabrero, J.; Heiduschke, A.; Haller, P. (P.)

    2010-01-01

    Wood tubes combine economy, an efficient use of the material and optimal structural performance. They can be optionally reinforced with technical fibers and/or textiles laminated to the outer wood surface. The paper presents the outcomes of a parametric study on the performance of wood reinforced tubes submitted to axial compression. Simple analytical models were applied to estimate the load-carrying capacity of the tubes and their failure mechanisms. Analytical and numerical models were deve...

  6. Mathematical Theory of Compressible Viscous Fluids: Analysis and Numerics

    OpenAIRE

    Feireisl, E. (Eduard); Karper, T.; Pokorný, M.

    2016-01-01

    This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring...

  7. Vapour and air bubble collapse analysis in viscous compressible water

    Directory of Open Access Journals (Sweden)

    Gil Bazanini

    2001-01-01

    Full Text Available Numerical simulations of the collapse of bubbles (or cavities are shown, using the finite difference method, taking into account the compressibility of the liquid, expected to occur in the final stages of the collapse process. Results are compared with experimental and theoretical data for incompressible liquids, to see the influence of the compressibility of the water in the bubble collapse. Pressure fields values are calculated in an area of 800 x 800 mm, for the case of one bubble under the hypothesis of spherical symmetry. Results are shown as radius versus time curves for the collapse (to compare collapse times, and pressure curves in the plane, for pressure fields. Such calculations are new because of their general point of view, since the existing works do not take into account the existence of vapour in the bubble, neither show the pressure fields seen here. It is also expected to see the influence of the compressibility of the water in the collapse time, and in the pressure field, when comparing pressure values.

  8. Clinical Application of Lower Limbs Venography under Compression by Elastic Bandage%弹性绷带加压下肢静脉造影的应用体会

    Institute of Scientific and Technical Information of China (English)

    许少睿; 苏浩波; 楼文胜

    2012-01-01

    目的 评估使用弹性绷带加压包裹压迫下肢曲张静脉后行下肢静脉造影的临床应用价值.方法 对66例重度下肢静脉曲张患者,先后使用止血带束扎踝上浅静脉和弹性绷带包裹压迫下肢浅静脉曲张部位,再进行顺行性下肢深静脉的造影.结果 造影结果 显示,使用止血带束扎浅静脉后进行顺行造影中,52例深静脉显示欠佳;再使用弹性绷带包裹压迫后顺行造影,深静脉显影清晰40例,深静脉显示欠佳12例.结论 在重度下肢静脉曲张患者中,使用弹性绷带加压包裹压迫下肢曲张静脉部位后进行下肢顺行静脉造影,有助于下肢深静脉显示.%Objective To investigate the value and advantage of elastic bandage compressing varicose veins in lower limbs venography. Methods In 66 patients with severe varicose veins, antegrade venography was performed with a tournignet banding above the ankle at first, and with both tourniquet banding above the ankle and elastic bandage wrapped compressing the varicose vein again. Results The imaging results of 52 cases of deep vein who used tourniquet banding superficial vein and received antegrade venography were poor, while the imaging results of 40 cases who used compression elastic bandage and received antegrade venography were good, 12 cases were still poor. Conclusion In patients with severe varicose veins, using elastic bandage wrapped compression varicose vein parts of the lower limbs venography is conductive to the display of deep vein of lower limbs.

  9. 模拟微可压粘弹性流体的WCCBS_SU方法%A WCCBS_SU method for solving weakly compressible visco-elastic flow problems

    Institute of Scientific and Technical Information of China (English)

    栗雪娟; 欧阳洁; 蒋涛; 张小华

    2011-01-01

    A WCCBS_SU method based on Oldroyd-B constitutive model is developed for solving the weakly compressible visco-elastic flow problems.The planar Poiseuille visco-elastic flow and the 4:1 contraction visco-elastic flow are simulated by WCCBS_SU method under weakly compressible condition.Comparisons between the numerical and analytic solutions for the Poiseuille flow show high accuracy and better stability of the method.In the simulation of the 4:1 contraction visco-elastic flow,the changes of the stream lines and stresses and growing of the lip vortex and salient corner vortex versus the Weissenberg numbers are discussed.All the numerical results show that WCCBS_SU method developed in this paper is valid for the weakly compressible visco-elastic flow problems.%针对微可压缩粘弹性流动问题,发展了微可压缩流的WCCBS方法,详细推导了基于Oldroyd-B本构模型的WCCBS_SU方法的求解过程。在流场微可压的条件下,分别对平面Poiseuille流和4:1粘弹性收缩流进行了数值模拟。Poiseuille流在不同We数下数值结果与解析解的比较,验证了本文方法具有较高的精度和较好的稳定性。在4:1粘弹性收缩流的数值模拟中,讨论了不同We数下流场中流线、应力的变化情况,以及唇涡和凸角涡的生长情况。所有数值结果表明,对于微可压缩粘弹性流的数值模拟,WCCBS_SU方法是

  10. Analysis of the DENZ04 low-energy $\\pi^\\pm p$ elastic-scattering data

    CERN Document Server

    Matsinos, Evangelos

    2012-01-01

    This paper presents the results of an analysis of the DENZ04 low-energy $\\pi^\\pm p$ differential cross sections. We first analysed separately the $\\pi^+ p$ and the $\\pi^- p$ elastic-scattering measurements on the basis of standard low-energy expansions of the s- and p-wave $K$-matrix elements. After the removal of the outliers (eleven degrees of freedom in the initial database), we subjected the truncated $\\pi^\\pm p$ elastic-scattering databases into a common optimisation scheme using the ETH model; the optimisation failed to produce reasonable values for the model parameters. The phase-shift solution, extracted from the model fit to the data, is very odd. The problems we have encountered in the analysis of the DENZ04 data are due to the shape of the angular distributions of their $\\pi^+ p$ differential cross sections.

  11. Finite Element Analysis of Flat Spiral Spring on Mechanical Elastic Energy Storage Technology

    Directory of Open Access Journals (Sweden)

    Jingqiu Tang

    2014-02-01

    Full Text Available Energy storage technology has become an effective way of storing energy and improving power output controllability in modern power grid. The mechanical elastic energy storage technology on flat spiral spring is a new energy storage technology. This study states the mechanical elastic energy storage technology, models the mechanical model. Aimed to three kinds of structure and size of flat spiral spring, the finite element model are modeled, modal analysis is completed and the natural frequencies and the first 10-order vibration modes of the spring are analyzed, the relationship of natural frequency and vibration mode of spiral spring and structure and size is analyzed. The research results can provide the reference for the structure design and dynamics analysis.

  12. On the bifurcation and postbifurcation analysis of elastic-plastic solids under general prebifurcation conditions

    Science.gov (United States)

    Triantafyllidis, N.

    IN THIS work we have studied the bifurcation and postbifurcation of elastic-plastic solids whose behavior near the critical point could not be idealized as hypoelastic and thus the "hypoelastic comparison solid" concept of R. Hill's theory is no longer applicable. First a simple continuous model is considered in order to illustrate the different possibilities in the stability behavior of the structures considered here. Next, a general three-dimensional stability analysis for a broad class of rate independent elastic-plastic solids is presented. It is found that for all the constitutive theories considered and for all possible prebifurcation solutions, the bifurcation functional is a simple generalization of Hill's. A completely different postbifurcation analysis is needed, however, in the case where the "hypoelastic comparison solid" concept cannot be used.

  13. 应用负压引流结合区域弹性加压包扎术预防腮腺术后涎瘘的临床研究%Use of negative pressure drainage combined with regional elastic compression dressing in preventing postoperative salivary fistula

    Institute of Scientific and Technical Information of China (English)

    董希银; 张文忠; 朱学芬; 杨雯君

    2016-01-01

    Objective To study the application value of negative pressure drainage in combination with regional elastic compression dressing in parotid gland operation, and to explore the factors related to salivary fistula after parotidectomy. Method 200 cases of pa⁃tients with benign parotid tumors who needed operation treatment were randomly divided into 2 groups:100 cases were treated with neg⁃ative pressure drainage combined with regional elastic compression dressing in the parotid gland area, and 100 cases were treated with traditional bandage. The incidence of postoperative salivary fistula, and the possible factors leading to salivary fistula during and after the operation were analyzed. Statistical analysis was made by SPSS16.0 software package. Results The incident of salivary fistula in the group using negative pressure drainage combined with regional elastic compression dressing ( 2%) was significantly lower than that in the group using traditional bandage ( 12%) , and salivary fistula could even be prevented in the former group. The difference between the two groups was significant (P<0.05). Conclusion The negative pressure drainage combined with regional elastic compression dressing is obviously better than the traditional bandage in preventing salivary fistula after parotidectomy. With less dressing time and a beautiful appearance, this method is also comfortable for the patients, which does not affect their eating, speaking and hearing, and makes no compression pain in the head and face. With good clinical application value, negative pressure drainage combined with re⁃gional elastic compression dressing is worthy of popularization.%目的:研究腮腺术区负压引流结合区域弹性加压包扎术在腮腺手术的应用价值,探讨腮腺术后涎瘘发生的相关因素。方法选择200例腮腺良性肿瘤需手术治疗的患者,随机分为100例腮腺术区负压引流去除后区域弹性加压包扎组和100例

  14. Upper bound limit and shakedown analysis of elastic plastic bounded linearly kinematic hardening structures

    OpenAIRE

    2011-01-01

    This thesis develops a new FEM based algorithm for shakedown analysis of structures made of elastic plastic bounded linearly kinematic hardening material. Its concept can be briefly described as: Hardening law is simulated using a two-surface plastic model. One yield surface is the initial surface, defined by yield stress sigma_y, and the other one is the bounding surface, defined by ultimate strength sigma_u. The initial surface can translate inside the bounding surface without changing its ...

  15. Simultaneous Elastic Recoil Detection Analysis of H and Other Elements in Foils

    Institute of Scientific and Technical Information of China (English)

    LU Xiu-Qin; ZHOU Ping; GUO Ji-Yu; ZHANG Xin; ZHAO Kui; NI Mei-Nan; SUI Li; MEI Jun-Ping; LIU Jian-Cheng

    2005-01-01

    @@ Hydrogen and other elements in SixNyHz foils have been simultaneously measured by using a single E(gas)- E(PSD) telescope and heavy 127I ion beam in elastic recoil detection analysis (ERDA). Hydrogen is measuredin the non-coincidence spectrum of E(PSD), and other elements from the △E - E coincidence spectrum. Thecomposition and depth profiling of the foils are obtained from the simulated spectra.

  16. A facility for heavy-ion elastic recoil detection analysis at the Australian National University

    Energy Technology Data Exchange (ETDEWEB)

    Timmers, H.; O`Connor, D.J. [Newcastle University, Newcastle, NSW (Australia). Dept. of Physics; Elliman, R.G.; Palmer, G.R.; Ophel, T.R. [Australian National University Canberra, ACT (Australia). Research School of Physical Sciences and Engineering

    1998-06-01

    The design of a facility at the Australian National University for heavy-ion elastic recoil detection analysis with minimal beam exposure is presented. The system is based on an established technique using a position-sensitive gas-ionisation detector with a large acceptance solid angle. The kinematic energy spread of the detected recoil ions is corrected. The capabilities of the system are discussed. (authors). 10 refs., 3 figs.

  17. Variable Frame Rate and Length Analysis for Data Compression in Distributed Speech Recognition

    DEFF Research Database (Denmark)

    Kraljevski, Ivan; Tan, Zheng-Hua

    2014-01-01

    This paper addresses the issue of data compression in distributed speech recognition on the basis of a variable frame rate and length analysis method. The method first conducts frame selection by using a posteriori signal-to-noise ratio weighted energy distance to find the right time resolution...... length for steady regions. The method is applied to scalable source coding in distributed speech recognition where the target bitrate is met by adjusting the frame rate. Speech recognition results show that the proposed approach outperforms other compression methods in terms of recognition accuracy...... for noisy speech while achieving higher compression rates....

  18. Compressive cryotherapy versus cryotherapy alone in patients undergoing knee surgery: a meta-analysis

    OpenAIRE

    Song, Mingzhi; Sun, Xiaohong; Tian, Xiliang; Zhang, Xianbin; Shi, Tieying; SUN, RAN; Dai, Wei

    2016-01-01

    Aim This study aims to conduct a meta-analysis to identify and compare the effectiveness of compressive cryotherapy and cryotherapy alone for patients undergoing knee surgery. Background Postoperative management is an important guarantee for the success of surgery. Cryotherapy and compression are two common nursing techniques after knee surgery, and are considered to be effective for postoperative clinical symptoms such as local pain and swelling. However, no previous meta-analyses have compa...

  19. Multi-scale analysis of compressible viscous and rotating fluids

    CERN Document Server

    Feireisl, Eduard; Gérard-Varet, David; Novotny, Antonin

    2011-01-01

    We study a singular limit for the compressible Navier-Stokes system when the Mach and Rossby numbers are proportional to certain powers of a small parameter $\\ep$. If the Rossby number dominates the Mach number, the limit problem is represented by the 2-D incompressible Navier-Stokes system describing the horizontal motion of vertical averages of the velocity field. If they are of the same order then the limit problem turns out to be a linear, 2-D equation with a unique radially symmetric solution. The effect of the centrifugal force is taken into account.

  20. MPEG-2 Compressed-Domain Algorithms for Video Analysis

    Directory of Open Access Journals (Sweden)

    Hesseler Wolfgang

    2006-01-01

    Full Text Available This paper presents new algorithms for extracting metadata from video sequences in the MPEG-2 compressed domain. Three algorithms for efficient low-level metadata extraction in preprocessing stages are described. The first algorithm detects camera motion using the motion vector field of an MPEG-2 video. The second method extends the idea of motion detection to a limited region of interest, yielding an efficient algorithm to track objects inside video sequences. The third algorithm performs a cut detection using macroblock types and motion vectors.

  1. An analysis of watershed hydrological double mass curve based on elasticity index

    Science.gov (United States)

    Liu, Wenzhao; Ning, Tingting; Lin, Wen; Cheng, Liping; Han, Xiaoyang

    2016-04-01

    The method of double mass curve (DMC) is often used in the analysis of the consistency of hydro-meteorological factors and their inter-annual variations. The trend and slope of DMC are the focus of general concern. By taking the DMC of annual precipitation-runoff in a watershed as an example, this paper analyzed the characteristics of DMC variations by means of the elasticity index obtained by the curve slope divided by the ratio of accumulated runoff to accumulated precipitation at corresponding location. Using a year as a time step, the index was further simplified to be the ratio of annual runoff coefficient to the runoff coefficient averaged over the period from starting year to computing year. An elasticity index greater than, less than, or equal to one indicated rising, decline, or stability of average annual runoff coefficient, respectively. Variation trend of elasticity index was analyzed to extract the information on the years with significant change and then, dominant factors and their impacts could be enquired further. The Jinghe River is located in the middle reaches of the Yellow River, being the largest tributary of the Weihe River. The elasticity index was used to analyze the DMC of annual precipitation-runoff on the scale of water year for the Jinghe River watershed from 1961 to 2012 and the two years of 1971 and 1997 were first chosen as the years showing abrupt changes. The elasticity indices in three periods separated by the two years in the past 50 years averaged 1.08, 0.89 and 0.64 and annual runoff coefficients, 0.08, 0.07 and 0.05, respectively. The human activities disturbing underlying surface were found to be the important factor responsible for the remarkable decline of runoff coefficient. The large-scale comprehensive control of soil erosion and the adjustment of landuse structure had made some achievements in the recent twenty years. However, their disturbing effects on underlying surface interacted with the impacts of climate change

  2. Analysis and simulation for tensile behavior of anisotropic open-cell elastic foams

    Institute of Scientific and Technical Information of China (English)

    卢子兴; 刘强; 陈鑫

    2014-01-01

    Based on the elongated Kelvin model, a simplified periodic structural cell is obtained to investigate the tensile behavior of anisotropic open-cell elastic foams due to Kelvin model’s periodicity and symmetry in the whole space. The half-strut element and elastic deflection theory are used to analyze the tensile response as done in the previous studies. This study produces theoretical expressions for the tensile stress-strain curve in the rise and transverse directions. In addition, the theoretical results are examined with finite element simulation using an existing formula. The results indicate that the theoretical analysis agrees with the finite element simulation when the strain is not too high, and the present model is better. At the same time, the anisotropy ratio has a significant effect on the mechanical properties of foams. As the anisotropy ratio increases, the tensile stress is improved in the rising direction but drops in the transverse direction under the same strain.

  3. PARAMETRIC VARIATIONAL PRINCIPLE BASED ELASTIC-PLASTIC ANALYSIS OF HETEROGENEOUS MATERIALS WITH VORONOI FINITE ELEMENT METHOD

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-wu; WANG Hui

    2006-01-01

    The Voronoi cell finite element method (VCFEM) is adopted to overcome the limitations of the classic displacement based finite element method in the numerical simulation of heterogeneous materials. The parametric variational principle and quadratic programming method are developed for elastic-plastic Voronoi finite element analysis of two-dimensional problems. Finite element formulations are derived and a standard quadratic programming model is deduced from the elastic-plastic equations. Influence of microscopic heterogeneities on the overall mechanical response of heterogeneous materials is studied in detail. The overall properties of heterogeneous materials depend mostly on the size, shape and distribution of the material phases of the microstructure. Numerical examples are presented to demonstrate the validity and effectiveness of the method developed.

  4. Wave propagation analysis of a size-dependent magneto-electro-elastic heterogeneous nanoplate

    Science.gov (United States)

    Ebrahimi, Farzad; Dabbagh, Ali; Reza Barati, Mohammad

    2016-12-01

    The analysis of the wave propagation behavior of a magneto-electro-elastic functionally graded (MEE-FG) nanoplate is carried out in the framework of a refined higher-order plate theory. In order to take into account the small-scale influence, the nonlocal elasticity theory of Eringen is employed. Furthermore, the material properties of the nanoplate are considered to be variable through the thickness based on the power-law form. Nonlocal governing equations of the MEE-FG nanoplate have been derived using Hamilton's principle. The results of the present study have been validated by comparing them with previous researches. An analytical solution of governing equations is performed to obtain wave frequencies, phase velocities and escape frequencies. The effect of different parameters, such as wave number, nonlocal parameter, gradient index, magnetic potential and electric voltage on the wave dispersion characteristics of MEE-FG nanoscale plates is studied in detail.

  5. Boundary element analysis for elastic and elastoplastic problems of 2D orthotropic media with stress concentration

    Institute of Scientific and Technical Information of China (English)

    Xiushan Sun; Lixin Huang; Yinghua Liu; Zhangzhi Cen; Keren Wang

    2005-01-01

    Both the orthotropy and the stress concentration are common issues in modern structural engineering. This paper introduces the boundary element method (BEM) into the elastic and elastoplastic analyses for 2D orthotropic media with stress concentration. The discretized boundary element formulations are established, and the stress formulae as well as the fundamental solutions are derived in matrix notations. The numerical procedures are proposed to analyze both elastic and elastoplastic problems of2D orthotropic media with stress concentration. To obtain more precise stress values with fewer elements, the quadratic isoparametric element formulation is adopted in the boundary discretization and numerical procedures. Numerical examples show that there are significant stress concentrations and different elastoplastic behaviors in some orthotropic media, and some of the computational results are compared with other solutions.Good agreements are also observed, which demonstrates the efficiency and reliability of the present BEM in the stress concentration analysis for orthotropic media.

  6. Nonlinear Forced Vibration Analysis for Thin Rectangular Plate on Nonlinear Elastic Foundation

    Directory of Open Access Journals (Sweden)

    Zhong Zhengqiang

    2013-02-01

    Full Text Available Nonlinear forced vibration is analyzed for thin rectangular plate with four free edges on nonlinear elastic foundation. Based on Hamilton variation principle, equations of nonlinear vibration motion for thin rectangular plate under harmonic loads on nonlinear elastic foundation are established. In the case of four free edges, viable expressions of trial functions for this specification are proposed, satisfying all boundary conditions. Then, equations are transformed to a system of nonlinear algebraic equations by using Galerkin method and are solved by using harmonic balance method. In the analysis of numerical computations, the effect on the amplitude-frequency characteristic curve due to change of the structural parameters of plate, parameters of foundation and parameters of excitation force are discussed.

  7. China's medical savings accounts: an analysis of the price elasticity of demand for health care.

    Science.gov (United States)

    Yu, Hao

    2016-09-20

    Although medical savings accounts (MSAs) have drawn intensive attention across the world for their potential in cost control, there is limited evidence of their impact on the demand for health care. This paper is intended to fill that gap. First, we built up a dynamic model of a consumer's problem of utility maximization in the presence of a nonlinear price schedule embedded in an MSA. Second, the model was implemented using data from a 2-year MSA pilot program in China. The estimated price elasticity under MSAs was between -0.42 and -0.58, i.e., higher than that reported in the literature. The relatively high price elasticity suggests that MSAs as an insurance feature may help control costs. However, the long-term effect of MSAs on health costs is subject to further analysis.

  8. Statistical mechanics analysis of thresholding 1-bit compressed sensing

    Science.gov (United States)

    Xu, Yingying; Kabashima, Yoshiyuki

    2016-08-01

    The one-bit compressed sensing framework aims to reconstruct a sparse signal by only using the sign information of its linear measurements. To compensate for the loss of scale information, past studies in the area have proposed recovering the signal by imposing an additional constraint on the l 2-norm of the signal. Recently, an alternative strategy that captures scale information by introducing a threshold parameter to the quantization process was advanced. In this paper, we analyze the typical behavior of thresholding 1-bit compressed sensing utilizing the replica method of statistical mechanics, so as to gain an insight for properly setting the threshold value. Our result shows that fixing the threshold at a constant value yields better performance than varying it randomly when the constant is optimally tuned, statistically. Unfortunately, the optimal threshold value depends on the statistical properties of the target signal, which may not be known in advance. In order to handle this inconvenience, we develop a heuristic that adaptively tunes the threshold parameter based on the frequency of positive (or negative) values in the binary outputs. Numerical experiments show that the heuristic exhibits satisfactory performance while incurring low computational cost.

  9. Simple Elastic Network Models for Exhaustive Analysis of Long Double-Stranded DNA Dynamics with Sequence Geometry Dependence.

    Directory of Open Access Journals (Sweden)

    Shuhei Isami

    Full Text Available Simple elastic network models of DNA were developed to reveal the structure-dynamics relationships for several nucleotide sequences. First, we propose a simple all-atom elastic network model of DNA that can explain the profiles of temperature factors for several crystal structures of DNA. Second, we propose a coarse-grained elastic network model of DNA, where each nucleotide is described only by one node. This model could effectively reproduce the detailed dynamics obtained with the all-atom elastic network model according to the sequence-dependent geometry. Through normal-mode analysis for the coarse-grained elastic network model, we exhaustively analyzed the dynamic features of a large number of long DNA sequences, approximately ∼150 bp in length. These analyses revealed positive correlations between the nucleosome-forming abilities and the inter-strand fluctuation strength of double-stranded DNA for several DNA sequences.

  10. Meta-Analysis of Income and Price Elasticities Energy Demand: Some Public Policy Implications for Latin America

    Directory of Open Access Journals (Sweden)

    Luis Miguel Galindo

    2015-08-01

    Full Text Available The aim of this paper is to analyze the variation in empirical estimates of the income and price elasticities of energy demand. The evidence presented, through a meta-analysis, allows identification of the weighted average of the income and price elasticities, shows that the estimates are very heterogeneous, that there is publication bias, and that factors such as region, energy sector, among others, affect its volatility. The evidence also indicates that income elasticity in Latin America is greater than in the OECD countries, and that the price elasticity of energy demand is lower in Latin America than in the OECD countries. Therefore, continued economic growth in Latin America will be accompanied by a growth in energy demand. Moreover, the establishment of a tax in Latin America, under the current elasticities, is less effective and will be insufficient to control the increase in energy consumption.

  11. Simple Elastic Network Models for Exhaustive Analysis of Long Double-Stranded DNA Dynamics with Sequence Geometry Dependence

    CERN Document Server

    Isami, Shuhei; Nishimori, Hiraku; Awazu, Akinori

    2015-01-01

    Simple elastic network models of DNA were developed to reveal the structure-dynamics relationships for several nucleotide sequences. First, we propose a simple all-atom elastic network model of DNA that can explain the profiles of temperature factors for several crystal structures of DNA. Second, we propose a coarse-grained elastic network model of DNA, where each nucleotide is described only by one node. This model could effectively reproduce the detailed dynamics obtained with the all-atom elastic network model according to the sequence-dependent geometry. Through normal-mode analysis for the coarse-grained elastic network model, we exhaustively analyzed the dynamic features of a large number of long DNA sequences, approximately $\\sim 150$ bp in length. These analyses revealed positive correlations between the nucleosome-forming abilities and the inter-strand fluctuation strength of double-stranded DNA for several DNA sequences.

  12. Analysis of a permeable interface crack in elastic dielectric/piezoelectric bimaterials

    Institute of Scientific and Technical Information of China (English)

    Qun Li; Yiheng Chen

    2007-01-01

    A permeable interface crack between elastic dielectric material and piezoelectric material is studied based on the extended Stroh's formalism. Motivated by strong engi-neering demands to design new composite materials, the authors perform numerical analysis of interface crack tip sin-gularities and the crack tip energy release rates for 35 types of dissimilar bimaterials, respectively, which are constructed by five kinds of elastic dielectric materials: Epoxy, Poly-mer, A1203, SiC, and Si3N4 and seven kinds of practical piezoelectric ceramics: PZT-4, BaTiO3, PZT-5H, PZT-6B,PZT-7A, P-7, and PZT-PIC 151, respectively. The elastic dielectric material with much smaller permittivity than com-mercial piezoelectric ceramics is treated as a special trans-versely isotropic piezoelectric material with extremely small piezoelectricity. The present investigation shows that the structure of the singular field near the permeable interface crack tip consists of three singularities: r-1/2±iε and r-1/2,which is quite different from that in the impermeable inter-face crack. It can be concluded that different far field load-ing cases have significant influence on the near-tip fracture behaviors of the permeable interface crack. Based on the present theoretical treatment and numerical analysis, the elec-tric field induced crack growth is well explained, which pro-vides a better understanding of the failure mechanism induced from interface crack growth in elastic dielectric/piezoelectric bimaterials.

  13. Potku - New analysis software for heavy ion elastic recoil detection analysis

    Science.gov (United States)

    Arstila, K.; Julin, J.; Laitinen, M. I.; Aalto, J.; Konu, T.; Kärkkäinen, S.; Rahkonen, S.; Raunio, M.; Itkonen, J.; Santanen, J.-P.; Tuovinen, T.; Sajavaara, T.

    2014-07-01

    Time-of-flight elastic recoil detection (ToF-ERD) analysis software has been developed. The software combines a Python-language graphical front-end with a C code computing back-end in a user-friendly way. The software uses a list of coincident time-of-flight-energy (ToF-E) events as an input. The ToF calibration can be determined with a simple graphical procedure. The graphical interface allows the user to select different elements and isotopes from a ToF-E histogram and to convert the selections to individual elemental energy and depth profiles. The resulting sample composition can be presented as relative or absolute concentrations by integrating the depth profiles over user-defined ranges. Beam induced composition changes can be studied by displaying the event-based data in fractions relative to the substrate reference data. Optional angular input data allows for kinematic correction of the depth profiles. This open source software is distributed under the GPL license for Linux, Mac, and Windows environments.

  14. Compositional analysis of polycrystalline hafnium oxide thin films by heavy-ion elastic recoil detection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, F.L. [Departamento de Electronica y Tecnologia de Computadoras, Universidad Politecnica de Cartagena, Campus Universitario Muralla del Mar, E-30202 Cartagena (Spain)]. E-mail: Felix.Martinez@upct.es; Toledano, M. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); San Andres, E. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); Martil, I. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); Gonzalez-Diaz, G. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); Bohne, W. [Hahn-Meitner-Institut Berlin, Abteilung SF-4, D-14109 Berlin (Germany); Roehrich, J. [Hahn-Meitner-Institut Berlin, Abteilung SF-4, D-14109 Berlin (Germany); Strub, E. [Hahn-Meitner-Institut Berlin, Abteilung SF-4, D-14109 Berlin (Germany)

    2006-10-25

    The composition of polycrystalline hafnium oxide thin films has been measured by heavy-ion elastic recoil detection analysis (HI-ERDA). The films were deposited by high-pressure reactive sputtering (HPRS) on silicon wafers using an oxygen plasma at pressures between 0.8 and 1.6 mbar and during deposition times between 0.5 and 3.0 h. Hydrogen was found to be the main impurity and its concentration increased with deposition pressure. The composition was always slightly oxygen-rich, which is attributed to the oxygen plasma. Additionally, an interfacial silicon oxide thin layer was detected and taken into account. The thickness of the hafnium oxide film was found to increase linearly with deposition time and to decrease exponentially with deposition pressure, whereas the thickness of the silicon oxide interfacial layer has a minimum as a function of pressure at around 1.2 mbar and increases slightly as a function of time. The measurements confirmed that this interfacial layer is formed mainly during the early stages of the deposition process.

  15. Analysis of fracture process zone in brittle rock subjected to shear-compressive loading

    Institute of Scientific and Technical Information of China (English)

    ZHOU De-quan; CHEN Feng; CAO Ping; MA Chun-de

    2005-01-01

    An analytical expression for the prediction of shear-compressive fracture process zone(SCFPZ) is derived by using a proposed local strain energy density criterion, in which the strain energy density is separated into the dilatational and distortional strain energy density, only the former is considered to contribute to the brittle fracture of rock in different loading cases. The theoretical prediction by this criterion shows that the SCFPZ is of asymmetric mulberry leaf in shape, which forms a shear-compression fracture kern. Dilatational strain energy density along the boundary of SCFPZ reaches its maximum value. The dimension of SCFPZ is governed by the ratio of KⅡ to KⅠ . The analytical results are then compared with those from literatures and the tests conducted on double edge cracked Brazilian disk subjected to diametrical compression. The obtained results are useful to the prediction of crack extension and to nonlinear analysis of shear-compressive fracture of brittle rock.

  16. A Finite Element Analysis for Predicting the Residual Compressive Strength of Impact-Damaged Sandwich Panels

    Science.gov (United States)

    Ratcliffe, James G.; Jackson, Wade C.

    2008-01-01

    A simple analysis method has been developed for predicting the residual compressive strength of impact-damaged sandwich panels. The method is tailored for honeycomb core-based sandwich specimens that exhibit an indentation growth failure mode under axial compressive loading, which is driven largely by the crushing behavior of the core material. The analysis method is in the form of a finite element model, where the impact-damaged facesheet is represented using shell elements and the core material is represented using spring elements, aligned in the thickness direction of the core. The nonlinear crush response of the core material used in the analysis is based on data from flatwise compression tests. A comparison with a previous analysis method and some experimental data shows good agreement with results from this new approach.

  17. A Finite Element Analysis for Predicting the Residual Compression Strength of Impact-Damaged Sandwich Panels

    Science.gov (United States)

    Ratcliffe, James G.; Jackson, Wade C.

    2008-01-01

    A simple analysis method has been developed for predicting the residual compression strength of impact-damaged sandwich panels. The method is tailored for honeycomb core-based sandwich specimens that exhibit an indentation growth failure mode under axial compression loading, which is driven largely by the crushing behavior of the core material. The analysis method is in the form of a finite element model, where the impact-damaged facesheet is represented using shell elements and the core material is represented using spring elements, aligned in the thickness direction of the core. The nonlinear crush response of the core material used in the analysis is based on data from flatwise compression tests. A comparison with a previous analysis method and some experimental data shows good agreement with results from this new approach.

  18. Compressive response and failure of braided textile composites: Experiments and analysis

    Science.gov (United States)

    Quek, Shu Ching

    Textile composites have similar mechanical attributes when compared with other fiber reinforced composites, however, because of cost effective manufacturability, they are being considered as a viable alternative for structural applications in the aerospace and automotive industries. This thesis focuses on the compressive response of a 2D flat triaxial braided composite (2DTBC) under conditions that are similar to those encountered when a tubular structural member undergoes axial compressive crush. During crush, the walls of the member are subjected to predominantly biaxial stress state of compression (lengthwise) and tension (widthwise), while, near the end of the tube where the loading is introduced, a combined bending and compression type of biaxial stress state is predominant. Experiments on flat 2DTBCs were carried out under two types of load states: compression/tension (C/T) and bending/compression (B/C). C/T tests were carried out on a special planar biaxial load frame. External loads and full field planar incremental strain fields (the Deltaepsilonx, Deltaepsilon y and Deltagammaxy) were captured during the loading process via digital speckle photography (DSP). Failure mechanisms were investigated and supplemented by post experiment microscopy. Similarly, load and strain data were obtained from the B/C tests, which was based on a novel eccentric Elastica experimental configuration. The experimental results provided fundamental insight into the failure mechanisms of 2DTBCs and motivated the development of robust micromechanics based strength models for the 2DTBCs. In addition, the biaxial experimental data provide grounds for the validation of failure theories that have been conceived on measurements based on uniaxial loading. An analytical model based on constituent properties and textile geometry as input was developed to determine the elastic orthotropic stiffness properties of a 2DTBC. A finite element (FE) based micromechanics model of the 2DTBC was

  19. Calculation and analysis of solitary waves and kinks in elastic tubes

    OpenAIRE

    2013-01-01

    The paper is devoted to analysis of different models that describe waves in fluid-filled and gas-filled elastic tubes and development of methods of calculation and numerical analysis of solutions with solitary waves and kinks for these models. Membrane model and plate model are used for tube. Two types of solitary waves are found. One-parametric families are stable and may be used as shock structures. Null-parametric solitary waves are unstable. The process of split of such solitary waves is ...

  20. Analytical Round Robin for Elastic-Plastic Analysis of Surface Cracked Plates: Phase I Results

    Science.gov (United States)

    Wells, D. N.; Allen, P. A.

    2012-01-01

    An analytical round robin for the elastic-plastic analysis of surface cracks in flat plates was conducted with 15 participants. Experimental results from a surface crack tension test in 2219-T8 aluminum plate provided the basis for the inter-laboratory study (ILS). The study proceeded in a blind fashion given that the analysis methodology was not specified to the participants, and key experimental results were withheld. This approach allowed the ILS to serve as a current measure of the state of the art for elastic-plastic fracture mechanics analysis. The analytical results and the associated methodologies were collected for comparison, and sources of variability were studied and isolated. The results of the study revealed that the J-integral analysis methodology using the domain integral method is robust, providing reliable J-integral values without being overly sensitive to modeling details. General modeling choices such as analysis code, model size (mesh density), crack tip meshing, or boundary conditions, were not found to be sources of significant variability. For analyses controlled only by far-field boundary conditions, the greatest source of variability in the J-integral assessment is introduced through the constitutive model. This variability can be substantially reduced by using crack mouth opening displacements to anchor the assessment. Conclusions provide recommendations for analysis standardization.

  1. Multiple Regression Analysis of Unconfined Compression Strength of Mine Tailings Matrices

    Directory of Open Access Journals (Sweden)

    Mahmood Ali A.

    2017-01-01

    Full Text Available As part of a novel approach of sustainable development of mine tailings, experimental and numerical analysis is carried out on newly formulated tailings matrices. Several physical characteristic tests are carried out including the unconfined compression strength test to ascertain the integrity of these matrices when subjected to loading. The current paper attempts a multiple regression analysis of the unconfined compressive strength test results of these matrices to investigate the most pertinent factors affecting their strength. Results of this analysis showed that the suggested equation is reasonably applicable to the range of binder combinations used.

  2. Nonlinear analysis of consolidation with variable compressibility and permeability

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Ying-chun; XIE Kang-he; LI Xi-bin

    2005-01-01

    Terzaghi gave a theory of soil consolidation based on the effective stress principle, which was derived on several ideal assumptions to get a simplified theory. To avoid the limitations involved in Terzaghi's theory, many efforts are being made by scholars to solve the problems in practical engineering situations. This paper presents a generalized theory for one dimensional consolidation of saturated soft clay with variable compressibility and permeability. The semi-analytical solution presented here takes into account the well known empirical e-logk and e-logp'(σ') relations under instantaneous loading. Study of the consolidation behaviors showed that the ratio of Cc and Ck (the slope of e-logp and e-logk respectively) govern the ratio of consolidation. A simulative laboratory investigation with GDS advanced consolidation system was made to analyze the clay consolidation process and compare the results with the semi-analytical solution.

  3. Recoverability analysis for modified compressive sensing with partially known support.

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    Full Text Available The recently proposed modified-compressive sensing (modified-CS, which utilizes the partially known support as prior knowledge, significantly improves the performance of recovering sparse signals. However, modified-CS depends heavily on the reliability of the known support. An important problem, which must be studied further, is the recoverability of modified-CS when the known support contains a number of errors. In this letter, we analyze the recoverability of modified-CS in a stochastic framework. A sufficient and necessary condition is established for exact recovery of a sparse signal. Utilizing this condition, the recovery probability that reflects the recoverability of modified-CS can be computed explicitly for a sparse signal with [Formula: see text] nonzero entries. Simulation experiments have been carried out to validate our theoretical results.

  4. The MUSIC Algorithm for Sparse Objects: A Compressed Sensing Analysis

    CERN Document Server

    Fannjiang, Albert C

    2010-01-01

    The MUSIC algorithm, with its extension for imaging sparse {\\em extended} objects, is analyzed by compressed sensing (CS) techniques. The notion of restricted isometry property (RIP) and an upper bound on the restricted isometry constant (RIC) are employed to establish sufficient conditions for the exact localization by MUSIC with or without the presence of noise. In the noiseless case, the sufficient condition gives an upper bound on the numbers of random sampling and incident directions necessary for exact localization. In the noisy case, the sufficient condition assumes additionally an upper bound for the noise-to-object ratio (NOR) in terms of the RIC. Rigorous comparison of performance between MUSIC and the CS minimization principle, Lasso, is given. In general, the MUSIC algorithm guarantees to recover, with high probability, $s$ scatterers with $n=\\cO(s^2)$ random sampling and incident directions and sufficiently high frequency. For the favorable imaging geometry where the scatterers are distributed on...

  5. Analysis of Transient Behavior of a Vapor Compression Refrigeration Cycle

    Science.gov (United States)

    Fukushima, Toshihiko; Miyamoto, Seigo

    A mathematical model for a vapor compression refrigeration cycle for automotive air conditioner is developed, which basically consists of compressor, condenser, receiver, expansion valve, evaporator, suction pressure control valve and piping. The main purpose of this model is to provide the designer with a tool for improving cooling capacity and investigating capacity control of the refrigeration cycle at transient conditions. A lumped parameter system is used for the mathematical model of the condenser and the evaporator, that is obtained with volume integral of the equation of continuity and energy over a bounded volume region. The compressor model and the piping models are also lumped parameter systems, and heat capacity of their walls are taken into account. The theoretical solutions of this model are in good agreement with the experimental results.

  6. Dynamic analysis on generalized linear elastic body subjected to large scale rigid rotations

    Institute of Scientific and Technical Information of China (English)

    刘占芳; 颜世军; 符志

    2013-01-01

    The dynamic analysis of a generalized linear elastic body undergoing large rigid rotations is investigated. The generalized linear elastic body is described in kine-matics through translational and rotational deformations, and a modified constitutive relation for the rotational deformation is proposed between the couple stress and the curvature tensor. Thus, the balance equations of momentum and moment are used for the motion equations of the body. The floating frame of reference formulation is applied to the elastic body that conducts rotations about a fixed axis. The motion-deformation coupled model is developed in which three types of inertia forces along with their incre-ments are elucidated. The finite element governing equations for the dynamic analysis of the elastic body under large rotations are subsequently formulated with the aid of the constrained variational principle. A penalty parameter is introduced, and the rotational angles at element nodes are treated as independent variables to meet the requirement of C1 continuity. The elastic body is discretized through the isoparametric element with 8 nodes and 48 degrees-of-freedom. As an example with an application of the motion-deformation coupled model, the dynamic analysis on a rotating cantilever with two spatial layouts relative to the rotational axis is numerically implemented. Dynamic frequencies of the rotating cantilever are presented at prescribed constant spin velocities. The maximal rigid rotational velocity is extended for ensuring the applicability of the linear model. A complete set of dynamical response of the rotating cantilever in the case of spin-up maneuver is examined, it is shown that, under the ultimate rigid rotational velocities less than the maximal rigid rotational velocity, the stress strength may exceed the material strength tolerance even though the displacement and rotational angle responses are both convergent. The influence of the cantilever layouts on their responses and

  7. Characteristic analysis of lock-in for an elastically suspended airfoil in transonic buffet flow

    Institute of Scientific and Technical Information of China (English)

    Quan Jingge; Zhang Weiwei; Gao Chuanqiang; Ye Zhengyin

    2016-01-01

    Numerical simulations are performed to study the aeroelastic responses of an elastically suspended airfoil in transonic buffet flow, by coupling the unsteady Reynolds-averaged Navier-Stokes (RANS) equations and structural motion equation. The current work focuses on the char-acteristic analysis of the lock-in phenomenon. Great attentions are paid to studying the frequency range of lock-in and the effects of the three parameters, namely the structural natural frequency, mass ratio and structural damping, on lock-in characteristic of the elastic system in detail. It is found that when the structural natural frequency is close to the buffet frequency, the coupling fre-quency of the elastic system is no longer equal to the buffet frequency, but keeps the same value as the structural natural frequency. The frequency lock-in occurs and stays present until the structural nature frequency is near the double buffet frequency. It means that the lock-in presents within a broad range, of which the lower threshold is near the buffet frequency, while the upper threshold is near the double buffet frequency. Moreover, the frequency range of lock-in is affected by mass ratio and structural damping. The lower the mass ratio and structural damping are, the wider the range of lock-in will be. The upper threshold of lock-in grows with the mass ratio and structural damping decreasing, but the lower threshold always keeps the same.

  8. Analysis of the low-energy $\\pi^\\pm p$ elastic-scattering data

    CERN Document Server

    Matsinos, Evangelos

    2012-01-01

    We report the results of a phase-shift analysis (PSA) of the low-energy $\\pi^\\pm p$ elastic-scattering data. Following the method which we had set forth in our previous PSA, we first investigated the self-consistency of the low-energy $\\pi^\\pm p$ elastic-scattering databases, via two separate analyses of (first) the $\\pi^+ p$ and (subsequently) the $\\pi^- p$ elastic-scattering data. There are two differences to our previous PSA: a) we now perform only \\emph{one} test for the acceptance of each data set (based on its contribution to the overall $\\chi^2$) and b) we adopt a more stringent acceptance criterion in the statistical tests, by raising the minimal p-value (for the acceptance of the null hypothesis) from the equivalent of a $3 \\sigma$ effect in the normal distribution to $2.5 \\sigma$; the new value is closer to the 'common' preference for the outset of statistical significance ($1.00 \\cdot 10^{-2}$). We show that it is possible to obtain self-consistent databases after removing a very small amount of th...

  9. Reliability assessment of different plate theories for elastic wave propagation analysis in functionally graded plates.

    Science.gov (United States)

    Mehrkash, Milad; Azhari, Mojtaba; Mirdamadi, Hamid Reza

    2014-01-01

    The importance of elastic wave propagation problem in plates arises from the application of ultrasonic elastic waves in non-destructive evaluation of plate-like structures. However, precise study and analysis of acoustic guided waves especially in non-homogeneous waveguides such as functionally graded plates are so complicated that exact elastodynamic methods are rarely employed in practical applications. Thus, the simple approximate plate theories have attracted much interest for the calculation of wave fields in FGM plates. Therefore, in the current research, the classical plate theory (CPT), first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT) are used to obtain the transient responses of flexural waves in FGM plates subjected to transverse impulsive loadings. Moreover, comparing the results with those based on a well recognized hybrid numerical method (HNM), we examine the accuracy of the plate theories for several plates of various thicknesses under excitations of different frequencies. The material properties of the plate are assumed to vary across the plate thickness according to a simple power-law distribution in terms of volume fractions of constituents. In all analyses, spatial Fourier transform together with modal analysis are applied to compute displacement responses of the plates. A comparison of the results demonstrates the reliability ranges of the approximate plate theories for elastic wave propagation analysis in FGM plates. Furthermore, based on various examples, it is shown that whenever the plate theories are used within the appropriate ranges of plate thickness and frequency content, solution process in wave number-time domain based on modal analysis approach is not only sufficient but also efficient for finding the transient waveforms in FGM plates.

  10. 3D TRANSIENT COUPLED THERMO-ELASTIC-PLASTIC CONTACT SEALING ANALYSIS OF REACTOR PRESSURE VESSEL

    Institute of Scientific and Technical Information of China (English)

    Du Xuesong; Li Runfang; Lin Tengjiao

    2005-01-01

    Sealing analysis of sealing system in reactor pressure vessels is relevant with multiple nonlinear coupled-field effects, so even large-scale commercial finite element software cannot finish the complicated analysis. A fmite element method of 3D transient coupled thermo-elastic-plastic contact sealing analysis for reactor pressure vessels is presented, in which the surface nonlinearity,material nonlinearity, transient heat transfer nonlinearity and multiple coupled effect are taken into account and the sealing equation is coupling solved in iterative procedure. At the same time, a computational analysis program is developed, which is applied in the sealing analysis of experimental reactor pressure vessel, and the numerical results are in good coincidence with the experimental results. This program is also successful in analyzing the practical problem in engineering.

  11. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete.

    Science.gov (United States)

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-03-18

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions.

  12. Analysis of LAPAN-IPB image lossless compression using differential pulse code modulation and huffman coding

    Science.gov (United States)

    Hakim, P. R.; Permala, R.

    2017-01-01

    LAPAN-A3/IPB satellite is the latest Indonesian experimental microsatellite with remote sensing and earth surveillance missions. The satellite has three optical payloads, which are multispectral push-broom imager, digital matrix camera and video camera. To increase data transmission efficiency, the multispectral imager data can be compressed using either lossy or lossless compression method. This paper aims to analyze Differential Pulse Code Modulation (DPCM) method and Huffman coding that are used in LAPAN-IPB satellite image lossless compression. Based on several simulation and analysis that have been done, current LAPAN-IPB lossless compression algorithm has moderate performance. There are several aspects that can be improved from current configuration, which are the type of DPCM code used, the type of Huffman entropy-coding scheme, and the use of sub-image compression method. The key result of this research shows that at least two neighboring pixels should be used for DPCM calculation to increase compression performance. Meanwhile, varying Huffman tables with sub-image approach could also increase the performance if on-board computer can support for more complicated algorithm. These results can be used as references in designing Payload Data Handling System (PDHS) for an upcoming LAPAN-A4 satellite.

  13. Diffraction model analysis of pion-12C elastic scattering at 800 MeV/c: Optical potential by inversion

    Indian Academy of Sciences (India)

    I Ahmad; M R Arafah

    2006-03-01

    Elastic scattering of 800 MeV/c pions by 12C has been studied in the diffraction model with a view to determine pion optical potential by the method of inversion. Finding an earlier diffraction model analysis to be deficient in some respects, we propose a Glauber model based parametrization for the elastic -matrix and show that it provides an exceedingly good fit to the pion-carbon data. The proposed elastic -matrix gives a closed expression for the pion-12C optical potential by the method of inversion in the high energy approximation.

  14. Compression-recovery model of absorptive glass mat (AGM) separator guided by X-ray micro-computed tomography analysis

    Science.gov (United States)

    Kameswara Rao, P. V.; Rawal, Amit; Kumar, Vijay; Rajput, Krishn Gopal

    2017-10-01

    Absorptive glass mat (AGM) separators play a key role in enhancing the cycle life of the valve regulated lead acid (VRLA) batteries by maintaining the elastic characteristics under a defined level of compression force with the plates of the electrodes. Inevitably, there are inherent challenges to maintain the required level of compression characteristics of AGM separators during the charge and discharge of the battery. Herein, we report a three-dimensional (3D) analytical model for predicting the compression-recovery behavior of AGM separators by formulating a direct relationship with the constituent fiber and structural parameters. The analytical model of compression-recovery behavior of AGM separators has successfully included the fiber slippage criterion and internal friction losses. The presented work uses, for the first time, 3D data of fiber orientation from X-ray micro-computed tomography, for predicting the compression-recovery behavior of AGM separators. A comparison has been made between the theoretical and experimental results of compression-recovery behavior of AGM samples with defined fiber orientation characteristics. In general, the theory agreed reasonably well with the experimental results of AGM samples in both dry and wet states. Through theoretical modeling, fiber volume fraction was established as one of the key structural parameters that modulates the compression hysteresis of an AGM separator.

  15. Elastic analysis of a mode Ⅱ crack in an icosahedral quasicrystal

    Institute of Scientific and Technical Information of China (English)

    Zhu Ai-Yu; Fan Tian-You

    2007-01-01

    Based on the displacement potential functions, the elastic analysis of a mode Ⅱ crack in an icosahedral quasicrystal is performed by using the Fourier transform and dual integral equation theory. By the solution, the analytic expressions for the displacement field and stress field are obtained. The asymptotic behaviours of the phonon and phason stress fields around the crack tip indicate that the stresses near the crack tip exhibit a square root singularity. The most important physical quantities of fracture theory, crack stress intensity factor and energy release rate, are evaluated in an explicit version.

  16. Piecewise Linear Analysis for Pseudo-elasticity of Shape Memory Alloy (SMA)

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-dong; DU Xiao-wei; SUN Guo-jun

    2005-01-01

    Based on the Brinson constitutive model of SMA, a piecewise linear model for the hysteresis loop of pseudo-elasticity is proposed and applied in the analysis of responses of an SMA-spring-mass system under initial velocity activation. The histories of displacement and velocity of the mass, and the response of stress of SMA are calculated with Brinson's model and the piecewise linear model. The difference of results of the two models is not significant. The calculation with piecewise-linear model needs no iteration and is highly efficient.

  17. Three-dimensional elastic stress and displacement analysis of finite geometry solids containing cracks

    Science.gov (United States)

    Kring, J.; Gyekenyesi, J.; Mendelson, A.

    1977-01-01

    The line method of analysis is applied to the Navier-Cauchy equations of elastic equilibrium to calculate the displacement fields in finite geometry bars containing central, surface, and double-edge cracks under extensionally applied uniform loading. The application of this method to these equations leads to coupled sets of simultaneous ordinary differential equations whose solutions are obtained along sets of lines in a discretized region. Normal stresses and the stress intensity factor variation along the crack periphery are calculated using the obtained displacement field. The reported results demonstrate the usefulness of this method in calculating stress intensity factors for commonly encountered crack geometries in finite solids.

  18. Three-dimensional elastic analysis of a composite double cantilever beam specimen

    Science.gov (United States)

    Raju, I. S.; Shivakumar, K. N.; Crews, J. H., Jr.

    1988-01-01

    Attention is given to the stresses and the strain energy release rate along the delamination front in the present three-dimensional elastic analysis of a 24-ply, cocured double-cantilever beam specimen by means of 20-noded parabolic-isoparametric finite elements. At the free surface, the strain energy release rate was found to be substantially smaller than the plane strain value; this is suggested to be due to the free-surface effect that exists where the delamination meets the surface edge.

  19. Exact and Numerical Elastic Analysis for the FGM Thick-Walled Cylindrical Pressure Vessels with Exponentially-Varying Properties

    Directory of Open Access Journals (Sweden)

    Nejad M. Zamani

    2016-09-01

    Full Text Available Assuming exponential-varying properties in the radial direction and based on the elasticity theory, an exact closed-form analytical solution is obtained to elastic analysis of FGM thick-walled cylindrical pressure vessels in the plane strain condition. Following this, radial distribution of radial displacement, radial stress, and circumferential stress are plotted for different values of material inhomogeneity constant. The displacements and stresses distributions are compared with the solutions of the finite element method (FEM.

  20. Nonlocal Elasticity Theory for Transient Analysis of Higher-Order Shear Deformable Nanoscale Plates

    Directory of Open Access Journals (Sweden)

    Woo-Young Jung

    2014-01-01

    Full Text Available The small scale effect on the transient analysis of nanoscale plates is studied. The elastic theory of the nano-scale plate is reformulated using Eringen’s nonlocal differential constitutive relations and higher-order shear deformation theory (HSDT. The equations of motion of the nonlocal theories are derived for the nano-scale plates. The Eringen’s nonlocal elasticity of Eringen has ability to capture the small scale effects and the higher-order shear deformation theory has ability to capture the quadratic variation of shear strain and consequently shear stress through the plate thickness. The solutions of transient dynamic analysis of nano-scale plate are presented using these theories to illustrate the effect of nonlocal theory on dynamic response of the nano-scale plates. On the basis of those numerical results, the relations between nonlocal and local theory are investigated and discussed, as are the nonlocal parameter, aspect ratio, side-to-thickness ratio, nano-scale plate size, and time step effects on the dynamic response. In order to validate the present solutions, the reference solutions are employed and examined. The results of nano-scale plates using the nonlocal theory can be used as a benchmark test for the transient analysis.

  1. Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity

    Science.gov (United States)

    Norouzzadeh, A.; Ansari, R.

    2017-04-01

    Stress-strain relation in Eringen's nonlocal elasticity theory was originally formulated within the framework of an integral model. Due to difficulty of working with that integral model, the differential model of nonlocal constitutive equation is widely used for nanostructures. However, paradoxical results may be obtained by the differential model for some boundary and loading conditions. Presented in this article is a finite element analysis of Timoshenko nano-beams based on the integral model of nonlocal continuum theory without employing any simplification in the model. The entire procedure of deriving equations of motion is carried out in the matrix form of representation, and hence, they can be easily used in the finite element analysis. For comparison purpose, the differential counterparts of equations are also derived. To study the outcome of analysis based on the integral and differential models, some case studies are presented in which the influences of boundary conditions, nonlocal length scale parameter and loading factor are analyzed. It is concluded that, in contrast to the differential model, there is no paradox in the numerical results of developed integral model of nonlocal continuum theory for different situations of problem characteristics. So, resolving the mentioned paradoxes by means of a purely numerical approach based on the original integral form of nonlocal elasticity theory is the major contribution of present study.

  2. Some fundamental definitions of the elastic parameters for homogenous isotropic linear materials in road design and analysis

    CSIR Research Space (South Africa)

    De Beer, Morris

    2008-07-01

    Full Text Available during tensile (or compressive) tests conducted on a sample of the material. Young’s Modulus is named after Thomas Young, the 18th Century British scientist. The SI unit of modulus of elasticity, E is the pascal. Given the large values typical of many... stream_source_info De Beer_2008.pdf.txt stream_content_type text/plain stream_size 31159 Content-Encoding UTF-8 stream_name De Beer_2008.pdf.txt Content-Type text/plain; charset=UTF-8 1 Some fundamental definitions...

  3. Temporal analysis of vascular smooth muscle cell elasticity and adhesion reveals oscillation waveforms that differ with aging.

    Science.gov (United States)

    Zhu, Yi; Qiu, Hongyu; Trzeciakowski, Jerome P; Sun, Zhe; Li, Zhaohui; Hong, Zhongkui; Hill, Michael A; Hunter, William C; Vatner, Dorothy E; Vatner, Stephen F; Meininger, Gerald A

    2012-10-01

    A spectral analysis approach was developed for detailed study of time-resolved, dynamic changes in vascular smooth muscle cell (VSMC) elasticity and adhesion to identify differences in VSMC from young and aged monkeys. Atomic force microscopy (AFM) was used to measure Young's modulus of elasticity and adhesion as assessed by fibronectin (FN) or anti-beta 1 integrin interaction with the VSMC surface. Measurements demonstrated that VSMC cells from old vs. young monkeys had increased elasticity (21.6 kPa vs. 3.5 kPa or a 612% increase in elastic modulus) and adhesion (86 pN vs. 43 pN or a 200% increase in unbinding force). Spectral analysis identified three major frequency components in the temporal oscillation patterns for elasticity (ranging from 1.7 × 10(-3) to 1.9 × 10(-2) Hz in old and 8.4 × 10(-4) to 1.5 × 10(-2) Hz in young) and showed that the amplitude of oscillation was larger (P young at all frequencies. It was also observed that patterns of oscillation in the adhesion data were similar to the elasticity waveforms. Cell stiffness was reduced and the oscillations were inhibited by treatment with cytochalasin D, ML7 or blebbistatin indicating the involvement of actin-myosin-driven processes. In conclusion, these data demonstrate the efficacy of time-resolved analysis of AFM cell elasticity and adhesion measurements and that it provides a uniquely sensitive method to detect real-time functional differences in biomechanical and adhesive properties of cells. The oscillatory behavior suggests that mechanisms governing elasticity and adhesion are coupled and affected differentially during aging, which may link these events to changes in vascular stiffness. © 2012 The Authors. Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  4. DQ thermal buckling analysis of embedded curved carbon nanotubes based on nonlocal elasticity theory

    National Research Council Canada - National Science Library

    Setoodeh, AliReza; Derahaki, Morteza; Bavi, Navid

    2015-01-01

    Abstract To investigate the thermal buckling of curved carbon nanotubes (CCNTs) embedded in an elastic medium, nonlocal elasticity theory is employed in combination with the theory of thin curved beams...

  5. The MUSIC algorithm for sparse objects: a compressed sensing analysis

    Science.gov (United States)

    Fannjiang, Albert C.

    2011-03-01

    The multiple signal classification (MUSIC) algorithm, and its extension for imaging sparse extended objects, with noisy data is analyzed by compressed sensing (CS) techniques. A thresholding rule is developed to augment the standard MUSIC algorithm. The notion of restricted isometry property (RIP) and an upper bound on the restricted isometry constant (RIC) are employed to establish sufficient conditions for the exact localization by MUSIC with or without noise. In the noiseless case, the sufficient condition gives an upper bound on the numbers of random sampling and incident directions necessary for exact localization. In the noisy case, the sufficient condition assumes additionally an upper bound for the noise-to-object ratio in terms of the RIC and the dynamic range of objects. This bound points to the super-resolution capability of the MUSIC algorithm. Rigorous comparison of performance between MUSIC and the CS minimization principle, basis pursuit denoising (BPDN), is given. In general, the MUSIC algorithm guarantees to recover, with high probability, s scatterers with n= {O}(s^2) random sampling and incident directions and sufficiently high frequency. For the favorable imaging geometry where the scatterers are distributed on a transverse plane MUSIC guarantees to recover, with high probability, s scatterers with a median frequency and n= {O}(s) random sampling/incident directions. Moreover, for the problems of spectral estimation and source localizations both BPDN and MUSIC guarantee, with high probability, to identify exactly the frequencies of random signals with the number n= {O}(s) of sampling times. However, in the absence of abundant realizations of signals, BPDN is the preferred method for spectral estimation. Indeed, BPDN can identify the frequencies approximately with just one realization of signals with the recovery error at worst linearly proportional to the noise level. Numerical results confirm that BPDN outperforms MUSIC in the well

  6. A lumped mass finite element method for vibration analysis of elastic plate-plate structures

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The fully discrete lumped mass finite element method is proposed for vibration analysis of elastic plate-plate structures.In the space directions,the longitudinal displacements on plates are discretized by conforming linear elements,and the transverse displacements are discretized by the Morley element.By means of the second order central difference for discretizing the time derivative and the technique of lumped masses,a fully discrete lumped mass finite element method is obtained,and two approaches to choosing the initial functions are also introduced.The error analysis for the method in the energy norm is established,and some numerical examples are included to validate the theoretical analysis.

  7. Clusters versus FPGAs for spectral mixture analysis-based lossy hyperspectral data compression

    Science.gov (United States)

    Plaza, Antonio J.

    2008-08-01

    The increasing number of airborne and satellite platforms that incorporate hyperspectral imaging spectrometers has soon created the need for efficient storage, transmission and data compression methodologies. In particular, hyperspectral data compression is expected to play a crucial role in many remote sensing applications. Many efforts have been devoted to designing and developing lossless and lossy algorithms for hyperspectral imagery. However, most available lossy compression approaches have largely overlooked the impact of mixed pixels and subpixel targets, which can be accurately modeled and uncovered by resorting to the wealth of spectral information provided by hyperspectral image data. In this paper, we develop a simple lossy compression technique which relies on the concept of spectral unmixing, one of the most popular approaches to deal with mixed pixels and subpixel targets in hyperspectral analysis. The proposed method uses a two-stage approach in which the purest spectral signatures (also called endmembers) are first extracted from the input data, and then used to express mixed pixels as linear combinations of endmembers. Analytical and experimental results are presented in the context of a real application, using hyperspectral data collected by NASA's Jet Propulsion Laboratory over the World Trade Center area in New York City, right after the terrorist attacks of September 11th. These data are used in this work to evaluate the impact of compression using different methods on spectral signature quality for accurate detection of hot spot fires. Two parallel implementations are developed for the proposed lossy compression algorithm: a multiprocessor implementation tested on Thunderhead, a massively parallel Beowulf cluster at NASA's Goddard Space Flight Center, and a hardware implementation developed on a Xilinx Virtex-II FPGA device. Combined, these parts offer a thoughtful perspective on the potential and emerging challenges of incorporating parallel

  8. Analytical Round Robin for Elastic-Plastic Analysis of Surface Cracked Plates, Phase II Results

    Science.gov (United States)

    Allen, P. A.; Wells, D. N.

    2017-01-01

    The second phase of an analytical round robin for the elastic-plastic analysis of surface cracks in flat plates was conducted under the auspices of ASTM Interlaboratory Study 732. The interlaboratory study (ILS) had 10 participants with a broad range of expertise and experience, and experimental results from a surface crack tension test in 4142 steel plate loaded well into the elastic-plastic regime provided the basis for the study. The participants were asked to evaluate a surface crack tension test according to the version of the surface crack initiation toughness testing standard published at the time of the ILS, E2899-13. Data were provided to each participant that represent the fundamental information that would be provided by a mechanical test laboratory prior to evaluating the test result. Overall, the participant’s test analysis results were in good agreement and constructive feedback was received that has resulted in an improved published version of the standard E2899-15.

  9. Elastic and inelastic stability capacity of single angle under axial compression%单角钢轴压杆件弹性和非弹性稳定承载力

    Institute of Scientific and Technical Information of China (English)

    陈绍蕃

    2012-01-01

    Hot rolled angles are classified into two categories: equal-leg and unequal-leg. Owing to the difference in cross sectional symmetry, these two kinds of angles, when subjected to axial compression, behave differently. Whether the flexural buckling about the minor axis or the flexural-torsional buckling about the major axis predominates in the inelastic range for equal-leg angle struts is a controversial issue. Analysis in this regard ascertains that, in the inelastic as well as in the elastic range, angles fail by flexural buckling. But for angles of high-strength steel, with large width-thickness ratios, it is necessary to take into account the effect of leg local buckling. Unequal-leg angles always fail by flexural-torsional buckling. The calculation of the critical load of these members is rather complicated. Through analytical calculations, an equivalent slenderness ratio is derived to transform the problem into a flexural buckling one. This approach applies to both elastic and inelastic ranges. Comparison with available test data shows that suggested approaches for the equal-leg and unequal-leg angles are both qualified for design use.%热轧角钢有等边和不等边两种类型。由于截面对称性方面的差异,两类角钢在承受轴压力时,性能有明显差别。针对等边角钢在非弹性范围的受压承载力由弱轴弯曲屈曲控制还是强轴弯扭屈曲控制这一问题进行了分析,结果表明:在非弹性范围和弹性范围一样,杆件失效时呈弯曲屈曲,对于宽厚比较大的高强度角钢,需要计及局部屈曲效应。不等边角钢压杆失效时总是呈弯扭屈曲,其临界力计算比较复杂。通过计算分析,得出了把问题转化为按弯曲屈曲分析的等效长细比的方法。此法既适用于弹性范围,也适用于非弹性范围。和现有试验资料对比表明,文中的等边和不等边角钢轴压杆件的计算方法,都可用于设计工作。

  10. Nonlinear elastic waves in materials

    CERN Document Server

    Rushchitsky, Jeremiah J

    2014-01-01

    The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...

  11. Mechanical analysis of single myocyte contraction in a 3-D elastic matrix.

    Directory of Open Access Journals (Sweden)

    John Shaw

    Full Text Available BACKGROUND: Cardiac myocytes experience mechanical stress during each heartbeat. Excessive mechanical stresses under pathological conditions cause functional and structural remodeling that lead to heart diseases, yet the precise mechanisms are still incompletely understood. To study the cellular and molecular level mechanotransduction mechanisms, we developed a new 'cell-in-gel' experimental system to exert multiaxial (3-D stresses on a single myocyte during active contraction. METHODS: Isolated myocytes are embedded in an elastic hydrogel to simulate the mechanical environment in myocardium (afterload. When electrically stimulated, the in-gel myocyte contracts while the matrix resists shortening and broadening of the cell, exerting normal and shear stresses on the cell. Here we provide a mechanical analysis, based on the Eshelby inclusion problem, of the 3-D strain and stress inside and outside the single myocyte during contraction in an elastic matrix. RESULTS: (1 The fractional shortening of the myocyte depends on the cell's geometric dimensions and the relative stiffness of the cell to the gel. A slender or softer cell has less fractional shortening. A myocyte of typical dimensions embedded in a gel of similar elastic stiffness can contract only 20% of its load-free value. (2 The longitudinal stress inside the cell is about 15 times the transverse stress level. (3 The traction on the cell surface is highly non-uniform, with a maximum near its ends, showing 'hot spots' at the location of intercalated disks. (4 The mechanical energy expenditure of the myocyte increases with the matrix stiffness in a monotonic and nonlinear manner. CONCLUSION: Our mechanical analyses provide analytic solutions that readily lend themselves to parametric studies. The resulting 3-D mapping of the strain and stress states serve to analyze and interpret ongoing cell-in-gel experiments, and the mathematical model provides an essential tool to decipher and quantify

  12. STRUCTURAL THERMODYNAMIC ANALYSIS OF VAPOR COMPRESSION REFRIGERATION MACHINE

    OpenAIRE

    Д. Х. ХАРЛАМПИДИ; Тарасова, В. А.

    2014-01-01

    Reported about a method for conducting a structural analysis of the thermodynamic refrigerating machine on the basis of separation exergy of destruction on the external and internal independent parts, as well as removable and its components are inevitable. The methodology has allowed complex take into account the influence on the efficiency of the refrigerating machine thermal-hydraulic losses and estimates the components of the exergy destruction in the basic elements. The analysis of charac...

  13. Elastic-plastic analysis of the PVRC burst disk tests with comparison to the ASME code -- Primary stress limits

    Energy Technology Data Exchange (ETDEWEB)

    Jones, D.P.; Holliday, J.E.

    1999-02-01

    This paper provides a comparison between finite element analysis results and test data from the Pressure Vessel Research Council (PVRC) burst disk program. Testing sponsored by the PVRC over 20 years ago was done by pressurizing circular flat disks made from three different materials until failure by bursting. The purpose of this re-analysis is to investigate the use of finite element analysis (FEA) to assess the primary stress limits of the ASME Boiler and Pressure Vessel Code (1998) and to qualify the use of elastic-plastic (EP-FEA) for limit load calculations. The three materials tested represent the range of strength and ductility found in modern pressure vessel construction and include a low strength high ductility material, a medium strength medium ductility material, and a high strength low ductility low alloy material. Results of elastic and EP-FEA are compared to test data. Stresses from the elastic analyses are linearized for comparison of Code primary stress limits to test results. Elastic-plastic analyses are done using both best-estimate and elastic-perfectly plastic (EPP) stress-strain curves. Both large strain-large displacement (LSLD) and small strain-small displacement (SSSD) assumptions are used with the EP-FEA. Analysis results are compared to test results to evaluate the various analysis methods, models, and assumptions as applied to the bursting of thin disks.

  14. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells.

    Science.gov (United States)

    Yang, Tie; Bragheri, Francesca; Nava, Giovanni; Chiodi, Ilaria; Mondello, Chiara; Osellame, Roberto; Berg-Sørensen, Kirstine; Cristiani, Ilaria; Minzioni, Paolo

    2016-04-04

    We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental apparatus parameters before performing the cell-characterization experiments, including a non-destructive method to characterize the optical force distribution inside the microchannel. The chip was used to study important cell-mechanics parameters in two human breast cancer cell lines, MCF7 and MDA-MB231. Results indicate that MDA-MB231 has both higher acoustic compressibility and higher optical deformability than MCF7, but statistical analysis shows that optical deformability and acoustic compressibility are not correlated parameters. This result suggests the possibility to use them to analyze the response of different cellular structures. We also demonstrate that it is possible to perform both measurements on a single cell, and that the order of the two experiments does not affect the retrieved values.

  15. The implementation of a lossless data compression module in an advanced orbiting system: Analysis and development

    Science.gov (United States)

    Yeh, Pen-Shu; Miller, Warner H.; Venbrux, Jack; Liu, Norley; Rice, Robert F.

    1993-01-01

    Data compression has been proposed for several flight missions as a means of either reducing on board mass data storage, increasing science data return through a bandwidth constrained channel, reducing TDRSS access time, or easing ground archival mass storage requirement. Several issues arise with the implementation of this technology. These include the requirement of a clean channel, onboard smoothing buffer, onboard processing hardware and on the algorithm itself, the adaptability to scene changes and maybe even versatility to the various mission types. This paper gives an overview of an ongoing effort being performed at Goddard Space Flight Center for implementing a lossless data compression scheme for space flight. We will provide analysis results on several data systems issues, the performance of the selected lossless compression scheme, the status of the hardware processor and current development plan.

  16. New Contribution on Compression Color Images: Analysis and Synthesis for Telemedicine Applications

    Directory of Open Access Journals (Sweden)

    Beladgham Mohammed

    2014-04-01

    Full Text Available The wavelets are a recent tool for signal processing analysis, for multiple time scale. It gives rise to many applications in various fields such as geophysics, astrophysics, telecommunications, imaging, and video coding. They are the basis of new analytical techniques and signal synthesis and some nice applications for general problems such as compression. This paper introduces an application for color medical image compression based on the wavelet transform coupled with SP?HT coding algorithm. In order to enhance the compression by this algorithm, we have compared the results obtained with wavelet transform application in natural, medical and satellite color image field. For this reason, we evaluated two parameters known for their calculation speed. The first parameter is the PSNR; the second is MSSIM (structural similarity.

  17. Compressive and shear buckling analysis of metal matrix composite sandwich panels under different thermal environments

    Science.gov (United States)

    Ko, William L.; Jackson, Raymond H.

    1993-01-01

    Combined inplane compressive and shear buckling analysis was conducted on flat rectangular sandwich panels using the Raleigh-Ritz minimum energy method with a consideration of transverse shear effect of the sandwich core. The sandwich panels were fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that slightly slender (along unidirectional compressive loading axis) rectangular sandwich panels have the most desirable stiffness-to-weight ratios for aerospace structural applications; the degradation of buckling strength of sandwich panels with rising temperature is faster in shear than in compression; and the fiber orientation of the face sheets for optimum combined-load buckling strength of sandwich panels is a strong function of both loading condition and panel aspect ratio. Under the same specific weight and panel aspect ratio, a sandwich panel with metal matrix composite face sheets has much higher buckling strength than one having monolithic face sheets.

  18. Scheme for Mechanical Measuring Device Used to the Compression Elasticity of Soft Tissue%软组织压弹性模量力学测量装置的设计

    Institute of Scientific and Technical Information of China (English)

    胡伟; 汪道辉; 陈科; 林江莉

    2015-01-01

    It's hard to measure the elastic modulus of the soft tissue accurately.Because the stretched length of the soft tissue is diffi-cult to obtain.For tensile stress,the fixture of soft tissue is a problem,and cutting size of soft tissue is inexact.In the paper,the soft tissue is cut by the various molds.The stepper motor is used to drive the eccentric wheel,which compress the tissue.Using the dis-tance sensor records the compressed size and using pressure sensor records the forces.Then the computer collects and stores the data and then calculates the elasticity parameter of the tissue.This paper focuses on the accurate obtaining deformation as well as stress.%软组织弹性模量测量难度主要体现在其位移无法精确获取,夹具是一个难题(对于拉应力而言),以及软组织的尺寸切割不精确。文中通过多种模具切割软组织,利用步进电机驱动偏心轮旋转,压迫组织产生形变,通过距离传感器记录组织产生的形变,再用压力传感器记录组织的受力情况,计算机采集并存储相应数据,经过模拟计算出组织的弹性参数。本文设计着重于组织的形变量的精确获取以及应力的精确获取。

  19. Experimental and numerical analysis of pre-compressed masonry walls in two-way-bending with second order effects

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Gabriele, E-mail: milani@stru.polimi.it [Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico diMilano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Olivito, Renato S. [Dipartimento di Ingegneria Civile - Università della Calabria Via P Bucci 39 B - 87036 RENDE (CS) (Italy); Tralli, Antonio [Department of Engineering, University of Ferrara, Via Saragat 1, 44100 Ferrara (Italy)

    2014-10-06

    The buckling behavior of slender unreinforced masonry (URM) walls subjected to axial compression and out-of-plane lateral loads is investigated through a combined experimental and numerical homogenizedapproach. After a preliminary analysis performed on a unit cell meshed by means of elastic FEs and non-linear interfaces, macroscopic moment-curvature diagrams so obtained are implemented at a structural level, discretizing masonry by means of rigid triangular elements and non-linear interfaces. The non-linear incremental response of the structure is accounted for a specific quadratic programming routine. In parallel, a wide experimental campaign is conducted on walls in two way bending, with the double aim of both validating the numerical model and investigating the behavior of walls that may not be reduced to simple cantilevers or simply supported beams. Panels investigated are dry-joint in scale square walls simply supported at the base and on a vertical edge, exhibiting the classical Rondelet’s mechanism. The results obtained are compared with those provided by the numerical model.

  20. Analysis of Signal Propagation in an Elastic-Tube Flow Model

    Science.gov (United States)

    Waggy, Scott; Akman, Ozgur; Biringen, Sedat

    2009-11-01

    We combine linear and nonlinear signal analysis techniques to investigate the transmission of pressure signals along a one-dimensional model of fluid flow in an elastic tube. We derive a simple measure for the robustness of a simulated vessel against in vivo fluctuations in the pressure, based on quantifying the degree of synchronization between proximal and distal pressure pulses. The practical use of this measure will be in its application to simulated pulses generated in response to a stochastic forcing term mimicking biological variations of root pressure in arterial blood flow. Using spectral analysis methods based on synchronization theory, we introduce a novel nonlinear index for measuring the robustness of the model against fluctuations in the forcing signal, based on a general scheme for deriving low-dimensional measures of (biological) performance from higher-dimensional systems of equations.

  1. Elastic responses of underground circular arches considering dynamic soil-structure interaction: A theoretical analysis

    Science.gov (United States)

    Chen, Hai-Long; Jin, Feng-Nian; Fan, Hua-Lin

    2013-02-01

    Due to the wide applications of arches in underground protective structures, dynamic analysis of circular arches including soil-structure interactions is important. In this paper, an exact solution of the forced vibration of circular arches subjected to subsurface denotation forces is obtained. The dynamic soil-structure interaction is considered with the introduction of an interfacial damping between the structure element and the surrounding soil into the equation of motion. By neglecting the influences of shear, rotary inertia and tangential forces and assuming the arch incompressible, the equations of motion of the buried arches were set up. Analytical solutions of the dynamic responses of the protective arches were deduced by means of modal superposition. Arches with different opening angles, acoustic impedances and rise-span ratios were analyzed to discuss their influences on an arch. The theoretical analysis suggests blast loads for elastic designs and predicts the potential failure modes for buried protective arches.

  2. Dynamic Analysis of Kineto-Elastic Beam System with Second-order Effect

    Institute of Scientific and Technical Information of China (English)

    LU Nian-li; LUO Bing; XIA Yong-jun

    2009-01-01

    Dynamic equations of motional flexible beam elements were derived considering second-order effect. Non-linear finite element method and three-node Euler-Bernoulli beam elements were used. Because accuracy is higher in non-linear structural analysis, three-node beam elements are used to deduce shape functions and stiffness matrices in dynamic equations of flexible elements. Static condensation method was used to obtain the finial dynamic equations of three-node beam elements. According to geometrical relations of nodal displacements in concomitant and global coordinate system, dynamic equations of elements can be transformed to global coordinate system by concomitant coordinate method in order to build the global dynamic equations. Analyzed amplitude condition of flexible arm support of a port crane, the results show that second-order effect should be considered in kinetic-elastic analysis for heavy load machinery of big flexibility.

  3. ENERGY ANALYSIS OF FREE TRANSVERSE VIBRATIONS OF THE VISCO-ELASTICALLY CONNECTED DOUBLE-MEMBRANE SYSTEM

    Directory of Open Access Journals (Sweden)

    Julijana Simonović

    2014-12-01

    Full Text Available The presented paper deals with the analysis of energy transfer in the visco-elastically connected circular double-membrane system for free transverse vibration of the membranes. The system motion is described by a set of two coupled non-homogeneous partial differential equations. The solutions are obtained by using the method of separation of variables. Once the problem is solved, natural frequencies and mode shape functions are found, and then the form of solution for small transverse deflections of membranes is derived. Using the obtained solutions, forms of reduced kinetic, potential and total energies, as functions of dissipation of the whole system and subsystems, are determined. The numerical examples are given as an illustration of the presented theoretical analysis as well as the possibilities to investigate the influence of different parameters and different initial conditions on the energies transfer in the system. 

  4. Mapping residual stresses in PbWO$_{4}$ crystals using photo-elastic analysis

    CERN Document Server

    Lebeau, Michel; Majni, G; Paone, N; Pietroni, P; Rinaldi, D

    2005-01-01

    Large scintillating crystals are affected by internal stresses induced by the crystal growth temperature gradient remanence. Cutting boules (ingots) into finished crystal shapes allows for a partial tension relaxation but residual stresses remain the main cause of breaking. Quality control of residual stresses is essential in the application of Scintillating Crystals to high-energy physics calorimeters (e.g. CMS ECAL at CERN LHC). In this context the industrial process optimisation towards stress reduction is mandatory. We propose a fast technique for testing samples during the production process in order to evaluate the residual stress distribution after the first phases of mechanical processing. We mapped the stress distribution in PbWO/sub 4/slabs cut from the same production boule. The analysis technique is based on the stress intensity determination using the photo-elastic properties of the samples. The stress distribution is mapped in each sample. The analysis shows that there are regions of high residu...

  5. Quantifying elasticity analysis: how external effectors cause changes to metabolic systems.

    Science.gov (United States)

    Ainscow, E K; Brand, M D

    1999-02-01

    The sites of action of external effectors, such as inhibitors or hormones, on metabolic systems can be described qualitatively by elasticity analysis, or quantitatively by regulation analysis. The use of the latter approach has been limited, due to its practical complexity. In this study, we report mathematical relationships that relate the finite changes in system variables (fluxes and metabolite concentrations) to changes in activity of metabolic processes brought about by a single step addition of an effector. The activation or inhibition of a process by an effector is measured from changes in flux and intermediate levels. The changes in activity of each process can be used to describe, semi-quantitatively, which activations or inhibitions of the system processes are important in bringing about the observed levels of system variables.

  6. Acoustoelastic analysis of reflected waves in nearly incompressible, hyper-elastic materials: forward and inverse problems.

    Science.gov (United States)

    Kobayashi, Hirohito; Vanderby, Ray

    2007-02-01

    Many materials (e.g., rubber or biologic tissues) are "nearly" incompressible and often assumed to be incompressible in their constitutive equations. This assumption hinders realistic analyses of wave motion including acoustoelasticity. In this study, this constraint is relaxed and the reflected waves from nearly incompressible, hyper-elastic materials are examined. Specifically, reflection coefficients are considered from the interface of water and uni-axially prestretched rubber. Both forward and inverse problems are experimentally and analytically studied with the incident wave perpendicular to the interface. In the forward problem, the wave reflection coefficient at the interface is evaluated with strain energy functions for nearly incompressible materials in order to compute applied strain. For the general inverse problem, mathematical relations are derived that identify both uni-axial strains and normalized material constants from reflected wave data. The validity of this method of analysis is demonstrated via an experiment with stretched rubber. Results demonstrate that applied strains and normalized material coefficients can be simultaneously determined from the reflected wave data alone if they are collected at several different (but unknown) levels of strain. This study therefore indicates that acoustoelasticity, with an appropriate constitutive formulation, can determine strain and material properties in hyper-elastic, nearly incompressible materials.

  7. Quantitative analysis of retina layer elasticity based on automatic 3D segmentation (Conference Presentation)

    Science.gov (United States)

    He, Youmin; Qu, Yueqiao; Zhang, Yi; Ma, Teng; Zhu, Jiang; Miao, Yusi; Humayun, Mark; Zhou, Qifa; Chen, Zhongping

    2017-02-01

    Age-related macular degeneration (AMD) is an eye condition that is considered to be one of the leading causes of blindness among people over 50. Recent studies suggest that the mechanical properties in retina layers are affected during the early onset of disease. Therefore, it is necessary to identify such changes in the individual layers of the retina so as to provide useful information for disease diagnosis. In this study, we propose using an acoustic radiation force optical coherence elastography (ARF-OCE) system to dynamically excite the porcine retina and detect the vibrational displacement with phase resolved Doppler optical coherence tomography. Due to the vibrational mechanism of the tissue response, the image quality is compromised during elastogram acquisition. In order to properly analyze the images, all signals, including the trigger and control signals for excitation, as well as detection and scanning signals, are synchronized within the OCE software and are kept consistent between frames, making it possible for easy phase unwrapping and elasticity analysis. In addition, a combination of segmentation algorithms is used to accommodate the compromised image quality. An automatic 3D segmentation method has been developed to isolate and measure the relative elasticity of every individual retinal layer. Two different segmentation schemes based on random walker and dynamic programming are implemented. The algorithm has been validated using a 3D region of the porcine retina, where individual layers have been isolated and analyzed using statistical methods. The errors compared to manual segmentation will be calculated.

  8. Adaptive, Small-Rotation-Based, Corotational Technique for Analysis of 2D Nonlinear Elastic Frames

    Directory of Open Access Journals (Sweden)

    Jaroon Rungamornrat

    2014-01-01

    Full Text Available This paper presents an efficient and accurate numerical technique for analysis of two-dimensional frames accounted for both geometric nonlinearity and nonlinear elastic material behavior. An adaptive remeshing scheme is utilized to optimally discretize a structure into a set of elements where the total displacement can be decomposed into the rigid body movement and one possessing small rotations. This, therefore, allows the force-deformation relationship for the latter part to be established based on small-rotation-based kinematics. Nonlinear elastic material model is integrated into such relation via the prescribed nonlinear moment-curvature relationship. The global force-displacement relation for each element can be derived subsequently using corotational formulations. A final system of nonlinear algebraic equations along with its associated gradient matrix for the whole structure is obtained by a standard assembly procedure and then solved numerically by Newton-Raphson algorithm. A selected set of results is then reported to demonstrate and discuss the computational performance including the accuracy and convergence of the proposed technique.

  9. Phase-shift analysis of low-energy $\\pi^{\\pm}p$ elastic-scattering data

    CERN Document Server

    Matsinos, E; Oades, G C; Rasche, G; Woolcock, W S

    2006-01-01

    Using electromagnetic corrections previously calculated by means of a potential model, we have made a phase-shift analysis of the $\\pi^\\pm p$ elastic-scattering data up to a pion laboratory kinetic energy of 100 MeV. The hadronic interaction was assumed to be isospin invariant. We found that it was possible to obtain self-consistent databases by removing very few measurements. A pion-nucleon model was fitted to the elastic-scattering database obtained after the removal of the outliers. The model-parameter values showed an impressive stability when the database was subjected to different criteria for the rejection of experiments. Our result for the pseudovector $\\pi N N$ coupling constant (in the standard form) is $0.0733 \\pm 0.0014$. The six hadronic phase shifts up to 100 MeV are given in tabulated form. We also give the values of the s-wave scattering lengths and the p-wave scattering volumes. Big differences in the s-wave part of the interaction were observed when comparing our hadronic phase shifts with t...

  10. Finite Element Analysis of the Pseudo-elastic Behavior of Shape Memory Alloy Truss and Beam

    Directory of Open Access Journals (Sweden)

    Kamal M. Bajoria

    2010-07-01

    Full Text Available The pseudo-elastic behavior of Shape memory alloy (SMA truss and cantilever beam are investigated. Brinson’s one-dimensional material model, which uses the twinned and detwinned martensite fractions separately as internal variables, is applied in the algorithm to establish the SMA stress-strain characteristics. This material model also incorporates different young’s modulus for austenitic and martensite phase to represent the true SMA characteristics. In this model, a cosine function was used to express the evolution of the stress induced martensite fractions during the forward and reverse martensite phase transformation. A finite element formulation for the SMA truss member considering the geometric nonlinearity is proposed and the results are compared with the corresponding linear analysis. As a step forward, a finite element formulation for an SMA cantilever beam with an applied end moment is proposed. The load displacement characteristic for both the loading and unloading phases are considered to check the full pseudo-elastic hysteretic loop. In the numerical investigation, the stress-strain variation along the beam depth is also examined during the loading and unloading process to investigate the forward and reverse martensite phase transformation phenomena. Newton-Raphson’s iterative method is applied to get convergence to the equilibrium for each loading steps. During a complete loading-unloading process, the temperature is kept constant as the model is essentially an isothermal model. Numerical simulation is performed considering two different temperatures to demonstrate the effect of temperature on the hysteretic loop.

  11. Analysis and computation of the elastic wave equation with random coefficients

    KAUST Repository

    Motamed, Mohammad

    2015-10-21

    We consider the stochastic initial-boundary value problem for the elastic wave equation with random coefficients and deterministic data. We propose a stochastic collocation method for computing statistical moments of the solution or statistics of some given quantities of interest. We study the convergence rate of the error in the stochastic collocation method. In particular, we show that, the rate of convergence depends on the regularity of the solution or the quantity of interest in the stochastic space, which is in turn related to the regularity of the deterministic data in the physical space and the type of the quantity of interest. We demonstrate that a fast rate of convergence is possible in two cases: for the elastic wave solutions with high regular data; and for some high regular quantities of interest even in the presence of low regular data. We perform numerical examples, including a simplified earthquake, which confirm the analysis and show that the collocation method is a valid alternative to the more traditional Monte Carlo sampling method for approximating quantities with high stochastic regularity.

  12. Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors

    Science.gov (United States)

    Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong

    2015-05-01

    Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and

  13. Strategic Analysis of a Video Compression Software Project

    OpenAIRE

    Bai, Chun Jung Rosalind

    2008-01-01

    The objective of this project is to develop a strategic recommendation for market entry of the Client's new software product based on a breakthrough predictive-decoding technology. The analysis examines videoconferencing market and reveals that there is a strong demand for the software products that can reduce delays in interactive video communications while maintaining reasonable video quality. The evaluation of the key external competitive forces suggests that the market has low intensity o...

  14. Mathematical Analysis on the Uniqueness of Reverse Algorithm for Measuring Elastic-plastic Properties by Sharp Indentati

    Institute of Scientific and Technical Information of China (English)

    Yongli Huang; Xiaofang Liu; Yichun Zhou; Zengsheng Ma; Chunsheng Lu

    2011-01-01

    The reverse analysis provides a convenient method to determine four elastic-plastic parameters through an indentation curve such as Young s modulus E, hardness H, yield strength σy and strain hardening exponent n. In this paper, mathematical analysis on a

  15. On the Distance Dependence of the Price Elasticity of Telecommunications Demand; Meta-analysis, and Alternative Theoretical Backgrounds

    NARCIS (Netherlands)

    Ouwersloot, Hans; Rietveld, Piet

    1997-01-01

    The positive correlation between the absolute price elasticity of telecommunications demand and the distance of the calling relation is well known. In this paper we first present a meta-analysis of existing studies to buttress the distance dependence empirically. The analysis confirms the existence

  16. On the Distance Dependence of the Price Elasticity of Telecommunications Demand; Meta-analysis, and Alternative Theoretical Backgrounds

    NARCIS (Netherlands)

    Ouwersloot, Hans; Rietveld, Piet

    1997-01-01

    The positive correlation between the absolute price elasticity of telecommunications demand and the distance of the calling relation is well known. In this paper we first present a meta-analysis of existing studies to buttress the distance dependence empirically. The analysis confirms the existence

  17. Surface accuracy analysis and mathematical modeling of deployable large aperture elastic antenna reflectors

    Science.gov (United States)

    Coleman, Michael J.

    One class of deployable large aperture antenna consists of thin light-weight parabolic reflectors. A reflector of this type is a deployable structure that consists of an inflatable elastic membrane that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. A design may not hold the parabolic shape to within a desired tolerance due to an elastic deformation of the surface, particularly near the rim. We can compute the equilibrium configuration of the reflector system using an optimization-based solution procedure that calculates the total system energy and determines a configuration of minimum energy. Analysis of the equilibrium configuration reveals the behavior of the reflector shape under various loading conditions. The pressure, film strain energy, tendon strain energy, and gravitational energy are all considered in this analysis. The surface accuracy of the antenna reflector is measured by an RMS calculation while the reflector phase error component of the efficiency is determined by computing the power density at boresight. Our error computation methods are tailored for the faceted surface of our model and they are more accurate for this particular problem than the commonly applied Ruze Equation. Previous analytical work on parabolic antennas focused on axisymmetric geometries and loads. Symmetric equilibria are not assumed in our analysis. In addition, this dissertation contains two principle original findings: (1) the typical supporting tendon system tends to flatten a parabolic reflector near its edge. We find that surface accuracy can be significantly improved by fixing the edge of the inflated reflector to a rigid structure; (2) for large membranes assembled from flat sheets of thin material, we demonstrate that the surface accuracy of the resulting inflated membrane reflector can be improved by altering the cutting pattern of the flat components. Our findings demonstrate that the proper choice

  18. Confocal microscopy for automatic texture analysis of elastic fibers in histologic preparations

    Science.gov (United States)

    Adam, R. L.; Vieira, G.; Ferro, D. P.; de Thomaz, A. A.; Cesar, C., L.; Metze, K.

    2009-07-01

    Elastic fibers are an important component of many organs and tissues, such as skin, lungs, arteries, ligaments, intervertebral discs and cartilage Their function is to endow tissues with elastic recoil and resilience, to act as an important adhesion template for cells, and to regulate growth factor availability (1,2). Loss or remodeling of the elastic fiber texture occurs in many diseases. Degeneration and fragmentation of elastic fibers and aging are intimately related (3). Recently, the importance of elastin for the study of malignant tumor progression has been emphasized (4,5). Elastic tissue may be a significant reservoir of angiostatic molecules and soluble elastin as well as elastin peptides, that are inhibitors of the metastatic process in experimental tumor models (4). Elastic fibers are involved in the anatomic remodeling of chronic pulmonary diseases (6) and, especially, of diseases of the arterial wall (7, 8). The study of these phenomena is important for the understanding of the pathophysiologic basis of the diseases. Recently the role of elastic fibers in small diameter vascular graft design has been emphasized (2). The possibility to regenerate or engineer elastic fibres and tissues creates an important challenge, not only to understand the molecular basis of elastic-fibre biology (1,2), but also of its spatial arrangement and remodeling in the diseased tissues. Subtle changes of the complex elastic fiber network may be involved in the pathogenesis of diseases. Therefore a precise and objective histopathologic description is necessary.

  19. Elastic forward analysis using sup 7 Li ions A useful tool for H and light elements determination

    CERN Document Server

    Romero, S; Murillo, G; Berdejo, H M

    2002-01-01

    Films of CN sub x /Si, TiN sub x /AISI 304 and AlO sub x /Si were analyzed with sup 7 Li ions from 4.0 to 4.5 MeV and an experimental arrangement that, through detection of scattered projectiles and recoils by a single detector, allows quantification of H, light elements and heavier ones. A discussion is presented of the capabilities of Rutherford backscattering spectrometry (RBS) and conventional elastic recoil detection analysis (ERDA) compared to elastic forward analysis.

  20. Static analysis of rectangular nanoplates using trigonometric shear deformation theory based on nonlocal elasticity theory.

    Science.gov (United States)

    Nami, Mohammad Rahim; Janghorban, Maziar

    2013-12-30

    In this article, a new higher order shear deformation theory based on trigonometric shear deformation theory is developed. In order to consider the size effects, the nonlocal elasticity theory is used. An analytical method is adopted to solve the governing equations for static analysis of simply supported nanoplates. In the present theory, the transverse shear stresses satisfy the traction free boundary conditions of the rectangular plates and these stresses can be calculated from the constitutive equations. The effects of different parameters such as nonlocal parameter and aspect ratio are investigated on both nondimensional deflections and deflection ratios. It may be important to mention that the present formulations are general and can be used for isotropic, orthotropic and anisotropic nanoplates.

  1. Static analysis of rectangular nanoplates using trigonometric shear deformation theory based on nonlocal elasticity theory

    Directory of Open Access Journals (Sweden)

    Mohammad Rahim Nami

    2013-12-01

    Full Text Available In this article, a new higher order shear deformation theory based on trigonometric shear deformation theory is developed. In order to consider the size effects, the nonlocal elasticity theory is used. An analytical method is adopted to solve the governing equations for static analysis of simply supported nanoplates. In the present theory, the transverse shear stresses satisfy the traction free boundary conditions of the rectangular plates and these stresses can be calculated from the constitutive equations. The effects of different parameters such as nonlocal parameter and aspect ratio are investigated on both nondimensional deflections and deflection ratios. It may be important to mention that the present formulations are general and can be used for isotropic, orthotropic and anisotropic nanoplates.

  2. ANALYSIS OF ELASTIC LAYERS WITH DILATIVE EIGENSTRAINS VARYING THROUGH THE THICKNESS

    Institute of Scientific and Technical Information of China (English)

    何陵辉; 林志华; 刘人怀

    2003-01-01

    Elastic layers with varying dilative eigenstrains through the thickness were concerned. A general procedure was proposed for the analysis of such layers under arbitrary loads. The study is based on the state-space method and an asymptotic expansion technique.When the external loads are uniform, the expansion terminates after some leading terms, and an explicit representation for the mechanical field in a layer is obtained. This representation relies only on the displacement components of the mid-plane, which are governed by a set of two-dimensional differential equations similar to those in the classical plate theory.Consequently, obtaining the solution to the two-dimensional equations immediately gives the three-dimensional responses of the layer. As an illustrative example, a clamped elliptical layer under a uniformly distributed transverse load is analyzed in detail.

  3. ANALYSIS ON THE MAGNETO-ELASTIC-PLASTIC BUCKLING/SNAPPING OF CANTILEVER RECTANGULAR FERROMAGNETIC PLATES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An analysis of buckling/snapping and bending behaviors of magneto-elastic-plastic interaction and coupling for cantilever rectangular soft ferromagnetic plates is presented. Based on the expression of magnetic force from the variational principle of ferromagnetic plates, the buckling and bending theory of thin plates, the Mises yield criterion and the increment theory for plastic deformation, we establish a numerical code to quantitatively simulate the behaviors of the nonlinearly multi-fields coupling problems by the finite element method. Along with the phenomena of buckling/snapping and bending, or the characteristic curve of deflection versus magnitude of applied magnetic fields being numerically displayed, the critical loads of buckling/snapping,and the influences of plastic deformation and the width of plate on these critical loads, the plastic regions expanding with the magnitude of applied magnetic field, as well as the evolvement of deflection configuration of the plate are numerically obtained in a case study.

  4. Elastic analysis of a mode Ⅱ crack in a decagonal quasi-crystal

    Institute of Scientific and Technical Information of China (English)

    李显方; 范天佑

    2002-01-01

    The elastic analysis of a mode Ⅱ Griffith crack penetrating through a decagonal quasi-crystal along the periodicaxis is made within the context of the continuum theory. By using a general solution obtained previously, the problemin the case of uniform shear stress at infinity is solved, and the analytical expressions for the entire stress field disturbedby an internal crack are derived in an explicit form. The asymptotic fields of the displacement and stress around a cracktip in both phonon and phason fields indicate that the stresses near a crack tip exhibit the square-root singularity. Theformula for evaluating the energy release rate is also given. If imposing that the phason field is absent, the well-knownresults of a mode Ⅱ crack in a conventional material are recovered from the present results.

  5. Spectral Analysis of Surface Wave for Empirical Elastic Design of Anchored Foundations

    Directory of Open Access Journals (Sweden)

    S. E. Chen

    2012-01-01

    Full Text Available Helical anchors are vital support components for power transmission lines. Failure of a single anchor can lead to the loss of an entire transmission line structure which results in the loss of power for downstream community. Despite being important, it is not practical to use conventional borehole method of subsurface exploration, which is labor intensive and costly, for estimating soil properties and anchor holding capacity. This paper describes the use of an empirical and elasticity-based design technique coupled with the spectral analysis of surface wave (SASW technique to provide subsurface information for anchor foundation designs. Based on small-strain wave propagation, SASW determines shear wave velocity profile which is then correlated to anchor holding capacity. A pilot project involving over 400 anchor installations has been performed and demonstrated that such technique is reliable and can be implemented into transmission line structure designs.

  6. Offshore wellbore stability analysis based on fully coupled poro-thermo-elastic theory

    Science.gov (United States)

    Cao, Wenke; Deng, Jingen; Yu, Baohua; Liu, Wei; Tan, Qiang

    2017-03-01

    Drilling-induced tensile fractures are usually caused when the weight of mud is too high, and the effective tangential stress becomes tensile. It is thus hard to explain why tensile fractures are distributed along the lower part of a hole in an offshore exploration well when the mud weight is low. According to analysis, the reason could be the thermal effect, which cannot be ignored because of the drilling fluid and the cooling action of sea water during circulation. A heat transfer model is set up to obtain the temperature distribution of the wellbore and its formation by the finite difference method. Then, fully coupled poro-thermo-elastic theory is used to study the pore pressure and effective stress around the wellbore. By comparing it with both poroelastic and elastic models, it is indicated that the poroelastic effect is dominant at the beginning of circulation and inhibits tensile fractures from forming; then, the thermal effect becomes more important and decreases the effective tangential stress with the passing of time, so the drilling fluid and the cooling effect of sea water can cause tensile fractures to happen. Meanwhile, tensile fractures are shallow and not likely to lead to mud leakage with lower mud weight, which agrees with the actual drilling process. On the other hand, the fluid cooling effect could increase the strength of the rock and reduce the likelihood of shear failure, which would be beneficial for wellbore stability. So, the thermal effect cannot be neglected in offshore wellbore stability analysis, and mud weight and borehole exposure time should be controlled in the case of mud loss.

  7. Can fusion, elastic and inelastic scattering of heavy ions be understood, without a simultaneous analysis of them?

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, R.M.; Muri, C.; Moraes, S.B.; Cabezas, R.; Gomes, P.R.S.; Tenreiro, C.; Liguori Neto, R.; Maciel, A.M.M.; Santos, G.M. [Instituto de Fisica, Universidade Federal Fluminense, Av. Litoranea s/n, Gragoata, Niteroi, RJ, 24210-340 (Brazil)

    1997-10-01

    We present examples of situations where the absence of a simultaneous analysis of the scattering and reaction mechanisms leads to an incomplete or even false understanding of these processes. The optical model analysis of the elastic scattering gives rise to different values of reaction cross sections, while the simple analysis of the fusion excitation functions may lead to ambiguous or wrong conclusions. Data for the {sup 14}N+{sup 59}Co system obtained by our group is used in the analysis. (author)

  8. Mechanical Analysis of Dead Load Crown and Structure Parameter of Hydraulic Elastic Bulging Roll

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chang-cai; LI Wei-min; LIU Zhu-bai

    2003-01-01

    The dead load crown of hydraulic elastic bulging roll was discussed using the theory of elastically supported beam, and the dead load experiment was carried out. The theoretical calculation is consistent with the experimental result. The structure parameters for the thickness of roll sleeve, the length of the oil groove and the crown of roll were discussed. The fundamental principle of determining the parameters was put forward. The theoretical basis of the application of the hydraulic elastic bulging roll was established.

  9. Microarray BASICA: Background Adjustment, Segmentation, Image Compression and Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jianping Hua

    2004-01-01

    Full Text Available This paper presents microarray BASICA: an integrated image processing tool for background adjustment, segmentation, image compression, and analysis of cDNA microarray images. BASICA uses a fast Mann-Whitney test-based algorithm to segment cDNA microarray images, and performs postprocessing to eliminate the segmentation irregularities. The segmentation results, along with the foreground and background intensities obtained with the background adjustment, are then used for independent compression of the foreground and background. We introduce a new distortion measurement for cDNA microarray image compression and devise a coding scheme by modifying the embedded block coding with optimized truncation (EBCOT algorithm (Taubman, 2000 to achieve optimal rate-distortion performance in lossy coding while still maintaining outstanding lossless compression performance. Experimental results show that the bit rate required to ensure sufficiently accurate gene expression measurement varies and depends on the quality of cDNA microarray images. For homogeneously hybridized cDNA microarray images, BASICA is able to provide from a bit rate as low as 5 bpp the gene expression data that are 99% in agreement with those of the original 32 bpp images.

  10. Random vibration analysis of axially compressed cylindrical shells under turbulent boundary layer in a symplectic system

    Science.gov (United States)

    Li, Yuyin; Zhang, Yahui; Kennedy, David

    2017-10-01

    A random vibration analysis of an axially compressed cylindrical shell under a turbulent boundary layer (TBL) is presented in the symplectic duality system. By expressing the cross power spectral density (PSD) of the TBL as a Fourier series in the axial and circumferential directions, the problem of structures excited by a random distributed pressure due to the TBL is reduced to solving the harmonic response function, which is the response of structures to a spatial and temporal harmonic pressure of unit magnitude. The governing differential equations of the axially compressed cylindrical shell are derived in the symplectic duality system, and then a symplectic eigenproblem is formed by using the method of separation of variables. Expanding the excitation vector and unknown state vector in symplectic space, decoupled governing equations are derived, and then the analytical solution can be obtained. In contrast to the modal decomposition method (MDM), the present method is formulated in the symplectic duality system and does not need modal truncation, and hence the computations are of high precision and efficiency. In numerical examples, harmonic response functions for the axially compressed cylindrical shell are studied, and a comparison is made with the MDM to verify the present method. Then, the random responses of the shell to the TBL are obtained by the present method, and the convergence problems induced by Fourier series expansion are discussed. Finally, influences of the axial compression on random responses are investigated.

  11. Cloud Optimized Image Format and Compression

    Science.gov (United States)

    Becker, P.; Plesea, L.; Maurer, T.

    2015-04-01

    Cloud based image storage and processing requires revaluation of formats and processing methods. For the true value of the massive volumes of earth observation data to be realized, the image data needs to be accessible from the cloud. Traditional file formats such as TIF and NITF were developed in the hay day of the desktop and assumed fast low latency file access. Other formats such as JPEG2000 provide for streaming protocols for pixel data, but still require a server to have file access. These concepts no longer truly hold in cloud based elastic storage and computation environments. This paper will provide details of a newly evolving image storage format (MRF) and compression that is optimized for cloud environments. Although the cost of storage continues to fall for large data volumes, there is still significant value in compression. For imagery data to be used in analysis and exploit the extended dynamic range of the new sensors, lossless or controlled lossy compression is of high value. Compression decreases the data volumes stored and reduces the data transferred, but the reduced data size must be balanced with the CPU required to decompress. The paper also outlines a new compression algorithm (LERC) for imagery and elevation data that optimizes this balance. Advantages of the compression include its simple to implement algorithm that enables it to be efficiently accessed using JavaScript. Combing this new cloud based image storage format and compression will help resolve some of the challenges of big image data on the internet.

  12. Toward compressed DMD: spectral analysis of fluid flows using sub-Nyquist-rate PIV data

    CERN Document Server

    Tu, Jonathan H; Kutz, J Nathan; Shang, Jessica K

    2014-01-01

    Dynamic mode decomposition (DMD) is a powerful and increasingly popular tool for performing spectral analysis of fluid flows. However, it requires data that satisfy the Nyquist-Shannon sampling criterion. In many fluid flow experiments, such data are impossible to capture. We propose a new approach that combines ideas from DMD and compressed sensing. Given a vector-valued signal, we take measurements randomly in time (at a sub-Nyquist rate) and project the data onto a low-dimensional subspace. We then use compressed sensing to identify the dominant frequencies in the signal and their corresponding modes. We demonstrate this method using two examples, analyzing both an artificially constructed test dataset and particle image velocimetry data collected from the flow past a cylinder. In each case, our method correctly identifies the characteristic frequencies and oscillatory modes dominating the signal, proving the proposed method to be a capable tool for spectral analysis using sub-Nyquist-rate sampling.

  13. Simultaneous Greedy Analysis Pursuit for compressive sensing of multi-channel ECG signals.

    Science.gov (United States)

    Avonds, Yurrit; Liu, Yipeng; Van Huffel, Sabine

    2014-01-01

    This paper addresses compressive sensing for multi-channel ECG. Compared to the traditional sparse signal recovery approach which decomposes the signal into the product of a dictionary and a sparse vector, the recently developed cosparse approach exploits sparsity of the product of an analysis matrix and the original signal. We apply the cosparse Greedy Analysis Pursuit (GAP) algorithm for compressive sensing of ECG signals. Moreover, to reduce processing time, classical signal-channel GAP is generalized to the multi-channel GAP algorithm, which simultaneously reconstructs multiple signals with similar support. Numerical experiments show that the proposed method outperforms the classical sparse multi-channel greedy algorithms in terms of accuracy and the single-channel cosparse approach in terms of processing speed.

  14. A Simplified Analysis of the Post-buckling Behavior of a Compressed Reinforcing Bar

    Directory of Open Access Journals (Sweden)

    P. Kabele

    2004-01-01

    Full Text Available Recently, a computational methodology based on a sequential multiscale approach, which facilitates numerical simulation of an R/C building demolition has been developed. In this type of analysis, it is necessary to capture the behavior of compressed reinforcement bars until complete rupture, which occurs due to extensive bending in the post-buckling regime. To this end, a simplified analytical model of the post-buckling behavior of a compressed bar is proposed. The simplification consists namely in considering rigid-plastic material behavior, neglecting axial contraction of the central line, and approximating the shape of the deformed central line in the plastic hinges by a circular arch. Consequently, the axial loading force, bar end displacement, and extreme strain can be expressed in relatively simple closed forms. The results obtained with the proposed model show very close agreement with those obtained by a detailed and realistic finite element analysis, which justifies the use of the simplifying assumptions. 

  15. Determinants of Advertising Effectiveness: The Development of an International Advertising Elasticity Database and a Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Sina Henningsen

    2011-12-01

    Full Text Available Increasing demand for marketing accountability requires an efficient allocation of marketing expenditures. Managers who know the elasticity of their marketing instruments can allocate their budgets optimally. Meta-analyses offer a basis for deriving benchmark elasticities for advertising. Although they provide a variety of valuable insights, a major shortcoming of prior meta-analyses is that they report only generalized results as the disaggregated raw data are not made available. This problem is highly relevant because coding of empirical studies, at least to a certain extent, involves subjective judgment. For this reason, meta-studies would be more valuable if researchers and practitioners had access to disaggregated data allowing them to conduct further analyses of individual, e.g., product-level-specific, interests. We are the first to address this gap by providing (1 an advertising elasticity database (AED and (2 empirical generalizations about advertising elasticities and their determinants. Our findings indicate that the average current-period advertising elasticity is 0.09, which is substantially smaller than the value 0f 0.12 that was recently reported by Sethuraman, Tellis, and Briesch (2011. Furthermore, our meta-analysis reveals a wide range of significant determinants of advertising elasticity. For example, we find that advertising elasticities are higher (i for hedonic and experience goods than for other goods; (ii for new than for established goods; (iii when advertising is measured in gross rating points (GRP instead of absolute terms; and (iv when the lagged dependent or lagged advertising variable is omitted.

  16. Alternative Compression Garments

    Science.gov (United States)

    Stenger, M. B.; Lee, S. M. C.; Ribeiro, L. C.; Brown, A. K.; Westby, C. M.; Platts, S. H.

    2011-01-01

    Orthostatic intolerance after spaceflight is still an issue for astronauts as no in-flight countermeasure has been 100% effective. Future anti-gravity suits (AGS) may be similar to the Shuttle era inflatable AGS or may be a mechanical compression device like the Russian Kentavr. We have evaluated the above garments as well as elastic, gradient compression garments of varying magnitude and determined that breast-high elastic compression garments may be a suitable replacement to the current AGS. This new garment should be more comfortable than the AGS, easy to don and doff, and as effective a countermeasure to orthostatic intolerance. Furthermore, these new compression garments could be worn for several days after space flight as necessary if symptoms persisted. We conducted two studies to evaluate elastic, gradient compression garments. The purpose of these studies was to evaluate the comfort and efficacy of an alternative compression garment (ACG) immediately after actual space flight and 6 degree head-down tilt bed rest as a model of space flight, and to determine if they would impact recovery if worn for up to three days after bed rest.

  17. Analysis and Optimization of a Compressed Air Energy Storage—Combined Cycle System

    OpenAIRE

    Wenyi Liu; Linzhi Liu; Luyao Zhou; Jian Huang; Yuwen Zhang; Gang Xu; Yongping Yang

    2014-01-01

    Compressed air energy storage (CAES) is a commercial, utility-scale technology that provides long-duration energy storage with fast ramp rates and good part-load operation. It is a promising storage technology for balancing the large-scale penetration of renewable energies, such as wind and solar power, into electric grids. This study proposes a CAES-CC system, which is based on a conventional CAES combined with a steam turbine cycle by waste heat boiler. Simulation and thermodynamic analysis...

  18. Technico-economical analysis of a hybrid wave power-air compression storage system

    OpenAIRE

    Hernandez-Torres, David; Bridier, Laurent; David, Mathieu; Lauret, Philippe; Ardiale, Thomas

    2015-01-01

    International audience; This paper presents a technico-economical analysis of a Pelamis wave power generator coupled with a proposed air compression storage system. Ocean wave measurements and forecasts are used from a site near the city of Saint-Pierre in Réunion island, France. The insular context requires both smoothing and forecast of the output power from the wave power system. The storage system is a solution to meet this requirement. Several power network services are defined by the ut...

  19. A parallel and matrix free framework for global stability analysis of compressible flows

    CERN Document Server

    Henze, O; Sesterhenn, J

    2015-01-01

    An numerical iterative framework for global modal stability analysis of compressible flows using a parallel environment is presented. The framework uses a matrix-free implementation to allow computations of large scale problems. Various methods are tested with regard to convergence acceleration of the framework. The methods consist of a spectral Cayley transformation used to select desired Eigenvalues from a large spectrum, an improved linear solver and a parallel block-Jacobi preconditioning scheme.

  20. LEMPEL - ZIV - WELCH & HUFFMAN” - THE LOSSLESS COMPRESSION TECHNIQUES; (IMPLEMENTATION ANALYSIS AND COMPARISON THEREOF)

    OpenAIRE

    Kapil Kapoor*, Dr. Abhay Sharma

    2016-01-01

    This paper is about the Implementation Analysis and Comparison of Lossless Compression Techniques viz. Lempel-Ziv-Welch and Huffman. LZW technique assigns fixed length code words. It requires no prior information about the probability of occurrence of symbols to be encoded. Basic idea in Huffman technique is that different gray levels occur with different probability (non-uniform- '•histogram). It uses shorter code words for the more common gray levels and longer code words for the l...

  1. Impaired Arterial Elasticity Identified by Pulse Waveform Analysis is a Non- invasive Measure for Early Detection of Endothelial Dysfunction

    Institute of Scientific and Technical Information of China (English)

    Tao Jun; Wang Yan; Yang Zhen; Tu Chang; Xu Mingguo; Wang Jiemei

    2004-01-01

    Objectives Endothelial dysfunction is the earliest marker for atherosclerosis and plays key role in the pathogenesis of cardiovascular diseases. The present study was performed to evaluate effect of aging on arterial elasticity by using pulse waveform analysis and investigate whether the changes in arterial elasticity can be used as a non - invasive measure for early detection of endothelial dysfunction.Methods Using modified Windkessel model of the circulation and pulse waveform analysis, C1 large artery and C2 small artery elasticity indices of 204 normal healthy subjects ( age 15 -80 years) were measured.Among them twenty - four male healthy subjects were divided into both the young (age 20 -30 years, n =12) and elderly (age 60 - 70 years, n = 12) groups.We delivered acethycholine (Ach), an endotheliumdependent vasodilator, and sodium nitroprusside(SNP), an endothelium- independent vasodilator, to dermal vessels of the forearm using iontophoresis, respectively, and measured basal and peak blood flow using laser doppler fluximetry. Results C1 large artery and C2 small artery elasticity indices were reduced with advancing age. C 1 large artery and C2 small artery elasticity indices were negatively correlated with age (r= -0.628, p<0.001; r= -0.595, p <0.001).Basal blood flow was similar between the young and elderly groups ( 14.58 ± 3.4 vs 13.52 ± 3.41 PU, p =NS). Peak blood flow induced by Ach was significantly reduced in the elderly group compared with the young group (83.4 ± 11.9 vs 93.75 ± 10. 87 PU, p < 0. 05 ).However, peak blood flow induced by SNP was similar in the two groups ( 119. 17 ± 16.76 vs 128.33 ± 21.29 PU,p = NS). Ach - induced peak blood flow correlated positively with C1 large artery and C2 small artery elasticity indices( r=0.56, p <0.01; r =0.53, p <0.01).Conclusions Advancing age leads to impaired artery elasticity and endothelial dysfun ction. Reduced arterial elasticity is, in parallel, associated with diminished

  2. Nonlinear dynamic analysis of damaged Reddy-Bickford beams supported on an elastic Pasternak foundation

    Science.gov (United States)

    Stojanović, Vladimir; Petković, Marko D.

    2016-12-01

    Geometrically nonlinear free and forced vibrations of damaged high order shear deformable beams resting on a nonlinear Pasternak foundation are investigated in this paper. Equations of motion are derived for the beam which is under subjected combined action of arbitrarily distributed or concentrated transverse loading as well as axial loading. To account for shear deformations, the concept of high order shear deformation is used in comparison with the concept of first order shear deformation theory. Analyses are performed to investigate the effects of the specific stiffness of the foundation on the damaged beam frequencies and displacements with the aim of equalising the response of a damaged and an intact beam. According to that, functions of the foundation stiffness are determined depending on the location and size of the damage as a result of the possibility for the damaged beam to behave like one that is intact. An advanced p-version of the finite element method is developed for geometrically nonlinear vibrations of damaged Reddy-Bickford beams. The present study gives a clear view of the nonlinear dynamical behaviour of four types of beams according to high order shear deformation theory - an intact beam, a damaged beam, a damaged beam on an elastic foundation and intact beam on elastic foundation. The paper also presents the derivation of a new set of two nonlinear partial differential equations where only the transverse and axial displacements figure. The forced nonlinear vibrations problem is solved in the time domain using the Newmark integration method. Free vibration analysis carried out by harmonic balance and the use of continuation methods and backbone curves are constructed.

  3. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.

    Science.gov (United States)

    Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping

    2015-10-01

    We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.

  4. Price elasticity of on- and off-premises demand for alcoholic drinks: A Tobit analysis.

    Science.gov (United States)

    Jiang, Heng; Livingston, Michael; Room, Robin; Callinan, Sarah

    2016-06-01

    Understanding how price policies will affect alcohol consumption requires estimates of the impact of price on consumption among different types of drinkers and across different consumption settings. This study aims to estimate how changes in price could affect alcohol demand across different beverages, different settings (on-premise, e.g., bars, restaurants and off-premise, e.g., liquor stores, supermarkets), and different levels of drinking and income. Tobit analysis is employed to estimate own- and cross-price elasticities of alcohol demand among 11 subcategories of beverage based on beverage type and on- or off-premise supply, using cross-sectional data from the Australian arm of the International Alcohol Control Survey 2013. Further elasticity estimates were derived for sub-groups of drinkers based on their drinking and income levels. The results suggest that demand for nearly every subcategory of alcohol significantly responds to its own price change, except for on-premise spirits and ready-to-drink spirits. The estimated demand for off-premise beverages is more strongly affected by own price changes than the same beverages in on-premise settings. Demand for off-premise regular beer and off-premise cask wine is more price responsive than demand for other beverages. Harmful drinkers and lower income groups appear more price responsive than moderate drinkers and higher income groups. Our findings suggest that alcohol price policies, such as increasing alcohol taxes or introducing a minimum unit price, can reduce alcohol demand. Price appears to be particularly effective for reducing consumption and as well as alcohol-related harm among harmful drinkers and lower income drinkers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Analysis and Computation of Acoustic and Elastic Wave Equations in Random Media

    KAUST Repository

    Motamed, Mohammad

    2014-01-06

    We propose stochastic collocation methods for solving the second order acoustic and elastic wave equations in heterogeneous random media and subject to deterministic boundary and initial conditions [1, 4]. We assume that the medium consists of non-overlapping sub-domains with smooth interfaces. In each sub-domain, the materials coefficients are smooth and given or approximated by a finite number of random variable. One important example is wave propagation in multi-layered media with smooth interfaces. The numerical scheme consists of a finite difference or finite element method in the physical space and a collocation in the zeros of suitable tensor product orthogonal polynomials (Gauss points) in the probability space. We provide a rigorous convergence analysis and demonstrate different types of convergence of the probability error with respect to the number of collocation points under some regularity assumptions on the data. In particular, we show that, unlike in elliptic and parabolic problems [2, 3], the solution to hyperbolic problems is not in general analytic with respect to the random variables. Therefore, the rate of convergence is only algebraic. A fast spectral rate of convergence is still possible for some quantities of interest and for the wave solutions with particular types of data. We also show that the semi-discrete solution is analytic with respect to the random variables with the radius of analyticity proportional to the grid/mesh size h. We therefore obtain an exponential rate of convergence which deteriorates as the quantity h p gets smaller, with p representing the polynomial degree in the stochastic space. We have shown that analytical results and numerical examples are consistent and that the stochastic collocation method may be a valid alternative to the more traditional Monte Carlo method. Here we focus on the stochastic acoustic wave equation. Similar results are obtained for stochastic elastic equations.

  6. Applications of computer simulation, nuclear reactions and elastic scattering to surface analysis of materials

    Directory of Open Access Journals (Sweden)

    Pacheco de Carvalho, J. A.

    2008-08-01

    Full Text Available This article involves computer simulation and surface analysis by nuclear techniques, which are non-destructive. Both the “energy method of analysis” for nuclear reactions and elastic scattering are used. Energy spectra are computer simulated and compared with experimental data, giving target composition and concentration profile information. The method is successfully applied to thick flat targets of graphite, quartz and sapphire and targets containing thin films of aluminium oxide. Depth profiles of 12C and 16O nuclei are determined using (d,p and (d,α deuteron induced reactions. Rutherford and resonance elastic scattering of (4He+ ions are also used.

    Este artículo trata de simulación por ordenador y del análisis de superficies mediante técnicas nucleares, que son no destructivas. Se usa el “método de análisis en energia” para reacciones nucleares, así como el de difusión elástica. Se simulan en ordenador espectros en energía que se comparan com datos experimentales, de lo que resulta la obención de información sobre la composición y los perfiles de concentración de la muestra. Este método se aplica con éxito em muestras espesas y planas de grafito, cuarzo y zafiro y muestras conteniendo películas finas de óxido de aluminio. Se calculan perfiles en profundidad de núcleos de 12C y de 16O a través de reacciones (d,p y (d,α inducidas por deuterones. Se utiliza también la difusión elástica de iones (4He+, tanto a Rutherford como resonante.

  7. Expiratory rib cage compression in mechanically ventilated adults: systematic review with meta-analysis

    Science.gov (United States)

    Borges, Lúcia Faria; Saraiva, Mateus Sasso; Saraiva, Marcos Ariel Sasso; Macagnan, Fabrício Edler; Kessler, Adriana

    2017-01-01

    Objective To review the literature on the effects of expiratory rib cage compression on ventilatory mechanics, airway clearance, and oxygen and hemodynamic indices in mechanically ventilated adults. Methods Systematic review with meta-analysis of randomized clinical trials in the databases MEDLINE (via PubMed), EMBASE, Cochrane CENTRAL, PEDro, and LILACS. Studies on adult patients hospitalized in intensive care units and under mechanical ventilation that analyzed the effects of expiratory rib cage compression with respect to a control group (without expiratory rib cage compression) and evaluated the outcomes static and dynamic compliance, sputum volume, systolic blood pressure, diastolic blood pressure, mean arterial pressure, heart rate, peripheral oxygen saturation, and ratio of arterial oxygen partial pressure to fraction of inspired oxygen were included. Experimental studies with animals and those with incomplete data were excluded. Results The search strategy produced 5,816 studies, of which only three randomized crossover trials were included, totaling 93 patients. With respect to the outcome of heart rate, values were reduced in the expiratory rib cage compression group compared with the control group [-2.81 bpm (95% confidence interval [95%CI]: -4.73 to 0.89; I2: 0%)]. Regarding dynamic compliance, there was no significant difference between groups [-0.58mL/cmH2O (95%CI: -2.98 to 1.82; I2: 1%)]. Regarding the variables systolic blood pressure and diastolic blood pressure, significant differences were found after descriptive evaluation. However, there was no difference between groups regarding the variables secretion volume, static compliance, ratio of arterial oxygen partial pressure to fraction of inspired oxygen, and peripheral oxygen saturation. Conclusion There is a lack of evidence to support the use of expiratory rib cage compression in routine care, given that the literature on this topic offers low methodological quality and is inconclusive. PMID

  8. Analysis of an evaporator-condenser-separated mechanical vapor compression system

    Science.gov (United States)

    Wu, Hong; Li, Yulong; Chen, Jiang

    2013-04-01

    An evaporator-condenser-separated mechanical vapor compression (MVC) system was presented. The better effect of descaling and antiscaling was obtained by the new system. This study focused on the method of thermodynamic analysis, and the energy and exergy flow diagrams were established by using the first and second law of thermodynamics analysis. The results show that the energy utilization rate is very high and the specific power consumption is low. Exergy analysis indicates that the exergy efficiency is low, and the largest exergy loss occurs within the evaporator -condenser and the compressor.

  9. BEM TECHNIQUE FOR THE ANALYSIS OF 2D ELASTIC SOLIDS DYNAMICS

    Directory of Open Access Journals (Sweden)

    Vorona Yu.V.

    2014-12-01

    Full Text Available A numerical approach to calculating the singular parts of the Boundary Integral Equations for 2D elastic solids harmonic vibration is proposed. The validation of the approach in wide range of frequencies is demonstrated. The developed numerical BEM technique is appliead to the problem of elastic solids periodical vibration.

  10. A Meta-analysis of the Price Elasticity of Gasoline Demand. A System of Equations Approach

    NARCIS (Netherlands)

    Brons, Martijn; Nijkamp, Peter; Pels, Eric; Rietveld, Piet

    2006-01-01

    Automobile gasoline demand can be expressed as a multiplicative function of fuel efficiency, mileage per car and car ownership. This implies a linear relationship between the price elasticity of total fuel demand and the price elasticities of fuel efficiency, mileage per car and car ownership. In th

  11. A Meta-analysis of the Price Elasticity of Gasoline Demand. A System of Equations Approach

    NARCIS (Netherlands)

    Brons, Martijn; Nijkamp, Peter; Pels, Eric; Rietveld, Piet

    2006-01-01

    Automobile gasoline demand can be expressed as a multiplicative function of fuel efficiency, mileage per car and car ownership. This implies a linear relationship between the price elasticity of total fuel demand and the price elasticities of fuel efficiency, mileage per car and car ownership. In th

  12. A Meta-analysis of the Price Elasticity of Gasoline Demand. A System of Equations Approach

    NARCIS (Netherlands)

    Brons, Martijn; Nijkamp, Peter; Pels, Eric; Rietveld, Piet

    2006-01-01

    Automobile gasoline demand can be expressed as a multiplicative function of fuel efficiency, mileage per car and car ownership. This implies a linear relationship between the price elasticity of total fuel demand and the price elasticities of fuel efficiency, mileage per car and car ownership. In

  13. The Faraday Pavilion: activating bending in the design and analysis of an elastic gridshell

    DEFF Research Database (Denmark)

    Nicholas, Paul; Lafuente Hernandez, Elisa; Gengnagel, Christoph

    2013-01-01

    This paper reports the architectural and engineering design, and construction, of The Faraday Pavilion, a GFRP elastic gridshell with an irregular grid topology. Gridshell structures are self-formed through an erection process in which they are elastically deformed, and the prediction and steering...

  14. Time-frequency analysis of the bistatic acoustic scattering from a spherical elastic shell.

    Science.gov (United States)

    Anderson, Shaun D; Sabra, Karim G; Zakharia, Manell E; Sessarego, Jean-Pierre

    2012-01-01

    The development of low-frequency sonar systems, using, for instance, a network of autonomous systems in unmanned vehicles, provides a practical means for bistatic measurements (i.e., when the source and receiver are widely separated) allowing for multiple viewpoints of the target of interest. Time-frequency analysis, in particular, Wigner-Ville analysis, takes advantage of the evolution time dependent aspect of the echo spectrum to differentiate a man-made target, such as an elastic spherical shell, from a natural object of the similar shape. A key energetic feature of fluid-loaded and thin spherical shell is the coincidence pattern, also referred to as the mid-frequency enhancement (MFE), that results from antisymmetric Lamb-waves propagating around the circumference of the shell. This article investigates numerically the bistatic variations of the MFE with respect to the monostatic configuration using the Wigner-Ville analysis. The observed time-frequency shifts of the MFE are modeled using a previously derived quantitative ray theory by Zhang et al. [J. Acoust. Soc. Am. 91, 1862-1874 (1993)] for spherical shell's scattering. Additionally, the advantage of an optimal array beamformer, based on joint time delays and frequency shifts is illustrated for enhancing the detection of the MFE recorded across a bistatic receiver array when compared to a conventional time-delay beamformer.

  15. A co-integration analysis of the price and income elasticities of energy demand in Turkish agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Tuerkekul, Berna, E-mail: berna.turkekul@ege.edu.t [Department of Agricultural Economics, Faculty of Agriculture, Ege University, 35100 Izmir (Turkey); Unakitan, Goekhan, E-mail: unakitan@nku.edu.t [Department of Agricultural Economics, Faculty of Agriculture, Namik Kemal University, Tekirdag (Turkey)

    2011-05-15

    Agriculture has an important role in every country's development. Particularly, the contribution of agriculture to development and competitiveness is increasing with agricultural productivity growth. Productivity, in turn, is closely associated with direct and indirect use of energy as an input. Therefore, the importance of energy in agriculture cannot be denied as one of the basic inputs to the economic growth process. Following the importance of energy in Turkish agriculture, this study aims to estimate the long- and short-run relationship of energy consumption, agricultural GDP, and energy prices via co-integration and error correction (ECM) analysis. Annual data from 1970 to 2008 for diesel and electricity consumptions are utilized to estimate long-run and short-run elasticities. According to ECM analysis, for the diesel demand model, the long-run income and price elasticities were calculated as 1.47 and -0.38, respectively. For the electricity demand model, income and price elasticities were calculated at 0.19 and -0.72, respectively, in the long run. Briefly, in Turkey, support for energy use in agriculture should be continued in order to ensure sustainability in agriculture, increase competitiveness in international markets, and balance farmers' income. - Research highlights: {yields} We estimate the long and short run elasticities for diesel and electricity demands in agriculture. {yields} The long-run income and price elasticities calculated as 1.47 and 0.38, respectively for diesel. {yields} The long run Income and price elasticities calculated as 0.19 and 0.72 for electricity.

  16. Non-linear elastic deformations

    CERN Document Server

    Ogden, R W

    1997-01-01

    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  17. An analysis of gasoline demand elasticities at the national and local levels in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Crotte, Amado [Mexican Ministry of Communications and Transport, Mexico City (Mexico); Noland, Robert B. [Alan M. Voorhees Transportation Center, E. J. Bloustein School of Planning and Public Policy, Rutgers University, New Brunswick, NJ 08901 (United States); Graham, Daniel J. [Centre for Transport Studies, Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ London (United Kingdom)

    2010-08-15

    The majority of evidence on gasoline demand elasticities is derived from models based on national data. Since the largest growth in population is now taking place in cities in the developing world it is important that we understand whether this national evidence is applicable to demand conditions at the local level. The aim of this paper is to estimate and compare gasoline per vehicle demand elasticities at the national and local levels in Mexico. National elasticities with respect to price, income, vehicle stock and metro fares are estimated using both a time series cointegration model and a panel GMM model for Mexican states. Estimates for Mexico City are derived by modifying national estimates according to mode shares as suggested by, and by estimating a panel Within Groups model with data aggregated by borough. Although all models agree on the sign of the elasticities the magnitudes differ greatly. Elasticities change over time and differ between the national and local levels, with smaller price responses in Mexico City. In general, price elasticities are smaller than those reported in the gasoline demand surveys, a pattern previously found in developing countries. The fact that income and vehicle stock elasticities increase over time may suggest that vehicles are being used more intensively in recent years and that Mexico City residents are purchasing larger vehicles. Elasticities with respect to metro fares are negligible, which suggests little substitution between modes. Finally, the fact that fuel efficiency elasticities are smaller than vehicle stock elasticities suggests that vehicle stock size, rather than its composition, has a larger impact on gasoline consumption in Mexico City. (author)

  18. Mode Ⅱ fracture analysis of double edge cracked circular disk subjected to different diametral compression

    Institute of Scientific and Technical Information of China (English)

    陈枫; 曹平; 饶秋华; 徐纪成

    2004-01-01

    A detailed analysis of mode Ⅱ stress intensity factors(SIFs) for the double edge cracked Brazilian disk subjected to different diametral compression is presented using a weight function method. The mode Ⅱ SIFs at crack tips can be obtained by simply calculating an integral of the product of mode Ⅱ weight function and the shear stress on the prospective crack faces of uncracked disk loaded by a diametral compression. A semi-analytical formula for the calculation of normalized mode Ⅱ SIF, fⅡ , is derived for different crack lengths (from 0. 1 to 0.7) and inclination angles (from 10° to 75°) with respect to loading direction. Comparison between the obtained results and finite element method solutions shows that the weight function method is of high precision. Combined with the authors' previous work on mode Ⅰ fracture analysis, the new specimen geometry can be used to study fracture through any combination of mode Ⅰ and mode Ⅱ loading by a simple alignment of the crack relative to the diameter of compression loading, and to obtain pure mode Ⅱ crack extension. Another advantage of this specimen geometry is that it is available directly from rock core and is also easy to fabricate.

  19. Design Concepts of Polycarbonate-Based Intervertebral Lumbar Cages: Finite Element Analysis and Compression Testing

    Directory of Open Access Journals (Sweden)

    J. Obedt Figueroa-Cavazos

    2016-01-01

    Full Text Available This work explores the viability of 3D printed intervertebral lumbar cages based on biocompatible polycarbonate (PC-ISO® material. Several design concepts are proposed for the generation of patient-specific intervertebral lumbar cages. The 3D printed material achieved compressive yield strength of 55 MPa under a specific combination of manufacturing parameters. The literature recommends a reference load of 4,000 N for design of intervertebral lumbar cages. Under compression testing conditions, the proposed design concepts withstand between 7,500 and 10,000 N of load before showing yielding. Although some stress concentration regions were found during analysis, the overall viability of the proposed design concepts was validated.

  20. Analysis of Large-Strain Extrusion Machining with Different Chip Compression Ratios

    Directory of Open Access Journals (Sweden)

    Wen Jun Deng

    2012-01-01

    Full Text Available Large-Strain Extrusion Machining (LSEM is a novel-introduced process for deforming materials to very high plastic strains to produce ultra-fine nanostructured materials. Before the technique can be exploited, it is important to understand the deformation behavior of the workpiece and its relationship to the machining parameters and friction conditions. This paper reports finite-element method (FEM analysis of the LSEM process to understand the evolution of temperature field, effective strain, and strain rate under different chip compression ratios. The cutting and thrust forces are also analyzed with respect to time. The results show that LSEM can produce very high strains by changing in the value of chip compression ratio, thereby enabling the production of nanostructured materials. The shape of the chip produced by LSEM can also be geometrically well constrained.

  1. Analysis of the Flexure Behavior and Compressive Strength of Fly Ash Core Sandwiched Composite Material

    Directory of Open Access Journals (Sweden)

    Vijaykumar H.K

    2014-07-01

    Full Text Available In this paper, commercially available Fly Ash and Epoxy is used for the core material, woven glass fabric as reinforcing skin material, epoxy as matrix/adhesive materials used in this study for the construction of sandwich composite. Analysis is carried out on different proportions of epoxy and fly ash sandwiched composite material for determining the flexural strength and compressive strength, three different proportions of epoxy and fly ash used for the study. Those are 65%-35% (65% by weight fly ash and 35% by weight epoxy resin composite material, 60%-40% and 55%-45% composite material. 60%-40% composite material specimen shows better results in the entire test carried out i.e. Flexure and Compression. The complete experimental results are discussed and presented in this paper.

  2. Compressive elastic moduli and polishing performance of non-rigid core/shell structured PS/SiO{sub 2} composite abrasives evaluated by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ailian [College of Mechanical and Energy Engineering, Changzhou University, Changzhou, Jiangsu 213016 (China); Mu, Weibin [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Chen, Yang, E-mail: cy.jpu@126.com [School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China)

    2014-01-30

    The core/shell structured polystyrene (PS)/SiO{sub 2} composite microspheres with different silica shell morphology were synthesized by a modified Stöber method. As confirmed by transmission electron microscopy (TEM), the rough discontinuous shell consisted of separate SiO{sub 2} nanoparticles for composite-A, while the smooth continuous one was composed of amorphous silica network for composite-B. Atomic force microscopy (AFM) was employed to probe the compressive Young's moduli (E) and chemical mechanical polishing (CMP) performances of the as-prepared PS/SiO{sub 2} composite microspheres. On the basis of the Hertzian contact mechanics, the calculated E values of the PS microspheres, composite-A and composite-B were 2.9 ± 0.4, 5.1 ± 1.2 and 6.0 ± 1.2 GPa, respectively. Compared to traditional abrasives, thermally grown silicon oxide wafers after polished by the core/shell PS/SiO{sub 2} composite abrasives obtained a lower root mean square roughness and a higher material removal rate value. In addition, there is an obvious effect of shell morphology of the composites on oxide CMP performance and structural stability during polishing process. This approach would provide a basis for understanding the actual role of organic/inorganic core/shell composite abrasives in the material removal process of CMP.

  3. Combining Elastic Network Analysis and Molecular Dynamics Simulations by Hamiltonian Replica Exchange.

    Science.gov (United States)

    Zacharias, Martin

    2008-03-01

    Coarse-grained elastic network models (ENM) of proteins can be used efficiently to explore the global mobility of a protein around a reference structure. A new Hamiltonian-replica exchange molecular dynamics (H-RexMD) method has been designed that effectively combines information extracted from an ENM analysis with atomic-resolution MD simulations. The ENM analysis is used to construct a distance-dependent penalty (flooding or biasing) potential that can drive the structure away from its current conformation in directions compatible with the ENM model. Various levels of the penalty or biasing potential are added to the force field description of the MD simulation along the replica coordinate. One replica runs at the original force field. By focusing the penalty potential on the relevant soft degrees of freedom the method avoids the rapid increase of the replica number with increasing system size to cover a desired temperature range in conventional (temperature) RexMD simulations. The application to domain motions in lysozyme of bacteriophage T4 and to peptide folding indicates significantly improved conformational sampling compared to conventional MD simulations.

  4. Standing Waves in an Elastic Spring: A Systematic Study by Video Analysis

    Science.gov (United States)

    Ventura, Daniel Rodrigues; de Carvalho, Paulo Simeão; Dias, Marco Adriano

    2017-04-01

    The word "wave" is part of the daily language of every student. However, the physical understanding of the concept demands a high level of abstract thought. In physics, waves are oscillating variations of a physical quantity that involve the transfer of energy from one point to another, without displacement of matter. A wave can be formed by an elastic deformation, a variation of pressure, changes in the intensity of electric or magnetic fields, a propagation of a temperature variation, or other disturbances. Moreover, a wave can be categorized as pulsed or periodic. Most importantly, conditions can be set such that waves interfere with one another, resulting in standing waves. These have many applications in technology, although they are not always readily identified and/or understood by all students. In this work, we use a simple setup including a low-cost constant spring, such as a Slinky, and the free software Tracker for video analysis. We show they can be very useful for the teaching of mechanical wave propagation and the analysis of harmonics in standing waves.

  5. Target Gap of Emission Reduction for China: Analysis based on Elastic Decoupling

    Institute of Scientific and Technical Information of China (English)

    Li Zhongmin; Chen Xiangtao; Yao Yu

    2012-01-01

    The present paper analyzes historically the relationship between carbon emission and economic development by differ- ent stages through adopting elastic decoupling methods and Tapio evaluation criteria along with a comparison with the national Five Year Plans. The analysis shows that the influencing factors to the relationship between carbon emission and economy in China are different, and economic development and carbon emission have less connection in the recent 30 years of reform and opening-up in China. It is a difficult task to realize the promise that we will reduce carbon emission by 40%-50% in 2020 based on the data from historical experience and different expectations for economic development from economists. Through constructing the calcula- tion model of carbon emission intensity gap according to different development scenarios, the analysis shows that economic growth, infrastructure investment and further development of industrial- ization are the main drivers to the increase of carbon emission, technological progress, and particularly, the reduction of energy consumption is the primary means to reduce carbon emission in China. It is imperative to transform the economic growth pattern, and it is a grand task to perform and there is a long way to go for China to maintain economic growth and reduce carbon intensity.

  6. Elastic responses of underground circular arches considering dynamic soil-structure interaction: A theoretical analysis

    Institute of Scientific and Technical Information of China (English)

    Hai-Long Chen; Feng-Nian Jin; Hua-Lin Fan

    2013-01-01

    Due to the wide applications of arches in underground protective structures,dynamic analysis of circular arches including soil-structure interactions is important.In this paper,an exact solution of the forced vibration of circular arches subjected to subsurface denotation forces is obtained.The dynamic soil-structure interaction is considered with the introduction of an interfacial damping between the structure element and the surrounding soil into the equation of motion.By neglecting the influences of shear,rotary inertia and tangential forces and assuming the arch incompressible,the equations of motion of the buried arches were set up.Analytical solutions of the dynamic responses of the protective arches were deduced by means of modal superposition.Arches with different opening angles,acoustic impedances and rise-span ratios were analyzed to discuss their influences on an arch.The theoretical analysis suggests blast loads for elastic designs and predicts the potential failure modes for buried protective arches.

  7. Magneto-elastic oscillator: Modeling and analysis with nonlinear magnetic interaction

    Science.gov (United States)

    Kumar, K. Aravind; Ali, Shaikh Faruque; Arockiarajan, A.

    2017-04-01

    The magneto-elastically buckled beam is a classic example of a nonlinear oscillator that exhibits chaotic motions. This system serves as a model to analyze the motion of elastic structures in magnetic fields. The system follows a sixth order magneto-elastic potential and may have up to five static equilibrium positions. However, often the non-dimensional Duffing equation is used to approximate the system, with the coefficients being derived from experiments. In few other instances, numerical methods are used to evaluate the magnetic field values. These field values are then used to approximate the nonlinear magnetic restoring force. In this manuscript, we derive analytical closed form expressions for the magneto-elastic potential and the nonlinear restoring forces in the system. Such an analytical formulation would facilitate tracing the effect of change in a parameter, such as the magnet dimension, on the dynamics of the system. The model is derived assuming a single mode approximation, taking into account the effect of linear elastic and nonlinear magnetic forces. The developed model is then numerically simulated to show that it is accurate in capturing the system dynamics and bifurcation of equilibrium positions. The model is validated through experiments based on forced vibrations of the magneto-elastic oscillator. To gather further insights about the magneto-elastic oscillator, a parametric study has been conducted based on the field strength of the magnets and the distance between the magnets and the results are reported.

  8. Finite Element Analysis and Experimentation of an Icosahedron Frame under Compression

    Science.gov (United States)

    2015-09-17

    compressive load in which collapse occurs. The frame was created in SolidWorks using the material properties of the 3D plastic building material VeroBlue. Two...virtual design is made in a SolidWorks Program in a type of CAD file (Computer Aided Design) [20]. To prepare a digital file for printing, the 3D...Systemes SolidWorks Corp., 2008. [2] Buckling analysis. [Online]. Availble: https://www.clear.rice.edu/mech403/HelpFiles/FEA_Buckling_analysis.pdf [3

  9. Analysis of Comparison between Unconfined and Confined Condition of Foamed Concrete Under Uni-Axial Compressive Load

    Directory of Open Access Journals (Sweden)

    Mohd Zairul A. Abdul Rahman

    2010-01-01

    Full Text Available Problem statement: Foamed concrete has become most commercial material in construction industry. People in industries were come out with the new mix design of foamed concrete to meet the specification and the requirements needed. Approach: This is because foamed concrete has the possibility as alternative of lightweight concrete for producing intermediate strength capabilities with excellent thermal insulation, freeze-thaw resistance, high-impact resistance and good shock absorption. Results: Currently Standard test to measure the compressive strength of foamed concrete is using standard unconfined compressive test. Several research has been conduct but the compressive strength using standard unconfined compressive test not capture true behavior of foamed concrete because it just achieved only low compressive strength and sample under compression failed due to brittle collapse of the sample. This paper was analyses the comparison between standard compressive test and confined compressive test. The confinement test introduced to prevent sample from brittle collapse. Foamed concrete cylindrical sample has been investigated under the standard compressive test for hard concrete (ASTM-C39. Based on the research, samples are produced under unconfined and confined condition. Analysis has been done and the result show that under standard compressive test, the sample failed due to early crack initiation and failed. Confinement condition was increase the compressive strength but this condition influence the result. Conclusion/Recommendations: Standard test is not suitable to capture the true behavior of foamed concrete, and to prevent the sample from brittle collapse during the test, new testing method was introduced to capture the true behavior of foamed concrete which is using Quasi Static Indentation Test. This test can be used to study about the behaviour of foamed concrete before it can be implemented to its final application.

  10. Third-order elastic constants of diamond determined from experimental data

    Science.gov (United States)

    Winey, J. M.; Hmiel, A.; Gupta, Y. M.

    2016-06-01

    The pressure derivatives of the second-order elastic constants (SOECs) of diamond were determined by analyzing previous sound velocity measurements under hydrostatic stress [McSkimin and Andreatch, J. Appl. Phys., vol. 43, 1972, pp. 2944] [4]. Our analysis corrects an error in the previously reported results. Using the corrected pressure derivatives, together with published data for the nonlinear elastic response of shock-compressed diamond [Lang and Gupta, Phys. Rev. Lett., vol. 106, 2011, pp. 125502] [3], a complete and corrected set of third-order elastic constants (TOECs) is presented that differs significantly from TOECs published previously.

  11. Application of Bayesian graphs to SN Ia data analysis and compression

    Science.gov (United States)

    Ma, Cong; Corasaniti, Pier-Stefano; Bassett, Bruce A.

    2016-12-01

    Bayesian graphical models are an efficient tool for modelling complex data and derive self-consistent expressions of the posterior distribution of model parameters. We apply Bayesian graphs to perform statistical analyses of Type Ia supernova (SN Ia) luminosity distance measurements from the joint light-curve analysis (JLA) data set. In contrast to the χ2 approach used in previous studies, the Bayesian inference allows us to fully account for the standard-candle parameter dependence of the data covariance matrix. Comparing with χ2 analysis results, we find a systematic offset of the marginal model parameter bounds. We demonstrate that the bias is statistically significant in the case of the SN Ia standardization parameters with a maximal 6σ shift of the SN light-curve colour correction. In addition, we find that the evidence for a host galaxy correction is now only 2.4σ. Systematic offsets on the cosmological parameters remain small, but may increase by combining constraints from complementary cosmological probes. The bias of the χ2 analysis is due to neglecting the parameter-dependent log-determinant of the data covariance, which gives more statistical weight to larger values of the standardization parameters. We find a similar effect on compressed distance modulus data. To this end, we implement a fully consistent compression method of the JLA data set that uses a Gaussian approximation of the posterior distribution for fast generation of compressed data. Overall, the results of our analysis emphasize the need for a fully consistent Bayesian statistical approach in the analysis of future large SN Ia data sets.

  12. Application of Bayesian graphs to SN Ia data analysis and compression

    Science.gov (United States)

    Ma, Cong; Corasaniti, Pier-Stefano; Bassett, Bruce A.

    2016-08-01

    Bayesian graphical models are an efficient tool for modelling complex data and derive self-consistent expressions of the posterior distribution of model parameters. We apply Bayesian graphs to perform statistical analyses of Type Ia supernova (SN Ia) luminosity distance measurements from the Joint Light-curve Analysis (JLA) dataset (Betoule et al. 2014). In contrast to the χ2 approach used in previous studies, the Bayesian inference allows us to fully account for the standard-candle parameter dependence of the data covariance matrix. Comparing with χ2 analysis results we find a systematic offset of the marginal model parameter bounds. We demonstrate that the bias is statistically significant in the case of the SN Ia standardization parameters with a maximal 6σ shift of the SN light-curve colour correction. In addition, we find that the evidence for a host galaxy correction is now only 2.4σ. Systematic offsets on the cosmological parameters remain small, but may increase by combining constraints from complementary cosmological probes. The bias of the χ2 analysis is due to neglecting the parameter-dependent log-determinant of the data covariance, which gives more statistical weight to larger values of the standardization parameters. We find a similar effect on compressed distance modulus data. To this end we implement a fully consistent compression method of the JLA dataset that uses a Gaussian approximation of the posterior distribution for fast generation of compressed data. Overall, the results of our analysis emphasize the need for a fully consistent Bayesian statistical approach in the analysis of future large SN Ia datasets.

  13. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: An Economic Analysis

    Science.gov (United States)

    2016-01-01

    Background Untreated vertebral compression fractures can have serious clinical consequences and impose a considerable impact on patients' quality of life and on caregivers. Since non-surgical management of these fractures has limited effectiveness, vertebral augmentation procedures are gaining acceptance in clinical practice for pain control and fracture stabilization. The objective of this analysis was to determine the cost-effectiveness and budgetary impact of kyphoplasty or vertebroplasty compared with non-surgical management for the treatment of vertebral compression fractures in patients with cancer. Methods We performed a systematic review of health economic studies to identify relevant studies that compare the cost-effectiveness of kyphoplasty or vertebroplasty with non-surgical management for the treatment of vertebral compression fractures in adults with cancer. We also performed a primary cost-effectiveness analysis to assess the clinical benefits and costs of kyphoplasty or vertebroplasty compared with non-surgical management in the same population. We developed a Markov model to forecast benefits and harms of treatments, and corresponding quality-adjusted life years and costs. Clinical data and utility data were derived from published sources, while costing data were derived using Ontario administrative sources. We performed sensitivity analyses to examine the robustness of the results. In addition, a 1-year budget impact analysis was performed using data from Ontario administrative sources. Two scenarios were explored: (a) an increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario, maintaining the current proportion of kyphoplasty versus vertebroplasty; and (b) no increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario but an increase in the proportion of kyphoplasties versus vertebroplasties. Results The base case considered each of

  14. An investigation of image compression on NIIRS rating degradation through automated image analysis

    Science.gov (United States)

    Chen, Hua-Mei; Blasch, Erik; Pham, Khanh; Wang, Zhonghai; Chen, Genshe

    2016-05-01

    The National Imagery Interpretability Rating Scale (NIIRS) is a subjective quantification of static image widely adopted by the Geographic Information System (GIS) community. Efforts have been made to relate NIIRS image quality to sensor parameters using the general image quality equations (GIQE), which make it possible to automatically predict the NIIRS rating of an image through automated image analysis. In this paper, we present an automated procedure to extract line edge profile based on which the NIIRS rating of a given image can be estimated through the GIQEs if the ground sampling distance (GSD) is known. Steps involved include straight edge detection, edge stripes determination, and edge intensity determination, among others. Next, we show how to employ GIQEs to estimate NIIRS degradation without knowing the ground truth GSD and investigate the effects of image compression on the degradation of an image's NIIRS rating. Specifically, we consider JPEG and JPEG2000 image compression standards. The extensive experimental results demonstrate the effect of image compression on the ground sampling distance and relative edge response, which are the major factors effecting NIIRS rating.

  15. Analysis of Proposed Fully Internal Compression Geometry for an RBCC Engine

    Science.gov (United States)

    Rojas-Oviedo, Ruben; Deng, Z. T.; Harris, Lawanna; Rodriguez, Pete (Technical Monitor)

    2001-01-01

    A proposed fully internal compression geometry for rocket based combined cycle (RBCC) engine, STEPER (Space Transportation Engine Prototype for Engineering Research), was investigated numerically in this paper. The Steper-engine has been designed to power a reusable launch vehicle that may take-off horizontally, accelerate to Mach 2, sustain supersonic air-breathing combustion to Mach 10 while ascending to 50 km and then transition to full rocket propulsion to enter low earth orbit. The proposed engine geometry replaces the alternative conical center-body and supporting struts with a quasi-stationary upper and lower compression ramps. A cluster of thruster nozzles was embedded inside the ramp and provide thrust to the engine with additional fuel existing at the nozzle exit. The proposed geometry eases the problem of cooling hard to reach cavities. This design geometry was investigated numerically. Both perfect gas and finite rate chemistry analysis were performed. Results indicated that the emanating oblique shock waves produced by the upper and lower compression ramps intersect and the reflecting shocks do not reach the wall of the combustor but rather downstream. This effect allows the formation of two distinct regions that can be considered the core region and the surrounding flow region. The core region has higher pressure and higher temperature than the surrounding region. Therefore providing some reduction to the thermal loads to the inner walls.

  16. Performance Analysis of Organic Rankine-vapor Compression Ice Maker Utilizing Food Industry Waste Heat

    Directory of Open Access Journals (Sweden)

    Bing Hu

    2015-05-01

    Full Text Available To develop the organic Rankine-vapor compression ice maker driven by food industry exhaust gases and engine cooling water, an organic Rankine-vapor compression cycle system was employed for ice making and a thermodynamic model was developed and the effects of working fluid types, hot water temperature and condensation temperature on the system performance were analyzed and the ice making capacity from unit mass hot water and unit power waste heat were evaluated. The calculated results show that the working fluid type and the temperatures of heat source and condensation have important effects on the system performance. The system can achieve optimal performance when use R245fa as power and refrigeration medium. The ice quantity generated from per ton hot water is 86.42 kg and the ice-making rate for per kW waste heat is 2.27 kg/h, when the temperatures of hot water and condensation are respectively 100 and 40°C. A conclusion can be draw by the calculation and analysis that using organic Rankine-vapor compression system for ice making from food industry waste heat is feasible.

  17. Dynamic Response Analysis of Microflow Electrochemical Sensors with Two Types of Elastic Membrane.

    Science.gov (United States)

    Zhou, Qiuzhan; Wang, Chunhui; Chen, Yongzhi; Chen, Shuozhang; Lin, Jun

    2016-05-09

    The Molecular Electric Transducer (MET), widely applied for vibration measurement, has excellent sensitivity and dynamic response at low frequencies. The elastic membrane in the MET is a significant factor with an obvious effect on the performance of the MET in the low frequency domain and is the focus of this paper. In simulation experiments, the elastic membrane and the reaction cavity of the MET were analysed in a model based on the multiphysics finite element method. Meanwhile, the effects caused by the elastic membrane elements are verified in this paper. With the numerical simulation and practical experiments, a suitable elastic membrane can be designed for different cavity structures. Thus, the MET can exhibit the best dynamic response characteristics to measure the vibration signals. With the new method presented in this paper, it is possible to develop and optimize the characteristics of the MET effectively, and the dynamic characteristics of the MET can be improved in a thorough and systematic manner.

  18. MHD Flow and Heat Transfer Analysis in the Wire Coating Process Using Elastic-Viscous

    OpenAIRE

    Zeeshan Khan; Rehan Ali Shah; Saeed Islam; Hamid Jan; Bilal Jan; Haroon-Ur Rasheed; Aurangzeeb Khan

    2017-01-01

    The most important plastic resins used for wire coating are polyvinyl chloride (PVC), nylon, polysulfone, and low-/high-density polyethylene (LDPE/HDPE). In this article, the coating process is performed using elastic-viscous fluid as a coating material for wire coating in a pressure type coating die. The elastic-viscous fluid is electrically conducted in the presence of an applied magnetic field. The governing non-linear equations are modeled and then solved analytically by utilizing an Adom...

  19. Slope analysis for elastic proton-proton and proton-antiproton scattering

    OpenAIRE

    Okorokov, V. A.

    2008-01-01

    The diffraction slope parameter is investigated for elastic proton-proton and proton-antiproton scattering based on the all available experimental data at intermediate square of momentum transfer in the main. Energy dependence of the elastic diffraction slope is approximated by various analytic functions in a model-independent fashion. The expanded standard logarithmic approximations allow to describe experimental slopes in all available energy range at qualitative level reasonably. Various f...

  20. Neutron Densities from a Global Analysis of Medium Energy Proton Nucleus Elastic Scattering

    CERN Document Server

    Clark, B C; Kerr, L J

    2003-01-01

    A new method for extracting neutron densities from intermediate energy elastic proton-nucleus scattering observables uses a global Dirac phenomenological (DP) approach based on the Relativistic Impulse Approximation (RIA). Data sets for Ca40, Ca48 and Pb208 in the energy range from 500 MeV to 1040 MeV are considered. The global fits are successful in reproducing the data and in predicting data sets not included in the analysis. Using this global approach, energy independent neutron densities are obtained. The vector point proton density distribution is determined from the empirical charge density after unfolding the proton form factor. The other densities are parametrized. The RMS neutron radius, R_n and the neutron skin thickness S_n obtained from the global fits using the most conservative errors are given as follows: for Ca40 R_n is (3.325 +/- 0.025) fm and S_n (-0.044 +/- 0.036) fm; for Ca48 R_n is (3.463 +/- 0.042) fm and S_n (0.103 +/- 0.045) fm; and for Pb208 R_n is (5.551 +/- 0.038) and S_n (0.116 +/-...

  1. How can cells sense the elasticity of a substrate? An analysis using a cell tensegrity model

    Directory of Open Access Journals (Sweden)

    G De Santis

    2011-10-01

    Full Text Available A eukaryotic cell attaches and spreads on substrates, whether it is the extracellular matrix naturally produced by the cell itself, or artificial materials, such as tissue-engineered scaffolds. Attachment and spreading require the cell to apply forces in the nN range to the substrate via adhesion sites, and these forces are balanced by the elastic response of the substrate. This mechanical interaction is one determinant of cell morphology and, ultimately, cell phenotype. In this paper we use a finite element model of a cell, with a tensegrity structure to model the cytoskeleton of actin filaments and microtubules, to explore the way cells sense the stiffness of the substrate and thereby adapt to it. To support the computational results, an analytical 1D model is developed for comparison. We find that (i the tensegrity hypothesis of the cytoskeleton is sufficient to explain the matrix-elasticity sensing, (ii cell sensitivity is not constant but has a bell-shaped distribution over the physiological matrix-elasticity range, and (iii the position of the sensitivity peak over the matrix-elasticity range depends on the cytoskeletal structure and in particular on the F-actin organisation. Our model suggests that F-actin reorganisation observed in mesenchymal stem cells (MSCs in response to change of matrix elasticity is a structural-remodelling process that shifts the sensitivity peak towards the new value of matrix elasticity. This finding discloses a potential regulatory role of scaffold stiffness for cell differentiation.

  2. An analysis of elastic and plastic fruit growth of mango in response to various assimilate supplies.

    Science.gov (United States)

    Lechaudel, Mathieu; Vercambre, Gilles; Lescourret, Françoise; Normand, Frederic; Génard, Michel

    2007-02-01

    Changes in elastic and plastic components of mango (Mangifera indica L. cv 'Cogshall') fruit growth were analyzed with a model of fruit growth over time and in response to various assimilate supplies. The model is based on water relations (water potential and osmotic and turgor pressures) at the fruit level. Variation in elastic fruit growth was modeled as a function of the elastic modulus and variation in turgor pressure. Variation in plastic fruit growth was modeled using the Lockhart (1965) equation. In this model, plastic growth parameters (yield threshold pressure and cell wall extensibility) varied during fruit growth. Outputs of the model were diurnal and seasonal fruit growth, and fruit turgor pressure. These variables were simulated with good accuracy by the model, particularly the observed increase in fruit size with increasing availability of assimilate supply. Shrinkage was sensitive to the surface conductance of fruit peel, the elasticity modulus and the hydraulic conductivity of fruit, whereas fruit growth rate was highly sensitive to parameters linked to changes in wall extensibility and yield threshold pressure, regardless of the assimilate supply. According to the model, plastic growth was generally zero during the day and shrinkage and swelling were linked to the elastic behavior of the fruit. During the night, plastic and elastic growths were positive, resulting in fruit expansion.

  3. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nohyu; Yang, Seung Yong [School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2016-02-15

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

  4. Large-deformation analysis of the elastic recoil of fibre layers in a Brinkman medium with application to the endothelial glycocalyx

    Science.gov (United States)

    Han, Yuefeng; Weinbaum, Sheldon; Spaan, Jos A. E.; Vink, Hans

    2006-05-01

    There is wide interest in the role of the endothelial surface layer (ESL) in transmitting blood shear stress to the intracellular cytoskeleton of the endothelial cell. However, very little is known about the mechanical properties of the glycocalyx or the flexural rigidity of the core proteins that comprise it. Vink, Duling & Spaan (FASEB J., vol. 13, 1999, p. A 11) measured the time-dependent restoration of the ESL after it had been nearly completely compressed by the passage of a white blood cell (WBC) in a tightly fitting capillary. Using this initial experiment, Weinbaum et al. (Proc. Natl. Acad. Sci. USA, vol. 100, 2003, p. 7988) predicted that the core proteins have a flexural rigidity EI of 700 pN nm(2) , which is ˜1/20 the measured value for an actin filament. However, their analysis assumes small deflections and only the fibre motion is considered. In the present paper we report additional experiments and apply large-deformation theory for ‘elastica’ to describe the restoration of the fibres in a Brinkman medium which absorbs fluid as the ESL expands. We find that there are two phases in the fibre recoil: an initial phase for large compressions where the ESL thickness is <0.36 its undisturbed thickness, and the ends of the fibres overlap and are parallel to the capillary wall; and a second phase where the fibres assume a shape that is close to the solutions for an elastic bar with linearly distributed vertical loading. The predicted time-dependent change in thickness of the ESL provides remarkably good agreement with experiment and yields an estimate of 490 pN nm(2) for the flexural rigidity EI of the core protein fibres, which is unexpectedly close to that predicted by the linear theory in Weinbaum et al. (2003).

  5. Estimating the price elasticity of beer: meta-analysis of data with heterogeneity, dependence, and publication bias.

    Science.gov (United States)

    Nelson, Jon P

    2014-01-01

    Precise estimates of price elasticities are important for alcohol tax policy. Using meta-analysis, this paper corrects average beer elasticities for heterogeneity, dependence, and publication selection bias. A sample of 191 estimates is obtained from 114 primary studies. Simple and weighted means are reported. Dependence is addressed by restricting number of estimates per study, author-restricted samples, and author-specific variables. Publication bias is addressed using funnel graph, trim-and-fill, and Egger's intercept model. Heterogeneity and selection bias are examined jointly in meta-regressions containing moderator variables for econometric methodology, primary data, and precision of estimates. Results for fixed- and random-effects regressions are reported. Country-specific effects and sample time periods are unimportant, but several methodology variables help explain the dispersion of estimates. In models that correct for selection bias and heterogeneity, the average beer price elasticity is about -0.20, which is less elastic by 50% compared to values commonly used in alcohol tax policy simulations.

  6. Mathematical methods in elasticity imaging

    CERN Document Server

    Ammari, Habib; Garnier, Josselin; Wahab, Abdul

    2015-01-01

    This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertai

  7. Uniaxial Compression Analysis and Microdeformation Characterization of Kevin Dome Anhydrite Caprock

    Science.gov (United States)

    Malenda, M. G.; Frash, L.; Carey, J. W.

    2015-12-01

    The Department of Energy currently manages the Regional Carbon Sequestration Partnership (RCSP) in efforts to develop techniques to characterize promising CO2 storage sites, efficient and durable technology for injection, and suitable regulations for future CO2 storage. Within the RCSP, the Montana State University-Bozeman led Big Sky Carbon Sequestration Project has focused on potential CO2 storage sites, including the Kevin Dome in northern Montana. The 750mi2 large dome lies along the north-southwest trending Sweetgrass Arch and is a natural CO2 reservoir with the potential to produce one million tonnes of CO2. The Project intends to extract and reinject this one million tonnes of CO2back into the water-leg of the Dome within the dolomitic, middle Duperow Formation to monitor impacts on the surrounding environment and communities. The caprock system includes extremely low porosity dolomite in the upper Duperow that is overlain by the anhydrite-dominated Potlatch caprock. Core was extracted by the Project from the Wallawein 22-1 well. Six 1"-diameter sub-samples were taken at depths of 3687 and 3689' of the 4"-diameter core in both vertical and horizontal directions. Unconfined uniaxial compression tests were conducted at room temperature using an Instron 4483 load frame with a 150kN load cell operated at a strain rate of 6.835-5mm per second. Samples were instrumented with four strain gages to record elastic moduli and characterize fracture behavior. The Potlatch anhydrite has demonstrated to be both strong and stiff with an average uniaxial compressive strength of 150.62±23.95MPa, a Young's modulus of 89.96±10.22GPa, and a Poisson's ratio of 0.32±0.05. These three variables are essential to developing geomechanical models that assess caprock responses to injection during CO2 sequestration. Petrographic characterizations of the fractured samples reveal an 80% groundmass of subeuhedral anhydrite crystals measuring 97-625μm and 20% 0.12-1mm wide veins

  8. Pattern-based compression of multi-band image data for landscape analysis

    CERN Document Server

    Myers, Wayne L; Patil, Ganapati P

    2006-01-01

    This book describes an integrated approach to using remotely sensed data in conjunction with geographic information systems for landscape analysis. Remotely sensed data are compressed into an analytical image-map that is compatible with the most popular geographic information systems as well as freeware viewers. The approach is most effective for landscapes that exhibit a pronounced mosaic pattern of land cover. The image maps are much more compact than the original remotely sensed data, which enhances utility on the internet. As value-added products, distribution of image-maps is not affected by copyrights on original multi-band image data.

  9. Compression After Impact Experiments and Analysis on Honeycomb Core Sandwich Panels with Thin Facesheets

    Science.gov (United States)

    McQuigg, Thomas D.

    2011-01-01

    A better understanding of the effect of impact damage on composite structures is necessary to give the engineer an ability to design safe, efficient structures. Current composite structures suffer severe strength reduction under compressive loading conditions, due to even light damage, such as from low velocity impact. A review is undertaken to access the current state-of-development in the areas of experimental testing, and analysis methods. A set of experiments on honeycomb core sandwich panels, with thin woven fiberglass cloth facesheets, is described, which includes detailed instrumentation and unique observation techniques.

  10. Thermo-Elastic Analysis of Internally Cooled Structures Using a Higher Order Theory

    Science.gov (United States)

    Arnold, Steven M.; Bednarcyk, Brett A.; Aboudi, Jacob

    2001-01-01

    This paper presents the results of a study on the thermomechanical behavior of internally cooled silicon nitride structures. Silicon nitride is under consideration for elevated temperature aerospace engine applications. and techniques for lowering the operating temperature of structures composed of this material are under development. Lowering the operating temperature provides a large payoff in terms of fatigue life and may be accomplished through the use of thermal barrier coatings (TBC's) and the novel concept of included cooling channels. Herein, an in-depth study is performed on the behavior of a flame-impinged silicon nitride plate with a TBC and internal channels cooled by forced air. The analysis is performed using the higher order theory for functionally graded materials (HOTFGM), which has been developed through NASA Glenn Research Center funding over the past several years. HOTFGM was chosen over the traditional finite element approach as a prelude to an examination of functionally graded silicon nitride structures for which HOTFGM is ideally suited. To accommodate the analysis requirement% of the internally cooled plate problem, two crucial enhancements were made to the two-dimensional Cartesian-based version of HOTFGM. namely, incorporation of internal boundary capabilities and incorporation of convective boundary conditions. Results indicate the viability and large benefits of cooling the plate via forced air through cooling channels. Furthermore, cooling can positively impact the stress and displacement fields present in the plate, yielding an additional payoff in terms of fatigue life. Finally, a spin-off capability resulted from inclusion of internal boundaries within HOTFGM; the ability to simulate the thermo-elastic response of structures with curved surfaces. This new capability is demonstrated, and through comparison with an analytical solution, shown to be viable and accurate.

  11. Experimental determination of third-order elastic constants of diamond.

    Science.gov (United States)

    Lang, J M; Gupta, Y M

    2011-03-25

    To determine the nonlinear elastic response of diamond, single crystals were shock compressed along the [100], [110], and [111] orientations to 120 GPa peak elastic stresses. Particle velocity histories and elastic wave velocities were measured by using laser interferometry. The measured elastic wave profiles were used, in combination with published acoustic measurements, to determine the complete set of third-order elastic constants. These constants represent the first experimental determination, and several differ significantly from those calculated by using theoretical models.

  12. A COMBINED PARAMETRIC QUADRATIC PROGRAMMING AND PRECISE INTEGRATION METHOD BASED DYNAMIC ANALYSIS OF ELASTIC-PLASTIC HARDENING/SOFTENING PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    张洪武; 张新伟

    2002-01-01

    The objective of the paper is to develop a new algorithm for numericalsolution of dynamic elastic-plastic strain hardening/softening problems. The gradientdependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis.The equations for the dynamic elastic-plastic problems are derived in terms of theparametric variational principle, which is valid for associated, non-associated andstrain softening plastic constitutive models in the finite element analysis. The preciseintegration method, which has been widely used for discretization in time domain ofthe linear problems, is introduced for the solution of dynamic nonlinear equations.The new algorithm proposed is based on the combination of the parametric quadraticprogramming method and the precise integration method and has all the advantagesin both of the algorithms. Results of numerical examples demonstrate not only thevalidity, but also the advantages of the algorithm proposed for the numerical solutionof nonlinear dynamic problems.

  13. Analysis of complex elastic structures by a Rayleigh-Ritz component modes method using Lagrange multipliers. Ph.D. Thesis

    Science.gov (United States)

    Klein, L. R.

    1974-01-01

    The free vibrations of elastic structures of arbitrary complexity were analyzed in terms of their component modes. The method was based upon the use of the normal unconstrained modes of the components in a Rayleigh-Ritz analysis. The continuity conditions were enforced by means of Lagrange Multipliers. Examples of the structures considered are: (1) beams with nonuniform properties; (2) airplane structures with high or low aspect ratio lifting surface components; (3) the oblique wing airplane; and (4) plate structures. The method was also applied to the analysis of modal damping of linear elastic structures. Convergence of the method versus the number of modes per component and/or the number of components is discussed and compared to more conventional approaches, ad-hoc methods, and experimental results.

  14. Surface effects on vibration analysis of elastically restrained piezoelectric nanobeams subjected to magneto-thermo-electrical field embedded in elastic medium

    Science.gov (United States)

    Marzbanrad, Javad; Boreiry, Mahya; Shaghaghi, Gholam Reza

    2017-04-01

    In the present study, a generalized nonlocal beam theory is utilized to study the magneto-thermo-mechanical vibration characteristic of piezoelectric nanobeam by considering surface effects rested in elastic medium for various elastic boundary conditions. The nonlocal elasticity of Eringen as well as surface effects, including surface elasticity, surface stress and surface density are implemented to inject size-dependent effects into equations. Using the Hamilton's principle and Euler-Bernoulli beam theory, the governing differential equations and associated boundary conditions will be obtained. The differential transformation method (DTM) is used to discretize resultant motion equations and related boundary conditions accordingly. The natural frequencies are obtained for the various elastic boundary conditions in detail to show the significance of nonlocal parameter, external voltage, temperature change, surface effects, elastic medium, magnetic field and length of nanobeam. Moreover, it should be noted that by changing the spring stiffness at each end, the conventional boundary conditions will be obtained which are validated by well-known literature.

  15. ElAM: A computer program for the analysis and representation of anisotropic elastic properties

    Science.gov (United States)

    Marmier, Arnaud; Lethbridge, Zoe A. D.; Walton, Richard I.; Smith, Christopher W.; Parker, Stephen C.; Evans, Kenneth E.

    2010-12-01

    The continuum theory of elasticity has been used for more than a century and has applications in many fields of science and engineering. It is very robust, well understood and mathematically elegant. In the isotropic case elastic properties are easily represented, but for non-isotropic materials, even in the simple cubic symmetry, it can be difficult to visualise how properties such as Young's modulus or Poisson's ratio vary with stress/strain orientation. The ElAM ( Elastic Anisotropy Measures) code carries out the required tensorial operations (inversion, rotation, diagonalisation) and creates 3D models of an elastic property's anisotropy. It can also produce 2D cuts in any given plane, compute averages following diverse schemes and query a database of elastic constants to support meta-analyses. Program summaryProgram title: ElAM1.0 Catalogue identifier: AEHB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 43 848 No. of bytes in distributed program, including test data, etc.: 2 498 882 Distribution format: tar.gz Programming language: Fortran90 Computer: Any Operating system: Linux, Windows (XP, Vista) RAM: Depends chiefly on the size of the arrays representing elastic properties in 3D Classification: 7.7 Nature of problem: Representation of elastic moduli and ratios, and of wave velocities, in 3D; automatic discovery of unusual elastic properties. Solution method: Stiffness matrix (6×6) inversion and conversion to compliance tensor (3×3×3×3), tensor rotation, dynamic matrix diagonalisation, simple optimisation, postscript and VRML output preparation. Running time: Dependent on angular accuracy and size of elastic constant database (from a few seconds to a few hours). The tests provided take from a

  16. A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods

    Energy Technology Data Exchange (ETDEWEB)

    Petitpas, G [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benard, P [Universite du Quebec a Trois-Rivieres (Canada); Klebanoff, L E [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Xiao, J [Universite du Quebec a Trois-Rivieres (Canada); Aceves, S M [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-07-01

    While conventional low-pressure LH₂ dewars have existed for decades, advanced methods of cryogenic hydrogen storage have recently been developed. These advanced methods are cryo-compression and cryo-adsorption hydrogen storage, which operate best in the temperature range 30–100 K. We present a comparative analysis of both approaches for cryogenic hydrogen storage, examining how pressure and/or sorbent materials are used to effectively increase onboard H₂ density and dormancy. We start by reviewing some basic aspects of LH₂ properties and conventional means of storing it. From there we describe the cryo-compression and cryo-adsorption hydrogen storage methods, and then explore the relationship between them, clarifying the materials science and physics of the two approaches in trying to solve the same hydrogen storage task (~5–8 kg H₂, typical of light duty vehicles). Assuming that the balance of plant and the available volume for the storage system in the vehicle are identical for both approaches, the comparison focuses on how the respective storage capacities, vessel weight and dormancy vary as a function of temperature, pressure and type of cryo-adsorption material (especially, powder MOF-5 and MIL-101). By performing a comparative analysis, we clarify the science of each approach individually, identify the regimes where the attributes of each can be maximized, elucidate the properties of these systems during refueling, and probe the possible benefits of a combined “hybrid” system with both cryo-adsorption and cryo-compression phenomena operating at the same time. In addition the relationships found between onboard H₂ capacity, pressure vessel and/or sorbent mass and dormancy as a function of rated pressure, type of sorbent material and fueling conditions are useful as general designing guidelines in future engineering efforts using these two hydrogen storage approaches.

  17. Economic analysis of the water demand in the hotels and restaurants sector: Shadow prices and elasticities

    Science.gov (United States)

    Angulo, Ana; Atwi, Majed; Barberán, Ramón; Mur, Jesús

    2014-08-01

    Despite the growing economic importance of tourism, and its impact on relative water shortage, little is known about the role that water plays in the productive process of hotels and restaurants and, therefore, the possible implications of water demand management policy for this sector. This study aims to fill this gap. It is based on the microdata of 676 firms in the sector, operating in the city of Zaragoza (Spain) for a 12 year period. Based on the Translog cost function, we estimate the shadow price of water in the short run and, from a long-run perspective, its direct price elasticity, its cross elasticities relative to labor, capital, and supplies, and its elasticity with respect to the level of output. The results obtained show that water provides sector firms returns that are on average higher than its price, although in the case of hotels the margin is really narrow. This situation provides policy makers with a margin for applying price increases without affecting the sector's viability, with some caution in the case of hotels. Water demand elasticity equals -0.38 in the case of hotels, but it is not significant in the case of restaurants and bar-cafes; hence, only in hotels is there potential for influencing water use patterns, encouraging the resource's conservation through pricing policy. Moreover, capital is a substitutive factor of water, and the elasticity of water with respect to output is 0.40, all of which should also be considered by policy makers in water resource management.

  18. [Particle Size and Number Density Online Analysis for Particle Suspension with Polarization-Differentiation Elastic Light Scattering Spectroscopy].

    Science.gov (United States)

    Chen, Wei-kang; Fang, Hui

    2016-03-01

    The basic principle of polarization-differentiation elastic light scattering spectroscopy based techniques is that under the linear polarized light incidence, the singlely scattered light from the superficial biological tissue and diffusively scattered light from the deep tissue can be separated according to the difference of polarization characteristics. The novel point of the paper is to apply this method to the detection of particle suspension and, to realize the simultaneous measurement of its particle size and number density in its natural status. We design and build a coaxial cage optical system, and measure the backscatter signal at a specified angle from a polystyrene microsphere suspension. By controlling the polarization direction of incident light with a linear polarizer and adjusting the polarization direction of collected light with another linear polarizer, we obtain the parallel polarized elastic light scattering spectrum and cross polarized elastic light scattering spectrum. The difference between the two is the differential polarized elastic light scattering spectrum which include only the single scattering information of the particles. We thus compare this spectrum to the Mie scattering calculation and extract the particle size. We then also analyze the cross polarized elastic light scattering spectrum by applying the particle size already extracted. The analysis is based on the approximate expressions taking account of light diffusing, from which we are able to obtain the number density of the particle suspension. We compare our experimental outcomes with the manufacturer-provided values and further analyze the influence of the particle diameter standard deviation on the number density extraction, by which we finally verify the experimental method. The potential applications of the method include the on-line particle quality monitoring for particle manufacture as well as the fat and protein density detection of milk products.

  19. Linear-Elastic 2D and 3D Finite Element Contact Analysis of a Hole Containing a Circular Insert in a Fatigue Test Coupon

    Science.gov (United States)

    2015-07-01

    UNCLASSIFIED UNCLASSIFIED Linear-Elastic 2D and 3D Finite Element Contact Analysis of a Hole Containing a Circular Insert in a Fatigue Test...circular hole in an aluminium plate fitted with a titanium fastener that were computed using two-dimensional finite element contact analysis . By...UNCLASSIFIED Linear-Elastic 2D and 3D Finite Element Contact Analysis of a Hole Containing a Circular Insert in a Fatigue Test Coupon

  20. Analysis and Comparison of 2-D Hemodynamic Numerical Simulation of Elastic Aneurysm and Rigid Aneurysm

    Science.gov (United States)

    Zhao, J. W.; Ding, G. H.; Yin, W. Y.; Yang, X. J.; Shi, W. C.; Zhang, X. L.

    The objective of this study is to investigate the effect of hemodynamic parameters on the formation, growth and rupture of an aneurysm. Our simulation of the elastic and rigid aneurysm is based on a DSA or other clinic image. The simulatied results are that there are great differences in the distribution of velocity magnitude at some sections which are predicted by the two models. For the elastic wall model, the distribution of velocity magnitude of one outlet is obviously off-center, which influences the distribution of wall shear stress (WSS) and exchange of substance through the vessel wall. The currents of the distributions of WSS along the wall of aneurysm for the two models are similar. But there are obvious differences between the two models in the values especially at the neck of aneurysm. This study demonstrates obviously that the elastic wall model suits the simulation for growth and rupture of an aneurysm better.

  1. Numerical Analysis of the Elastic Properties of 3D Needled Carbon/Carbon Composites

    Science.gov (United States)

    Tan, Y.; Yan, Y.; Li, X.; Guo, F.

    2017-09-01

    Based on the observation of microstructures of 3D needled carbon/carbon (C/C) composites, a model of their representative volume element (RVE) considering the true distribution of fibers is established. Using the theories of mesoscopic mechanics and introducing periodic boundary conditions for displacements, their elastic properties, with account of porosity, are determined by finite-element methods. Quasi-static tensile tests were carried out, and the numerical predictions were found to be in good agreement with test results. This means that the RVE model of 3D needled C/C composites can predict their elastic properties efficiently. The effects of needling density, radius of needled fibers, and thickness ratio of a short-cut fiber web and a weftless ply on the elastic constants of the composites are analyzed.

  2. Prediction of Thermal and Elastic Properties of Honeycomb Sandwich Plate for Analysis of Thermal Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seok Min; Lee, Jang Il; Byun, Jae Ki; Choi, Young Don [Korea Univ., Seoul (Korea, Republic of)

    2014-04-15

    Thermal problems that are directly related to the lifetime of an electronic device are becoming increasingly important owing to the miniaturization of electronic devices. To solve thermal problems, it is essential to study thermal stability through thermal diffusion and insulation. A honeycomb sandwich plate has anisotropic thermal conductivity. To analyze the thermal deformation and temperature distribution of a system that employs a honeycomb sandwich plate, the thermal and elastic properties need to be determined. In this study, the thermal and elastic properties of a honeycomb sandwich plate, such as thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and shear modulus, are predicted. The properties of a honeycomb sandwich plate vary according to the hexagon size, thickness, and material properties.

  3. From Curves to Trees: A Tree-like Shapes Distance Using the Elastic Shape Analysis Framework.

    Science.gov (United States)

    Mottini, A; Descombes, X; Besse, F

    2015-04-01

    Trees are a special type of graph that can be found in various disciplines. In the field of biomedical imaging, trees have been widely studied as they can be used to describe structures such as neurons, blood vessels and lung airways. It has been shown that the morphological characteristics of these structures can provide information on their function aiding the characterization of pathological states. Therefore, it is important to develop methods that analyze their shape and quantify differences between their structures. In this paper, we present a method for the comparison of tree-like shapes that takes into account both topological and geometrical information. This method, which is based on the Elastic Shape Analysis Framework, also computes the mean shape of a population of trees. As a first application, we have considered the comparison of axon morphology. The performance of our method has been evaluated on two sets of images. For the first set of images, we considered four different populations of neurons from different animals and brain sections from the NeuroMorpho.org open database. The second set was composed of a database of 3D confocal microscopy images of three populations of axonal trees (normal and two types of mutations) of the same type of neurons. We have calculated the inter and intra class distances between the populations and embedded the distance in a classification scheme. We have compared the performance of our method against three other state of the art algorithms, and results showed that the proposed method better distinguishes between the populations. Furthermore, we present the mean shape of each population. These shapes present a more complete picture of the morphological characteristics of each population, compared to the average value of certain predefined features.

  4. Biomechanical Property of a Newly Designed Assembly Locking Compression Plate: Three-Dimensional Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Jiang-Jun Zhou

    2017-01-01

    Full Text Available In this study, we developed and validated a refined three-dimensional finite element model of middle femoral comminuted fracture to compare the biomechanical stability after two kinds of plate fixation: a newly designed assembly locking compression plate (NALCP and a locking compression plate (LCP. CT data of a male volunteer was converted to middle femoral comminuted fracture finite element analysis model. The fracture was fixated by NALCP and LCP. Stress distributions were observed. Under slow walking load and torsion load, the stress distribution tendency of the two plates was roughly uniform. The anterolateral femur was the tension stress area, and the bone block shifted toward the anterolateral femur. Maximum stress was found on the lateral border of the number 5 countersink of the plate. Under a slow walking load, the NALCP maximum stress was 2.160e+03 MPa and the LCP was 8.561e+02 MPa. Under torsion load, the NALCP maximum stress was 2.260e+03 MPa and the LCP was 6.813e+02 MPa. Based on those results of finite element analysis, the NALCP can provide adequate mechanical stability for comminuted fractures, which would help fixate the bone block and promote bone healing.

  5. Understanding deformation mechanisms during powder compaction using principal component analysis of compression data.

    Science.gov (United States)

    Roopwani, Rahul; Buckner, Ira S

    2011-10-14

    Principal component analysis (PCA) was applied to pharmaceutical powder compaction. A solid fraction parameter (SF(c/d)) and a mechanical work parameter (W(c/d)) representing irreversible compression behavior were determined as functions of applied load. Multivariate analysis of the compression data was carried out using PCA. The first principal component (PC1) showed loadings for the solid fraction and work values that agreed with changes in the relative significance of plastic deformation to consolidation at different pressures. The PC1 scores showed the same rank order as the relative plasticity ranking derived from the literature for common pharmaceutical materials. The utility of PC1 in understanding deformation was extended to binary mixtures using a subset of the original materials. Combinations of brittle and plastic materials were characterized using the PCA method. The relationships between PC1 scores and the weight fractions of the mixtures were typically linear showing ideal mixing in their deformation behaviors. The mixture consisting of two plastic materials was the only combination to show a consistent positive deviation from ideality. The application of PCA to solid fraction and mechanical work data appears to be an effective means of predicting deformation behavior during compaction of simple powder mixtures.

  6. Understanding compressive deformation behavior of porous Ti using finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Sandipan; Khutia, Niloy [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur (India); Das, Debdulal [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur (India); Das, Mitun, E-mail: mitun@cgcri.res.in [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Balla, Vamsi Krishna [Bioceramics and Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata (India); Bandyopadhyay, Amit [W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States); Chowdhury, Amit Roy, E-mail: arcbesu@gmail.com [Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur (India)

    2016-07-01

    In the present study, porous commercially pure (CP) Ti samples with different volume fraction of porosities were fabricated using a commercial additive manufacturing technique namely laser engineered net shaping (LENS™). Mechanical behavior of solid and porous samples was evaluated at room temperature under quasi-static compressive loading. Fracture surfaces of the failed samples were analyzed to determine the failure modes. Finite Element (FE) analysis using representative volume element (RVE) model and micro-computed tomography (CT) based model have been performed to understand the deformation behavior of laser deposited solid and porous CP-Ti samples. In vitro cell culture on laser processed porous CP-Ti surfaces showed normal cell proliferation with time, and confirmed non-toxic nature of these samples. - Highlights: • Porous CP-Ti samples fabricated using additive manufacturing technique • Compressive deformation behavior of porous samples closely matches with micro-CT and RVE based analysis • In vitro studies showed better cell proliferation with time on porous CP-Ti surfaces.

  7. Flow Curve Analysis of 17-4 PH Stainless Steel under Hot Compression Test

    Science.gov (United States)

    Mirzadeh, Hamed; Najafizadeh, Abbas; Moazeny, Mohammad

    2009-12-01

    The hot compression behavior of a 17-4 PH stainless steel (AISI 630) has been investigated at temperatures of 950 °C to 1150 °C and strain rates of 10-3 to 10 s-1. Glass powder in the Rastegaev reservoirs of the specimen was used as a lubricant material. A step-by-step procedure for data analysis in the hot compression test was given. The work hardening rate analysis was performed to reveal if dynamic recrystallization (DRX) occurred. Many samples exhibited typical DRX stress-strain curves with a single peak stress followed by a gradual fall toward the steady-state stress. At low Zener-Hollomon ( Z) parameter, this material showed a new DRX flow behavior, which was called multiple transient steady state (MTSS). At high Z, as a result of adiabatic deformation heating, a drop in flow stress was observed. The general constitutive equations were used to determine the hot working constants of this material. Moreover, after a critical discussion, the deformation activation energy of 17-4 PH stainless steel was determined as 337 kJ/mol.

  8. Steady-state analysis of activated sludge processes with a settler model including sludge compression.

    Science.gov (United States)

    Diehl, S; Zambrano, J; Carlsson, B

    2016-01-01

    A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration.

  9. Multi-scale analysis and characterization of the ITER pre-compression rings

    Science.gov (United States)

    Foussat, A.; Park, B.; Rajainmaki, H.

    2014-01-01

    The toroidal field (TF) system of ITER Tokamak composed of 18 "D" shaped Toroidal Field (TF) coils during an operating scenario experiences out-of-plane forces caused by the interaction between the 68kA operating TF current and the poloidal magnetic fields. In order to keep the induced static and cyclic stress range in the intercoil shear keys between coils cases within the ITER allowable limits [1], centripetal preload is introduced by means of S2 fiber-glass/epoxy composite pre-compression rings (PCRs). Those PCRs consist in two sets of three rings, each 5 m in diameter and 337 × 288 mm in cross-section, and are installed at the top and bottom regions to apply a total resultant preload of 70 MN per TF coil equivalent to about 400 MPa hoop stress. Recent developments of composites in the aerospace industry have accelerated the use of advanced composites as primary structural materials. The PCRs represent one of the most challenging composite applications of large dimensions and highly stressed structures operating at 4 K over a long term life. Efficient design of those pre-compression composite structures requires a detailed understanding of both the failure behavior of the structure and the fracture behavior of the material. Due to the inherent difficulties to carry out real scale testing campaign, there is a need to develop simulation tools to predict the multiple complex failure mechanisms in pre-compression rings. A framework contract was placed by ITER Organization with SENER Ingenieria y Sistemas SA to develop multi-scale models representative of the composite structure of the Pre-compression rings based on experimental material data. The predictive modeling based on ABAQUS FEM provides the opportunity both to understand better how PCR composites behave in operating conditions and to support the development of materials by the supplier with enhanced performance to withstand the machine design lifetime of 30,000 cycles. The multi-scale stress analysis has

  10. ELASTICITY of SHORT FIBRE REINFORCED POLYAMIDE: MORPHOLOGICAL AND NUMERICAl ANALYSIS OF FIBRE ORIENTATION EFFECTS

    Directory of Open Access Journals (Sweden)

    Francesca Cosmi

    2010-10-01

    Full Text Available The fatigue behaviour of injection moulded short fibre reinforced polymers depends upon fibre orientation, as shown in experiments conducted with notched specimens injected through different injection gates. The different fatigue behaviour is mainly related to the different local elastic properties, as determined by the different fibre orientation patterns, resulting into different strain distributions. In order to quantify the relationship between fibre orientation and elastic constants, the Cell Method was applied to volumes extracted from the specimens, reconstructed by micro-tomography.

  11. Performance Analysis of Multi Spectral Band Image Compression using Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    S. S. Ramakrishnan

    2012-01-01

    Full Text Available Problem statement: Efficient and effective utilization of transmission bandwidth and storage capacity have been a core area of research for remote sensing images. Hence image compression is required for multi-band satellite imagery. In addition, image quality is also an important factor after compression and reconstruction. Approach: In this investigation, the discrete wavelet transform is used to compress the Landsat5 agriculture and forestry image using various wavelets and the spectral signature graph is drawn. Results: The compressed image performance is analyzed using Compression Ratio (CR, Peak Signal to Noise Ratio (PSNR. The compressed image using dmey wavelet is selected based on its Digital Number Minimum (DNmin and Digital Number Maximum (DNmax. Then it is classified using maximum likelihood classification and the accuracy is determined using error matrix, kappa statistics and over all accuracy. Conclusion: Hence the proposed compression technique is well suited to compress the agriculture and forestry multi-band image.

  12. Performance Analysis of Organic Rankine-vapor Compression Ice Maker Utilizing Food Industry Waste Heat

    National Research Council Canada - National Science Library

    Hu, Bing; Cao, Yuanshu; Ma, Weibin

    2015-01-01

    To develop the organic Rankine-vapor compression ice maker driven by food industry exhaust gases and engine cooling water, an organic Rankine-vapor compression cycle system was employed for ice making...

  13. In vitro comparative analysis of resistance to compression of laboratory resin composites and a ceramic system

    Directory of Open Access Journals (Sweden)

    Montenegro Alexandre

    2010-01-01

    Full Text Available Background: Restorative materials must be capable not only of restoring the patient′s masticatory function, but also to rescue the self-esteem of those maculated by a disharmonious smile. Among the esthetic materials available on the market, the choice frequently lies between ceramic or indirect laboratory resin restorations. Aim: This study assessed the resistance to compression of two laboratory resins found on the market, namely Artglass ® and Targis ® , considering Omega 900 ® ceramic from Vita as control. Materials and Methods: With the aid of stainless steel matrices, with internal dimensions of 8.0 mm diameter at the base, 9.0 mm in the top portion and 4.0 mm height, 15 test specimens were made, being 5 of each material to be tested. The test specimens were kept in distilled water for 72 hours and submitted to an axial load by the action of a point with a rounded tip 2 mm in diameter, adapted to an EMIC 500 universal test machine. The compression speed was 0.5 mm/min, with a load cell capacity of 200 Kgf. Results: The means of the results were calculated in kilogram-force (Kgf. The results found were treated by analysis of variance (ANOVA and the differences found among the groups were identified by the Tukey test (5%. Conclusion: It was observed that the material Omega 900 ® offered significantly greater resistance to compression than the other two materials, which did not present statistically significant difference between them.

  14. Local compression properties of double-stranded DNA based on a dynamic simulation

    CERN Document Server

    Lei, Xiaoling; Fang, Haiping

    2013-01-01

    The local mechanical properties of DNA are believed to play an important role in their biological functions and DNA-based nanomechanical devices. Using a simple sphere-tip compression system, the local radial mechanical properties of DNA are systematically studied by changing the tip size. The compression simulation results for the 16 nm diameter sphere tip are well consistent with the experimental results. With the diameter of the tip decreasing, the radial compressive elastic properties under external loads become sensitive to the tip size and the local DNA conformation. There appears a suddenly force break in the compression-force curve when the sphere size is less than or equal to 12 nm diameter. The analysis of the hydrogen bonds and base stacking interaction shows there is a local unwinding process occurs. During the local unwinding process, first the hydrogen bonds between complement base pairs are broken. With the compression aggregating, the local backbones in the compression center are unwound from ...

  15. Analysis of the Thermo-Elastic Response of Space Reflectors to Simulated Space Environment

    Science.gov (United States)

    Allegri, G.; Ivagnes, M. M.; Marchetti, M.; Poscente, F.

    2002-01-01

    The evaluation of space environment effects on materials and structures is a key matter to develop a proper design of long duration missions: since a large part of satellites operating in the earth orbital environment are employed for telecommunications, the development of space antennas and reflectors featured by high dimensional stability versus space environment interactions represents a major challenge for designers. The structural layout of state of the art space antennas and reflectors is very complex, since several different sensible elements and materials are employed: particular care must be placed in evaluating the actual geometrical configuration of the reflectors operating in the space environment, since very limited distortions of the designed layout can produce severe effects on the quality of the signal both received and transmitted, especially for antennas operating at high frequencies. The effects of thermal loads due to direct sunlight exposition and to earth and moon albedo can be easily taken into account employing the standard methods of structural analysis: on the other hand the thermal cycling and the exposition to the vacuum environment produce a long term damage accumulation which affects the whole structure. The typical effects of the just mentioned exposition are the outgassing of polymeric materials and the contamination of the exposed surface, which can affect sensibly the thermo-mechanical properties of the materials themselves and, therefore, the structural global response. The main aim of the present paper is to evaluate the synergistic effects of thermal cycling and of the exposition to high vacuum environment on an innovative antenna developed by Alenia Spazio S.p.a.: to this purpose, both an experimental and numerical research activity has been developed. A complete prototype of the antenna has been exposed to the space environment simulated by the SAS facility: this latter is constituted by an high vacuum chamber, equipped by

  16. Optimization of custom cementless stem using finite element analysis and elastic modulus distribution for reducing stress-shielding effect.

    Science.gov (United States)

    Saravana Kumar, Gurunathan; George, Subin Philip

    2017-02-01

    This work proposes a methodology involving stiffness optimization for subject-specific cementless hip implant design based on finite element analysis for reducing stress-shielding effect. To assess the change in the stress-strain state of the femur and the resulting stress-shielding effect due to insertion of the implant, a finite element analysis of the resected femur with implant assembly is carried out for a clinically relevant loading condition. Selecting the von Mises stress as the criterion for discriminating regions for elastic modulus difference, a stiffness minimization method was employed by varying the elastic modulus distribution in custom implant stem. The stiffness minimization problem is formulated as material distribution problem without explicitly penalizing partial volume elements. This formulation enables designs that could be fabricated using additive manufacturing to make porous implant with varying levels of porosity. Stress-shielding effect, measured as difference between the von Mises stress in the intact and implanted femur, decreased as the elastic modulus distribution is optimized.

  17. Experimental study and finite element analysis based on equivalent load method for laser ultrasonic measurement of elastic constants.

    Science.gov (United States)

    Zhan, Yu; Liu, Changsheng; Zhang, Fengpeng; Qiu, Zhaoguo

    2016-07-01

    The laser ultrasonic generation of Rayleigh surface wave and longitudinal wave in an elastic plate is studied by experiment and finite element method. In order to eliminate the measurement error and the time delay of the experimental system, the linear fitting method of experimental data is applied. The finite element analysis software ABAQUS is used to simulate the propagation of Rayleigh surface wave and longitudinal wave caused by laser excitation on a sheet metal sample surface. The equivalent load method is proposed and applied. The pulsed laser is equivalent to the surface load in time and space domain to meet the Gaussian profile. The relationship between the physical parameters of the laser and the load is established by the correction factor. The numerical solution is in good agreement with the experimental result. The simple and effective numerical and experimental methods for laser ultrasonic measurement of the elastic constants are demonstrated.

  18. Free vibration analysis of elastically supported Timoshenko columns with attached masses by transfer matrix and finite element methods

    Indian Academy of Sciences (India)

    Oktay Demirdaǧ

    2008-02-01

    This paper deals with the free vibration of Timoshenko columns with attached masses having rotary inertia. The support of the model is elastically restrained against rotation. The concept of fixity factor is used to define the stiffness of the elastic connection relative to that of the column. The governing equation of the column elements is solved by applying the separation of variables method in the transfer matrix method (TMM) algorithm. The same problems are solved, also, by finite element method (FEM) algorithm in which the matrices in equation of motion are obtained for Timoshenko column, and the results are compared with the ones of TMM. The comparison graphs are presented in numerical analysis to show the effectiveness of the considered methods, and it is resulted that FEM gives closer results to TMM.

  19. Recovery of a spectrum based on a compressive-sensing algorithm with weighted principal component analysis

    Science.gov (United States)

    Dafu, Shen; Leihong, Zhang; Dong, Liang; Bei, Li; Yi, Kang

    2017-07-01

    The purpose of this study is to improve the reconstruction precision and better copy the color of spectral image surfaces. A new spectral reflectance reconstruction algorithm based on an iterative threshold combined with weighted principal component space is presented in this paper, and the principal component with weighted visual features is the sparse basis. Different numbers of color cards are selected as the training samples, a multispectral image is the testing sample, and the color differences in the reconstructions are compared. The channel response value is obtained by a Mega Vision high-accuracy, multi-channel imaging system. The results show that spectral reconstruction based on weighted principal component space is superior in performance to that based on traditional principal component space. Therefore, the color difference obtained using the compressive-sensing algorithm with weighted principal component analysis is less than that obtained using the algorithm with traditional principal component analysis, and better reconstructed color consistency with human eye vision is achieved.

  20. Simulation and Analysis of Ring Compression Using RP/RVP Meshless Method

    Institute of Scientific and Technical Information of China (English)

    YANG Yuying; LI Jing

    2006-01-01

    To avoid mesh distortion and iterative remeshing in mesh-based numerical analysis, a meshless approach based on element free Galerkin (EFG) method is applied to the metal forming analysis of ring compression. Discrete equations are formulated upon the moving least-squares (MLS) approximation and modified Markov variational principles for rigid-plastic/ rigid-viscoplastic (RP/RVP) material models. The penalty function is used for the incompressible condition without volumetric locking. Based on the axisymmetric mechanical model, ring tests with different friction coefficients are studied. The deformed nodal configurations and shaded contours of equivalent strains are shown by developed meshless post processor. The comparison of meshless and finite element (FE) results validates the feasibility and accuracy for meshless method to simulate metal forming process.

  1. Analysis of discrete-to-discrete imaging models for iterative tomographic image reconstruction and compressive sensing

    CERN Document Server

    Jørgensen, Jakob H; Pan, Xiaochuan

    2011-01-01

    Discrete-to-discrete imaging models for computed tomography (CT) are becoming increasingly ubiquitous as the interest in iterative image reconstruction algorithms has heightened. Despite this trend, all the intuition for algorithm and system design derives from analysis of continuous-to-continuous models such as the X-ray and Radon transform. While the similarity between these models justifies some crossover, questions such as what are sufficient sampling conditions can be quite different for the two models. This sampling issue is addressed extensively in the first half of the article using singular value decomposition analysis for determining sufficient number of views and detector bins. The question of full sampling for CT is particularly relevant to current attempts to adapt compressive sensing (CS) motivated methods to application in CT image reconstruction. The second half goes in depth on this subject and discusses the link between object sparsity and sufficient sampling for accurate reconstruction. Par...

  2. Second law analysis of a solar powered Rankine cycle/vapor compression cycle

    Energy Technology Data Exchange (ETDEWEB)

    Egrican, A.N.; Karakas, A.

    1986-01-01

    Conversion of solar heat energy to power or air conditioning is a difficult and costly process. Only two practical means of solar cooling are presently state-of-the-art. These are by use of the Rankine cycle/vapor compression cycle (RC/VCC) and the absorption refrigeration cycle. RC/VCC solar cooling systems convert collected solar heat into a cooling effect. In the present study, the second law analysis is given, the maximum reversible work, lost work and availability for each component are calculated. The use of lost work or irreversibility and availability analysis in a real thermodynamic and heat transfer problem is very important in at least two regards. The first one is that in most cases accomplishing a real problem with the less irreversibility is directly proportional to the less cost. The second one is that availability is one of our natural resources. The conservation and effective use of availability reserves result in the decrease irreversibilities.

  3. Early treatment of trans-tibial amputees: retrospective analysis of early fitting and elastic bandaging

    NARCIS (Netherlands)

    Velzen, van A.D.; Nederhand, M.J.; Emmelot, C.H.; IJzerman, M.J.

    2005-01-01

    This study investigates the effects of early fitting in trans-tibial amputees. The assumption is that compared to elastic bandaging, the use of a rigid dressing in early fitting will result in quicker wound healing and earlier ambulation. A retrospective file search was carried out in three differen

  4. Analysis of Sigmoid Functionally Graded Material (S-FGM Nanoscale Plates Using the Nonlocal Elasticity Theory

    Directory of Open Access Journals (Sweden)

    Woo-Young Jung

    2013-01-01

    Full Text Available Based on a nonlocal elasticity theory, a model for sigmoid functionally graded material (S-FGM nanoscale plate with first-order shear deformation is studied. The material properties of S-FGM nanoscale plate are assumed to vary according to sigmoid function (two power law distribution of the volume fraction of the constituents. Elastic theory of the sigmoid FGM (S-FGM nanoscale plate is reformulated using the nonlocal differential constitutive relations of Eringen and first-order shear deformation theory. The equations of motion of the nonlocal theories are derived using Hamilton’s principle. The nonlocal elasticity of Eringen has the ability to capture the small scale effect. The solutions of S-FGM nanoscale plate are presented to illustrate the effect of nonlocal theory on bending and vibration response of the S-FGM nanoscale plates. The effects of nonlocal parameters, power law index, aspect ratio, elastic modulus ratio, side-to-thickness ratio, and loading type on bending and vibration response are investigated. Results of the present theory show a good agreement with the reference solutions. These results can be used for evaluating the reliability of size-dependent S-FGM nanoscale plate models developed in the future.

  5. Lamb Production Costs: Analyses of Composition and Elasticities Analysis of Lamb Production Costs

    Science.gov (United States)

    Raineri, C.; Stivari, T. S. S.; Gameiro, A. H.

    2015-01-01

    Since lamb is a commodity, producers cannot control the price of the product they sell. Therefore, managing production costs is a necessity. We explored the study of elasticities as a tool for basing decision-making in sheep production, and aimed at investigating the composition and elasticities of lamb production costs, and their influence on the performance of the activity. A representative sheep production farm, designed in a panel meeting, was the base for calculation of lamb production cost. We then performed studies of: i) costs composition, and ii) cost elasticities for prices of inputs and for zootechnical indicators. Variable costs represented 64.15% of total cost, while 21.66% were represented by operational fixed costs, and 14.19% by the income of the factors. As for elasticities to input prices, the opportunity cost of land was the item to which production cost was more sensitive: a 1% increase in its price would cause a 0.2666% increase in lamb cost. Meanwhile, the impact of increasing any technical indicator was significantly higher than the impact of rising input prices. A 1% increase in weight at slaughter, for example, would reduce total cost in 0.91%. The greatest obstacle to economic viability of sheep production under the observed conditions is low technical efficiency. Increased production costs are more related to deficient zootechnical indexes than to high expenses. PMID:26104531

  6. Analysis of the dynamic response of layered, elastic media by means of the Fast Fourier Transform

    NARCIS (Netherlands)

    Abdelkarim, A.M.A.M.; Vrouwenvelder, A.C.W.M.

    1999-01-01

    A straightforward method is presented to calculate the three-dimensional response of layered, elastic half-spaces to a dynamic surface loading. The derivation of the method is performed in the wavenumber-frequency domain. Space-frequency domain results are subsequently obtained through the applicati

  7. Analysis of HD Journal Bearings Considering Elastic Deformation and Non-Newtonian Rabinowitsch Fluid Model

    Directory of Open Access Journals (Sweden)

    J. Javorova

    2016-06-01

    Full Text Available The purpose of this paper is to study the performance of a finite length journal bearing, taking into account effects of non-Newtonian Rabinowitsch flow rheology and elastic deformations of the bearing liner. According to the Rabinowitsch fluid model, the cubic-stress constitutive equation is used to account for the non-Newtonian effects of pseudoplastic and dilatant lubricants. Integrating the continuity equation across the film, the nonlinear non-Newtonian Reynolds-type equation is derived. The elasticity part of the problem is solved on the base of Vlassov model of an elastic foundation. The numerical solution of the modified Reynolds equation is carried out by using FDM with over-relaxation technique. The results for steady state bearing performance characteristics have been calculated for various values of nonlinear factor and elasticity parameters. It was concluded that in comparison with the Newtonian lubricants, higher values of film pressure and load carrying capacity have been obtained for dilatant lubricants, while the case was reversed for pseudoplastic lubricants.

  8. Approximate analysis of rigid plate loading on elastic multi-layered systems

    CSIR Research Space (South Africa)

    Maina, JW

    2008-07-01

    Full Text Available Games software is well known for its capability to compute responses for uniformly distributed load acting on the surface of a multi-layered linear elastic system. In this study a method was developed to approximate rigid plate loading to be used...

  9. Near-elastic vibro-impact analysis by discontinuous transformations and averaging

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Fidlin, Alexander

    2008-01-01

    We show how near-elastic vibro-impact problems, linear or nonlinear in-between impacts, can be conveniently analyzed by a discontinuity-reducing transformation of variables combined with an extended averaging procedure. A general technique for this is presented, and illustrated by calculating tra...

  10. Finite Element Analysis of Aluminum Honeycombs Subjected to Dynamic Indentation and Compression Loads

    Directory of Open Access Journals (Sweden)

    A.S.M. Ayman Ashab

    2016-03-01

    Full Text Available The mechanical behavior of aluminum hexagonal honeycombs subjected to out-of-plane dynamic indentation and compression loads has been investigated numerically using ANSYS/LS-DYNA in this paper. The finite element (FE models have been verified by previous experimental results in terms of deformation pattern, stress-strain curve, and energy dissipation. The verified FE models have then been used in comprehensive numerical analysis of different aluminum honeycombs. Plateau stress, σpl, and dissipated energy (EI for indentation and EC for compression have been calculated at different strain rates ranging from 102 to 104 s−1. The effects of strain rate and t/l ratio on the plateau stress, dissipated energy, and tearing energy have been discussed. An empirical formula is proposed to describe the relationship between the tearing energy per unit fracture area, relative density, and strain rate for honeycombs. Moreover, it has been found that a generic formula can be used to describe the relationship between tearing energy per unit fracture area and relative density for both aluminum honeycombs and foams.

  11. Computational Analysis of the Compressible Flow Driven by a Piston in a Ballistic Range

    Institute of Scientific and Technical Information of China (English)

    G. Rajesh; R. Mishra; H. G. Kang; H. D. Kim

    2007-01-01

    The ballistic range has long been employed in a variety of engineering fields such as high-velocity impact engineering, projectile aerodynamics and aeroballistics, since it can create an extremely high-pressure state in very short time. Since the operation of the ballistic range includes many complicated phenomena, each process should be understood in detail for the performance enhancement of the device. One of the main processes which have significant influence on the device performance is the compression process of the driver gas. Most of the studies available in this field hardly discuss this phenomenon in detail and thus lack a proper understanding of its effect on the whole system performance. In the present study, a computational analysis has been made to investigate the fluid dynamic aspects of the compression process in the pump tube of a ballistic range and to assess how it affects the performance of the ballistic range, The results obtained are validated with the available experimental data. In order to evaluate the system performance, several performance parameters are defined. Effect of a shock tube added in between the pump tube and launch tube on the performance of the ballistic range is also studied analytically. Performance of the ballistic range could be significantly improved by the proper selection of the pump tube and high-pressure tube parameters and the addition of the shock tube.

  12. Wave Mode Discrimination of Coded Ultrasonic Guided Waves Using Two-Dimensional Compressed Pulse Analysis.

    Science.gov (United States)

    Malo, Sergio; Fateri, Sina; Livadas, Makis; Mares, Cristinel; Gan, Tat-Hean

    2017-07-01

    Ultrasonic guided waves testing is a technique successfully used in many industrial scenarios worldwide. For many complex applications, the dispersive nature and multimode behavior of the technique still poses a challenge for correct defect detection capabilities. In order to improve the performance of the guided waves, a 2-D compressed pulse analysis is presented in this paper. This novel technique combines the use of pulse compression and dispersion compensation in order to improve the signal-to-noise ratio (SNR) and temporal-spatial resolution of the signals. The ability of the technique to discriminate different wave modes is also highlighted. In addition, an iterative algorithm is developed to identify the wave modes of interest using adaptive peak detection to enable automatic wave mode discrimination. The employed algorithm is developed in order to pave the way for further in situ applications. The performance of Barker-coded and chirp waveforms is studied in a multimodal scenario where longitudinal and flexural wave packets are superposed. The technique is tested in both synthetic and experimental conditions. The enhancements in SNR and temporal resolution are quantified as well as their ability to accurately calculate the propagation distance for different wave modes.

  13. Analysis and Optimization of a Compressed Air Energy Storage—Combined Cycle System

    Directory of Open Access Journals (Sweden)

    Wenyi Liu

    2014-06-01

    Full Text Available Compressed air energy storage (CAES is a commercial, utility-scale technology that provides long-duration energy storage with fast ramp rates and good part-load operation. It is a promising storage technology for balancing the large-scale penetration of renewable energies, such as wind and solar power, into electric grids. This study proposes a CAES-CC system, which is based on a conventional CAES combined with a steam turbine cycle by waste heat boiler. Simulation and thermodynamic analysis are carried out on the proposed CAES-CC system. The electricity and heating rates of the proposed CAES-CC system are lower than those of the conventional CAES by 0.127 kWh/kWh and 0.338 kWh/kWh, respectively, because the CAES-CC system recycles high-temperature turbine-exhausting air. The overall efficiency of the CAES-CC system is improved by approximately 10% compared with that of the conventional CAES. In the CAES-CC system, compressing intercooler heat can keep the steam turbine on hot standby, thus improving the flexibility of CAES-CC. This study brought about a new method for improving the efficiency of CAES and provided new thoughts for integrating CAES with other electricity-generating modes.

  14. Development of self-compressing BLSOM for comprehensive analysis of big sequence data.

    Science.gov (United States)

    Kikuchi, Akihito; Ikemura, Toshimichi; Abe, Takashi

    2015-01-01

    With the remarkable increase in genomic sequence data from various organisms, novel tools are needed for comprehensive analyses of available big sequence data. We previously developed a Batch-Learning Self-Organizing Map (BLSOM), which can cluster genomic fragment sequences according to phylotype solely dependent on oligonucleotide composition and applied to genome and metagenomic studies. BLSOM is suitable for high-performance parallel-computing and can analyze big data simultaneously, but a large-scale BLSOM needs a large computational resource. We have developed Self-Compressing BLSOM (SC-BLSOM) for reduction of computation time, which allows us to carry out comprehensive analysis of big sequence data without the use of high-performance supercomputers. The strategy of SC-BLSOM is to hierarchically construct BLSOMs according to data class, such as phylotype. The first-layer BLSOM was constructed with each of the divided input data pieces that represents the data subclass, such as phylotype division, resulting in compression of the number of data pieces. The second BLSOM was constructed with a total of weight vectors obtained in the first-layer BLSOMs. We compared SC-BLSOM with the conventional BLSOM by analyzing bacterial genome sequences. SC-BLSOM could be constructed faster than BLSOM and cluster the sequences according to phylotype with high accuracy, showing the method's suitability for efficient knowledge discovery from big sequence data.

  15. Development of Self-Compressing BLSOM for Comprehensive Analysis of Big Sequence Data

    Directory of Open Access Journals (Sweden)

    Akihito Kikuchi

    2015-01-01

    Full Text Available With the remarkable increase in genomic sequence data from various organisms, novel tools are needed for comprehensive analyses of available big sequence data. We previously developed a Batch-Learning Self-Organizing Map (BLSOM, which can cluster genomic fragment sequences according to phylotype solely dependent on oligonucleotide composition and applied to genome and metagenomic studies. BLSOM is suitable for high-performance parallel-computing and can analyze big data simultaneously, but a large-scale BLSOM needs a large computational resource. We have developed Self-Compressing BLSOM (SC-BLSOM for reduction of computation time, which allows us to carry out comprehensive analysis of big sequence data without the use of high-performance supercomputers. The strategy of SC-BLSOM is to hierarchically construct BLSOMs according to data class, such as phylotype. The first-layer BLSOM was constructed with each of the divided input data pieces that represents the data subclass, such as phylotype division, resulting in compression of the number of data pieces. The second BLSOM was constructed with a total of weight vectors obtained in the first-layer BLSOMs. We compared SC-BLSOM with the conventional BLSOM by analyzing bacterial genome sequences. SC-BLSOM could be constructed faster than BLSOM and cluster the sequences according to phylotype with high accuracy, showing the method’s suitability for efficient knowledge discovery from big sequence data.

  16. Multi-scale analysis of optic chiasmal compression by finite element modelling.

    Science.gov (United States)

    Wang, Xiaofei; Neely, Andrew J; McIlwaine, Gawn G; Lueck, Christian J

    2014-07-18

    The precise mechanism of bitemporal hemianopia (a type of partial visual field defect) is still not clear. Previous work has investigated this problem by studying the biomechanics of chiasmal compression caused by a pituitary tumour growing up from below the optic chiasm. A multi-scale analysis was performed using finite element models to examine both the macro-scale behaviour of the chiasm and the micro-scale interactions of the nerve fibres within it using representative volume elements. Possible effects of large deflection and non-linear material properties were incorporated. Strain distributions in the optic chiasm and optic nerve fibres were obtained from these models. The results of the chiasmal model agreed well with the limited experimental results available, indicating that the finite element modelling can be a useful tool for analysing chiasmal compression. Simulation results showed that the strain distribution in nasal (crossed) nerve fibres was much more nonuniform and locally higher than in temporal (uncrossed) nerve fibres. This strain difference between nasal and temporal nerve fibres may account for the phenomenon of bitemporal hemianopia.

  17. Biopolymer Elasticity

    CERN Document Server

    Sinha, S

    2003-01-01

    In recent years molecular elasticity has emerged as an active area of research: there are experiments that probe mechanical properties of single biomolecules such as DNA and Actin, with a view to understanding the role of elasticity of these polymers in biological processes such as transcription and protein-induced DNA bending. Single molecule elasticity has thus emerged as an area where there is a rich cross-fertilization of ideas between biologists, chemists and theoretical physicists. In this article we present a perspective on this field of research.

  18. Compressive Strength Evaluation in Brazed ZrO2/Ti6Al4V Joints Using Finite Element Analysis

    Science.gov (United States)

    Sharma, Ashutosh; Kee, Se Ho; Jung, Flora; Heo, Yongku; Jung, Jae Pil

    2016-05-01

    This study aims to synthesize and evaluate the compressive strength of the ZrO2/Ti-6Al-4V joint brazed using an active metal filler Ag-Cu-Sn-Ti, and its application to dental implants assuring its reliability to resist the compressive failure in the actual oral environment. The brazing was performed at a temperature of 750 °C for 30 min in a vacuum furnace under 5 × 10-6 Torr atmosphere. The microstructure of the brazed joint showed the presence of an Ag-rich matrix and a Cu-rich phase, and Cu-Ti intermetallic compounds were observed along the Ti-6Al-4V bonded interface. The compressive strength of the brazed ZrO2/Ti-6Al-4V joint was measured by EN ISO 14801 standard test method. The measured compressive strength of the joint was ~1477 MPa—a value almost five times that of existing dental cements. Finite element analysis also confirmed the high von Mises stress values. The compressive strains in the samples were found concentrated near the Ti-6Al-4V position, matching with the position of the real fractured sample. These results suggest extremely significant compressive strength in ZrO2/Ti-6Al-4V joints using the Ag-Cu-Sn-Ti filler. It is believed that a highly reliable dental implant can be processed and designed using the results of this study.

  19. A Low-Stress, Elastic, and Improved Hardness Hydrogenated Amorphous Carbon Film

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2015-01-01

    Full Text Available The evolution of hydrogenated amorphous carbon films with fullerene-like microstructure was investigated with a different proportion of hydrogen supply in deposition. The results showed at hydrogen flow rate of 50 sccm, the deposited films showed a lower compressive stress (lower 48.6%, higher elastic recovery (higher 19.6%, near elastic recovery rate 90%, and higher hardness (higher 7.4% compared with the films deposited without hydrogen introduction. Structural analysis showed that the films with relatively high sp2 content and low bonded hydrogen content possessed high hardness, elastic recovery rate, and low compressive stress. It was attributed to the curved graphite microstructure, which can form three-dimensional covalently bonded network.

  20. Free vibration analysis of a multiple rotating nano-beams system based on the Eringen nonlocal elasticity theory

    Energy Technology Data Exchange (ETDEWEB)

    Ghafarian, M.; Ariaei, A., E-mail: ariaei@eng.ui.ac.ir [Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of)

    2016-08-07

    The free vibration analysis of a multiple rotating nanobeams' system applying the nonlocal Eringen elasticity theory is presented. Multiple nanobeams' systems are of great importance in nano-optomechanical applications. At nanoscale, the nonlocal effects become non-negligible. According to the nonlocal Euler-Bernoulli beam theory, the governing partial differential equations are derived by incorporating the nonlocal scale effects. Assuming a structure of n parallel nanobeams, the vibration of the system is described by a coupled set of n partial differential equations. The method involves a change of variables to uncouple the equations and the differential transform method as an efficient mathematical technique to solve the nonlocal governing differential equations. Then a number of parametric studies are conducted to assess the effect of the nonlocal scaling parameter, rotational speed, boundary conditions, hub radius, and the stiffness coefficients of the elastic interlayer media on the vibration behavior of the coupled rotating multiple-carbon-nanotube-beam system. It is revealed that the bending vibration of the system is significantly influenced by the rotational speed, elastic mediums, and the nonlocal scaling parameters. This model is validated by comparing the results with those available in the literature. The natural frequencies are in a reasonably good agreement with the reported results.

  1. MECHANICAL MODEL AND ELASTIC MODULUS OF GROUTED CONCRETE BLOCK MASONRY IN COMPRESSION%灌孔混凝土砌块砌体受压力学模型及其弹性模量

    Institute of Scientific and Technical Information of China (English)

    梁建国; 龙腾

    2012-01-01

    灌孔混凝土砌块砌体是由砌体和灌孔混凝土两部分组合而成,为了得到竖向压力作用下两种材料的相互作用机理,该文基于最小势能原理推导了砌体对灌孔混凝土的套箍系数以及灌孔混凝土砌块砌体内的应力分布,得到了灌孔混凝土砌块砌体的弹性模量可近似按材料力学组合截面公式进行计算,其计算结果与收集的全国65组281个试件试验结果符合良好,并通过试验结果统计得到了灌孔混凝土砌块砌体弹性模量的建议公式。理论分析和试验结果表明,我国现行规范中灌孔混凝土砌块砌体弹性模量取值偏低,将使配筋砌块砌体结构的设计计算结果偏于不安全。%In order to obtain the interaction mechanism between the grout and masonry in grouted concrete block masonry structures under vertical load, the hooping factor which denotes the hooping action of the masonry to the grouted concrete and the stress distribution in the grouted concrete block masonry is studied based on the minimum potential energy principle. The elastic modulus of grouted concrete block masonry can be approximately calculated according to the assembled section formula in material mechanics, and the calculation results of this formula agree well with the test results of 281 specimens in 65 groups. Another proposed formula to calculate the elastic modulus of the grouted concrete block is derived base on the test results by regression analysis method. Theoretical analysis and test results show that the value of elastic modulus of grouted concrete block masonry in our current code is low, indicating it is unsafe to guide the design of reinforced concrete block masonry structures.

  2. COMBUSTION ANALYSIS OF ALGAL OIL METHYL ESTER IN A DIRECT INJECTION COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    HARIRAM V.

    2013-02-01

    Full Text Available Algal oil methyl ester was derived from microalgae (Spirulina sp. The microalga was cultivated in BG 11 media composition in a photobioreactor. Upon harvesting, the biomass was filtered and dried. The algal oil was obtained by a two step solvent extraction method using hexane and ether solvent. Cyclohexane was added to biomass to expel the remaining algal oil. By this method 92% of algal oil is obtained. Transesterification process was carried out to produce AOME by adding sodium hydroxide and methanol. The AOME was blended with straight diesel in 5%, 10% and 15% blend ratio. Combustion parameters were analyzed on a Kirloskar single cylinder direct injection compression ignition engine. The cylinder pressure characteristics, the rate of pressure rise, heat release analysis, performance and emissions were studied for straight diesel and the blends of AOME’s. AOME 15% blend exhibits significant variation in cylinder pressure and rate of heat release.

  3. Economic Analysis of using Above Ground Gas Storage Devices for Compressed Air Energy Storage System

    Institute of Scientific and Technical Information of China (English)

    LIU Jinchao; ZHANG Xinjing; XU Yujie; CHEN Zongyan; CHEN Haisheng; TAN Chunqing

    2014-01-01

    Above ground gas storage devices for compressed air energy storage (CAES) have three types:air storage tanks,gas cylinders,and gas storage pipelines.A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis.The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number.The LCCs of the three types are comprehensively analyzed and compared.The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types.This study may serve as a reference for designing large-scale CAES systems.

  4. Performance Analysis of Thermal Vapour Compression Desalination System Coupled to Cogeneration Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    P. Asiedu-Boateng

    2012-04-01

    Full Text Available Nuclear desalination of seawater has been identified as one of the affordable means of fresh water production. However this can only be achieved by the design of energy efficient desalination systems. This study focused on cycle analysis of the cogeneration nuclear power plant. A theoretical model of the Thermo Vapour Compression (TVC desalination process was also developed and coupled to the cogeneration nuclear power plant. The modeled coupled system was developed on the computer code, NUCDES using FORTRAN language to investigate the effect of design and operating parameters on parameters controlling the cost of producing fresh water from TVC process. The results showed that the performance of the TVC desalination process and the efficiency of the cogeneration nuclear power improve with the motive steam pressure.

  5. Analysis of Doppler Effect on the Pulse Compression of Different Codes Emitted by an Ultrasonic LPS

    Directory of Open Access Journals (Sweden)

    Jorge Morera

    2011-11-01

    Full Text Available This work analyses the effect of the receiver movement on the detection by pulse compression of different families of codes characterizing the emissions of an Ultrasonic Local Positioning System. Three families of codes have been compared: Kasami, Complementary Sets of Sequences and Loosely Synchronous, considering in all cases three different lengths close to 64, 256 and 1,024 bits. This comparison is first carried out by using a system model in order to obtain a set of results that are then experimentally validated with the help of an electric slider that provides radial speeds up to 2 m/s. The performance of the codes under analysis has been characterized by means of the auto-correlation and cross-correlation bounds. The results derived from this study should be of interest to anyone performing matched filtering of ultrasonic signals with a moving emitter/receiver.

  6. Analysis of Doppler effect on the pulse compression of different codes emitted by an ultrasonic LPS.

    Science.gov (United States)

    Paredes, José A; Aguilera, Teodoro; Alvarez, Fernando J; Lozano, Jesús; Morera, Jorge

    2011-01-01

    This work analyses the effect of the receiver movement on the detection by pulse compression of different families of codes characterizing the emissions of an ultrasonic local positioning system. Three families of codes have been compared: Kasami, Complementary Sets of Sequences and Loosely Synchronous, considering in all cases three different lengths close to 64, 256 and 1,024 bits. This comparison is first carried out by using a system model in order to obtain a set of results that are then experimentally validated with the help of an electric slider that provides radial speeds up to 2 m/s. The performance of the codes under analysis has been characterized by means of the auto-correlation and cross-correlation bounds. The results derived from this study should be of interest to anyone performing matched filtering of ultrasonic signals with a moving emitter/receiver.

  7. Exergy Analysis of Vapor Compression Cycle Driven by Organic Rankine Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Hoon [Kumoh Nat' l Institute of Technology, Gumi (Korea, Republic of)

    2013-12-15

    In this study, exergy analysis of a thermally activated refrigeration cycle, a combined organic Rankine cycle (ORC), and a vapor compression cycle (VCC) were conducted. It is considered that a system uses a low-temperature heat source in the form of sensible heat, such as various renewable energy sources or waste heat from industries, and one of eight working fluids: R143a, R22, R134a, propane, isobutane, butane, R245fa, or R123. The effects of turbine inlet pressure and the working fluid selected on the exergy destructions (anergies) at various system components as well as the COP and exergy efficiency of the system were analyzed and discussed. The results show that the component of the greatest exergy destruction in the system varies sensitively with the turbine inlet pressure and/or working fluid.

  8. Preliminary performance analysis of the advanced pulse compression noise radar waveform

    Science.gov (United States)

    Govoni, Mark A.; Moyer, Lee R.

    2012-06-01

    Noise radar systems encounter target fluctuation behavior similar to that of conventional systems. For noise radar systems, however, the fluctuations are not only dictated by target composition and geometry, but also by the non-uniform power envelope of their random transmit signals. This third dependency is of interest and serves as the basis for the preliminary analysis conducted in this manuscript. General conclusions are drawn on the implications of having a random power envelope and the impacts it could have on both the transmit and receive processes. Using an advanced pulse compression noise (APCN) radar waveform as the constituent signal, a computer simulation aids in quantifying potential losses and the impacts they might have on the detection performance of a real radar system.

  9. Analysis of a micro piezoelectric vibration energy harvester by nonlocal elasticity theory

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2016-04-01

    Full Text Available A theoretical model of a micro piezoelectric energy harvester is proposed based on the nonlocal elasticity theory, which is operated in the flexural mode for scavenging ambient vibration energy. A nonlocal scale is defined as the product of internal characteristic length and a constant related to the material. The dependences of performance of the harvester upon the nonlocal scale and the scale ratio of the nonlocal scale to the external characteristic parameter are investigated in detail. Numerical results show that output power of the harvester decreases, and resonance frequency reduces gradually at first then increases rapidly when nonlocal scale increases. The results of nonlocal elasticity theory are compared with that of classic beam theory. All the results are helpful for material and structure design of the micro piezoelectric energy harvester.

  10. Efficient perturbation analysis of elastic network models - Application to acetylcholinesterase of T. californica

    Science.gov (United States)

    Hamacher, K.

    2010-09-01

    Elastic network models in their different flavors have become useful models for the dynamics and functions of biomolecular systems such as proteins and their complexes. Perturbation to the interactions occur due to randomized and fixated changes (in molecular evolution) or designed modifications of the protein structures (in bioengineering). These perturbations are modifications in the topology and the strength of the interactions modeled by the elastic network models. We discuss how a naive approach to compute properties for a large number of perturbed structures and interactions by repeated diagonalization can be replaced with an identity found in linear algebra. We argue about the computational complexity and discuss the advantages of the protocol. We apply the proposed algorithm to the acetylcholinesterase, a well-known enzyme in neurobiology, and show how one can gain insight into the "breathing dynamics" of a structural funnel necessary for the function of the protein. The computational speed-up was a 60-fold increase in this example.

  11. Quasi-static analysis of elastic behavior for some systems having higher fracture densities.

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.; Aydin, A.

    2009-10-15

    Elastic behavior of geomechanical systems with interacting (but not intersecting) fractures is treated using generalizations of the Backus and the Schoenberg-Muir methods for analyzing layered systems whose layers are intrinsically anisotropic due to locally aligned fractures. By permitting the axis of symmetry of the locally anisotropic compliance matrix for individual layers to differ from that of the layering direction, we derive analytical formulas for interacting fractured regions with arbitrary orientations to each other. This procedure provides a systematic tool for studying how contiguous, but not yet intersecting, fractured domains interact, and provides a direct (though approximate) means of predicting when and how such interactions lead to more dramatic weakening effects and ultimately to failure of these complicated systems. The method permits decomposition of the system elastic behavior into specific eigenmodes that can all be analyzed, and provides a better understanding about which of these specific modes are expected to be most important to the evolving failure process.

  12. Conformal analysis of fundamental frequency of vibration of elastic clamped plates

    Institute of Scientific and Technical Information of China (English)

    QI Hongyuan; ZHU Hengjun

    2007-01-01

    To calculate the fundamental frequency of vibration of special-shaped and elastic clamped plates, the conformal mapping theory is adopted to separate the interpolating points of a complicated boundary into odd and even sequences,both of which can be mutually iterated, so that the conformal mapping function between the complicated region and the unit dish region is established. Trigonometric interpolation and convergence along the normal direction methods are provided, and the complex coefficients of the conformal mapping function are calculated. Galerkin method is used to obtain the solution of fundamental frequency in the vibrating differential function of the complicated vibrating region.Finally, taking ellipse elastic clamped plates as an example,the effects on fundamental frequency coefficient caused by eccentric ratio e and area size are analyzed.

  13. MHD Flow and Heat Transfer Analysis in the Wire Coating Process Using Elastic-Viscous

    Directory of Open Access Journals (Sweden)

    Zeeshan Khan

    2017-01-01

    Full Text Available The most important plastic resins used for wire coating are polyvinyl chloride (PVC, nylon, polysulfone, and low-/high-density polyethylene (LDPE/HDPE. In this article, the coating process is performed using elastic-viscous fluid as a coating material for wire coating in a pressure type coating die. The elastic-viscous fluid is electrically conducted in the presence of an applied magnetic field. The governing non-linear equations are modeled and then solved analytically by utilizing an Adomian decomposition method (ADM. The convergence of the series solution is established. The results are also verified by Optimal Homotopy Asymptotic Method (OHAM. The effect of different emerging parameters such as non-Newtonian parameters α and β, magnetic parameter Mand the Brinkman number Br on solutions (velocity and temperature profiles are discussed through several graphs. Additionally, the current results are compared with published work already available.

  14. Nonlinear stability analysis of double-curved shallow fgm panels on elastic foundations in thermal environments

    Science.gov (United States)

    Duc, Nguyen Dinh; Quan, Tran Quoc

    2012-09-01

    An analytical investigation into the nonlinear response of thick functionally graded double-curved shallow panels resting on elastic foundations and subjected to thermal and thermomechanical loads is presented. Young's modulus and Poisson's ratio are both graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of constituents. All formulations are based on the classical shell theory with account of geometrical nonlinearity and initial geometrical imperfection in the cases of Pasternak-type elastic foundations. By applying the Galerkin method, explicit relations for the thermal load-deflection curves of simply supported curved panels are found. The effects of material and geometrical properties and foundation stiffness on the buckling and postbuckling load-carrying capacity of the panels in thermal environments are analyzed and discussed.

  15. Reliability analysis of kinematic accuracy for the elastic slider-crank mechanism

    Institute of Scientific and Technical Information of China (English)

    TUO Yaofei; CHEN Jianjun; ZHANG Chijiang; CHEN Yongqin

    2007-01-01

    This paper deals with the static and dynamic output kinematic accuracy of a group of elastic slider-crank mechanisms with the same design parameters by taking the bar length,the joint-gaps,the mass density,and the sectional and the physical parameters as random variables.According to the principle of linear pile-up of small displacement,the static and dynamic output kinematic errors are synthesized,and the reliability model of the kinematic accuracy of the mechanism is built.Through an example,a study of the influencing factors on the reliability of the output kinematic accuracy of the mechanism is made.The results obtained reveal the following facts:with the increase of the crank's rotating speed,the dynamic elastic deformation of the mechanism becomes the principal factor that greatly affects the reliability of the output kinematic accuracy of the mechanism.

  16. BOUNDARY ELEMENT ANALYSIS OF INTERACTION BETWEEN AN ELASTIC RECTANGULAR INCLUSION AND A CRACK

    Institute of Scientific and Technical Information of China (English)

    王银邦

    2004-01-01

    The interaction between an elastic rectangular inclusion and a kinked crack in an infinite elastic body was considered by using boundary element method. The new complex boundary integral equations were derived. By introducing a complex unknown function H(t)related to the interface displacement density and traction and applying integration by parts,the traction continuous condition was satisfied automatically. Only one complex boundary integral equation was obtained on interface and involves only singularity of order l/ r. To verify the validity and effectiveness of the present boundary element method, some typical examples were calculated. The obtained results show that the crack stress intensity factors decrease as the shear modulus of inclusion increases. Thus, the crack propagation is easier near a softer inclusion and the harder inclusion is helpful for crack arrest.

  17. Dynamic analysis of new type elastic screen surface with multi degree of freedom and experimental validation

    Institute of Scientific and Technical Information of China (English)

    宋宝成; 刘初升; 彭利平; 李珺

    2015-01-01

    A feasible method was proposed to improve the vibration intensity of screen surface via application of a new type elastic screen surface with multi degree of freedom (NTESSMDF). In the NTESSMDF, the primary robs were coupled to the main screen structure with ends embedded into the elastomers, and the secondary robs were attached to adjacent two primary robs with elastic bands. The dynamic model of vibrating screen with NTESSMDF was established based on Lagrange’s equation and the equivalent stiffnesses of the elastomer and elastic band were calculated. According to numerical simulation using the 4th order Runge-Kutta method, the vibration intensity of screen surface can be enhanced substantially with an averaged acceleration amplitude increasing ratio of 72.36%. The primary robs and secondary robs vibrate inversely in steady state, which would result in the friability of materials and avoid stoppage. The experimental results validate the dynamic characteristics with acceleration amplitude rising by 62.93%on average, which demonstrates the feasibility of NTESSMDF.

  18. Blasting Vibration Safety Criterion Analysis with Equivalent Elastic Boundary: Based on Accurate Loading Model

    Directory of Open Access Journals (Sweden)

    Qingwen Li

    2015-01-01

    Full Text Available In the tunnel and underground space engineering, the blasting wave will attenuate from shock wave to stress wave to elastic seismic wave in the host rock. Also, the host rock will form crushed zone, fractured zone, and elastic seismic zone under the blasting loading and waves. In this paper, an accurate mathematical dynamic loading model was built. And the crushed zone as well as fractured zone was considered as the blasting vibration source thus deducting the partial energy for cutting host rock. So this complicated dynamic problem of segmented differential blasting was regarded as an equivalent elastic boundary problem by taking advantage of Saint-Venant’s Theorem. At last, a 3D model in finite element software FLAC3D accepted the constitutive parameters, uniformly distributed mutative loading, and the cylindrical attenuation law to predict the velocity curves and effective tensile curves for calculating safety criterion formulas of surrounding rock and tunnel liner after verifying well with the in situ monitoring data.

  19. Three-dimensional analysis of maxillary protraction with intermaxillary elastics to miniplates

    Science.gov (United States)

    Heymann, Gavin C.; Cevidanes, Lucia; Cornelis, Marie; De Clerck, Hugo J.; Camilla Tulloch, J. F.

    2010-01-01

    Introduction Early Class III treatment with reverse-pull headgear generally results in maxillary skeletal protraction but is frequently also accompanied by unfavorable dentoalveolar effects. An alternative treatment with intermaxillary elastics from a temporary anchorage device might permit equivalent favorable skeletal changes without the unwanted dentoalveolar effects. Methods Six consecutive patients (3 boys, 3 girls; ages, 10–13 years 3 months) with Class III occlusion and maxillary deficiency were treated by using intermaxillary elastics to titanium miniplates. Cone-beam computed tomography scans taken before and after treatment were used to create 3-dimensional volumetric models that were superimposed on nongrowing structures in the anterior cranial base to determine anatomic changes during treatment. Results The effect of the intermaxillary elastic forces was throughout the nasomaxillary structures. All 6 patients showed improvements in the skeletal relationship, primarily through maxillary advancement with little effect on the dentoalveolar units or change in mandibular position. Conclusions The use of intermaxillary forces applied to temporary anchorage devices appears to be a promising treatment method. PMID:20152686

  20. Thermal fluctuations and effective bending stiffness of elastic thin sheets and graphene: A nonlinear analysis

    Science.gov (United States)

    Ahmadpoor, Fatemeh; Wang, Peng; Huang, Rui; Sharma, Pradeep

    2017-10-01

    The study of statistical mechanics of thermal fluctuations of graphene-the prototypical two-dimensional material-is rendered rather complicated due to the necessity of accounting for geometric deformation nonlinearity. Unlike fluid membranes such as lipid bilayers, coupling of stretching and flexural modes in solid membranes like graphene leads to a highly anharmonic elastic Hamiltonian. Existing treatments draw heavily on analogies in the high-energy physics literature and are hard to extend or modify in the typical contexts that permeate materials, mechanics and some of the condensed matter physics literature. In this study, using a variational perturbation method, we present a ;mechanics-oriented; treatment of the thermal fluctuations of elastic sheets such as graphene and evaluate their effect on the effective bending stiffness at finite temperatures. In particular, we explore the size, pre-strain and temperature dependency of the out-of-plane fluctuations, and demonstrate how an elastic sheet becomes effectively stiffer at larger sizes. Our derivations provide a transparent approach that can be extended to include multi-field couplings and anisotropy for other 2D materials. To reconcile our analytical results with atomistic considerations, we also perform molecular dynamics simulations on graphene and contrast the obtained results and physical insights with those in the literature.

  1. Simulation-based joint estimation of body deformation and elasticity parameters for medical image analysis.

    Science.gov (United States)

    Lee, Huai-Ping; Foskey, Mark; Niethammer, Marc; Krajcevski, Pavel; Lin, Ming

    2012-11-01

    Estimation of tissue stiffness is an important means of noninvasive cancer detection. Existing elasticity reconstruction methods usually depend on a dense displacement field (inferred from ultrasound orMR images) and known external forces.Many imaging modalities, however, cannot provide details within an organ and therefore cannot provide such a displacement field. Furthermore, force exertion and measurement can be difficult for some internal organs, making boundary forces another missing parameter. We propose a general method for estimating elasticity and boundary forces automatically using an iterative optimization framework, given the desired (target) output surface. During the optimization, the input model is deformed by the simulator, and an objective function based on the distance between the deformed surface and the target surface is minimized numerically. The optimization framework does not depend on a particular simulation method and is therefore suitable for different physical models. We show a positive correlation between clinical prostate cancer stage (a clinical measure of severity) and the recovered elasticity of the organ. Since the surface correspondence is established, our method also provides a non-rigid image registration, where the quality of the deformation fields is guaranteed, as they are computed using a physics-based simulation.

  2. The Dynamic Response of an Euler-Bernoulli Beam on an Elastic Foundation by Finite Element Analysis using the Exact Stiffness Matrix

    Science.gov (United States)

    Kim, Jeong Soo; Kyum Kim, Moon

    2012-08-01

    In this study, finite element analysis of beam on elastic foundation, which received great attention of researchers due to its wide applications in engineering, is performed for estimating dynamic responses of shallow foundation using exact stiffness matrix. First, element stiffness matrix based on the closed solution of beam on elastic foundation is derived. Then, we performed static finite element analysis included exact stiffness matrix numerically, comparing results from the analysis with some exact analysis solutions well known for verification. Finally, dynamic finite element analysis is performed for a shallow foundation structure under rectangular pulse loading using trapezoidal method. The dynamic analysis results exist in the reasonable range comparing solution of single degree of freedom problem under a similar condition. The results show that finite element analysis using exact stiffness matrix is evaluated as a good tool of estimating the dynamic response of structures on elastic foundation.

  3. Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas

    Energy Technology Data Exchange (ETDEWEB)

    Roy S. Baty, F. Farassat, John A. Hargreaves

    2007-05-25

    Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.

  4. Why Electricity Demand Is Highly Income-Elastic in Spain: A Cross-Country Comparison Based on an Index-Decomposition Analysis

    Directory of Open Access Journals (Sweden)

    Julián Pérez-García

    2017-03-01

    Full Text Available Since 1990, Spain has had one of the highest elasticities of electricity demand in the European Union. We provide an in-depth analysis into the causes of this high elasticity, and we examine how these same causes influence electricity demand in other European countries. To this end, we present an index-decomposition analysis of growth in electricity demand which allows us to identify three key factors in the relationship between gross domestic product (GDP and electricity demand: (i structural change; (ii GDP growth; and (iii intensity of electricity use. Our findings show that the main differences in electricity demand elasticities across countries and time are accounted for by the fast convergence in residential per capita electricity consumption. This convergence has almost concluded, and we expect the Spanish energy demand elasticity to converge to European standards in the near future.

  5. Compressed-air: results of an analysis made for the Clariant company; Ergebnisse der Druckluftanalyse Clariant

    Energy Technology Data Exchange (ETDEWEB)

    Radgen, R. [Fraunhofer-Institut fuer Systemund Innovationsforschung (ISI), Karlsruhe (Germany); Stadelmann, B. [Hochschule fuer Technik und Architektur Luzern (HTA), Horw (Switzerland)

    2005-05-15

    This comprehensive, illustrated report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined the compressed-air supply at the facilities of the Clariant company in Muttenz, Switzerland. The various compressors and compressed-air installations in the company's facilities are described and detailed technical data is presented. The control of these systems and the distribution of the compressed air is discussed. Needs, usage and consumption of compressed air is analysed at macro and detail levels. Leakage is looked at as is the dimensioning of the distribution systems. Finally, possibilities for making savings are presented.

  6. Biomechanical Consequences of the Elastic Properties of Dental Implant Alloys on the Supporting Bone: Finite Element Analysis

    OpenAIRE

    Esteban Pérez-Pevida; Aritza Brizuela-Velasco; David Chávarri-Prado; Antonio Jiménez-Garrudo; Fernando Sánchez-Lasheras; Eneko Solaberrieta-Méndez; Markel Diéguez-Pereira; Fernández-González, Felipe J.; Borja Dehesa-Ibarra; Francesca Monticelli

    2016-01-01

    The objective of the present study is to evaluate how the elastic properties of the fabrication material of dental implants influence peri-implant bone load transfer in terms of the magnitude and distribution of stress and deformation. A three-dimensional (3D) finite element analysis was performed; the model used was a section of mandibular bone with a single implant containing a cemented ceramic-metal crown on a titanium abutment. The following three alloys were compared: rigid (Y-TZP), conv...

  7. A gas ionisation detector in the axial (Bragg) geometry used for the time-of-flight elastic recoil detection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Siketić, Zdravko; Skukan, Natko; Bogdanović Radović, Iva [Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb (Croatia)

    2015-08-15

    In this paper, time-of-flight elastic recoil detection analysis spectrometer with a newly constructed gas ionization detector for energy detection is presented. The detector is designed in the axial (Bragg) geometry with a 3 × 3 array of 50 nm thick Si{sub 3}N{sub 4} membranes as an entrance window. 40 mbar isobutane gas was sufficient to stop a 30 MeV primary iodine beam as well as all recoils in the detector volume. Spectrometer and detector performances were determined showing significant improvement in the mass and energy resolution, respectively, comparing to the spectrometer with a standard silicon particle detector for an energy measurement.

  8. Finite deformation analysis of continuum structures with time dependent anisotropic elastic plastic material behavior (LWBR/AWBA Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Hutula, D.N.

    1980-03-01

    A finite element procedure is presented for finite deformation analysis of continuum structures with time-dependent anisotropic elastic-plastic material behavior. An updated Lagrangian formulation is used to describe the kinematics of deformation. Anisotropic constitutive relations are referred, at each material point, to a set of three mutually orthogonal axes which rotate as a unit with an angular velocity equal to the spin at the point. The time-history of the solution is generated by using a linear incremental procedure with residual force correction, along with an automatic time step control algorithm which chooses time step sizes to control the accuracy and numerical stability of the solution.

  9. Development of High Speed Imaging and Analysis Techniques Compressible Dynamics Stall

    Science.gov (United States)

    Chandrasekhara, M. S.; Carr, L. W.; Wilder, M. C.; Davis, Sanford S. (Technical Monitor)

    1996-01-01

    Dynamic stall has limited the flight envelope of helicopters for many years. The problem has been studied in the laboratory as well as in flight, but most research, even in the laboratory, has been restricted to surface measurement techniques such as pressure transducers or skin friction gauges, except at low speed. From this research, it became apparent that flow visualization tests performed at Mach numbers representing actual flight conditions were needed if the complex physics associated with dynamic stall was to be properly understood. However, visualization of the flow field during compressible conditions required carefully aligned and meticulously reconstructed holographic interferometry. As part of a long-range effort focused on exposing of the physics of compressible dynamic stall, a research wind tunnel was developed at NASA Ames Research Center which permits visual access to the full flow field surrounding an oscillating airfoil during compressible dynamic stall. Initially, a stroboscopic schlieren technique was used for visualization of the stall process, but the primary research tool has been point diffraction interferometry(PDI), a technique carefully optimized for use in th is project. A review of the process of development of PDI will be presented in the full paper. One of the most valuable aspects of PDI is the fact that interferograms are produced in real time on a continuous basis. The use of a rapidly-pulsed laser makes this practical; a discussion of this approach will be presented in the full paper. This rapid pulsing(up to 40,000 pulses/sec) produces interferograms of the rapidly developing dynamic stall field in sufficient resolution(both in space and time) that the fluid physics of the compressible dynamic stall flowfield can be quantitatively determined, including the gradients of pressure in space and time. This permits analysis of the influence of the effect of pitch rate, Mach number, Reynolds number, amplitude of oscillation, and other

  10. Compression After Impact on Honeycomb Core Sandwich Panels with Thin Facesheets, Part 2: Analysis

    Science.gov (United States)

    Mcquigg, Thomas D.; Kapania, Rakesh K.; Scotti, Stephen J.; Walker, Sandra P.

    2012-01-01

    A two part research study has been completed on the topic of compression after impact (CAI) of thin facesheet honeycomb core sandwich panels. The research has focused on both experiments and analysis in an effort to establish and validate a new understanding of the damage tolerance of these materials. Part 2, the subject of the current paper, is focused on the analysis, which corresponds to the CAI testings described in Part 1. Of interest, are sandwich panels, with aerospace applications, which consist of very thin, woven S2-fiberglass (with MTM45-1 epoxy) facesheets adhered to a Nomex honeycomb core. Two sets of materials, which were identical with the exception of the density of the honeycomb core, were tested in Part 1. The results highlighted the need for analysis methods which taken into account multiple failure modes. A finite element model (FEM) is developed here, in Part 2. A commercial implementation of the Multicontinuum Failure Theory (MCT) for progressive failure analysis (PFA) in composite laminates, Helius:MCT, is included in this model. The inclusion of PFA in the present model provided a new, unique ability to account for multiple failure modes. In addition, significant impact damage detail is included in the model. A sensitivity study, used to assess the effect of each damage parameter on overall analysis results, is included in an appendix. Analysis results are compared to the experimental results for each of the 32 CAI sandwich panel specimens tested to failure. The failure of each specimen is predicted using the high-fidelity, physicsbased analysis model developed here, and the results highlight key improvements in the understanding of honeycomb core sandwich panel CAI failure. Finally, a parametric study highlights the strength benefits compared to mass penalty for various core densities.

  11. Microlattices as architected thin films: Analysis of mechanical properties and high strain elastic recovery

    Directory of Open Access Journals (Sweden)

    Kevin J. Maloney

    2013-08-01

    Full Text Available Ordered periodic microlattices with densities from 0.5 mg/cm3 to 500 mg/cm3 are fabricated by depositing various thin film materials (Au, Cu, Ni, SiO2, poly(C8H4F4 onto sacrificial polymer lattice templates. Young's modulus and strength are measured in compression and the density scaling is determined. At low relative densities, recovery from compressive strains of 50% and higher is observed, independent of lattice material. An analytical model is shown to accurately predict the transition between recoverable “pseudo-superelastic” and irrecoverable plastic deformation for all constituent materials. These materials are of interest for energy storage applications, deployable structures, and for acoustic, shock, and vibration damping.

  12. Study of Ocean Bottom Interactions with Acoustic Waves by a New Elastic Wave Propagation Algorithm and an Energy Flow Analysis Technique

    Science.gov (United States)

    2016-06-07

    imaging to study the wave / sea -bottom interaction, energy partitioning, scattering mechanism and other problems that are crucial for many ocean bottom...Study Of Ocean Bottom Interactions With Acoustic Waves By A New Elastic Wave Propagation Algorithm And An Energy Flow Analysis Technique Ru-Shan Wu...elastic wave propagation and interaction with the ocean water and ocean bottom environment. The method will be applied to numerical simulations and

  13. Performance Analysis of a Coal-Fired External Combustion Compressed Air Energy Storage System

    Directory of Open Access Journals (Sweden)

    Wenyi Liu

    2014-11-01

    Full Text Available Compressed air energy storage (CAES is one of the large-scale energy storage technologies utilized to provide effective power peak load shaving. In this paper, a coal-fired external combustion CAES, which only uses coal as fuel, is proposed. Unlike the traditional CAES, the combustion chamber is substituted with an external combustion heater in which high-pressure air is heated before entering turbines to expand in the proposed system. A thermodynamic analysis of the proposed CAES is conducted on the basis of the process simulation. The overall efficiency and the efficiency of electricity storage are 48.37% and 81.50%, respectively. Furthermore, the exergy analysis is then derived and forecasted, and the exergy efficiency of the proposed system is 47.22%. The results show that the proposed CAES has more performance advantages than Huntorf CAES (the first CAES plant in the world. Techno-economic analysis of the coal-fired CAES shows that the cost of electricity (COE is $106.33/MWh, which is relatively high in the rapidly developing power market. However, CAES will be more likely to be competitive if the power grid is improved and suitable geographical conditions for storage caverns are satisfied. This research provides a new approach for developing CAES in China.

  14. Gait analysis of spastic walking in patients with cervical compressive myelopathy.

    Science.gov (United States)

    Maezawa, Y; Uchida, K; Baba, H

    2001-01-01

    To assess neurological status and to evaluate the effect of surgical decompression in patients with cervical myelopathy, we performed computerized gait analysis in 24 patients with cervical compressive myelopathy who showed spastic walking. Gait analysis was repeated during neurological follow-up that averaged 32.4 months. The gait pattern in patients with severe myelopathy was characterized by hyperextension of the knee in the stance phase without plantar flexion of the ankle in the swing phase, significantly reduced walking speed and step length, prolonged stance phase duration and decreased single-stance phase duration, and increased step width. The angle of flexion of the knee joint in the stance phase was significantly correlated with the Japanese Orthopaedic Association (JOA) score. Postoperative neurological improvement was associated with increased walking speed and decreased extension angle of the knee joint (single-stance phase and swing phase). Postoperatively, 12 patients had normalized extension of the knee in stance phase and their walking speed, cadence, stance phase duration, and single-stance phase duration, as well as step length and width, showed nonsignificant differences from these parameters in healthy controls. Our results show that kinesiological gait analysis is clinically useful for the functional assessment of the severity of spastic walking in cervical myelopathy.

  15. Oil demand and price elasticity of energy consumption in the GCC countries: A panel cointegration analysis

    Directory of Open Access Journals (Sweden)

    Md Qaiser Alam

    2016-07-01

    Full Text Available This paper examines the cointegrating relationship between oil demand and price elasticity of energy consumption in the Gulf Co-operation Council (GCC countries during the period 1980-2010. The paper has applied the recently developed panel cointegration techniques, Dynamic Ordinary Least Squares (DOLS and panel DOLS in a panel of GCC countries. The region is being recognized as the major region of oil production and export in the global economy. In recent times, the region is emerging as a fastest growing oil consuming region globally. This fast increase in the level of oil consumption in the major oil exporting countries raises the energy security implications in the sphere of the growing oil demand in the world economy. This is likely to bring many pitfalls in the form of price distortions and reduced growth rates in and outside the oil export region. The empirical finding reveals a cointegrating relationship among the variables and indicates an income elastic and price inelastic demand for oil in the long-run in the GCC countries. The outcomes of income elastic and price inelastic demand for oil are also consistent in the short-run. The income and price inelastic demand for oil though exists for a full panel of countries but vary across the GCC countries. The result of the Granger Causality test also depicts a unidirectional causality running from income to oil consumption and bidirectional causality running between oil prices and income in the GCC countries. Moreover, the outcomes reveal that demand for oil varies positively with the growth of income and negatively with the price level in the economy.

  16. Impaired Arterial Elasticity Identified by Pulse Waveform Analysis as a Marker for Vascular Wall Damage in Humans With Aging and Hypertension

    Institute of Scientific and Technical Information of China (English)

    Wang Yan; Tao Jun; Tu Chang; Yang Zhen; Xu Mingguo; Wang Jiemei; Jin Yafei; Ma Hong

    2005-01-01

    Objectives Cardiovascular risk factors lead to pathogenesis of atherosclerosis and its clinical events by impairing vascular wall. Endothelial dysfunction is the earliest marker for vascular wall injuries. Development of new method to detect early vascular wall damage has an important clinical implication for the prevention and treatment of cardiovascular diseases. Therefore, the present study was performed to evaluate effect of aging and hypertension, two independent risk factors for cardiovascular diseases, on arterial elasticity by using pulse waveform analysis and investigate whether the changes in arterial elasticity can be used as a risk marker for vascular structural and functional abnormalities. Methods Using modified Windkessel model of the circulation and pulse waveform analysis,C 1 large artery and C2 small artery elasticity indices of 204 Chinese normal healthy subjects ( age 15-80years) and 46 Chinese essential hypertensive patients (age 35-70 years) were measured. Age- and hypertension-related arterial elasticity changes were examined. Results C1 large artery and C2 small artery elasticity indices were reduced with advancing age in healthy subjects. C1 large artery and C2 small artery elasticity indices were negatively correlated with age (r=-0.628, P<0.001; r=-0.595, P<0.001). C1 large artery and C2 small artery elasticity indices in patients with essential hypertension compared with the agematched healthy subjects were (9.31±3.85 ml/mm Hg x 10 versus 15.13±4.14 ml/mmHg x 10, P<0.001) and (3.57± 1.62 ml/mm Hg x 100 versus 7.89±2.91 ml/mmHg ×100 P <0.001), respectively, and were significantly lower than the corresponding healthy subjects. There were negative association between C1large artery and C2 small artery elasticity indices and systolic blood pressure (r=-0.37, P<0.05; r=-0.39,P<0.05) and pulse pressure (r=-0.39, P<0.05; r=0.43,P<0.05) in patients with essential hypertension.Conclusions Advancing age and essential

  17. Analysis of the Quasi-Elastic Scattering of Neutrons in Hydrogenous Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Porohit, S.N. [Nuclear Science and Engineering Dept., Rensselaer Polytechnique Inst., Troy, NY (United States)

    1966-11-15

    A critical discussion of the quasi-elastic scattering of neutrons by incoherent (hydrogenous) liquids is presented. Using the line shape expression a comparative discussion of several phenomenological models has been carried out. Extension of the Singwi-Sjoelander zero phonon expression, for the jump-diffusion model, so as to include the one phonon expression has also been given. For a delayed diffusion model a complete treatment of S(K, {omega}) is presented. Along the lines of the macroscopic diffusion cooling, a microscopic diffusion cooling effect in fluids is speculated.

  18. An Approximate Method for Analysis of Solitary Waves in Nonlinear Elastic Materials

    Science.gov (United States)

    Rushchitsky, J. J.; Yurchuk, V. N.

    2016-05-01

    Two types of solitary elastic waves are considered: a longitudinal plane displacement wave (longitudinal displacements along the abscissa axis of a Cartesian coordinate system) and a radial cylindrical displacement wave (displacements in the radial direction of a cylindrical coordinate system). The basic innovation is the use of nonlinear wave equations similar in form to describe these waves and the use of the same approximate method to analyze these equations. The distortion of the wave profile described by Whittaker (plane wave) or Macdonald (cylindrical wave) functions is described theoretically

  19. Systematic analysis of α elastic scattering with the São Paulo potential

    Science.gov (United States)

    Charry-Pastrana, F. E.; Pinilla, E. C.

    2016-07-01

    We describe systematically by collision energy and target mass, alpha elastic scattering angular distributions by using the São Paulo potential as the real part of the optical potential. The imaginary part is proportional to the real one by a factor Ni. We find this parameter by fitting the theoretical angular distributions to the experimental cross sections through a χ2 minimization. The Ni and their respective uncertainties, σNi, fall in the range 0.4 ≤ Ni ± σNi ≤ 0.8 for all the systems studied.

  20. Finite Element Analysis of Problems in Elasticity/Plasticity with Singularities,

    Science.gov (United States)

    1986-09-01

    frnct:re criterio , !uLch cr acdvancc wAd bV very ]!;.’rtLnt. 3. NONL1NEAR PROBLEMS "T’ite second i,.ajar feature of the project has been the treatment of...Co!mputing, Atlanta , 1985. ARO Report 8b-1. 11. Ti.,hpson , G.M. and Wai teman , J.R. , Stress forms for three-diIT(nsi onal Ifmiar elastic notch...Conference, Atlanta "Ia y 19k86 Departinent of Miathematics, University of Strathclyde June 1986 Schtuol of Mining Enginuering, University Polyte-chnic of Madrid Jul Iy 1986 ej JIC

  1. R-matrix and K-matrix analysis of elastic $\\alpha - \\alpha$ scattering

    CERN Document Server

    Humblet, J; Langanke, K

    1998-01-01

    The R- and K-matrix parametrizations are analyzed and compared for the elastic alpha-alpha scattering at center-of-mass energies below 40 MeV. The two parametrizations differ in their definitions of the resonance energy which can lead to quite different results. The physical values of the best-fit parameters are compared with those computed for a potential model. The existence of a broad resonance near 9 MeV is not supported by the data or by the potential model. We discuss the positive and negative aspects for both parametrizations.

  2. Primary hypertension and neurovascular compression: a meta-analysis of magnetic resonance imaging studies.

    NARCIS (Netherlands)

    Boogaarts, H.D.; Menovsky, T.; Vries, J. de; Verbeek, A.L.M.; Lenders, J.W.M.; Grotenhuis, J.A.

    2012-01-01

    OBJECT: Several studies have suggested that neurovascular compression (NVC) of the brainstem might be a cause of hypertension. Because this compression syndrome might be demonstrated by MR imaging studies, several authors have tried to assess its prevalence in small series of patients with hypertens

  3. Elastic Beanstalk

    CERN Document Server

    Vliet, Jurg; Wel, Steven; Dowd, Dara

    2011-01-01

    While it's always been possible to run Java applications on Amazon EC2, Amazon's Elastic Beanstalk makes the process easier-especially if you understand how it works beneath the surface. This concise, hands-on book not only walks you through Beanstalk for deploying and managing web applications in the cloud, you'll also learn how to use this AWS tool in other phases of development. Ideal if you're a developer familiar with Java applications or AWS, Elastic Beanstalk provides step-by-step instructions and numerous code samples for building cloud applications on Beanstalk that can handle lots

  4. Analysis of scale effect in compressive ice failure and implications for design

    Science.gov (United States)

    Taylor, Rocky Scott

    The main focus of the study was the analysis of scale effect in local ice pressure resulting from probabilistic (spalling) fracture and the relationship between local and global loads due to the averaging of pressures across the width of a structure. A review of fundamental theory, relevant ice mechanics and a critical analysis of data and theory related to the scale dependent pressure behavior of ice were completed. To study high pressure zones (hpzs), data from small-scale indentation tests carried out at the NRC-IOT were analyzed, including small-scale ice block and ice sheet tests. Finite element analysis was used to model a sample ice block indentation event using a damaging, viscoelastic material model and element removal techniques (for spalling). Medium scale tactile sensor data from the Japan Ocean Industries Association (JOIA) program were analyzed to study details of hpz behavior. The averaging of non-simultaneous hpz loads during an ice-structure interaction was examined using local panel pressure data. Probabilistic averaging methodology for extrapolating full-scale pressures from local panel pressures was studied and an improved correlation model was formulated. Panel correlations for high speed events were observed to be lower than panel correlations for low speed events. Global pressure estimates based on probabilistic averaging were found to give substantially lower average errors in estimation of load compared with methods based on linear extrapolation (no averaging). Panel correlations were analyzed for Molikpaq and compared with JOIA results. From this analysis, it was shown that averaging does result in decreasing pressure for increasing structure width. The relationship between local pressure and ice thickness for a panel of unit width was studied in detail using full-scale data from the STRICE, Molikpaq, Cook Inlet and Japan Ocean Industries Association (JOIA) data sets. A distinct trend of decreasing pressure with increasing ice thickness

  5. Performance analysis of Coiflet-type wavelets for a fingerprint image compression by using wavelet and wavelet packet transform

    Directory of Open Access Journals (Sweden)

    Md. Rafiqul Islam

    2012-05-01

    Full Text Available Fingerprint analysis plays a crucial role in crucial legal matters such as investigation of crime and security system. Due to the large number and size of fingerprint images, data compression has to be applied to reduce the storage and communication bandwidth requirements of those images. To do this, there are many types of wavelet has been used for fingerprint image compression. In this paper we haveused Coiflet-Type wavelets and our aim is to determine the most appropriate Coiflet-Type wavelet for better compression of a digitized fingerprint image and to achieve our goal Retain Energy (RE and Number of Zeros (NZ in percentage is determined for different Coiflet-Type wavelets at different threshold values at the fixed decomposition level 3 using wavelet and wavelet packet transform. We have used 8-bit grayscale left thumb digitized fingerprint image of size 480×400 as a test image.

  6. Effects of errors in velocity tilt on maximum longitudinal compression during neutralized drift compression of intense beam pulses: II. Analysis of experimental data of the Neutralized Drift Compression eXperiment-I (NDCX-I)

    Science.gov (United States)

    Massidda, Scott; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.; Lidia, Steven M.; Seidl, Peter; Friedman, Alex

    2012-06-01

    Neutralized drift compression offers an effective means for particle beam focusing and current amplification with applications to heavy ion fusion. In the Neutralized Drift Compression eXperiment-I (NDCX-I), a non-relativistic ion beam pulse is passed through an inductive bunching module that produces a longitudinal velocity modulation. Due to the applied velocity tilt, the beam pulse compresses during neutralized drift. The ion beam pulse can be compressed by a factor of more than 100; however, errors in the velocity modulation affect the compression ratio in complex ways. We have performed a study of how the longitudinal compression of a typical NDCX-I ion beam pulse is affected by the initial errors in the acquired velocity modulation. Without any voltage errors, an ideal compression is limited only by the initial energy spread of the ion beam, ΔΕb. In the presence of large voltage errors, δU≫ΔEb, the maximum compression ratio is found to be inversely proportional to the geometric mean of the relative error in velocity modulation and the relative intrinsic energy spread of the beam ions. Although small parts of a beam pulse can achieve high local values of compression ratio, the acquired velocity errors cause these parts to compress at different times, limiting the overall compression of the ion beam pulse.

  7. Effects of errors in velocity tilt on maximum longitudinal compression during neutralized drift compression of intense beam pulses: II. Analysis of experimental data of the Neutralized Drift Compression eXperiment-I (NDCX-I)

    Energy Technology Data Exchange (ETDEWEB)

    Massidda, Scott [Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kaganovich, Igor D., E-mail: ikaganov@pppl.gov [Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Startsev, Edward A.; Davidson, Ronald C. [Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Lidia, Steven M.; Seidl, Peter [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Friedman, Alex [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States)

    2012-06-21

    Neutralized drift compression offers an effective means for particle beam focusing and current amplification with applications to heavy ion fusion. In the Neutralized Drift Compression eXperiment-I (NDCX-I), a non-relativistic ion beam pulse is passed through an inductive bunching module that produces a longitudinal velocity modulation. Due to the applied velocity tilt, the beam pulse compresses during neutralized drift. The ion beam pulse can be compressed by a factor of more than 100; however, errors in the velocity modulation affect the compression ratio in complex ways. We have performed a study of how the longitudinal compression of a typical NDCX-I ion beam pulse is affected by the initial errors in the acquired velocity modulation. Without any voltage errors, an ideal compression is limited only by the initial energy spread of the ion beam, {Delta}{Epsilon}{sub b}. In the presence of large voltage errors, {delta}U Double-Nested-Greater-Than {Delta}E{sub b}, the maximum compression ratio is found to be inversely proportional to the geometric mean of the relative error in velocity modulation and the relative intrinsic energy spread of the beam ions. Although small parts of a beam pulse can achieve high local values of compression ratio, the acquired velocity errors cause these parts to compress at different times, limiting the overall compression of the ion beam pulse.

  8. In-Plane free Vibration Analysis of an Annular Disk with Point Elastic Support

    Directory of Open Access Journals (Sweden)

    S. Bashmal

    2011-01-01

    Full Text Available In-plane free vibrations of an elastic and isotropic annular disk with elastic constraints at the inner and outer boundaries, which are applied either along the entire periphery of the disk or at a point are investigated. The boundary characteristic orthogonal polynomials are employed in the Rayleigh-Ritz method to obtain the frequency parameters and the associated mode shapes. Boundary characteristic orthogonal polynomials are generated for the free boundary conditions of the disk while artificial springs are used to account for different boundary conditions. The frequency parameters for different boundary conditions of the outer edge are evaluated and compared with those available in the published studies and computed from a finite element model. The computed mode shapes are presented for a disk clamped at the inner edge and point supported at the outer edge to illustrate the free in-plane vibration behavior of the disk. Results show that addition of point clamped support causes some of the higher modes to split into two different frequencies with different mode shapes.

  9. AN EFFECTIVE BOUNDARY ELEMENT METHOD FOR ANALYSIS OF CRACK PROBLEMS IN A PLANE ELASTIC PLATE

    Institute of Scientific and Technical Information of China (English)

    YAN Xiang-qiao

    2005-01-01

    A simple and effective boundary element method for stress intensity factor calculation for crack problems in a plane elastic plate is presented. The boundary element method consists of the constant displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity elements proposed by YAN Xiangqiao. In the boundary element implementation the left or the right crack-tip displacement discontinuity element was placed locally at the corresponding left or right each crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. Test examples ( i. e. , a center crack in an infinite plate under tension, a circular hole and a crack in an infinite plate under tension) are included to illustrate that the numerical approach is very simple and accurate for stress intensity factor calculation of plane elasticity crack problems. In addition, specifically, the stress intensity factors of branching cracks emanating from a square hole in a rectangular plate under biaxial loads were analysed. These numerical results indicate the present numerical approach is very effective for calculating stress intensity factors of complex cracks in a 2-D finite body, and are used to reveal the effect of the biaxial loads and the cracked body geometry on stress intensity factors.

  10. Biocompatibility and biomechanical analysis of elastic TPU threads as new suture material.

    Science.gov (United States)

    Vogels, Ruben R M; Lambertz, Andreas; Schuster, Philipp; Jockenhoevel, Stefan; Bouvy, Nicole D; Disselhorst-Klug, Catherine; Neumann, Ulf P; Klinge, Uwe; Klink, Christian D

    2017-01-01

    High suture tension is one of the causes for many wound-healing problems. Constriction of tissue within the suture loops of nonelastic sutures can lead to cutting of the suture through tissues and necrosis of the tissue within these loops. The use of elastic materials in new suture types could give the material the ability to adapt tension to the tissue requirements and subsequently lead to more vital tissue within its loops. We evaluated the foreign body host response, as indicator of biocompatibility, to a new thermoplastic poly(carbonate) urethane (TPU) synthetic suture material in a rat model compared with standard nonelastic polypropylene (PP) sutures. Tissue samples were collected at 7 and 21 days, and host response was evaluated. Subsequently, suture tension curves of the new elastic sutures for the first 30 min after knotting were recorded in a pig model. The new TPU sutures showed an improved foreign body response when compared with that of PP, with a reduction in the amount of macrophages surrounding the material. Tension experiments showed a superior tension curve for TPU sutures, with a major reduction in peak suture tension when compared with that of standard PP sutures, while still retaining adequate tension after 30 min. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 99-106, 2017.

  11. Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory

    Science.gov (United States)

    Ghadiri, Majid; Safarpour, Hamed

    2016-09-01

    In this paper, size-dependent effect of an embedded magneto-electro-elastic (MEE) nanoshell subjected to thermo-electro-magnetic loadings on free vibration behavior is investigated. Also, the surrounding elastic medium has been considered as the model of Winkler characterized by the spring. The size-dependent MEE nanoshell is investigated on the basis of the modified couple stress theory. Taking attention to the first-order shear deformation theory (FSDT), the modeled nanoshell and its equations of motion are derived using principle of minimum potential energy. The accuracy of the presented model is validated with some cases in the literature. Finally, using the Navier-type method, an analytical solution of governing equations for vibration behavior of simply supported MEE cylindrical nanoshell under combined loadings is presented and the effects of material length scale parameter, temperature changes, external electric potential, external magnetic potential, circumferential wave numbers, constant of spring, shear correction factor and length-to-radius ratio of the nanoshell on natural frequency are identified. Since there has been no research about size-dependent analysis MEE cylindrical nanoshell under combined loadings based on FSDT, numerical results are presented to be served as benchmarks for future analysis of MEE nanoshells using the modified couple stress theory.

  12. Buckling analysis and smart control of SLGS using elastically coupled PVDF nanoplate based on the nonlocal Mindlin plate theory

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbanpour Arani, A., E-mail: aghorban@kashanu.ac.ir [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Kolahchi, R.; Vossough, H. [Faculty of Mechanical Engineering, University of Kashan, Kashan (Iran, Islamic Republic of)

    2012-11-15

    This study presents an analytical approach for buckling analysis and smart control of a single layer graphene sheet (SLGS) using a coupled polyvinylidene fluoride (PVDF) nanoplate. The SLGS and PVDF nanoplate are considered to be coupled by an enclosing elastic medium which is simulated by the Pasternak foundation. The PVDF nanoplate is subjected to an applied voltage in the thickness direction which operates in control of critical load of the SLGS. In order to satisfy the Maxwell equation, electric potential distribution is assumed as a combination of a half-cosine and linear variation. The exact analysis is performed for the case when all four ends are simply supported and free electrical boundary condition. Adopting the nonlocal Mindlin plate theory, the governing equations are derived based on the energy method and Hamilton's principle. A detailed parametric study is conducted to elucidate the influences of the small scale coefficient, stiffness of the internal elastic medium, graphene length, mode number and external electric voltage on the buckling smart control of the SLGS. The results depict that the imposed external voltage is an effective controlling parameter for buckling of the SLGS. This study might be useful for the design and smart control of nano-devices.

  13. Failure analysis of porcupine quills under axial compression reveals their mechanical response during buckling.

    Science.gov (United States)

    Torres, Fernando G; Troncoso, Omar P; Diaz, John; Arce, Diego

    2014-11-01

    Porcupine quills are natural structures formed by a thin walled conical shell and an inner foam core. Axial compression tests, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FT-IR) were all used to compare the characteristics and mechanical properties of porcupine quills with and without core. The failure mechanisms that occur during buckling were analyzed by scanning electron microscopy (SEM), and it was found that delamination buckling is mostly responsible for the decrease in the measured buckling stress of the quills with regard to predicted theoretical values. Our analysis also confirmed that the foam core works as an energy dissipater improving the mechanical response of an empty cylindrical shell, retarding the onset of buckling as well as producing a step wise decrease in force after buckling, instead of an instantaneous decrease in force typical for specimens without core. Cell collapse and cell densification in the inner foam core were identified as the key mechanisms that allow for energy absorption during buckling.

  14. Experimental and computational analysis of micromotions of an uncemented femoral knee implant using elastic and plastic bone material models.

    Science.gov (United States)

    Berahmani, Sanaz; Janssen, Dennis; Verdonschot, Nico

    2017-08-16

    It is essential to calculate micromotions at the bone-implant interface of an uncemented femoral total knee replacement (TKR) using a reliable computational model. In the current study, experimental measurements of micromotions were compared with predicted micromotions by Finite Element Analysis (FEA) using two bone material models: linear elastic and post-yield material behavior, while an actual range of interference fit was simulated. The primary aim was to investigate whether a plasticity model is essential in order to calculate realistic micromotions. Additionally, experimental bone damage at the interface was compared with the FEA simulated range. TKR surgical cuts were applied to five cadaveric femora and micro- and clinical CT- scans of these un-implanted specimens were made to extract geometrical and material properties, respectively. Micromotions at the interface were measured using digital image correlation. Cadaver-specific FEA models were created based on the experimental set-up. The average experimental micromotion of all specimens was 53.1±42.3µm (mean±standard deviation (SD)), which was significantly higher than the micromotions predicted by both models, using either the plastic or elastic material model (26.5±23.9µm and 10.1±10.1µm, respectively; p-valuematerial models). The difference between the two material models was also significant (p-value<0.001). The predicted damage had a magnitude and distribution which was comparable to the experimental bone damage. We conclude that, although the plastic model could not fully predict the micro motions, it is more suitable for pre-clinical assessment of a press-fit TKR implant than using an elastic bone model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The application of static elastic-plastic analysis in frame structures%静力弹塑性分析在框架结构中的运用

    Institute of Scientific and Technical Information of China (English)

    汤晓刚; 吕冬春

    2016-01-01

    This paper elaborated the basic principle of static elastic-plastic analysis method,taking to a frame structure as an example,using the finite element analysis software ETABS,this paper made static elastic-plastic analysis on this structure,evaluated the structure seismic perform-ance,pointed out that the static elastic-plastic analysis method had good engineering practical value and broad development prospects.%阐述了静力弹塑性分析方法的基本原理,以某框架结构为例,利用有限元软件ETABS,对该结构进行了静力弹塑性分析,评估了结构的抗震性能,指出这种静力弹塑性分析方法具有较好的工程实用价值,发展前景广阔.

  16. Clinical evaluation of irreversible image compression: analysis of chest imaging with computed radiography.

    Science.gov (United States)

    Ishigaki, T; Sakuma, S; Ikeda, M; Itoh, Y; Suzuki, M; Iwai, S

    1990-06-01

    To implement a picture archiving and communication system, clinical evaluation of irreversible image compression with a newly developed modified two-dimensional discrete cosine transform (DCT) and bit-allocation technique was performed for chest images with computed radiography (CR). CR images were observed on a cathode-ray-tube monitor in a 1,024 X 1,536 matrix. One original and five reconstructed versions of the same images with compression ratios of 3:1, 6:1, 13:1, 19:1, and 31:1 were ranked according to quality. Test images with higher spatial frequency were ranked better than those with lower spatial frequency and the acceptable upper limit of the compression ratio was 19:1. In studies of receiver operating characteristics for scoring the presence or absence of nodules and linear shadows, the images with a compression ratio of 25:1 showed a statistical difference as compared with the other images with a compression ratio of 20:1 or less. Both studies show that plain CR chest images with a compression ratio of 10:1 are acceptable and, with use of an improved DCT technique, the upper limit of the compression ratio is 20:1.

  17. Rotational elasticity

    Science.gov (United States)

    Vassiliev, Dmitri

    2017-04-01

    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833

  18. Multiwavelet and Estimation by Interpolation AnalysisBased Hybrid Color Image Compression

    Directory of Open Access Journals (Sweden)

    Ali Hussien Miry

    2008-01-01

    Full Text Available Nowadays, still images are used everywhere in the digital world. The shortages of storage capacity and transmission bandwidth make efficient compression solutions essential. A revolutionary mathematics tool, wavelet transform, has already shown its power in image processing. The major topic of this paper, is improve the compresses of still images by Multiwavelet based on estimation the high Multiwavelet coefficients in high frequencies sub band by interpolation instead of sending all Multiwavelet coefficients. When comparing the proposed approach with other compression methods Good result obtained.

  19. Imperfection analysis of flexible pipe armor wires in compression and bending

    DEFF Research Database (Denmark)

    Østergaard, Niels Højen; Lyckegaard, Anders; Andreasen, Jens H.

    2012-01-01

    The work presented in this paper is motivated by a specific failure mode known as lateral wire buckling occurring in the tensile armor layers of flexible pipes. The tensile armor is usually constituted by two layers of initially helically wound steel wires with opposite lay directions. During pipe...... laying in ultra deep waters, a flexible pipe experiences repeated bending cycles and longitudinal compression. These loading conditions are known to impose a danger to the structural integrity of the armoring layers, if the compressive load on the pipe exceeds the total maximum compressive load carrying...

  20. Linear elastic analysis of thin laminated beams with uniform and symmetric cross-section

    Directory of Open Access Journals (Sweden)

    Zajíček M.

    2008-12-01

    Full Text Available This paper deals with analyses of linear elastic thin beams which are consisted of the homogeneous orthotropic layers. The cross-sections of these beams are assumed uniform and symmetric. Governing equations of one-dimensional model are derived on the base of the Timoshenko's beam theory. An evaluation of shear correction factor consists in conservation of the shear strain energy. This factor is calculated in this paper but only in the cases of the static problem. The general static solution for the flexural and axial displacement and for the slope of the cross-section is found. Further, the possibility of calculation of the free vibrations of beams are also presented. The obtained results for the static solution are compared with the results of numerical solution based on the finite element method. The numerical model is prepared in software package MARC. As a tested example is used the uniformly loaded simply supported beam with various cross-sections.