Advances in compressible turbulent mixing
International Nuclear Information System (INIS)
Dannevik, W.P.; Buckingham, A.C.; Leith, C.E.
1992-01-01
This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately
Advances in compressible turbulent mixing
Energy Technology Data Exchange (ETDEWEB)
Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.
1992-01-01
This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.
Compressibility effects on turbulent mixing
Panickacheril John, John; Donzis, Diego
2016-11-01
We investigate the effect of compressibility on passive scalar mixing in isotropic turbulence with a focus on the fundamental mechanisms that are responsible for such effects using a large Direct Numerical Simulation (DNS) database. The database includes simulations with Taylor Reynolds number (Rλ) up to 100, turbulent Mach number (Mt) between 0.1 and 0.6 and Schmidt number (Sc) from 0.5 to 1.0. We present several measures of mixing efficiency on different canonical flows to robustly identify compressibility effects. We found that, like shear layers, mixing is reduced as Mach number increases. However, data also reveal a non-monotonic trend with Mt. To assess directly the effect of dilatational motions we also present results with both dilatational and soleniodal forcing. Analysis suggests that a small fraction of dilatational forcing decreases mixing time at higher Mt. Scalar spectra collapse when normalized by Batchelor variables which suggests that a compressive mechanism similar to Batchelor mixing in incompressible flows might be responsible for better mixing at high Mt and with dilatational forcing compared to pure solenoidal mixing. We also present results on scalar budgets, in particular on production and dissipation. Support from NSF is gratefully acknowledged.
Toward topology-based characterization of small-scale mixing in compressible turbulence
Suman, Sawan; Girimaji, Sharath
2011-11-01
Turbulent mixing rate at small scales of motion (molecular mixing) is governed by the steepness of the scalar-gradient field which in turn is dependent upon the prevailing velocity gradients. Thus motivated, we propose a velocity-gradient topology-based approach for characterizing small-scale mixing in compressible turbulence. We define a mixing efficiency metric that is dependent upon the topology of the solenoidal and dilatational deformation rates of a fluid element. The mixing characteristics of solenoidal and dilatational velocity fluctuations are clearly delineated. We validate this new approach by employing mixing data from direct numerical simulations (DNS) of compressible decaying turbulence with passive scalar. For each velocity-gradient topology, we compare the mixing efficiency predicted by the topology-based model with the corresponding conditional scalar variance obtained from DNS. The new mixing metric accurately distinguishes good and poor mixing topologies and indeed reasonably captures the numerical values. The results clearly demonstrate the viability of the proposed approach for characterizing and predicting mixing in compressible flows.
Premixed autoignition in compressible turbulence
Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline
2016-11-01
Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.
Compressibility, turbulence and high speed flow
Gatski, Thomas B
2009-01-01
This book introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. For the computation of turbulent compressible flows, current methods of averaging and filtering are presented so that the reader is exposed to a consistent development of applicable equation sets for both the mean or resolved fields as well as the transport equations for the turbulent stress field. For the measurement of turbulent compressible flows, current techniques ranging from hot-wire anemometry to PIV are evaluated and limitations assessed. Characterizing dynamic features of free shear flows, including jets, mixing layers and wakes, and wall-bounded flows, including shock-turbulence and shock boundary-layer interactions, obtained from computations, experiments and simulations are discussed. Key features: * Describes prediction methodologies in...
International Nuclear Information System (INIS)
Barre, S.; Bonnet, J.P.
2015-01-01
Highlights: • We performed a careful experiment on a highly compressible mixing layer. • We validated the most recent DNS with the present results. • We discuss some aspects of the thermodynamics of the turbulent flow. • We performed a comparison between a computed and a measured turbulent kinetic energy budget. - Abstract: A compressible supersonic mixing layer at convective Mach number (Mc) equal to 1 has been studied experimentally in a dual stream supersonic/subsonic wind-tunnel. Laser Doppler Velocimetry (L.D.V.) measurements were performed making possible a full estimation of the mean and turbulent 3D velocity fields in the mixing layer. The Reynolds stress tensor was described. In particular, some anisotropy coefficients were obtained. It appears that the structure of the Reynolds tensor is almost not affected by compressibility at least up to Mc = 1. The turbulent kinetic energy budget was also experimentally estimated. Reynolds analogies assumptions were used to obtain density/velocity correlations in order to build the turbulent kinetic energy budget from LDV measurements. Results have been compared to other experimental and numerical results. Compressibility effects on the turbulent kinetic energy budget have been detected and commented. A study about thermodynamics flow properties was also performed using most recent DNS results experimentally validated by the present data. A non-dimensional number is then introduced in order to quantify the real effect of pressure fluctuations on the thermodynamics quantities fluctuations
Compressible turbulent flows: aspects of prediction and analysis
Energy Technology Data Exchange (ETDEWEB)
Friedrich, R. [TU Muenchen, Garching (Germany). Fachgebiet Stroemungsmechanik
2007-03-15
Compressible turbulent flows are an important element of high-speed flight. Boundary layers developing along fuselage and wings of an aircraft and along engine compressor and turbine blades are compressible and mostly turbulent. The high-speed flow around rockets and through rocket nozzles involves compressible turbulence and flow separation. Turbulent mixing and combustion in scramjet engines is another example where compressibility dominates the flow physics. Although compressible turbulent flows have attracted researchers since the fifties of the last century, they are not completely understood. Especially interactions between compressible turbulence and combustion lead to challenging, yet unsolved problems. Direct numerical simulation (DNS) and large-eddy simulation (LES) represent modern powerful research tools which allow to mimic such flows in great detail and to analyze underlying physical mechanisms, even those which cannot be accessed by the experiment. The present lecture provides a short description of these tools and some of their numerical characteristics. It then describes DNS and LES results of fully-developed channel and pipe flow and highlights effects of compressibility on the turbulence structure. The analysis of pressure fluctuations in such flows with isothermal cooled walls leads to the conclusion that the pressure-strain correlation tensor decreases in the wall layer and that the turbulence anisotropy increases, since the mean density falls off relative to the incompressible flow case. Similar increases in turbulence anisotropy due to compressibility are observed in inert and reacting temporal mixing layers. The nature of the pressure fluctuations is however two-facetted. While inert compressible mixing layers reveal wave-propagation effects in the pressure and density fluctuations, compressible reacting mixing layers seem to generate pressure fluctuations that are controlled by the time-rate of change of heat release and mean density
Modeling Compressed Turbulence with BHR
Israel, Daniel
2011-11-01
Turbulence undergoing compression or expansion occurs in systems ranging from internal combustion engines to supernovae. One common feature in many of these systems is the presence of multiple reacting species. Direct numerical simulation data is available for the single-fluid, low turbulent Mach number case. Wu, et al. (1985) compared their DNS results to several Reynolds-averaged Navier-Stokes models. They also proposed a three-equation k - ɛ - τ model, in conjunction with a Reynolds-stress model. Subsequent researchers have proposed alternative corrections to the standard k - ɛ formulation. Here we investigate three variants of the BHR model (Besnard, 1992). BHR is a model for multi-species variable-density turbulence. The three variants are the linear eddy-viscosity, algebraic-stress, and full Reynolds-stress formulations. We then examine the predictions of the model for the fluctuating density field for the case of variable-density turbulence.
Understanding Turbulence in Compressing Plasmas and Its Exploitation or Prevention
Davidovits, Seth
Unprecedented densities and temperatures are now achieved in compressions of plasma, by lasers and by pulsed power, in major experimental facilities. These compressions, carried out at the largest scale at the National Ignition Facility and at the Z Pulsed Power Facility, have important applications, including fusion, X-ray production, and materials research. Several experimental and simulation results suggest that the plasma in some of these compressions is turbulent. In fact, measurements suggest that in certain laboratory plasma compressions the turbulent energy is a dominant energy component. Similarly, turbulence is dominant in some compressing astrophysical plasmas, such as in molecular clouds. Turbulence need not be dominant to be important; even small quantities could greatly influence experiments that are sensitive to mixing of non-fuel into fuel, such as compressions seeking fusion ignition. Despite its important role in major settings, bulk plasma turbulence under compression is insufficiently understood to answer or even to pose some of the most fundamental questions about it. This thesis both identifies and answers key questions in compressing turbulent motion, while providing a description of the behavior of three-dimensional, isotropic, compressions of homogeneous turbulence with a plasma viscosity. This description includes a simple, but successful, new model for the turbulent energy of plasma undergoing compression. The unique features of compressing turbulence with a plasma viscosity are shown, including the sensitivity of the turbulence to plasma ionization, and a "sudden viscous dissipation'' effect which rapidly converts plasma turbulent energy into thermal energy. This thesis then examines turbulence in both laboratory compression experiments and molecular clouds. It importantly shows: the possibility of exploiting turbulence to make fusion or X-ray production more efficient; conditions under which hot-spot turbulence can be prevented; and a
Compressibility, turbulence and high speed flow
Gatski, Thomas B
2013-01-01
Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current tre...
Sudden viscous dissipation in compressing plasma turbulence
Davidovits, Seth; Fisch, Nathaniel
2015-11-01
Compression of a turbulent plasma or fluid can cause amplification of the turbulent kinetic energy, if the compression is fast compared to the turnover and viscous dissipation times of the turbulent eddies. The consideration of compressing turbulent flows in inviscid fluids has been motivated by the suggestion that amplification of turbulent kinetic energy occurred on experiments at the Weizmann Institute of Science Z-Pinch. We demonstrate a sudden viscous dissipation mechanism whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, which further increases the temperature, feeding back to further enhance the dissipation. Application of this mechanism in compression experiments may be advantageous, if the plasma can be kept comparatively cold during much of the compression, reducing radiation and conduction losses, until the plasma suddenly becomes hot. This work was supported by DOE through contract 67350-9960 (Prime # DOE DE-NA0001836) and by the DTRA.
PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert
2008-10-01
mixing dynamics are interplayed with fundamental properties of the Euler and compressible Navier-Stokes equations, with the problem sensitivity to the initial conditions and to the boundary conditions at the discontinuities, and with its stochastic description. The state-of-the-art numerical simulations of the multi-phase non-equilibrium dynamics suggest new methods for capturing discontinuities and singularities and shock-interface interaction, for predictive modeling of the multi-scale dynamics in fluids and plasmas, for error estimate and uncertainty quantification as well as for novel data assimilation techniques. The First International Conference `Turbulent Mixing and Beyond' (TMB-2007), was held on 18-26 August 2007 at the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy. This was a highly informative and exciting meeting, by all the standards a major success. The Conference brought together 120 participants (307 authors) from five continents, ranging from students to members of National Academies of Sciences and Engineering and including researchers from the Universities, National Laboratories, Leading Scientific Institutions and Industry. TMB-2007 covered 16 different topics, maintaining the scope and the interdisciplinary character of the meeting, and kept the focus on a fundamental fluid dynamic problem of unsteady turbulent processes and the Conference Objectives. The success of the TMB-07 was a result of the successful work of all the participants, who were serious and professional people, caring for the quality of their research and sharing their scientific vision. The level of presentations was high, and the presentations included 87 oral contributions, 32 invited lectures and 5 tutorials and over 30 poster contributions. The round table discussions held at TMB-2007 investigated the organization of a Collaborative Computing Environment for the Turbulent Mixing and Beyond Community. The abstracts of the 150 accepted Conference
Electromotive force in strongly compressible magnetohydrodynamic turbulence
Yokoi, N.
2017-12-01
Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow
Frontogenesis and turbulent mixing
Zhang, S.; Chen, F.; Shang, Q.
2017-12-01
ageostrophic secondary circulation together with the cross-frontal ageostrophic speed. The mixed characteristic is weak in summer, but the large turbulent dissipation and mixing rate measured in the frontal region, which show that the front promoted exchange of material and energy in the upper ocean.
Application of PDF methods to compressible turbulent flows
Delarue, B. J.; Pope, S. B.
1997-09-01
A particle method applying the probability density function (PDF) approach to turbulent compressible flows is presented. The method is applied to several turbulent flows, including the compressible mixing layer, and good agreement is obtained with experimental data. The PDF equation is solved using a Lagrangian/Monte Carlo method. To accurately account for the effects of compressibility on the flow, the velocity PDF formulation is extended to include thermodynamic variables such as the pressure and the internal energy. The mean pressure, the determination of which has been the object of active research over the last few years, is obtained directly from the particle properties. It is therefore not necessary to link the PDF solver with a finite-volume type solver. The stochastic differential equations (SDE) which model the evolution of particle properties are based on existing second-order closures for compressible turbulence, limited in application to low turbulent Mach number flows. Tests are conducted in decaying isotropic turbulence to compare the performances of the PDF method with the Reynolds-stress closures from which it is derived, and in homogeneous shear flows, at which stage comparison with direct numerical simulation (DNS) data is conducted. The model is then applied to the plane compressible mixing layer, reproducing the well-known decrease in the spreading rate with increasing compressibility. It must be emphasized that the goal of this paper is not as much to assess the performance of models of compressibility effects, as it is to present an innovative and consistent PDF formulation designed for turbulent inhomogeneous compressible flows, with the aim of extending it further to deal with supersonic reacting flows.
Physics Based Modeling of Compressible Turbulance
2016-11-07
AFRL-AFOSR-VA-TR-2016-0345 PHYSICS -BASED MODELING OF COMPRESSIBLE TURBULENCE PARVIZ MOIN LELAND STANFORD JUNIOR UNIV CA Final Report 09/13/2016...on the AFOSR project (FA9550-11-1-0111) entitled: Physics based modeling of compressible turbulence. The period of performance was, June 15, 2011...by ANSI Std. Z39.18 Page 1 of 2FORM SF 298 11/10/2016https://livelink.ebs.afrl.af.mil/livelink/llisapi.dll PHYSICS -BASED MODELING OF COMPRESSIBLE
Generation of compressible modes in MHD turbulence
Energy Technology Data Exchange (ETDEWEB)
Cho, Jungyeon [Chungnam National Univ., Daejeon (Korea); Lazarian, A. [Univ. of Wisconsin, Madison, WI (United States)
2005-05-01
Astrophysical turbulence is magnetohydrodynamic (MHD) in nature. We discuss fundamental properties of MHD turbulence and in particular the generation of compressible MHD waves by Alfvenic turbulence and show that this process is inefficient. This allows us to study the evolution of different types of MHD perturbations separately. We describe how to separate MHD fluctuations into three distinct families: Alfven, slow, and fast modes. We find that the degree of suppression of slow and fast modes production by Alfvenic turbulence depends on the strength of the mean field. We review the scaling relations of the modes in strong MHD turbulence. We show that Alfven modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfven modes. However, fast modes exhibit isotropy and a scaling similar to that of acoustic turbulence both in high and low {beta} plasmas. We show that our findings entail important consequences for star formation theories, cosmic ray propagation, dust dynamics, and gamma ray bursts. We anticipate many more applications of the new insight to MHD turbulence and expect more revisions of the existing paradigms of astrophysical processes as the field matures. (orig.)
PREFACE Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Niemela, Joseph J.
2010-12-01
acceleration. Their scaling, spectral and invariant properties differ substantially from those of classical Kolmogorov turbulence. At atomistic and meso-scales, the non-equilibrium dynamics depart dramatically from a standard scenario given by the Gibbs statistic ensemble average and quasi-static Boltzmann equation. The singular aspect and the similarity of the non-equilibrium dynamics at macroscopic scales are interplayed with the fundamental properties of the Euler and compressible Navier-Stokes equations and with the problem sensitivity to the boundary conditions at discontinuities. The state-of-the-art numerical simulations of multi-phase flows suggest new methods for predictive modeling of the multi-scale non-equilibrium dynamics in fluids and plasmas, up to peta-scale level, for error estimate and uncertainty quantification, as well as for novel data assimilation techniques. The Second International Conference and Advanced School 'Turbulent Mixing and Beyond', TMB-2009, was held on 27 July-7 August 2009 at the Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy. This was a highly informative and exciting meeting, and it strengthened and reaffirmed the success of TMB-2007. TMB-2009 brought together over 180 participants from five continents, ranging from students to members of National Academies of Sciences and Engineering and including researchers at experienced and early stages of their carriers from leading scientific institutions in academia, national laboratories, corporations and industry, from developed and developing countries. The success of TMB-2009 came from the successful work of all the participants, who were responsible professionals caring for the quality of their research and sharing their scientific vision. The level of presentations was high; about 170 presentations included over 60 invited lectures and 15 tutorials (4500 minutes of talks in total), about 40 posters and two Round Tables. TMB-2009 covered 17 different topics
Turbulence and Interfacial Mixing
Energy Technology Data Exchange (ETDEWEB)
Glimm, James; Li, Xiaolin
2005-03-15
The authors study mix from analytical and numerical points of view. These investigations are linked. The analytical studies (in addition to laboratory experiments) provide bench marks for the direct simulation of mix. However, direct simulation is too detailed to be useful and to expensive to be practical. They also consider averaged equations. Here the major issue is the validation of the closure assumptions. They appeal to the direct simulation methods for this step. They have collaborated with several NNSA teams; moreover, Stony Brook alumni (former students, faculty and research collaborators) presently hold staff positions in NNSA laboratories.
Single-particle dispersion in compressible turbulence
Zhang, Qingqing; Xiao, Zuoli
2018-04-01
Single-particle dispersion statistics in compressible box turbulence are studied using direct numerical simulation. Focus is placed on the detailed discussion of effects of the particle Stokes number and turbulent Mach number, as well as the forcing type. When solenoidal forcing is adopted, it is found that the single-particle dispersion undergoes a transition from the ballistic regime at short times to the diffusive regime at long times, in agreement with Taylor's particle dispersion argument. The strongest dispersion of heavy particles is announced when the Stokes number is of order 1, which is similar to the scenario in incompressible turbulence. The dispersion tends to be suppressed as the Mach number increases. When hybrid solenoidal and compressive forcing at a ratio of 1/2 is employed, the flow field shows apparent anisotropic property, characterized by the appearance of large shock wave structures. Accordingly, the single-particle dispersion shows extremely different behavior from the solenoidal forcing case.
Lagrangian statistics in compressible isotropic homogeneous turbulence
Yang, Yantao; Wang, Jianchun; Shi, Yipeng; Chen, Shiyi
2011-11-01
In this work we conducted the Direct Numerical Simulation (DNS) of a forced compressible isotropic homogeneous turbulence and investigated the flow statistics from the Lagrangian point of view, namely the statistics is computed following the passive tracers trajectories. The numerical method combined the Eulerian field solver which was developed by Wang et al. (2010, J. Comp. Phys., 229, 5257-5279), and a Lagrangian module for tracking the tracers and recording the data. The Lagrangian probability density functions (p.d.f.'s) have then been calculated for both kinetic and thermodynamic quantities. In order to isolate the shearing part from the compressing part of the flow, we employed the Helmholtz decomposition to decompose the flow field (mainly the velocity field) into the solenoidal and compressive parts. The solenoidal part was compared with the incompressible case, while the compressibility effect showed up in the compressive part. The Lagrangian structure functions and cross-correlation between various quantities will also be discussed. This work was supported in part by the China's Turbulence Program under Grant No.2009CB724101.
Multifractal Modeling of Turbulent Mixing
Samiee, Mehdi; Zayernouri, Mohsen; Meerschaert, Mark M.
2017-11-01
Stochastic processes in random media are emerging as interesting tools for modeling anomalous transport phenomena. Applications include intermittent passive scalar transport with background noise in turbulent flows, which are observed in atmospheric boundary layers, turbulent mixing in reactive flows, and long-range dependent flow fields in disordered/fractal environments. In this work, we propose a nonlocal scalar transport equation involving the fractional Laplacian, where the corresponding fractional index is linked to the multifractal structure of the nonlinear passive scalar power spectrum. This work was supported by the AFOSR Young Investigator Program (YIP) award (FA9550-17-1-0150) and partially by MURI/ARO (W911NF-15-1-0562).
International Nuclear Information System (INIS)
Miles, A.R.; Blue, B.; Edwards, M.J.; Greenough, J.A.; Hansen, J.F.; Robey, H.F.; Drake, R.P.; Kuranz, C.; Leibrandt, D.R.
2005-01-01
Perturbations on an interface driven by a strong blast wave grow in time due to a combination of Rayleigh-Taylor, Richtmyer-Meshkov, and decompression effects. In this paper, results from three-dimensional (3D) numerical simulations of such a system under drive conditions to be attainable on the National Ignition Facility [E. M. Campbell, Laser Part. Beams 9, 209 (1991)] are presented. Using the multiphysics, adaptive mesh refinement, higher order Godunov Eulerian hydrocode, Raptor [L. H. Howell and J. A. Greenough, J. Comput. Phys. 184, 53 (2003)], the late nonlinear instability evolution, including transition to turbulence, is considered for various multimode perturbation spectra. The 3D post-transition state differs from the 2D result, but the process of transition proceeds similarly in both 2D and 3D. The turbulent mixing transition results in a reduction in the growth rate of the mixing layer relative to its pretransition value and, in the case of the bubble front, relative to the 2D result. The post-transition spike front velocity is approximately the same in 2D and 3D. Implications for hydrodynamic mixing in core-collapse supernovae are discussed
Exact Theory of Compressible Fluid Turbulence
Drivas, Theodore; Eyink, Gregory
2017-11-01
We obtain exact results for compressible turbulence with any equation of state, using coarse-graining/filtering. We find two mechanisms of turbulent kinetic energy dissipation: scale-local energy cascade and ``pressure-work defect'', or pressure-work at viscous scales exceeding that in the inertial-range. Planar shocks in an ideal gas dissipate all kinetic energy by pressure-work defect, but the effect is omitted by standard LES modeling of pressure-dilatation. We also obtain a novel inverse cascade of thermodynamic entropy, injected by microscopic entropy production, cascaded upscale, and removed by large-scale cooling. This nonlinear process is missed by the Kovasznay linear mode decomposition, treating entropy as a passive scalar. For small Mach number we recover the incompressible ``negentropy cascade'' predicted by Obukhov. We derive exact Kolmogorov 4/5th-type laws for energy and entropy cascades, constraining scaling exponents of velocity, density, and internal energy to sub-Kolmogorov values. Although precise exponents and detailed physics are Mach-dependent, our exact results hold at all Mach numbers. Flow realizations at infinite Reynolds are ``dissipative weak solutions'' of compressible Euler equations, similarly as Onsager proposed for incompressible turbulence.
Large eddy simulations of compressible magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Grete, Philipp
2016-01-01
Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the
Large eddy simulations of compressible magnetohydrodynamic turbulence
Grete, Philipp
2017-02-01
Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the
Large eddy simulations of compressible magnetohydrodynamic turbulence
Energy Technology Data Exchange (ETDEWEB)
Grete, Philipp
2016-09-09
Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the
Turbulent kinetic energy equation and free mixing
Morel, T.; Torda, T. P.; Bradshaw, P.
1973-01-01
Calculation of free shear flows was carried out to investigate the usefulness of several concepts which were previously successfully applied to wall flows. The method belongs to the class of differential approaches. The turbulence is taken into account by the introduction of one additional partial differential equation, the transport equation for the turbulent shear stress. The structure of turbulence is modeled after Bradshaw et al. This model was used successfully in boundary layers and its applicability to other flows is demonstrated. The work reported differs substantially from that of an earlier attempt to use this approach for calculation of free flows. The most important difference is that the region around the center line is treated by invoking the interaction hypothesis (concerning the structure of turbulence in the regions separated by the velocity extrema). The compressibility effects on shear layer spreading at low and moderate Mach numbers were investigated. In the absence of detailed experiments in free flows, the evidence from boundary layers that at low Mach numbers the structure of turbulence is unaffected by the compressibility was relied on. The present model was tested over a range of self-preserving and developing flows including pressure gradients using identical empirical input. The dependence of the structure of turbulence on the spreading rate of the shear layer was established.
Molecular mixing in turbulent flow
International Nuclear Information System (INIS)
Kerstein, A.R.
1993-01-01
The evolution of a diffusive scalar field subject to turbulent stirring is investigated by comparing two new modeling approaches, the linear-eddy model and the clipped-laminar-profile representation, to results previously obtained by direct numerical simulation (DNS) and by mapping-closure analysis. The comparisons indicate that scalar field evolution is sensitive to the bandwidth of the stirring process, and they suggest that the good agreement between DNS and mapping closure reflects the narrowband character of both. The new models predict qualitatively new behaviors in the wideband stirring regime corresponding to high-Reynolds-number turbulence
Experimental investigation of turbulent mixing by Rayleigh-Taylor instability
International Nuclear Information System (INIS)
Youngs, D.L.
1992-01-01
A key feature of compressible turbulent mixing is the generation of vorticity via the ∇px ∇(1/ρ) term. This source of vorticity is also present in incompressible flows involving the mixing of fluids of different density, for example Rayleigh-Taylor unstable flows. This paper gives a summary of an experimental investigation of turbulent mixing at a plane boundary between two fluids, of densities ρ 1 , and ρ 2 . (ρ 1 > ρ 2 ) due to Rayleigh-Taylor instability. The two fluids are near incompressible and mixing occurs when an approximately constant acceleration, g, is applied normal to the interface with direction from fluid 2 to fluid 1. Full details of the experimental programme are given in a set of three reports. Some of the earlier experiments are also described by Read. Previous experimental work and much of the theoretical research has concentrated on studying the growth of the instability from a single wavelength perturbation rather than turbulent mixing. Notable exceptions are published in the Russian literature. A related process, turbulent mixing induced by the passage of shock waves though an interface between fluids of different density is described by Andronov et al. The major purpose of the experiments described here was to study the evolution of the instability from small random perturbations where it is found that large and larger structures appear as time proceeds. A novel technique was used to provide the desired acceleration. The two fluids were enclosed in a rectangular tank, the lighter fluid 2 initially resting on top of the denser fluid 1. One or more rocket motors were then used to drive the tank vertically downwards. The aim of the experimental programme is to provide data for the calibration of a turbulence model used to predict mixing in real situations
Modelling and simulation of the compressible turbulence in supersonic shear flows
International Nuclear Information System (INIS)
Guezengar, Dominique
1997-02-01
This research thesis addresses the modelling of some specific physical problems of fluid mechanics: compressibility (issue of mixing layers), large variations of volumetric mass (boundary layers), and anisotropy (compression ramps). After a presentation of the chosen physical modelling and numerical approximation, the author pays attention to flows at the vicinity of a wall, and to boundary conditions. The next part addresses existing compressibility models and their application to the calculation of supersonic mixing layers. A critical assessment is also performed through calculations of boundary layers and of compression ramps. The next part addresses problems related to large variations of volumetric mass which are not taken by compressibility models into account. A modification is thus proposed for the diffusion term, and is tested for the case of supersonic boundary layers and of mixing layers with high density rates. Finally, anisotropy effects are addressed through the implementation of Explicit Algebraic Stress k-omega Turbulence models (EARSM), and their tests on previously studied cases [fr
Compressibility and rotation effects on transport suppression in magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Yoshizawa, A.
1996-01-01
Compressibility and rotation effects on turbulent transports in magnetohydrodynamic (MHD) flows under arbitrary mean field are investigated using a Markovianized two-scale statistical approach. Some new aspects of MHD turbulence are pointed out in close relation to plasma compressibility. Special attention is paid to the turbulent electromotive force, which plays a central role in the generation of magnetic and velocity fluctuations. In addition to plasma rotation, the interaction between compressibility and magnetic fields is shown to bring a few factors suppressing MHD fluctuations and, eventually, density and temperature transports, even in the presence of steep mean density and temperature gradients. This finding is discussed in the context of the turbulence-suppression mechanism in the tokamak close-quote s high-confinement modes. copyright 1996 American Institute of Physics
Direct numerical simulations of premixed autoignition in compressible uniformly-sheared turbulence
Towery, Colin; Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter
2017-11-01
High-speed combustion systems, such as scramjet engines, operate at high temperatures and pressures, extremely short combustor residence times, very high rates of shear stress, and intense turbulent mixing. As a result, the reacting flow can be premixed and have highly-compressible turbulence fluctuations. We investigate the effects of compressible turbulence on the ignition delay time, heat-release-rate (HRR) intermittency, and mode of autoignition of premixed Hydrogen-air fuel in uniformly-sheared turbulence using new three-dimensional direct numerical simulations with a multi-step chemistry mechanism. We analyze autoignition in both the Eulerian and Lagrangian reference frames at eight different turbulence Mach numbers, Mat , spanning the quasi-isentropic, linear thermodynamic, and nonlinear compressibility regimes, with eddy shocklets appearing in the nonlinear regime. Results are compared to our previous study of premixed autoignition in isotropic turbulence at the same Mat and with a single-step reaction mechanism. This previous study found large decreases in delay times and large increases in HRR intermittency between the linear and nonlinear compressibility regimes and that detonation waves could form in both regimes.
Compression of turbulent magnetized gas in giant molecular clouds
Birnboim, Yuval; Federrath, Christoph; Krumholz, Mark
2018-01-01
Interstellar gas clouds are often both highly magnetized and supersonically turbulent, with velocity dispersions set by a competition between driving and dissipation. This balance has been studied extensively in the context of gases with constant mean density. However, many astrophysical systems are contracting under the influence of external pressure or gravity, and the balance between driving and dissipation in a contracting, magnetized medium has yet to be studied. In this paper, we present three-dimensional magnetohydrodynamic simulations of compression in a turbulent, magnetized medium that resembles the physical conditions inside molecular clouds. We find that in some circumstances the combination of compression and magnetic fields leads to a rate of turbulent dissipation far less than that observed in non-magnetized gas, or in non-compressing magnetized gas. As a result, a compressing, magnetized gas reaches an equilibrium velocity dispersion much greater than would be expected for either the hydrodynamic or the non-compressing case. We use the simulation results to construct an analytic model that gives an effective equation of state for a coarse-grained parcel of the gas, in the form of an ideal equation of state with a polytropic index that depends on the dissipation and energy transfer rates between the magnetic and turbulent components. We argue that the reduced dissipation rate and larger equilibrium velocity dispersion has important implications for the driving and maintenance of turbulence in molecular clouds and for the rates of chemical and radiative processes that are sensitive to shocks and dissipation.
Flapping model of scalar mixing in turbulence
International Nuclear Information System (INIS)
Kerstein, A.R.
1991-01-01
Motivated by the fluctuating plume model of turbulent mixing downstream of a point source, a flapping model is formulated for application to other configurations. For the scalar mixing layer, simple expressions for single-point scalar fluctuation statistics are obtained that agree with measurements. For a spatially homogeneous scalar mixing field, the family of probability density functions previously derived using mapping closure is reproduced. It is inferred that single-point scalar statistics may depend primarily on large-scale flapping motions in many cases of interest, and thus that multipoint statistics may be the principal indicators of finer-scale mixing effects
Self-consistent viscous heating of rapidly compressed turbulence
Campos, Alejandro; Morgan, Brandon
2017-11-01
Given turbulence subjected to infinitely rapid deformations, linear terms representing interactions between the mean flow and the turbulence dictate the evolution of the flow, whereas non-linear terms corresponding to turbulence-turbulence interactions are safely ignored. For rapidly deformed flows where the turbulence Reynolds number is not sufficiently large, viscous effects can't be neglected and tend to play a prominent role, as shown in the study of Davidovits & Fisch (2016). For such a case, the rapid increase of viscosity in a plasma-as compared to the weaker scaling of viscosity in a fluid-leads to the sudden viscous dissipation of turbulent kinetic energy. As shown in Davidovits & Fisch, increases in temperature caused by the direct compression of the plasma drive sufficiently large values of viscosity. We report on numerical simulations of turbulence where the increase in temperature is the result of both the direct compression (an inviscid mechanism) and the self-consistent viscous transfer of energy from the turbulent scales towards the thermal energy. A comparison between implicit large-eddy simulations against well-resolved direct numerical simulations is included to asses the effect of the numerical and subgrid-scale dissipation on the self-consistent viscous This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Multifractal aspects of the scaling laws in fully developed compressible turbulence
International Nuclear Information System (INIS)
Shivamoggi, B.K.
1995-01-01
In this paper, multifractal aspects of the scalings laws in fully developed compressible turbulence are considered. Compressibility effects on known results of incompressible turbulence are pointed out. copyright 1995 Academic Press, Inc
Morphing continuum analysis of energy transfer in compressible turbulence
Cheikh, Mohamad Ibrahim; Wonnell, Louis B.; Chen, James
2018-02-01
A shock-preserving finite volume solver with the generalized Lax-Friedrichs splitting flux for morphing continuum theory (MCT) is presented and verified. The numerical MCT solver is showcased in a supersonic turbulent flow with Mach 2.93 over an 8∘ compression ramp. The simulation results validated MCT with experiments as an alternative for modeling compressible turbulence. The required size of the smallest mesh cell for the MCT simulation is shown to be almost an order larger than that in a similar direct numerical simulation study. The comparison shows MCT is a much more computationally friendly theory than the classical Navier-Stokes equations. The dynamics of energy cascade at the length scale of individual eddies is illuminated through the subscale rotation introduced by MCT. In this regard, MCT provides a statistical averaging procedure for capturing energy transfer in compressible turbulence, not found in classical fluid theories. Analysis of the MCT results show the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding eddy rotational energy fluctuations, indicating a multiscale transfer of energy. In conclusion, MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources.
Chemical Reactions in Turbulent Mixing Flows. Revision.
1983-08-02
jet diameter F2 fluorine H2 hydrogen HF hydrogen fluoride I(y) instantaneous fluorescence intensity distribution L-s flame length measured from...virtual origin -.4 of turbulent region (L-s). flame length at high Reynolds number LIF laser induced fluorescence N2 nitrogen PI product thickness (defined...mixing is attained as a function of the equivallence ratio. For small values of the equivalence ratio f, the flame length - defined here as the
A unified wall function for compressible turbulence modelling
Ong, K. C.; Chan, A.
2018-05-01
Turbulence modelling near the wall often requires a high mesh density clustered around the wall and the first cells adjacent to the wall to be placed in the viscous sublayer. As a result, the numerical stability is constrained by the smallest cell size and hence requires high computational overhead. In the present study, a unified wall function is developed which is valid for viscous sublayer, buffer sublayer and inertial sublayer, as well as including effects of compressibility, heat transfer and pressure gradient. The resulting wall function applies to compressible turbulence modelling for both isothermal and adiabatic wall boundary conditions with the non-zero pressure gradient. Two simple wall function algorithms are implemented for practical computation of isothermal and adiabatic wall boundary conditions. The numerical results show that the wall function evaluates the wall shear stress and turbulent quantities of wall adjacent cells at wide range of non-dimensional wall distance and alleviate the number and size of cells required.
International Nuclear Information System (INIS)
Jeong, Hae Yong; Ha, Kwi Seok; Kwon, Young Min; Chang, Won Pyo; Lee, Yong Bum
2006-01-01
The existing experimental data related to the turbulent mixing factor in rod arrays is examined and a new definition of the turbulent mixing factor is introduced to take into account the turbulent mixing of fluids with various Prandtl numbers. The new definition of the mixing factor is based on the eddy diffusivity of energy. With this definition of the mixing factor, it was found that the geometrical parameter, δ ij /D h , correlates the turbulent mixing data better than S/d, which has been used frequently in existing correlations. Based on the experimental data for a highly turbulent condition in square rod arrays, a correlation describing turbulent mixing dependent on the parameter δ ij /D h has been developed. The correlation is insensitive to the Re number and it takes into account the effect of the turbulent Prandtl number. The proposed correlation predicts a reasonable mixing even at a lower S/d ratio
Mixed raster content segmentation, compression, transmission
Pavlidis, George
2017-01-01
This book presents the main concepts in handling digital images of mixed content, traditionally referenced as mixed raster content (MRC), in two main parts. The first includes introductory chapters covering the scientific and technical background aspects, whereas the second presents a set of research and development approaches to tackle key issues in MRC segmentation, compression and transmission. The book starts with a review of color theory and the mechanism of color vision in humans. In turn, the second chapter reviews data coding and compression methods so as to set the background and demonstrate the complexity involved in dealing with MRC. Chapter three addresses the segmentation of images through an extensive literature review, which highlights the various approaches used to tackle MRC segmentation. The second part of the book focuses on the segmentation of color images for optimized compression, including multi-layered decomposition and representation of MRC and the processes that can be employed to op...
Lagrangian investigations of vorticity dynamics in compressible turbulence
Parashar, Nishant; Sinha, Sawan Suman; Danish, Mohammad; Srinivasan, Balaji
2017-10-01
In this work, we investigate the influence of compressibility on vorticity-strain rate dynamics. Well-resolved direct numerical simulations of compressible homogeneous isotropic turbulence performed over a cubical domain of 10243 are employed for this study. To clearly identify the influence of compressibility on the time-dependent dynamics (rather than on the one-time flow field), we employ a well-validated Lagrangian particle tracker. The tracker is used to obtain time correlations between the instantaneous vorticity vector and the strain-rate eigenvector system of an appropriately chosen reference time. In this work, compressibility is parameterized in terms of both global (turbulent Mach number) and local parameters (normalized dilatation-rate and flow field topology). Our investigations reveal that the local dilatation rate significantly influences these statistics. In turn, this observed influence of the dilatation rate is predominantly associated with rotation dominated topologies (unstable-focus-compressing, stable-focus-stretching). We find that an enhanced dilatation rate (in both contracting and expanding fluid elements) significantly enhances the tendency of the vorticity vector to align with the largest eigenvector of the strain-rate. Further, in fluid particles where the vorticity vector is maximally misaligned (perpendicular) at the reference time, vorticity does show a substantial tendency to align with the intermediate eigenvector as well. The authors make an attempt to provide physical explanations of these observations (in terms of moment of inertia and angular momentum) by performing detailed calculations following tetrads {approach of Chertkov et al. ["Lagrangian tetrad dynamics and the phenomenology of turbulence," Phys. Fluids 11(8), 2394-2410 (1999)] and Xu et al. ["The pirouette effect in turbulent flows," Nat. Phys. 7(9), 709-712 (2011)]} in a compressible flow field.
Turbulent mixing in nonreactive and reactive flows
1975-01-01
Turbulence, mixing and the mutual interaction of turbulence and chemistry continue to remain perplexing and impregnable in the fron tiers of fluid mechanics. The past ten years have brought enormous advances in computers and computational techniques on the one hand and in measurements and data processing on the other. The impact of such capabilities has led to a revolution both in the understanding of the structure of turbulence as well as in the predictive methods for application in technology. The early ideas on turbulence being an array of complicated phenomena and having some form of reasonably strong coherent struc ture have become well substantiated in recent experimental work. We are still at the very beginning of understanding all of the aspects of such coherence and of the possibilities of incorporating such structure into the analytical models for even those cases where the thin shear layer approximation may be valid. Nevertheless a distinguished body of "eddy chasers" has come into existence. T...
Generation of large-scale vortives in compressible helical turbulence
International Nuclear Information System (INIS)
Chkhetiani, O.G.; Gvaramadze, V.V.
1989-01-01
We consider generation of large-scale vortices in compressible self-gravitating turbulent medium. The closed equation describing evolution of the large-scale vortices in helical turbulence with finite correlation time is obtained. This equation has the form similar to the hydromagnetic dynamo equation, which allows us to call the vortx genertation effect the vortex dynamo. It is possible that principally the same mechanism is responsible both for amplification and maintenance of density waves and magnetic fields in gaseous disks of spiral galaxies. (author). 29 refs
Visualizing turbulent mixing of gases and particles
Ma, Kwan-Liu; Smith, Philip J.; Jain, Sandeep
1995-01-01
A physical model and interactive computer graphics techniques have been developed for the visualization of the basic physical process of stochastic dispersion and mixing from steady-state CFD calculations. The mixing of massless particles and inertial particles is visualized by transforming the vector field from a traditionally Eulerian reference frame into a Lagrangian reference frame. Groups of particles are traced through the vector field for the mean path as well as their statistical dispersion about the mean position by using added scalar information about the root mean square value of the vector field and its Lagrangian time scale. In this way, clouds of particles in a turbulent environment are traced, not just mean paths. In combustion simulations of many industrial processes, good mixing is required to achieve a sufficient degree of combustion efficiency. The ability to visualize this multiphase mixing can not only help identify poor mixing but also explain the mechanism for poor mixing. The information gained from the visualization can be used to improve the overall combustion efficiency in utility boilers or propulsion devices. We have used this technique to visualize steady-state simulations of the combustion performance in several furnace designs.
Banerjee, Supratik; Kritsuk, Alexei G.
2018-02-01
Three-dimensional, compressible, magnetohydrodynamic turbulence of an isothermal, self-gravitating fluid is analyzed using two-point statistics in the asymptotic limit of large Reynolds numbers (both kinetic and magnetic). Following an alternative formulation proposed by Banerjee and Galtier [Phys. Rev. E 93, 033120 (2016), 10.1103/PhysRevE.93.033120; J. Phys. A: Math. Theor. 50, 015501 (2017), 10.1088/1751-8113/50/1/015501], an exact relation has been derived for the total energy transfer. This approach results in a simpler relation expressed entirely in terms of mixed second-order structure functions. The kinetic, thermodynamic, magnetic, and gravitational contributions to the energy transfer rate can be easily separated in the present form. By construction, the new formalism includes such additional effects as global rotation, the Hall term in the induction equation, etc. The analysis shows that solid-body rotation cannot alter the energy flux rate of compressible turbulence. However, the contribution of a uniform background magnetic field to the flux is shown to be nontrivial unlike in the incompressible case. Finally, the compressible, turbulent energy flux rate does not vanish completely due to simple alignments, which leads to a zero turbulent energy flux rate in the incompressible case.
Turbulence closure for mixing length theories
Jermyn, Adam S.; Lesaffre, Pierre; Tout, Christopher A.; Chitre, Shashikumar M.
2018-05-01
We present an approach to turbulence closure based on mixing length theory with three-dimensional fluctuations against a two-dimensional background. This model is intended to be rapidly computable for implementation in stellar evolution software and to capture a wide range of relevant phenomena with just a single free parameter, namely the mixing length. We incorporate magnetic, rotational, baroclinic, and buoyancy effects exactly within the formalism of linear growth theories with non-linear decay. We treat differential rotation effects perturbatively in the corotating frame using a novel controlled approximation, which matches the time evolution of the reference frame to arbitrary order. We then implement this model in an efficient open source code and discuss the resulting turbulent stresses and transport coefficients. We demonstrate that this model exhibits convective, baroclinic, and shear instabilities as well as the magnetorotational instability. It also exhibits non-linear saturation behaviour, and we use this to extract the asymptotic scaling of various transport coefficients in physically interesting limits.
Evidence for reduction of turbulent mixing at the ablation front in experiments with shell targets
International Nuclear Information System (INIS)
Lykov, V.A.; Avrorin, E.N.; Karlykhanov, N.G.; Murashkina, V.A.; Myalitsin, L.A.; Neuvazhaev, V.E.; Pasyukova, A.F.; Yakovlev, V.G.
1994-01-01
The results of the computation analysis of the turbulent mixing in the direct and indirect-driven shell targets are presented. The simulation were carried out by TURLINA-code based on phenomenological mixing model. The effects of the mixing are studied numerically for the SOKOL-laser experiments and for the indirect-driven targets. The comparison of the TURLINA-code simulations with the SOKOL experimental X-ray picture gives the evidence for reduction of turbulent mixing at the ablation front in experiments with shell targets. The estimates of the initial roughness and the effect of ablation-stabilization influence on the turbulent mixing and neutron yield from DT-filled glass microballoon are carried out. The allowable compression asymmetry for thermonuclear ignition is discussed. copyright 1994 American Institute of Physics
Multifractal scaling at the Kolmogorov microscale in fully developed compressible turbulence
International Nuclear Information System (INIS)
Shivamoggi, B.K.
1995-01-01
In this paper, some aspects of multifractal scaling at the Kolmogorov microscale in fully developed compressible turbulence are considered. These considerations, on the one hand, provide an insight into the mechanism of compressible turbulence, and on the other hand enable one to determine the robustness of some known results in incompressible turbulence. copyright 1995 Academic Press, Inc
Study of compressible turbulent flows in supersonic environment by large-eddy simulation
Genin, Franklin
The numerical resolution of turbulent flows in high-speed environment is of fundamental importance but remains a very challenging problem. First, the capture of strong discontinuities, typical of high-speed flows, requires the use of shock-capturing schemes, which are not adapted to the resolution of turbulent structures due to their intrinsic dissipation. On the other hand, low-dissipation schemes are unable to resolve shock fronts and other sharp gradients without creating high amplitude numerical oscillations. Second, the nature of turbulence in high-speed flows differs from its incompressible behavior, and, in the context of Large-Eddy Simulation, the subgrid closure must be adapted to the modeling of compressibility effects and shock waves on turbulent flows. The developments described in this thesis are two-fold. First, a state of the art closure approach for LES is extended to model subgrid turbulence in compressible flows. The energy transfers due to compressible turbulence and the diffusion of turbulent kinetic energy by pressure fluctuations are assessed and integrated in the Localized Dynamic ksgs model. Second, a hybrid numerical scheme is developed for the resolution of the LES equations and of the model transport equation, which combines a central scheme for turbulent resolutions to a shock-capturing method. A smoothness parameter is defined and used to switch from the base smooth solver to the upwind scheme in regions of discontinuities. It is shown that the developed hybrid methodology permits a capture of shock/turbulence interactions in direct simulations that agrees well with other reference simulations, and that the LES methodology effectively reproduces the turbulence evolution and physical phenomena involved in the interaction. This numerical approach is then employed to study a problem of practical importance in high-speed mixing. The interaction of two shock waves with a high-speed turbulent shear layer as a mixing augmentation technique is
THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS
Energy Technology Data Exchange (ETDEWEB)
Federrath, Christoph [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Schober, Jennifer [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Bovino, Stefano; Schleicher, Dominik R. G., E-mail: christoph.federrath@anu.edu.au [Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)
2014-12-20
The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.
Stochastic Theory of Turbulence Mixing by Finite Eddies in the Turbulent Boundary Layer
Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.
1995-01-01
Turbulence mixing is treated by means of a novel formulation of nonlocal K-theory, involving sample paths and a stochastic hypothesis. The theory simplifies for mixing by exchange (strong-eddies) and is then applied to the boundary layer (involving scaling). This maps boundary layer turbulence onto
A practical discrete-adjoint method for high-fidelity compressible turbulence simulations
International Nuclear Information System (INIS)
Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.
2015-01-01
Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space–time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge–Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that
Cascades and Dissipative Anomalies in Compressible Fluid Turbulence
Directory of Open Access Journals (Sweden)
Gregory L. Eyink
2018-02-01
Full Text Available We investigate dissipative anomalies in a turbulent fluid governed by the compressible Navier-Stokes equation. We follow an exact approach pioneered by Onsager, which we explain as a nonperturbative application of the principle of renormalization-group invariance. In the limit of high Reynolds and Péclet numbers, the flow realizations are found to be described as distributional or “coarse-grained” solutions of the compressible Euler equations, with standard conservation laws broken by turbulent anomalies. The anomalous dissipation of kinetic energy is shown to be due not only to local cascade but also to a distinct mechanism called pressure-work defect. Irreversible heating in stationary, planar shocks with an ideal-gas equation of state exemplifies the second mechanism. Entropy conservation anomalies are also found to occur via two mechanisms: an anomalous input of negative entropy (negentropy by pressure work and a cascade of negentropy to small scales. We derive “4/5th-law”-type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents required to sustain the cascades. We compare our approach with alternative theories and empirical evidence. It is argued that the “Big Power Law in the Sky” observed in electron density scintillations in the interstellar medium is a manifestation of a forward negentropy cascade or an inverse cascade of usual thermodynamic entropy.
Cascades and Dissipative Anomalies in Compressible Fluid Turbulence
Eyink, Gregory L.; Drivas, Theodore D.
2018-02-01
We investigate dissipative anomalies in a turbulent fluid governed by the compressible Navier-Stokes equation. We follow an exact approach pioneered by Onsager, which we explain as a nonperturbative application of the principle of renormalization-group invariance. In the limit of high Reynolds and Péclet numbers, the flow realizations are found to be described as distributional or "coarse-grained" solutions of the compressible Euler equations, with standard conservation laws broken by turbulent anomalies. The anomalous dissipation of kinetic energy is shown to be due not only to local cascade but also to a distinct mechanism called pressure-work defect. Irreversible heating in stationary, planar shocks with an ideal-gas equation of state exemplifies the second mechanism. Entropy conservation anomalies are also found to occur via two mechanisms: an anomalous input of negative entropy (negentropy) by pressure work and a cascade of negentropy to small scales. We derive "4 /5 th-law"-type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents) required to sustain the cascades. We compare our approach with alternative theories and empirical evidence. It is argued that the "Big Power Law in the Sky" observed in electron density scintillations in the interstellar medium is a manifestation of a forward negentropy cascade or an inverse cascade of usual thermodynamic entropy.
Prediction of free turbulent mixing using a turbulent kinetic energy method
Harsha, P. T.
1973-01-01
Free turbulent mixing of two-dimensional and axisymmetric one- and two-stream flows is analyzed by a relatively simple turbulent kinetic energy method. This method incorporates a linear relationship between the turbulent shear and the turbulent kinetic energy and an algebraic relationship for the length scale appearing in the turbulent kinetic energy equation. Good results are obtained for a wide variety of flows. The technique is shown to be especially applicable to flows with heat and mass transfer, for which nonunity Prandtl and Schmidt numbers may be assumed.
Modeling molecular mixing in a spatially inhomogeneous turbulent flow
Meyer, Daniel W.; Deb, Rajdeep
2012-02-01
Simulations of spatially inhomogeneous turbulent mixing in decaying grid turbulence with a joint velocity-concentration probability density function (PDF) method were conducted. The inert mixing scenario involves three streams with different compositions. The mixing model of Meyer ["A new particle interaction mixing model for turbulent dispersion and turbulent reactive flows," Phys. Fluids 22(3), 035103 (2010)], the interaction by exchange with the mean (IEM) model and its velocity-conditional variant, i.e., the IECM model, were applied. For reference, the direct numerical simulation data provided by Sawford and de Bruyn Kops ["Direct numerical simulation and lagrangian modeling of joint scalar statistics in ternary mixing," Phys. Fluids 20(9), 095106 (2008)] was used. It was found that velocity conditioning is essential to obtain accurate concentration PDF predictions. Moreover, the model of Meyer provides significantly better results compared to the IECM model at comparable computational expense.
Stochastic model of Rayleigh-Taylor turbulent mixing
International Nuclear Information System (INIS)
Abarzhi, S.I.; Cadjan, M.; Fedotov, S.
2007-01-01
We propose a stochastic model to describe the random character of the dissipation process in Rayleigh-Taylor turbulent mixing. The parameter alpha, used conventionally to characterize the mixing growth-rate, is not a universal constant and is very sensitive to the statistical properties of the dissipation. The ratio between the rates of momentum loss and momentum gain is the statistic invariant and a robust parameter to diagnose with or without turbulent diffusion accounted for
Numerical simulation of Rayleigh-Taylor turbulent mixing layers
International Nuclear Information System (INIS)
Poujade, O.; Lardjane, N.; Peybernes, M.; Boulet, M.
2009-01-01
Accelerations in actual Rayleigh-Taylor instabilities are often variable. This article focuses on a particular class of variable accelerations where g(t) ∝ t n . A reference database is built from high resolution hydrodynamic numerical simulations. The successful comparison with a simple OD analytical model and the statistical 2SFK (2-Structure, 2-Fluid, 2-Turbulence) turbulence model is provided. Moreover, we show the difference between the mechanism at play in the Rayleigh-Taylor turbulent mixing zone and Kolmogorov's in the self similar developed turbulent regime. (authors)
Eulerian-Lagranigan simulation of aerosol evolution in turbulent mixing layer
Zhou, Kun; Jiang, Xiao; Sun, Ke; He, Zhu
2016-01-01
The formation and evolution of aerosol in turbulent flows are ubiquitous in both industrial processes and nature. The intricate interaction of turbulent mixing and aerosol evolution in a canonical turbulent mixing layer was investigated by a direct
Subchannel analysis with turbulent mixing rate of supercritical pressure fluid
International Nuclear Information System (INIS)
Wu, Jianhui; Oka, Yoshiaki
2015-01-01
Highlights: • Subchannel analysis with turbulent mixing rate law of supercritical pressure fluid (SPF) is carried out. • Turbulent mixing rate is enhanced, compared with that calculated by the law of pressurized water reactor (PWR). • Increase in maximum cladding surface temperature (MCST) is smaller comparing with PWR model. • The sensitivities of MCST on non-uniformity of subchannel area and power peaking are reduced by using SPF model. - Abstract: The subchannel analysis with turbulent mixing rate law of supercritical pressure fluid (SPF) is carried out for supercritical-pressurized light water cooled and moderated reactor (Super LWR). It is different from the turbulent mixing rate law of pressurized water reactor (PWR), which is widely adopted in Super LWR subchannel analysis study, the density difference between adjacent subchannels is taken into account for turbulent mixing rate law of SPF. MCSTs are evaluated on three kinds of fuel assemblies with different pin power distribution patterns, gap spacings and mass flow rates. Compared with that calculated by employing turbulent mixing rate law of PWR, the increase in MCST is smaller even when peaking factor is large and gap spacing is uneven. The sensitivities of MCST on non-uniformity of the subchannel area and power peaking are reduced
Internal wave energy radiated from a turbulent mixed layer
Energy Technology Data Exchange (ETDEWEB)
Munroe, James R., E-mail: jmunroe@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada); Sutherland, Bruce R., E-mail: bsuther@ualberta.ca [Departments of Physics and Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)
2014-09-15
We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.
Compressible turbulent channel flow with impedance boundary conditions
Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.
2015-03-01
We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with
Chemical Reactions in Turbulent Mixing Flows
1992-07-01
Chemically-Reacting, Gas-Phase Turbulent Jets (Gilbrech 1991), that explored Reynolds number effects on turbulent flame length and the influence of...and asymptotes to a constant value beyond the flame tip. The main result of the work is that the flame length , as estimated from the temperature...8217. Specifically, the normalized flame length Lf/d* displays a linear dependence on the stoichiometric mixture ratio 0, with a slope that decreases from Re "• 1.0
Evaluation of turbulent mixing between subchannels with a CFD code
International Nuclear Information System (INIS)
Jeong, H.; Ha, K.; Lee, Y.; Hahn, D.; Dunn, Floyd E.; Cahalan, James E.
2004-01-01
This study describes the procedure to determine the turbulent mixing coefficients from the numerical simulation of subchannel flow. The turbulent mixing coefficient is important to predict the detailed flow and temperature distributions in the reactor core. The mixing coefficient for the design condition of KALIMER-600 has been evaluated and compared with the results from the existing correlations. The data determined numerically are in good agreement with the correlations based on the thermal methods or the tracer methods. However, the data shows quite large deviations from the correlations obtained with the turbulent fluctuation of momentum. This discrepancy mainly comes from the confusion in the definition of eddy diffusivity. The numerically obtained data are meaningful because the data for liquid metal are scarce. The ultimate goal of the analysis is the development of a mixing correlation to improve the accuracy of the whole core thermal hydraulics model. (author)
COMPRESSIBLE 'TURBULENCE' OBSERVED IN THE HELIOSHEATH BY VOYAGER 2
International Nuclear Information System (INIS)
Burlaga, L. F.; Ness, N. F.
2009-01-01
This paper describes the multiscale structure of the compressible 'turbulence' observed in the high-resolution (48 s) observations of the magnetic field strength B made by Voyager 2 (V2) in the heliosheath behind the termination shock from 2007 DOY 245.0-300.8 and in a unipolar region from 2008 DOY 2.9-75.6. The magnetic field strength is highly variable on scales from 48 s to several hours in both intervals. The distributions of daily averages and 48 s averages of B are lognormal in the post-termination shock (TS) region and Gaussian in the unipolar region, respectively. The amplitudes of the fluctuations were greater in the post-TS region than in the unipolar region, at scales less than several hours. The multiscale structure of the increments of B is described by the q-Gaussian distribution of nonextensive statistical mechanics on all scales from 48 s to 3.4 hr in the unipolar region and from 48 s to 6.8 hr in the post-TS region, respectively. The amplitudes of the fluctuations of increments of B are larger in the post-TS region than in the unipolar region at all scales. The probability density functions of the increments of B are non-Gaussian at all scales in the unipolar region, but they are Gaussian at the largest scales in the post-TS region. Time series of the magnitude and direction of B show that the fluctuations are highly compressive. The small-scale fluctuations are a mixture of coherent structures (semi-deterministic structures) and random structures, which vary significantly from day to day. Several types of coherent structures were identified in both regions.
Direct numerical simulation of turbulent mixing in grid-generated turbulence
International Nuclear Information System (INIS)
Nagata, Kouji; Suzuki, Hiroki; Sakai, Yasuhiko; Kubo, Takashi; Hayase, Toshiyuki
2008-01-01
Turbulent mixing of passive scalar (heat) in grid-generated turbulence (GGT) is simulated by means of direct numerical simulation (DNS). A turbulence-generating grid, on which the velocity components are set to zero, is located downstream of the channel entrance, and it is numerically constructed on the staggered mesh arrangement using the immersed boundary method. The grid types constructed are: (a) square-mesh biplane grid, (b) square-mesh single-plane grid, (c) composite grid consisting of parallel square-bars and (d) fractal grid. Two fluids with different temperatures are provided separately in the upper and lower streams upstream of the turbulence-generating grids, generating the thermal mixing layer behind the grids. For the grid (a), simulations for two different Prandtl numbers of 0.71 and 7.1, corresponding to air and water flows, are conducted to investigate the effect of the Prandtl number. The results show that the typical grid turbulence and shearless mixing layer are generated downstream of the grids. The results of the scalar field show that a typical thermal mixing layer is generated as well, and the effects of the Prandtl numbers on turbulent heat transfer are observed.
Direct numerical simulation of turbulent mixing in grid-generated turbulence
Energy Technology Data Exchange (ETDEWEB)
Nagata, Kouji; Suzuki, Hiroki; Sakai, Yasuhiko; Kubo, Takashi [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Hayase, Toshiyuki [Institute of Fluid Science, Tohoku University, Sendai 980-8577 (Japan)], E-mail: nagata@nagoya-u.jp, E-mail: hsuzuki@nagoya-u.jp, E-mail: ysakai@mech.nagoya-u.ac.jp, E-mail: t-kubo@nagoya-u.jp, E-mail: hayase@ifs.tohoku.ac.jp
2008-12-15
Turbulent mixing of passive scalar (heat) in grid-generated turbulence (GGT) is simulated by means of direct numerical simulation (DNS). A turbulence-generating grid, on which the velocity components are set to zero, is located downstream of the channel entrance, and it is numerically constructed on the staggered mesh arrangement using the immersed boundary method. The grid types constructed are: (a) square-mesh biplane grid, (b) square-mesh single-plane grid, (c) composite grid consisting of parallel square-bars and (d) fractal grid. Two fluids with different temperatures are provided separately in the upper and lower streams upstream of the turbulence-generating grids, generating the thermal mixing layer behind the grids. For the grid (a), simulations for two different Prandtl numbers of 0.71 and 7.1, corresponding to air and water flows, are conducted to investigate the effect of the Prandtl number. The results show that the typical grid turbulence and shearless mixing layer are generated downstream of the grids. The results of the scalar field show that a typical thermal mixing layer is generated as well, and the effects of the Prandtl numbers on turbulent heat transfer are observed.
Development of a Hybrid RANS/LES Method for Turbulent Mixing Layers
Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli
2001-01-01
and LES equations to be solved with a single solution scheme and computational grid. The hybrid RANS-LES method has been applied to a benchmark compressible mixing layer experiment in which two isolated supersonic streams, separated by a splitter plate, provide the flows to a constant-area mixing section. Although the configuration is largely two dimensional in nature, three-dimensional calculations were found to be necessary to enable disturbances to develop in three spatial directions and to transition to turbulence. The flow in the initial part of the mixing section consists of a periodic vortex shedding downstream of the splitter plate trailing edge. This organized vortex shedding then rapidly transitions to a turbulent structure, which is very similar to the flow development observed in the experiments. Although the qualitative nature of the large-scale turbulent development in the entire mixing section is captured well by the LES part of the current hybrid method, further efforts are planned to directly calculate a greater portion of the turbulence spectrum and to limit the subgrid scale modeling to only the very small scales. This will be accomplished by the use of higher accuracy solution schemes and more powerful computers, measured both in speed and memory capabilities.
Suppression of Phase Mixing in Drift-Kinetic Plasma Turbulence
Parker, J. T.; Dellar, P. J.; Schekochihin, A. A.; Highcock, E. G.
2017-12-01
The solar wind and interstellar medium are examples of strongly magnetised, weakly collisional, astrophysical plasmas. Their turbulent fluctuations are strongly anisotropic, with small amplitudes, and frequencies much lower than the Larmor frequency. This regime is described by gyrokinetic theory, a reduced five-dimensional kinetic system describing averages over Larmor orbits. A turbulent plasma may transfer free energy, a measure of fluctuation amplitudes, from injection at large scales, typically by an instability, to dissipation at small physical scales like a turbulent fluid. Alternatively, a turbulent plasma may form fine scale structures in velocity space via phase-mixing, the mechanism that leads to Landau damping in linear plasma theory. Macroscopic plasma properties like heat and momentum transport are affected by both mechanisms. While each is understood in isolation, their interaction is not. We study this interaction using a Hankel-Hermite velocity space representation of gyrokinetic theory. The Hankel transform interacts neatly with the Bessel functions that arise from averaging over Larmor orbits, so the perpendicular velocity space is decoupled for linearized problems. The Hermite transform expresses phase mixing as nearest-neighbor coupling between parallel velocity space scales represented by Hermite mode numbers. We use this representation to study transfer mechanisms in drift-kinetic plasma turbulence, the long wavelength limit of gyrokinetic theory. We show that phase space is divided into two regions, with one transfer mechanism dominating in each. Most energy is contained in the region where the fluid-like nonlinear cascade dominates. Moreover, in that region the nonlinear cascade interferes with phase mixing by exciting an "anti phase mixing" transfer of free energy from small to large velocity space scales. This cancels out the usual phase mixing, and renders the overall behavior fluid-like. These results profoundly change our understanding
3. International Conference on Turbulent Mixing and Beyond - Preface
International Nuclear Information System (INIS)
Abarzhi, Snezhana I.; Gauthier, Serge; Keane, Christopher J.; Niemela, Joseph J.
2013-01-01
The goals of this program are to expose the generic problem of non-equilibrium turbulent processes to a wide scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in application of novel approaches in a broad range of phenomena, in which the turbulent processes occur, and to have a potential impact on technology. The objectives of the Third International Conference on Turbulent Mixing and Beyond were to: (i) focus the integration of theory, experiments, large-scale numerical simulations and state-of-the-art technologies on the exploration of physical mechanisms of non-equilibrium dynamics, from micro to macro-scales, in both high and low energy density regimes; (ii) foster the application of innovative approaches for tackling the fundamental aspects of turbulent mixing problems and for understanding and further extending the range of applicability of canonical considerations; (iii) encourage the development of new approaches and stimulate the application of advanced data analysis techniques for unified characterization of experimental and numerical data sets, for estimation of their quality and information capacity, and for transforming data to knowledge; (iv) further develop the 'Turbulent Mixing and Beyond' community via organizing a positive and constructive collaborative environment, maintaining the quality of information flux in the community and sharing research methodologies, tools and data among the community members. The objectives were accomplished at TMB-2011. (authors)
3rd International Conference on Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Keane, Christopher J.; Niemela, Joseph J.
2013-07-01
non-equilibrium heat transfer, strong shocks and explosions, material transformation under high strain rate, supernovae and accretion discs, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, non-canonical wall-bounded flows, hypersonic and supersonic boundary layers, dynamics of atmosphere and oceanography, are just a few examples to list. A grip on non-equilibrium turbulent processes is crucial for cutting-edge technology such as laser micro-machining, nano-electronics, free-space optical telecommunications and for industrial applications in the areas of aeronautics and aerodynamics. Non-equilibrium turbulent processes are anisotropic, non-local, multi-scale and multi-phase, and often are driven by shocks or acceleration. Their scaling, spectral and invariant properties differ substantially from those of classical Kolmogorov turbulence. At atomistic and meso-scales, the non-equilibrium dynamics depart dramatically from a standard scenario given by Gibbs statistic ensemble average and quasi-static Boltzmann equation. The singular aspect and the similarity of the non-equilibrium dynamics at macroscopic scales are interplayed with the fundamental properties of the Euler and compressible Navier-Stokes equations and with the problem sensitivity to the boundary conditions at discontinuities. The state-of-the-art numerical simulations of multi-phase flows suggest new methods for predictive modelling of the multi-scale non-equilibrium dynamics in fluids and plasmas, for error estimates and uncertainty quantifications, as well as for novel data assimilation techniques. 3. International Conference 'Turbulent Mixing and Beyond' The First and Second International Conferences on Turbulent Mixing and Beyond found that: (i) TMB-related problems have in common a set of outstanding research issues; (ii) their solution has a potential to significantly advance a variety of disciplines in science
Combustion and Mixing Studies in Compressible Flows.
1996-09-01
Astronautics 2 FULLER ET AL. dence times. It is a primary concern in hypersonic aircraft In fact, studies conducted by Povinelli et al.1 3 and Schetz...downstream. It was reasoned that pressure gradients in the swirling flow. Povinelli et al." such behavior should lead to increased turbulence levels...E.M., "Design and Calibration of Stagnation Tem- tion, 1968, pp. 1153-1162.11 .perature Probes for Use at High Supersonic Speeds and Elevated Povinelli
Stochastic transport models for mixing in variable-density turbulence
Bakosi, J.; Ristorcelli, J. R.
2011-11-01
In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.
PIV measurement of turbulent mixing layer flow with polymer additives
International Nuclear Information System (INIS)
Ning, T; Guo, F; Chen, B; Zhang, X
2009-01-01
Turbulent mixing layer flow with polymer additives was experimentally investigated by PIV in present paper. The velocity ratio between high and low speed is 4:1 and the Reynolds number for pure water case based on the velocity differences of two steams and hydraulic diameter of the channel ranges from 14667∼73333. Flow field and turbulent quantities of turbulent mixing layer with 200ppm polymer additives were measured and compared with pure water mixing layer flow. It is shown that the dynamic development of mixing layer is greatly influenced by polymer addictives. The smaller vortices are eliminated and the coherent structure is much clearer. Similar with pure water case, Reynolds stress and vorticity still concentrate in a coniform area of central part of mixing layer and the width will increase with the Reynolds number increasing. However, compared with pure water case, the coniform width of polymer additives case is larger, which means the polymer additives will lead to the diffusion of coherent structure. The peak value of vorticity in different cross section will decrease with the development of mixing layer. Compared with pure water case, the vorticity is larger at the beginning of the mixing layer but decreases faster in the case with polymer additives.
Spectra of turbulent static pressure fluctuations in jet mixing layers
Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.
1977-01-01
Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.
Madadi-Kandjani, E.; Fox, R. O.; Passalacqua, A.
2017-06-01
An extended quadrature method of moments using the β kernel density function (β -EQMOM) is used to approximate solutions to the evolution equation for univariate and bivariate composition probability distribution functions (PDFs) of a passive scalar for binary and ternary mixing. The key element of interest is the molecular mixing term, which is described using the Fokker-Planck (FP) molecular mixing model. The direct numerical simulations (DNSs) of Eswaran and Pope ["Direct numerical simulations of the turbulent mixing of a passive scalar," Phys. Fluids 31, 506 (1988)] and the amplitude mapping closure (AMC) of Pope ["Mapping closures for turbulent mixing and reaction," Theor. Comput. Fluid Dyn. 2, 255 (1991)] are taken as reference solutions to establish the accuracy of the FP model in the case of binary mixing. The DNSs of Juneja and Pope ["A DNS study of turbulent mixing of two passive scalars," Phys. Fluids 8, 2161 (1996)] are used to validate the results obtained for ternary mixing. Simulations are performed with both the conditional scalar dissipation rate (CSDR) proposed by Fox [Computational Methods for Turbulent Reacting Flows (Cambridge University Press, 2003)] and the CSDR from AMC, with the scalar dissipation rate provided as input and obtained from the DNS. Using scalar moments up to fourth order, the ability of the FP model to capture the evolution of the shape of the PDF, important in turbulent mixing problems, is demonstrated. Compared to the widely used assumed β -PDF model [S. S. Girimaji, "Assumed β-pdf model for turbulent mixing: Validation and extension to multiple scalar mixing," Combust. Sci. Technol. 78, 177 (1991)], the β -EQMOM solution to the FP model more accurately describes the initial mixing process with a relatively small increase in computational cost.
A marketing mix model for a complex and turbulent environment
Directory of Open Access Journals (Sweden)
R. B. Mason
2007-12-01
Full Text Available Purpose: This paper is based on the proposition that the choice of marketing tactics is determined, or at least significantly influenced, by the nature of the companys external environment. It aims to illustrate the type of marketing mix tactics that are suggested for a complex and turbulent environment when marketing and the environment are viewed through a chaos and complexity theory lens. Design/Methodology/Approach: Since chaos and complexity theories are proposed as a good means of understanding the dynamics of complex and turbulent markets, a comprehensive review and analysis of literature on the marketing mix and marketing tactics from a chaos and complexity viewpoint was conducted. From this literature review, a marketing mix model was conceptualised. Findings: A marketing mix model considered appropriate for success in complex and turbulent environments was developed. In such environments, the literature suggests destabilising marketing activities are more effective, whereas stabilising type activities are more effective in simple, stable environments. Therefore the model proposes predominantly destabilising type tactics as appropriate for a complex and turbulent environment such as is currently being experienced in South Africa. Implications: This paper is of benefit to marketers by emphasising a new way to consider the future marketing activities of their companies. How this model can assist marketers and suggestions for research to develop and apply this model are provided. It is hoped that the model suggested will form the basis of empirical research to test its applicability in the turbulent South African environment. Originality/Value: Since businesses and markets are complex adaptive systems, using complexity theory to understand how to cope in complex, turbulent environments is necessary, but has not been widely researched. In fact, most chaos and complexity theory work in marketing has concentrated on marketing strategy, with
Fluctuations of a passive scalar in a turbulent mixing layer
Attili, Antonio
2013-09-19
The turbulent flow originating downstream of the Kelvin-Helmholtz instability in a mixing layer has great relevance in many applications, ranging from atmospheric physics to combustion in technical devices. The mixing of a substance by the turbulent velocity field is usually involved. In this paper, a detailed statistical analysis of fluctuations of a passive scalar in the fully developed region of a turbulent mixing layer from a direct numerical simulation is presented. Passive scalar spectra show inertial ranges characterized by scaling exponents −4/3 and −3/2 in the streamwise and spanwise directions, in agreement with a recent theoretical analysis of passive scalar scaling in shear flows [Celani et al., J. Fluid Mech. 523, 99 (2005)]. Scaling exponents of high-order structure functions in the streamwise direction show saturation of intermittency with an asymptotic exponent ζ∞=0.4 at large orders. Saturation of intermittency is confirmed by the self-similarity of the tails of the probability density functions of the scalar increments at different scales r with the scaling factor r−ζ∞ and by the analysis of the cumulative probability of large fluctuations. Conversely, intermittency saturation is not observed for the spanwise increments and the relative scaling exponents agree with recent results for homogeneous isotropic turbulence with mean scalar gradient. Probability density functions of the scalar increments in the three directions are compared to assess anisotropy.
Fluctuations of a passive scalar in a turbulent mixing layer
Attili, Antonio; Bisetti, Fabrizio
2013-01-01
The turbulent flow originating downstream of the Kelvin-Helmholtz instability in a mixing layer has great relevance in many applications, ranging from atmospheric physics to combustion in technical devices. The mixing of a substance by the turbulent velocity field is usually involved. In this paper, a detailed statistical analysis of fluctuations of a passive scalar in the fully developed region of a turbulent mixing layer from a direct numerical simulation is presented. Passive scalar spectra show inertial ranges characterized by scaling exponents −4/3 and −3/2 in the streamwise and spanwise directions, in agreement with a recent theoretical analysis of passive scalar scaling in shear flows [Celani et al., J. Fluid Mech. 523, 99 (2005)]. Scaling exponents of high-order structure functions in the streamwise direction show saturation of intermittency with an asymptotic exponent ζ∞=0.4 at large orders. Saturation of intermittency is confirmed by the self-similarity of the tails of the probability density functions of the scalar increments at different scales r with the scaling factor r−ζ∞ and by the analysis of the cumulative probability of large fluctuations. Conversely, intermittency saturation is not observed for the spanwise increments and the relative scaling exponents agree with recent results for homogeneous isotropic turbulence with mean scalar gradient. Probability density functions of the scalar increments in the three directions are compared to assess anisotropy.
Compressive Strength of Compacted Clay-Sand Mixes
Directory of Open Access Journals (Sweden)
Faseel Suleman Khan
2014-01-01
Full Text Available The use of sand to improve the strength of natural clays provides a viable alternative for civil infrastructure construction involving earthwork. The main objective of this note was to investigate the compressive strength of compacted clay-sand mixes. A natural clay of high plasticity was mixed with 20% and 40% sand (SP and their compaction and strength properties were determined. Results indicated that the investigated materials exhibited a brittle behaviour on the dry side of optimum and a ductile behaviour on the wet side of optimum. For each material, the compressive strength increased with an increase in density following a power law function. Conversely, the compressive strength increased with decreasing water content of the material following a similar function. Finally, the compressive strength decreased with an increase in sand content because of increased material heterogeneity and loss of sand grains from the sides during shearing.
Ouyang, Bing; Hou, Weilin; Gong, Cuiling; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.
2016-05-01
The Compressive Line Sensing (CLS) active imaging system has been demonstrated to be effective in scattering mediums, such as turbid coastal water through simulations and test tank experiments. Since turbulence is encountered in many atmospheric and underwater surveillance applications, a new CLS imaging prototype was developed to investigate the effectiveness of the CLS concept in a turbulence environment. Compared with earlier optical bench top prototype, the new system is significantly more robust and compact. A series of experiments were conducted at the Naval Research Lab's optical turbulence test facility with the imaging path subjected to various turbulence intensities. In addition to validating the system design, we obtained some unexpected exciting results - in the strong turbulence environment, the time-averaged measurements using the new CLS imaging prototype improved both SNR and resolution of the reconstructed images. We will discuss the implications of the new findings, the challenges of acquiring data through strong turbulence environment, and future enhancements.
Ristorcelli, J. R.
1995-01-01
The mathematical consequences of a few simple scaling assumptions about the effects of compressibility are explored using a simple singular perturbation idea and the methods of statistical fluid mechanics. Representations for the pressure-dilation and dilatational dissipation covariances appearing in single-point moment closures for compressible turbulence are obtained. While the results are expressed in the context of a second-order statistical closure they provide some interesting and very clear physical metaphors for the effects of compressibility that have not been seen using more traditional linear stability methods. In the limit of homogeneous turbulence with quasi-normal large-scales the expressions derived are - in the low turbulent Mach number limit - asymptotically exact. The expressions obtained are functions of the rate of change of the turbulence energy, its correlation length scale, and the relative time scale of the cascade rate. The expressions for the dilatational covariances contain constants which have a precise and definite physical significance; they are related to various integrals of the longitudinal velocity correlation. The pressure-dilation covariance is found to be a nonequilibrium phenomena related to the time rate of change of the internal energy and the kinetic energy of the turbulence. Also of interest is the fact that the representation for the dilatational dissipation in turbulence, with or without shear, features a dependence on the Reynolds number. This article is a documentation of an analytical investigation of the implications of a pseudo-sound theory for the effects of compressibility.
Stochastic scalar mixing models accounting for turbulent frequency multiscale fluctuations
International Nuclear Information System (INIS)
Soulard, Olivier; Sabel'nikov, Vladimir; Gorokhovski, Michael
2004-01-01
Two new scalar micromixing models accounting for a turbulent frequency scale distribution are investigated. These models were derived by Sabel'nikov and Gorokhovski [Second International Symposium on Turbulence and Shear FLow Phenomena, Royal Institute of technology (KTH), Stockholm, Sweden, June 27-29, 2001] using a multiscale extension of the classical interaction by exchange with the mean (IEM) and Langevin models. They are, respectively, called Extended IEM (EIEM) and Extended Langevin (ELM) models. The EIEM and ELM models are tested against DNS results in the case of the decay of a homogeneous scalar field in homogeneous turbulence. This comparison leads to a reformulation of the law governing the mixing frequency distribution. Finally, the asymptotic behaviour of the modeled PDF is discussed
Hu, YanChao; Bi, WeiTao; Li, ShiYao; She, ZhenSu
2017-12-01
A challenge in the study of turbulent boundary layers (TBLs) is to understand the non-equilibrium relaxation process after sep-aration and reattachment due to shock-wave/boundary-layer interaction. The classical boundary layer theory cannot deal with the strong adverse pressure gradient, and hence, the computational modeling of this process remains inaccurate. Here, we report the direct numerical simulation results of the relaxation TBL behind a compression ramp, which reveal the presence of intense large-scale eddies, with significantly enhanced Reynolds stress and turbulent heat flux. A crucial finding is that the wall-normal profiles of the excess Reynolds stress and turbulent heat flux obey a β-distribution, which is a product of two power laws with respect to the wall-normal distances from the wall and from the boundary layer edge. In addition, the streamwise decays of the excess Reynolds stress and turbulent heat flux also exhibit power laws with respect to the streamwise distance from the corner of the compression ramp. These results suggest that the relaxation TBL obeys the dilation symmetry, which is a specific form of self-organization in this complex non-equilibrium flow. The β-distribution yields important hints for the development of a turbulence model.
Influence of Turbulent Scalar Mixing Physics on Premixed Flame Propagation
Directory of Open Access Journals (Sweden)
H. Kolla
2011-01-01
Full Text Available The influence of reactive scalar mixing physics on turbulent premixed flame propagation is studied, within the framework of turbulent flame speed modelling, by comparing predictive ability of two algebraic flame speed models: one that includes all relevant physics and the other ignoring dilatation effects on reactive scalar mixing. This study is an extension of a previous work analysing and validating the former model. The latter is obtained by neglecting modelling terms that include dilatation effects: a direct effect because of density change across the flame front and an indirect effect due to dilatation on turbulence-scalar interaction. An analysis of the limiting behaviour shows that neglecting the indirect effect alters the flame speed scaling considerably when / is small and the scaling remains unaffected when / is large. This is evident from comparisons of the two models with experimental data which show that the quantitative difference between the two models is as high as 66% at /=0.3 but only 4% at /=52.4. Furthermore, neglecting the direct effect results in a poor prediction of turbulent flame speed for all values of /, and both effects are important for practically relevant values of this velocity ratio.
Analysis of turbulent mixing in Dewakang Sill, Southern Makassar Strait
Risko; Atmadipoera, A. S.; Jaya, I.; Sudjono, E. H.
2017-01-01
Dewakang Sill is located in southern Makassar Strait, conveying major path of Indonesian Throughflow (ITF), as a confluence region of different water masses, such as salty Pacific water and fresh Java Sea water. Its depth is about 680 m which blocks the ITF flow below this depth into Flores Sea. This research aimed to estimate turbulent mixing in the Dewakang Sill by applying Thorpe analysis using 24 hours “yoyo” CTD data sets, acquired from MAJAFLOX Cruise in August 2015. The results showed that stratification of water masses is dominated by Pacific water origin. Those are North Pacific Subtropical thermocline and Intermediate water masses. Mean dissipation of turbulent kinetic energy (ɛ) and turbulent vertical diffusivity (Kρ ) value in the Dewakang Sill are of O(1.08 × 10-6)Wkg-1, and O(2.84 × 10-4) m2s-1 respectively. High correlation between epsilon and internal waves oscillation suggested that internal tidal waves activities are the major forcing for turbulent mixing in the study area.
Effect of Hand Mixing on the Compressive Strength of Concrete
Directory of Open Access Journals (Sweden)
James Isiwu AGUWA
2010-12-01
Full Text Available This paper presents the effect of hand mixing on the compressive strength of concrete. Before designing the concrete mix, sieve analysis of sharp sand and chippings was carried out and their fineness moduli were determined. Also the dry weight of chippings and the specific gravities of both sand and chippings were determined. A designed concrete mix of 1:2:4 was used and the number of turnings of the mixture over from one end to another by hand mixing was varying from one time up to and including seven times. The strengths were measured at the curing ages of 7, 14, 21 and 28 days respectively using 150mm concrete cubes cast, cured and crushed. The results revealed that the compressive strengths of concrete cubes appreciably increased with increase in number of turnings from one to four times but remained almost constant beyond four times of turning for all the ages tested. For example, at 1, 2, and 3 times turning; the compressive strengths at 28 days were 4.67, 13.37 and 20.28N/mm2 respectively while at 4, 5 and 6 times turning; the compressive strengths at 28 days were 21.15, 21.34 and 21.69N/mm2. From the data, adequate strengths were not developed at turnings below three times of hand mixing, concluding that a minimum of three times turning is required to produce concrete with satisfactory strength.
Energy Technology Data Exchange (ETDEWEB)
Cunha Galeazzo, Flavio Cesar
2016-07-01
The analysis of turbulent mixing in complex turbulent flows is a challenging task. The effective mixing of entrained fluids to a molecular level is a vital part of the dynamics of turbulent flows, especially when combustion is involved. The work has shown the limitations of the steady-state simulations and acknowledged the need of applying high-fidelity unsteady methods for the calculation of flows with pronounced unsteadiness promoted by large-scale coherent structures or other sources.
Three-dimensional density and compressible magnetic structure in solar wind turbulence
Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe
2018-03-01
The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂ ≫ P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed.
Statistics of the turbulent/non-turbulent interface in a spatially developing mixing layer
Attili, Antonio
2014-06-02
The thin interface separating the inner turbulent region from the outer irrotational fluid is analysed in a direct numerical simulation of a spatially developing turbulent mixing layer. A vorticity threshold is defined to detect the interface separating the turbulent from the non-turbulent regions of the flow, and to calculate statistics conditioned on the distance from this interface. The conditional statistics for velocity are in remarkable agreement with the results for other free shear flows available in the literature, such as turbulent jets and wakes. In addition, an analysis of the passive scalar field in the vicinity of the interface is presented. It is shown that the scalar has a jump at the interface, even stronger than that observed for velocity. The strong jump for the scalar has been observed before in the case of high Schmidt number (Sc). In the present study, such a strong jump is observed for a scalar with Sc ≈ 1. Conditional statistics of kinetic energy and scalar dissipation are presented. While the kinetic energy dissipation has its maximum far from the interface, the scalar dissipation is characterised by a strong peak very close to the interface. Finally, it is shown that the geometric features of the interfaces correlate with relatively large scale structures as visualised by low-pressure isosurfaces. © 2014 Taylor & Francis.
Statistics of the turbulent/non-turbulent interface in a spatially evolving mixing layer
Cristancho, Juan
2012-12-01
The thin interface separating the inner turbulent region from the outer irrotational fluid is analyzed in a direct numerical simulation of a spatially developing turbulent mixing layer. A vorticity threshold is defined to detect the interface separating the turbulent from the non-turbulent regions of the flow, and to calculate statistics conditioned on the distance from this interface. Velocity and passive scalar statistics are computed and compared to the results of studies addressing other shear flows, such as turbulent jets and wakes. The conditional statistics for velocity are in remarkable agreement with the results for other types of free shear flow available in the literature. In addition, a detailed analysis of the passive scalar field (with Sc 1) in the vicinity of the interface is presented. The scalar has a jump at the interface, even stronger than that observed for velocity. The strong jump for the scalar has been observed before in the case of high Schmidt number, but it is a new result for Schmidt number of order one. Finally, the dissipation for the kinetic energy and the scalar are presented. While the kinetic energy dissipation has its maximum far from the interface, the scalar dissipation is characterized by a strong peak very close to the interface.
International Nuclear Information System (INIS)
Johnsen, Eric; Larsson, Johan; Bhagatwala, Ankit V.; Cabot, William H.; Moin, Parviz; Olson, Britton J.; Rawat, Pradeep S.; Shankar, Santhosh K.; Sjoegreen, Bjoern; Yee, H.C.; Zhong Xiaolin; Lele, Sanjiva K.
2010-01-01
Flows in which shock waves and turbulence are present and interact dynamically occur in a wide range of applications, including inertial confinement fusion, supernovae explosion, and scramjet propulsion. Accurate simulations of such problems are challenging because of the contradictory requirements of numerical methods used to simulate turbulence, which must minimize any numerical dissipation that would otherwise overwhelm the small scales, and shock-capturing schemes, which introduce numerical dissipation to stabilize the solution. The objective of the present work is to evaluate the performance of several numerical methods capable of simultaneously handling turbulence and shock waves. A comprehensive range of high-resolution methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive characteristic-based filter, and shock fitting) and suite of test cases (Taylor-Green vortex, Shu-Osher problem, shock-vorticity/entropy wave interaction, Noh problem, compressible isotropic turbulence) relevant to problems with shocks and turbulence are considered. The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation. The hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor. Artificial diffusivity methods in which the artificial bulk viscosity is based on the magnitude of the strain-rate tensor resolve vortical structures well but damp dilatational modes in compressible turbulence; dilatation-based artificial bulk viscosity methods significantly improve this behavior. For well-defined shocks, the shock fitting approach yields good results.
Turbulent entrainment across turbulent-nonturbulent interfaces in stably stratified mixing layers
Watanabe, T.; Riley, J. J.; Nagata, K.
2017-10-01
The entrainment process in stably stratified mixing layers is studied in relation to the turbulent-nonturbulent interface (TNTI) using direct numerical simulations. The statistics are calculated with the interface coordinate in an Eulerian frame as well as with the Lagrangian fluid particles entrained from the nonturbulent to the turbulent regions. The characteristics of entrainment change as the buoyancy Reynolds number Reb decreases and the flow begins to layer. The baroclinic torque delays the enstrophy growth of the entrained fluids at small Reb, while this effect is less efficient for large Reb. The entrained particle movement within the TNTI layer is dominated by the small dissipative scales, and the rapid decay of the kinetic energy dissipation rate due to buoyancy causes the entrained particle movement relative to the interface location to become slower. Although the Eulerian statistics confirm that there exists turbulent fluid with strong vorticity or with large buoyancy frequency near the TNTI, the entrained fluid particles circumvent these regions by passing through the TNTI in strain-dominant regions or in regions with small buoyancy frequency. The multiparticle statistics show that once the nonturbulent fluid volumes are entrained, they are deformed into flattened shapes in the vertical direction and diffuse in the horizontal direction. When Reb is large enough for small-scale turbulence to exist, the entrained fluid is able to penetrate into the turbulent core region. Once the flow begins to layer with decreasing Reb, however, the entrained fluid volume remains near the outer edge of the turbulent region and forms a stably stratified layer without vertical overturning.
Spectral analysis of the turbulent mixing of two fluids
Energy Technology Data Exchange (ETDEWEB)
Steinkamp, M.J.
1996-02-01
The authors describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used as a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.
An empirical investigation of compressibility in magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Spangler, Steven R.; Spitler, Laura G.
2004-01-01
The density fluctuations which occur in magnetohydrodynamic (MHD) turbulence are an important diagnostic of the turbulent dynamics, and serve as the basis of astrophysical remote sensing measurements. This paper is concerned with the relation between density fluctuations and fluctuations of the magnetic field and velocity. The approach is empirical, utilizing spacecraft observations of slow solar wind turbulence. Sixty-six data intervals of 1 h duration were chosen, in which the solar wind speed was less than 450 km/s, and in which the fluctuations in density and vector magnetic field appeared to be approximately stationary. The parameters of interest were the root-mean-square fluctuations of density and magnetic field, normalized by the respective mean values, ε N ≡ 2 > 0.5 /n 0 and ε B ≡ 2 > 0.5 /B 0 , respectively, where n 0 and B 0 are the mean plasma number density and magnetic field strength. The conclusions of this study are as follows: (1) Consistent with previous investigations, the dependence of the normalized density fluctuation on the normalized magnetic field fluctuation is found to be between linear (ε N =ε B ) and quadratic (ε N =ε B 2 ). (2) The value of R≡ε N /ε B shows a wide range from 4; the median value is 0.46 and the mean is 0.72. (3) Typical normalized fluctuation amplitudes (ε N and ε B ) for records of one hour length (maximum scale size of ≅1.6x10 6 km) are 0.03-0.08 for the density, and 0.04-0.21 for the magnetic field. (4) For most intervals, the magnitude of the perpendicular (to the large scale magnetic field) magnetic field fluctuations exceeds that of the parallel fluctuations by a factor of 3-4. This indicates that the turbulent magnetic field fluctuations are primarily transverse fluctuations. The implications of these results for theories of MHD turbulence, and for the remote sensing of turbulent plasmas such as the corona, the near-Sun solar wind, and the interstellar medium, are discussed
Turbulent mixing and fluid transport within Florida Bay seagrass meadows
Hansen, Jennifer C. R.; Reidenbach, Matthew A.
2017-10-01
Seagrasses serve an important function in the ecology of Florida Bay, providing critical nursery habitat and a food source for a variety of organisms. They also create significant benthic structure that induces drag, altering local hydrodynamics that can influence mixing and nutrient dynamics. Thalassia testudinum seagrass meadows were investigated to determine how shoot density and morphometrics alter local wave conditions, the generation of turbulence, and fluid exchange above and within the canopy. Sparsely vegetated and densely vegetated meadows were monitored, with shoot densities of 259 ± 26 and 484 ± 78 shoots m-2, respectively. The temporal and spatial structure of velocity and turbulence were measured using acoustic Doppler velocimeters and an in situ particle image velocimetry (PIV) system positioned both above and within the seagrass canopy. The retention of fluid within the canopy was determined by examining e-folding times calculated from the concentration curves of dye plumes released within the seagrass canopy. Results show that a shear layer with an inflection point develops at the top of the seagrass canopy, which generates instabilities that impart turbulence into the seagrass meadow. Compared to the overlying water column, turbulence was enhanced within the sparse canopy due to flow interaction with the seagrass blades, but reduced within the dense canopy. Wave generated oscillatory motion penetrated deeper into the canopy than unidirectional currents, enhancing fluid exchange. Both shoot density and the relative magnitude of wave- versus current-driven flow conditions were found to be important controls on turbulent exchange of water masses across the canopy-water interface.
A mathematical model for turbulent incompressible flows through mixing grids
International Nuclear Information System (INIS)
Allaire, G.
1989-01-01
A mathematical model is proposed for the computation of turbulent incompressible flows through mixing grids. This model is obtained as follows: in a three-dimentional-domain we represent a mixing grid by small identical wings of size ε 2 periodically distributed at the nodes of a plane regular mesh of size ε, and we consider incompressible Navier-Stokes equations with a no-slip condition on the wings. Using an appropriate homogenization process we pass to the limit when ε tends to zero and we obtain a Brinkman equation, i.e. a Navier-Stokes equation plus a zero-order term for the velocity, in a homogeneous domain without anymore wings. The interest of this model is that the spatial discretization is simpler in a homogeneous domain, and, moreover, the new term, which expresses the grid's mixing effect, can be evaluated with a local computation around a single wing
Self-similar regimes of turbulence in weakly coupled plasmas under compression
Viciconte, Giovanni; Gréa, Benoît-Joseph; Godeferd, Fabien S.
2018-02-01
Turbulence in weakly coupled plasmas under compression can experience a sudden dissipation of kinetic energy due to the abrupt growth of the viscosity coefficient governed by the temperature increase. We investigate in detail this phenomenon by considering a turbulent velocity field obeying the incompressible Navier-Stokes equations with a source term resulting from the mean velocity. The system can be simplified by a nonlinear change of variable, and then solved using both highly resolved direct numerical simulations and a spectral model based on the eddy-damped quasinormal Markovian closure. The model allows us to explore a wide range of initial Reynolds and compression numbers, beyond the reach of simulations, and thus permits us to evidence the presence of a nonlinear cascade phase. We find self-similarity of intermediate regimes as well as of the final decay of turbulence, and we demonstrate the importance of initial distribution of energy at large scales. This effect can explain the global sensitivity of the flow dynamics to initial conditions, which we also illustrate with simulations of compressed homogeneous isotropic turbulence and of imploding spherical turbulent layers relevant to inertial confinement fusion.
Energy Cascade Rate in Compressible Fast and Slow Solar Wind Turbulence
International Nuclear Information System (INIS)
Hadid, L. Z.; Sahraoui, F.; Galtier, S.
2017-01-01
Estimation of the energy cascade rate in the inertial range of solar wind turbulence has been done so far mostly within incompressible magnetohydrodynamics (MHD) theory. Here, we go beyond that approximation to include plasma compressibility using a reduced form of a recently derived exact law for compressible, isothermal MHD turbulence. Using in situ data from the THEMIS / ARTEMIS spacecraft in the fast and slow solar wind, we investigate in detail the role of the compressible fluctuations in modifying the energy cascade rate with respect to the prediction of the incompressible MHD model. In particular, we found that the energy cascade rate (1) is amplified particularly in the slow solar wind; (2) exhibits weaker fluctuations in spatial scales, which leads to a broader inertial range than the previous reported ones; (3) has a power-law scaling with the turbulent Mach number; (4) has a lower level of spatial anisotropy. Other features of solar wind turbulence are discussed along with their comparison with previous studies that used incompressible or heuristic (nonexact) compressible MHD models.
Energy Cascade Rate in Compressible Fast and Slow Solar Wind Turbulence
Energy Technology Data Exchange (ETDEWEB)
Hadid, L. Z.; Sahraoui, F.; Galtier, S., E-mail: lina.hadid@lpp.polytechnique.fr [LPP, CNRS, Ecole Polytechnique, UPMC Univ Paris 06, Univ. Paris-Sud, Observatoire de Paris, Université Paris-Saclay, Sorbonne Universités, PSL Research University, F-91128 Palaiseau (France)
2017-03-20
Estimation of the energy cascade rate in the inertial range of solar wind turbulence has been done so far mostly within incompressible magnetohydrodynamics (MHD) theory. Here, we go beyond that approximation to include plasma compressibility using a reduced form of a recently derived exact law for compressible, isothermal MHD turbulence. Using in situ data from the THEMIS / ARTEMIS spacecraft in the fast and slow solar wind, we investigate in detail the role of the compressible fluctuations in modifying the energy cascade rate with respect to the prediction of the incompressible MHD model. In particular, we found that the energy cascade rate (1) is amplified particularly in the slow solar wind; (2) exhibits weaker fluctuations in spatial scales, which leads to a broader inertial range than the previous reported ones; (3) has a power-law scaling with the turbulent Mach number; (4) has a lower level of spatial anisotropy. Other features of solar wind turbulence are discussed along with their comparison with previous studies that used incompressible or heuristic (nonexact) compressible MHD models.
Large-scale vortices in compressible turbulent medium with the magnetic field
Gvaramadze, V. V.; Dimitrov, B. G.
1990-08-01
An averaged equation which describes the large scale vortices and Alfven waves generation in a compressible helical turbulent medium with a constant magnetic field is presented. The presence of the magnetic field leads to anisotropization of the vortex generation. Possible applications of the anisotropic vortex dynamo effect are accretion disks of compact objects.
Benzi, R.; Biferale, L.; Fisher, R.T.; Lamb, D.Q.; Toschi, F.
2009-01-01
We report a detailed study of Eulerian and Lagrangian statistics from high resolution Direct Numerical Simulations of isotropic weakly compressible turbulence. Reynolds number at the Taylor microscale is estimated to be around 600. Eulerian and Lagrangian statistics is evaluated over a huge data
Rodi, Patrick E.
1993-01-01
Forward swept sidewall compression inlets have been tested in the Mach 4 Blowdown Facility at the NASA Langley Research Center to study the effects of bodyside compression surfaces on inlet performance in the presence of an incoming turbulent boundary layer. The measurements include mass flow capture and mean surface pressure distributions obtained during simulated combustion pressure increases downstream of the inlet. The kerosene-lampblack surface tracer technique has been used to obtain patterns of the local wall shear stress direction. Inlet performance is evaluated using starting and unstarting characteristics, mass capture, mean surface pressure distributions and permissible back pressure limits. The results indicate that inlet performance can be improved with selected bodyside compression surfaces placed between the inlet sidewalls.
Nonlinear Stability and Structure of Compressible Reacting Mixing Layers
Day, M. J.; Mansour, N. N.; Reynolds, W. C.
2000-01-01
The parabolized stability equations (PSE) are used to investigate issues of nonlinear flow development and mixing in compressible reacting shear layers. Particular interest is placed on investigating the change in flow structure that occurs when compressibility and heat release are added to the flow. These conditions allow the 'outer' instability modes- one associated with each of the fast and slow streams-to dominate over the 'central', Kelvin-Helmholtz mode that unaccompanied in incompressible nonreacting mixing layers. Analysis of scalar probability density functions in flows with dominant outer modes demonstrates the ineffective, one-sided nature of mixing that accompany these flow structures. Colayer conditions, where two modes have equal growth rate and the mixing layer is formed by two sets of vortices, offer some opportunity for mixing enhancement. Their extent, however, is found to be limited in the mixing layer's parameter space. Extensive validation of the PSE technique also provides a unique perspective on central- mode vortex pairing, further supporting the view that pairing is primarily governed perspective sheds insight on how linear stability theory is able to provide such an accurate prediction of experimentally-observed, fully nonlinear flow phenomenon.
Investigation of turbulence models with compressibility corrections for hypersonic boundary flows
Directory of Open Access Journals (Sweden)
Han Tang
2015-12-01
Full Text Available The applications of pressure work, pressure-dilatation, and dilatation-dissipation (Sarkar, Zeman, and Wilcox models to hypersonic boundary flows are investigated. The flat plate boundary layer flows of Mach number 5–11 and shock wave/boundary layer interactions of compression corners are simulated numerically. For the flat plate boundary layer flows, original turbulence models overestimate the heat flux with Mach number high up to 10, and compressibility corrections applied to turbulence models lead to a decrease in friction coefficients and heating rates. The pressure work and pressure-dilatation models yield the better results. Among the three dilatation-dissipation models, Sarkar and Wilcox corrections present larger deviations from the experiment measurement, while Zeman correction can achieve acceptable results. For hypersonic compression corner flows, due to the evident increase of turbulence Mach number in separation zone, compressibility corrections make the separation areas larger, thus cannot improve the accuracy of calculated results. It is unreasonable that compressibility corrections take effect in separation zone. Density-corrected model by Catris and Aupoix is suitable for shock wave/boundary layer interaction flows which can improve the simulation accuracy of the peak heating and have a little influence on separation zone.
Liu, J.; Wu, S. P.
2017-04-01
Wall function boundary conditions including the effects of compressibility and heat transfer are improved for compressible turbulent boundary flows. Generalized wall function formulation at zero-pressure gradient is proposed based on coupled velocity and temperature profiles in the entire near-wall region. The parameters in the generalized wall function are well revised. The proposed boundary conditions are integrated into Navier-Stokes computational fluid dynamics code that includes the shear stress transport turbulence model. Numerical results are presented for a compressible boundary layer over a flat plate at zero-pressure gradient. Compared with experimental data, the computational results show that the generalized wall function reduces the first grid spacing in the directed normal to the wall and proves the feasibility and effectivity of the generalized wall function method.
Bulk hydrodynamic stability and turbulent saturation in compressing hot spots
Davidovits, Seth; Fisch, Nathaniel J.
2018-04-01
For hot spots compressed at constant velocity, we give a hydrodynamic stability criterion that describes the expected energy behavior of non-radial hydrodynamic motion for different classes of trajectories (in ρR — T space). For a given compression velocity, this criterion depends on ρR, T, and d T /d (ρR ) (the trajectory slope) and applies point-wise so that the expected behavior can be determined instantaneously along the trajectory. Among the classes of trajectories are those where the hydromotion is guaranteed to decrease and those where the hydromotion is bounded by a saturated value. We calculate this saturated value and find the compression velocities for which hydromotion may be a substantial fraction of hot-spot energy at burn time. The Lindl (Phys. Plasmas 2, 3933 (1995)] "attractor" trajectory is shown to experience non-radial hydrodynamic energy that grows towards this saturated state. Comparing the saturation value with the available detailed 3D simulation results, we find that the fluctuating velocities in these simulations reach substantial fractions of the saturated value.
Turbulent mixing in three-dimensional droplet arrays
International Nuclear Information System (INIS)
Zoby, M.R.G.; Navarro-Martinez, S.; Kronenburg, A.; Marquis, A.J.
2011-01-01
The atomisation, evaporation and subsequent mixing of fuel from a liquid spray determines the effectiveness of the combustion processes in gas turbines and internal combustion engines. In the present paper, three-dimensional direct numerical simulations (DNS) of the evaporation of methanol droplets in hot environments are presented. The gas phase mixing is assessed by examining the scalar dissipation and the mixture fraction probability density function (PDF). Novel multi-conditional models are proposed that use mixture fraction and structural parameters as the conditioning variables for the scalar dissipation which is found to be well predicted in terms of magnitude and distribution. The β-PDF description of the mixture fraction seems to capture well the global behaviour for a laminar environment and for time-averaged results in turbulent cases. A novel model for the mixture fraction PDF is also proposed based on the multi-conditional model for scalar dissipation and an accurate representation of the PDF is achieved.
Two-equation and multi-fluid turbulence models for Rayleigh–Taylor mixing
International Nuclear Information System (INIS)
Kokkinakis, I.W.; Drikakis, D.; Youngs, D.L.; Williams, R.J.R.
2015-01-01
Highlights: • We present a new improved version of the K–L model. • The improved K–L is found in good agreement with the multi-fluid model and ILES. • The study concerns Rayleigh–Taylor flows at initial density ratios 3:1 and 20:1. - Abstract: This paper presents a new, improved version of the K–L model, as well as a detailed investigation of K–L and multi-fluid models with reference to high-resolution implicit large eddy simulations of compressible Rayleigh–Taylor mixing. The accuracy of the models is examined for different interface pressures and specific heat ratios for Rayleigh–Taylor flows at initial density ratios 3:1 and 20:1. It is shown that the original version of the K–L model requires modifications in order to provide comparable results to the multi-fluid model. The modifications concern the addition of an enthalpy diffusion term to the energy equation; the formulation of the turbulent kinetic energy (source) term in the K equation; and the calculation of the local Atwood number. The proposed modifications significantly improve the results of the K–L model, which are found in good agreement with the multi-fluid model and implicit large eddy simulations with respect to the self-similar mixing width; peak turbulent kinetic energy growth rate, as well as volume fraction and turbulent kinetic energy profiles. However, a key advantage of the two-fluid model is that it can represent the degree of molecular mixing in a direct way, by transferring mass between the two phases. The limitations of the single-fluid K–L model as well as the merits of more advanced Reynolds-averaged Navier–Stokes models are also discussed throughout the paper.
Measuring mixing efficiency in experiments of strongly stratified turbulence
Augier, P.; Campagne, A.; Valran, T.; Calpe Linares, M.; Mohanan, A. V.; Micard, D.; Viboud, S.; Segalini, A.; Mordant, N.; Sommeria, J.; Lindborg, E.
2017-12-01
Oceanic and atmospheric models need better parameterization of the mixing efficiency. Therefore, we need to measure this quantity for flows representative of geophysical flows, both in terms of types of flows (with vortices and/or waves) and of dynamical regimes. In order to reach sufficiently large Reynolds number for strongly stratified flows, experiments for which salt is used to produce the stratification have to be carried out in a large rotating platform of at least 10-meter diameter.We present new experiments done in summer 2017 to study experimentally strongly stratified turbulence and mixing efficiency in the Coriolis platform. The flow is forced by a slow periodic movement of an array of large vertical or horizontal cylinders. The velocity field is measured by 3D-2C scanned horizontal particles image velocimetry (PIV) and 2D vertical PIV. Six density-temperature probes are used to measure vertical and horizontal profiles and signals at fixed positions.We will show how we rely heavily on open-science methods for this study. Our new results on the mixing efficiency will be presented and discussed in terms of mixing parameterization.
Subgrid models for mass and thermal diffusion in turbulent mixing
Energy Technology Data Exchange (ETDEWEB)
Sharp, David H [Los Alamos National Laboratory; Lim, Hyunkyung [STONY BROOK UNIV; Li, Xiao - Lin [STONY BROOK UNIV; Gilmm, James G [STONY BROOK UNIV
2008-01-01
We are concerned with the chaotic flow fields of turbulent mixing. Chaotic flow is found in an extreme form in multiply shocked Richtmyer-Meshkov unstable flows. The goal of a converged simulation for this problem is twofold: to obtain converged solutions for macro solution features, such as the trajectories of the principal shock waves, mixing zone edges, and mean densities and velocities within each phase, and also for such micro solution features as the joint probability distributions of the temperature and species concentration. We introduce parameterized subgrid models of mass and thermal diffusion, to define large eddy simulations (LES) that replicate the micro features observed in the direct numerical simulation (DNS). The Schmidt numbers and Prandtl numbers are chosen to represent typical liquid, gas and plasma parameter values. Our main result is to explore the variation of the Schmidt, Prandtl and Reynolds numbers by three orders of magnitude, and the mesh by a factor of 8 per linear dimension (up to 3200 cells per dimension), to allow exploration of both DNS and LES regimes and verification of the simulations for both macro and micro observables. We find mesh convergence for key properties describing the molecular level of mixing, including chemical reaction rates between the distinct fluid species. We find results nearly independent of Reynolds number for Re 300, 6000, 600K . Methodologically, the results are also new. In common with the shock capturing community, we allow and maintain sharp solution gradients, and we enhance these gradients through use of front tracking. In common with the turbulence modeling community, we include subgrid scale models with no adjustable parameters for LES. To the authors' knowledge, these two methodologies have not been previously combined. In contrast to both of these methodologies, our use of Front Tracking, with DNS or LES resolution of the momentum equation at or near the Kolmogorov scale, but without
Energy Technology Data Exchange (ETDEWEB)
Cline, M.C.
1981-08-01
VNAP2 is a computer program for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow. VNAP2 solves the two-dimensional, time-dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing-length model, a one-equation model, or the Jones-Launder two-equation model. The geometry may be a single- or a dual-flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference-plane-characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free-jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet-powered afterbodies, airfoils, and free-jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.
On the implicit density based OpenFOAM solver for turbulent compressible flows
Fürst, Jiří
The contribution deals with the development of coupled implicit density based solver for compressible flows in the framework of open source package OpenFOAM. However the standard distribution of OpenFOAM contains several ready-made segregated solvers for compressible flows, the performance of those solvers is rather week in the case of transonic flows. Therefore we extend the work of Shen [15] and we develop an implicit semi-coupled solver. The main flow field variables are updated using lower-upper symmetric Gauss-Seidel method (LU-SGS) whereas the turbulence model variables are updated using implicit Euler method.
Local structure of scalar flux in turbulent passive scalar mixing
Konduri, Aditya; Donzis, Diego
2012-11-01
Understanding the properties of scalar flux is important in the study of turbulent mixing. Classical theories suggest that it mainly depends on the large scale structures in the flow. Recent studies suggest that the mean scalar flux reaches an asymptotic value at high Peclet numbers, independent of molecular transport properties of the fluid. A large DNS database of isotropic turbulence with passive scalars forced with a mean scalar gradient with resolution up to 40963, is used to explore the structure of scalar flux based on the local topology of the flow. It is found that regions of small velocity gradients, where dissipation and enstrophy are small, constitute the main contribution to scalar flux. On the other hand, regions of very small scalar gradient (and scalar dissipation) become less important to the scalar flux at high Reynolds numbers. The scaling of the scalar flux spectra is also investigated. The k - 7 / 3 scaling proposed by Lumley (1964) is observed at high Reynolds numbers, but collapse is not complete. A spectral bump similar to that in the velocity spectrum is observed close to dissipative scales. A number of features, including the height of the bump, appear to reach an asymptotic value at high Schmidt number.
On ternary species mixing and combustion in isotropic turbulence at high pressure
Lou, Hong; Miller, Richard S.
2004-05-01
Effects of Soret and Dufour cross-diffusion, whereby both concentration and thermal diffusion occur in the presence of mass fraction, temperature, and pressure gradients, are investigated in the context of both binary and ternary species mixing and combustion in isotropic turbulence at large pressure. The compressible flow formulation is based on a cubic real-gas state equation, and includes generalized forms for heat and mass diffusion derived from nonequilibrium thermodynamics and fluctuation theory. A previously derived formulation of the generalized binary species heat and mass fluxes is first extended to the case of ternary species, and appropriate treatment of the thermal and mass diffusion factors is described. Direct numerical simulations (DNS) are then conducted for both binary and ternary species mixing and combustion in stationary isotropic turbulence. Mean flow temperatures and pressures of =700 K and =45 atm are considered to ensure that all species mixtures remain in the supercritical state such that phase changes do not occur. DNS of ternary species systems undergoing both pure mixing and a simple chemical reaction of the form O2+N2→2NO are then conducted. It is shown that stationary scalar states previously observed for binary mixing persist for the ternary species problem as well; however, the production and magnitude of the scalar variance is found to be altered for the intermediate molecular weight species as compared to the binary species case. The intermediate molecular weight species produces a substantially smaller scalar variance than the remaining species for all flows considered. For combustion of nonstoichiometric mixtures, a binary species mixture, characterized by stationary scalar states, results at long times after the lean reactant is depleted. The form of this final scalar distribution is observed to be similar to that found in the binary flow situation. A series of lower resolution simulations for a variety of species is then
International Nuclear Information System (INIS)
Kowal, Grzegorz; Lazarian, A.
2010-01-01
We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho and Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field reference frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz- Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.
Simplified methods to assess thermal fatigue due to turbulent mixing
International Nuclear Information System (INIS)
Hannink, M.H.C.; Timperi, A.
2011-01-01
Thermal fatigue is a safety relevant damage mechanism in pipework of nuclear power plants. A well-known simplified method for the assessment of thermal fatigue due to turbulent mixing is the so-called sinusoidal method. Temperature fluctuations in the fluid are described by a sinusoidally varying signal at the inner wall of the pipe. Because of limited information on the thermal loading conditions, this approach generally leads to overconservative results. In this paper, a new assessment method is presented, which has the potential of reducing the overconservatism of existing procedures. Artificial fluid temperature signals are generated by superposition of harmonic components with different amplitudes and frequencies. The amplitude-frequency spectrum of the components is modelled by a formula obtained from turbulence theory, whereas the phase differences are assumed to be randomly distributed. Lifetime predictions generated with the new simplified method are compared with lifetime predictions based on real fluid temperature signals, measured in an experimental setup of a mixing tee. Also, preliminary steady-state Computational Fluid Dynamics (CFD) calculations of the total power of the fluctuations are presented. The total power is needed as an input parameter for the spectrum formula in a real-life application. Solution of the transport equation for the total power was included in a CFD code and comparisons with experiments were made. The newly developed simplified method for generating the temperature signal is shown to be adequate for the investigated geometry and flow conditions, and demonstrates possibilities of reducing the conservatism of the sinusoidal method. CFD calculations of the total power show promising results, but further work is needed to develop the approach. (author)
Turbulent mixing and removal of ozone within an Amazon rainforest canopy
Freire, L. S.; Gerken, T.; Ruiz-Plancarte, J.; Wei, D.; Fuentes, J. D.; Katul, G. G.; Dias, N. L.; Acevedo, O. C.; Chamecki, M.
2017-03-01
Simultaneous profiles of turbulence statistics and mean ozone mixing ratio are used to establish a relation between eddy diffusivity and ozone mixing within the Amazon forest. A one-dimensional diffusion model is proposed and used to infer mixing time scales from the eddy diffusivity profiles. Data and model results indicate that during daytime conditions, the upper (lower) half of the canopy is well (partially) mixed most of the time and that most of the vertical extent of the forest can be mixed in less than an hour. During nighttime, most of the canopy is predominantly poorly mixed, except for periods with bursts of intermittent turbulence. Even though turbulence is faster than chemistry during daytime, both processes have comparable time scales in the lower canopy layers during nighttime conditions. Nonchemical loss time scales (associated with stomatal uptake and dry deposition) for the entire forest are comparable to turbulent mixing time scale in the lower canopy during the day and in the entire canopy during the night, indicating a tight coupling between turbulent transport and dry deposition and stomatal uptake processes. Because of the significant time of day and height variability of the turbulent mixing time scale inside the canopy, it is important to take it into account when studying chemical and biophysical processes happening in the forest environment. The method proposed here to estimate turbulent mixing time scales is a reliable alternative to currently used models, especially for situations in which the vertical distribution of the time scale is relevant.
Energy Technology Data Exchange (ETDEWEB)
He, Jiansen; Tu, Chuanyi; Wang, Linghua; Pei, Zhongtian [School of Earth and Space Sciences, Peking University, Beijing, 100871 (China); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, D-24118 Kiel (Germany); Chen, Christopher H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zhang, Lei [Sate Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Salem, Chadi S.; Bale, Stuart D., E-mail: jshept@gmail.com [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States)
2015-11-10
Magnetohydronamic turbulence is believed to play a crucial role in heating laboratory, space, and astrophysical plasmas. However, the precise connection between the turbulent fluctuations and the particle kinetics has not yet been established. Here we present clear evidence of plasma turbulence heating based on diagnosed wave features and proton velocity distributions from solar wind measurements by the Wind spacecraft. For the first time, we can report the simultaneous observation of counter-propagating magnetohydrodynamic waves in the solar wind turbulence. As opposed to the traditional paradigm with counter-propagating Alfvén waves (AWs), anti-sunward AWs are encountered by sunward slow magnetosonic waves (SMWs) in this new type of solar wind compressible turbulence. The counter-propagating AWs and SWs correspond, respectively, to the dominant and sub-dominant populations of the imbalanced Elsässer variables. Nonlinear interactions between the AWs and SMWs are inferred from the non-orthogonality between the possible oscillation direction of one wave and the possible propagation direction of the other. The associated protons are revealed to exhibit bi-directional asymmetric beams in their velocity distributions: sunward beams appear in short, narrow patterns and anti-sunward in broad extended tails. It is suggested that multiple types of wave–particle interactions, i.e., cyclotron and Landau resonances with AWs and SMWs at kinetic scales, are taking place to jointly heat the protons perpendicular and in parallel.
Numerical prediction of an axisymmetric turbulent mixing layer using two turbulence models
Johnson, Richard W.
1992-01-01
Nuclear power, once considered and then rejected (in the U. S.) for application to space vehicle propulsion, is being reconsidered for powering space rockets, especially for interplanetary travel. The gas core reactor, a high risk, high payoff nuclear engine concept, is one that was considered in the 1960s and 70s. As envisioned then, the gas core reactor would consist of a heavy, slow moving core of fissioning uranium vapor surrounded by a fast moving outer stream of hydrogen propellant. Satisfactory operation of such a configuration would require stable nuclear reaction kinetics to occur simultaneously with a stable, coflowing, probably turbulent fluid system having a dense inner stream and a light outer stream. The present study examines the behavior of two turbulence models in numerically simulating an idealized version of the above coflowing fluid system. The two models are the standard k˜ɛ model and a thin shear algebraic stress model (ASM). The idealized flow system can be described as an axisymmetric mixing layer of constant density. Predictions for the radial distribution of the mean streamwise velocity and shear stress for several axial stations are compared with experiment. Results for the k˜ɛe predictions are broadly satisfactory while those for the ASM are distinctly poorer.
Experiments and CFD Modelling of Turbulent Mass Transfer in a Mixing Channel
DEFF Research Database (Denmark)
Hjertager Osenbroch, Lene Kristin; Hjertager, Bjørn H.; Solberg, Tron
2006-01-01
. Three different flow cases are studied. The 2D numerical predictions of the mixing channel show that none of the k-ε turbulence models tested is suitable for the flow cases studied here. The turbulent Schmidt number is reduced to obtain a better agreement between measured and predicted mean......Experiments are carried out for passive mixing in order to obtain local mean and turbulent velocities and concentrations. The mixing takes place in a square channel with two inlets separated by a block. A combined PIV/PLIF technique is used to obtain instantaneous velocity and concentration fields...... and fluctuating concentrations. The multi-peak presumed PDF mixing model is tested....
A DNS study of turbulent mixing of two passive scalars
International Nuclear Information System (INIS)
Juneja, A.; Pope, S.B.
1996-01-01
We employ direct numerical simulations to study the mixing of two passive scalars in stationary, homogeneous, isotropic turbulence. The present work is a direct extension of that of Eswaran and Pope from one scalar to two scalars and the focus is on examining the evolution states of the scalar joint probability density function (jpdf) and the conditional expectation of the scalar diffusion to motivate better models for multi-scalar mixing. The initial scalar fields are chosen to conform closely to a open-quote open-quote triple-delta function close-quote close-quote jpdf corresponding to blobs of fluid in three distinct states. The effect of the initial length scales and diffusivity of the scalars on the evolution of the jpdf and the conditional diffusion is investigated in detail as the scalars decay from their prescribed initial state. Also examined is the issue of self-similarity of the scalar jpdf at large times and the rate of decay of the scalar variance and dissipation. copyright 1996 American Institute of Physics
Mixing and Turbulence Statistics in an Inclined Interface Richtmyer-Meshkov Instability
Subramaniam, Akshay; Lele, Sanjiva
2016-11-01
The interaction of a Mach 1.55 shockwave with a nominally inclined interface is considered. Unlike the classical Richtmyer-Meshkov problem, the interface evolution is non-linear from early time and large highly correlated vortical structures are observed even after reshock. The simulations target the experiment of McFarland et al. (2014). Simulations are performed using the Miranda code (Cook et al., 2005) that uses high-order spectral-like numerics (Lele, 1992). Results from multiple grid resolutions up to 4 billion grid points establish grid convergence. Comparisons to the experiments show that the simulations adequately capture the physics of the problem. Analysis of the data from the simulations based on variable density turbulence equations in the Favre averaged form will be presented. Statistics of unclosed terms in the variable density RANS equations will also be presented and compared to standard closure models. It is observed that the Reynolds Stresses have a non-monotonic return to isotropy after reshock and that compressibility effects are important long after reshock. The effect of numerics are also quantified and presented. Computer time for this work was provided by NSF PRAC award "Multi-material turbulent mixing" on the Blue Waters system.
Taylor, Ellen Meredith
Weighted essentially non-oscillatory (WENO) methods have been developed to simultaneously provide robust shock-capturing in compressible fluid flow and avoid excessive damping of fine-scale flow features such as turbulence. This is accomplished by constructing multiple candidate numerical stencils that adaptively combine so as to provide high order of accuracy and high bandwidth-resolving efficiency in continuous flow regions while averting instability-provoking interpolation across discontinuities. Under certain conditions in compressible turbulence, however, numerical dissipation remains unacceptably high even after optimization of the linear optimal stencil combination that dominates in smooth regions. The remaining nonlinear error arises from two primary sources: (i) the smoothness measurement that governs the application of adaptation away from the optimal stencil and (ii) the numerical properties of individual candidate stencils that govern numerical accuracy when adaptation engages. In this work, both of these sources are investigated, and corrective modifications to the WENO methodology are proposed and evaluated. Excessive nonlinear error due to the first source is alleviated through two separately considered procedures appended to the standard smoothness measurement technique that are designated the "relative smoothness limiter" and the "relative total variation limiter." In theory, appropriate values of their associated parameters should be insensitive to flow configuration, thereby sidestepping the prospect of costly parameter tuning; and this expectation of broad effectiveness is assessed in direct numerical simulations (DNS) of one-dimensional inviscid test problems, three-dimensional compressible isotropic turbulence of varying Reynolds and turbulent Mach numbers, and shock/isotropic-turbulence interaction (SITI). In the process, tools for efficiently comparing WENO adaptation behavior in smooth versus shock-containing regions are developed. The
LES/FMDF of turbulent jet ignition in a rapid compression machine
Validi, Abdoulahad; Schock, Harold; Toulson, Elisa; Jaberi, Farhad; CFD; Engine Research Labs, Michigan State University Collaboration
2015-11-01
Turbulent Jet Ignition (TJI) is an efficient method for initiating and controlling combustion in combustion systems, e.g. internal combustion engines. It enables combustion in ultra-lean mixtures by utilizing hot product turbulent jets emerging from a pre-chamber combustor as the ignition source for the main combustion chamber. Here, we study the TJI-assisted ignition and combustion of lean methane-air mixtures in a Rapid Compression Machine (RCM) for various flow/combustion conditions with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) computational model. In the LES/FMDF model, the filtered form of compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity, while the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar (species mass fraction and temperature) field. The LES/FMDF data are used to study the physics of TJI and combustion in RCM. The results show the very complex behavior of the reacting flow and the flame structure in the pre-chamber and RCM.
Araya, Guillermo; Jansen, Kenneth
2017-11-01
DNS of compressible spatially-developing turbulent boundary layers is performed at a Mach number of 2.5 over an isothermal flat plate. Turbulent inflow information is generated by following the concept of the rescaling-recycling approach introduced by Lund et al. (J. Comp. Phys. 140, 233-258, 1998); although, the proposed methodology is extended to compressible flows. Furthermore, a dynamic approach is employed to connect the friction velocities at the inlet and recycle stations (i.e., there is no need of an empirical correlation as in Lund et al.). Additionally, the Morkovin's Strong Reynolds Analogy (SRA) is used in the rescaling process of the thermal fluctuations from the recycle plane. Low/high order flow statistics is compared with direct simulations of an incompressible isothermal ZPG boundary layer at similar Reynolds numbers and temperature regarded as a passive scalar. Focus is given to the effect assessment of flow compressibility on the dynamics of thermal coherent structures. AFOSR #FA9550-17-1-0051.
THE FORMATION OF ROTATIONAL DISCONTINUITIES IN COMPRESSIVE THREE-DIMENSIONAL MHD TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Yang, Liping; Feng, Xueshang [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, 100190, Beijing (China); Zhang, Lei; He, Jiansen; Tu, Chuanyi; Wang, Linghua; Wang, Xin [School of Earth and Space Sciences, Peking University, 100871 Beijing (China); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian Albrechts University at Kiel, D-24118 Kiel (Germany); Zhang, Shaohua, E-mail: jshept@gmail.com [Center of Spacecraft Assembly Integration and Test, China Academy of Space Technology, Beijing 100094 (China)
2015-08-20
Measurements of solar wind turbulence reveal the ubiquity of discontinuities. In this study we investigate how the discontinuities, especially rotational discontinuities (RDs), are formed in MHD turbulence. In a simulation of the decaying compressive three-dimensional (3D) MHD turbulence with an imposed uniform background magnetic field, we detect RDs with sharp field rotations and little variations of magnetic field intensity, as well as mass density. At the same time, in the de Hoffman–Teller frame, the plasma velocity is nearly in agreement with the Alfvén speed, and is field-aligned on both sides of the discontinuity. We take one of the identified RDs to analyze its 3D structure and temporal evolution in detail. By checking the magnetic field and plasma parameters, we find that the identified RD evolves from the steepening of the Alfvén wave with moderate amplitude, and that steepening is caused by the nonuniformity of the Alfvén speed in the ambient turbulence.
Variable geometry for supersonic mixed-compression inlets
Sorensen, N. E.; Latham, E. A.; Smeltzer, D. B.
1974-01-01
Study of two-dimensional and axisymmetric supersonic mixed-compression inlet systems has shown that the geometry of both systems can be varied to provide adequate transonic airflow to satisfy the airflow demand of most jet engines. Collapsing geometry systems for both types of inlet systems provide a generous amount of transonic airflow for any design Mach number inlet system. However, the mechanical practicality of collapsing centerbodies for axisymmetric inlet systems is doubtful. Therefore, translating centerbody axisymmetric inlets with auxiliary airflow systems to augment the transonic airflow capability are an attractive alternative. Estimates show that the capture mass-flow ratio at Mach number 1.0 can be increased approximately 0.20 for a very short axisymmetric inlet system designed for Mach number 2.37. With this increase in mass-flow ratio, even variable-cycle engine transonic airflow demand can be matched without oversizing the inlet at the design Mach number.
Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies
International Nuclear Information System (INIS)
Susoeff, A.R.; Hawke, R.S.; Morrison, J.J.; Dimonte, G.; Remington, B.A.
1994-03-01
An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. Key features of the design include: (1) independent control of acceleration, deceleration and augmentation currents to provide a variety of acceleration-time profiles, (2) a robust support structure to minimized deflection and dampen vibration which could create artifacts in the data interfering with the intended study and (3) a compliant, non-arcing solid armature allowing optimum electrical contact. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Design of the driving armature and the dynamic electromagnetic braking system is based on results of contemporary studies for non-arcing sliding contact of solid armatures. A 0.6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM and armature design which will accelerate masses of up to 3kg to a maximum of about 3000g o , where g o is acceleration due to gravity
Subgrid models for mass and thermal diffusion in turbulent mixing
International Nuclear Information System (INIS)
Lim, H; Yu, Y; Glimm, J; Li, X-L; Sharp, D H
2010-01-01
We propose a new method for the large eddy simulation (LES) of turbulent mixing flows. The method yields convergent probability distribution functions (PDFs) for temperature and concentration and a chemical reaction rate when applied to reshocked Richtmyer-Meshkov (RM) unstable flows. Because such a mesh convergence is an unusual and perhaps original capability for LES of RM flows, we review previous validation studies of the principal components of the algorithm. The components are (i) a front tracking code, FronTier, to control numerical mass diffusion and (ii) dynamic subgrid scale (SGS) models to compensate for unresolved scales in the LES. We also review the relevant code comparison studies. We compare our results to a simple model based on 1D diffusion, taking place in the geometry defined statistically by the interface (the 50% isoconcentration surface between the two fluids). Several conclusions important to physics could be drawn from our study. We model chemical reactions with no closure approximations beyond those in the LES of the fluid variables itself, and as with dynamic SGS models, these closures contain no adjustable parameters. The chemical reaction rate is specified by the joint PDF for temperature and concentration. We observe a bimodal distribution for the PDF and we observe significant dependence on fluid transport parameters.
Directory of Open Access Journals (Sweden)
L. Zhang
2015-01-01
Full Text Available In solar wind, dissipation of slow-mode magnetosonic waves may play a significant role in heating the solar wind, and these modes contribute essentially to the solar wind compressible turbulence. Most previous identifications of slow waves utilized the characteristic negative correlation between δ|B| and δρ. However, that criterion does not well identify quasi-parallel slow waves, for which δ|B| is negligible compared to δρ. Here we present a new method of identification, which will be used in 3-D compressible simulation. It is based on two criteria: (1 that VpB0 (phase speed projected along B0 is around ± cs, and that (2 there exists a clear correlation of δv|| and δρ. Our research demonstrates that if vA > cs, slow waves possess correlation between δv|| and δρ, with δρ / δv|| ≈ ± ρ0 / cs. This method helps us to distinguish slow-mode waves from fast and Alfvén waves, both of which do not have this polarity relation. The criteria are insensitive to the propagation angle θk B, defined as the angle between wave vector k and B0; they can be applied with a wide range of β if only vA > cs. In our numerical simulation, we have identified four cases of slow wave trains with this method. The slow wave trains seem to deform, probably caused by interaction with other waves; as a result, fast or Alfvén waves may be produced during the interaction and seem to propagate bidirectionally away. Our identification and analysis of the wave trains provide useful methods for investigations of compressible turbulence in the solar wind or in similar environments, and will thus deepen understandings of slow waves in the turbulence.
Approaches to Improve Mixing in Compression Ignition Engines
Energy Technology Data Exchange (ETDEWEB)
Boot, M.D.
2010-04-20
This thesis presents three approaches to suppress soot emissions in compression ignition (CI) engines. First, a fuel chemistry approach is proposed. A particular class of fuels - cyclic oxygenates - is identified which is capable of significantly reducing engine-out soot emissions. By means of experiments in 'closed' and optical engines, as well as on an industrial burner, two possible mechanisms are identified that could account for the observed reduction in soot: a) an extended ignition delay (ID) and b) a longer flame lift-length (FLoL). Further analysis of the available data suggests that both mechanisms are related to the inherently low reactivity of the fuel class in question. These findings are largely in line with data found in literature. In the second approach, it is attempted to reduce soot by adopting an alternative combustion concept: early direct injection premixed charge compression ignition (EDI PCCI). In this concept, fuel is injected relatively early in the compression stroke instead of conventional, close to top-dead-center (TDC), injection schemes. While the goal of soot reduction can indeed be achieved via this approach, an important drawback must be addressed before this concept can be considered practically viable. Due to the fact that combustion chamber temperature and pressure is relatively low early in the compression stroke, fuel impingement against the cylinder liner (wall-wetting) often occurs. Consequently, high levels of unburned hydrocarbons (UHC), oil dilution and poor efficiency are observed. Several strategies, combining a limited engine modification with dedicated air management and fueling settings, are investigated to tackle this drawback. All of these strategies, and especially their combination, resulted in significantly lower UHC emissions and improved fuel economy. Although UHC emissions are typically a tell-tale sign of wall-wetting, as mentioned earlier, the relation between these two has long been hypothetical
Experimental and Computational Studies of Turbulent Mass Transfer in a Mixing Channel
DEFF Research Database (Denmark)
Hjertager, Lene Kristin; Hjertager, Bjørn H.; Solberg, Tron
2008-01-01
. Three different flow cases are studied. The 2D numerical predictions of the mixing channel show that none of the k- ε turbulence models tested is suitable for the flow cases studied here. The turbulent Schmidt number is reduced to obtain a better agreement between measured and predicted mean...
Planar measurements of velocity and concentration of turbulent mixing in a T-junction
DEFF Research Database (Denmark)
Ingvorsen, Kristian Mark; Meyer, Knud Erik; Nielsen, N. F.
Turbulent mixing of two isothermal air streams in a T-junction of square ducts are investigated. Three dimensional velocity fields and turbulent kinetic energy are measured with stereoscopic Particle Image Velocimetry (PIV). The concentration field is obtained with a planar Mie scattering technique...
Our previous investigations demonstrated that entrained flow or in-flight adsorption can be a more effective and flexible approach to trace gas adsorption than fixed sorbent beds. The present investigation establishes the turbulent mixing that accompanies sorbent injection is an ...
Density-ratio effects on buoyancy-driven variable-density turbulent mixing
Aslangil, Denis; Livescu, Daniel; Banerjee, Arindam
2017-11-01
Density-ratio effects on the turbulent mixing of two incompressible, miscible fluids with different densities subject to constant acceleration are studied by means of high-resolution Direct Numerical Simulations. In a triply periodic domain, turbulence is generated by stirring in response to the differential buoyancy forces within the flow. Later, as the fluids become molecularly mixed, dissipation starts to overcome turbulence generation by bouyancy. Thus, the flow evolution includes both turbulence growth and decay, and it displays features present in the core region of the mixing layer of the Rayleigh-Taylor as well as Richtmyer-Meshkov instabilities. We extend the previous studies by investigating a broad range of density-ratio, from 1-14.4:1, corresponding to Atwood numbers of 0.05-0.87. Here, we focus on the Atwood number dependence of mixing-efficiency, that is defined based on the energy-conversion ratios from potential energy to total and turbulent kinetic energies, the decay characteristics of buoyancy-assisted variable-density homogeneous turbulence, and the effects of high density-ratios on the turbulence structure and mixing process. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.
Control over multiscale mixing in broadband-forced turbulence
Kuczaj, Arkadiusz K.; Geurts, Bernardus J.
2008-01-01
The effects of explicit flow modulation on the dispersion of a passive scalar field are studied. Broadband forcing is applied to homogeneous isotropic turbulence to modulate the energy cascading and alter the kinetic energy spectrum. Consequently, a manipulation of turbulent flow can be achieved
Geurts, Bernard J.; Vreman, Bert; Kuerten, Hans; Luo, Kai H.
2001-01-01
The mixing efficiency in a turbulent mixing layer is quantified by monitoring the surface-area of level-sets of scalar fields. The Laplace transform is applied to numerically calculate integrals over arbitrary level-sets. The analysis includes both direct and large-eddy simulation and is used to
Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies
Susoeff, A. R.; Hawke, R. S.; Morrison, J. J.; Dimonte, G.; Remington, B. A.
1993-12-01
An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. The Rayleigh-Taylor instability is investigated by accelerating two dissimilar density fluids using the LEM to achieve a wide variety of acceleration and deceleration profiles. The acceleration profiles are achieved by independent control of rail and augmentation currents. A variety of acceleration-time profiles are possible including: (1) constant, (2) impulsive and (3) shaped. The LEM and support structure are a robust design in order to withstand high loads with deflections and to mitigate operational vibration. Vibration of the carriage during acceleration could create artifacts in the data which would interfere with the intended study of the Rayleigh-Taylor instability. The design allows clear access for diagnostic techniques such as laser induced fluorescence radiography, shadowgraphs and particle imaging velocimetry. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Results of contemporary studies for non-arcing sliding contact of solid armatures are used for the design of the driving armature and the dynamic electromagnetic braking system. A 0.6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM design which will accelerate masses of up to 3kg to a maximum of about 3000g(sub o), where g(sub o) is accelerated due to gravity.
Turbulence and Mixing in a Shallow Shelf Sea From Underwater Gliders
Schultze, Larissa K. P.; Merckelbach, Lucas M.; Carpenter, Jeffrey R.
2017-11-01
The seasonal thermocline in shallow shelf seas acts as a natural barrier for boundary-generated turbulence, damping scalar transport to the upper regions of the water column and controlling primary production to a certain extent. To better understand turbulence and mixing conditions within the thermocline, two unique 12 and 17 day data sets with continuous measurements of the dissipation rate of turbulent kinetic energy (ɛ) collected by autonomous underwater gliders under stratified to well-mixed conditions are presented. A highly intermittent ɛ signal was observed in the stratified thermocline region, which was mainly characterized by quiescent flow (turbulent activity index below 7). The rate of diapycnal mixing remained relatively constant for the majority of the time with peaks of higher fluxes that were responsible for much of the increase in bottom mixed layer temperature. The water column stayed predominantly strongly stratified, with a bulk Richardson number across the thermocline well above 2. A positive relationship between the intensity of turbulence, shear, and stratification was found. The trend between turbulence levels and the bulk Richardson number was relatively weak but suggests that ɛ increases as the bulk Richardson number approaches 1. The results also highlight the interpretation difficulties in both quantifying turbulent thermocline fluxes as well as the responsible mechanisms.
Statistics and scaling of turbulence in a spatially developing mixing layer at Reλ = 250
Attili, Antonio
2012-03-21
The turbulent flow originating from the interaction between two parallel streams with different velocities is studied by means of direct numerical simulation. Rather than the more common temporal evolving layer, a spatially evolving configuration, with perturbed laminar inlet conditions is considered. The streamwise evolution and the self-similar state of turbulence statistics are reported and compared to results available in the literature. The characteristics of the transitional region agree with those observed in other simulations and experiments of mixing layers originating from laminar inlets. The present results indicate that the transitional region depends strongly on the inlet flow. Conversely, the self-similar state of turbulent kinetic energy and dissipation agrees quantitatively with those in a temporal mixing layer developing from turbulent initial conditions [M. M. Rogers and R. D. Moser, “Direct simulation of a self-similar turbulent mixing layer,” Phys. Fluids6, 903 (1994)]. The statistical features of turbulence in the self-similar region have been analysed in terms of longitudinal velocity structure functions, and scaling exponents are estimated by applying the extended self-similarity concept. In the small scale range (60 < r/η < 250), the scaling exponents display the universal anomalous scaling observed in homogeneous isotropic turbulence. The hypothesis of isotropy recovery holds in the turbulent mixing layer despite the presence of strong shear and large-scale structures, independently of the means of turbulence generation. At larger scales (r/η > 400), the mean shear and large coherent structures result in a significant deviation from predictions based on homogeneous isotropic turbulence theory. In this second scaling range, the numerical values of the exponents agree quantitatively with those reported for a variety of other flows characterized by strong shear, such as boundary layers, as well as channel and wake flows.
Statistics and scaling of turbulence in a spatially developing mixing layer at Reλ = 250
Attili, Antonio; Bisetti, Fabrizio
2012-01-01
The turbulent flow originating from the interaction between two parallel streams with different velocities is studied by means of direct numerical simulation. Rather than the more common temporal evolving layer, a spatially evolving configuration, with perturbed laminar inlet conditions is considered. The streamwise evolution and the self-similar state of turbulence statistics are reported and compared to results available in the literature. The characteristics of the transitional region agree with those observed in other simulations and experiments of mixing layers originating from laminar inlets. The present results indicate that the transitional region depends strongly on the inlet flow. Conversely, the self-similar state of turbulent kinetic energy and dissipation agrees quantitatively with those in a temporal mixing layer developing from turbulent initial conditions [M. M. Rogers and R. D. Moser, “Direct simulation of a self-similar turbulent mixing layer,” Phys. Fluids6, 903 (1994)]. The statistical features of turbulence in the self-similar region have been analysed in terms of longitudinal velocity structure functions, and scaling exponents are estimated by applying the extended self-similarity concept. In the small scale range (60 < r/η < 250), the scaling exponents display the universal anomalous scaling observed in homogeneous isotropic turbulence. The hypothesis of isotropy recovery holds in the turbulent mixing layer despite the presence of strong shear and large-scale structures, independently of the means of turbulence generation. At larger scales (r/η > 400), the mean shear and large coherent structures result in a significant deviation from predictions based on homogeneous isotropic turbulence theory. In this second scaling range, the numerical values of the exponents agree quantitatively with those reported for a variety of other flows characterized by strong shear, such as boundary layers, as well as channel and wake flows.
An Investigation of a Hybrid Mixing Timescale Model for PDF Simulations of Turbulent Premixed Flames
Zhou, Hua; Kuron, Mike; Ren, Zhuyin; Lu, Tianfeng; Chen, Jacqueline H.
2016-11-01
Transported probability density function (TPDF) method features the generality for all combustion regimes, which is attractive for turbulent combustion simulations. However, the modeling of micromixing due to molecular diffusion is still considered to be a primary challenge for TPDF method, especially in turbulent premixed flames. Recently, a hybrid mixing rate model for TPDF simulations of turbulent premixed flames has been proposed, which recovers the correct mixing rates in the limits of flamelet regime and broken reaction zone regime while at the same time aims to properly account for the transition in between. In this work, this model is employed in TPDF simulations of turbulent premixed methane-air slot burner flames. The model performance is assessed by comparing the results from both direct numerical simulation (DNS) and conventional constant mechanical-to-scalar mixing rate model. This work is Granted by NSFC 51476087 and 91441202.
Reproducing scalar mixing of turbulent jets in a 3D periodic box
Rah, K. Jeff; Blanquart, Guillaume
2017-11-01
A triply periodic DNS is a convenient framework to analyze the turbulent mixing process, since it can produce statistically stationary turbulence. In addition, the periodic boundary condition makes it easy to compute the spatial spectra of scalars. However, it is difficult to create a realistic turbulent flow with such a geometry. In this current investigation, we aim to develop a method to simulate a realistic turbulent mixing process inside a 3D periodic box. The target real flow is an axisymmetric jet with passive scalars on its centerline. The velocity and scalar information of turbulent jets on the centerline is applied to the momentum equation and scalar transport equation in physical space. The result is the combination of a mean gradient term and a linear forcing term in the scalar equation. These new forcing terms are derived to replicate the scalar mixing properties of jets in a triply periodic DNS. The present analysis differs from other forcing schemes for their derivation process did not involve any use of the velocity or scalar information of a real turbulent flow. A set of DNS has been performed with the new forcing term, and various turbulent parameters and spectral relations are compared against experiments.
Measurement of turbulent mixing in a confined wake flow using combined PIV and PLIF
Hjertager, Lene K.; Hjertager, Bjorn H.; Deen, N.G.; Solberg, Tron; Kuipers, J.A.M.
2003-01-01
Turbulent mixing in a confined wake flow was studied by using the combined PIV/PLIF technique to measure instantaneous concentration and velocity fields. Measurements were performed at two slightly overlapping areas in the initial mixing zone and at an area at the end of the channel. The
Mathematical, physical and numerical principles essential for models of turbulent mixing
Energy Technology Data Exchange (ETDEWEB)
Sharp, David Howland [Los Alamos National Laboratory; Lim, Hyunkyung [STONY BROOK UNIV; Yu, Yan [STONY BROOK UNIV; Glimm, James G [STONY BROOK UNIV
2009-01-01
We propose mathematical, physical and numerical principles which are important for the modeling of turbulent mixing, especially the classical and well studied Rayleigh-Taylor and Richtmyer-Meshkov instabilities which involve acceleration driven mixing of a fluid discontinuity layer, by a steady accerleration or an impulsive force.
Eulerian-Lagranigan simulation of aerosol evolution in turbulent mixing layer
Zhou, Kun
2016-09-23
The formation and evolution of aerosol in turbulent flows are ubiquitous in both industrial processes and nature. The intricate interaction of turbulent mixing and aerosol evolution in a canonical turbulent mixing layer was investigated by a direct numerical simulation (DNS) in a recent study (Zhou, K., Attili, A., Alshaarawi, A., and Bisetti, F. Simulation of aerosol nucleation and growth in a turbulent mixing layer. Physics of Fluids, 26, 065106 (2014)). In this work, Monte Carlo (MC) simulation of aerosol evolution is carried out along Lagrangian trajectories obtained in the previous simulation, in order to quantify the error of the moment method used in the previous simulation. Moreover, the particle size distribution (PSD), not available in the previous works, is also investigated. Along a fluid parcel moving through the turbulent flow, temperature and vapor concentration exhibit complex fluctuations, triggering complicate aerosol processes and rendering complex PSD. However, the mean PSD is found to be bi-modal in most of the mixing layer except that a tri-modal distribution is found in the turbulent transition region. The simulated PSDs agree with the experiment observations available in the literature. A different explanation on the formation of such PSDs is provided.
International Nuclear Information System (INIS)
Andronov, V.A.; Zhidov, I.G.; Meskov, E.E.; Nevmerzhitskii, N.V.; Nikiforov, V.V.; Razin, A.N.; Rogatchev, V.G.; Tolshmyakov, A.I.; Yanilkin, Yu.V.
1995-02-01
This report describes an extensive program of investigations conducted at Arzamas-16 in Russia over the past several decades. The focus of the work is on material interface instability and the mixing of two materials. Part 1 of the report discusses analytical and computational studies of hydrodynamic instabilities and turbulent mixing. The EGAK codes are described and results are illustrated for several types of unstable flow. Semiempirical turbulence transport equations are derived for the mixing of two materials, and their capabilities are illustrated for several examples. Part 2 discusses the experimental studies that have been performed to investigate instabilities and turbulent mixing. Shock-tube and jelly techniques are described in considerable detail. Results are presented for many circumstances and configurations
Energy Technology Data Exchange (ETDEWEB)
Rahman, M.; Rautaheimo, P.; Siikonen, T.
1997-12-31
A numerical investigation is carried out to predict the turbulent fluid flow and heat transfer characteristics of two-dimensional single and three impinging slot jets. Two low-Reynolds-number {kappa}-{epsilon} models, namely the classical model of Chien and the explicit algebraic stress model of Gatski and Speziale, are considered in the simulation. A cell-centered finite-volume scheme combined with an artificial compressibility approach is employed to solve the flow equations, using a diagonally dominant alternating direction implicit (DDADI) time integration method. A fully upwinded second order spatial differencing is adopted to approximate the convective terms. Roe`s damping term is used to calculate the flux on the cell face. A multigrid method is utilized for the acceleration of convergence. On average, the heat transfer coefficients predicted by both models show good agreement with the experimental results. (orig.) 17 refs.
An Investigation of a Hybrid Mixing Model for PDF Simulations of Turbulent Premixed Flames
Zhou, Hua; Li, Shan; Wang, Hu; Ren, Zhuyin
2015-11-01
Predictive simulations of turbulent premixed flames over a wide range of Damköhler numbers in the framework of Probability Density Function (PDF) method still remain challenging due to the deficiency in current micro-mixing models. In this work, a hybrid micro-mixing model, valid in both the flamelet regime and broken reaction zone regime, is proposed. A priori testing of this model is first performed by examining the conditional scalar dissipation rate and conditional scalar diffusion in a 3-D direct numerical simulation dataset of a temporally evolving turbulent slot jet flame of lean premixed H2-air in the thin reaction zone regime. Then, this new model is applied to PDF simulations of the Piloted Premixed Jet Burner (PPJB) flames, which are a set of highly shear turbulent premixed flames and feature strong turbulence-chemistry interaction at high Reynolds and Karlovitz numbers. Supported by NSFC 51476087 and NSFC 91441202.
International Nuclear Information System (INIS)
Bakhshan, Y.; Karim, G. A.; Mansouri, S. H.
2003-01-01
In this investigation, the instantaneous unsteady heat transfer within a pneumatically driven rapid compression-expansion machine that offers simple, well-controlled and known boundary conditions was studied. Values of the instantaneous apparent overall heat flux from the cylinder gas to the wall surfaces were calculated using a thermodynamics analysis of the experimentally measured pressure and volume temporal development. Corresponding heat flux values were also calculated through the application of a zero-dimensional k- ε turbulence model the characteristic velocity is a contribution of turbulence kinetic energy, mean kinetic energy of charged air into cylinder and piston motion for the calculation of Reynolds, Nusselt and Prandtl numbers. Comparison of the zero-dimensional k- ε turbulence model prediction with experimental data shows good agreement for all compression ratios
PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows
Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen
2017-11-01
The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
Alpha-modeling strategy for LES of turbulent mixing
Geurts, Bernard J.; Holm, Darryl D.; Drikakis, D.; Geurts, B.J.
2002-01-01
The α-modeling strategy is followed to derive a new subgrid parameterization of the turbulent stress tensor in large-eddy simulation (LES). The LES-α modeling yields an explicitly filtered subgrid parameterization which contains the filtered nonlinear gradient model as well as a model which
On the Turbulent Mixing in Horizontal Axis Wind Turbine Wakes
Lignarolo, L.E.M.
2016-01-01
The wake flow of a horizontal axis wind turbine is characterised by lower wind speed and higher turbulence than the free-stream conditions. When clustered in large wind farms, wind turbines regularly operate inside the wake of one or more upstream machines. This is a major cause of energy production
International Nuclear Information System (INIS)
Gibson, C.H.
1991-01-01
Kolmogorov's three universal similarity hypotheses are extrapolated to describe scalar fields like temperature mixed by turbulence. The analogous first and second hypotheses for scalars include the effects of Prandtl number and rate-of-strain mixing. Application of velocity and scalar similarity hypotheses to the ocean must take into account the damping of active turbulence by density stratification and the Earth's rotation to form fossil turbulence. By the analogous Kolmogorov third hypothesis for scalars, temperature dissipation rates χ averaged over lengths r > L K should be lognormally distributed with intermittency factors σ 2 that increase with increasing turbulence energy length scales L O as σ ln r 2 approx = μ θ ln(L O /r). Tests of kolmogorovian velocity and scalar universal similarity hypotheses for very large ranges of turbulence length and timescales are provided by data from the ocean and the galactic interstellar medium. These ranges are from 1 to 9 decades in the ocean, and over 12 decades in the interstellar medium. The universal constant for turbulent mixing intermittency μ θ is estimated from oceanic data to be 0.44±0.01, which is remarkably close to estimates for Kolmorgorov's turbulence intermittency constant μ of 0.45±0.05 from galactic as well as atmospheric data. Extreme intermittency complicates the oceanic sampling problem, and may lead to quantitative and qualitative undersampling errors in estimates of mean oceanic dissipation rates and fluxes. Intermittency of turbulence and mixing in the interstellar medium may be a factor in the formation of stars. (author)
Computational model for turbulent flow around a grid spacer with mixing vane
International Nuclear Information System (INIS)
Tsutomu Ikeno; Takeo Kajishima
2005-01-01
Turbulent mixing coefficient and pressure drop are important factors in subchannel analysis to predict onset of DNB. However, universal correlations are difficult since these factors are significantly affected by the geometry of subchannel and a grid spacer with mixing vane. Therefore, we propose a computational model to estimate these factors. Computational model: To represent the effect of geometry of grid spacer in computational model, we applied a large eddy simulation (LES) technique in couple with an improved immersed-boundary method. In our previous work (Ikeno, et al., NURETH-10), detailed properties of turbulence in subchannel were successfully investigated by developing the immersed boundary method in LES. In this study, additional improvements are given: new one-equation dynamic sub-grid scale (SGS) model is introduced to account for the complex geometry without any artificial modification; the higher order accuracy is maintained by consistent treatment for boundary conditions for velocity and pressure. NUMERICAL TEST AND DISCUSSION: Turbulent mixing coefficient and pressure drop are affected strongly by the arrangement and inclination of mixing vane. Therefore, computations are carried out for each of convolute and periodic arrangements, and for each of 30 degree and 20 degree inclinations. The difference in turbulent mixing coefficient due to these factors is reasonably predicted by our method. (An example of this numerical test is shown in Fig. 1.) Turbulent flow of the problem includes unsteady separation behind the mixing vane and vortex shedding in downstream. Anisotropic distribution of turbulent stress is also appeared in rod gap. Therefore, our computational model has advantage for assessing the influence of arrangement and inclination of mixing vane. By coarser computational mesh, one can screen several candidates for spacer design. Then, by finer mesh, more quantitative analysis is possible. By such a scheme, we believe this method is useful
International Nuclear Information System (INIS)
Bakosi, Jozsef; Ristorcelli, Raymond J.
2010-01-01
Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.
Gnoffo, Peter A.; Berry, Scott A.; VanNorman, John W.
2011-01-01
This paper is one of a series of five papers in a special session organized by the NASA Fundamental Aeronautics Program that addresses uncertainty assessments for CFD simulations in hypersonic flow. Simulations of a shock emanating from a compression corner and interacting with a fully developed turbulent boundary layer are evaluated herein. Mission relevant conditions at Mach 7 and Mach 14 are defined for a pre-compression ramp of a scramjet powered vehicle. Three compression angles are defined, the smallest to avoid separation losses and the largest to force a separated flow engaging more complicated flow physics. The Baldwin-Lomax and the Cebeci-Smith algebraic models, the one-equation Spalart-Allmaras model with the Catrix-Aupoix compressibility modification and two-equation models including Menter SST, Wilcox k-omega 98, and Wilcox k-omega 06 turbulence models are evaluated. Each model is fully defined herein to preclude any ambiguity regarding model implementation. Comparisons are made to existing experimental data and Van Driest theory to provide preliminary assessment of model form uncertainty. A set of coarse grained uncertainty metrics are defined to capture essential differences among turbulence models. Except for the inability of algebraic models to converge for some separated flows there is no clearly superior model as judged by these metrics. A preliminary metric for the numerical component of uncertainty in shock-turbulent-boundary-layer interactions at compression corners sufficiently steep to cause separation is defined as 55%. This value is a median of differences with experimental data averaged for peak pressure and heating and for extent of separation captured in new, grid-converged solutions presented here. This value is consistent with existing results in a literature review of hypersonic shock-turbulent-boundary-layer interactions by Roy and Blottner and with more recent computations of MacLean.
Effects of turbulent hyporheic mixing on reach-scale solute transport
Roche, K. R.; Li, A.; Packman, A. I.
2017-12-01
Turbulence rapidly mixes solutes and fine particles into coarse-grained streambeds. Both hyporheic exchange rates and spatial variability of hyporheic mixing are known to be controlled by turbulence, but it is unclear how turbulent mixing influences mass transport at the scale of stream reaches. We used a process-based particle-tracking model to simulate local- and reach-scale solute transport for a coarse-bed stream. Two vertical mixing profiles, one with a smooth transition from in-stream to hyporheic transport conditions and a second with enhanced turbulent transport at the sediment-water interface, were fit to steady-state subsurface concentration profiles observed in laboratory experiments. The mixing profile with enhanced interfacial transport better matched the observed concentration profiles and overall mass retention in the streambed. The best-fit mixing profiles were then used to simulate upscaled solute transport in a stream. Enhanced mixing coupled in-stream and hyporheic solute transport, causing solutes exchanged into the shallow subsurface to have travel times similar to the water column. This extended the exponential region of the in-stream solute breakthrough curve, and delayed the onset of the heavy power-law tailing induced by deeper and slower hyporheic porewater velocities. Slopes of observed power-law tails were greater than those predicted from stochastic transport theory, and also changed in time. In addition, rapid hyporheic transport velocities truncated the hyporheic residence time distribution by causing mass to exit the stream reach via subsurface advection, yielding strong exponential tempering in the in-stream breakthrough curves at the timescale of advective hyporheic transport through the reach. These results show that strong turbulent mixing across the sediment-water interface violates the conventional separation of surface and subsurface flows used in current models for solute transport in rivers. Instead, the full distribution of
A turbulent mixing Reynolds stress model fitted to match linear interaction analysis predictions
International Nuclear Information System (INIS)
Griffond, J; Soulard, O; Souffland, D
2010-01-01
To predict the evolution of turbulent mixing zones developing in shock tube experiments with different gases, a turbulence model must be able to reliably evaluate the production due to the shock-turbulence interaction. In the limit of homogeneous weak turbulence, 'linear interaction analysis' (LIA) can be applied. This theory relies on Kovasznay's decomposition and allows the computation of waves transmitted or produced at the shock front. With assumptions about the composition of the upstream turbulent mixture, one can connect the second-order moments downstream from the shock front to those upstream through a transfer matrix, depending on shock strength. The purpose of this work is to provide a turbulence model that matches LIA results for the shock-turbulent mixture interaction. Reynolds stress models (RSMs) with additional equations for the density-velocity correlation and the density variance are considered here. The turbulent states upstream and downstream from the shock front calculated with these models can also be related through a transfer matrix, provided that the numerical implementation is based on a pseudo-pressure formulation. Then, the RSM should be modified in such a way that its transfer matrix matches the LIA one. Using the pseudo-pressure to introduce ad hoc production terms, we are able to obtain a close agreement between LIA and RSM matrices for any shock strength and thus improve the capabilities of the RSM.
The effect of wall temperature distribution on streaks in compressible turbulent boundary layer
Zhang, Zhao; Tao, Yang; Xiong, Neng; Qian, Fengxue
2018-05-01
The thermal boundary condition at wall is very important for the compressible flow due to the coupling of the energy equation, and a lot of research works about it were carried out in past decades. In most of these works, the wall was assumed as adiabatic or uniform isothermal surface; the flow over a thermal wall with some special temperature distribution was seldom studied. Lagha studied the effect of uniform isothermal wall on the streaks, and pointed out that higher the wall temperature is, the longer the streak (POF, 2011, 23, 015106). So, we designed streamwise stripes of wall temperature distribution on the compressible turbulent boundary layer at Mach 3.0 to learn the effect on the streaks by means of direct numerical simulation in this paper. The mean wall temperature is equal to the adiabatic case approximately, and the width of the temperature stripes is in the same order as the width of the streaks. The streak patterns in near-wall region with different temperature stripes are shown in the paper. Moreover, we find that there is a reduction of friction velocity with the wall temperature stripes when compared with the adiabatic case.
The turbulent mixing of non-Newtonian fluids
Demianov, A. Yu; Doludenko, A. N.; Inogamov, N. A.; Son, E. E.
2013-07-01
The turbulence caused by the Rayleigh-Taylor instability represents a complicated phenomenon. It is usually related to the major hydrodynamic activities, the tangling of the media contact boundary, merging, separation and intermixing of originally smoothed initial structures. An important role in the theory of the Rayleigh-Taylor instability is played by the discontinuity of density on a contact interface between two homogeneous (in terms of density) fluids. A numerical modeling of the intermixing of two fluids with different rheology whose densities differ twice as a result of the Rayleigh-Taylor instability has been carried out. The coefficients of turbulent intermixing in a multimode statement of the problem for the Bingham, dilatant and pseudo-plastic fluids have been obtained.
Mixing by turbulent buoyant jets in slender containers
International Nuclear Information System (INIS)
Voropayev, S.I.; Nath, C.; Fernando, H.J.S.
2012-01-01
A turbulent buoyant jet injected vertically into a slender cylinder containing a stratified fluid is investigated experimentally. The working fluid is water, and salt is used to change its density to obtain either a positively or negatively buoyant jet. The interest is the vertical density distribution in container and its dependence on time and other parameters. For each case (lighter or heavier jet) the experimental data could be collapsed into a ‘universal’ time dependent behavior, when properly non-dimensionalized. A theoretical model is advanced to explain the results. Possible applications include refilling of crude oil into U.S. strategic petroleum reserves caverns. -- Highlights: ► We addresses a critical issue on refill of Strategic Petroleum Reserves. ► We conduct experiments on negatively/positively buoyant turbulent jets in long cavern. ► Basing on results of experiments we developed theoretical model for refill operations.
Investigation of coolant mixing in WWER-440/213 RPV with improved turbulence model
International Nuclear Information System (INIS)
Kiss, B.; Aszodi, A.
2011-01-01
A detailed and complex RPV model of WWER-440/213 type reactor was developed in Budapest University of Technology and Economics Institute of Nuclear Techniques in the previous years. This model contains the main structural elements as inlet and outlet nozzles, guide baffles of hydro-accumulators coolant, alignment drifts, perforated plates, brake- and guide tube chamber and simplified core. With the new vessel model a series of parameter studies were performed considering turbulence models, discretization schemes, and modeling methods with ANSYS CFX. In the course of parameter studies the coolant mixing was investigated in the RPV. The coolant flow was 'traced' with different scalar concentration at the inlet nozzles and its distribution was calculated at the core bottom. The simulation results were compared with PAKS NPP measured mixing factors data (available from FLOMIX project. Based on the comparison the SST turbulence model was chosen for the further simulations, which unifies the advantages of two-equation (kω and kε) models. The most widely used turbulence models are Reynolds-averaged Navier-Stokes models that are based on time-averaging of the equations. Time-averaging filters out all turbulent scales from the simulation, and the effect of turbulence on the mean flow is then re-introduced through appropriate modeling assumptions. Because of this characteristic of SST turbulence model a decision was made in year 2011 to investigate the coolant mixing with improved turbulence model as well. The hybrid SAS-SST turbulence model was chosen, which is capable of resolving large scale turbulent structures without the time and grid-scale resolution restrictions of LES, often allowing the use of existing grids created for Reynolds-averaged Navier-Stokes simulations. As a first step the coolant mixing was investigated in the downcomer only. Eddies are occurred after the loop connection because of the steep flow direction change. This turbulent, vertiginous flow was
Statistics of the turbulent/non-turbulent interface in a spatially developing mixing layer
Attili, Antonio; Cristancho, Juan; Bisetti, Fabrizio
2014-01-01
available in the literature, such as turbulent jets and wakes. In addition, an analysis of the passive scalar field in the vicinity of the interface is presented. It is shown that the scalar has a jump at the interface, even stronger than that observed
Extreme concentration fluctuations due to local reversibility of mixing in turbulent flows
Xia, Hua; Francois, Nicolas; Punzmann, Horst; Szewc, Kamil; Shats, Michael
2018-05-01
Mixing of a passive scalar in a fluid (e.g. a radioactive spill in the ocean) is the irreversible process towards homogeneous distribution of a substance. In a moving fluid, due to the chaotic advection [H. Aref, J. Fluid Mech. 143 (1984) 1; J. M. Ottino, The Kinematics of Mixing: Stretching,Chaos and Transport (Cambridge University Press, Cambridge, 1989)] mixing is much faster than if driven by molecular diffusion only. Turbulence is known as the most efficient mixing flow [B. I. Shraiman and E. D. Siggia, Nature 405 (2000) 639]. We show that in contrast to spatially periodic flows, two-dimensional turbulence exhibits local reversibility in mixing, which leads to the generation of unpredictable strong fluctuations in the scalar concentration. These fluctuations can also be detected from the analysis of the fluid particle trajectories of the underlying flow.
Turbulent Mixing of Primary and Secondary Flow Streams in a Rocket-Based Combined Cycle Engine
Cramer, J. M.; Greene, M. U.; Pal, S.; Santoro, R. J.; Turner, Jim (Technical Monitor)
2002-01-01
This viewgraph presentation gives an overview of the turbulent mixing of primary and secondary flow streams in a rocket-based combined cycle (RBCC) engine. A significant RBCC ejector mode database has been generated, detailing single and twin thruster configurations and global and local measurements. On-going analysis and correlation efforts include Marshall Space Flight Center computational fluid dynamics modeling and turbulent shear layer analysis. Potential follow-on activities include detailed measurements of air flow static pressure and velocity profiles, investigations into other thruster spacing configurations, performing a fundamental shear layer mixing study, and demonstrating single-shot Raman measurements.
Swirl effect on flow structure and mixing in a turbulent jet
Kravtsov, Z. D.; Sharaborin, D. K.; Dulin, V. M.
2018-03-01
The paper reports on experimental study of turbulent transport in the initial region of swirling turbulent jets. The particle image velocimetry and planar laser-induced fluorescence techniques are used to investigate the flow structure and passive scalar concentration, respectively, in free air jet with acetone vapor. Three flow cases are considered, viz., non-swirling jets and swirling jets with and without vortex breakdown and central recirculation zone. Without vortex breakdown, the swirl is shown to promote jet mixing with surrounding air and to decrease the jet core length. The vortex core breakdown further enhances mixing as the jet core disintegrates at the nozzle exit.
Exact statistical results for binary mixing and reaction in variable density turbulence
Ristorcelli, J. R.
2017-02-01
We report a number of rigorous statistical results on binary active scalar mixing in variable density turbulence. The study is motivated by mixing between pure fluids with very different densities and whose density intensity is of order unity. Our primary focus is the derivation of exact mathematical results for mixing in variable density turbulence and we do point out the potential fields of application of the results. A binary one step reaction is invoked to derive a metric to asses the state of mixing. The mean reaction rate in variable density turbulent mixing can be expressed, in closed form, using the first order Favre mean variables and the Reynolds averaged density variance, ⟨ρ2⟩ . We show that the normalized density variance, ⟨ρ2⟩ , reflects the reduction of the reaction due to mixing and is a mix metric. The result is mathematically rigorous. The result is the variable density analog, the normalized mass fraction variance ⟨c2⟩ used in constant density turbulent mixing. As a consequence, we demonstrate that use of the analogous normalized Favre variance of the mass fraction, c″ 2˜ , as a mix metric is not theoretically justified in variable density turbulence. We additionally derive expressions relating various second order moments of the mass fraction, specific volume, and density fields. The central role of the density specific volume covariance ⟨ρ v ⟩ is highlighted; it is a key quantity with considerable dynamical significance linking various second order statistics. For laboratory experiments, we have developed exact relations between the Reynolds scalar variance ⟨c2⟩ its Favre analog c″ 2˜ , and various second moments including ⟨ρ v ⟩ . For moment closure models that evolve ⟨ρ v ⟩ and not ⟨ρ2⟩ , we provide a novel expression for ⟨ρ2⟩ in terms of a rational function of ⟨ρ v ⟩ that avoids recourse to Taylor series methods (which do not converge for large density differences). We have derived
International Nuclear Information System (INIS)
Masoud Ziaei-Rad
2010-01-01
In this paper, a two-dimensional numerical scheme is presented for the simulation of turbulent, viscous, transient compressible flows in the simultaneously developing hydraulic and thermal boundary layer region. The numerical procedure is a finite-volume-based finite-element method applied to unstructured grids. This combination together with a new method applied for the boundary conditions allows for accurate computation of the variables in the entrance region and for a wide range of flow fields from subsonic to transonic. The Roe-Riemann solver is used for the convective terms, whereas the standard Galerkin technique is applied for the viscous terms. A modified κ-ε model with a two-layer equation for the near-wall region combined with a compressibility correction is used to predict the turbulent viscosity. Parallel processing is also employed to divide the computational domain among the different processors to reduce the computational time. The method is applied to some test cases in order to verify the numerical accuracy. The results show significant differences between incompressible and compressible flows in the friction coefficient, Nusselt number, shear stress and the ratio of the compressible turbulent viscosity to the molecular viscosity along the developing region. A transient flow generated after an accidental rupture in a pipeline was also studied as a test case. The results show that the present numerical scheme is stable, accurate and efficient enough to solve the problem of transient wall-bounded flow.
Structure function scaling in a Reλ = 250 turbulent mixing layer
Attili, Antonio; Bisetti, Fabrizio
2011-01-01
A highly resolved Direct Numerical Simulation of a spatially developing turbulent mixing layer is presented. In the fully developed region, the flow achieves a turbulent Reynolds number Reλ = 250, high enough for a clear separation between large and dissipative scales, so for the presence of an inertial range. Structure functions have been calculated in the self-similar region using velocity time series and Taylor's frozen turbulence hypothesis. The Extended Self-Similarity (ESS) concept has been employed to evaluate relative scaling exponents. A wide range of scales with scaling exponents and intermittency levels equal to homogeneous isotropic turbulence has been identified. Moreover an additional scaling range exists for larger scales; it is characterized by smaller exponents, similar to the values reported in the literature for flows with strong shear.
Structure function scaling in a Reλ = 250 turbulent mixing layer
Attili, Antonio
2011-12-22
A highly resolved Direct Numerical Simulation of a spatially developing turbulent mixing layer is presented. In the fully developed region, the flow achieves a turbulent Reynolds number Reλ = 250, high enough for a clear separation between large and dissipative scales, so for the presence of an inertial range. Structure functions have been calculated in the self-similar region using velocity time series and Taylor\\'s frozen turbulence hypothesis. The Extended Self-Similarity (ESS) concept has been employed to evaluate relative scaling exponents. A wide range of scales with scaling exponents and intermittency levels equal to homogeneous isotropic turbulence has been identified. Moreover an additional scaling range exists for larger scales; it is characterized by smaller exponents, similar to the values reported in the literature for flows with strong shear.
A Simple Parameterization of Mixing of Passive Scalars in Turbulent Flows
Nithianantham, Ajithshanthar; Venayagamoorthy, Karan
2015-11-01
A practical model for quantifying the turbulent diascalar diffusivity is proposed as Ks = 1 . 1γ'LTk 1 / 2 , where LT is defined as the Thorpe length scale, k is the turbulent kinetic energy and γ' is one-half of the mechanical to scalar time scale ratio, which was shown by previous researchers to be approximately 0 . 7 . The novelty of the proposed model lies in the use of LT, which is a widely used length scale in stably stratified flows (almost exclusively used in oceanography), for quantifying turbulent mixing in unstratified flows. LT can be readily obtained in the field using a Conductivity, Temperature and Depth (CTD) profiler. The turbulent kinetic energy is mostly contained in the large scales of the flow field and hence can be measured in the field or modeled in numerical simulations. Comparisons using DNS data show remarkably good agreement between the predicted and exact diffusivities. Office of Naval Research and National Science Foundation.
Development of two phase turbulent mixing model for subchannel analysis relevant to BWR
International Nuclear Information System (INIS)
Sharma, M.P.; Nayak, A.K.; Kannan, Umasankari
2014-01-01
A two phase flow model is presented, which predicts both liquid and gas phase turbulent mixing rate between adjacent subchannels of reactor rod bundles. The model presented here is for slug churn flow regime, which is dominant as compared to the other regimes like bubbly flow and annular flow regimes, since turbulent mixing rate is the highest in slug churn flow regime. In this paper, we have defined new dimensionless parameters i.e. liquid mixing number and gas mixing number for two phase turbulent mixing. The liquid mixing number is a function of mixture Reynolds number whereas the gas phase mixing number is a function of both mixture Reynolds number and volumetric fraction of gas. The effect of pressure, geometrical influence of subchannel is also included in this model. The present model has been tested against low pressure and temperature air-water and high pressure and temperature steam-water experimental data found that it shows good agreement with available experimental data. (author)
Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number
International Nuclear Information System (INIS)
Battista, F.; Casciola, C. M.; Picano, F.
2014-01-01
Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightly supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures – the so-called ligaments – in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties
Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number
Energy Technology Data Exchange (ETDEWEB)
Battista, F.; Casciola, C. M. [Department of Mechanical and Aerospace Engineering, Sapienza University, via Eudossiana 18, 00184 Rome (Italy); Picano, F. [Department of Industrial Engineering, University of Padova, via Venezia 1, 35131 Padova (Italy)
2014-05-15
Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightly supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures – the so-called ligaments – in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties.
On the Computation of Turbulent Mixing Processes with Application to EGR in IC-engines
Sakowitz, Alexander
2011-01-01
This thesis deals with turbulent mixing processes occuring in internal combustion engines, when applying exhaust gas recirculation (EGR). EGR is a very efficient way to reduce emissions of nitrogen oxides (NOx) in internal combustion engines. Exhaust gases are recirculated and mixed with the intake air of the engine, thus reducing the oxygen concentration of the combustion gas and the maximum combustion tempera- ture. This temperature decrease results in a reduction of NOx emissions, since NO...
Steady state RANS simulations of temperature fluctuations in single phase turbulent mixing
International Nuclear Information System (INIS)
Kickhofel, J.; Fokken, J.; Kapulla, R.; Prasser, H. M.
2012-01-01
Single phase turbulent mixing in nuclear power plant circuits where a strong temperature gradient is present is known to precipitate pipe failure due to thermal fatigue. Experiments in a square mixing channel offer the opportunity to study the phenomenon under simple and easily reproducible boundary conditions. Measurements of this kind have been performed extensively at the Paul Scherrer Inst. in Switzerland with a high density of instrumentation in the Generic Mixing Experiment (GEMIX). As a fundamental mixing phenomena study closely related to the thermal fatigue problem, the experimental results from GEMIX are valuable for the validation of CFD codes striving to accurately simulate both the temperature and velocity fields in single phase turbulent mixing. In the experiments two iso-kinetic streams meet at a shallow angle of 3 degrees and mix in a straight channel of square cross-section under various degrees of density, temperature, and viscosity stratification over a range of Reynolds numbers ranging from 5*10 3 to 1*10 5 . Conductivity measurements, using wire-mesh and wall sensors, as well as optical measurements, using particle image velocimetry, were conducted with high temporal and spatial resolutions (up to 2.5 kHz and 1 mm in the case of the wire mesh sensor) in the mixing zone, downstream of a splitter plate. The present paper communicates the results of RANS modeling of selected GEMIX tests. Steady-state CFD calculations using a RANS turbulence model represent an inexpensive method for analyzing large and complex components in commercial nuclear reactors, such as the downcomer and reactor pressure vessel heads. Crucial to real world applicability, however, is the ability to model turbulent heat fluctuations in the flow; the Turbulent Heat Flux Transport model developed by ANSYS CFX is capable, by implementation of a transport equation for turbulent heat fluxes, of readily modeling these values. Furthermore, the closure of the turbulent heat flux
Turbulent mixing layers in supersonic protostellar outflows, with application to DG Tauri
White, M. C.; Bicknell, G. V.; Sutherland, R. S.; Salmeron, R.; McGregor, P. J.
2016-01-01
Turbulent entrainment processes may play an important role in the outflows from young stellar objects at all stages of their evolution. In particular, lateral entrainment of ambient material by high-velocity, well-collimated protostellar jets may be the cause of the multiple emission-line velocity components observed in the microjet-scale outflows driven by classical T Tauri stars. Intermediate-velocity outflow components may be emitted by a turbulent, shock-excited mixing layer along the boundaries of the jet. We present a formalism for describing such a mixing layer based on Reynolds decomposition of quantities measuring fundamental properties of the gas. In this model, the molecular wind from large disc radii provides a continual supply of material for entrainment. We calculate the total stress profile in the mixing layer, which allows us to estimate the dissipation of turbulent energy, and hence the luminosity of the layer. We utilize MAPPINGS IV shock models to determine the fraction of total emission that occurs in [Fe II] 1.644 μm line emission in order to facilitate comparison to previous observations of the young stellar object DG Tauri. Our model accurately estimates the luminosity and changes in mass outflow rate of the intermediate-velocity component of the DG Tau approaching outflow. Therefore, we propose that this component represents a turbulent mixing layer surrounding the well-collimated jet in this object. Finally, we compare and contrast our model to previous work in the field.
Model for transversal turbulent mixing in axial flow in rod bundles
International Nuclear Information System (INIS)
Carajilescov, P.
1990-01-01
The present work consists in the development of a model for the transversal eddy diffusivity to account for the effect of turbulent thermal mixing in axial flows in rod bundles. The results were compared to existing correlations that are currently being used in reactor thermalhydraulic analysis and considered satisfactory. (author)
Nonlocal stochastic mixing-length theory and the velocity profile in the turbulent boundary layer
Dekker, H.; Leeuw, G. de; Maassen van den Brink, A.
1995-01-01
Turbulence mixing by finite size eddies will be treated by means of a novel formulation of nonlocal K-theory, involving sample paths and a stochastic closure hypothesis, which implies a well defined recipe for the calculation of sampling and transition rates. The connection with the general theory
Two-phase turbulent mixing and buoyancy drift in rod bundles
International Nuclear Information System (INIS)
Carlucci, L.N.; Hammouda, N.; Rowe, D.S.
2004-01-01
This paper describes the development of generalized relationships for single- and two-phase inter subchannel turbulent mixing in vertical and horizontal flows, and lateral buoyancy drift in horizontal flows. The relationships for turbulent mixing, together with a recommended one for void drift, have been implemented in a subchannel thermal hydraulics code, and assessed using a range of data on enthalpy migration in vertical steam-water lows under BWR and PWR diabatic conditions. The intent of this assessment as to optimize these relationships to give the best agreement with the enthalpy migration data for vertical flows. The optimized turbulent mixing relationships were then used as a basis to benchmark a proposed buoyancy rift model to give the best predictions of void and enthalpy migration data n horizontal flows typical of PHWR CANDU reactor operation under normal and off-normal conditions. Overall, the optimized turbulent mixing and buoyancy drift relationships have been found to predict the available data quite well, nd generally better and more consistently than currently used models. This is expected to result in more accurate calculations of subchannel distributions of phasic flows, and hence, in improved predictions of critical heat flux (CHF)
Mixing in 3D Sparse Multi-Scale Grid Generated Turbulence
Usama, Syed; Kopec, Jacek; Tellez, Jackson; Kwiatkowski, Kamil; Redondo, Jose; Malik, Nadeem
2017-04-01
Flat 2D fractal grids are known to alter turbulence characteristics downstream of the grid as compared to the regular grids with the same blockage ratio and the same mass inflow rates [1]. This has excited interest in the turbulence community for possible exploitation for enhanced mixing and related applications. Recently, a new 3D multi-scale grid design has been proposed [2] such that each generation of length scale of turbulence grid elements is held in its own frame, the overall effect is a 3D co-planar arrangement of grid elements. This produces a 'sparse' grid system whereby each generation of grid elements produces a turbulent wake pattern that interacts with the other wake patterns downstream. A critical motivation here is that the effective blockage ratio in the 3D Sparse Grid Turbulence (3DSGT) design is significantly lower than in the flat 2D counterpart - typically the blockage ratio could be reduced from say 20% in 2D down to 4% in the 3DSGT. If this idea can be realized in practice, it could potentially greatly enhance the efficiency of turbulent mixing and transfer processes clearly having many possible applications. Work has begun on the 3DSGT experimentally using Surface Flow Image Velocimetry (SFIV) [3] at the European facility in the Max Planck Institute for Dynamics and Self-Organization located in Gottingen, Germany and also at the Technical University of Catalonia (UPC) in Spain, and numerically using Direct Numerical Simulation (DNS) at King Fahd University of Petroleum & Minerals (KFUPM) in Saudi Arabia and in University of Warsaw in Poland. DNS is the most useful method to compare the experimental results with, and we are studying different types of codes such as Imcompact3d, and OpenFoam. Many variables will eventually be investigated for optimal mixing conditions. For example, the number of scale generations, the spacing between frames, the size ratio of grid elements, inflow conditions, etc. We will report upon the first set of findings
Large Eddy Simulation and the effect of the turbulent inlet conditions in the mixing Tee
International Nuclear Information System (INIS)
Ndombo, Jean-Marc; Howard, Richard J.A.
2011-01-01
Highlights: → LES of Tee junctions can easily reproduce the bulk flow. → The presence or absence of a turbulent inlet condition has an affect on the wall heat transfer. → The maximum heat transfer moves 1 cm and reduces by 10% when a turbulent inlet is used. - Abstract: Thermal fatigue in Pressurized Water Reactor plants has been found to be very acute in some hot/cold Tee junction mixing zones. Large Eddy Simulation (LES) can be used to capture the unsteadiness which is responsible for the large mechanical stresses associated with thermal fatigue. Here one LES subgrid model is studied, namely the Dynamic Smagorinsky model. This paper has two goals. The first is to demonstrate some results obtained using the EDF R and D Code Saturne applied to the Vattenfall Tee junction benchmark (version 2006) and the second is to look at the effect of including synthetic turbulence at the Tee junction pipe inlets. The last goal is the main topic of this paper. The Synthetic Eddy Method is used to create the turbulent inlet conditions and is applied to two kinds of grids. One contains six million cells and the other ten million. The addition of turbulence at the inlet does not seem to have much effect on the bulk flow and all computations are in good agreement with the experimental data. However, the inlet turbulence does have an effect on the near wall flow. All cases show that the wall temperature fluctuation and the wall temperature/velocity correlation are not the same when a turbulent inlet condition is used. Inclusion of the turbulent inlet condition moves the downstream location of the maximum temperature/velocity correlation by 1 cm and reduces its magnitude by 10%. This result is very important because the temperature/velocity correlation is closely related to the turbulent heat transfer in the flow, which is in turn responsible for the mechanical stresses on the structure. Finally we have studied in detail the influence of the turbulent inlet condition just
Simulation of Turbulent Wake at Mixing of Two Confined Horizontal Flows
Directory of Open Access Journals (Sweden)
Rok Krpan
2018-01-01
Full Text Available The development of a turbulent mixing layer at mixing of two horizontal water streams with slightly different densities is studied by the means of numerical simulation. The mixing of such flows can be modelled as the flow of two components, where the concentration of one component in the mixing region is described as a passive scalar. The velocity field remains common over the entire computational domain, where the density and viscosity difference due to the concentration mainly affects the turbulent fluctuations in the mixing region. The numerical simulations are performed with the open source code OpenFOAM using two different approaches for turbulence modelling, Reynolds Averaged Navier Stokes equations (RANS and Large Eddy Simulation (LES. The simulation results are discussed and compared with the benchmark experiment obtained within the frame of OECD/NEA benchmark test. A good agreement with experimental results is obtained in the case of the single liquid experiment. A high discrepancy between the simulated and the experimental velocity fluctuations in the case of mixing of the flows with the slightly different densities and viscosities triggered a systematic investigation of the modelling approaches that helped us to find out and interpret the main reasons for the disagreement.
Turbulent mixing induced by Richtmyer-Meshkov instability
Krivets, V. V.; Ferguson, K. J.; Jacobs, J. W.
2017-01-01
Richtmyer-Meshkov instability is studied in shock tube experiments with an Atwood number of 0.7. The interface is formed in a vertical shock tube using opposed gas flows, and three-dimensional random initial interface perturbations are generated by the vertical oscillation of gas column producing Faraday waves. Planar Laser Mie scattering is used for flow visualization and for measurements of the mixing process. Experimental image sequences are recorded at 6 kHz frequency and processed to obtain the time dependent variation of the integral mixing layer width. Measurements of the mixing layer width are compared with Mikaelian's [1] model in order to extract the growth exponent θ where a fairly wide range of values is found varying from θ ≈ 0.2 to 0.6.
Directory of Open Access Journals (Sweden)
Romit Maulik
2017-04-01
Full Text Available Solving two-dimensional compressible turbulence problems up to a resolution of 16, 384^2, this paper investigates the characteristics of two promising computational approaches: (i an implicit or numerical large eddy simulation (ILES framework using an upwind-biased fifth-order weighted essentially non-oscillatory (WENO reconstruction algorithm equipped with several Riemann solvers, and (ii a central sixth-order reconstruction framework combined with various linear and nonlinear explicit low-pass spatial filtering processes. Our primary aim is to quantify the dissipative behavior, resolution characteristics, shock capturing ability and computational expenditure for each approach utilizing a systematic analysis with respect to its modeling parameters or parameterizations. The relative advantages and disadvantages of both approaches are addressed for solving a stratified Kelvin-Helmholtz instability shear layer problem as well as a canonical Riemann problem with the interaction of four shocks. The comparisons are both qualitative and quantitative, using visualizations of the spatial structure of the flow and energy spectra, respectively. We observe that the central scheme, with relaxation filtering, offers a competitive approach to ILES and is much more computationally efficient than WENO-based schemes.
Experimental investigation of turbulent mixed convection in the wake of a heated sphere
International Nuclear Information System (INIS)
Suckow, D.
1993-11-01
The axisymmetric wake of a heated sphere under conditions of turbulent mixed convection is investigated in the water test section FLUTMIK. The sphere is located in a vertical channel with forced convective upward flow. The influence of buoyancy forces to the flow field is studied by comparison with the unheated wake. The theoretical fundamentals describing turbulent flows and different versions of the k-ε turbulence model extended by buoyancy terms are described in detail. The quantities to be determined experimentally are derived. The temperature and the components of the velocity vector in axial and radial directions are measured simultaneously by means of a thermocouple probe and a two component, two color laser Doppler anemometer. The flow quantities are determined at axial distances between 5 and 106 sphere diameters. The functional principle and the basis of the laser Doppler anemometer are explained. The mean velocity, the mean temperature, the intensities of their fluctuations and the turbulent exchange quantities of momentum and heat transport are calculated. The decay laws of the quantities along the axis of the channel and the radial profiles are indicated and discussed. The applicability of the experimental results of the axisymmetric buoyancy influenced turbulent wake with respect to the turbulence models presented are shown. (orig.) [de
Controls on turbulent mixing on the West Antarctic Peninsula shelf
Brearley, J. Alexander; Meredith, Michael P.; Naveira Garabato, Alberto C.; Venables, Hugh J.; Inall, Mark E.
2017-05-01
The ocean-to-atmosphere heat budget of the West Antarctic Peninsula is controlled in part by the upward flux of heat from the warm Circumpolar Deep Water (CDW) layer that resides below 200 m to the Antarctic Surface Water (AASW), a water mass which varies strongly on a seasonal basis. Upwelling and mixing of CDW influence the formation of sea ice in the region and affect biological productivity and functioning of the ecosystem through their delivery of nutrients. In this study, 2.5-year time series of both Acoustic Doppler Current Profiler (ADCP) and conductivity-temperature-depth (CTD) data are used to quantify both the diapycnal diffusivity κ and the vertical heat flux Q at the interface between CDW and AASW. Over the period of the study, a mean upward heat flux of 1 W m-2 is estimated, with the largest heat fluxes occurring shortly after the loss of winter fast ice when the water column is first exposed to wind stress without being strongly stratified by salinity. Differences in mixing mechanisms between winter and summer seasons are investigated. Whilst tidally-driven mixing at the study site occurs year-round, but is likely to be relatively weak, a strong increase in counterclockwise-polarized near-inertial energy (and shear) is observed during the fast-ice-free season, suggesting that the direct impact of storms on the ocean surface is responsible for much of the observed mixing at the site. Given the rapid reduction in sea-ice duration in this region in the last 30 years, a shift towards an increasingly wind-dominated mixing regime may be taking place.
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Large-eddy simulation in a mixing tee junction: High-order turbulent statistics analysis
International Nuclear Information System (INIS)
Howard, Richard J.A.; Serre, Eric
2015-01-01
Highlights: • Mixing and thermal fluctuations in a junction are studied using large eddy simulation. • Adiabatic and conducting steel wall boundaries are tested. • Wall thermal fluctuations are not the same between the flow and the solid. • Solid thermal fluctuations cannot be predicted from the fluid thermal fluctuations. • High-order turbulent statistics show that the turbulent transport term is important. - Abstract: This study analyses the mixing and thermal fluctuations induced in a mixing tee junction with circular cross-sections when cold water flowing in a pipe is joined by hot water from a branch pipe. This configuration is representative of industrial piping systems in which temperature fluctuations in the fluid may cause thermal fatigue damage on the walls. Implicit large-eddy simulations (LES) are performed for equal inflow rates corresponding to a bulk Reynolds number Re = 39,080. Two different thermal boundary conditions are studied for the pipe walls; an insulating adiabatic boundary and a conducting steel wall boundary. The predicted flow structures show a satisfactory agreement with the literature. The velocity and thermal fields (including high-order statistics) are not affected by the heat transfer with the steel walls. However, predicted thermal fluctuations at the boundary are not the same between the flow and the solid, showing that solid thermal fluctuations cannot be predicted by the knowledge of the fluid thermal fluctuations alone. The analysis of high-order turbulent statistics provides a better understanding of the turbulence features. In particular, the budgets of the turbulent kinetic energy and temperature variance allows a comparative analysis of dissipation, production and transport terms. It is found that the turbulent transport term is an important term that acts to balance the production. We therefore use a priori tests to evaluate three different models for the triple correlation
Simulation of aerosol nucleation and growth in a turbulent mixing layer
Zhou, Kun
2014-06-25
A large-scale simulation of aerosol nucleation and growth in a turbulent mixing layer is performed and analyzed with the aim of elucidating the key processes involved. A cold gaseous stream is mixed with a hot stream of vapor, nanometer sized droplets nucleate as the vapor becomes supersaturated, and subsequently grow as more vapor condenses on their surface. All length and time scales of fluid motion and mixing are resolved and the quadrature method of moments is used to describe the dynamics of the condensing, non-inertial droplets. The results show that a region of high nucleation rate is located near the cold, dry stream, while particles undergo intense growth via condensation on the hot, humid vapor side. Supersaturation and residence times are such that number densities are low and neither coagulation nor vapor scavenging due to condensation are significant. The difference in Schmidt numbers of aerosol particles (approximated as infinity) and temperature and vapor (near unity) causes a drift of the aerosol particles in scalar space and contributes to a large scatter in the conditional statistics of aerosol quantities. The spatial distribution of the aerosol reveals high volume fraction on the hot side of the mixing layer. This distribution is due to drift against the mean and is related to turbulent mixing, which displaces particles from the nucleation region (cold side) into the growth region (hot side). Such a mechanism is absent in laminar flows and is a distinct feature of turbulent condensing aerosols.
Simulation of aerosol nucleation and growth in a turbulent mixing layer
Zhou, Kun; Attili, Antonio; Alshaarawi, Amjad; Bisetti, Fabrizio
2014-01-01
A large-scale simulation of aerosol nucleation and growth in a turbulent mixing layer is performed and analyzed with the aim of elucidating the key processes involved. A cold gaseous stream is mixed with a hot stream of vapor, nanometer sized droplets nucleate as the vapor becomes supersaturated, and subsequently grow as more vapor condenses on their surface. All length and time scales of fluid motion and mixing are resolved and the quadrature method of moments is used to describe the dynamics of the condensing, non-inertial droplets. The results show that a region of high nucleation rate is located near the cold, dry stream, while particles undergo intense growth via condensation on the hot, humid vapor side. Supersaturation and residence times are such that number densities are low and neither coagulation nor vapor scavenging due to condensation are significant. The difference in Schmidt numbers of aerosol particles (approximated as infinity) and temperature and vapor (near unity) causes a drift of the aerosol particles in scalar space and contributes to a large scatter in the conditional statistics of aerosol quantities. The spatial distribution of the aerosol reveals high volume fraction on the hot side of the mixing layer. This distribution is due to drift against the mean and is related to turbulent mixing, which displaces particles from the nucleation region (cold side) into the growth region (hot side). Such a mechanism is absent in laminar flows and is a distinct feature of turbulent condensing aerosols.
The effect of turbulent mixing models on the predictions of subchannel codes
International Nuclear Information System (INIS)
Tapucu, A.; Teyssedou, A.; Tye, P.; Troche, N.
1994-01-01
In this paper, the predictions of the COBRA-IV and ASSERT-4 subchannel codes have been compared with experimental data on void fraction, mass flow rate, and pressure drop obtained for two interconnected subchannels. COBRA-IV is based on a one-dimensional separated flow model with the turbulent intersubchannel mixing formulated as an extension of the single-phase mixing model, i.e. fluctuating equal mass exchange. ASSERT-4 is based on a drift flux model with the turbulent mixing modelled by assuming an exchange of equal volumes with different densities thus allowing a net fluctuating transverse mass flux from one subchannel to the other. This feature is implemented in the constitutive relationship for the relative velocity required by the conservation equations. It is observed that the predictions of ASSERT-4 follow the experimental trends better than COBRA-IV; therefore the approach of equal volume exchange constitutes an improvement over that of the equal mass exchange. ((orig.))
Effects of elevated line sources on turbulent mixing in channel flow
Nguyen, Quoc; Papavassiliou, Dimitrios
2016-11-01
Fluids mixing in turbulent flows has been studied extensively, due to the importance of this phenomena in nature and engineering. Convection effects along with motion of three-dimensional coherent structures in turbulent flow disperse a substance more efficiently than molecular diffusion does on its own. We present here, however, a study that explores the conditions under which turbulent mixing does not happen, when different substances are released into the flow field from different vertical locations. The study uses a method which combines Direct Numerical Simulation (DNS) with Lagrangian Scalar Tracking (LST) to simulate a turbulent channel flow and track the motion of passive scalars with different Schmidt numbers (Sc). The particles are released from several instantaneous line sources, ranging from the wall to the center region of the channel. The combined effects of mean velocity difference, molecular diffusion and near-wall coherent structures lead to the observation of different concentrations of particles downstream from the source. We then explore in details the conditions under which particles mixing would not happen. Results from numerical simulation at friction Reynolds number of 300 and 600 will be discussed and for Sc ranging from 0.1 to 2,400.
The Dynamics of Turbulent Scalar Mixing near the Edge of a Shear Layer
Taveira, R. M. R.; da Silva, C. B.; Pereira, J. C. F.
2011-12-01
In free shear flows a sharp and convoluted turbulent/nonturbulent (T/NT) interface separates the outer fluid region, where the flow is essentially irrotational, from the shear layer turbulent region. It was found recently that the entrainment mechanism is mainly caused by small scale ("nibbling") motions (Westerweel et al. (2005)). The dynamics of this interface is crucial to understand important exchanges of enstrophy and scalars that can be conceived as a three-stage process of entrainment, dispersion and diffusion (Dimotakis (2005)). A thorough understanding of scalar mixing and transport is of indisputable relevance to control turbulent combustion, propulsion and contaminant dispersion (Stanley et al. (2002)). The present work uses several DNS of turbulent jets at Reynolds number ranging from Reλ = 120 to Reλ = 160 (da Silva & Taveira (2010)) and a Schmidt number Sc = 0.7 to analyze the "scalar interface" and turbulent mixing of a passive scalar. Specifically, we employ conditional statistics, denoted by langlerangleI, in order to eliminate the intermittency that affects statistics close to the jet edge. The physical mechanisms behind scalar mixing near the T/NT interfaces, their scales and topology are investigated detail. Analysis of the instantaneous fields showed intense scalar gradient sheet-like structures along regions of persistent strain, in particular at the T/NT interface. The scalar gradient transport equation, at the jet edge, showed that almost all mixing mechanisms are taking place in a confined region, beyond which they become reduced to an almost in perfect balance between production and dissipation of scalar variance. At the T/NT interface transport mechanisms are the ones responsible for the growth in the scalar fluctuations to the entrained fluid, where convection plays a dominant role, smoothing scalar gradients inside the interface and boosting them as far as
The Dynamics of Turbulent Scalar Mixing near the Edge of a Shear Layer
International Nuclear Information System (INIS)
Taveira, R M R; Silva, C B da; Pereira, J C F
2011-01-01
In free shear flows a sharp and convoluted turbulent/nonturbulent (T/NT) interface separates the outer fluid region, where the flow is essentially irrotational, from the shear layer turbulent region. It was found recently that the entrainment mechanism is mainly caused by small scale ('nibbling') motions (Westerweel et al. (2005)). The dynamics of this interface is crucial to understand important exchanges of enstrophy and scalars that can be conceived as a three-stage process of entrainment, dispersion and diffusion (Dimotakis (2005)). A thorough understanding of scalar mixing and transport is of indisputable relevance to control turbulent combustion, propulsion and contaminant dispersion (Stanley et al. (2002)). The present work uses several DNS of turbulent jets at Reynolds number ranging from Re λ = 120 to Re λ = 160 (da Silva and Taveira (2010)) and a Schmidt number Sc = 0.7 to analyze the 'scalar interface' and turbulent mixing of a passive scalar. Specifically, we employ conditional statistics, denoted by I , in order to eliminate the intermittency that affects statistics close to the jet edge. The physical mechanisms behind scalar mixing near the T/NT interfaces, their scales and topology are investigated detail. Analysis of the instantaneous fields showed intense scalar gradient sheet-like structures along regions of persistent strain, in particular at the T/NT interface. The scalar gradient transport equation, at the jet edge, showed that almost all mixing mechanisms are taking place in a confined region, beyond which they become reduced to an almost in perfect balance between production and dissipation of scalar variance. At the T/NT interface transport mechanisms are the ones responsible for the growth in the scalar fluctuations to the entrained fluid, where convection plays a dominant role, smoothing scalar gradients inside the interface 0.1y I /λ to 1y I /λand boosting them as far as -2.5y I /η θ C .
DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers
Energy Technology Data Exchange (ETDEWEB)
Neophytou, A.; Mastorakos, E.; Cant, R.S. [Hopkinson Laboratory, Department of Engineering, University of Cambridge (United Kingdom)
2010-06-15
A parametric study of forced ignition at the mixing layer between air and air carrying fine monosized fuel droplets is done through one-step chemistry direct numerical simulations to determine the influence of the size and volatility of the droplets, the spark location, the droplet-air mixing layer initial thickness and the turbulence intensity on the ignition success and the subsequent flame propagation. The propagation is analyzed in terms of edge flame displacement speed, which has not been studied before for turbulent edge spray flames. Spark ignition successfully resulted in a tribrachial flame if enough fuel vapour was available at the spark location, which occurred when the local droplet number density was high. Ignition was achieved even when the spark was offset from the spray, on the air side, due to the diffusion of heat from the spark, provided droplets evaporated rapidly. Large kernels were obtained by sparking close to the spray, since fuel was more readily available. At long times after the spark, for all flames studied, the probability density function of the displacement speed was wide, with a mean value in the range 0.55-0.75S{sub L}, with S{sub L} the laminar burning velocity of a stoichiometric gaseous premixed flame. This value is close to the mean displacement speed in turbulent edge flames with gaseous fuel. The displacement speed was negatively correlated with curvature. The detrimental effect of curvature was attenuated with a large initial kernel and by increasing the thickness of the mixing layer. The mixing layer was thicker when evaporation was slow and the turbulence intensity higher. However, high turbulence intensity also distorted the kernel which could lead to high values of curvature. The edge flame reaction component increased when the maximum temperature coincided with the stoichiometric contour. The results are consistent with the limited available experimental evidence and provide insights into the processes associated with
Omori, S.
1973-01-01
The turbulent kinetic energy equation is coupled with boundary layer equations to solve the characteristics of compressible turbulent boundary layers with mass injection and combustion. The Reynolds stress is related to the turbulent kinetic energy using the Prandtl-Wieghardt formulation. When a lean mixture of hydrogen and nitrogen is injected through a porous plate into the subsonic turbulent boundary layer of air flow and ignited by external means, the turbulent kinetic energy increases twice as much as that of noncombusting flow with the same mass injection rate of nitrogen. The magnitudes of eddy viscosity between combusting and noncombusting flows with injection, however, are almost the same due to temperature effects, while the distributions are different. The velocity profiles are significantly affected by combustion; that is, combustion alters the velocity profile as if the mass injection rate is increased, reducing the skin-friction as a result of a smaller velocity gradient at the wall. If pure hydrogen as a transpiration coolant is injected into a rocket nozzle boundary layer flow of combustion products, the temperature drops significantly across the boundary layer due to the high heat capacity of hydrogen. At a certain distance from the wall, hydrogen reacts with the combustion products, liberating an extensive amount of heat. The resulting large increase in temperature reduces the eddy viscosity in this region.
Calculation of external-internal flow fields for mixed-compression inlets
Chyu, W. J.; Kawamura, T.; Bencze, D. P.
1987-01-01
Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.
International Nuclear Information System (INIS)
Zhou Ye; Remington, B.A.; Robey, H.F.; Cook, A.W.; Glendinning, S.G.; Dimits, A.; Buckingham, A.C.; Zimmerman, G.B.; Burke, E.W.; Peyser, T.A.; Cabot, W.; Eliason, D.
2003-01-01
Turbulent hydrodynamic mixing induced by the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities occurs in settings as varied as exploding stars (supernovae), inertial confinement fusion (ICF) capsule implosions, and macroscopic flows in fluid dynamics facilities such as shock tubes. Turbulence theory and modeling have been applied to RT and RM induced flows and developed into a quantitative description of turbulence from the onset to the asymptotic end-state. The treatment, based on a combined approach of theory, direct numerical simulation (DNS), and experimental data analysis, has broad generality. Three areas of progress will be reported. First, a robust, easy to apply criteria will be reported for the mixing transition in a time-dependent flow. This allows an assessment of whether flows, be they from supernova explosions or ICF experiments, should be mixed down to the molecular scale or not. Second, through DNS, the structure, scaling, and spectral evolution of the RT instability induced flow will be inspected. Finally, using these new physical insights, a two-scale, dynamic mix model has been developed that can be applied to simulations of ICF experiments and astrophysics situations alike
Turbulent mixing of a critical fluid: The non-perturbative renormalization
Directory of Open Access Journals (Sweden)
M. Hnatič
2018-01-01
Full Text Available Non-perturbative Renormalization Group (NPRG technique is applied to a stochastical model of a non-conserved scalar order parameter near its critical point, subject to turbulent advection. The compressible advecting flow is modeled by a random Gaussian velocity field with zero mean and correlation function 〈υjυi〉∼(Pji⊥+αPji∥/kd+ζ. Depending on the relations between the parameters ζ, α and the space dimensionality d, the model reveals several types of scaling regimes. Some of them are well known (model A of equilibrium critical dynamics and linear passive scalar field advected by a random turbulent flow, but there is a new nonequilibrium regime (universality class associated with new nontrivial fixed points of the renormalization group equations. We have obtained the phase diagram (d, ζ of possible scaling regimes in the system. The physical point d=3, ζ=4/3 corresponding to three-dimensional fully developed Kolmogorov's turbulence, where critical fluctuations are irrelevant, is stable for α≲2.26. Otherwise, in the case of “strong compressibility” α≳2.26, the critical fluctuations of the order parameter become relevant for three-dimensional turbulence. Estimations of critical exponents for each scaling regime are presented.
Turbulent mixed convection in asymmetrically heated vertical channel
Directory of Open Access Journals (Sweden)
Mokni Ameni
2012-01-01
Full Text Available In this paper an investigation of mixed convection from vertical heated channel is undertaken. The aim is to explore the heat transfer obtained by adding a forced flow, issued from a flat nozzle located in the entry section of a channel, to the up-going fluid along its walls. Forced and free convection are combined studied in order to increase the cooling requirements. The study deals with both symmetrically and asymmetrically heated channel. The Reynolds number based on the nozzle width and the jet velocity is assumed to be 3 103 and 2.104; whereas, the Rayleigh number based on the channel length and the wall temperature difference varies from 2.57 1010 to 5.15 1012. The heating asymmetry effect on the flow development including the mean velocity and temperature the local Nusselt number, the mass flow rate and heat transfer are examined.
The dispersal of phytoplankton populations by enhanced turbulent mixing in a shallow coastal sea
Cross, Jaimie; Nimmo-Smith, W. Alex M.; Hosegood, Philip J.; Torres, Ricardo
2014-08-01
A single tidal cycle survey in a Lagrangian reference frame was conducted in autumn 2010 to evaluate the impact of short-term, episodic and enhanced turbulent mixing on large chain-forming phytoplankton. Observations of turbulence using a free-falling microstructure profiler were undertaken, along with near-simultaneous profiles with an in-line digital holographic camera at station L4 (50° 15‧ N 4° 13‧ W, depth 50 m) in the Western English Channel. Profiles from each instrument were collected hourly whilst following a drogued drifter. Results from an ADCP attached to the drifter showed pronounced vertical shear, indicating that the water column structure consisted of two layers, restricting interpretation of the Lagrangian experiment to the upper ~ 25 m. Atmospheric conditions deteriorated during the mid-point of the survey, resulting in values of turbulent dissipation reaching a maximum of 10- 4 W kg- 1 toward the surface in the upper 10 m. Chain-forming phytoplankton > 200 μm were counted using the data from the holographic camera for the two periods, before and after the enhanced mixing event. As mixing increased phytoplankton underwent chain breakage, were dispersed by advection through their removal from the upper to lower layer and subjected to aggregation with other suspended material. Depth averaged counts of phytoplankton were reduced from a maximum of around 2050 L- 1 before the increased turbulence, to 1070 L- 1 after, with each of these mechanisms contributing to this reduction. These results demonstrate the sensitivity of phytoplantkon populations to moderate increases in turbulent activity, yielding consequences for accurate forecasting of the role played by phytoplankton in climate studies and also for the ecosystem in general in their role as primary producers.
Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I
Zhou, Ye
2017-12-01
Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities play an important role in a wide range of engineering, geophysical, and astrophysical flows. They represent a triggering event that, in many cases, leads to large-scale turbulent mixing. Much effort has been expended over the past 140 years, beginning with the seminal work of Lord Rayleigh, to predict the evolution of the instabilities and of the instability-induced mixing layers. The objective of Part I of this review is to provide the basic properties of the flow, turbulence, and mixing induced by RT, RM, and Kelvin-Helmholtz (KH) instabilities. Historical efforts to study these instabilities are briefly reviewed, and the significance of these instabilities is discussed for a variety of flows, particularly for astrophysical flows and for the case of inertial confinement fusion. Early experimental efforts are described, and analytical attempts to model the linear, and nonlinear regimes of these mixing layers are examined. These analytical efforts include models for both single-mode and multi-mode initial conditions, as well as multi-scale models to describe the evolution. Comparisons of these models and theories to experimental and simulation studies are then presented. Next, attention is paid to the issue of the influence of stabilizing mechanisms (e.g., viscosity, surface tension, and diffuse interface) on the evolution of these instabilities, as well as the limitations and successes of numerical methods. Efforts to study these instabilities and mixing layers using group-theoretic ideas, as well as more formal notions of turbulence cascade processes during the later stages of the induced mixing layers, are inspected. A key element of the review is the discussion of the late-time self-similar scaling for the RT and RM growth factors, α and θ. These parameters are influenced by the initial conditions and much of the observed variation can be explained by this. In some cases, these instabilities
Comparative study of turbulent mixing in jet in cross-flow configurations using LES
International Nuclear Information System (INIS)
Wegner, B.; Huai, Y.; Sadiki, A.
2004-01-01
Mixing processes in turbulent fluid motion are of fundamental interest in many situations in engineering practice. Due to its practical importance in a vast number of applications, the generic configuration of the jet in cross-flow has been studied extensively in the past. Recently, the question has received a lot of attention, whether the unsteady behavior of the jet in cross-flow can be influenced by either active or passive means in order to control and enhance the mixing process. In the present paper, we use the large eddy simulation (LES) methodology to investigate how turbulent mixing can be enhanced by varying the angle between the jet and the oncoming cross-flow. After validating the computations against measurements by Andreopoulos and Rodi, we analyze qualitatively and quantitatively the mixing process for three configurations with different angles. It is shown that the inclination influences the characteristics of vortical structures and secondary motion which in turn have an effect on the mixing process. Besides a PDF of the passive scalar and a scalar energy spectrum, a mixedness parameter is used to provide information with respect to the quality and rate of mixing
Large eddy simulation of turbulent mixing in a T-junction
International Nuclear Information System (INIS)
Kim, Jung Woo
2010-12-01
In this report, large eddy simulation was performed in order to further improve our understanding the physics of turbulent mixing in a T-junction, which is recently regarded as one of the most important problems in nuclear thermal-hydraulics safety. Large eddy simulation technique and the other numerical methods used in this study were presented in Sec. 2, and the numerical results obtained from large eddy simulation were described in Sec. 3. Finally, the summary was written in Sec. 4
The effect of mixing-vane arrangements in a subchannel turbulent flow
International Nuclear Information System (INIS)
Ikeno, Tsutomu; Murata, Tamotsu; Kajishima, Takeo
2006-01-01
Large eddy simulation (LES) of developed turbulent flows in a rod bundle was carried out for four spacer designs. The mixing-vanes attached at the spacer were inclined at 30degC or 20deg; they were arranged to promote the swirling or convective flow. These arrangements are possible elements to compose an actual rod bundle. Our LES technique with a consistent higher-order immersed boundary method and a one-equation dynamic sub-grid scale model contributed to an efficient treatment of the complex wall configurations of rods and spacers. The computational results reasonably reproduced experimental results for the drag coefficient and the decay rate of swirling flow. The profiles of the axial velocities and the turbulence intensities indicated reasonable trend for the turbulent flow in the rod bundle. The effect of mixing-vane arrangement on the lateral flows was successfully clarified: the cross flow took the longer way on the rod surface than the swirling flow and then was more significantly influenced by momentum diffusion at the no-slip wall. Therefore, the largely inclined mixing-vanes promoted the cross flow only in the neighborhood of the spacer, the swirling flow inside a subchannel could reach farther downstream than the cross flow. (author)
Clifford, Corey; Kimber, Mark
2017-11-01
Over the last 30 years, an industry-wide shift within the nuclear community has led to increased utilization of computational fluid dynamics (CFD) to supplement nuclear reactor safety analyses. One such area that is of particular interest to the nuclear community, specifically to those performing loss-of-flow accident (LOFA) analyses for next-generation very-high temperature reactors (VHTR), is the capacity of current computational models to predict heat transfer across a wide range of buoyancy conditions. In the present investigation, a critical evaluation of Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) turbulence modeling techniques is conducted based on CFD validation data collected from the Rotatable Buoyancy Tunnel (RoBuT) at Utah State University. Four different experimental flow conditions are investigated: (1) buoyancy-aided forced convection; (2) buoyancy-opposed forced convection; (3) buoyancy-aided mixed convection; (4) buoyancy-opposed mixed convection. Overall, good agreement is found for both forced convection-dominated scenarios, but an overly-diffusive prediction of the normal Reynolds stress is observed for the RANS-based turbulence models. Low-Reynolds number RANS models perform adequately for mixed convection, while higher-order RANS approaches underestimate the influence of buoyancy on the production of turbulence.
Special Features In Turbulent Mixing. Comparison between Periodic and Non Periodic Case
Directory of Open Access Journals (Sweden)
Mihai Costescu
2006-12-01
Full Text Available After hundreds of years of stability study, the problems of flow kinematics are far from complete solving. A modern theory appears in this field: the mixing theory. Its mathematical methods and techniques developed the significant relation between turbulence and chaos. The turbulence is an important feature of dynamic systems with few freedom degrees, the so-called far from equilibrium systems. These are widespread between the models of excitable media.Studying a mixing for a flow implies the analysis of successive stretching and folding phenomena for its particles, the influence of parameters and initial conditions. In the previous works, the study of the 3D non-periodic models exhibited a quite complicated behavior, involving some significant events - the so-called rare events. The variation of parameters had a great influence on the length and surface deformations. The 2D (periodic case is simpler, but significant events can also issue for irrational values of the length and surface versors, as was the situation in 3D case.The comparison between 2D and 3D case revealed interesting properties; therefore a modified 2D (periodic model is tested. The numerical simulations were realized in MapleVI, for searching special mathematical events. Continuing this work both from analytical and numeric standpoint would relieve useful properties for the turbulent mixing. A proximal target is to test some special functions for the periodic model, and to study the behavior of the structures realized by the model.
Numerical methods for the prediction of thermal fatigue due to turbulent mixing
International Nuclear Information System (INIS)
Hannink, M.H.C.; Blom, F.J.
2011-01-01
Research highlights: → Thermal fatigue due to turbulent mixing is caused by moving temperature spots on the pipe wall. → Passing temperature spots cause temperature fluctuations of sinusoidal nature. → Input parameters for a sinusoidal model can be obtained by linking it with a coupled CFD-FEM model. → Overconservatism of the sinusoidal method can be reduced, having more knowledge on thermal loads. - Abstract: Turbulent mixing of hot and cold flows is one of the possible causes of thermal fatigue in piping systems. Especially in primary pipework of nuclear power plants this is an important, safety related issue. Since the frequencies of the involved temperature fluctuations are generally too high to be detected well by common plant instrumentation, accurate numerical simulations are indispensable for a proper fatigue assessment. In this paper, a link is made between two such numerical methods: a coupled CFD-FEM model and a sinusoidal model. By linking these methods, more insight is obtained in the physical phenomenon causing thermal fatigue due to turbulent mixing. Furthermore, useful knowledge is acquired on the determination of thermal loading parameters, essential for reducing overconservatism, as currently present in simplified fatigue assessment methods.
Compression of a mixed antiproton and electron non-neutral plasma to high densities
Aghion, Stefano; Amsler, Claude; Bonomi, Germano; Brusa, Roberto S.; Caccia, Massimo; Caravita, Ruggero; Castelli, Fabrizio; Cerchiari, Giovanni; Comparat, Daniel; Consolati, Giovanni; Demetrio, Andrea; Di Noto, Lea; Doser, Michael; Evans, Craig; Fanì, Mattia; Ferragut, Rafael; Fesel, Julian; Fontana, Andrea; Gerber, Sebastian; Giammarchi, Marco; Gligorova, Angela; Guatieri, Francesco; Haider, Stefan; Hinterberger, Alexander; Holmestad, Helga; Kellerbauer, Alban; Khalidova, Olga; Krasnický, Daniel; Lagomarsino, Vittorio; Lansonneur, Pierre; Lebrun, Patrice; Malbrunot, Chloé; Mariazzi, Sebastiano; Marton, Johann; Matveev, Victor; Mazzotta, Zeudi; Müller, Simon R.; Nebbia, Giancarlo; Nedelec, Patrick; Oberthaler, Markus; Pacifico, Nicola; Pagano, Davide; Penasa, Luca; Petracek, Vojtech; Prelz, Francesco; Prevedelli, Marco; Rienaecker, Benjamin; Robert, Jacques; Røhne, Ole M.; Rotondi, Alberto; Sandaker, Heidi; Santoro, Romualdo; Smestad, Lillian; Sorrentino, Fiodor; Testera, Gemma; Tietje, Ingmari C.; Widmann, Eberhard; Yzombard, Pauline; Zimmer, Christian; Zmeskal, Johann; Zurlo, Nicola; Antonello, Massimiliano
2018-04-01
We describe a multi-step "rotating wall" compression of a mixed cold antiproton-electron non-neutral plasma in a 4.46 T Penning-Malmberg trap developed in the context of the AEḡIS experiment at CERN. Such traps are routinely used for the preparation of cold antiprotons suitable for antihydrogen production. A tenfold antiproton radius compression has been achieved, with a minimum antiproton radius of only 0.17 mm. We describe the experimental conditions necessary to perform such a compression: minimizing the tails of the electron density distribution is paramount to ensure that the antiproton density distribution follows that of the electrons. Such electron density tails are remnants of rotating wall compression and in many cases can remain unnoticed. We observe that the compression dynamics for a pure electron plasma behaves the same way as that of a mixed antiproton and electron plasma. Thanks to this optimized compression method and the high single shot antiproton catching efficiency, we observe for the first time cold and dense non-neutral antiproton plasmas with particle densities n ≥ 1013 m-3, which pave the way for an efficient pulsed antihydrogen production in AEḡIS.
Single-phase and two-phase gas-liquid turbulent mixing between subchannels in a simulated rod bundle
International Nuclear Information System (INIS)
Sadatomi, Michio; Kawahara, Akimaro; Sato, Yoshifusa; Tomino, Takayoshi.
1996-01-01
This study is concerned with turbulent mixing which is one of the three mechanisms of cross flows between subchannels in a nuclear fuel rod bundle. The channel used in this experiments was a vertical simulated rod bundle having two subchannels connected through 1 to 3 gaps between two rods and/or rod and channel wall. The number of the gaps was changed to investigate the effect of the number on the turbulent mixing. Turbulent mixing rates of air and water and fluctuations of pressure difference between the subchannels were measured for single-phase and two-phase gas-liquid flows under hydrodynamic equilibrium flow conditions. It has been confirmed that the turbulent mixing rate is affected strongly by the fluctuations especially for liquid phase in two-phase slug or churn flow. (author)
Turbulent mixed convection from a large, high temperature, vertical flat surface
International Nuclear Information System (INIS)
Evans, G.; Greif, R.; Siebers, D.; Tieszen, S.
2005-01-01
Turbulent mixed convection heat transfer at high temperatures and large length scales is an important and seldom studied phenomenon that can represent a significant part of the overall heat transfer in applications ranging from solar central receivers to objects in fires. This work is part of a study to validate turbulence models for predicting heat transfer to or from surfaces at large temperature differences and large length scales. Here, turbulent, three-dimensional, mixed convection heat transfer in air from a large (3m square) vertical flat surface at high temperatures is studied using two RANS turbulence models: a standard k-ε model and the v2-bar -f model. Predictions for three cases spanning the range of the experiment (Siebers, D.L., Schwind, R.G., Moffat, R.F., 1982. Experimental mixed convection from a large, vertical plate in a horizontal flow. Paper MC13, vol. 3, Proc. 7th Int. Heat Transfer Conf., Munich; Siebers, D.L., 1983. Experimental mixed convection heat transfer from a large, vertical surface in a horizontal flow. PhD thesis, Stanford University) from forced (GrH/ReL2=0.18) to mixed (GrH/ReL2=3.06) to natural (GrH/ReL2=∼) convection are compared with data. The results show a decrease in the heat transfer coefficient as GrH/ReL2 is increased from 0.18 to 3.06, for a free-stream velocity of 4.4m/s. In the natural convection case, the experimental heat transfer coefficient is approximately constant in the fully turbulent region, whereas the calculated heat transfer coefficients show a slight increase with height. For the three cases studied, the calculated and experimental heat transfer coefficients agree to within 5-35% over most of the surface with the v2-bar -f model results showing better agreement with the data. Calculated temperature and velocity profiles show good agreement with the data
International Nuclear Information System (INIS)
Biglari, H.; Diamond, P.H.
1988-01-01
A simple physical model which describes the dynamics of turbulence and the spectrum of density fluctuations in compressible, self-gravitating matter and self-binding, phase-space density fluctuations is presented. The two systems are analogous to each other in that each tends to self-organize into hierarchical structures via the mechanism of Jeans collapse. The model, the essential physical ingredient of which is a cascade constrained by the physical requirement of quasivirialization, is shown to exhibit interesting geometric properties such as intrinsic intermittency and anisotropy
Study on effects of turbulence promoter on fluid mixing in T-junction piping system
International Nuclear Information System (INIS)
Nagao, Akihiro; Hibara, Hideki; Ochi, Junji; Muramatsu, Toshiharu
2004-07-01
Flows in T-junction piping system with turbulence promoter have been investigated experimentally using flow visualization techniques (the dye injection method) and velocity measurement by LDV. Effects of turbulent promoter on characteristics of fluid mixing and thermal-striping phenomena are examined. From the experiment, following results are obtained. (1) Arch vortex is formed further than the case without promoter in the upstream station and is rapidly transported to the downstream direction. (2) Secondary flow induced in the cross section become stronger and the diffusion of axial momentum is promoted, as the height of turbulence promoter is higher. (3) Main flow deflects towards to the opposite side of branch pipe at the T-junction, as the height of turbulence promoter is higher, and as velocity ratio becomes smaller, and the flow continues to deflect to a considerably downstream station. (4) Velocity fluctuation is observed in the position where the vortex is formed, and it becomes a maximum at z/Dm=2. In the further downstream, velocity fluctuation decreases with the vortex breakdown, and it considerably remains to the downstream. (author)
Direct Numerical Simulation of Passive Scalar Mixing in Shock Turbulence Interaction
Gao, Xiangyu; Bermejo-Moreno, Ivan; Larsson, Johan
2017-11-01
Passive scalar mixing in the canonical shock-turbulence interaction configuration is investigated through shock-capturing Direct Numerical Simulations (DNS). Scalar fields with different Schmidt numbers are transported by an initially isotropic turbulent flow field passing across a nominally planar shock wave. A solution-adaptive hybrid numerical scheme on Cartesian structured grids is used, that combines a fifth-order WENO scheme near shocks and a sixth-order central-difference scheme away from shocks. The simulations target variations in the shock Mach number, M (from 1.5 to 3), turbulent Mach number, Mt (from 0.1 to 0.4, including wrinkled- and broken-shock regimes), and scalar Schmidt numbers, Sc (from 0.5 to 2), while keeping the Taylor microscale Reynolds number constant (Reλ 40). The effects on passive scalar statistics are investigated, including the streamwise evolution of scalar variance budgets, pdfs and spectra, in comparison with their temporal evolution in decaying isotropic turbulence.
Scalar mixing in LES/PDF of a high-Ka premixed turbulent jet flame
You, Jiaping; Yang, Yue
2016-11-01
We report a large-eddy simulation (LES)/probability density function (PDF) study of a high-Ka premixed turbulent flame in the Lund University Piloted Jet (LUPJ) flame series, which has been investigated using direct numerical simulation (DNS) and experiments. The target flame, featuring broadened preheat and reaction zones, is categorized into the broken reaction zone regime. In the present study, three widely used mixing modes, namely the Interaction by Exchange with the Mean (IEM), Modified Curl (MC), and Euclidean Minimum Spanning Tree (EMST) models are applied to assess their performance through detailed a posteriori comparisons with DNS. A dynamic model for the time scale of scalar mixing is formulated to describe the turbulent mixing of scalars at small scales. Better quantitative agreement for the mean temperature and mean mass fractions of major and minor species are obtained with the MC and EMST models than with the IEM model. The multi-scalar mixing in composition space with the three models are analyzed to assess the modeling of the conditional molecular diffusion term. In addition, we demonstrate that the product of OH and CH2O concentrations can be a good surrogate of the local heat release rate in this flame. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11521091 and 91541204).
Turbulent mixed buoyancy driven flow and heat transfer in lid driven enclosure
International Nuclear Information System (INIS)
Mishra, Ajay Kumar; Sharma, Anil Kumar
2015-01-01
Turbulent mixed buoyancy driven flow and heat transfer of air in lid driven rectangular enclosure has been investigated for Grashof number in the range of 10 8 to 10 11 and for Richardson number 0.1, 1 and 10. Steady two dimensional Reynolds-Averaged-Navier-Stokes equations and conservation equations of mass and energy, coupled with the Boussinesq approximation, are solved. The spatial derivatives in the equations are discretized using the finite-element method. The SIMPLE algorithm is used to resolve pressure-velocity coupling. Turbulence is modeled with the k-ω closure model with physical boundary conditions along with the Boussinesq approximation, for the flow and heat transfer. The predicted results are validated against benchmark solutions reported in literature. The results include stream lines and temperature fields are presented to understand flow and heat transfer characteristics. There is a marked reduction in mean Nusselt number (about 58%) as the Richardson number increases from 0.1 to 10 for the case of Ra=10 10 signifying the effect of reduction of top lid velocity resulting in reduction of turbulent mixing. (author)
International Nuclear Information System (INIS)
Sadatomi, M.; Kawahara, A.; Sato, Y.
1996-01-01
This paper presents a simple method for predicting the single-phase turbulent mixing rate between adjacent subchannels in nuclear fuel bundles. In this method, the mixing rate is computed as the sum of the two components of turbulent diffusion and convective transfer. Of these, the turbulent diffusion component is calculated using a newly defined subchannel geometry factor F* and the mean turbulent diffusivity for each subchannel which is computed from Elder's equation. The convective transfer component is evaluated from a mixing Stanton number correlation obtained empirically in this study. In order to confirm the validity of the proposed method, experimental data on turbulent mixing rate were obtained using a tracer technique under adiabatic conditions with three test channels, each consisting of two subchannels. The range of Reynolds number covered was 5000-66 000. From comparisons of the predicted turbulent mixing rates with the experimental data of other investigators as well as the authors, it has been confirmed that the proposed method can predict the data in a range of gap clearance to rod diameter ratio of 0.02-0.4 within about ±25% for square array bundles and about ±35% for triangular array bundles. (orig.)
Experimental study on the Reynolds number dependence of turbulent mixing in a rod bundle
International Nuclear Information System (INIS)
Silin, Nicolas; Juanico, Luis
2006-01-01
An experimental study for Reynolds number dependence of the turbulent mixing between fuel-bundle subchannels, was performed. The measurements were done on a triangular array bundle with a 1.20 pitch to diameter relation and 10 mm rod diameter, in a low-pressure water loop, at Reynolds numbers between 1.4 x 10 3 and 1.3 x 10 5 . The high accuracy of the results was obtained by improving a thermal tracing technique recently developed. The Reynolds exponent on the mixing rate correlation was obtained with two-digit accuracy for Reynolds numbers greater than 3 x 10 3 . It was also found a marked increase in the mixing rate for lower Reynolds numbers. The weak theoretical base of the accepted Reynolds dependence was pointed out in light of the later findings, as well as its ambiguous supporting experimental data. The present results also provide indirect information about dominant large scale flow pulsations at different flow regimes
Superluminal travel, UV/IR mixing, and turbulence in a (1+1)-dimensional world
International Nuclear Information System (INIS)
Dubovsky, Sergei; Gorbenko, Victor
2011-01-01
We study renormalizable Lorentz invariant stable quantum field theories in two space-time dimensions with instantaneous causal structure (causal ordering induced by the light 'cone' time ordering). These models provide a candidate UV completion of the two-dimensional ghost condensate. They exhibit a peculiar UV/IR mixing - energies of all excitations become arbitrarily small at high spatial momenta. We discuss several phenomena associated with this mixing. These include the impossibility to reach a thermal equilibrium and metastability of all excitations towards decay into short-wavelength modes resulting in an indefinite turbulent cascade. In spite of the UV/IR mixing in many cases the UV physics can still be decoupled from low-energy phenomena. However, a patient observer in the Lineland is able to produce arbitrarily heavy particles simply by waiting for a long enough time.
Singh, Kanwar Nain; Partridge, Jamie; Dalziel, Stuart; Caulfield, C. P.; Mathematical Underpinnings of Stratified Turbulence (MUST) Team
2017-11-01
We present results from experiments conducted to study mixing in a two-layer stably-stratified turbulent Taylor-Couette flow. It has previously been observed that there is a quasi-periodic mixing event located at the interface separating the layers. We observe, through conductivity probe measurements, that the power of the mixing event in the frequency spectrum of the density data at the interface is higher when measured near the inner cylinder than in the middle of the annular gap. This is consistent with Oglethorpe's (2014) hypothesis that the mixing structure is triggered near the inner cylinder, and then advects and decays or disperses radially. We also observe that at Ri =g/'Ro (RiΩi)2 7 , where Ri, Ro are the inner and outer cylinder radius, respectively, g ' the reduced gravity characterising the density jump between the layers and Ωi is the rotation rate of the inner cylinder, the power drops significantly at all radial locations, which is reminiscent of the onset of the enhanced flux regime as observed by Oglethorpe et al. (2013). We perform experiments to characterise the spatial extent and dynamics of this mixing structure using particle image velocimetry (PIV) giving further insights into this important mixing process. EPSRC programme Grant EP/K034529/1 & SGPC-CCT Scholarship.
PIV measurement of turbulent bubbly mixing layer flow with polymer additives
International Nuclear Information System (INIS)
Ning, T; Guo, F; Chen, B; Zhang, X
2009-01-01
Based on experimental investigation of single-phase turbulent mixing layer flow with polymer additives, bubbly mixing layer was experimentally investigated by PIV. The velocity ratio between high and low speed is 4:1 and the Reynolds number based on the velocity difference of two steams and hydraulic diameter of the channel ranges is 73333. Gas bubbles with about 0.5% gas fraction were injected into pure water mixing layer with/without polymer additives from three different parts at the end of the splitter plate. The comparison between single phase and bubbly mixing layer shows clearly that the dynamic development of mixing layer is great influenced by the bubble injection. Similar with single phase, the Reynolds stress and vorticity still concentrate in a coniform area of central mixing flow field part and the width will increase with increasing the Reynolds number. Mean Reynolds stress will decrease with bubble injection in high Reynolds numbers and the decreasing of Reynolds stress with polymer additives is much more than pure water case.
Turbulent mixing and wave radiation in non-Boussinesq internal bores
DEFF Research Database (Denmark)
Borden, Zac; Koblitz, Tilman; Meiburg, Eckart
2012-01-01
Bores, or hydraulic jumps, appear in many natural settings and are useful in many industrial applications. If the densities of the two fluids between which a bore propagates are very different (i.e., water and air), the less dense fluid can be neglected when modeling a bore analytically-a single...... ratio, defined as the ratio of the density of the lighter fluid to the heavier fluid, is greater than approximately one half. For smaller density ratios, undular waves generated at the bore's front dominate over the effects of turbulent mixing, and the expanding layer loses energy across the bore. Based...
DEFF Research Database (Denmark)
Nordkvist, Mikkel; Vognsen, Marie; Nienow, Alfred W.
2008-01-01
Mixing times were obtained by the iodine-thiosulphate decolorization technique using rotary jet heads (RJH) for mixing in a Perspex tank with an inner diameter of 0.75 m and an aspect ratio of 2.5 using both water (turbulent flow) and shear-thinning, carboxymethyl cellulose (CMC) solutions...
Hysteresis Behaviour of Mass Concrete Mixed with Plastic Fibre under Compression
A. A. Okeola; T. I. Sijuade
2016-01-01
Unreinforced concrete is a comparatively brittle substance when exposed to tensile stresses, the required tensile strength is provided by the introduction of steel which is used as reinforcement. The strength of concrete may be improved tremendously by the addition of fibre. This study focused on investigating the compressive strength of mass concrete mixed with different percentage of plastic fibre. Twelve samples of concrete cubes with varied percentage of plastic fibre at 7, 14 and 28 days...
Energy Technology Data Exchange (ETDEWEB)
Gaspar, Daniel J.; McCormick, Robert L.; Polikarpov, Evgueni; Fioroni, Gina; George, Anthe; Albrecht, Karl O.
2016-12-30
This report addresses the suitability of hydrocarbon and oxygenate functional groups for use as a diesel-like fuel blending component in an advanced, mixing-controlled, compression ignition combustion engine. The functional groups are chosen from those that could be derived from a biomass feedstock, and represent a full range of chemistries. This first systematic analysis of functional groups will be of value to all who are pursuing new bio-blendstocks for diesel-like fuels.
Large Eddy Simulation of Entropy Generation in a Turbulent Mixing Layer
Sheikhi, Reza H.; Safari, Mehdi; Hadi, Fatemeh
2013-11-01
Entropy transport equation is considered in large eddy simulation (LES) of turbulent flows. The irreversible entropy generation in this equation provides a more general description of subgrid scale (SGS) dissipation due to heat conduction, mass diffusion and viscosity effects. A new methodology is developed, termed the entropy filtered density function (En-FDF), to account for all individual entropy generation effects in turbulent flows. The En-FDF represents the joint probability density function of entropy, frequency, velocity and scalar fields within the SGS. An exact transport equation is developed for the En-FDF, which is modeled by a system of stochastic differential equations, incorporating the second law of thermodynamics. The modeled En-FDF transport equation is solved by a Lagrangian Monte Carlo method. The methodology is employed to simulate a turbulent mixing layer involving transport of passive scalars and entropy. Various modes of entropy generation are obtained from the En-FDF and analyzed. Predictions are assessed against data generated by direct numerical simulation (DNS). The En-FDF predictions are in good agreements with the DNS data.
Bakosi, J.; Franzese, P.; Boybeyi, Z.
2007-11-01
Dispersion of a passive scalar from concentrated sources in fully developed turbulent channel flow is studied with the probability density function (PDF) method. The joint PDF of velocity, turbulent frequency and scalar concentration is represented by a large number of Lagrangian particles. A stochastic near-wall PDF model combines the generalized Langevin model of Haworth and Pope [Phys. Fluids 29, 387 (1986)] with Durbin's [J. Fluid Mech. 249, 465 (1993)] method of elliptic relaxation to provide a mathematically exact treatment of convective and viscous transport with a nonlocal representation of the near-wall Reynolds stress anisotropy. The presence of walls is incorporated through the imposition of no-slip and impermeability conditions on particles without the use of damping or wall-functions. Information on the turbulent time scale is supplied by the gamma-distribution model of van Slooten et al. [Phys. Fluids 10, 246 (1998)]. Two different micromixing models are compared that incorporate the effect of small scale mixing on the transported scalar: the widely used interaction by exchange with the mean and the interaction by exchange with the conditional mean model. Single-point velocity and concentration statistics are compared to direct numerical simulation and experimental data at Reτ=1080 based on the friction velocity and the channel half width. The joint model accurately reproduces a wide variety of conditional and unconditional statistics in both physical and composition space.
Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO
Reffray, G.; Bourdalle-Badie, R.; Calone, C.
2015-01-01
Through two numerical experiments, a 1-D vertical model called NEMO1D was used to investigate physical and numerical turbulent-mixing behaviour. The results show that all the turbulent closures tested (k+l from Blanke and Delecluse, 1993, and two equation models: generic length scale closures from Umlauf and Burchard, 2003) are able to correctly reproduce the classical test of Kato and Phillips (1969) under favourable numerical conditions while some solutions may diverge depending on the degradation of the spatial and time discretization. The performances of turbulence models were then compared with data measured over a 1-year period (mid-2010 to mid-2011) at the PAPA station, located in the North Pacific Ocean. The modelled temperature and salinity were in good agreement with the observations, with a maximum temperature error between -2 and 2 °C during the stratified period (June to October). However, the results also depend on the numerical conditions. The vertical RMSE varied, for different turbulent closures, from 0.1 to 0.3 °C during the stratified period and from 0.03 to 0.15 °C during the homogeneous period. This 1-D configuration at the PAPA station (called PAPA1D) is now available in NEMO as a reference configuration including the input files and atmospheric forcing set described in this paper. Thus, all the results described can be recovered by downloading and launching PAPA1D. The configuration is described on the NEMO site (PAPA">http://www.nemo-ocean.eu/Using-NEMO/Configurations/C1D_PAPA). This package is a good starting point for further investigation of vertical processes.
Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames
2015-06-01
e.g. local extinction and re- ignition , interactions between flow compression and fast-reaction induced dilatation (reaction compression ), and to...time as a function of initial temperature in constant-pressure auto - ignition , and (b) the S-curves of perfectly stirred reactors (PSRs), for n...mechanism. The reduction covered auto - ignition and perfectly stirred reactors for equivalence ratio range of 0.5~1.5, initial temperature higher than
International Nuclear Information System (INIS)
Baranowski, D B; Malinowski, S P; Flatau, P J
2011-01-01
Changes in the ocean mixed layer caused by passage of two consecutive typhoons in the Western Pacific are presented. Ocean profiles were measured by a unique Argo float sampling the upper ocean in high repetition cycle with a period of about one day. It is shown that the typhoon passage coincides with cooling of the mixed layer and variations of its salinity. Independent data from satellite measurements of surface winds were used to set-up an and idealized numerical simulation of mixed layer evolution. Results, compared to Argo profiles, confirm known effect that cooling is a result of increased entrainment from the thermocline due to enhancement of turbulence in the upper ocean by the wind stress. Observed pattern of salinity changes in the mixed layer suggest important role of typhoon precipitation. Fast changes of the mixed layer in course of typhoon passage show that fast profiling (at least once a day) is crucial to study response of the upper ocean to tropical cyclone.
Implementation of k-kL-omega turbulence model for compressible flow into OpenFOAM
Czech Academy of Sciences Publication Activity Database
Kožíšek, Martin; Fürst, J.; Příhoda, Jaromír; Doerffer, P.
2016-01-01
Roč. 821, Januar (2016), s. 63-69 ISSN 1662-7482 R&D Projects: GA ČR GAP101/12/1271; GA TA ČR(CZ) TA03020277 Institutional support: RVO:61388998 Keywords : CFD * openFOAM * RANS * transition * turbulence Subject RIV: BK - Fluid Dynamics
Wiswall, John D.
For many aerospace applications, mixing enhancement between co-flowing streams has been identified as a critical and enabling technology. Due to short fuel residence times in scramjet combustors, combustion is limited by the molecular mixing of hydrogen (fuel) and air. Determining the mixedness of fuel and air in these complex supersonic flowfields is critical to the advancement of novel injection schemes currently being developed at UTA in collaboration with NASA Langley and intended to be used on a future two-stage to orbit (~Mach 16) hypersonic air-breathing vehicle for space access. Expanding on previous work, an instrument has been designed, fabricated, and tested in order to measure mean concentrations of injected helium (a passive scalar used instead of hazardous hydrogen) and to quantitatively characterize the nature of the high-frequency concentration fluctuations encountered in the compressible, turbulent, and high-speed (up to Mach 3.5) complex flows associated with the new supersonic injection schemes. This important high-frequency data is not yet attainable when employing other techniques such as Laser Induced Fluorescence, Filtered Rayleigh Scattering or mass spectroscopy in the same complex supersonic flows. The probe operates by exploiting the difference between the thermodynamic properties of two species through independent massflow measurements and calibration. The probe samples isokinetically from the flowfield's area of interest and the helium concentration may be uniquely determined by hot-film anemometry and internally measured stagnation conditions. The final design has a diameter of 0.25" and is only 2.22" long. The overall accuracy of the probe is 3% in molar fraction of helium. The frequency response of mean concentration measurements is estimated at 103 Hz, while high-frequency hot-film measurements were conducted at 60 kHz. Additionally, the work presents an analysis of the probe's internal mixing effects and the effects of the spatial
Yeung, P. K.; Sreenivasan, K. R.
2014-01-01
In a recent direct numerical simulation (DNS) study [P. K. Yeung and K. R. Sreenivasan, "Spectrum of passive scalars of high molecular diffusivity in turbulent mixing," J. Fluid Mech. 716, R14 (2013)] with Schmidt number as low as 1/2048, we verified the essential physical content of the theory of Batchelor, Howells, and Townsend ["Small-scale variation of convected quantities like temperature in turbulent fluid. 2. The case of large conductivity," J. Fluid Mech. 5, 134 (1959)] for turbulent passive scalar fields with very strong diffusivity, decaying in the absence of any production mechanism. In particular, we confirmed the existence of the -17/3 power of the scalar spectral density in the so-called inertial-diffusive range. In the present paper, we consider the DNS of the same problem, but in the presence of a uniform mean gradient, which leads to the production of scalar fluctuations at (primarily) the large scales. For the parameters of the simulations, the presence of the mean gradient alters the physics of mixing fundamentally at low Peclet numbers. While the spectrum still follows a -17/3 power law in the inertial-diffusive range, the pre-factor is non-universal and depends on the magnitude of the mean scalar gradient. Spectral transfer is greatly reduced in comparison with those for moderately and weakly diffusive scalars, leading to several distinctive features such as the absence of dissipative anomaly and a new balance of terms in the spectral transfer equation for the scalar variance, differing from the case of zero gradient. We use the DNS results to present an alternative explanation for the observed scaling behavior, and discuss a few spectral characteristics in detail.
Preliminary investigation of turbulent reactive mixing in PCRV/CV gas mixtures
International Nuclear Information System (INIS)
Boccio, J.L.
1978-08-01
Relaxation of the prima facie assumption of complete mixing of primary containment and secondary containment gases during postulated depressurization accidents within gas cooled reactors has led to a study program designed to identify and selectively quantify the relevant gas dynamic processes which are manifest during the depressurization event. Uncertainty in the degree of gas mixedness naturally leads to uncertainty in containment vessel design pressure and heat loads and possible combustion hazards therein. This report details an analytical approach in the modeling of the exhaust-jet structure during a penetration failure. A chemical kinetics model is also described for the possibility of examining diffusive flame structure assuming the exhaust jet is composed of combustibles as well. The salient features of the mixing model and associated reaction kinetics are embodied in the classical problem of a turbulent, chemically reacting jet exhausting into a stationary ambient atmosphere capable of supporting combustion. A so-called ''two equation'' turbulence model is linked to a chemical kinetics code describing the production of CO 2 and H 2 O with He and N 2 considered as inert diluents. The usefulness of the model is exemplified by experimental/numerical comparisons presented in the open literature and within this report. The need for such a calculational tool in HTGR safety research is stressed as well
Coherent fine scale eddies in turbulence transition of spatially-developing mixing layer
International Nuclear Information System (INIS)
Wang, Y.; Tanahashi, M.; Miyauchi, T.
2007-01-01
To investigate the relationship between characteristics of the coherent fine scale eddy and a laminar-turbulent transition, a direct numerical simulation (DNS) of a spatially-developing turbulent mixing layer with Re ω,0 = 700 was conducted. On the onset of the transition, strong coherent fine scale eddies appears in the mixing layer. The most expected value of maximum azimuthal velocity of the eddy is 2.0 times Kolmogorov velocity (u k ), and decreases to 1.2u k , which is an asymptotic value in the fully-developed state, through the transition. The energy dissipation rate around the eddy is twice as high compared with that in the fully-developed state. However, the most expected diameter and eigenvalues ratio of strain rate acting on the coherent fine scale eddy are maintained to be 8 times Kolmogorov length (η) and α:β:γ = -5:1:4 in the transition process. In addition to Kelvin-Helmholtz rollers, rib structures do not disappear in the transition process and are composed of lots of coherent fine scale eddies in the fully-developed state instead of a single eddy observed in early stage of the transition or in laminar flow
Evaluation of the Compressive Strength of Cement-Spent Resins Matrix Mixed with Bio char
International Nuclear Information System (INIS)
Zalina Laili; Muhamad Samudi Yasir; Zalina Laili; Mohd Abdul Wahab; Nur Azna Mahmud; Nurfazlina Zainal Abidin
2015-01-01
The evaluation of compressive strength of cement-spent resins matrix mixed with bio char was investigated. In this study, bio char with different percentage (5 %, 8 %, 11 % 14 % and 18 %) was used as alternative admixture material for cement solidification of spent resins. Some properties of the physical and chemical of spent resins and bio char were also investigated. The performance of cemented spent resins with the addition of bio char was evaluated based on their compressive strength and the water resistance test. The compressive strength was evaluated at three different curing periods of 7, 14 and 28 days, while 4 weeks of immersion in distilled water was chosen for water resistance test. The result indicated that the compressive strength at 7, 14 and 28 days of curing periods were above the minimum criterion for example > 3.45 MPa of acceptable level for cemented waste form. Statistical analysis showed that there was no significant relationship between the compressive strength of the specimen and the percentage of bio char content. Result from the water resistance test showed that only one specimen that contained of 5 % of bio char failed the water resistance test due to the high of spent resins/ bio char ratio. The compressive strength of cement solidified spent resins was found increased after the water resistance test indicating further hydration occurred after immersed in water. The results of this study also suggest that the specimen with 8 %, 11 %, 14 % and 18 % of bio char content were resistance in water and suitable for the leaching study of radionuclides from cement-bio char-spent resins matrix. (author)
International Nuclear Information System (INIS)
Kim, Hyeon Il
2010-02-01
In order to demonstrate the accuracy of predictions in a turbulent mixed convection regime in which both inertia and buoyancy force compete with each other, we found out that assessments done using a single-dimensional system code with a recently updated heat transfer package have shown that this approach cannot give a reasonable prediction of the wall temperature in a case involving strong heating, where the regime falls into turbulent mixed convection regime. It has been known that the main reason of this deficiency comes from the degraded heat transfer in turbulent mixed convection regime, which is below that of convective heat transfer during turbulent forced convection. We investigated two mechanisms that cause this deterioration in convective heat transfer influenced by buoyancy: (1) modification of turbulence, also known as the direct (structural) effect, through the buoyancy-induced production of turbulent kinetic energy: and (2) an indirect (external) effect that occurs through modification of the mean flow. We investigated the Launder-Sharma model of turbulence whether it can appropriately represent the mechanisms causing the degraded heat transfer in Computational Fluid Dynamics (CFD). We found out that this model can capture low Re effects such that a non-equilibrium turbulent boundary layer in turbulent mixed convection regime can be resolved. The model was verified and validated extensively initially with the commercial CFD code, Fluent with a user application package known as the User Defined Function (UDF). The results from this implementation were compared to a set of data that included (1) an experimental data commonly accepted as a standardized problem to verify a turbulent flow, (2) the results from a Direct Numerical Simulation (DNS) in a turbulent forced and mixed convection regime, (3) empirical correlations regarding the friction coefficient and the non-dimensional heat transfer coefficient, the Nusselt number for a turbulent forced
Drag Induced by Flat-Plate Imperfections in Compressible Turbulent Flow Regimes
Molton , Pascal; Hue , David; Bur , Reynald
2014-01-01
International audience; This paper presents the results of a coupled experimental and numerical study aimed at evaluating the influence of typical aircraft surface imperfections on the flat-plate drag production in fully turbulent conditions. A test campaign involving high-level measurement techniques, such as microdrag evaluation, near-wall laser Doppler velocimetry, and oil-film interferometry, has been carried out at several Mach numbers from 0.5 to 1.3 to quantify the impact of a large ra...
Quasi-Geostrophic Diagnosis of Mixed-Layer Dynamics Embedded in a Mesoscale Turbulent Field
Chavanne, C. P.; Klein, P.
2016-02-01
A new quasi-geostrophic model has been developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasi-geostrophic framework considered before since it takes into account the stratification within the surface mixed-layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant-stratification layers : a finite-thickness surface layer (or the mixed-layer) and an infinitely-deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal-wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive-equation numerical simulation. Correlation between simulated and diagnosed vertical velocities are significantly improved in the mixed-layer for the new model compared to the classical surface quasi-geostrophic model, reaching 0.9 near the surface.
Lin, P.; Pratt, D. T.
1987-01-01
A hybrid method has been developed for the numerical prediction of turbulent mixing in a spatially-developing, free shear layer. Most significantly, the computation incorporates the effects of large-scale structures, Schmidt number and Reynolds number on mixing, which have been overlooked in the past. In flow field prediction, large-eddy simulation was conducted by a modified 2-D vortex method with subgrid-scale modeling. The predicted mean velocities, shear layer growth rates, Reynolds stresses, and the RMS of longitudinal velocity fluctuations were found to be in good agreement with experiments, although the lateral velocity fluctuations were overpredicted. In scalar transport, the Monte Carlo method was extended to the simulation of the time-dependent pdf transport equation. For the first time, the mixing frequency in Curl's coalescence/dispersion model was estimated by using Broadwell and Breidenthal's theory of micromixing, which involves Schmidt number, Reynolds number and the local vorticity. Numerical tests were performed for a gaseous case and an aqueous case. Evidence that pure freestream fluids are entrained into the layer by large-scale motions was found in the predicted pdf. Mean concentration profiles were found to be insensitive to Schmidt number, while the unmixedness was higher for higher Schmidt number. Applications were made to mixing layers with isothermal, fast reactions. The predicted difference in product thickness of the two cases was in reasonable quantitative agreement with experimental measurements.
Spatial distribution of turbulent mixing in the upper ocean of the South China Sea
Directory of Open Access Journals (Sweden)
X.-D. Shang
2017-06-01
Full Text Available The spatial distribution of the dissipation rate (ε and diapycnal diffusivity (κ in the upper ocean of the South China Sea (SCS is presented from a measurement program conducted from 26 April to 23 May 2010. In the vertical distribution, the dissipation rates below the surface mixed layer were predominantly high in the thermocline where shear and stratification were strong. In the regional distribution, high dissipation rates and diapycnal diffusivities were observed in the region to the west of the Luzon Strait, with an average dissipation rate and diapycnal diffusivity of 8.3 × 10−9 W kg−1 and 2.7 × 10−5 m2 s−1, respectively, almost 1 order of magnitude higher than those in the central and southern SCS. In the region to the west of the Luzon Strait, the water column was characterized by strong shear and weak stratification. Elevated dissipation rates (ε > 10−7 W kg−1 and diapycnal diffusivities (κ > 10−4 m2 s−1, induced by shear instability, occurred in the water column. In the central and southern SCS, the water column was characterized by strong stratification and weak shear and the turbulent mixing was weak. Internal waves and internal tides generated near the Luzon Strait are expected to make a dominant contribution to the strong turbulent mixing and shear in the region to the west of the Luzon Strait. The observed dissipation rates were found to scale positively with the shear and stratification, which were consistent with the MacKinnon–Gregg model used for the continental shelf but different from the Gregg–Henyey scaling used for the open ocean.
Spatial distribution of turbulent mixing in the upper ocean of the South China Sea
Shang, Xiao-Dong; Liang, Chang-Rong; Chen, Gui-Ying
2017-06-01
The spatial distribution of the dissipation rate (ɛ) and diapycnal diffusivity (κ) in the upper ocean of the South China Sea (SCS) is presented from a measurement program conducted from 26 April to 23 May 2010. In the vertical distribution, the dissipation rates below the surface mixed layer were predominantly high in the thermocline where shear and stratification were strong. In the regional distribution, high dissipation rates and diapycnal diffusivities were observed in the region to the west of the Luzon Strait, with an average dissipation rate and diapycnal diffusivity of 8.3 × 10-9 W kg-1 and 2.7 × 10-5 m2 s-1, respectively, almost 1 order of magnitude higher than those in the central and southern SCS. In the region to the west of the Luzon Strait, the water column was characterized by strong shear and weak stratification. Elevated dissipation rates (ɛ > 10-7 W kg-1) and diapycnal diffusivities (κ > 10-4 m2 s-1), induced by shear instability, occurred in the water column. In the central and southern SCS, the water column was characterized by strong stratification and weak shear and the turbulent mixing was weak. Internal waves and internal tides generated near the Luzon Strait are expected to make a dominant contribution to the strong turbulent mixing and shear in the region to the west of the Luzon Strait. The observed dissipation rates were found to scale positively with the shear and stratification, which were consistent with the MacKinnon-Gregg model used for the continental shelf but different from the Gregg-Henyey scaling used for the open ocean.
Planar isotropy of passive scalar turbulent mixing with a mean perpendicular gradient.
Danaila, L; Dusek, J; Le Gal, P; Anselmet, F; Brun, C; Pumir, A
1999-08-01
A recently proposed evolution equation [Vaienti et al., Physica D 85, 405 (1994)] for the probability density functions (PDF's) of turbulent passive scalar increments obtained under the assumptions of fully three-dimensional homogeneity and isotropy is submitted to validation using direct numerical simulation (DNS) results of the mixing of a passive scalar with a nonzero mean gradient by a homogeneous and isotropic turbulent velocity field. It is shown that this approach leads to a quantitatively correct balance between the different terms of the equation, in a plane perpendicular to the mean gradient, at small scales and at large Péclet number. A weaker assumption of homogeneity and isotropy restricted to the plane normal to the mean gradient is then considered to derive an equation describing the evolution of the PDF's as a function of the spatial scale and the scalar increments. A very good agreement between the theory and the DNS data is obtained at all scales. As a particular case of the theory, we derive a generalized form for the well-known Yaglom equation (the isotropic relation between the second-order moments for temperature increments and the third-order velocity-temperature mixed moments). This approach allows us to determine quantitatively how the integral scale properties influence the properties of mixing throughout the whole range of scales. In the simple configuration considered here, the PDF's of the scalar increments perpendicular to the mean gradient can be theoretically described once the sources of inhomogeneity and anisotropy at large scales are correctly taken into account.
Experiments on mixing and combustion with low heat release in a turbulent shear flow
International Nuclear Information System (INIS)
Mungel, M.G.
1983-01-01
A new blowdown facility was built to study mixing and combustion in a turbulent shear layer. The system is capable of 100 m/s for three seconds in a 5 x 20 cm exit area on the high speed side, and 50 m/s in a 10 x 20 cm exit area on the low speed side. Dilute concentrations of hydrogen and fluorine, carried in an inert gas, react when both fluid streams meet at the tip of a splitter plate. The reaction is spontaneous, rapid, and highly exothermic. The resulting temperature field was studied using a rake of eight fast response thermometers placed across the width of the layer. Runs were performed for low heat release over a wide range of equivalence (concentration) ratios, at a Reynolds number of 30,800 based on velocity difference and vorticity thickness. The heat release is sufficiently low so that the overall properties of the mixing layer are not significantly changed from the cold case. The results show the presence of large, hot structures within the flow together with cool, irrotational tongues of freestream fluid that penetrate deep into the layer. Thus, it is possible for the entire width of the layer to be quite hot, owing to the passage of a large structure, or for the layer to be quite cool, owing to the presence of the cool fluid tongues. The mean temperature results from a duty cycle whereby a given point in the flow sees alternating hot and cool fluid which averages into the local mean. The results compare favorably with the recent theoretical model of Broadwell and Breidenthal for mixing and chemical reaction in a turbulent shear layer. With this model it is possible to bring the results for gases and liquids into quantitative agreement
Okasha , Nader M
2017-01-01
International audience; Concrete is recognized as the second most consumed product in our modern life after water. The variability in concrete properties is inevitable. The concrete mix is designed for a compressive strength that is different from, typically higher than, the value specified by the structural designer. Ways to calculate the compressive strength to be used in the mix design are provided in building and structural codes. These ways are all based on criteria related purely and on...
International Nuclear Information System (INIS)
Noor Azreen Masenwat; Mohamad Pauzi Ismail; Suhairy Sani; Ismail Mustapha; Nasharuddin Isa; Mohamad Haniza Mahmud; Mohammad Shahrizan Samsu
2014-01-01
To prevent radiation leaks at nuclear reactors, high-density concrete is used as an absorbent material for radiation from spreading into the environment. High-density concrete is a mixture of cement, sand, aggregate (usually high-density minerals) and water. In this research, hematite stone is used because of its mineral density higher than the granite used in conventional concrete mixing. Mix concrete in this study were divided into part 1 and part 2. In part 1, the concrete mixture is designed with the same ratio of 1: 2: 4 but differentiated in terms of water-cement ratio (0.60, 0.65, 0.70, 0.75, 0.80 ). Whereas, in part 2, the concrete mixture is designed to vary the ratio of 1: 1: 2, 1: 1.5: 3, 1: 2: 3, 1: 3: 6, 1: 2: 6 with water-cement ratio (0.7, 0.8, 0.85, 0.9). In each section, the division has also performed in a mixture of sand and fine sand hematite. Then, the physical characteristics of the density and the compressive strength of the mixture of part 1 and part 2 is measured. Comparisons were also made in terms of absorption of radiation by Cs-137 and Co-60 source for each mix. This paper describes and discusses the relationship between the concrete mixture ratio, the relationship with the water-cement ratio, compressive strength, density, different mixture of sand and fine sand hematite. (author)
PDF methods for combustion in high-speed turbulent flows
Pope, Stephen B.
1995-01-01
This report describes the research performed during the second year of this three-year project. The ultimate objective of the project is extend the applicability of probability density function (pdf) methods from incompressible to compressible turbulent reactive flows. As described in subsequent sections, progress has been made on: (1) formulation and modelling of pdf equations for compressible turbulence, in both homogeneous and inhomogeneous inert flows; and (2) implementation of the compressible model in various flow configurations, namely decaying isotropic turbulence, homogeneous shear flow and plane mixing layer.
PDF turbulence modeling and DNS
Hsu, A. T.
1992-01-01
The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in probability density function (pdf). A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models. The effect of Coriolis forces on compressible homogeneous turbulence is studied using direct numerical simulation (DNS). The numerical method used in this study is an eight order compact difference scheme. Contrary to the conclusions reached by previous DNS studies on incompressible isotropic turbulence, the present results show that the Coriolis force increases the dissipation rate of turbulent kinetic energy, and that anisotropy develops as the Coriolis force increases. The Taylor-Proudman theory does apply since the derivatives in the direction of the rotation axis vanishes rapidly. A closer analysis reveals that the dissipation rate of the incompressible component of the turbulent kinetic energy indeed decreases with a higher rotation rate, consistent with incompressible flow simulations (Bardina), while the dissipation rate of the compressible part increases; the net gain is positive. Inertial waves are observed in the simulation results.
Controls on Turbulent Mixing in a Strongly Stratified and Sheared Tidal River Plume
Energy Technology Data Exchange (ETDEWEB)
Jurisa, Joseph T.; Nash, Jonathan D.; Moum, James N.; Kilcher, Levi F.
2016-08-01
Considerable effort has been made to parameterize turbulent kinetic energy (TKE) dissipation rate ..epsilon.. and mixing in buoyant plumes and stratified shear flows. Here, a parameterization based on Kunze et al. is examined, which estimates ..epsilon.. as the amount of energy contained in an unstable shear layer (Ri < Ric) that must be dissipated to increase the Richardson number Ri = N2/S2 to a critical value Ric within a turbulent decay time scale. Observations from the tidal Columbia River plume are used to quantitatively assess the relevant parameters controlling ..epsilon.. over a range of tidal and river discharge forcings. Observed ..epsilon.. is found to be characterized by Kunze et al.'s form within a factor of 2, while exhibiting slightly decreased skill near Ri = Ric. Observed dissipation rates are compared to estimates from a constant interfacial drag formulation that neglects the direct effects of stratification. This is found to be appropriate in energetic regimes when the bulk-averaged Richardson number Rib is less than Ric/4. However, when Rib > Ric/4, the effects of stratification must be included. Similarly, ..epsilon.. scaled by the bulk velocity and density differences over the plume displays a clear dependence on Rib, decreasing as Rib approaches Ric. The Kunze et al. ..epsilon.. parameterization is modified to form an expression for the nondimensional dissipation rate that is solely a function of Rib, displaying good agreement with the observations. It is suggested that this formulation is broadly applicable for unstable to marginally unstable stratified shear flows.
Evaluation of scalar mixing and time scale models in PDF simulations of a turbulent premixed flame
Energy Technology Data Exchange (ETDEWEB)
Stoellinger, Michael; Heinz, Stefan [Department of Mathematics, University of Wyoming, Laramie, WY (United States)
2010-09-15
Numerical simulation results obtained with a transported scalar probability density function (PDF) method are presented for a piloted turbulent premixed flame. The accuracy of the PDF method depends on the scalar mixing model and the scalar time scale model. Three widely used scalar mixing models are evaluated: the interaction by exchange with the mean (IEM) model, the modified Curl's coalescence/dispersion (CD) model and the Euclidean minimum spanning tree (EMST) model. The three scalar mixing models are combined with a simple model for the scalar time scale which assumes a constant C{sub {phi}}=12 value. A comparison of the simulation results with available measurements shows that only the EMST model calculates accurately the mean and variance of the reaction progress variable. An evaluation of the structure of the PDF's of the reaction progress variable predicted by the three scalar mixing models confirms this conclusion: the IEM and CD models predict an unrealistic shape of the PDF. Simulations using various C{sub {phi}} values ranging from 2 to 50 combined with the three scalar mixing models have been performed. The observed deficiencies of the IEM and CD models persisted for all C{sub {phi}} values considered. The value C{sub {phi}}=12 combined with the EMST model was found to be an optimal choice. To avoid the ad hoc choice for C{sub {phi}}, more sophisticated models for the scalar time scale have been used in simulations using the EMST model. A new model for the scalar time scale which is based on a linear blending between a model for flamelet combustion and a model for distributed combustion is developed. The new model has proven to be very promising as a scalar time scale model which can be applied from flamelet to distributed combustion. (author)
Turbulent mixing over a shelf sea bank: linking physics to fish
Palmer, Matthew; Davis, Clare; Sharples, Jonathan
2010-05-01
The interaction between stratified flow and topography has previously been seen to generate enhanced vertical mixing both locally and far field by breaking of an intensified wave field close to the generation point and from waves propagating energy away from the source. Here we present a new series of measurements made during the summer of 2008 that includes transect data from a Scanfish towed CTD that provides a snapshot of the vertical density structure and distribution of chlorophyll over the Celtic Sea from beyond the shelf break to 250km onshelf. The transect supports previous findings of a persistent level of primary production identifiable as a subsurface chlorophyll maximum (SCM). Intensification of chlorophyll is seen at the shelf break region and provides a biological indicator of mixing. Similarly, we identify a high concentration of chlorophyll over Jones Bank 200km from the shelf break in 120m depth. Measurements from an array of acoustic current profilers, thermistor stings and a turbulence profiler reveal that the shallow sloping bank and strong tides regularly interact to produce hydraulic jumps in the lee of the bank during spring periods identifying Jones Bank as a mixing hotspot. The energy dissipated during these events act to erode the base of the strong thermocline and result in a vertical flux of nutrients into the stable, stratified environment. We suggest that it is the spring-neap modulation of this process which promotes intensified mixing over the bank. Nutrient measurements made during the experiment reveal that the ever changing mixing environment has significant influence on the phytoplankton community at the bank and is likely the key component in promoting enhanced biological production.
A mapping closure for turbulent scalar mixing using a time-evolving reference field
Girimaji, Sharath S.
1992-01-01
A general mapping-closure approach for modeling scalar mixing in homogeneous turbulence is developed. This approach is different from the previous methods in that the reference field also evolves according to the same equations as the physical scalar field. The use of a time-evolving Gaussian reference field results in a model that is similar to the mapping closure model of Pope (1991), which is based on the methodology of Chen et al. (1989). Both models yield identical relationships between the scalar variance and higher-order moments, which are in good agreement with heat conduction simulation data and can be consistent with any type of epsilon(phi) evolution. The present methodology can be extended to any reference field whose behavior is known. The possibility of a beta-pdf reference field is explored. The shortcomings of the mapping closure methods are discussed, and the limit at which the mapping becomes invalid is identified.
Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by
International Nuclear Information System (INIS)
Lee, Chiyoung; Kwack, Youngkyun; Park, Juyong; Shin, Changhwan; In, Wangkee
2013-01-01
Our research group has investigated the effect of P/D difference on the behavior of turbulent rod bundle flow without the mixing vane spacer grid, using PIV (Particle Image Velocimetry) and MIR (Matching Index of Refraction) techniques for tight lattice fuel rod bundle application. In this work, using the tight-lattice rod bundle with a twist-mixing vane spacer grid, the turbulent rod bundle flow is preliminarily examined to validate the PIV measurement and CFD (Computational Fluid Dynamics) simulation. The turbulent flow in the tight-lattice rod bundle with a twist-mixing vane spacer grid was preliminarily examined to validate the PIV measurement and CFD simulation. Both were in agreement with each other within a reasonable degree of accuracy. Using PIV measurement and CFD simulation tested in this work, the detailed investigations on the behavior of turbulent rod bundle flow with the twist-mixing vane spacer grid will be performed at various conditions, and reported in the near future
Optimum mix for fly ash geopolymer binder based on workability and compressive strength
Arafa, S. A.; Ali, A. Z. M.; Awal, A. S. M. A.; Loon, L. Y.
2018-04-01
The request of concrete is increasing every day for sustaining the necessity of development of structure. The production of OPC not only consumes big amount of natural resources and energy, but also emit significant quantity of CO2 to the atmosphere. Therefore, it is necessary to find alternatives like Geopolymer to make the concrete environment friendly. Geopolymer is an inorganic alumino-silicate compound, produced from fly ash. This paper describes the experimental work conducted by casting 40 geopolymer paste mixes, and was cured at 80°C for 24 h to evaluate the effect of various parameters affecting the workability and compressive strength. Alkaline solution to fly ash ratio and sodium hydroxide (NaOH) concentration were chosen as the key parameters of strength and workability. Laboratory investigation with different percentage of sodium hydroxide concentration and different alkaline liquid to fly ash ratio reveals that the optimum ratios are 10 M, AL/FA=0.5. It has generally been found that the workability decreased and the compressive strength increased with an increase in the concentration of sodium hydroxide solution. However, workability was increased and the compressive strength was decreased with the increase in the ratio of fly ash to alkaline solution.
Modeling Macro- and Micro-Scale Turbulent Mixing and Chemistry in Engine Exhaust Plumes
Menon, Suresh
1998-01-01
Simulation of turbulent mixing and chemical processes in the near-field plume and plume-vortex regimes has been successfully carried out recently using a reduced gas phase kinetics mechanism which substantially decreased the computational cost. A detailed mechanism including gas phase HOx, NOx, and SOx chemistry between the aircraft exhaust and the ambient air in near-field aircraft plumes is compiled. A reduced mechanism capturing the major chemical pathways is developed. Predictions by the reduced mechanism are found to be in good agreement with those by the detailed mechanism. With the reduced chemistry, the computer CPU time is saved by a factor of more than 3.5 for the near-field plume modeling. Distributions of major chemical species are obtained and analyzed. The computed sensitivities of major species with respect to reaction step are deduced for identification of the dominant gas phase kinetic reaction pathways in the jet plume. Both the near field plume and the plume-vortex regimes were investigated using advanced mixing models. In the near field, a stand-alone mixing model was used to investigate the impact of turbulent mixing on the micro- and macro-scale mixing processes using a reduced reaction kinetics model. The plume-vortex regime was simulated using a large-eddy simulation model. Vortex plume behind Boeing 737 and 747 aircraft was simulated along with relevant kinetics. Many features of the computed flow field show reasonable agreement with data. The entrainment of the engine plumes into the wing tip vortices and also the partial detrainment of the plume were numerically captured. The impact of fluid mechanics on the chemical processes was also studied. Results show that there are significant differences between spatial and temporal simulations especially in the predicted SO3 concentrations. This has important implications for the prediction of sulfuric acid aerosols in the wake and may partly explain the discrepancy between past numerical studies
Directory of Open Access Journals (Sweden)
Humaira Kanwal
2018-04-01
Full Text Available Effective utilization of the available resources is imperative approach to achieve the apex of productivity. The modern world is focusing on the conditioning, sustainability and recycling of the assets by imparting innovative techniques and methodologies. Keeping this in view, an experimental study was conducted to evaluate the strength of concrete made with treated waste water for structural use. In this study ninetysix cylinders of four mixes with coarse aggregates in combination with FW (Fresh Water, WW (Wastewater, TWW (Treated Wastewater and TS (Treated Sewagewere prepared. The workability of fresh concrete was checked before pouring of cylinders. The test cylinders were left for 7, 14, 21 and 28 days for curing. After curing, the compressive strength was measured on hardened concrete cylinders accordingly. Test results showed that workability of all the four mixes were between 25-50mm but ultimate compressive strength of concrete with WW was decreased and with TWW, TS at the age of 28 days do not change significantly. This research will open a new wicket in the horizon of recycling of construction materials. The conditioning and cyclic utilization will reduce the cost of the construction and building materials as well as minimize the use of natural resources. This novelty and calculating approach will save our natural assets and resources.
Multimode seeded Richtmyer-Meshkov mixing in a convergent, compressible, miscible plasma system
International Nuclear Information System (INIS)
Lanier, N.E.; Barnes, Cris W.; Batha, S.H.; Day, R.D.; Magelssen, G.R.; Scott, J.M.; Dunne, A.M.; Parker, K.W.; Rothman, S.D.
2003-01-01
Richtmyer-Meshkov (RM) mixing seeded by multimode initial surface perturbations in a convergent, compressible, miscible plasma system is measured on the OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] laser system. A strong shock (Mach 12-20), created by 50 laser beams, is used to accelerate impulsively a thin aluminum shell into a lower density foam. As the system converges, both interfaces of the aluminum are RM unstable and undergo mixing. Standard x-ray radiographic techniques are employed to survey accurately the zero-order hydrodynamics, the average radius and overall width, of the marker. LASNEX [G. B. Zimmerman et al., Comments on Plasma Physics 2, 51 (1975)] simulations are consistent with the zero-order behavior of initially smooth markers. In experiments with smooth aluminum markers, the measured marker width shortly after shock passage behaves incompressibly and thickens due to Bell-Plesset effects. At high convergence (>4), the marker begins to compress as the rebounding shock passes back through the marker. When an initial multimode perturbation is introduced to the outer surface of the marker, the measured marker width is observed to increase by 10-15 μm, and is substantially smaller than as-shot simulations using RAGE [R. M. Baltrusaitis et al., Phys. Fluids 8, 2471 (1996)] would predict
Fathali, M.; Deshiri, M. Khoshnami
2016-04-01
The shearless mixing layer is generated from the interaction of two homogeneous isotropic turbulence (HIT) fields with different integral scales ℓ1 and ℓ2 and different turbulent kinetic energies E1 and E2. In this study, the sensitivity of temporal evolutions of two-dimensional, incompressible shearless mixing layers to the parametric variations of ℓ1/ℓ2 and E1/E2 is investigated. The sensitivity methodology is based on the nonintrusive approach; using direct numerical simulation and generalized polynomial chaos expansion. The analysis is carried out at Reℓ 1=90 for the high-energy HIT region and different integral length scale ratios 1 /4 ≤ℓ1/ℓ2≤4 and turbulent kinetic energy ratios 1 ≤E1/E2≤30 . It is found that the most influential parameter on the variability of the mixing layer evolution is the turbulent kinetic energy while variations of the integral length scale show a negligible influence on the flow field variability. A significant level of anisotropy and intermittency is observed in both large and small scales. In particular, it is found that large scales have higher levels of intermittency and sensitivity to the variations of ℓ1/ℓ2 and E1/E2 compared to the small scales. Reconstructed response surfaces of the flow field intermittency and the turbulent penetration depth show monotonic dependence on ℓ1/ℓ2 and E1/E2 . The mixing layer growth rate and the mixing efficiency both show sensitive dependence on the initial condition parameters. However, the probability density function of these quantities shows relatively small solution variations in response to the variations of the initial condition parameters.
Two-step simulation of velocity and passive scalar mixing at high Schmidt number in turbulent jets
Rah, K. Jeff; Blanquart, Guillaume
2016-11-01
Simulation of passive scalar in the high Schmidt number turbulent mixing process requires higher computational cost than that of velocity fields, because the scalar is associated with smaller length scales than velocity. Thus, full simulation of both velocity and passive scalar with high Sc for a practical configuration is difficult to perform. In this work, a new approach to simulate velocity and passive scalar mixing at high Sc is suggested to reduce the computational cost. First, the velocity fields are resolved by Large Eddy Simulation (LES). Then, by extracting the velocity information from LES, the scalar inside a moving fluid blob is simulated by Direct Numerical Simulation (DNS). This two-step simulation method is applied to a turbulent jet and provides a new way to examine a scalar mixing process in a practical application with smaller computational cost. NSF, Samsung Scholarship.
Energy Technology Data Exchange (ETDEWEB)
Verma, Shashi Kant; Sinha, S.L. [National Institute of Technology, Raipur (India). Mechanical Engineering Dept.; Chandraker, D.K. [Bhabha Atomic Research Centre, Mumbai (India). Reactor Design and Development Group
2017-11-15
Turbulent mixing rate between adjacent subchannels in a two-phase flow has been known to be strongly dependent on the flow pattern. The most important aspect of turbulent motion is that the velocity and pressure at a fixed point do not remain constant with time even in steady state but go through very irregular high frequency fluctuations. These fluctuations influence the diffusion of scalar and vector quantities. The Advanced Heavy Water Reactor (AHWR) is a vertical pressure tube type, heavy water moderated and boiling light water cooled natural circulation based reactor. The fuel bundle of AHWR contains 54 fuel rods set in three concentric rings of 12, 18 and 24 fuel rods. This fuel bundle is divided into number of imaginary interacting flow channel called subchannels. Alteration from single phase to two phase flow situation occurs in reactor rod bundle with raise in power. The two phase flow regimes like bubbly, slug-churn, and annular flow are generally encountered in reactor rod bundle. Prediction of thermal margin of the reactor has necessitated the investigation of turbulent mixing rate of coolant between these subchannels under these flow regimes. Thus, it is fundamental to estimate the effect of spacer grids on turbulent mixing between subchannels of AHWR rod bundle.
Donkov, Sava; Stefanov, Ivan Z.
2018-03-01
We have set ourselves the task of obtaining the probability distribution function of the mass density of a self-gravitating isothermal compressible turbulent fluid from its physics. We have done this in the context of a new notion: the molecular clouds ensemble. We have applied a new approach that takes into account the fractal nature of the fluid. Using the medium equations, under the assumption of steady state, we show that the total energy per unit mass is an invariant with respect to the fractal scales. As a next step we obtain a non-linear integral equation for the dimensionless scale Q which is the third root of the integral of the probability distribution function. It is solved approximately up to the leading-order term in the series expansion. We obtain two solutions. They are power-law distributions with different slopes: the first one is -1.5 at low densities, corresponding to an equilibrium between all energies at a given scale, and the second one is -2 at high densities, corresponding to a free fall at small scales.
International Nuclear Information System (INIS)
Chen Xi; Li Songwei; Li Zhongchun; Du Sijia; Zhang Yu; Peng Huanhuan
2017-01-01
Spacer grids with mixing vanes are generally used in fuel assemblies of Pressurized Water Reactor (PWR), because that mixing vanes could enhance the lateral turbulent mixing in subchannels. Thus, heat exchangements are more efficient, and the value of departure from nucleate boiling (DNB) is greatly increased. Actually turbulent mixing is composed of two kinds of flows: swirling flow inside the subchannel and cross flow between subchannels. Swirling flow could induce mixing between hot water near the rod and cold water in the center of the subchannel, and may accelerate deviation of the bubbles from the rod surface. Besides, crossing flow help to mixing water between hot subchannels and cold subchannels, which impact relatively large flow area. As a result, how to accurately capture and how to predict the complicated mixing phenomenon are of great concernments. Recently many experimental studies has been conducted to provide detailed turbulent mixing in rod bundle, among which Laser Doppler Velocimetry method is widely used. With great development of Computational Fluid Dynamics, CFD has been validated as an analysis method for nuclear engineering, especially for single phase calculation. This paper presents the CFD simulation and validation of the turbulent mixing induced by spacer grid with mixing vanes in rod bundles. Experiment data used for validation came from 5 x 5 rod bundle test with LDV technology, which is organized by Science and Technology on Reactor System Design Technology Laboratory. A 5 x 5 rod bundle with two spacer grids were used. Each rod has dimension of 9.5 mm in outer diameter and distance between rods is 12.6 mm. Two axial bulk velocities were conducted at 3.0 m/s for high Reynolds number and 1.0 m/s for low Reynolds number. Working pressure was 1.0 bar, and temperature was about 25degC. Two different distances from the downstream of the mixing spacer grid and one from upstream were acquired. Mean axial velocities and turbulent intensities
Processing mixed-waste compressed-gas cylinders at the Oak Ridge Reservation
International Nuclear Information System (INIS)
Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.
1998-05-01
Until recently, several thousand kilograms of compressed gases were stored at the Oak Ridge Reservation (ORR), in Oak Ridge, Tennessee, because these cylinders could not be taken off-site in their state of configuration for disposal. Restrictions on the storage of old compressed-gas cylinders compelled the Waste Management Organization of Lockheed Martin Energy Systems, Inc. (LMES) to dispose of these materials. Furthermore, a milestone in the ORR Site Treatment Plan required repackaging and shipment off-site of 21 cylinders by September 30, 1997. A pilot project, coordinated by the Chemical Technology Division (CTD) at the Oak Ridge National Laboratory (ORNL), was undertaken to evaluate and recontainerize or neutralize these cylinders, which are mixed waste, to meet that milestone. Because the radiological component was considered to be confined to the exterior of the cylinder, the contents (once removed from the cylinder) could be handled as hazardous waste, and the cylinder could be handled as low-level waste (LLW). This pilot project to process 21 cylinders was important because of its potential impact. The successful completion of the project provides a newly demonstrated technology which can now be used to process the thousands of additional cylinders in inventory across the DOE complex. In this paper, many of the various aspects of implementing this project, including hurdles encountered and the lessons learned in overcoming them, are reported
International Nuclear Information System (INIS)
Pouransari, Zeinab; Vervisch, Luc; Johansson, Arne V.
2013-01-01
Highlights: ► A non-premixed turbulent flame close to a solid surface is studied using DNS. ► Heat release effects delay transition and enlarge fluctuation of density and pressure. ► The fine-scale structures damped and surface wrinkling diminished due to heat-release. ► Using semilocal scaling improves the collapse of turbulence statistic in inner region. ► There are regions of the flame where considerable (up to 10%) premixed burning occurs. -- Abstract: The present study concerns the role of heat release effects on characteristics mixing scales of turbulence in reacting wall-jet flows. Direct numerical simulations of exothermic reacting turbulent wall-jets are performed and compared to the isothermal reacting case. An evaluation of the heat-release effects on the structure of turbulence is given by examining the mixture fraction surface characteristics, diagnosing vortices and exploring the dissipation rate of the fuel and passive scalar concentrations, and moreover by illustration of probability density functions of reacting species and scatter plots of the local temperature against the mixture fraction. Primarily, heat release effects delay the transition, enlarge the fluctuation intensities of density and pressure and also enhance the fluctuation level of the species concentrations. However, it has a damping effect on all velocity fluctuation intensities and the Reynolds shear stress. A key result is that the fine-scale structures of turbulence are damped, the surface wrinkling is diminished and the vortices become larger due to heat-release effects. Taking into account the varying density by using semi-local scaling improves the collapse of the turbulence statistics in the inner region, but does not eliminate heat release induced differences in the outer region. Examining the two-dimensional premultiplied spanwise spectra of the streamwise velocity fluctuations indicates a shifting in the positions of the outer peaks, associated with large
Stress assessment in piping under synthetic thermal loads emulating turbulent fluid mixing
Energy Technology Data Exchange (ETDEWEB)
Costa Garrido, Oriol, E-mail: oriol.costa@ijs.si; El Shawish, Samir, E-mail: samir.elshawish@ijs.si; Cizelj, Leon, E-mail: leon.cizelj@ijs.si
2015-03-15
Highlights: • Generation of complex space-continuous and time-dependent temperature fields. • 1D and 3D thermo-mechanical analyses of pipes under complex surface thermal loads. • Surface temperatures and stress fluctuations are highly linearly correlated. • 1D and 3D results agree for a wide range of Fourier and Biot numbers. • Global thermo-mechanical loading promotes non-equibiaxial stress state. - Abstract: Thermal fatigue assessment of pipes due to turbulent fluid mixing in T-junctions is a rather difficult task because of the existing uncertainties and variability of induced thermal stresses. In these cases, thermal stresses arise on three-dimensional pipe structures due to complex thermal loads, known as thermal striping, acting at the fluid-wall interface. A recently developed approach for the generation of space-continuous and time-dependent temperature fields has been employed in this paper to reproduce fluid temperature fields of a case study from the literature. The paper aims to deliver a detailed study of the three-dimensional structural response of piping under the complex thermal loads arising in fluid mixing in T-junctions. Results of three-dimensional thermo-mechanical analyses show that fluctuations of surface temperatures and stresses are highly linearly correlated. Also, surface stress fluctuations, in axial and hoop directions, are almost equi-biaxial. These findings, representative on cross sections away from system boundaries, are moreover supported by the sensitivity analysis of Fourier and Biot numbers and by the comparison with standard one-dimensional analyses. Agreement between one- and three-dimensional results is found for a wide range of studied parameters. The study also comprises the effects of global thermo-mechanical loading on the surface stress state. Implemented mechanical boundary conditions develop more realistic overall system deformation and promote non-equibiaxial stresses.
Kawaguchi, Yusuke; Takeda, Hiroki
2017-04-01
This study focuses on the mixing processes in the vicinity of surface mixed layer (SML) of the Arctic Ocean. Turbulence activity and vertical heat transfer are quantitatively characterized in the Northwind Abyssal Plain, based on the RV Mirai Arctic cruise, during the transition from late summer to early winter 2014. During the cruise, noticeable storm events were observed, which came over the ship's location and contributed to the deepening of the SML. According to the ship-based microstructure observation, within the SML, the strong wind events produced enhanced dissipation rates of turbulent kinetic energy in the order of magnitude of ɛ = 10-6-10-4W kg-1. On thermal variance dissipation rate, χ increases toward the base of SML, reaching O(10-7) K2 s-1, resulting in vertical heat flux of O(10) W m-2. During the occasional energetic mixing events, the near-surface warm water was transferred downward and penetrated through the SML base, creating a cross-pycnocline high-temperature anomaly (CPHTA) at approximately 20-30 m depth. Near CPHTA, the vertical heat flux was anomalously magnified to O(10-100) W m-2. Following the fixed-point observation, in the regions of marginal and thick ice zones, the SML heat content was monitored using an autonomous drifting buoy, UpTempO. During most of the ice-covered period, the ocean-to-ice turbulent heat flux was dominant, rather than the diapycnal heat transfer across the SML bottom interface.
Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers
International Nuclear Information System (INIS)
Ghosh, Somnath; Friedrich, Rainer
2015-01-01
We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case
Turbulent mixed convection in vertical and inclined flat channels with aiding flows
Energy Technology Data Exchange (ETDEWEB)
Poskas, P.; Vilemas, J.; Adomaitis, J.E.; Bartkus, G.
1995-09-01
This paper presents an experimental study of turbulent mixed convection heat transfer for aiding flows in a vertical ({phi}=90{degrees}), inclined ({phi}=60{degrees},30{degrees}), and horizontal ({phi}=0{degrees}) flat channels with symmetrical heating and a ratio of height h to width b of about 1:10 and with length about 4 m (x/2h about 44). The study covered Re from 4x10{sup 3} to 5x10{sup 4} and Gr{sub q} from 5x10{sup 7}to 3x10{sup 10}. For the upper wall, a region of impaired heat transfer was found for all angular positions (from vertical to horizontal) and for bottom wall the augmentation of heat transfer in comparison to forced convection was revealed in the region of {phi}=0{degrees}-60{degrees}. Different characteristic buoyancy parameters were found for regions of impaired and enhanced heat transfer. General relations are suggested to predict the heat transfer for fully-developed-flow conditions and different angular positions.
Turbulence models in supersonic flows
International Nuclear Information System (INIS)
Shirani, E.; Ahmadikia, H.; Talebi, S.
2001-05-01
The aim of this paper is to evaluate five different turbulence models when used in rather complicated two-dimensional and axisymmetric supersonic flows. They are Baldwin-Lomax, k-l, k-ε, k-ω and k-ζ turbulence models. The compressibility effects, axisymmetric correction terms and some modifications for transition region are used and tested in the models. Two computer codes based on the control volume approach and two flux-splitting methods. Roe and Van Leer, are developed. The codes are used to simulate supersonic mixing layers, flow behind axisymmetric body, under expanded jet, and flow over hollow cylinder flare. The results are compared with experimental data and behavior of the turbulence models is examined. It is shown that both k-l and k-ζ models produce very good results. It is also shown that the compressibility correction in the model is required to obtain more accurate results. (author)
Verma, Shashi Kant; Sinha, S. L.; Chandraker, D. K.
2018-05-01
Numerical simulation has been carried out for the study of natural mixing of a Tracer (Passive scalar) to describe the development of turbulent diffusion in an injected sub-channel and, afterwards on, cross-mixing between adjacent sub-channels. In this investigation, post benchmark evaluation of the inter-subchannel mixing was initiated to test the ability of state-of-the-art Computational Fluid Dynamics (CFD) codes to numerically predict the important turbulence parameters downstream of a ring type spacer grid in a rod-bundle. A three-dimensional Computational Fluid Dynamics (CFD) tool (STAR-CCM+) was used to model the single phase flow through a 30° segment or 1/12th of the cross segment of a 54-rod bundle with a ring shaped spacer grid. Polyhedrons were used to discretize the computational domain, along with prismatic cells near the walls, with an overall mesh count of 5.2 M cell volumes. The Reynolds Stress Models (RSM) was tested because of RSM accounts for the turbulence anisotropy, to assess their capability in predicting the velocities as well as mass fraction of potassium nitrate measured in the experiment. In this way, the line probes are located in the different position of subchannels which could be used to characterize the progress of the mixing along the flow direction, and the degree of cross-mixing assessed using the quantity of tracer arriving in the neighbouring sub-channels. The predicted dimensionless mixing scalar along the length, however, was in good agreement with the measurements downstream of spacers.
Mohaghar, Mohammad; Carter, John; Pathikonda, Gokul; Ranjan, Devesh
2017-11-01
The current study experimentally investigates the influence of the initial Atwood ratio (At) on the evolution of Richtmyer-Meshkov instability at the Georgia Tech Shock Tube and Advanced Mixing Laboratory. Two Atwood numbers (At =0.22 and 0.67) are studied, which correspond to the gas combinations of nitrogen seeded with acetone vapor (light) over carbon dioxide (heavy) and same light gas over sulfur hexafluoride (heavy) respectively. A perturbed, multi-mode, inclined interface (with an amplitude to wavelength ratio of 0.088) is impulsively accelerated by the incident shock traveling vertically from light to heavy gas with a Mach number 1.55. The effect of Atwood ratio on turbulent mixing transition after reshock at the same non-dimensional times between the two cases is examined through ensemble-averaged turbulence statistics from simultaneous planar laser induced uorescence (PLIF) and particle image velocimetry (PIV) measurements. Preliminary studies over the smaller Atwood number indicates that turbulent mixing transition criteria can be satisfied after reshock. This work was supported by the National Science Foundation CAREER Award No. 1451994.
Compression therapy in mixed ulcers increases venous output and arterial perfusion.
Mosti, Giovanni; Iabichella, Maria Letizia; Partsch, Hugo
2012-01-01
This study was conducted to define bandage pressures that are safe and effective in treating leg ulcers of mixed arterial-venous etiology. In 25 patients with mixed-etiology leg ulcers who received inelastic bandages applied with pressures from 20 to 30, 31 to 40, and 41 to 50 mm Hg, the following measurements were performed before and after bandage application to ensure patient safety throughout the investigation: laser Doppler fluxmetry (LDF) close to the ulcer under the bandage and at the great toe, transcutaneous oxygen pressure (TcPo(2)) on the dorsum of the foot, and toe pressure. Ejection fraction (EF) of the venous pump was performed to assess efficacy on venous hemodynamics. LDF values under the bandages increased by 33% (95% confidence interval [CI], 17-48; P pressure ranges applied. At toe level, a significant decrease in flux of -20% (95% CI, -48 to 9; P bandage pressure >41 mm Hg. Toe pressure values and TcPo(2) showed a moderate increase, excluding a restriction to arterial perfusion induced by the bandages. Inelastic bandages were highly efficient in improving venous pumping function, increasing the reduced ejection fraction by 72% (95% CI, 50%-95%; P pressure of 21 to 30 mm Hg and by 103% (95% CI, 70%-128%; P ulceration, an ankle-brachial pressure index >0.5 and an absolute ankle pressure of >60 mm Hg, inelastic compression of up to 40 mm Hg does not impede arterial perfusion but may lead to a normalization of the highly reduced venous pumping function. Such bandages are therefore recommended in combination with walking exercises as the basic conservative management for patients with mixed leg ulcers. Copyright © 2012 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
International Nuclear Information System (INIS)
Pal, Sandip
2016-01-01
The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. - Highlights: • Lidar based study for CBL turbulence features • Water vapor and aerosol turbulence profiles • Processes governing boundary layer turbulence profiles using lidars
Energy Technology Data Exchange (ETDEWEB)
Pal, Sandip, E-mail: sup252@PSU.EDU
2016-06-01
The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. - Highlights: • Lidar based study for CBL turbulence features • Water vapor and aerosol turbulence profiles • Processes governing boundary layer turbulence profiles using lidars.
Measurement of flow by-passing and turbulent mixing in a model of a fast-reactor steam generator
International Nuclear Information System (INIS)
Little, A.J.; Fallows, T.; Central Electricity Generating Board, Leatherhead
1989-01-01
A description is given of measurements of edge by-pass velocities and turbulent mixing in a model of a fast reactor steam generator. The velocity measurements were carried out using a DANTEC triple-split fibre probe which allowed both the speed and flow angle of a velocity vector to be measured in a plane normal to the axis of the probe. The measurements revealed the presence of reverse flows in the by-pass and adjacent in-bank channels downstream of a grid plate. The magnitude of the by-pass flow was reduced considerably by the insertion of a kicker grid at the mid point between grid plates. Turbulent mixing measurements revealed that circumferential mixing in channels near the by-pass channel was up to 5 times greater than the radial mixing. The level of radial mixing at the edge of the bank was similar to that measured near the centre of the bank. A method of transposing mass diffusion measurements in air to thermal diffusivities of sodium is discussed. (orig.)
Directory of Open Access Journals (Sweden)
Abdulsalam Arafa Salaheddin
2017-01-01
Full Text Available The production of ordinary Portland cement (OPC consumes considerable natural resources and energy, and it also affects the emission of a significant quantity of CO2 in the atmosphere. This pervious geopolymer concrete study aims to explore an alternative binder without OPC. Pervious geopolymer concretes were prepared from fly ash (FA, sodium silicate (NaSiO3, sodium hydroxide (NaOH solution, and coarse aggregate (CA. The effects of pervious geopolymer concrete parameters that affect water permeability and compressive strength are evaluated. The FA to CA ratios of 1:6, 1:7,1:8, and 1:9 by weight, CA sizes of 5–10, 10–14, and 14–20 mm, constant NaSiO3/NaOH ratio of 2.5, alkaline liquid to fly ash (AL/FA ratios of 0.4, 0.5, and 0.6, and NaOH concentrations of 8, 10, and 12 M were the pervious geopolymer concrete mix proportions. The curing temperature of 80 °C for 24 h was used. The results showed that a pervious geopolymer concrete with CA of 10 mm achieved water permeability of 2.3 cm/s and compressive strength of 20 MPa with AL/FA ratio of 0.5, NaOH concentration of 10 M, and FA:CA of 1:7. GEOCRETE is indicated to have better engineering properties than does pervious concrete that is made of ordinary Portland cement.
Energy Technology Data Exchange (ETDEWEB)
Subramanian, G.
2005-09-15
Homogeneous Charge Compression Ignition (HCCI) is an alternative engine combustion process that offers the potential for substantial reductions in both NO{sub x} and particulate matter still providing high Diesel-like efficiencies. Combustion in HCCI mode takes place essentially by auto-ignition. It is mainly controlled by the chemical kinetics. It is therefore necessary to introduce detailed chemistry effects in combustion CFD codes in order to properly model the HCCI combustion process. The objective of this work is to develop an auto-ignition model including detailed chemical kinetics and its interactions with turbulence. Also, a comprehensive study has been performed to analyze the chemical influence of CO and H{sub 2} residual species on auto-ignition, which can be present in the exhaust gases. A new auto-ignition model, TKI-PDF (Tabulated Kinetics for Ignition - with turbulent mixing interactions through a pdf approach) dedicated to RANS 3D engine combustion CFD calculations is proposed. The TKI-PDF model is formulated in order to accommodate the detailed chemical kinetics of auto-ignition coupled with turbulence/chemistry interactions. The complete model development and its validation against experimental results are presented in two parts. The first part of this work describes the detailed chemistry input to the model. The second part is dedicated to the turbulent mixing description. A method based on a progress variable reaction rate tabulation is used. A look-up table for the progress variable reaction rates has been built through constant volume complex chemistry simulations. Instantaneous local reaction rates inside the CFD computational cell are then calculated by linear interpolation inside the look-up table depending on the local thermodynamic conditions. In order to introduce the turbulent mixing effects on auto-ignition, a presumed pdf approach is used. The model has been validated in different levels. First, the detailed kinetic approach was
On periodically excited turbulent mixing layer created downstream of a plane Chevron partition
International Nuclear Information System (INIS)
Kit, E; Wygnanski, I
2008-01-01
The flow in a turbulent mixing layer resulting from the merger of two parallel, different velocity streams, created downstream of a 'Chevron'-shaped jagged partition was simulated numerically on the basis of experiments published in 2007. A small flap that was hinged at the trailing edge of the partition could oscillate at a prescribed frequency, and induce regular oscillations in the flow. The latter regulated the large eddy structure that was amenable to phase-locked data acquisition revealing the large spanwise vortices that were generated by Kelvin-Helmholtz instability and streamwise vortices that were triggered by the chevron and were enhanced by a secondary instability in the flow. These, being locked in phase, were mapped by using particle image velocimetry. Numerical simulation of the equations of motion was then carried out in order to reveal the most unstable mechanisms leading to the generation of the streamwise vortical structure. The simulation started by assuming the flow to be two-dimensional (2D) and allowing the large spanwise eddies to develop temporally. At a prescribed time (or the state of development of the large spanwise rolls) the 2D computation was frozen and 3D simulation initiated. The latter exhibited typical evolution of translative instability, which bent the large spanwise structures and stretched some of them to create streamwise vorticity. Bulging of the spanwise eddies was also observed, but the bulging instability is a slower process than the bending one. The results of the simulations compare well to experiments and provide some understanding of this complex interaction.
Moshonkin, Sergey; Gusev, Anatoly; Zalesny, Vladimir; Diansky, Nikolay
2017-04-01
Series of experiments were performed with a three-dimensional, free surface, sigma coordinate eddy-permitting ocean circulation model for Atlantic (from 30°S) - Arctic and Bering sea domain (0.25 degrees resolution, Institute of Numerical Mathematics Ocean Model or INMOM) using vertical grid refinement in the zone of fully developed turbulence (40 sigma-levels). The model variables are horizontal velocity components, potential temperature, and salinity as well as free surface height. For parameterization of viscosity and diffusivity, the original splitting turbulence algorithm (STA) is used when total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF) split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage the analytical solution was obtained for TKE and TDF as functions of the buoyancy and velocity shift frequencies (BF and VSF). The proposed model with STA is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. For mixing simulation in the zone of turbulence decay, the two kind numerical experiments were carried out, as with assimilation of annual mean climatic buoyancy frequency, as with variation of Prandtl number function dependence upon the BF, VSF, TKE and TDF. The CORE-II data for 1948-2009 were used for experiments. Quality of temperature T and salinity S structure simulation is estimated by the comparison of model monthly profiles T and S averaged for 1980-2009, with T and S monthly data from the World Ocean Atlas 2013. Form of coefficients in equations for TKE and TDF on the generation-dissipation stage makes it possible to assimilate annual mean climatic buoyancy frequency in a varying degree that cardinally improves adequacy of model results to climatic data in all analyzed model domain. The numerical experiments with modified
Directory of Open Access Journals (Sweden)
Babafemi A.J.
2012-01-01
Full Text Available This study investigates the influence of curing age and mix proportions on the compressive strength of volcanic ash (VA blended cement laterized concrete. A total of 288 cubes of 100mm dimensions were cast and cured in water for 3, 7, 28, 56, 90 and 120 days of hydration with cement replacement by VA and sand replacement by laterite both ranging from 0 to 30% respectively while a control mix of 28-day target strength of 25N/mm2 (using British Method was adopted. The results show that the compressive strength of the VA-blended cement laterized concrete increased with the increase in curing age but decreased as the VA and laterite (LAT contents increased. The optimum replacement level was 20%LAT/20%VA. At this level the compressive strength increased with curing age at a decreasing rate beyond 28 days. The target compressive strength of 25N/mm2 was achieved for this mixture at 90 days of curing. VA content and curing age was noted to have significant effect (α ≤ 0.5 on the compressive strength of the VA-blended cement laterized concrete.
Hartland, Tucker; Schilling, Oleg
2017-11-01
Analytical self-similar solutions to several families of single- and two-scale, eddy viscosity and Reynolds stress turbulence models are presented for Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz instability-induced turbulent mixing. The use of algebraic relationships between model coefficients and physical observables (e.g., experimental growth rates) following from the self-similar solutions to calibrate a member of a given family of turbulence models is shown. It is demonstrated numerically that the algebraic relations accurately predict the value and variation of physical outputs of a Reynolds-averaged simulation in flow regimes that are consistent with the simplifying assumptions used to derive the solutions. The use of experimental and numerical simulation data on Reynolds stress anisotropy ratios to calibrate a Reynolds stress model is briefly illustrated. The implications of the analytical solutions for future Reynolds-averaged modeling of hydrodynamic instability-induced mixing are briefly discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
International Nuclear Information System (INIS)
Choo, Yeon Jun; Song, Chul-Hwa
2010-01-01
This experimental research is on the fluid-dynamic features produced by a steam injection into a subcooled water pool. The relevant phenomena could often be encountered in water cooled nuclear power plants. Two major topics, a turbulent jet and the internal circulation produced by a steam injection, were investigated separately using a particle image velocimetry (PIV) as a non-intrusive optical measurement technique. Physical domains of both experiments have a two-dimensional axi-symmetric geometry of which the boundary and initial conditions can be readily and well defined. The turbulent jet experiments with the upward discharging configuration provide the parametric values for quantitatively describing a turbulent jet such as the self-similar velocity profile, central velocity decay, spreading rate, etc. And in the internal circulation experiments with the downward discharging configuration, typical flow patterns in a whole pool region are measured in detail, which reveals both the local and macroscopic characteristics of the mixing behavior in a pool. This quantitative data on the condensing jet-induced mixing behavior in a pool could be utilized as benchmarking for a CFD simulation of relevant phenomena.
Study of emissions for a compression ignition engine fueled with a mix of DME and diesel
Jurchiş, Bogdan; Nicolae, Burnete; Călin, Iclodean; Nicolae Vlad, Burnete
2017-10-01
Currently, there is a growing demand for diesel engines, primarily due to the relatively low fuel consumption compared to spark-ignition engines. However, these engines have a great disadvantage in terms of pollution because they produce solid particles that ultimately form particulate matter (PM), which has harmful effects on human health and also on the environment. The toxic emissions from the diesel engine exhaust, like particulate matter (PM) and NOx, generated by the combustion of fossil fuels, lead to the necessity to develop green fuels which on one hand should be obtained from regenerative resources and on the other hand less polluting. In this paper, the authors focused on the amount of emissions produced by a diesel engine when running with a fuel mixture consisting of diesel and DME. Dimethyl ether (DME) is developed mainly by converting natural gas or biomass to synthesis gas (syngas). It is an extremely attractive resource for the future used in the transport industry, given that it can be obtained at low costs from renewable resources. Using DME mixed with diesel for the combustion process, besides the fact that it produces less smoke, the emission levels of particulate matter is reduced compared to diesel and in some situations, NOx emissions may decrease. DME has a high enough cetane number to perform well as a compression-ignition fuel but due to the poor lubrication and viscosity, it is difficult to be used as the main fuel for combustion
Directory of Open Access Journals (Sweden)
Shun Takahashi
2014-01-01
Full Text Available A computational code adopting immersed boundary methods for compressible gas-particle multiphase turbulent flows is developed and validated through two-dimensional numerical experiments. The turbulent flow region is modeled by a second-order pseudo skew-symmetric form with minimum dissipation, while the monotone upstream-centered scheme for conservation laws (MUSCL scheme is employed in the shock region. The present scheme is applied to the flow around a two-dimensional cylinder under various freestream Mach numbers. Compared with the original MUSCL scheme, the minimum dissipation enabled by the pseudo skew-symmetric form significantly improves the resolution of the vortex generated in the wake while retaining the shock capturing ability. In addition, the resulting aerodynamic force is significantly improved. Also, the present scheme is successfully applied to moving two-cylinder problems.
Bakosi, J.; Franzese, P.; Boybeyi, Z.
2010-01-01
Dispersion of a passive scalar from concentrated sources in fully developed turbulent channel flow is studied with the probability density function (PDF) method. The joint PDF of velocity, turbulent frequency and scalar concentration is represented by a large number of Lagrangian particles. A stochastic near-wall PDF model combines the generalized Langevin model of Haworth & Pope with Durbin's method of elliptic relaxation to provide a mathematically exact treatment of convective and viscous ...
A dynamic global-coefficient mixed subgrid-scale model for large-eddy simulation of turbulent flows
International Nuclear Information System (INIS)
Singh, Satbir; You, Donghyun
2013-01-01
Highlights: ► A new SGS model is developed for LES of turbulent flows in complex geometries. ► A dynamic global-coefficient SGS model is coupled with a scale-similarity model. ► Overcome some of difficulties associated with eddy-viscosity closures. ► Does not require averaging or clipping of the model coefficient for stabilization. ► The predictive capability is demonstrated in a number of turbulent flow simulations. -- Abstract: A dynamic global-coefficient mixed subgrid-scale eddy-viscosity model for large-eddy simulation of turbulent flows in complex geometries is developed. In the present model, the subgrid-scale stress is decomposed into the modified Leonard stress, cross stress, and subgrid-scale Reynolds stress. The modified Leonard stress is explicitly computed assuming a scale similarity, while the cross stress and the subgrid-scale Reynolds stress are modeled using the global-coefficient eddy-viscosity model. The model coefficient is determined by a dynamic procedure based on the global-equilibrium between the subgrid-scale dissipation and the viscous dissipation. The new model relieves some of the difficulties associated with an eddy-viscosity closure, such as the nonalignment of the principal axes of the subgrid-scale stress tensor and the strain rate tensor and the anisotropy of turbulent flow fields, while, like other dynamic global-coefficient models, it does not require averaging or clipping of the model coefficient for numerical stabilization. The combination of the global-coefficient eddy-viscosity model and a scale-similarity model is demonstrated to produce improved predictions in a number of turbulent flow simulations
International Nuclear Information System (INIS)
Nuzhnyj, A.S.; Rozanov, V.B.; Stepanov, R.V.; Shumskij, S.A.
2005-01-01
Stability of target compression in the laser thermonuclear synthesis is discussed. The process is determined by developing the Rayleigh-Taylor instability (RNI). A program unit for description of the RNI evolution by its initial distributions is developed. The results of statistical analysis of the RT mixing calculations are given. The analysis is carried out by means of learning base system and is substantiated on the generalization of great number of data, fulfilled by means of the neural network methods [ru
Lee, J.
1994-01-01
A generalized flow solver using an implicit Lower-upper (LU) diagonal decomposition based numerical technique has been coupled with three low-Reynolds number kappa-epsilon models for analysis of problems with engineering applications. The feasibility of using the LU technique to obtain efficient solutions to supersonic problems using the kappa-epsilon model has been demonstrated. The flow solver is then used to explore limitations and convergence characteristics of several popular two equation turbulence models. Several changes to the LU solver have been made to improve the efficiency of turbulent flow predictions. In general, the low-Reynolds number kappa-epsilon models are easier to implement than the models with wall-functions, but require much finer near-wall grid to accurately resolve the physics. The three kappa-epsilon models use different approaches to characterize the near wall regions of the flow. Therefore, the limitations imposed by the near wall characteristics have been carefully resolved. The convergence characteristics of a particular model using a given numerical technique are also an important, but most often overlooked, aspect of turbulence model predictions. It is found that some convergence characteristics could be sacrificed for more accurate near-wall prediction. However, even this gain in accuracy is not sufficient to model the effects of an external pressure gradient imposed by a shock-wave/ boundary-layer interaction. Additional work on turbulence models, especially for compressibility, is required since the solutions obtained with base line turbulence are in only reasonable agreement with the experimental data for the viscous interaction problems.
International Nuclear Information System (INIS)
Kawahara, Akimaro; Sadatomi, Michio; Sato, Yoshifusa; Saito, Hidetoshi.
1995-01-01
To provide data necessary for modeling turbulent mixing between subchannels in a nuclear fuel rod bundle, three experiments were made in series for equilibrium two-phase flows, in which net mass exchange does not occur between subchannels for each phase. The first one was the measurement of turbulent mixing rates of both gas and liquid phases by a tracer technique, using air and water as the working fluids. Three kinds of vertical test channels consisting of two subchannels were used. The data have shown that the turbulent mixing rate of each phase in a two-phase flow is strongly dependent on flow regime. So, to see the relation between turbulent mixing and two-phase flow configuration in the subchannels, the second experiment, flow visualization, was made. It was observed in slug and churn flows that a lateral inter-subchannel liquid flow of a large scale is caused by the successive axial transit of large gas bubbles in each subchannel, and the turbulent mixing for the liquid phase is dominated by this lateral flow. To investigate a driving force of such large scale lateral flow, the third experiment, the measurement of an instantaneous pressure differential between the subchannels, was made. The result showed that there is a close relationship between the liquid phase mixing rate and the magnitude of the pressure differential fluctuation. (author)
International Nuclear Information System (INIS)
Kawahara, A.; Sadatomi, M.; Tomino, T.; Sato, Y.
1998-01-01
This paper presents a slug-churn flow model for predicting turbulent mixing rates of both gas and liquid phase between adjacent subchannels in a BWR fuel rod bundle. In the model, the mixing rate of the liquid phase is calculated as the sum of the three components, i.e., turbulent diffusion, convective transfer and pressure difference fluctuations between the subchannels. The compenents of turbulent diffusion and convective transfer are calculated from Sadatomi et al.'s (1996) method, applicable to single-phase turbulent mixing by considering the effect of the increment of liquid velocity due to the presence of gas phase. The component of the pressure difference fluctuations is evaluated from a newly developed correlations. The mixing rate of the gas phase, on the other side, is calculated from a simple relation of mixing rate between gas and liquid phases. The validity of the proposed model has been confirmed with the turbulent mixing rates data of Rudzinski et al. as well as the present authors
International Nuclear Information System (INIS)
Kawahara, Akimaro; Sadatomi, Michio; Tomino, Takayoshi
2000-01-01
This paper presents a slug-churn flow model for predicting turbulent mixing rates of both gas and liquid phases between adjacent subchannels in a BWR fuel rod bundle. In the model, the mixing rate of the liquid phase is calculated as the sum of the three components, i.e., turbulent diffusion, convective transfer and pressure difference fluctuations between the subchannels. The components of turbulent diffusion and convective transfer are calculated from Sadatomi et al.'s (1996) method, applicable to single-phase turbulent mixing, by considering the effect of the increment of liquid velocity due to the presence of gas phase. The component of the pressure difference fluctuations is evaluated from a newly developed correlation. The mixing rate of the gas phase, on the other side, is calculated from a simple relation of mixing rate between gas and liquid phases. The validity of the proposed model has been confirmed with the turbulent mixing rates data of Rudzinski et al. as well as the present authors. (author)
Miller, R. S.; Bellan, J.
1997-01-01
An Investigation of the statistical description of binary mixing and/or reaction between a carrier gas and an evaporated vapor species in two-phase gas-liquid turbulent flows is perfomed through both theroetical analysis and comparisons with results from direct numerical simulations (DNS) of a two-phase mixing layer.
Optimal sensor placement for control of a supersonic mixed-compression inlet with variable geometry
Moore, Kenneth Thomas
A method of using fluid dynamics models for the generation of models that are useable for control design and analysis is investigated. The problem considered is the control of the normal shock location in the VDC inlet, which is a mixed-compression, supersonic, variable-geometry inlet of a jet engine. A quasi-one-dimensional set of fluid equations incorporating bleed and moving walls is developed. An object-oriented environment is developed for simulation of flow systems under closed-loop control. A public interface between the controller and fluid classes is defined. A linear model representing the dynamics of the VDC inlet is developed from the finite difference equations, and its eigenstructure is analyzed. The order of this model is reduced using the square root balanced model reduction method to produce a reduced-order linear model that is suitable for control design and analysis tasks. A modification to this method that improves the accuracy of the reduced-order linear model for the purpose of sensor placement is presented and analyzed. The reduced-order linear model is used to develop a sensor placement method that quantifies as a function of the sensor location the ability of a sensor to provide information on the variable of interest for control. This method is used to develop a sensor placement metric for the VDC inlet. The reduced-order linear model is also used to design a closed loop control system to control the shock position in the VDC inlet. The object-oriented simulation code is used to simulate the nonlinear fluid equations under closed-loop control.
Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion
Badra, Jihad; Farooq, Aamir; Sim, Jaeheon; Viollet, Yoann; Im, Hong G.; Chang, Junseok
2016-01-01
Gasoline compression ignition (GCI) engines have been considered an attractive alternative to traditional spark ignition engines. Low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and in the volatility range of gasoline fuels. In this study, we have investigated the effect of different injection timings at part-load conditions using light naphtha stream in single cylinder engine experiments in the GCI combustion mode with injection pressure of 130 bar. A toluene primary reference fuel (TPRF) was used as a surrogate for the light naphtha in the engine simulations performed here. A physical surrogate based on the evaporation characteristics of the light naphtha has been developed and its properties have been implemented in the engine simulations. Full cycle GCI computational fluid dynamics (CFD) engine simulations have been successfully performed while changing the start of injection (SOI) timing from -50° to -11 ° CAD aTDC. The effect of SOI on mixing and combustion phasing was investigated using detailed equivalence ratio-temperature maps and ignition delay times. Both experimental and computational results consistently showed that an SOI of -30° CAD aTDC has the most advanced combustion phasing (CA50), with the highest NOx emission. The effects of the SOI on the fuel containment in the bowl of the piston, the ignition delay time, combustion rate and emissions have been carefully examined through the CFD calculations. It was found that the competition between the equivalence ratio and temperature is the controlling parameter in determining the combustion phasings.
Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion
Badra, Jihad
2016-04-05
Gasoline compression ignition (GCI) engines have been considered an attractive alternative to traditional spark ignition engines. Low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and in the volatility range of gasoline fuels. In this study, we have investigated the effect of different injection timings at part-load conditions using light naphtha stream in single cylinder engine experiments in the GCI combustion mode with injection pressure of 130 bar. A toluene primary reference fuel (TPRF) was used as a surrogate for the light naphtha in the engine simulations performed here. A physical surrogate based on the evaporation characteristics of the light naphtha has been developed and its properties have been implemented in the engine simulations. Full cycle GCI computational fluid dynamics (CFD) engine simulations have been successfully performed while changing the start of injection (SOI) timing from -50° to -11 ° CAD aTDC. The effect of SOI on mixing and combustion phasing was investigated using detailed equivalence ratio-temperature maps and ignition delay times. Both experimental and computational results consistently showed that an SOI of -30° CAD aTDC has the most advanced combustion phasing (CA50), with the highest NOx emission. The effects of the SOI on the fuel containment in the bowl of the piston, the ignition delay time, combustion rate and emissions have been carefully examined through the CFD calculations. It was found that the competition between the equivalence ratio and temperature is the controlling parameter in determining the combustion phasings.
The structure concept in the description of mixing turbulence: the 2SFK model
International Nuclear Information System (INIS)
Llor, A.; Poujade, O.; Lardjane, N.
2009-01-01
To meet our modelling needs on turbulent flows produced by gravitational instabilities (of Rayleigh-Taylor or Richtmyer-Meshkov type), we have developed an original approach, designated as 2SFK for '2-structure, 2-fluid, 2-turbulent'. We provide the physical elements, theoretical, experimental, and numerical, which support this choice. A full description being out of question here, we give the principles of the model derivation, which hinges around an averaging conditioned by presence functions of the large structures in the flow, and discuss its distinctive properties compared to usual 'single-fluid' models. Numerical 1-dimension results on elementary flows illustrate the satisfactory behaviour of the model. All along this article, emphasis is given on the peculiar characteristics of turbulence in the Rayleigh-Taylor flow (possibly under variable acceleration): energy balance, characteristic size of large eddies, directed transport, enhanced diffusion, etc. (authors)
International Nuclear Information System (INIS)
Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu
2011-01-01
The turbulent magnetic diffusivity in the solar convection zone is one of the most poorly constrained ingredients of mean-field dynamo models. This lack of constraint has previously led to controversy regarding the most appropriate set of parameters, as different assumptions on the value of turbulent diffusivity lead to radically different solar cycle predictions. Typically, the dynamo community uses double-step diffusivity profiles characterized by low values of diffusivity in the bulk of the convection zone. However, these low diffusivity values are not consistent with theoretical estimates based on mixing-length theory, which suggest much higher values for turbulent diffusivity. To make matters worse, kinematic dynamo simulations cannot yield sustainable magnetic cycles using these theoretical estimates. In this work, we show that magnetic cycles become viable if we combine the theoretically estimated diffusivity profile with magnetic quenching of the diffusivity. Furthermore, we find that the main features of this solution can be reproduced by a dynamo simulation using a prescribed (kinematic) diffusivity profile that is based on the spatiotemporal geometric average of the dynamically quenched diffusivity. This bridges the gap between dynamically quenched and kinematic dynamo models, supporting their usage as viable tools for understanding the solar magnetic cycle.
Velocity and concentration fields in turbulent buoyant mixing in tilted tubes
Znaien, J.; Moisy, F.; Hulin, J. P.; Salin, D.; Hinch, E. J.
2008-11-01
2D PIV and LIF measurements have been performed on buoyancy driven flows of two miscible fluids of the same viscosity in a tube tilted at different angles θ from vertical and at different density contrasts (characterized by the Atwood number At). As θ increases and At decreases, the flow regime evolves, behind the front, from a turbulent shear flow towards a laminar counter flow with 3 layers of different concentrations. Time variations of the structure function show that both intermittent and developed turbulence occur in intermediate conditions. In the turbulent regime (Reλ˜60) the magnitudes of the longitudinal u'^2 and transverse v'^2 velocity fluctuations and of the component u'v' of the Reynolds stress tensor are shown to be largest on the tube axis while viscous stresses is only important close to the walls. The analyzis of the momentum transfer in the flow with buoyancy forces estimated from the concentration gradients demonstrates that 3D effects are required to achieve the momentum balance. These results are discussed in the framework of classical turbulence models.
Energy Technology Data Exchange (ETDEWEB)
Vorotilin, V. P., E-mail: VPVorotilin@yandex.ru [Russian Academy of Sciences, Institute of Applied Mechanics (Russian Federation)
2017-01-15
A generalization of the theory of chemical transformation processes under turbulent mixing of reactants and arbitrary values of the rate of molecular reactions is presented that was previously developed for the variant of an instantaneous reaction [13]. The use of the features of instantaneous reactions when considering the general case, namely, the introduction of the concept of effective reaction for the reactant volumes and writing a closing conservation equation for these volumes, became possible due to the partition of the whole amount of reactants into “active” and “passive” classes; the reactants of the first class are not mixed and react by the mechanism of instantaneous reactions, while the reactants of the second class approach each other only through molecular diffusion, and therefore their contribution to the reaction process can be neglected. The physical mechanism of reaction for the limit regime of an ideal mixing reactor (IMR) is revealed and described. Although formally the reaction rate in this regime depends on the concentration of passive fractions of the reactants, according to the theory presented, the true (hidden) mechanism of the reaction is associated only with the reaction of the active fractions of the reactants with vanishingly small concentration in the volume of the reactor. It is shown that the rate constant of fast chemical reactions can be evaluated when the mixing intensity of reactants is much less than that needed to reach the mixing conditions in an IMR.
Wang, Yin; Xu, Wei; He, Xiao-Zhou; Yik, Hiu-Fai; Wang, Xiao-Ping; Schumacher, Jorg; Tong, Penger
2017-11-01
We report a combined experimental and numerical study of the scaling properties of the temperature variance profile η(z) along the central z axis of turbulent Rayleigh-Bénard convection in a thin disk cell and an upright cylinder of aspect ratio unity. In the mixing zone outside the thermal boundary layer region, the measured η(z) is found to scale with the cell height H in both cells and obey a power law, η(z) (z/H)ɛ, with the obtained values of ɛ being very close to -1. Based on the experimental and numerical findings, we derive a new equation for η(z) in the mixing zone, which has a power-law solution in good agreement with the experimental and numerical results. Our work thus provides a common framework for understanding the effect of boundary layer fluctuations on the scaling properties of the temperature variance profile in turbulent Rayleigh-Bénard convection. This work was supported in part by Hong Kong Research Grants Council.
Energy Technology Data Exchange (ETDEWEB)
Frank, Jonathan H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Pickett, Lyle M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Bisson, Scott E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Remote Sensing and Energetic Materials Dept.; Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). combustion Chemistry Dept.; Ruggles, Adam J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Skeen, Scott A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Manin, Julien Luc [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Huang, Erxiong [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Cicone, Dave J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Sphicas, Panos [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.
2015-09-01
In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitative high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.
Pal, Sandip
2016-06-01
The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. Copyright © 2016 Elsevier B.V. All rights reserved.
Statistics of a mixed Eulerian-Lagrangian velocity increment in fully developed turbulence
International Nuclear Information System (INIS)
Friedrich, R; Kamps, O; Grauer, R; Homann, H
2009-01-01
We investigate the relationship between Eulerian and Lagrangian probability density functions obtained from numerical simulations of two-dimensional as well as three-dimensional turbulence. We show that in contrast to the structure functions of the Lagrangian velocity increment δ τ v(y)=u(x(y, τ), τ)- u(y, 0), where u(x, t) denotes the Eulerian velocity and x(y, t) the particle path initially starting at x(y, 0)=y, the structure functions of the velocity increment δ τ w(y)=u(x(y, τ), τ)- u(y, τ) exhibit a wide range of scaling behavior. Similar scaling indices are detected for the structure functions for particles diffusing in frozen turbulent fields. Furthermore, we discuss a connection to the scaling of Eulerian transversal structure functions.
Mansour, Mohy S.
2016-10-22
The mixing field is known to be one of the key parameters that affect the stability and structure of partially premixed flames. Data in these flames are now available covering the effects of turbulence, combustion system geometry, level of partially premixing and fuel type. However, quantitative analyses of the flame structure based on the mixing field are not yet available. The aim of this work is to present a comprehensive study of the effects of the mixing fields on the structure and stability of partially premixed methane flames. The mixing field in a concentric flow conical nozzle (CFCN) burner with well-controlled mechanism of the mixing is investigated using Rayleigh scattering technique. The flame stability, structure and flow field of some selected cases are presented using LIF of OH and PIV. The experimental data of the mixing field cover wide ranges of Reynolds number, equivalence ratio and mixing length. The data show that the mixing field is significantly affected by the mixing length and the ratio of the air-to-fuel velocities. The Reynolds number has a minimum effect on the mixing field in high turbulent flow regime and the stability is significantly affected by the turbulence level. The temporal fluctuations of the range of mixture fraction within the mixing field correlate with the flame stability. The highest point of stability occurs at recess distances where fluid mixtures near the jet exit plane are mostly within the flammability limits. This paper provides some correlations between the stability range in mixture fraction space and the turbulence level for different equivalence ratios.
International Nuclear Information System (INIS)
Jackson, J.D.
2011-01-01
The early experimental studies of buoyancy-influenced turbulent convective heat transfer to fluids flowing upwards and downwards in long uniformly heated vertical tubes were mainly performed using water at atmospheric pressure as the working fluid. In addition, some experiments using air were reported and even some using mercury. At that time there was also quite a lot of interest in heat transfer to water at supercritical pressure and also carbon dioxide. More recently, experimental results have been obtained using liquid sodium. The Prandtl numbers in the studies referred to above cover a wide range of values, being well in excess of unity under some conditions in the case of the supercritical pressure fluids and atmospheric pressure water, just under unity in the case of air, much less than unity in the case of mercury and even lower in the case of liquid sodium. Over the years a good general understanding has gradually been achieved of the complex manner in which buoyancy affects heat transfer in conventional fluids such as water and air. Up to a point, the behaviour in the case of a liquid metal such as mercury can be reconciled with such arguments. However, this is certainly not so in the case of liquid sodium. In the present paper results from a number of experimental studies of buoyancy-influenced heat transfer in vertical tubes are reviewed. This is done with the aim of providing a picture of observed behaviour consistent with our understanding of the basic mechanisms of convective heat transfer, taking account of the complicated manner in which the mean motion, turbulence and the heat transfer are affected by buoyancy. The starting point is to view convective heat transfer in wall shear flows in terms of the local balance between diffusion of heat (turbulent and molecular) and advection of heat by the flowing fluid. Prandtl number affects the radial temperature profile and therefore the variation of density across the shear flow and, in turn, the extent
Detailed simulations of liquid and solid-liquid mixing : Turbulent agitated flow and mass transfer
Hartmann, H.
2005-01-01
This thesis aims at a contribution to reliable and accurate predictions of complex, multi-phase processes. The reader is presented detailed simulations on liquid and solid-liquid mixing using large eddy simulations (LES) including scalar mixing and particle transport in a Rushton turbine stirred
Clay, M. P.; Yeung, P. K.; Buaria, D.; Gotoh, T.
2017-11-01
Turbulent mixing at high Schmidt number is a multiscale problem which places demanding requirements on direct numerical simulations to resolve fluctuations down the to Batchelor scale. We use a dual-grid, dual-scheme and dual-communicator approach where velocity and scalar fields are computed by separate groups of parallel processes, the latter using a combined compact finite difference (CCD) scheme on finer grid with a static 3-D domain decomposition free of the communication overhead of memory transposes. A high degree of scalability is achieved for a 81923 scalar field at Schmidt number 512 in turbulence with a modest inertial range, by overlapping communication with computation whenever possible. On the Cray XE6 partition of Blue Waters, use of a dedicated thread for communication combined with OpenMP locks and nested parallelism reduces CCD timings by 34% compared to an MPI baseline. The code has been further optimized for the 27-petaflops Cray XK7 machine Titan using GPUs as accelerators with the latest OpenMP 4.5 directives, giving 2.7X speedup compared to CPU-only execution at the largest problem size. Supported by NSF Grant ACI-1036170, the NCSA Blue Waters Project with subaward via UIUC, and a DOE INCITE allocation at ORNL.
Comportamento à compressão de solo estabilizado com cimento utilizado em colunas de DEEP Soil Mixing
Geraldo Vanzolini Moretti
2012-01-01
Resumo: Apresenta-se neste trabalho o estudo comportamento à compressão não confinada de um solo argiloso aluvionar estabilizado segundo a metodologia Deep Soil Mixing (DSM). Esta técnica consiste no tratamento de solos moles através da mistura deste com agentes químicos estabilizantes, podendo-se utilizar cal e/ou cimento. Para a condução deste trabalho foram executadas colunas de DSM sob um aterro rodoviário localizado no nordeste do Brasil, com aproximadamente 300m de extensão. O sítio de ...
DEFF Research Database (Denmark)
Sadrizadeh, Sasan; Afshari, Alireza; Karimipanah, Taghi
2016-01-01
Highlights •Airborne particles released from surgical team members are major sources of surgical site infections. •Effect of surgeon’s posture on particle distribution within the surgical area is not well known and documented. •Mobile laminar units were investigated as an addition to conventional...... turbulent-mixing operating theatre. •With proper work practice, the laminar units reduced the airborne bacteria concentration down to an acceptable level. •Lower source strength in general resulted from a high protective clothing system reduce the bacteria concentration.......Highlights •Airborne particles released from surgical team members are major sources of surgical site infections. •Effect of surgeon’s posture on particle distribution within the surgical area is not well known and documented. •Mobile laminar units were investigated as an addition to conventional...
DNS of non-premixed combustion in a compressible mixing layer
Bastiaans, R.J.M.; Somers, L.M.T.; Lange, de H.C.; Geurts, B.J.
2001-01-01
The non-premixed reaction of fuel with air in a mixing layer is studied using DNS. The situation is a model for the mixing-controlled combustion in a Diesel engine. We show that the combustion region can be comparably passive with respect to relatively large scale aerodynamic instabilities. However
Compressive strength of a concrete mix for pavement blocks incorporating industrial by-product
CSIR Research Space (South Africa)
Mokoena, Refiloe
2017-07-01
Full Text Available - reference 3 0 0.26 808 0 1062 344 210 0 - Mix 8 50 0.28 404 404 1062 212 226 0 0 Mix 8A 50 0.28 404 404 1062 212 226 3.10 5 Mix 8B 50 0.28 404 404 1062 212 226 6.21 10 Mix 9 90 0.28 81 727 1062 106 226 0 55 *water:binder ratio where fly ash and cement... was made for the 90% fly ash specimens due to the specimens disintegrating once placed in water. These specimens were therefore cured in heavy duty plastic bags; mixes 3, 6 and 9 were cured in the heavy duty bags before crushing on the appropriate days...
Processing of mixed-waste compressed-gas cylinders on the Oak Ridge Reservation
International Nuclear Information System (INIS)
Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.
1998-03-01
To comply with restrictions on the storage of old compressed gas cylinders, the environmental management organization of Lockheed Martin Energy Systems must dispose of several thousand kilograms of compressed gases stored on the Oak Ridge Reservation (ORR) because the cylinders cannot be taken off-site for disposal in their current configuration. In the ORR Site Treatment Plan, a milestone is cited that requires repackaging and shipment off-site of 21 cylinders by September 30, 1997. A project was undertaken to first evaluate and then either recontainerize or neutralize these cylinders using a transportable compressed gas recontainerization skid (TCGRS), which was developed by Integrated Environmental Services of Atlanta. The transportable system can: (1) sample, analyze, and identify at the site the chemical and radiological content of each cylinder, even those with inoperable valves; (2) breach cylinders, when necessary, to release their contents into a containment chamber; and (3) either neutralize the gas or liquid contents within the containment chamber or transfer the gas or liquids to a new cylinder. The old cylinders and cylinder fragments were disposed of and the gases neutralized or transferred to new cylinders for transportation off-site for disposal. The entire operation to process the 21 cylinders took place in only 5 days once the system was approved for operation. The system performed as expected and can now be used to process the potentially thousands of more cylinders located across the US Department of Energy (DOE) complex that have not yet been declared surplus
Urban, K.; Sicakova, A.
2017-10-01
The paper deals with the use of alternative powder additives (fly ash and fine fraction of recycled concrete) to improve the recycled concrete aggregate and this occurs directly in the concrete mixing process. Specific mixing process (triple mixing method) is applied as it is favourable for this goal. Results of compressive strength after 2 and 28 days of hardening are given. Generally, using powder additives for coating the coarse recycled concrete aggregate in the first stage of triple mixing resulted in decrease of compressive strength, comparing the cement. There is no very important difference between samples based on recycled concrete aggregate and those based on natural aggregate as far as the cement is used for coating. When using both the fly ash and recycled concrete powder, the kind of aggregate causes more significant differences in compressive strength, with the values of those based on the recycled concrete aggregate being worse.
Modeling of hot-mix asphalt compaction : a thermodynamics-based compressible viscoelastic model
2010-12-01
Compaction is the process of reducing the volume of hot-mix asphalt (HMA) by the application of external forces. As a result of compaction, the volume of air voids decreases, aggregate interlock increases, and interparticle friction increases. The qu...
Pappas, Constantine C.; Ukuno, Arthur F.
1960-01-01
Measurements of average skin friction of the turbulent boundary layer have been made on a 15deg total included angle cone with foreign gas injection. Measurements of total skin-friction drag were obtained at free-stream Mach numbers of 0.3, 0.7, 3.5, and 4.7 and within a Reynolds number range from 0.9 x 10(exp 6) to 5.9 x 10(exp 6) with injection of helium, air, and Freon-12 (CCl2F2) through the porous wall. Substantial reductions in skin friction are realized with gas injection within the range of Mach numbers of this test. The relative reduction in skin friction is in accordance with theory-that is, the light gases are most effective when compared on a mass flow basis. There is a marked effect of Mach number on the reduction of average skin friction; this effect is not shown by the available theories. Limited transition location measurements indicate that the boundary layer does not fully trip with gas injection but that the transition point approaches a forward limit with increasing injection. The variation of the skin-friction coefficient, for the lower injection rates with natural transition, is dependent on the flow Reynolds number and type of injected gas; and at the high injection rates the skin friction is in fair agreement with the turbulent boundary layer results.
Bellan, J.; Okongo, N.
2000-01-01
A study of emerging turbulent scales entropy production is conducted for a supercritical shear layer as a precursor to the eventual modeling of Subgrid Scales (from a turbulent state) leading to Large Eddy Simulations.
Hooff, van T.A.J.
2012-01-01
The proper ventilation of buildings and other enclosures such as airplanes, trains, ships and cars is of primary interest in engineering with respect to human (thermal) comfort, energy efficiency and sustainability. One of the most commonly applied ventilation methods is mixing ventilation, which is
Time resolved flow-field measurements of a turbulent mixing layer over a rectangular cavity
Bian, Shiyao; Driscoll, James F.; Elbing, Brian R.; Ceccio, Steven L.
2011-07-01
High Reynolds number, low Mach number, turbulent shear flow past a rectangular, shallow cavity has been experimentally investigated with the use of dual-camera cinematographic particle image velocimetry (CPIV). The CPIV had a 3 kHz sampling rate, which was sufficient to monitor the time evolution of large-scale vortices as they formed, evolved downstream and impinged on the downstream cavity wall. The time-averaged flow properties (velocity and vorticity fields, streamwise velocity profiles and momentum and vorticity thickness) were in agreement with previous cavity flow studies under similar operating conditions. The time-resolved results show that the separated shear layer quickly rolled-up and formed eddies immediately downstream of the separation point. The vortices convect downstream at approximately half the free-stream speed. Vorticity strength intermittency as the structures approach the downstream edge suggests an increase in the three-dimensionality of the flow. Time-resolved correlations reveal that the in-plane coherence of the vortices decays within 2-3 structure diameters, and quasi-periodic flow features are present with a vortex passage frequency of ~1 kHz. The power spectra of the vertical velocity fluctuations within the shear layer revealed a peak at a non-dimensional frequency corresponding to that predicted using linear, inviscid instability theory.
Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.
1974-01-01
A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.
International Nuclear Information System (INIS)
Lecocq, Y.
2008-12-01
In the frame of radioactive waste management, this work aims to study the flow around a heating wall-mounted cylinder in crossflow in URANS approach. Well-known limitations of first order turbulence models lead us to consider second order turbulence modelling. In that frame, a heat transfer model is developed and validated on academic test cases. To begin with, when mixed convection regime is dominant, these simulations, completed by an isotherm one, all performed with low-Reynolds k-w SST model, give prominence to several eddy structures registered by the bibliography. One simulation is also performed with the high-Reynolds Rij-epsilon SSG model. With the k-w SST model, the heat transfer is correctly reproduced compared to the VALIDA experiment lead by the CEA, though with the Rij-epsilon SSG model, it is strongly under-estimated. It is supposed that it comes from the use of wall functions. Subsequently, when natural convection is predominant, flow topology becomes completely different and the heat transfer becomes less accurate to the VALIDA experiment. Following Durbin's approach, the Elliptic Blending-Renolds Stress Model EBRSM, consists in accounting for wall effects, and in wall blockage in particular. Following this formalism, an Elliptic Blending-Algebraic Flux Model is developed, the EBAFM. With this model, a priori tests in the three convection regimes and then simulations on the same test cases show major improvements in flow predictions. This leads to an interesting perspective to an intermediate model between SGDH and transport equations. (author)
Simulation-Based Stochastic Sensitivity Analysis of a Mach 4.5 Mixed-Compression Intake Performance
Kato, H.; Ito, K.
2009-01-01
A sensitivity analysis of a supersonic mixed-compression intake of a variable-cycle turbine-based combined cycle (TBCC) engine is presented. The TBCC engine is de- signed to power a long-range Mach 4.5 transport capable of antipodal missions studied in the framework of an EU FP6 project, LAPCAT. The nominal intake geometry was designed using DLR abpi cycle analysis pro- gram by taking into account various operating require- ments of a typical mission profile. The intake consists of two movable external compression ramps followed by an isolator section with bleed channel. The compressed air is then diffused through a rectangular-to-circular subsonic diffuser. A multi-block Reynolds-averaged Navier- Stokes (RANS) solver with Srinivasan-Tannehill equilibrium air model was used to compute the total pressure recovery and mass capture fraction. While RANS simulation of the nominal intake configuration provides more realistic performance characteristics of the intake than the cycle analysis program, the intake design must also take into account in-flight uncertainties for robust intake performance. In this study, we focus on the effects of the geometric uncertainties on pressure recovery and mass capture fraction, and propose a practical approach to simulation-based sensitivity analysis. The method begins by constructing a light-weight analytical model, a radial-basis function (RBF) network, trained via adaptively sampled RANS simulation results. Using the RBF network as the response surface approximation, stochastic sensitivity analysis is performed using analysis of variance (ANOVA) technique by Sobol. This approach makes it possible to perform a generalized multi-input- multi-output sensitivity analysis based on high-fidelity RANS simulation. The resulting Sobol's influence indices allow the engineer to identify dominant parameters as well as the degree of interaction among multiple parameters, which can then be fed back into the design cycle.
Ma, T; Patel, P K; Izumi, N; Springer, P T; Key, M H; Atherton, L J; Benedetti, L R; Bradley, D K; Callahan, D A; Celliers, P M; Cerjan, C J; Clark, D S; Dewald, E L; Dixit, S N; Döppner, T; Edgell, D H; Epstein, R; Glenn, S; Grim, G; Haan, S W; Hammel, B A; Hicks, D; Hsing, W W; Jones, O S; Khan, S F; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; Le Pape, S; MacGowan, B J; Mackinnon, A J; MacPhee, A G; Meezan, N B; Moody, J D; Pak, A; Parham, T; Park, H-S; Ralph, J E; Regan, S P; Remington, B A; Robey, H F; Ross, J S; Spears, B K; Smalyuk, V; Suter, L J; Tommasini, R; Town, R P; Weber, S V; Lindl, J D; Edwards, M J; Glenzer, S H; Moses, E I
2013-08-23
Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance.
A measurement of the density and compressibility of (U, Pu)-mixed oxide at 3432 kJ/kg (7356 K)
International Nuclear Information System (INIS)
Breitung, W.
1987-05-01
In a transient in-pile heating test the density of liquid (U, Pu)-mixed oxide at 3432±103 kJ/kg was measured to be 5027±132 kg/m 3 . The corresponding temperature is estimated to 7356±212 K. The isothermal compressibility of the mixed oxide was evaluated to 2.85 (±1.65) x 10 -4 /MPa at the same temperature. Based on these new data and previously existing measurements, new relations are proposed for the following properties of liquid UO 2 and (U, Pu)O 2 , as well: density - enthalpy, density - temperature, thermal expansion - temperature, and isothermal compressibility - temperature. (orig.) [de
Effect of Polymer Type and Mixing of Polymers on Drag Reduction in Turbulent Pipe Flow
Directory of Open Access Journals (Sweden)
Salam Hadi Hussein
2017-05-01
Full Text Available The paper reports on studies on effect of the type of polymer on drag reduction. The study conducted through circular pipe using Carboxy Methyl Cellulose (CMC, Xanthan gum (XG and their mixing in equal ratios as additives in pipe of diameter 0.0381m. The study covered range of parameters like concentration, mean velocity and angle of inclination of pipe. The maximum drag reduction observed was about 58%, 46% and 46% for the three polymers respectively. It is found that the drag reduction for the mixture is close to the drag reduction for XG polymer. The SPSS program has been used for correlate the data that have been obtained. The drag reduction percentage is correlated in terms of Reynolds number Re, additive concentration C (ppm and angle of inclination of pipe (deg, and the relations obtained is mentioned.
Huang, J.; Bou-Zeid, E.; Golaz, J.
2011-12-01
Parameterization of the stably-stratified atmospheric boundary-layer is of crucial importance to different aspects of numerical weather prediction at regional scales and climate modeling at global scales, such as land-surface temperature forecasts, fog and frost prediction, and polar climate. It is well-known that most operational climate models require excessive turbulence mixing of the stable boundary-layer to prevent decoupling of the atmospheric component from the land component under strong stability, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. In this study we develop and test a general turbulence mixing model of the stable boundary-layer which works under different stabilities and for steady as well as unsteady conditions. A-priori large-eddy simulation (LES) tests are presented to motivate and verify the new parameterization. Subsequently, an assessment of this model using the GFDL single-column model (SCM) is performed. Idealized test cases including continuously varying stability, as well as stability discontinuity, are used to test the new SCM against LES results. A good match of mean and flux profiles is found when the new parameterization is used, while other traditional first-order turbulence models using the concept of stability function perform poorly. SCM spatial resolution is also found to have little impact on the performance of the new turbulence closure, but temporal resolution is important and a numerical stability criterion based on the model time step is presented.
International Nuclear Information System (INIS)
Mohseni, Mahdi; Bazargan, Majid
2014-01-01
Highlights: • The entropy generation in supercritical fluid flows has been numerically investigated. • The mechanisms of entropy generation are different near and away from the walls. • In the near wall region, the energy dissipation is the deciding parameter. • Away from the wall, the heat transfer is the effective factor in entropy generation. • The bulk Be number is greater in the liquid-like region than in vapor-like region. - Abstract: In this study, a two dimensional CFD code has been developed to investigate entropy generation in turbulent mixed convection heat transfer flow of supercritical fluids. Since the fluid properties vary significantly under supercritical conditions, the changes of entropy generation are large. The contribution of each of the mechanisms of entropy production (heat transfer and energy dissipation) is compared in different regions of the flow. The results show that the mechanisms of entropy generation act differently in the near wall region within the viscous sub-layer and in the region away from the wall. The effects of the wall heat flux on the entropy generation are also investigated
Directory of Open Access Journals (Sweden)
Wai Kuan Yip
2007-01-01
Full Text Available We introduce a novel method for secure computation of biometric hash on dynamic hand signatures using BioPhasor mixing and discretization. The use of BioPhasor as the mixing process provides a one-way transformation that precludes exact recovery of the biometric vector from compromised hashes and stolen tokens. In addition, our user-specific discretization acts both as an error correction step as well as a real-to-binary space converter. We also propose a new method of extracting compressed representation of dynamic hand signatures using discrete wavelet transform (DWT and discrete fourier transform (DFT. Without the conventional use of dynamic time warping, the proposed method avoids storage of user's hand signature template. This is an important consideration for protecting the privacy of the biometric owner. Our results show that the proposed method could produce stable and distinguishable bit strings with equal error rates (EERs of and for random and skilled forgeries for stolen token (worst case scenario, and for both forgeries in the genuine token (optimal scenario.
International Nuclear Information System (INIS)
Tatsumi, K; Takeda, Y; Nakabe, K; Suga, K
2011-01-01
Flow velocity measurement and visualization using particle image velocimetry and fluorescent dye were carried out for a viscoelastic fluid flow in a serpentine microchannel for the purpose to quantitatively evaluate the unsteady flow characteristics that is observed even under very low Reynolds number regime due to the combined effect of the viscoelastic fluid properties and the channel shape. Sucrose water solution (Newtonian fluid) and the polyacrylamide-sucrose water solution (viscoelastic fluid) were used as working fluids. The mixing performance markedly increased when the Reynolds number exceeded a certain value in the polyacrylamide solution case. The single-point, cross-sectional and two-dimensional velocity distributions showed that low frequency fluctuation was produced in the polyacrylamide solution case. Particularly large fluctuation in the channel spanwise direction was observed in the upstream area of the serpentine channel. On the other hand, the amplitude of the fluctuation decreased in the downstream region. The fluctuation in the upstream region is believed to be generated by the flow instability at the curved part of the channel, while the fluctuations in the downstream area were attributed to the local instability and the vortices provided from the upstream region.
International Nuclear Information System (INIS)
Sadatomi, Michio; Kawahara, Akimaro; Sato, Yoshifusa
1997-01-01
A practical way of treating two-phase turbulent mixing, void drift and diversion cross-flow on a subchannel analysis has been studied. Experimental data on the axial variations of subchannel flow parameters, such as flow rates of both phases, pressure, void fraction and concentrations of tracers for both phases, were obtained for hydraulically non-equilibrium two-phase subchannel flows in a vertical multiple channel made up of two-identical circular subchannels. These data were analyzed on the basis of the following four assumptions: (1) the turbulent mixing is independent of both the void drift and the diversion cross-flow; (2) the turbulent mixing rates of both phases in a non-equilibrium flow are equal to those in the equilibrium flow that the flow under consideration will attain; (3) the void drift is independent of the diversion cross-flow; and (4) the lateral gas velocity due to the void drift is predictable from Lahey et al.'s void settling model even in a non-equilibrium flow with the diversion cross-flow. The validity of the assumptions (1) and (2) was assured by comparing the concentration distribution data with the calculations, and that of the assumptions (3) and (4) by analyzing the data on flow rates of both phases, pressure and void fraction (author)
Group-kinetic theory and modeling of atmospheric turbulence
Tchen, C. M.
1989-01-01
A group kinetic method is developed for analyzing eddy transport properties and relaxation to equilibrium. The purpose is to derive the spectral structure of turbulence in incompressible and compressible media. Of particular interest are: direct and inverse cascade, boundary layer turbulence, Rossby wave turbulence, two phase turbulence; compressible turbulence, and soliton turbulence. Soliton turbulence can be found in large scale turbulence, turbulence connected with surface gravity waves and nonlinear propagation of acoustical and optical waves. By letting the pressure gradient represent the elementary interaction among fluid elements and by raising the Navier-Stokes equation to higher dimensionality, the master equation was obtained for the description of the microdynamical state of turbulence.
Mueller, J.; Petersen, J. C.; Pilz, E.; Wiegand, H.
1981-06-01
The flow behavior in a jet mixing visualization chamber for turbulent fuel spray mixing with air under compression, e.g., at top dead center in diesel engines, was investigated with a laser Doppler velocimeter. The measurements were performed in two cuts in the profile perpendicular to the flow direction. The range of flow conditions in the measuring chamber was tested. The measurements were conducted with and without turbulence grids and shear flow grids behind the inlet nozzle. Wire grids did not enhance the turbulence in the measuring chamber. One of the tested shear flow grids produced shear flow as expected. A turbulence grid whose design was based on experimental results, produced a turbulence degree of up to 30% over the whole measuring cross section.
Welsh, Lynn
2017-05-01
To analyse current evidence on the efficacy of bandage systems containing both elastic and inelastic components (mixed-component systems). International consensus on the efficacy of types of compression systems is difficult to achieve; however, mixed-component systems are being promoted as combining the best properties of both elastic and inelastic bandage systems and increasingly being used to treat venous leg ulcers in practice. A systematic literature review. Search terms such as venous leg ulcer, varicose ulcer, leg ulcer, compression, bandage, elastic, inelastic, short stretch, healing rate, interface pressure, mixed component, two-layer, four-layer and multi-layer were used in database and hand searches in several combinations. Limits were set for years 2005-March 2015 and English-language publications. A total of 475 studies were identified at initial search, and following elimination from abstract and title, this was reduced to 7. A further study was identified on Google Scholar, bringing the final number of studies fitting inclusion criteria to 8. The following subgroups relating to outcomes of efficacy were identified: ulcer healing, maintenance of interface pressure, slippage, ease of application and patient quality of life. Mixed-component systems were found to have comparable ulcer healing rates to alternative compression systems and be easy to apply; have similar abilities to maintain pressure as four-layer bandages and better abilities than short-stretch bandages; have less slippage than alternative systems; and to be significantly associated with several favourable quality of life outcomes. Clinician skill in bandage application was an uncontrolled variable in all eight papers included in the review, which may limit reliability of findings. This review synthesises existing evidence on the efficacy of mixed-component systems and encourages clinicians to regard them as an effective alternative to purely elastic or inelastic compression systems
International Nuclear Information System (INIS)
Tanaka, Masa-aki; Muramatsu, Toshiharu
2004-06-01
It is important to evaluate thermal-striping phenomena, which is the thermal fatigue issue in the structure generated by the temperature fluctuation due to the fluid mixing. Especially, the high amplitude and the high number of repetitions of the temperature fluctuation are needed to take into consideration. Moreover, it is necessary to consider the comparatively low frequency components of fluid temperature fluctuation, since the influence to structure material is large. Therefore, it is required to know the generating mechanism and conditions of the high amplitude and the low frequency component of fluid temperature fluctuation. In Japan Nuclear Cycle Development Institute, basic research on the promote system for fluid mixing is conducted, which system ('Turbulence promoter') is expected to reduce the large amplitude and low frequency components of fluid temperature fluctuation in T junction pipe. In this investigation, it is aimed to validate the effect and to generalize the mixing characteristics of 'Turbulence promoter' on the fluid mixing in T-junction pipe, and to contribute the knowledge to the rational design of LMFBR. In this report, numerical simulation for the existing experiment was conducted using a quasi-direct simulation code (DINUS-3). From the numerical simulation, the following results are obtained. (1) Numerical calculations could simulate well the flow patterns observed in the visualization experiment, in impinging jet case (Pattern-C) and deflecting jet cases (Pattern-B1 and Pattern-B). (2) By installing Turbulence promoter', cross-section area of main pipe after the mixing point is narrowed, and the fluid of main pipe is accelerated and flows along the slope of the promoter on the opposite side of branch pipe. this accelerated flow acts to prevent the collision of the branch pipe flow to the promoter. Therefore, the branch pipe flow conditions in deflecting jet category are extended. (3) At the throat of the main pipe, the flow was separated
Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young
2014-12-01
The effects of turbulence-induced collision enhancement (TICE) on mixed-phase deep convective clouds are numerically investigated using a 2-D cloud model with bin microphysics for uniform and sheared basic-state wind profiles and different aerosol concentrations. Graupel particles account for the most of the cloud mass in all simulation cases. In the uniform basic-state wind cases, graupel particles with moderate sizes account for some of the total graupel mass in the cases with TICE, whereas graupel particles with large sizes account for almost all the total graupel mass in the cases without TICE. This is because the growth of ice crystals into small graupel particles is enhanced due to TICE. The changes in the size distributions of graupel particles due to TICE result in a decrease in the mass-averaged mean terminal velocity of graupel particles. Therefore, the downward flux of graupel mass, and thus the melting of graupel particles, is reduced due to TICE, leading to a decrease in the amount of surface precipitation. Moreover, under the low aerosol concentration, TICE increases the sublimation of ice particles, consequently playing a partial role in reducing the amount of surface precipitation. The effects of TICE are less pronounced in the sheared basic-state wind cases than in the uniform basic-state wind cases because the number of ice crystals is much smaller in the sheared basic-state wind cases than in the uniform basic-state wind cases. Thus, the size distributions of graupel particles in the cases with and without TICE show little difference.
The Effect of Turbulences Flow on a Gas-Liquid Mixing Process Downstream of a Curved Duct
Directory of Open Access Journals (Sweden)
Abdul Satar Jawad Mohammed
2018-02-01
Full Text Available An experimental investigation is carried out on the use of water injection on the humidification process of air with a steady flow that travels during the curved part of a duct with a constant cross section. The naturally generated turbulences will surely aid the mixing process between the injected water droplets and the air to enhance both the mass and heat transfer. The current investigation is regarded as a simulation of the inlet air cooling of the gas turbine which aims to specify the optimum atomizer position on the air cooling by the fogging technique. The experiments were carried out on a (50×50 cm wind tunnel with an average air velocity of (10 m/s. Experiments were conducted in a range of air to water flow ratio between 1000 and 2000, and an ambient temperature in a range of 30° to 50°C. At higher ambient temperature of 45.2oC (DBT, a temperature reduction of 26% and an increase in the relative humidity ratio of 2.13 were recorded at the flow ratio of 1000. Injecting water upward through the range of angles -25° to 75° showed less sensitivity to atomizer location regardless the radial position of the atomizer. This situation is most suitable for using atomizing array across the duct. The central location with tangential spray introduces the critical position for a single-point spray. Such position is promising the optimum atomizer place specified by a radii ratio of (r/rin=3 and tangential orientation to the direction of flow.
Effect of Compressive Mode I on the Mixed Mode I/II Fatigue Crack Growth Rate of 42CrMo4
Heirani, Hasan; Farhangdoost, Khalil
2018-01-01
Subsurface cracks in mechanical contact loading components are subjected to mixed mode I/II, so it is necessary to evaluate the fatigue behavior of materials under mixed mode loading. For this purpose, fatigue crack propagation tests are performed with compact tension shear specimens for several stress intensity factor (SIF) ratios of mode I and mode II. The effect of compressive mode I loading on mixed mode I/II crack growth rate and fracture surface is investigated. Tests are carried out for the pure mode I, pure mode II, and two different mixed mode loading angles. On the basis of the experimental results, mixed mode crack growth rate parameters are proposed according to Tanaka and Richard with Paris' law. Results show neither Richard's nor Tanaka's equivalent SIFs are very useful because these SIFs depend strongly on the loading angle, but Richard's equivalent SIF formula is more suitable than Tanaka's formula. The compressive mode I causes the crack closure, and the friction force between the crack surfaces resists against the crack growth. In compressive loading with 45° angle, d a/d N increases as K eq decreases.
Homogeneous turbulence dynamics
Sagaut, Pierre
2018-01-01
This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obta...
Energy Technology Data Exchange (ETDEWEB)
Epstein, R.; Goncharov, V. N.; Marshall, F. J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Betti, R.; Nora, R.; Christopherson, A. R. [Fusion Science Center and Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Golovkin, I. E.; MacFarlane, J. J. [Prism Computational Sciences, Madison, Wisconsin 53711 (United States)
2015-02-15
Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus'kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolved core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion's central hot spot, the hot-spot “fuel–shell” mix mass can be inferred.
International Nuclear Information System (INIS)
Epstein, R.; Goncharov, V. N.; Marshall, F. J.; Betti, R.; Nora, R.; Christopherson, A. R.; Golovkin, I. E.; MacFarlane, J. J.
2015-01-01
Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus'kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolved core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion's central hot spot, the hot-spot “fuel–shell” mix mass can be inferred
Energy Technology Data Exchange (ETDEWEB)
Griebel, P.; Boschek, E.; Erne, D.; Siewert, P.
2005-12-15
This illustrated annual report for 2005 for the Swiss Federal Office of Energy (SFOE) reports on the work done in 2005 at the Paul Scherrer Institute (PSI) on the structure and combustion characteristics of turbulent, pre-mixed high-pressure flames. The aims of the project are described in detail, which include, among other things, the completion of previous work, the validation of simulations and the influence of turbulence on the flame front. Work done on the project in 2005 is described and commented on. Experimental installations are described and the results obtained are presented. Also, the influence of adding hydrogen to the methane fuel is commented on. National and international co-operation is reviewed and future work to be carried out is noted.
International Nuclear Information System (INIS)
Stieglitz, Robert; Daubner, Markus; Batta, A.; Lefhalm, C.-H.
2007-01-01
The MEGAPIE target installed at the Paul-Scherrer Institute is an example of a spallation target using eutectic liquid lead-bismuth (Pb 45 Bi 55 ) both as coolant and neutron source. An adequate cooling of the target requires a conditioning of the flow, which is realized by a main flow transported in an annular gap downwards, u-turned at a hemispherical shell into a cylindrical riser tube. In order to avoid a stagnation point close to the lowest part of the shell a jet flow is superimposed to the main flow, which is directed towards to the stagnation point and flows tangentially along the shell. The heated jet experiment conducted in the THEADES loop of the KALLA laboratory is nearly 1:1 representation of the lower part of the MEGAPIE target. It is aimed to study the cooling capability of this specific geometry in dependence on the flow rate ratio (Q main /Q jet ) of the main flow (Q main ) to the jet flow (Q jet ). Here, a heated jet is injected into a cold main flow at MEGAPIE relevant flow rate ratios. The liquid metal experiment is accompanied by a water experiment in almost the same geometry to study the momentum field as well as a three-dimensional turbulent numerical fluid dynamic simulation (CFD). Besides a detailed study of the envisaged nominal operation of the MEGAPIE target with Q main /Q jet = 15 deviations from this mode are investigated in the range from 7.5 ≤ Q main /Q jet ≤ 20 in order to give an estimate on the safe operational threshold of the target. The experiment shows that, the flow pattern establishing in this specific design and the turbulence intensity distribution essentially depends on the flow rate ratio (Q main /Q jet ). All Q main /Q jet -ratios investigated exhibit an unstable time dependent behavior. The MEGAPIE design is highly sensitive against changes of this ratio. Mainly three completely different flow patterns were identified. A sufficient cooling of the lower target shell, however, is only ensured if Q main /Q jet ≤ 12
Status of Turbulence Modeling for Hypersonic Propulsion Flowpaths
Georgiadis, Nicholas J.; Yoder, Dennis A.; Vyas, Manan A.; Engblom, William A.
2012-01-01
This report provides an assessment of current turbulent flow calculation methods for hypersonic propulsion flowpaths, particularly the scramjet engine. Emphasis is placed on Reynolds-averaged Navier-Stokes (RANS) methods, but some discussion of newer meth- ods such as Large Eddy Simulation (LES) is also provided. The report is organized by considering technical issues throughout the scramjet-powered vehicle flowpath including laminar-to-turbulent boundary layer transition, shock wave / turbulent boundary layer interactions, scalar transport modeling (specifically the significance of turbulent Prandtl and Schmidt numbers) and compressible mixing. Unit problems are primarily used to conduct the assessment. In the combustor, results from calculations of a direct connect supersonic combustion experiment are also used to address the effects of turbulence model selection and in particular settings for the turbulent Prandtl and Schmidt numbers. It is concluded that RANS turbulence modeling shortfalls are still a major limitation to the accuracy of hypersonic propulsion simulations, whether considering individual components or an overall system. Newer methods such as LES-based techniques may be promising, but are not yet at a maturity to be used routinely by the hypersonic propulsion community. The need for fundamental experiments to provide data for turbulence model development and validation is discussed.
Computation of turbulent reacting flow in a solid-propellant ducted rocket
Chao, Yei-Chin; Chou, Wen-Fuh; Liu, Sheng-Shyang
1995-05-01
A mathematical model for computation of turbulent reacting flows is developed under general curvilinear coordinate systems. An adaptive, streamline grid system is generated to deal with the complex flow structures in a multiple-inlet solid-propellant ducted rocket (SDR) combustor. General tensor representations of the k-epsilon and algebraic stress (ASM) turbulence models are derived in terms of contravariant velocity components, and modification caused by the effects of compressible turbulence is also included in the modeling. The clipped Gaussian probability density function is incorporated in the combustion model to account for fluctuations of properties. Validation of the above modeling is first examined by studying mixing and reacting characteristics in a confined coaxial-jet problem. This is followed by study of nonreacting and reacting SDR combustor flows. The results show that Gibson and Launder's ASM incorporated with Sarkar's modification for compressible turbulence effects based on the general curvilinear coordinate systems yields the most satisfactory prediction for this complicated SDR flowfield.
Energy Technology Data Exchange (ETDEWEB)
Theron, M.; Bellenoue, M. [Laboratoire de Combustion et de Detonique, CNRS UPR 9028, Poitiers (France)
2006-06-15
In this paper, we explore the effects of heat release on mixing and flow structure in a high-speed subsonic turbulent H{sub 2} jet in an air coflow. Heat release effects are determined from the comparison of nonreacting and reacting jet behavior, boundary conditions being identical in both cases. Experiments are performed in a wind tunnel specifically designed for this purpose. Planar laser induced fluorescence on OH radicals and on acetone (seeded in the hydrogen jet) are used to characterize the cartography of scalars, and laser Doppler velocimetry is used to characterize velocity profiles in the far field of the H{sub 2} jet. Results show significant effects of heat release on mixing and flow structure, indicating an overall reduction of mixing and entrainment in the reacting jet compared to the nonreacting jet. First, a change is observed in the orientation of coherent structures originating from Kelvin-Helmholtz type instabilities, and responsible for air entrainment within the jet, which appear 'flatter' in the jet flame. Then, the flame length is increased over what would be predicted from the intersection of the mean stoichiometric contour with the centerline of the nonreacting jet. And finally, the longitudinal average velocity decrease along the jet axis is quicker in the nonreacting jet, and nondimensional transverse velocity fluctuations are about half as high in the reacting jet as in the nonreacting jet, indicating a reduction of the turbulence intensity of the flow in this direction in the jet flame. (author)
Energy Technology Data Exchange (ETDEWEB)
Lee, Jae Ryong; Kim, Jungwoo; Song, Chul-Hwa, E-mail: chsong@kaeri.re.kr
2014-11-15
Highlights: • OECD/KAERI international CFD benchmark exercise was operated by KAERI. • The purpose is to validate relevant CFD codes based on the MATiS-H experiments. • Blind calculation results were synthesized in terms of mean velocity and RMS. • Quality of control volume rather than the number of it was emphasized. • Major findings were followed OECD/NEA CSNI report. - Abstract: The second international CFD benchmark exercise on turbulent mixing in a rod bundle has been launched by OECD/NEA, to validate relevant CFD (Computational Fluid Dynamics) codes and develop problem-specific Best Practice Guidelines (BPG) based on the KAERI (Korea Atomic Energy Research Institute) MATiS-H experiments on the turbulent mixing in a 5 × 5 rod array having two different types of vaned spacer grids: split and swirl types. For this 2nd international benchmark exercise (IBE-2), the MATiS-H testing provided a unique set of experimental data such as axial and lateral velocity components, turbulent intensity, and vorticity information. Blind CFD calculation results were submitted by twenty-five (25) participants to KAERI, who is the host organization of the IBE-2, and then analyzed and synthesized by comparing them with the MATiS-H data. Based on the synthesis of the results from both the experiments and blind CFD calculations for the IBE-2, and also by comparing with the IBE-1 benchmark exercise on the mixing in a T-junction, useful information for simulating this kind of complicated physical problem in a rod bundle was obtained. And some additional Best Practice Guidelines (BPG) are newly proposed. A summary of the synthesis results obtained in the IBE-2 is presented in this paper.
International Nuclear Information System (INIS)
Lee, Jae Ryong; Kim, Jungwoo; Song, Chul-Hwa
2014-01-01
Highlights: • OECD/KAERI international CFD benchmark exercise was operated by KAERI. • The purpose is to validate relevant CFD codes based on the MATiS-H experiments. • Blind calculation results were synthesized in terms of mean velocity and RMS. • Quality of control volume rather than the number of it was emphasized. • Major findings were followed OECD/NEA CSNI report. - Abstract: The second international CFD benchmark exercise on turbulent mixing in a rod bundle has been launched by OECD/NEA, to validate relevant CFD (Computational Fluid Dynamics) codes and develop problem-specific Best Practice Guidelines (BPG) based on the KAERI (Korea Atomic Energy Research Institute) MATiS-H experiments on the turbulent mixing in a 5 × 5 rod array having two different types of vaned spacer grids: split and swirl types. For this 2nd international benchmark exercise (IBE-2), the MATiS-H testing provided a unique set of experimental data such as axial and lateral velocity components, turbulent intensity, and vorticity information. Blind CFD calculation results were submitted by twenty-five (25) participants to KAERI, who is the host organization of the IBE-2, and then analyzed and synthesized by comparing them with the MATiS-H data. Based on the synthesis of the results from both the experiments and blind CFD calculations for the IBE-2, and also by comparing with the IBE-1 benchmark exercise on the mixing in a T-junction, useful information for simulating this kind of complicated physical problem in a rod bundle was obtained. And some additional Best Practice Guidelines (BPG) are newly proposed. A summary of the synthesis results obtained in the IBE-2 is presented in this paper
Modeling of turbulent chemical reaction
Chen, J.-Y.
1995-01-01
Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.
International Nuclear Information System (INIS)
Braillard, O.
2005-01-01
A 304L mixing tee mock-up is instrumented to assess the fluctuating temperature in the mixing area generated by two fluids (water) at large gap of temperature meet. The turbulent mixing layer impacts the structure wall and creates stresses, which lead to the damages. The case studied in this paper corresponds to the 'swinging streak' within a flow rate ratio of 25 %. The instrumentation is specifically planned to measure the fluctuating temperature in the fluid close to the internal skin and inside the wall too. This experiment is performed using a new sensor 'fluxmeter' which is non intrusive and typically designed to catch the fluctuation without any signal attenuation, within a frequency range 0-25Hz. The facility called 'Fatherino' supplies an available delta T of 70 degree C in water at 4 m/s mixture velocity in a mixing tee mock-up 50 mm in diameter. The flow features generate a large turbulent flow in the mixing layer and favour the heat flux transfer to the wall. By applying an inverse heat conduction method applied to the output data given by the fluxmeter, both the heat flux is deduced and the temperature (mean and fluctuating values) at the internal surface can be accurately determined. In addition, a calculation using the Trio U code (thermal hydraulic code) within the large eddy simulation module is computed to assess the fluid temperature distribution in the mixing area close to the internal surface. The output data in mean and standard deviation are compared with the Fatherino measurements. The comparison consists in analysing the main parameters as the mean and standard deviation in the fluid along the main axis and in a circumferential view. The mixing layer geometry and the frequency of the fluctuation are also analysed. These experiments added to the calculation allow us improving the state of the knowledge in the mixing tees and the thermal load to be used in the industrial mixing tees in operating for the long lifetime assessment or for the
International Nuclear Information System (INIS)
Maroteaux, Fadila; Pommier, Pierre-Lin
2013-01-01
Highlights: ► Turbulent time evolution is introduced in stochastic modeling approach. ► The particles number is optimized trough a restricted initial distribution. ► The initial distribution amplitude is modeled by magnitude of turbulence field. -- Abstract: Homogenous Charge Compression Ignition (HCCI) engine technology is known as an alternative to reduce NO x and particulate matter (PM) emissions. As shown by several experimental studies published in the literature, the ideally homogeneous mixture charge becomes stratified in composition and temperature, and turbulent mixing is found to play an important role in controlling the combustion progress. In a previous study, an IEM model (Interaction by Exchange with the Mean) has been used to describe the micromixing in a stochastic reactor model that simulates the HCCI process. The IEM model is a deterministic model, based on the principle that the scalar value approaches the mean value over the entire volume with a characteristic mixing time. In this previous model, the turbulent time scale was treated as a fixed parameter. The present study focuses on the development of a micro-mixing time model, in order to take into account the physical phenomena it stands for. For that purpose, a (k–ε) model is used to express this micro-mixing time model. The turbulence model used here is based on zero dimensional energy cascade applied during the compression and the expansion cycle; mean kinetic energy is converted to turbulent kinetic energy. Turbulent kinetic energy is converted to heat through viscous dissipation. Besides, in this study a relation to calculate the initial heterogeneities amplitude is proposed. The comparison of simulation results against experimental data shows overall satisfactory agreement at variable turbulent time scale
A mixed SOC-turbulence model for nonlocal transport and Lévy-fractional Fokker–Planck equation
DEFF Research Database (Denmark)
Juul Rasmussen, Jens; Milovanov, Alexander V.
2014-01-01
The phenomena of nonlocal transport in magnetically confined plasma are theoretically analyzed. A hybrid model is proposed, which brings together the notion of inverse energy cascade, typical of drift-wave- and two-dimensional fluid turbulence, and the ideas of avalanching behavior, associable...
Gövert, S.
2016-01-01
The present study is concerned with the development and validation of a simulation framework for the accurate prediction of turbulent reacting flows at reduced computational costs. Therefore, a combustion model based on the tabulation of laminar premixed flamelets is employed. By compilation of
DEFF Research Database (Denmark)
Gilling, Lasse
of resolved inflow turbulence on airfoil simulations in CFD. The detached-eddy simulation technique is used because it can resolve the inflow turbulence without becoming too computationally expensive due to its limited requirements for mesh resolution in the boundary layer. It cannot resolve the turbulence......Wind turbines operate in inflow turbulence whether it originates from the shear in the atmospheric boundary layer or from the wake of other wind turbines. Consequently, the airfoils of the wings experience turbulence in the inflow. The main topic of this thesis is to investigate the effect...... that is formed in attached boundary layers, but the freestream turbulence can penetrate the boundary layer. The idea is that the resolved turbulence from the freestream should mix high momentum flow into the boundary layer and thereby increase the resistance against separation and increase the maximum lift...
Clay, M. P.; Buaria, D.; Gotoh, T.; Yeung, P. K.
2017-10-01
A new dual-communicator algorithm with very favorable performance characteristics has been developed for direct numerical simulation (DNS) of turbulent mixing of a passive scalar governed by an advection-diffusion equation. We focus on the regime of high Schmidt number (S c), where because of low molecular diffusivity the grid-resolution requirements for the scalar field are stricter than those for the velocity field by a factor √{ S c }. Computational throughput is improved by simulating the velocity field on a coarse grid of Nv3 points with a Fourier pseudo-spectral (FPS) method, while the passive scalar is simulated on a fine grid of Nθ3 points with a combined compact finite difference (CCD) scheme which computes first and second derivatives at eighth-order accuracy. A static three-dimensional domain decomposition and a parallel solution algorithm for the CCD scheme are used to avoid the heavy communication cost of memory transposes. A kernel is used to evaluate several approaches to optimize the performance of the CCD routines, which account for 60% of the overall simulation cost. On the petascale supercomputer Blue Waters at the University of Illinois, Urbana-Champaign, scalability is improved substantially with a hybrid MPI-OpenMP approach in which a dedicated thread per NUMA domain overlaps communication calls with computational tasks performed by a separate team of threads spawned using OpenMP nested parallelism. At a target production problem size of 81923 (0.5 trillion) grid points on 262,144 cores, CCD timings are reduced by 34% compared to a pure-MPI implementation. Timings for 163843 (4 trillion) grid points on 524,288 cores encouragingly maintain scalability greater than 90%, although the wall clock time is too high for production runs at this size. Performance monitoring with CrayPat for problem sizes up to 40963 shows that the CCD routines can achieve nearly 6% of the peak flop rate. The new DNS code is built upon two existing FPS and CCD codes
Directory of Open Access Journals (Sweden)
Dong-Ho Rie
2016-06-01
Full Text Available The purpose of this research is to evaluate the fire-extinguishing performance of a compressed air foam system at different mixing ratios of pressurized air. In this system, compressed air is injected into an aqueous solution of foam and then discharged. The experimental device uses an exclusive fire-extinguishing technology with compressed air foam that is produced based on the Canada National Laboratory and UL (Underwriters Laboratories 162 standards, with a 20-unit oil fire model (Class B applied as the fire extinguisher. Compressed air is injected through the air mixture, and results with different air-to-aqueous solution foam ratios of 1:4, 1:7, and 1:10 are studied. In addition, comparison experiments between synthetic surfactant foam and a foam type which forms an aqueous film are carried out at an air-to-aqueous solution foam ratio of 1:4. From the experimental results, at identical discharging flows, it was found that the fire-extinguishing effect of the aqueous film-forming foam is greatest at an air-to-aqueous solution foam ratio of 1:7 and weakest at 1:10. Moreover, the fire-extinguishing effect of the aqueous film-forming foam in the comparison experiments between the aqueous film-forming foam and the synthetic surfactant foam is greatest.
Analysis of turbulent boundary layers
Cebeci, Tuncer
1974-01-01
Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati
Large Eddy simulation of turbulent hydrogen-fuelled supersonic combustion in an air cross-flow
Ingenito, A.; Cecere, D.; Giacomazzi, E.
2013-09-01
The main aim of this article is to provide a theoretical understanding of the physics of supersonic mixing and combustion. Research in advanced air-breathing propulsion systems able to push vehicles well beyond is of interest around the world. In a scramjet, the air stream flow captured by the inlet is decelerated but still maintains supersonic conditions. As the residence time is very short , the study of an efficient mixing and combustion is a key issue in the ongoing research on compressible flows. Due to experimental difficulties in measuring complex high-speed unsteady flowfields, the most convenient way to understand unsteady features of supersonic mixing and combustion is to use computational fluid dynamics. This work investigates supersonic combustion physics in the Hyshot II combustion chamber within the Large Eddy simulation framework. The resolution of this turbulent compressible reacting flow requires: (1) highly accurate non-dissipative numerical schemes to properly simulate strong gradients near shock waves and turbulent structures away from these discontinuities; (2) proper modelling of the small subgrid scales for supersonic combustion, including effects from compressibility on mixing and combustion; (3) highly detailed kinetic mechanisms (the Warnatz scheme including 9 species and 38 reactions is adopted) accounting for the formation and recombination of radicals to properly predict flame anchoring. Numerical results reveal the complex topology of the flow under investigation. The importance of baroclinic and dilatational effects on mixing and flame anchoring is evidenced. Moreover, their effects on turbulence-scale generation and the scaling law are analysed.
Stirring turbulence with turbulence
Cekli, H.E.; Joosten, R.; van de Water, W.
2015-01-01
We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the
International Nuclear Information System (INIS)
Mu, Tiancheng; Liu, Zhimin; Han, Buxing.; Li, Zhonghao; Zhang, Jianling; Zhang, Xiaogang
2003-01-01
The phase behavior, density, and constant-volume molar heat capacity (C v,m ) of ethane + n-pentane binary mixtures have been measured in the supercritical region and subcritical region at T=309.45 K. In addition, the isothermal compressibility (κ T ) has been calculated using the density data determined. For a mixed fluid with a composition close to the critical composition, C v,m and κ T increase sharply as the pressure approaches the critical point (CP), the dew point (DP), or the bubble point (BP). However, C v,m is not sensitive to pressure in the entire pressure range if the composition of the mixed fluid is far from the critical composition. To tune the properties of the binary mixtures effectively by pressure, both the composition and the pressure should be close to the critical point of the mixture. The intermolecular interactions in the mixture are also discussed on the basis of the experimental results
Davis, Kristen Alexis
The dynamics of internal waves shoaling on the Southeast Florida shelf and the resulting stratified turbulence in the shelf bottom boundary layer are investigated using observational studies completed during the summers of 2003-2005. This work is driven by a desire to understand the effects of internal wave-driven flow and the shoreward transport of cool, nutrient-rich water masses on cross-shelf exchange, vertical mixing, and mass transfer to benthic reef organisms. Shelf sea internal wave fields are typically highly variable and dominated by wind and tidal forces. However, this is not necessarily true for outer shelf regions or very narrow shelves where remote physical processes originating over the slope or deep ocean may exert a strong influence on the internal wave climate. During the summers of 2003 and 2004 observational studies were conducted to examine the effects of a western boundary current (the Florida Current), tides, and wind on the mean currents and internal wave field on the outer Southeast Florida shelf. We present evidence that suggests that the Florida Current plays as large a role in the determination of the high frequency internal wave field as tidal forces. These observations and analyses show that it is necessary to include the forcing from the Florida Current meanders and instabilities in order to predict accurately the episodic nature of the internal wave field on the Southeast Florida shelf. Deep ocean and continental shelf processes intersect at the shelf edge and influence the exchange of water masses and their associated characteristics including heat, nutrients, sediment, and larvae across the shelf. Thus, the dynamics of cross-shelf circulation have important consequences for organisms living on the shelf. In the second phase of this work, we investigate physical mechanisms controlling the exchange of water masses during the summer season across the Southeast Florida shelf. A time series of cross-shelf transport from May to August
Energy Technology Data Exchange (ETDEWEB)
Murakami, Satoshi [Customer System Co. Ltd., Tokai, Ibaraki (Japan); Muramatsu, Toshiharu
1999-05-01
A three-dimensional thermal striping analysis was carried out using a direct numerical simulation code DINUS-3, for a coaxial jet configuration using air and sodium as a working fluid, within the framework of the EJCC thermo-hydraulic division. From the analysis, the following results have been obtained: (1) Calculated potential core length in air and sodium turbulence flows agreed with a theoretical value (5d - 7d ; d : diameter of jet nozzle) in the two-dimensional free jet theory. (2) Hydraulic characteristics in sodium flows as the potential core length can be estimated by the use of that of air flow characteristics. (3) Shorter thermally potential core length defined by spatial temperature distribution was evaluated in sodium flows, compared with that in air flows. This is due to the higher thermal conductivity of sodium. (4) Thermal characteristics in sodium flows as the thermally potential core length can not be evaluated, based on that air thermal characteristics. (author)
International Nuclear Information System (INIS)
Kimura, Nobuyuki; Igarashi, Minoru; Kamide, Hideki
2002-01-01
We performed a water experiment on parallel triple-jet and a calculation using a direct numerical simulation (DNS) for a quantification of thermal striping. The local temperatures and velocities were measured by using thermocouples and the particle image velocimetry (PIV), respectively. The calculation was carried out using the quasi-DNS code, DINUS-3, which was based on the finite difference method. The oscillation of the jets obtained from the flow visualization was related to the movements of the twin vortices between the jets by using the PIV. The experimental temperatures/velocities results were close to the numerical results. The heat transportation among the jets was evaluated by using the turbulent heat fluxes obtained from the quasi-DNS. (author)
International Nuclear Information System (INIS)
Toda, Saburo; Yuki, Kazuhisa; Muramatsu, Toshiharu
2002-03-01
In a region where two fluids with different temperatures are mixed together, unsteady temperature fluctuation, i.e. thermal striping, occurs in going through the unstable mixing process of the fluids, and structural materials in the surrounding area may be damaged by high-cycle thermal fatigue. In this report, in order to clarify the relation between the thermal striping and temperature fluctuation of structural wall, PIV measuring system is applied to visualize the fluid mixing state in a T-junction area in which important parameters for the fluid mixing are the flow velocity and aperture ratios of a main pipe to a small pipe and an incidence angle of the small pipe to the main pipe as well as temperature difference of the two flows. As a result of visualization experiments in a isothermal field, it is confirmed that a jet-axis, which is a stream line flowing out from the center of the small pipe, vibrates unsteadily and that its behavior is strongly affected by circulating flow, Karman vortex formed behind the jet axis, and especially flow-fluctuation which exists as a background-flow in the main pipe. Especially, the frequency band of the flow-fluctuation in the main pipe almost corresponds to that of the vibration of the jet-axis where the ratio of flow rate is low. Furthermore, in order to estimate the vibration state of the jet-axis and to find out the conditions for preventing the thermal fatigue, the penetration depth of the jet-axis is generalized. From measurements of temperature fluctuation of wall, it is shown that a high power fluctuation area exists universally behind the junction point of the small pipe where the flow rate of the small pipe flow is relatively lower than that of the main pipe flow. The band of dominant frequency of the temperature fluctuation is almost the same as the flow-fluctuation and the jet-axis vibration mentioned above. In addition, visualization experiments of secondary flow formed in a 90-degree bend, which is installed
Directory of Open Access Journals (Sweden)
Taehyoung Kim
2016-04-01
Full Text Available Concrete is a type of construction material in which cement, aggregate, and admixture materials are mixed. When cement is produced, large amounts of substances that impact the environment are emitted during limestone extraction and clinker manufacturing. Additionally, the extraction of natural aggregate causes soil erosion and ecosystem destruction. Furthermore, in the process of transporting raw materials such as cement and aggregate to a concrete production company, and producing concrete in a batch plant, substances with an environmental impact are emitted into the air and water system due to energy use. Considering the fact that the process of producing concrete causes various environmental impacts, an assessment of various environmental impact categories is needed. This study used a life cycle assessment (LCA to evaluate the environmental impacts of concrete in terms of its global warming potential, acidification potential, eutrophication potential, ozone depletion potential, photochemical ozone creation potential, and abiotic depletion potential (GWP, AP, EP, ODP, POCP, ADP. The tendency was that the higher the strength of concrete, the higher the GWP, POCP, and ADP indices became, whereas the AP and EP indices became slightly lower. As the admixture mixing ratio of concrete increased, the GWP, AP, ODP, ADP, and POCP decreased, but EP index showed a tendency to increase slightly. Moreover, as the recycled aggregate mixing ratio of concrete increased, the AP, EP, ODP, and ADP decreased, while GWP and POCP increased. The GWP and POCP per unit compressed strength (1 MPa of high strength concrete were found to be about 13% lower than that for its normal strength concrete counterpart. Furthermore, in the case of AP, EP, ODP, and ADP per unit compressed strength (1 MPa, high-strength concrete was found to be about 10%~25% lower than its normal strength counterpart. Among all the environmental impact categories, ordinary cement was found to have
Wave turbulence in magnetized plasmas
Directory of Open Access Journals (Sweden)
S. Galtier
2009-02-01
Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.
Energy Technology Data Exchange (ETDEWEB)
Kim, Munki; Choi, Youngil; Oh, Jeongseog; Yoon, Youngbin [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea)
2009-12-15
This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen non-premixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NO{sub x} emissions. Acoustic excitation causes the flame length to decrease by 15% and consequently, a 25% reduction in EINO{sub x} is achieved, compared to coaxial air flames without acoustic excitation at the same coaxial air to fuel velocity ratio. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NO{sub x} emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface. (author)
Directory of Open Access Journals (Sweden)
Pau Baya
2011-05-01
Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.
Effect of property variations on the mixing of turbulent supercritical water streams in a T-junction
Energy Technology Data Exchange (ETDEWEB)
Bu, L.; Zhao, J. [Centre for E-City, School of Electrical and Electronics Engineering, Nanyang Technological Univ., Singapore, 639798 (Singapore)
2012-07-01
The supercritical water mixing phenomenon is investigated with a wide range of conditions, i.e. the inlet temperature of the streams ranges from 323.15 K to 723.15 K and the pressure ranges from 25 MPa to 45 MPa. A sensitivity study is carried out for the jet and main flow velocity ratio (VR) which is varying from 1 to 40. In addition, the effect of the inject angles of branch flow to main flow on the mixing is conducted by varying the inject angle from 80 deg. to 100 deg.. The results show that the maximum temperature gradient appears on the wall of the upstream side in all the cases, and the inclined angles can be optimized to mitigate the thermal stress. (authors)
DEFF Research Database (Denmark)
Dahl, Tais Wittchen; Stevenson, David
2010-01-01
is enhanced if most of the accreting metal cores deform into thin structures during descent through the Earth's mantle. Yet, only 1–20% of Earth's corewould equilibrate with silicate during Earth's accretion. The initial speed of the impactor is of little importance. We proceed to evaluate the mixing......In the current view of planet formation, the final assembly of the Earth involved giant collisions between protoplanets (N1000 kmradius), with theMoon formed as a result of one such impact.At this stage the colliding bodies had likely differentiated into a metallic core surrounded by a silicate...... mantle. During the Moon-forming impact, nearly all metal sank into the Earth's core. Weinvestigate towhat extent large self-gravitating iron cores can mix with surrounding silicate and howthis influences the short-lived chronometer, Hf–W, used to infer the age of the Moon. We present fluid dynamical...
Turbulence Generation in Combustion.
1987-07-22
flame length . This work is summarized in this section. I1.1 Model for Turbulent Burning Velocity For a range of turbulence conditions including...Variable density effects have been added in an approximation, and an expression for the length of jet flames has been developed. The flame length expression...of jet mixing and jet flame length data using fractals, College of Engineering, Energy Report E-86-02, Comell University, Ithaca, NY, 1986. Results
Baumbick, R. J.
1974-01-01
Results of experimental tests conducted on a supersonic, mixed-compression, axisymmetric inlet are presented. The inlet is designed for operation at Mach 2.5 with a turbofan engine (TF-30). The inlet was coupled to either a choked orifice plate or a long duct which had a variable-area choked exit plug. Closed-loop frequency responses of selected diffuser static pressures used in the terminal-shock control system are presented. Results are shown for Mach 2.5 conditions with the inlet coupled to either the choked orifice plate or the long duct. Inlet unstart-restart traces are also presented. High-response inlet bypass doors were used to generate an internal disturbance and also to achieve terminal-shock control.
Bruno, Roberto
2016-01-01
This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in...
4th European Turbulence Conference
1993-01-01
The European Turbulence Conferences have been organized under the auspices of the European Mechanics Committee (Euromech) to provide a forum for discussion and exchange of recent and new results in the field of turbulence. The first conference was organized in Lyon in 1986 with 152 participants. The second and third conferences were held in Berlin (1988) and Stockholm (1990) with 165 and 172 participants respectively. The fourth was organized in Delft from 30 June to 3 July 1992 by the J.M. Burgers Centre. There were 214 participants from 22 countries. This steadily growing number of participants demonstrates both the success and need for this type of conference. The main topics of the Fourth European Turbulence Conference were: Dynamical Systems and Transition; Statistical Physics and Turbulence; Experiments and Novel Experimental Techniques; Particles and Bubbles in Turbulence; Simulation Methods; Coherent Structures; Turbulence Modelling and Compressibility Effects. In addition a special session was held o...
Alsved, M; Civilis, A; Ekolind, P; Tammelin, A; Andersson, A Erichsen; Jakobsson, J; Svensson, T; Ramstorp, M; Sadrizadeh, S; Larsson, P-A; Bohgard, M; Šantl-Temkiv, T; Löndahl, J
2018-02-01
To evaluate three types of ventilation systems for operating rooms with respect to air cleanliness [in colony-forming units (cfu/m 3 )], energy consumption and comfort of working environment (noise and draught) as reported by surgical team members. Two commonly used ventilation systems, vertical laminar airflow (LAF) and turbulent mixed airflow (TMA), were compared with a newly developed ventilation technique, temperature-controlled airflow (T c AF). The cfu concentrations were measured at three locations in an operating room during 45 orthopaedic procedures: close to the wound (draught. T c AF and LAF remove bacteria more efficiently from the air than TMA, especially close to the wound and at the instrument table. Like LAF, the new T c AF ventilation system maintained very low levels of cfu in the air, but T c AF used substantially less energy and provided a more comfortable working environment than LAF. This enables energy savings with preserved air quality. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Tearing instabilities in turbulence
International Nuclear Information System (INIS)
Ishizawa, A.; Nakajima, N.
2009-01-01
Full text: Effects of micro-turbulence on tearing instabilities are investigated by numerically solving a reduced set of two-fluid equations. Micro-turbulence excites both large-scale and small-scale Fourier modes through energy transfer due to nonlinear mode coupling. The energy transfer to large scale mode does not directly excite tearing instability but it gives an initiation of tearing instability. When tearing instability starts to grow, the excited small scale mode plays an important role. The mixing of magnetic flux by micro-turbulence is the dominant factor of non-ideal MHD effect at the resonant surface and it gives rise to magnetic reconnection which causes tearing instability. Tearing instabilities were investigated against static equilibrium or flowing equilibrium so far. On the other hand, the recent progress of computer power allows us to investigate interactions between turbulence and coherent modes such as tearing instabilities in magnetically confined plasmas by means of direct numerical simulations. In order to investigate effects of turbulence on tearing instabilities we consider a situation that tearing mode is destabilized in a quasi-equilibrium including micro-turbulence. We choose an initial equilibrium that is unstable against kinetic ballooning modes and tearing instabilities. Tearing instabilities are current driven modes and thus they are unstable for large scale Fourier modes. On the other hand kinetic ballooning modes are unstable for poloidal Fourier modes that are characterized by ion Larmor radius. The energy of kinetic ballooning modes spreads over wave number space through nonlinear Fourier mode coupling. We present that micro-turbulence affects tearing instabilities in two different ways by three-dimensional numerical simulation of a reduced set of two-fluid equations. One is caused by energy transfer to large scale modes, the other is caused by energy transfer to small scale modes. The former is the excitation of initial
Wu, Jian; Zha, Jinlin; Zhao, Deming; Yang, Qidong
2017-11-01
A significant slowdown in the near-surface wind speed (SWS) due to combined effects of the driving and drag forces of the atmosphere has been demonstrated in different regions in the globe. The drag force includes two sources: the friction force between the underlying surface and the bottom of the atmosphere, which is the external friction force (EFF), and the vertical exchange of the horizontal momentum induced by turbulent mixing, which is the turbulent friction force (TFF). In this paper, we propose a diagnostic method to separate the effects of the EFF and the TFF on long-term changes in the SWS over the Eastern China Plain (ECP) region from 1981 to 2010. The results show that the TFF could have caused an increase of 0.5 ± 0.2 m s- 1 in the SWS over the ECP region in the past 30 years and the TFF showed an increasing influence of 0.17 m s- 1 decade- 1. In contrast, the EFF distinctly decreased the SWS by an average of - 1.1 ± 0.4 m s- 1 and presented a significant decreasing trend of - 0.36 m s- 1 decade- 1. The effect of EFF is the main inducer of the observed regional long-term decrease of the SWS, which is in accordance with the distinct land use and cover change (LUCC) occurring in the ECP region in recent decades. Furthermore, the effects of the EFF and TFF on the changes in the SWS are more significant in large cities than those in small cities. The TFF effect can accelerate the SWS, with means of 0.5 ± 0.2 and 0.4 ± 0.2 m s- 1 in large and small cities, respectively. The EFF effect can decelerate the SWS, with means of - 1.2 ± 0.4 and - 0.7 ± 0.4 m s- 1 in large and small cities, respectively.
Large-eddy simulations of turbulent flows in internal combustion engines
Banaeizadeh, Araz
The two-phase compressible scalar filtered mass density function (FMDF) model is further developed and employed for large-eddy simulations (LES) of turbulent spray combustion in internal combustion (IC) engines. In this model, the filtered compressible Navier-Stokes equations are solved in a generalized curvilinear coordinate system with high-order, multi-block, compact differencing schemes for the turbulent velocity and pressure. However, turbulent mixing and combustion are computed with a new two-phase compressible scalar FMDF model. The spray and droplet dispersion/evaporation are modeled with a Lagrangian method. A new Lagrangian-Eulerian-Lagrangian computational method is employed for solving the flow, spray and scalar equation. The pressure effect in the energy equation, as needed in compressible flows, is included in the FMDF formulation. The performance of the new compressible LES/FMDF model is assessed by simulating the flow field and scalar mixing in a rapid compression machine (RCM), in a shock tube and in a supersonic co-axial jet. Consistency of temperatures predicted by the Eulerian finite-difference (FD) and Lagrangian Monte Carlo (MC) parts of the LES/FMDF model are established by including the pressure on the FMDF. It is shown that the LES/FMDF model is able to correctly capture the scalar mixing in both compressible subsonic and supersonic flows. Using the new two-phase LES/FMDF model, fluid dynamics, heat transfer, spray and combustion in the RCM with flat and crevice piston are studied. It is shown that the temperature distribution in the RCM with crevice piston is more uniform than the RCM with flat piston. The fuel spray characteristics and the spray parameters affecting the fuel mixing inside the RCM in reacting and non-reacting flows are also studied. The predicted liquid penetration and flame lift-off lengths for respectively non-reacting and reacting sprays are found to compare well with the available experimental data. Temperatures and
Magnetohydrodynamic turbulence
Biskamp, Dieter
2003-01-01
This book presents an introduction to, and modern account of, magnetohydrodynamic (MHD) turbulence, an active field both in general turbulence theory and in various areas of astrophysics. The book starts by introducing the MHD equations, certain useful approximations and the transition to turbulence. The second part of the book covers incompressible MHD turbulence, the macroscopic aspects connected with the different self-organization processes, the phenomenology of the turbulence spectra, two-point closure theory, and intermittency. The third considers two-dimensional turbulence and compressi
Suppression of turbulent resistivity in turbulent Couette flow
Si, Jiahe; Colgate, Stirling A.; Sonnenfeld, Richard G.; Nornberg, Mark D.; Li, Hui; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe
2015-07-01
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.
Suppression of turbulent resistivity in turbulent Couette flow
Energy Technology Data Exchange (ETDEWEB)
Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
2015-07-15
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.
Suppression of turbulent resistivity in turbulent Couette flow
International Nuclear Information System (INIS)
Si, Jiahe; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe; Colgate, Stirling A.; Li, Hui; Nornberg, Mark D.
2015-01-01
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations
Coherent structures in compressible free-shear-layer flows
Energy Technology Data Exchange (ETDEWEB)
Aeschliman, D.P.; Baty, R.S. [Sandia National Labs., Albuquerque, NM (United States). Engineering Sciences Center; Kennedy, C.A.; Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion and Physical Sciences Center
1997-08-01
Large scale coherent structures are intrinsic fluid mechanical characteristics of all free-shear flows, from incompressible to compressible, and laminar to fully turbulent. These quasi-periodic fluid structures, eddies of size comparable to the thickness of the shear layer, dominate the mixing process at the free-shear interface. As a result, large scale coherent structures greatly influence the operation and efficiency of many important commercial and defense technologies. Large scale coherent structures have been studied here in a research program that combines a synergistic blend of experiment, direct numerical simulation, and analysis. This report summarizes the work completed for this Sandia Laboratory-Directed Research and Development (LDRD) project.
International Nuclear Information System (INIS)
Donnelly, R.J.
1988-01-01
Most flows of fluids, in nature and in technology, are turbulent. Since much of the energy expended by machines and devices that involve fluid flows is spent in overcoming drag caused by turbulence, there is a strong motivation to understand the phenomena. Surprisingly, the peculiar, quantum-mechanical form of turbulence that can form in superfluid helium may turn out to be much simpler to understand that the classical turbulence that forms in normal fluids. It now seems that the study of superfluid turbulence may provide simplified model systems for studying some forms of classical turbulence. There are also practical motivations for studying superfluid turbulence. For example, superfuid helium is often used as a coolant in superconducting machinery. Superfluid turbulence is the primary impediment to the transfer of heat by superfluid helium; an understanding of the phenomena may make it possible to design more efficient methods of refrigeration for superconducting devices. 8 figs
Mathematical and physical theory of turbulence
Cannon, John
2006-01-01
Although the current dynamical system approach offers several important insights into the turbulence problem, issues still remain that present challenges to conventional methodologies and concepts. These challenges call for the advancement and application of new physical concepts, mathematical modeling, and analysis techniques. Bringing together experts from physics, applied mathematics, and engineering, Mathematical and Physical Theory of Turbulence discusses recent progress and some of the major unresolved issues in two- and three-dimensional turbulence as well as scalar compressible turbulence. Containing introductory overviews as well as more specialized sections, this book examines a variety of turbulence-related topics. The authors concentrate on theory, experiments, computational, and mathematical aspects of Navier-Stokes turbulence; geophysical flows; modeling; laboratory experiments; and compressible/magnetohydrodynamic effects. The topics discussed in these areas include finite-time singularities a...
Goodson, Matthew D.; Heitsch, Fabian; Eklund, Karl; Williams, Virginia A.
2017-07-01
Turbulence models attempt to account for unresolved dynamics and diffusion in hydrodynamical simulations. We develop a common framework for two-equation Reynolds-averaged Navier-Stokes turbulence models, and we implement six models in the athena code. We verify each implementation with the standard subsonic mixing layer, although the level of agreement depends on the definition of the mixing layer width. We then test the validity of each model into the supersonic regime, showing that compressibility corrections can improve agreement with experiment. For models with buoyancy effects, we also verify our implementation via the growth of the Rayleigh-Taylor instability in a stratified medium. The models are then applied to the ubiquitous astrophysical shock-cloud interaction in three dimensions. We focus on the mixing of shock and cloud material, comparing results from turbulence models to high-resolution simulations (up to 200 cells per cloud radius) and ensemble-averaged simulations. We find that the turbulence models lead to increased spreading and mixing of the cloud, although no two models predict the same result. Increased mixing is also observed in inviscid simulations at resolutions greater than 100 cells per radius, which suggests that the turbulent mixing begins to be resolved.
Agarwal, Avinash K; Ateeq, Bushra; Gupta, Tarun; Singh, Akhilendra P; Pandey, Swaroop K; Sharma, Nikhil; Agarwal, Rashmi A; Gupta, Neeraj K; Sharma, Hemant; Jain, Ayush; Shukla, Pravesh C
2018-04-20
Despite intensive research carried out on particulates, correlation between engine-out particulate emissions and adverse health effects is not well understood yet. Particulate emissions hold enormous significance for mega-cities like Delhi that have immense traffic diversity. Entire public transportation system involving taxis, three-wheelers, and buses has been switched from conventional liquid fuels to compressed natural gas (CNG) in the Mega-city of Delhi. In this study, the particulate characterization was carried out on variety of engines including three diesel engines complying with Euro-II, Euro-III and Euro-IV emission norms, one Euro-II gasoline engine and one Euro-IV CNG engine. Physical, chemical and biological characterizations of particulates were performed to assess the particulate toxicity. The mutagenic potential of particulate samples was investigated at different concentrations using two different Salmonella strains, TA98 and TA100 in presence and absence of liver S9 metabolic enzyme fraction. Particulates emitted from diesel and gasoline engines showed higher mutagenicity, while those from CNG engine showed negligible mutagenicity compared to other test fuels and engine configurations. Polycyclic aromatic hydrocarbons (PAHs) adsorbed onto CNG engine particulates were also relatively fewer compared to those from equivalent diesel and gasoline engines. Taken together, our findings indicate that CNG is comparatively safer fuel compared to diesel and gasoline and can offer a cleaner transport energy solution for mega-cities with mixed-traffic conditions, especially in developing countries. Copyright © 2018 Elsevier Ltd. All rights reserved.
Statistical characteristics of turbulence in giant molecular clouds. Part 1
International Nuclear Information System (INIS)
Ogul'chansky, Ya.Yu.
1989-01-01
Using the invariant group of transformations of equations for characteristic functional of turbulence in compressible medium the spectral characteristics in inertial range are obtained. The influence of magnetic field on the turbulent spectra is evaluated. The application of the results obtained to supersonical turbulence in giant molecular clouds is discussed. 42 refs
Saturation of the turbulent dynamo.
Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S
2015-08-01
The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.
ADIABATIC HEATING OF CONTRACTING TURBULENT FLUIDS
International Nuclear Information System (INIS)
Robertson, Brant; Goldreich, Peter
2012-01-01
Turbulence influences the behavior of many astrophysical systems, frequently by providing non-thermal pressure support through random bulk motions. Although turbulence is commonly studied in systems with constant volume and mean density, turbulent astrophysical gases often expand or contract under the influence of pressure or gravity. Here, we examine the behavior of turbulence in contracting volumes using idealized models of compressed gases. Employing numerical simulations and an analytical model, we identify a simple mechanism by which the turbulent motions of contracting gases 'adiabatically heat', experiencing an increase in their random bulk velocities until the largest eddies in the gas circulate over a Hubble time of the contraction. Adiabatic heating provides a mechanism for sustaining turbulence in gases where no large-scale driving exists. We describe this mechanism in detail and discuss some potential applications to turbulence in astrophysical settings.
Turbulence and fossil turbulence lead to life in the universe
International Nuclear Information System (INIS)
Gibson, Carl H
2013-01-01
Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than all the other forces that tend to damp the eddies out. Fossil turbulence is a perturbation produced by turbulence that persists after the fluid ceases to be turbulent at the scale of the perturbation. Because vorticity is produced at small scales, turbulence must cascade from small scales to large, providing a consistent physical basis for Kolmogorovian universal similarity laws. Oceanic and astrophysical mixing and diffusion are dominated by fossil turbulence and fossil turbulent waves. Observations from space telescopes show turbulence and vorticity existed in the beginning of the universe and that their fossils persist. Fossils of big bang turbulence include spin and the dark matter of galaxies: clumps of ∼10 12 frozen hydrogen planets that make globular star clusters as seen by infrared and microwave space telescopes. When the planets were hot gas, they hosted the formation of life in a cosmic soup of hot-water oceans as they merged to form the first stars and chemicals. Because spontaneous life formation according to the standard cosmological model is virtually impossible, the existence of life falsifies the standard cosmological model. (paper)
Studies of turbulent round jets through experimentation, simulation, and modeling
Keedy, Ryan
This thesis studies the physics of the turbulent round jet. In particular, it focuses on three different problems that have the turbulent round jet as their base flow. The first part of this thesis examines a compressible turbulent round jet at its sonic condition. We investigate the shearing effect such a jet has when impinging on a solid surface that is perpendicular to the flow direction. We report on experiments to evaluate the jet's ability to remove different types of explosive particles from a glass surface. Theoretical analysis revealed trends and enabled modeling to improve the predictability of particle removal for various jet conditions. The second part of thesis aims at developing a non-intrusive measurement technique for free-shear turbulent flows in nature. Most turbulent jet investigations in the literature, both in the laboratory and in the field, required specialized intrusive instrumentation and/or complex optical setups. There are many situations in naturally-occurring flows where the environment may prove too hostile or remote for existing instrumentation. We have developed a methodology for analyzing video of the exterior of a naturally-occurring flow and calculating the flow velocity. We found that the presence of viscosity gradients affects the velocity analysis. While these effects produce consistent, predictable changes, we became interested in the mechanism by which the viscosity gradients affect the mixing and development of the turbulent round jet. We conducted a stability analysis of the axisymmetric jet when a viscosity gradient is present. Finally, the third problem addressed in this thesis is the growth of liquid droplets by condensation in a turbulent round jet. A vapor-saturated turbulent jet issues into a cold, dry environment. The resulting mixing produces highly inhomogeneous regions of supersaturation, where droplets grow and evaporate. Non-linear interactions between the droplet growth rate and the supersaturation field make
Energy Technology Data Exchange (ETDEWEB)
Zhang, Y.; Lu, T., E-mail: likesurge@sina.com
2016-12-01
Highlights: • Two characteristic parameters of the temperature fluctuations are used for qualitative analysis. • A quantitative assessment method for high-cycle thermal fatigue of a T-pipe is proposed. • The time-dependent curves for the temperature and thermal stress are not always “in-phase”. • Large magnitude of thermal stresses may not mean large number of fatigue cycles. • The normalized fatigue damage rate and normalized RMS temperature are positively related. - Abstract: With the development of nuclear power and nuclear power safety, high-cycle thermal fatigue of the pipe structures induced by the flow and heat transfer of the fluid in pipes have aroused more and more attentions. Turbulent mixing of hot and cold flows in a T-pipe is a well-recognized source of thermal fatigue in piping system, and thermal fatigue is a significant long-term degradation mechanism. It is not an easy work to evaluate thermal fatigue of a T-pipe under turbulent flow mixing because of the thermal loads acting at fluid–structure interface of the pipe are so complex and changeful. In this paper, a one-way Computational Fluid Dynamics-Finite Element Method (CFD-FEM method) coupling based on the ANSYS Workbench 15.0 software has been developed to calculate transient thermal stresses with the temperature fields of turbulent flow mixing, and thermal fatigue assessment has been carried out with this obtained fluctuating thermal stresses by programming in the software platform of Matlab based on the rainflow counting method. In the thermal analysis, the normalized mean temperatures and the normalized root mean square (RMS) temperatures are obtained and compared with the experiment of the test case from the Vattenfall benchmark facility to verify the accuracy of the CFD calculation and to determine the position which thermal fatigue is most likely to occur in the T-junction. Besides, more insights have been obtained in the coupled CFD-FEM analysis and the thermal fatigue
EuHIT, Collaboration
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.
International Nuclear Information System (INIS)
Horton, W.
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates
Energy Technology Data Exchange (ETDEWEB)
Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.
2011-07-01
Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)
Turbulent deflagrations, autoignitions, and detonations
Bradley, Derek
2012-09-01
Measurements of turbulent burning velocities in fan-stirred explosion bombs show an initial linear increase with the fan speed and RMS turbulent velocity. The line then bends over to form a plateau of high values around the maximum attainable burning velocity. A further increase in fan speed leads to the eventual complete quenching of the flame due to increasing localised extinctions because of the flame stretch rate. The greater the Markstein number, the more readily does flame quenching occur. Flame propagation along a duct closed at one end, with and without baffles to increase the turbulence, is subjected to a one-dimensional analysis. The flame, initiated at the closed end of the long duct, accelerates by the turbulent feedback mechanism, creating a shock wave ahead of it, until the maximum turbulent burning velocity for the mixture is attained. With the confining walls, the mixture is compressed between the flame and the shock plane up to the point where it might autoignite. This can be followed by a deflagration to detonation transition. The maximum shock intensity occurs with the maximum attainable turbulent burning velocity, and this defines the limit for autoignition of the mixture. For more reactive mixtures, autoignition can occur at turbulent burning velocities that are less than the maximum attainable one. Autoignition can be followed by quasi-detonation or fully developed detonation. The stability of ensuing detonations is discussed, along with the conditions that may lead to their extinction. © 2012 by Pleiades Publishing, Ltd.
Directory of Open Access Journals (Sweden)
H. Z. Baumert
2009-03-01
Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.
The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E^{2}. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E^{1}. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.
Mansour, Mohy S.; Elbaz, Ayman M.; Roberts, William L.; Senosy, Mohamed S.; Zayed, Mohamed F.; Juddoo, Mrinal; Masri, Assaad R.
2016-01-01
of partially premixed methane flames. The mixing field in a concentric flow conical nozzle (CFCN) burner with well-controlled mechanism of the mixing is investigated using Rayleigh scattering technique. The flame stability, structure and flow field of some
DNABIT Compress - Genome compression algorithm.
Rajarajeswari, Pothuraju; Apparao, Allam
2011-01-22
Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.
Call your health insurance or prescription plan: Find out if they pay for compression stockings. Ask if your durable medical equipment benefit pays for compression stockings. Get a prescription from your doctor. Find a medical equipment store where they can ...
Statistical Mechanics of Turbulent Flows
International Nuclear Information System (INIS)
Cambon, C
2004-01-01
counterparts at the molecular level. In addition, equations are given for multicomponent reacting systems. The chapter ends with miscellaneous topics, including DNS (idea of) the energy cascade, and RANS. Chapter 5 is devoted to stochastic models for the large scales of turbulence. Langevin-type models for velocity (and particle position) are presented, and their various consequences for second-order single-point correlations (Reynolds stress components, Kolmogorov constant) are discussed. These models are then presented for the scalar. The chapter ends with compressible high-speed flows and various models, ranging from k-ε to hybrid RANS-pdf. Stochastic models for small-scale turbulence are addressed in chapter 6. These models are based on the concept of a filter density function (FDF) for the scalar, and a more conventional SGS (sub-grid-scale model) for the velocity in LES. The final chapter, chapter 7, is entitled 'The unification of turbulence models' and aims at reconciling large-scale and small-scale modelling. This book offers a timely survey of techniques in modern computational fluid mechanics for turbulent flows with reacting scalars. It should be of interest to engineers, while the discussion of the underlying tools, namely pdfs, stochastic and statistical equations should also be attractive to applied mathematicians and physicists. The book's emphasis on local pdfs and stochastic Langevin models gives a consistent structure to the book and allows the author to cover almost the whole spectrum of practical modelling in turbulent CFD. On the other hand, one might regret that non-local issues are not mentioned explicitly, or even briefly. These problems range from the presence of pressure-strain correlations in the Reynolds stress transport equations to the presence of two-point pdfs in the single-point pdf equation derived from the Navier--Stokes equations. (One may recall that, even without scalar transport, a general closure problem for turbulence statistics
Intermittency and Topology of Shock Induced Mixing
Tellez, Jackson; Redondo, Jose M.; Ben Mahjoub, Otman; Malik, Nadeem; Vila, Teresa
2016-04-01
are more regular. Mixing in turbulent flows remains less well understood, and in spite research some basic problems are still virtually unexplored. Th e indications suggest that mixing in non-decaying and accelerating turbulent flows are different from those in vortical and steady flows. Fluid element pairs separate, neither linearly nor exponentially but according to a generalized intermittent Richardson's law. Fractal analysis in the laboratory shows that fluid element pairs travel close to each other for a long time until they separate quite suddenly suggest that straining regions around hyperbolic points play an important role in the violent turbulent stirring and in the mechanisms by which turbulence causes fluid element pairs to move apart [6,7]. So the eddies that are most effective in separating fluid elements are those that have a size comparable to the instantaneous separation between the two fluid elements. This is seen in both RT and RM instabilities. For a constant acceleration, the RT instability is found to grow self -similarly according to mixing coefficients which when measured over a comprehensive range of density ratio (Atwood nubers)show that the results are found applicable to supernova exlposions.For an impulsive acceleration (RM), there are two components. The RM impulse from a shock is greatly reduced at high Mach number due to compressive effects in reasonable agreement with linear theory. The ensuing motion is essentially incompressible and described by a power law However, the exponents obtained from the compressible RM experiments are larger than those obtained from incompressible RT experiments. The discrepancy is not well understood but intermittency differences could explain the role of compressibility in fractal media. [1] Linden P.F., Redondo J.M. and Youngs D. (1994) Molecular mixing in Rayleigh-Taylor Instability. Jour. Fluid Mech. 265, 97-124. [2] Redondo, J.M., 1990. The structure of density interfaces. Ph.D. Thesis. DAMTP
Evolution of scalar and velocity dynamics in planar shock-turbulence interaction
Boukharfane, R.; Bouali, Z.; Mura, A.
2018-01-01
Due to the short residence time of air in supersonic combustors, achieving efficient mixing in compressible turbulent reactive flows is crucial for the design of supersonic ramjet (Scramjet) engines. In this respect, improving the understanding of shock-scalar mixing interactions is of fundamental importance for such supersonic combustion applications. In these compressible flows, the interaction between the turbulence and the shock wave is reciprocal, and the coupling between them is very strong. A basic understanding of the physics of such complex interactions has already been obtained through the analysis of relevant simplified flow configurations, including propagation of the shock wave in density-stratified media, shock-wave-mixing-layer interaction, and shock-wave-vortex interaction. Amplification of velocity fluctuations and substantial changes in turbulence characteristic length scales are the most well-known outcomes of shock-turbulence interaction, which may also deeply influence scalar mixing between fuel and oxidizer. The effects of the shock wave on the turbulence have been widely characterized through the use of so-called amplification factors, and similar quantities are introduced herein to characterize the influence of the shock wave on scalar mixing. One of the primary goals of the present study is indeed to extend previous analyses to the case of shock-scalar mixing interaction, which is directly relevant to supersonic combustion applications. It is expected that the shock wave will affect the scalar dissipation rate (SDR) dynamics. Special emphasis is placed on the modification of the so-called turbulence-scalar interaction as a leading-order contribution to the production of mean SDR, i.e., a quantity that defines the mixing rate and efficiency. To the best of the authors' knowledge, this issue has never been addressed in detail in the literature, and the objective of the present study is to scrutinize this influence. The turbulent mixing of a
Hanratty, Thomas J.
1980-01-01
This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)
CERN. Geneva. Audiovisual Unit
2005-01-01
Understanding turbulence is vital in astrophysics, geophysics and many engineering applications, with thermal convection playing a central role. I shall describe progress that has recently been made in understanding this ubiquitous phenomenon by making controlled experiments using low-temperature helium, and a brief account of the frontier topic of superfluid turbulence will also be given. CERN might be able to play a unique role in experiments to probe these two problems.
Lagrangian properties of particles in turbulence
Toschi, F.; Bodenschatz, E.
2009-01-01
The Lagrangian description of turbulence is characterized by a unique conceptual simplicity and by an immediate connection with the physics of dispersion and mixing. In this article, we report some motivations behind the Lagrangian description of turbulence and focus on the statistical properties of
Tchen, C. M.
1986-01-01
Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.
Simulations of Turbulent Flows with Strong Shocks and Density Variations: Final Report
Energy Technology Data Exchange (ETDEWEB)
Sanjiva Lele
2012-10-01
outlined as follows. Section 2 shows an assessment of numerical algorithms that are best suited for the numerical simulation of compressible flows involving turbulence and shock phenomena. Sections 3 and 4 deal with the canonical shock-turbulence interaction problem, from the DNS and LES perspectives, respectively. Section 5 considers the shock-turbulence inter-action in spherical geometry, in particular, the interaction of a converging shock with isotropic turbulence as well as the problem of the blast wave. Section 6 describes the study of shock-accelerated mixing through planar and spherical Richtmyer-Meshkov mixing as well as the shock-curtain interaction problem In section 7 we acknowledge the different interactions between Stanford and other institutions participating in this SciDAC project, as well as several external collaborations made possible through it. Section 8 presents a list of publications and presentations that have been generated during the course of this SciDAC project. Finally, section 9 concludes this report with the list of personnel at Stanford University funded by this SciDAC project.
Scaling, Intermittency and Decay of MHD Turbulence
International Nuclear Information System (INIS)
Lazarian, A.; Cho, Jungyeon
2005-01-01
We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field
Instantaneous aerosol dynamics in a turbulent flow
Zhou, Kun
2012-01-01
Dibutyl phthalate aerosol particles evolution dynamics in a turbulent mixing layer is simulated by means of direct numerical simulation for the flow field and the direct quadrature method of moments for the aerosol evolution. Most par
Computational fluid dynamics investigation of turbulent separated ...
African Journals Online (AJOL)
user
Turbulent mixing is largely suppressed by the proximity of a wall boundary and ... the uncertainty between the experimental and CFD values falls within ± 3.8% of f .... Numerical, Experimental, and Theoretical Aspects, Vieweg, Berlin, 1989, pp.
National Research Council Canada - National Science Library
Lien, Ren-Chieh; D'Asaro, Eric A
2008-01-01
... mixing in the northern South China Sea. Results are reported. The second was to analyze observations of data taken in the vicinity of the Kuroshio path from Luzon Strait to the southern East China Sea...
International Nuclear Information System (INIS)
Drury, L.O.; Stewart, J.M.
1976-01-01
A generalization of a transformation due to Kurskov and Ozernoi is used to rewrite the usual equations governing subsonic turbulence in Robertson-Walker cosmological models as Navier-Stokes equations with a time-dependent viscosity. This paper first rederives some well-known results in a very simple way by means of this transformation. The main result however is that the establishment of a Kolmogorov spectrum at recombination appears to be incompatible with subsonic turbulence. The conditions after recombination are also discussed briefly. (author)
DEFF Research Database (Denmark)
Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens
2011-01-01
term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence...
Turbulent energy generated by accelerations and shocks
International Nuclear Information System (INIS)
Mikaelian, K.O.
1986-01-01
The turbulent energy generated at the interface between two fluids undergoing a constant acceleration or a shock is calculated. Assuming linear density profiles in the mixed region we find E/sub turbulent//E/sub directed/ = 2.3A 2 % (constant acceleration) and 9.3A 2 % (shock), where A is the Atwood number. Diffusion models predict somewhat less turbulent energy and a density profile with a tail extending into the lower density fluid. Eddy sizes are approximately 27% (constant acceleration) and 17% (shock) of the mixing depth into the heavier fluid. 6 refs., 3 figs
Turbulent equipartitions in two dimensional drift convection
International Nuclear Information System (INIS)
Isichenko, M.B.; Yankov, V.V.
1995-01-01
Unlike the thermodynamic equipartition of energy in conservative systems, turbulent equipartitions (TEP) describe strongly non-equilibrium systems such as turbulent plasmas. In turbulent systems, energy is no longer a good invariant, but one can utilize the conservation of other quantities, such as adiabatic invariants, frozen-in magnetic flux, entropy, or combination thereof, in order to derive new, turbulent quasi-equilibria. These TEP equilibria assume various forms, but in general they sustain spatially inhomogeneous distributions of the usual thermodynamic quantities such as density or temperature. This mechanism explains the effects of particle and energy pinch in tokamaks. The analysis of the relaxed states caused by turbulent mixing is based on the existence of Lagrangian invariants (quantities constant along fluid-particle or other orbits). A turbulent equipartition corresponds to the spatially uniform distribution of relevant Lagrangian invariants. The existence of such turbulent equilibria is demonstrated in the simple model of two dimensional electrostatically turbulent plasma in an inhomogeneous magnetic field. The turbulence is prescribed, and the turbulent transport is assumed to be much stronger than the classical collisional transport. The simplicity of the model makes it possible to derive the equations describing the relaxation to the TEP state in several limits
Energy Technology Data Exchange (ETDEWEB)
Zentgraf, Florian; Baum, Elias; Dreizler, Andreas [Fachgebiet Reaktive Strömungen und Messtechnik (RSM), Center of Smart Interfaces (CSI), Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Böhm, Benjamin [Fachgebiet Energie und Kraftwerkstechnik (EKT), Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Peterson, Brian, E-mail: brian.peterson@ed.ac.uk [Department of Mechanical Engineering, School of Engineering, Institute for Energy Systems, University of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JL, Scotland (United Kingdom)
2016-04-15
Planar particle image velocimetry (PIV) and tomographic PIV (TPIV) measurements are utilized to analyze turbulent statistical theory quantities and the instantaneous turbulence within a single-cylinder optical engine. Measurements are performed during the intake and mid-compression stroke at 800 and 1500 RPM. TPIV facilitates the evaluation of spatially resolved Reynolds stress tensor (RST) distributions, anisotropic Reynolds stress invariants, and instantaneous turbulent vortical structures. The RST analysis describes distributions of individual velocity fluctuation components that arise from unsteady turbulent flow behavior as well as cycle-to-cycle variability (CCV). A conditional analysis, for which instantaneous PIV images are sampled by their tumble center location, reveals that CCV and turbulence have similar contributions to RST distributions at the mean tumble center, but turbulence is dominant in regions peripheral to the tumble center. Analysis of the anisotropic Reynolds stress invariants reveals the spatial distribution of axisymmetric expansion, axisymmetric contraction, and 3D isotropy within the cylinder. Findings indicate that the mid-compression flow exhibits a higher tendency toward 3D isotropy than the intake flow. A novel post-processing algorithm is utilized to classify the geometry of instantaneous turbulent vortical structures and evaluate their frequency of occurrence within the cylinder. Findings are coupled with statistical theory quantities to provide a comprehensive understanding of the distribution of turbulent velocity components, the distribution of anisotropic states of turbulence, and compare the turbulent vortical flow distribution that is theoretically expected to what is experimentally observed. The analyses reveal requisites of important turbulent flow quantities and discern their sensitivity to the local flow topography and engine operation.
Evaluation of Full Reynolds Stress Turbulence Models in FUN3D
Dudek, Julianne C.; Carlson, Jan-Renee
2017-01-01
Full seven-equation Reynolds stress turbulence models are a relatively new and promising tool for todays aerospace technology challenges. This paper uses two stress-omega full Reynolds stress models to evaluate challenging flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSGLRR full second-moment Reynolds stress models are evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST) two-equation models.
Relation of astrophysical turbulence and magnetic reconnection
Energy Technology Data Exchange (ETDEWEB)
Lazarian, A. [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, Wisconsin 53706 (United States); Eyink, Gregory L. [Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Vishniac, E. T. [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)
2012-01-15
Astrophysical fluids are generically turbulent and this must be taken into account for most transport processes. We discuss how the preexisting turbulence modifies magnetic reconnection and how magnetic reconnection affects the MHD turbulent cascade. We show the intrinsic interdependence and interrelation of magnetic turbulence and magnetic reconnection, in particular, that strong magnetic turbulence in 3D requires reconnection and 3D magnetic turbulence entails fast reconnection. We follow the approach in Eyink et al.[Astrophys. J. 743, 51 (2011)] to show that the expressions of fast magnetic reconnection in A. Lazarian and E. T. Vishniac [Astrophys. J. 517, 700 (1999)] can be recovered if Richardson diffusion of turbulent flows is used instead of ordinary Ohmic diffusion. This does not revive, however, the concept of magnetic turbulent diffusion which assumes that magnetic fields can be mixed up in a passive way down to a very small dissipation scales. On the contrary, we are dealing the reconnection of dynamically important magnetic field bundles which strongly resist bending and have well defined mean direction weakly perturbed by turbulence. We argue that in the presence of turbulence the very concept of flux-freezing requires modification. The diffusion that arises from magnetic turbulence can be called reconnection diffusion as it based on reconnection of magnetic field lines. The reconnection diffusion has important implications for the continuous transport processes in magnetized plasmas and for star formation. In addition, fast magnetic reconnection in turbulent media induces the First order Fermi acceleration of energetic particles, can explain solar flares and gamma ray bursts. However, the most dramatic consequence of these developments is the fact that the standard flux freezing concept must be radically modified in the presence of turbulence.
Fuel effects on the stability of turbulent flames with compositionally inhomogeneous inlets
Guiberti, T. F.
2016-10-11
This paper reports an analysis of the influence of fuels on the stabilization of turbulent piloted jet flames with inhomogeneous inlets. The burner is identical to that used earlier by the Sydney Group and employs two concentric tubes within the pilot stream. The inner tube, carrying fuel, can be recessed, leading to a varying degree of inhomogeneity in mixing with the outer air stream. Three fuels are tested: dimethyl ether (DME), liquefied petroleum gas (LPG), and compressed natural gas (CNG). It is found that improvement in flame stability at the optimal compositional inhomogeneity is highest for CNG and lowest for DME. Three possible reasons for this different enhancement in stability are investigated: mixing patterns, pilot effects, and fuel chemistry. Numerical simulations realized in the injection tube highlight similarities and differences in the mixing patterns for all three fuels and demonstrate that mixing cannot explain the different stability gains. Changing the heat release rates from the pilot affects the three fuels in similar ways and this also implies that the pilot stream is unlikely to be responsible for the observed differences. Fuel reactivity is identified as a key factor in enhancing stability at some optimal compositional inhomogeneity. This is confirmed by inference from joint images of PLIF-OH and PLIF-CHO, collected at a repetition rate of 10kHz in turbulent flames of DME, and from one-dimensional calculations of laminar flames using detailed chemistry for DME, CNG, and LPG.
Directory of Open Access Journals (Sweden)
Florian Ries
2017-08-01
Full Text Available In the present paper, thermal transport and entropy production mechanisms in a turbulent round jet of compressed nitrogen at supercritical thermodynamic conditions are investigated using a direct numerical simulation. First, thermal transport and its contribution to the mixture formation along with the anisotropy of heat fluxes and temperature scales are examined. Secondly, the entropy production rates during thermofluid processes evolving in the supercritical flow are investigated in order to identify the causes of irreversibilities and to display advantageous locations of handling along with the process regimes favorable to mixing. Thereby, it turned out that (1 the jet disintegration process consists of four main stages under supercritical conditions (potential core, separation, pseudo-boiling, turbulent mixing, (2 causes of irreversibilities are primarily due to heat transport and thermodynamic effects rather than turbulence dynamics and (3 heat fluxes and temperature scales appear anisotropic even at the smallest scales, which implies that anisotropic thermal diffusivity models might be appropriate in the context of both Reynolds-averaged Navier–Stokes (RANS and large eddy simulation (LES approaches while numerically modeling supercritical fluid flows.
Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations
Directory of Open Access Journals (Sweden)
S. Nishizawa
2015-10-01
Full Text Available We examine the influence of the grid aspect ratio of horizontal to vertical grid spacing on turbulence in the planetary boundary layer (PBL in a large-eddy simulation (LES. In order to clarify and distinguish them from other artificial effects caused by numerical schemes, we used a fully compressible meteorological LES model with a fully explicit scheme of temporal integration. The influences are investigated with a series of sensitivity tests with parameter sweeps of spatial resolution and grid aspect ratio. We confirmed that the mixing length of the eddy viscosity and diffusion due to sub-grid-scale turbulence plays an essential role in reproducing the theoretical −5/3 slope of the energy spectrum. If we define the filter length in LES modeling based on consideration of the numerical scheme, and introduce a corrective factor for the grid aspect ratio into the mixing length, the theoretical slope of the energy spectrum can be obtained; otherwise, spurious energy piling appears at high wave numbers. We also found that the grid aspect ratio has influence on the turbulent statistics, especially the skewness of the vertical velocity near the top of the PBL, which becomes spuriously large with large aspect ratio, even if a reasonable spectrum is obtained.
Sridharan, V. K.; Fong, D.; Monismith, S. G.; Jackson, D.; Russel, P.; Pope, A.; Danner, E.; Lindley, S. T.
2016-12-01
River deltas worldwide - home to nearly a billion people, thousands of species of flora and fauna, and economies worth trillions of dollars - have experienced massive ecosystem decline caused by urbanization, pollution, and water withdrawals. Habitat restoration in these systems is imperative not only for preserving endangered biomes, but also in sustaining human demand for freshwater and long term commercial viability. The sustainable management of heavily engineered, multi-use, branched tidal estuaries such as the Sacramento-San Joaquin Delta (henceforth, the Delta) requires utilizing physical transport and mixing process models. These inform us about the movement and fate of water quality constituents and aquatic organisms. This study identifies and quantifies the effects of various hydrodynamic mechanisms in the Delta across multiple spatio-temporal scales. A particle tracking model with accurate channel junction physics and an agent based model with realistic biological hypotheses of fish behavior were developed to study the movement and fate of tracers (surrogates for water quality constituents) and fish in the Delta. Simulations performed with these models were used to (1) determine the transport pathways through the Delta, (2) quantify the magnitude of transport and mixing processes along those pathways, and (3) describe the effects of physical stressors on fates of juvenile salmon. The Delta is largely dominated by large spatial scale advection by river flows, tidal pumping, and significantly increased dispersion through chaos due to the interaction of tidal flows with channel junctions. The movement and fate of simulated tracers and juvenile salmon are governed largely by the water diversion and pumping operations, transport pathways and chaotic tidal mixing mechanisms along those pathways. There is also a significant effect of predation on fish. These transport pathway and mechanistic dependencies indicate that restoration efforts which are harmonious
Subramanian, Ramanathan Vishnampet Ganapathi
, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that its accuracy is limited only by computing precision, and we demonstrate it on the aeroacoustic control of a mixing layer with a challengingly broad range of turbulence scales. For comparison, the error from a corresponding discretization of the continuous-adjoint equations is quantified to potentially explain its limited success in past efforts to control jet noise. The differences are illuminating: the continuous-adjoint is shown to suffer from exponential error growth in (reverse) time even for the best-resolved largest turbulence scales. Though the gradient from our fully discrete adjoint is formally exact, it does include sensitivity to numerical solutions that are only an artifact of the discretization. These are typically saw-tooth type features, such as seen in under-resolved numerical simulations. Since these have no physical analog, for physical analysis or design of realistic actuators, such solutions are in a sense spurious. This has been addressed without sacrificing accuracy by redesigning the basic discretization to be dual-consistent, for which the discrete-adjoint is consistent with the adjoint of the continuous system, and thus, free from spurious numerical sensitivity modes. We extend our exact discrete-adjoint to a spatially dual-consistent discretization of the compressible flow equations and demonstrate its practical application for aeroacoustic control of a Mach 1.3 turbulent jet. The formulation admits a broad class of finite-difference schemes that satisfy a summation by-parts rule, and extends to multi-block curvilinear grids for efficient handling of complex geometries. The formulation is developed for several boundary conditions commonly used in simulation of free-shear and wall-bounded flows. In addition, the proposed discretization leads to superconvergent approximations of functionals
National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...
Graphical Turbulence Guidance - Composite
National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...
Cosmic ray acceleration in sources of the supersonic turbulence
International Nuclear Information System (INIS)
Bykov, A.M.; Toptygin, I.N.
1981-01-01
The mechanism of particle acceleration by the supersonic turbulence is studied. The supersonic turbulence is defined as an ensemble of large- and small-scale plasma motions, in which along with the ranges of smooth parameter variation there are randomly distributed shock wave fronts. Particle interaction with the large-scale turbulence is described by the transfer equation which is true at any relation between the Larmor radius and the transport length. The large-scale turbulence can accelerate particles only due to compressibility effects of the medium. The basic theoretical results concerning turbulence properties in compressed media are presented. Concrete physical conditions and the possibility of acceleration of cosmic rays in the interplanetary space, in the vicinity of suppergiant stars of the O and B class with a great loss of mass and strong stellar winds, in supernova remnants, in the interstellar medium and some extragalactic radio sources are considered [ru
Recent developments in plasma turbulence and turbulent transport
Energy Technology Data Exchange (ETDEWEB)
Terry, P.W. [Univ. of Wisconsin, Madison, WI (United States)
1997-09-22
This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.
Magnetohydrodynamic Turbulence
Montgomery, David C.
2004-01-01
Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.
The effect of existing turbulence on stratified shear instability
Kaminski, Alexis; Smyth, William
2017-11-01
Ocean turbulence is an essential process governing, for example, heat uptake by the ocean. In the stably-stratified ocean interior, this turbulence occurs in discrete events driven by vertical variations of the horizontal velocity. Typically, these events have been modelled by assuming an initially laminar stratified shear flow which develops wavelike instabilities, becomes fully turbulent, and then relaminarizes into a stable state. However, in the real ocean there is always some level of turbulence left over from previous events, and it is not yet understood how this turbulence impacts the evolution of future mixing events. Here, we perform a series of direct numerical simulations of turbulent events developing in stratified shear flows that are already at least weakly turbulent. We do so by varying the amplitude of the initial perturbations, and examine the subsequent development of the instability and the impact on the resulting turbulent fluxes. This work is supported by NSF Grant OCE1537173.
A variable turbulent Prandtl and Schmidt number model study for scramjet applications
Keistler, Patrick
A turbulence model that allows for the calculation of the variable turbulent Prandtl (Prt) and Schmidt (Sct) numbers as part of the solution is presented. The model also accounts for the interactions between turbulence and chemistry by modeling the corresponding terms. Four equations are added to the baseline k-zeta turbulence model: two equations for enthalpy variance and its dissipation rate to calculate the turbulent diffusivity, and two equations for the concentrations variance and its dissipation rate to calculate the turbulent diffusion coefficient. The underlying turbulence model already accounts for compressibility effects. The variable Prt /Sct turbulence model is validated and tuned by simulating a wide variety of experiments. Included in the experiments are two-dimensional, axisymmetric, and three-dimensional mixing and combustion cases. The combustion cases involved either hydrogen and air, or hydrogen, ethylene, and air. Two chemical kinetic models are employed for each of these situations. For the hydrogen and air cases, a seven species/seven reaction model where the reaction rates are temperature dependent and a nine species/nineteen reaction model where the reaction rates are dependent on both pressure and temperature are used. For the cases involving ethylene, a 15 species/44 reaction reduced model that is both pressure and temperature dependent is used, along with a 22 species/18 global reaction reduced model that makes use of the quasi-steady-state approximation. In general, fair to good agreement is indicated for all simulated experiments. The turbulence/chemistry interaction terms are found to have a significant impact on flame location for the two-dimensional combustion case, with excellent experimental agreement when the terms are included. In most cases, the hydrogen chemical mechanisms behave nearly identically, but for one case, the pressure dependent model would not auto-ignite at the same conditions as the experiment and the other
Dissipative structures in magnetorotational turbulence
Ross, Johnathan; Latter, Henrik N.
2018-03-01
Via the process of accretion, magnetorotational turbulence removes energy from a disk's orbital motion and transforms it into heat. Turbulent heating is far from uniform and is usually concentrated in small regions of intense dissipation, characterised by abrupt magnetic reconnection and higher temperatures. These regions are of interest because they might generate non-thermal emission, in the form of flares and energetic particles, or thermally process solids in protoplanetary disks. Moreover, the nature of the dissipation bears on the fundamental dynamics of the magnetorotational instability (MRI) itself: local simulations indicate that the large-scale properties of the turbulence (e.g. saturation levels, the stress-pressure relationship) depend on the short dissipative scales. In this paper we undertake a numerical study of how the MRI dissipates and the small-scale dissipative structures it employs to do so. We use the Godunov code RAMSES and unstratified compressible shearing boxes. Our simulations reveal that dissipation is concentrated in ribbons of strong magnetic reconnection that are significantly elongated in azimuth, up to a scale height. Dissipative structures are hence meso-scale objects, and potentially provide a route by which large scales and small scales interact. We go on to show how these ribbons evolve over time — forming, merging, breaking apart, and disappearing. Finally, we reveal important couplings between the large-scale density waves generated by the MRI and the small-scale structures, which may illuminate the stress-pressure relationship in MRI turbulence.
Dynamics of phytoplankton blooms in turbulent vortex cells
DEFF Research Database (Denmark)
Lindemann, Christian; Visser, Andre; Mariani, Patrizio
2017-01-01
the effects of turbulent transport on the phytoplankton population growth and its spatial structure in a vertical two-dimensional vortex flow field. In particular, we focus on how turbulent flow velocities and sinking influence phytoplankton growth and biomass aggregation. Our results indicate that conditions...... can be maintained with increasing turbulent flow velocities, allowing the apparently counter-intuitive persistence of fast sinking phytoplankton populations in highly turbulent and deep mixed layers. These dynamics demonstrate the role of considering advective transport within a turbulent vortex...
PDF approach for turbulent scalar field: Some recent developments
Gao, Feng
1993-01-01
The probability density function (PDF) method has been proven a very useful approach in turbulence research. It has been particularly effective in simulating turbulent reacting flows and in studying some detailed statistical properties generated by a turbulent field There are, however, some important questions that have yet to be answered in PDF studies. Our efforts in the past year have been focused on two areas. First, a simple mixing model suitable for Monte Carlo simulations has been developed based on the mapping closure. Secondly, the mechanism of turbulent transport has been analyzed in order to understand the recently observed abnormal PDF's of turbulent temperature fields generated by linear heat sources.
Modeling of Turbulent Swirling Flows
Shih, Tsan-Hsing; Zhu, Jiang; Liou, William; Chen, Kuo-Huey; Liu, Nan-Suey; Lumley, John L.
1997-01-01
Aircraft engine combustors generally involve turbulent swirling flows in order to enhance fuel-air mixing and flame stabilization. It has long been recognized that eddy viscosity turbulence models are unable to appropriately model swirling flows. Therefore, it has been suggested that, for the modeling of these flows, a second order closure scheme should be considered because of its ability in the modeling of rotational and curvature effects. However, this scheme will require solution of many complicated second moment transport equations (six Reynolds stresses plus other scalar fluxes and variances), which is a difficult task for any CFD implementations. Also, this scheme will require a large amount of computer resources for a general combustor swirling flow. This report is devoted to the development of a cubic Reynolds stress-strain model for turbulent swirling flows, and was inspired by the work of Launder's group at UMIST. Using this type of model, one only needs to solve two turbulence equations, one for the turbulent kinetic energy k and the other for the dissipation rate epsilon. The cubic model developed in this report is based on a general Reynolds stress-strain relationship. Two flows have been chosen for model evaluation. One is a fully developed rotating pipe flow, and the other is a more complex flow with swirl and recirculation.
Theory of neoclassical ion temperature-gradient-driven turbulence
Kim, Y. B.; Diamond, P. H.; Biglari, H.; Callen, J. D.
1991-02-01
The theory of collisionless fluid ion temperature-gradient-driven turbulence is extended to the collisional banana-plateau regime. Neoclassical ion fluid evolution equations are developed and utilized to investigate linear and nonlinear dynamics of negative compressibility ηi modes (ηi≡d ln Ti/d ln ni). In the low-frequency limit (ωB2p. As a result of these modifications, growth rates are dissipative, rather than sonic, and radial mode widths are broadened [i.e., γ˜k2∥c2s(ηi -(2)/(3) )/μi, Δx˜ρs(Bt/Bp) (1+ηi)1/2, where k∥, cs, and ρs are the parallel wave number, sound velocity, and ion gyroradius, respectively]. In the limit of weak viscous damping, enhanced neoclassical polarization persists and broadens radial mode widths. Linear mixing length estimates and renormalized turbulence theory are used to determine the ion thermal diffusivity in both cases. In both cases, a strong favorable dependence of ion thermal diffusivity on Bp (and hence plasma current) is exhibited. Furthermore, the ion thermal diffusivity for long wavelength modes exhibits favorable density scaling. The possible role of neoclassical ion temperature-gradient-driven modes in edge fluctuations and transport in L-phase discharges and the L to H transition is discussed.
Energy Technology Data Exchange (ETDEWEB)
Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)
2012-07-01
Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)
Kok, Jacobus B.W.; van der Wal, S.
1996-01-01
The transport processes that are involved in the mixing of two gases in a T-junction mixer are investigated. The turbulent flow field is calculated for the T-junction with the k- turbulence model by FLOW3D. In the mathematical model the transport of species is described with a mixture fraction
Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration
Lazarian, A.; Vlahos, L.; Kowal, G.; Yan, H.; Beresnyak, A.; de Gouveia Dal Pino, E. M.
2012-11-01
Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700-718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.
An informal conceptual introduction to turbulence
Tsinober, Arkady
2009-01-01
This book is a second completely revised edition of ""An Informal Introduction to Turbulence"". The main emphasis is on conceptual and problematic aspects, physical phenomena, observations, misconceptions and unresolved issues rather than on conventional formalistic aspects, models, etc. Apart from the obvious fundamental importance of turbulent flows such an emphasis is a consequence of the view that without corresponding progress in fundamental aspects there is little chance for progress in any applications such as drag reduction, mixing, control and modeling of turbulence. More generally th
BOOK REVIEW: Statistical Mechanics of Turbulent Flows
Cambon, C.
2004-10-01
counterparts at the molecular level. In addition, equations are given for multicomponent reacting systems. The chapter ends with miscellaneous topics, including DNS, (idea of) the energy cascade, and RANS. Chapter 5 is devoted to stochastic models for the large scales of turbulence. Langevin-type models for velocity (and particle position) are presented, and their various consequences for second-order single-point corelations (Reynolds stress components, Kolmogorov constant) are discussed. These models are then presented for the scalar. The chapter ends with compressible high-speed flows and various models, ranging from k-epsilon to hybrid RANS-pdf. Stochastic models for small-scale turbulence are addressed in chapter 6. These models are based on the concept of a filter density function (FDF) for the scalar, and a more conventional SGS (sub-grid-scale model) for the velocity in LES. The final chapter, chapter 7, is entitled `The unification of turbulence models' and aims at reconciling large-scale and small-scale modelling. This book offers a timely survey of techniques in modern computational fluid mechanics for turbulent flows with reacting scalars. It should be of interest to engineers, while the discussion of the underlying tools, namely pdfs, stochastic and statistical equations should also be attractive to applied mathematicians and physicists. The book's emphasis on local pdfs and stochastic Langevin models gives a consistent structure to the book and allows the author to cover almost the whole spectrum of practical modelling in turbulent CFD. On the other hand, one might regret that non-local issues are not mentioned explicitly, or even briefly. These problems range from the presence of pressure-strain correlations in the Reynolds stress transport equations to the presence of two-point pdfs in the single-point pdf equation derived from the Navier--Stokes equations. (One may recall that, even without scalar transport, a general closure problem for turbulence statistics
Reaction and diffusion in turbulent combustion
Energy Technology Data Exchange (ETDEWEB)
Pope, S.B. [Mechanical and Aerospace Engineering, Ithaca, NY (United States)
1993-12-01
The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.
Can small zooplankton mix lakes?
Simoncelli, S.; Thackeray, S.J.; Wain, D.J.
2017-01-01
The idea that living organisms may contribute to turbulence and mixing in lakes and oceans (biomixing) dates to the 1960s, but has attracted increasing attention in recent years. Recent modeling and experimental studies suggest that marine organisms can enhance turbulence as much as winds and tides in oceans, with an impact on mixing. However, other studies show opposite and contradictory results, precluding definitive conclusions regarding the potential importance of biomixing. For lakes, on...
Directory of Open Access Journals (Sweden)
Jerry D. Gibson
2016-06-01
Full Text Available Speech compression is a key technology underlying digital cellular communications, VoIP, voicemail, and voice response systems. We trace the evolution of speech coding based on the linear prediction model, highlight the key milestones in speech coding, and outline the structures of the most important speech coding standards. Current challenges, future research directions, fundamental limits on performance, and the critical open problem of speech coding for emergency first responders are all discussed.
Monsieurs, Koenraad G; De Regge, Melissa; Vansteelandt, Kristof; De Smet, Jeroen; Annaert, Emmanuel; Lemoyne, Sabine; Kalmar, Alain F; Calle, Paul A
2012-11-01
BACKGROUND AND GOAL OF STUDY: The relationship between chest compression rate and compression depth is unknown. In order to characterise this relationship, we performed an observational study in prehospital cardiac arrest patients. We hypothesised that faster compressions are associated with decreased depth. In patients undergoing prehospital cardiopulmonary resuscitation by health care professionals, chest compression rate and depth were recorded using an accelerometer (E-series monitor-defibrillator, Zoll, U.S.A.). Compression depth was compared for rates 120/min. A difference in compression depth ≥0.5 cm was considered clinically significant. Mixed models with repeated measurements of chest compression depth and rate (level 1) nested within patients (level 2) were used with compression rate as a continuous and as a categorical predictor of depth. Results are reported as means and standard error (SE). One hundred and thirty-three consecutive patients were analysed (213,409 compressions). Of all compressions 2% were 120/min, 36% were 5 cm. In 77 out of 133 (58%) patients a statistically significant lower depth was observed for rates >120/min compared to rates 80-120/min, in 40 out of 133 (30%) this difference was also clinically significant. The mixed models predicted that the deepest compression (4.5 cm) occurred at a rate of 86/min, with progressively lower compression depths at higher rates. Rates >145/min would result in a depth compression depth for rates 80-120/min was on average 4.5 cm (SE 0.06) compared to 4.1 cm (SE 0.06) for compressions >120/min (mean difference 0.4 cm, Pcompression rates and lower compression depths. Avoiding excessive compression rates may lead to more compressions of sufficient depth. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Schulreich, M. M.; Breitschwerdt, D.; Feige, J.; Dettbarn, C.
2017-08-01
Context. The discovery of radionuclides like 60Fe with half-lives of million years in deep-sea crusts and sediments offers the unique possibility to date and locate nearby supernovae. Aims: We want to quantitatively establish that the 60Fe enhancement is the result of several supernovae which are also responsible for the formation of the Local Bubble, our Galactic habitat. Methods: We performed three-dimensional hydrodynamic adaptive mesh refinement simulations (with resolutions down to subparsec scale) of the Local Bubble and the neighbouring Loop I superbubble in different homogeneous, self-gravitating environments. For setting up the Local and Loop I superbubble, we took into account the time sequence and locations of the generating core-collapse supernova explosions, which were derived from the mass spectrum of the perished members of certain stellar moving groups. The release of 60Fe and its subsequent turbulent mixing process inside the superbubble cavities was followed via passive scalars, where the yields of the decaying radioisotope were adjusted according to recent stellar evolution calculations. Results: The models are able to reproduce both the timing and the intensity of the 60Fe excess observed with rather high precision, provided that the external density does not exceed 0.3 cm-3 on average. Thus the two best-fit models presented here were obtained with background media mimicking the classical warm ionised and warm neutral medium. We also found that 60Fe (which is condensed onto dust grains) can be delivered to Earth via two physical mechanisms: either through individual fast-paced supernova blast waves, which cross the Earth's orbit sometimes even twice as a result of reflection from the Local Bubble's outer shell, or, alternatively, through the supershell of the Local Bubble itself, injecting the 60Fe content of all previous supernovae at once, but over a longer time range.
GPU accelerated flow solver for direct numerical simulation of turbulent flows
Energy Technology Data Exchange (ETDEWEB)
Salvadore, Francesco [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy); Bernardini, Matteo, E-mail: matteo.bernardini@uniroma1.it [Department of Mechanical and Aerospace Engineering, University of Rome ‘La Sapienza’ – via Eudossiana 18, 00184 Rome (Italy); Botti, Michela [CASPUR – via dei Tizii 6/b, 00185 Rome (Italy)
2013-02-15
Graphical processing units (GPUs), characterized by significant computing performance, are nowadays very appealing for the solution of computationally demanding tasks in a wide variety of scientific applications. However, to run on GPUs, existing codes need to be ported and optimized, a procedure which is not yet standardized and may require non trivial efforts, even to high-performance computing specialists. In the present paper we accurately describe the porting to CUDA (Compute Unified Device Architecture) of a finite-difference compressible Navier–Stokes solver, suitable for direct numerical simulation (DNS) of turbulent flows. Porting and validation processes are illustrated in detail, with emphasis on computational strategies and techniques that can be applied to overcome typical bottlenecks arising from the porting of common computational fluid dynamics solvers. We demonstrate that a careful optimization work is crucial to get the highest performance from GPU accelerators. The results show that the overall speedup of one NVIDIA Tesla S2070 GPU is approximately 22 compared with one AMD Opteron 2352 Barcelona chip and 11 compared with one Intel Xeon X5650 Westmere core. The potential of GPU devices in the simulation of unsteady three-dimensional turbulent flows is proved by performing a DNS of a spatially evolving compressible mixing layer.
Evaporation of polydispersed droplets in a highly turbulent channel flow
Energy Technology Data Exchange (ETDEWEB)
Cochet, M.; Bazile, Rudy; Ferret, B.; Cazin, S. [INPT, UPS, IMFT (Institut de Mecanique des Fluides de Toulouse), Universite de Toulouse (France)
2009-09-15
A model experiment for the study of evaporating turbulent two-phase flows is presented here. The study focuses on a situation where pre-atomized and dispersed droplets vaporize and mix in a heated turbulent flow. The test bench consists in a channel flow with characteristics of homogeneous and isotropic turbulence where fluctuations levels reach very high values (25% in the established zone). An ultrasonic atomizer allows the injection of a mist of small droplets of acetone in the carrier flow. The large range diameters ensure that every kind of droplet behavior with regards to turbulence is possible. Instantaneous concentration fields of the vaporized phase are extracted from fluorescent images (PLIF) of the two phase flow. The evolution of the mixing of the acetone vapor is analyzed for two different liquid mass loadings. Despite the high turbulence levels, concentration fluctuations remain significant, indicating that air and acetone vapor are not fully mixed far from the injector. (orig.)
Shock wave interaction with turbulence: Pseudospectral simulations
International Nuclear Information System (INIS)
Buckingham, A.C.
1986-01-01
Shock waves amplify pre-existing turbulence. Shock tube and shock wave boundary layer interaction experiments provide qualitative confirmation. However, shock pressure, temperature, and rapid transit complicate direct measurement. Computational simulations supplement the experimental data base and help isolate the mechanisms responsible. Simulations and experiments, particularly under reflected shock wave conditions, significantly influence material mixing. In these pseudospectral Navier-Stokes simulations the shock wave is treated as either a moving (tracked or fitted) domain boundary. The simulations assist development of code mix models. Shock Mach number and pre-existing turbulence intensity initially emerge as key parameters. 20 refs., 8 figs
Intrinsic Turbulence Stabilization in a Stellarator
Directory of Open Access Journals (Sweden)
P. Xanthopoulos
2016-06-01
Full Text Available The magnetic surfaces of modern stellarators are characterized by complex, carefully optimized shaping and exhibit locally compressed regions of strong turbulence drive. Massively parallel computer simulations of plasma turbulence reveal, however, that stellarators also possess two intrinsic mechanisms to mitigate the effect of this drive. In the regime where the length scale of the turbulence is very small compared to the equilibrium scale set by the variation of the magnetic field, the strongest fluctuations form narrow bandlike structures on the magnetic surfaces. Thanks to this localization, the average transport through the surface is significantly smaller than that predicted at locations of peak turbulence. This feature results in a numerically observed upshift of the onset of turbulence on the surface towards higher ion temperature gradients as compared with the prediction from the most unstable regions. In a second regime lacking scale separation, the localization is lost and the fluctuations spread out on the magnetic surface. Nonetheless, stabilization persists through the suppression of the large eddies (relative to the equilibrium scale, leading to a reduced stiffness for the heat flux dependence on the ion temperature gradient. These fundamental differences with tokamak turbulence are exemplified for the QUASAR stellarator [G. H. Neilson et al., IEEE Trans. Plasma Sci. 42, 489 (2014].
Jayakody, Lahiru N; Kadowaki, Masafumi; Tsuge, Keisuke; Horie, Kenta; Suzuki, Akihiro; Hayashi, Nobuyuki; Kitagaki, Hiroshi
2015-01-01
The complex inhibitory effects of inhibitors present in lignocellulose hydrolysate suppress the ethanol fermentation of Saccharomyces cerevisiae. Although the interactive inhibitory effects play important roles in the actual hydrolysate, few studies have investigated glycolaldehyde, the key inhibitor of hot-compressed water-treated lignocellulose hydrolysate. Given this challenge, we investigated the interactive effects of mixed fermentation inhibitors, including glycolaldehyde. First, we confirmed that glycolaldehyde was the most potent inhibitor in the hydrolysate and exerted interactive inhibitory effects in combination with major inhibitors. Next, through genome-wide analysis and megavariate data modeling, we identified SUMOylation as a novel potential mechanism to overcome the combinational inhibitory effects of fermentation inhibitors. Indeed, overall SUMOylation was increased and Pgk1, which produces an ATP molecule in glycolysis by substrate-level phosphorylation, was SUMOylated and degraded in response to glycolaldehyde. Augmenting the SUMO-dependent ubiquitin system in the ADH1-expressing strain significantly shortened the lag phase of growth, released cells from G2/M arrest, and improved energy status and glucose uptake in the inhibitor-containing medium. In summary, our study was the first to establish SUMOylation as a novel platform for regulating the lag phase caused by complex fermentation inhibitors.
Large Eddy Simulation for Compressible Flows
Garnier, E; Sagaut, P
2009-01-01
Large Eddy Simulation (LES) of compressible flows is still a widely unexplored area of research. The authors, whose books are considered the most relevant monographs in this field, provide the reader with a comprehensive state-of-the-art presentation of the available LES theory and application. This book is a sequel to "Large Eddy Simulation for Incompressible Flows", as most of the research on LES for compressible flows is based on variable density extensions of models, methods and paradigms that were developed within the incompressible flow framework. The book addresses both the fundamentals and the practical industrial applications of LES in order to point out gaps in the theoretical framework as well as to bridge the gap between LES research and the growing need to use it in engineering modeling. After introducing the fundamentals on compressible turbulence and the LES governing equations, the mathematical framework for the filtering paradigm of LES for compressible flow equations is established. Instead ...
Tan, Jianguo; Zhang, Dongdong; Li, Hao; Hou, Juwei
2018-03-01
The flow behaviors and mixing characteristics of a supersonic mixing layer with a convective Mach number of 0.2 have been experimentally investigated utilizing nanoparticle-based planar laser scattering and particle image velocimetry techniques. The full development and evolution process, including the formation of Kelvin-Helmholtz vortices, breakdown of large-scale structures and establishment of self-similar turbulence, is exhibited clearly in the experiments, which can give a qualitative graphically comparing for the DNS and LES results. The shocklets are first captured at this low convective Mach number, and their generation mechanisms are elaborated and analyzed. The convective velocity derived from two images with space-time correlations is well consistent with the theoretical result. The pairing and merging process of large-scale vortices in transition region is clearly revealed in the velocity vector field. The analysis of turbulent statistics indicates that in weakly compressible mixing layers, with the increase of convective Mach number, the peak values of streamwise turbulence intensity and Reynolds shear stress experience a sharp decrease, while the anisotropy ratio seems to keep quasi unchanged. The normalized growth rate of the present experiments shows a well agreement with former experimental and DNS data. The validation of present experimental results is important for that in the future the present work can be a reference for assessing the accuracy of numerical data.
3rd Turbulence and Interactions Conference
Estivalezes, Jean-Luc; Gleize, Vincent; Lê, Thien-Hiep; Terracol, Marc; Vincent, Stéphane
2014-01-01
The book presents a snapshot of the state-of-art in the field of turbulence modeling and covers the latest developments concerning direct numerical simulations, large eddy simulations, compressible turbulence, coherent structures, two-phase flow simulation, and other related topics. It provides readers with a comprehensive review of both theory and applications, describing in detail the authors’ own experimental results. The book is based on the proceedings of the third Turbulence and Interactions Conference (TI 2012), which was held on June 11-14 in La Saline-les-Bains, La Réunion, France, and includes both keynote lectures and outstanding contributed papers presented at the conference. This multifaceted collection, which reflects the conference´s emphasis on the interplay of theory, experiments and computing in the process of understanding and predicting the physics of complex flows and solving related engineering problems, offers a practice-oriented guide for students, researchers and professionals in ...
Nicolleau, FCGA; Redondo, J-M
2012-01-01
This book contains a collection of the main contributions from the first five workshops held by Ercoftac Special Interest Group on Synthetic Turbulence Models (SIG42. It is intended as an illustration of the sig's activities and of the latest developments in the field. This volume investigates the use of Kinematic Simulation (KS) and other synthetic turbulence models for the particular application to environmental flows. This volume offers the best syntheses on the research status in KS, which is widely used in various domains, including Lagrangian aspects in turbulence mixing/stirring, partic
An investigation on cylindrical imploding turbulent mixing
International Nuclear Information System (INIS)
Liao Haidong; Yang Libin; Zhang Xilin; Ouyang Kai; Li Jun
2001-01-01
The interfacial instability experiments in cylindrically convergent geometry are performed by imploding jelly liner with high pressure gases; and instability growth were observed with high-speed framing camera. The relevant 2D numerical simulation programs were developed and their results are in good agreement with those of experiments
Chemical Reactions in Turbulent Mixing Flows.
1987-06-01
latter as dictated by specific needs of our experimental program. Our approach is to carry out a series of detailed studies in two well defined...produced revised specifications for the high-pressure gas supply vessel and the fast-acting valve/pressure regulator (see Dimotakis, Broadwell & Leonard...that both modes of instability could oe exc-etc - .0 ’ -, experimentally. For the wace mode to Decome C’ dominant, the thickness of the density prof
Initial conditions for turbulent mixing simulations
Directory of Open Access Journals (Sweden)
T. Kaman
2010-01-01
Full Text Available In the context of the classical Rayleigh-Taylor hydrodynamical instability, we examine the much debated question of models for initial conditions and the possible influence of unrecorded long wave length contributions to the instability growth rate α.
The role of pair dispersion in turbulent flow
DEFF Research Database (Denmark)
Bourgoin, M.; Ouellette, N.T.; Xu, H.T.
2006-01-01
Mixing and transport in turbulent flows - which have strong local concentration fluctuations - essential in many natural and industrial systems including reactions in chemical mixers, combustion in engines and burners, droplet formation in warm clouds, and biological odor detection and chemotaxis...
Applied model for the growth of the daytime mixed layer
DEFF Research Database (Denmark)
Batchvarova, E.; Gryning, Sven-Erik
1991-01-01
numerically. When the mixed layer is shallow or the atmosphere nearly neutrally stratified, the growth is controlled mainly by mechanical turbulence. When the layer is deep, its growth is controlled mainly by convective turbulence. The model is applied on a data set of the evolution of the height of the mixed...... layer in the morning hours, when both mechanical and convective turbulence contribute to the growth process. Realistic mixed-layer developments are obtained....
High Reynolds Number Turbulence
National Research Council Canada - National Science Library
Smits, Alexander J
2007-01-01
The objectives of the grant were to provide a systematic study to fill the gap between existing research on low Reynolds number turbulent flows to the kinds of turbulent flows encountered on full-scale vehicles...
Direct numerical simulation of turbulent reacting flows
Energy Technology Data Exchange (ETDEWEB)
Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
DEFF Research Database (Denmark)
Brand, Arno J.; Peinke, Joachim; Mann, Jakob
2011-01-01
The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....
International Nuclear Information System (INIS)
Goldman, M.V.
1984-01-01
After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)
Turbulent transport across an interface between dry and humid air in a stratified environment
Gallana, Luca; de Santi, Francesca; di Savino, Silvio; Iovieno, Michele; Ricchiardone, Renzo; Tordella, Daniela
2014-11-01
The transport of energy and water vapor across a thin layer which separates two decaying isotropic turbulent flows with different kinetic energy and humidity is considered. The interface is placed in a shearless stratified environment in temporal decay. This system reproduces a few aspects of small scale turbulent transport across a dry air/moist air interface in an atmospheric like context. In our incompressible DNS at Reλ = 250 , Boussinesq's approximation is used for momentum and energy transport while the vapor is modeled as a passive scalar (Kumar, Schumacher & Shaw 2014). We investigated different stratification levels with an initial Fr between 0.8 and 8 in presence of a kinetic energy ratio equal to 7. As the buoyancy term becomes of the same order of the inertial ones, a spatial redistribution of kinetic energy, dissipation and vapor concentration is observed. This eventually leads to the onset of a well of kinetic energy in the low energy side of the mixing layer which blocks the entrainment of dry air. Results are discussed and compared with laboratory and numerical experiments. A posteriori estimates of the eventual compression/expansion of fluid particles inside the interfacial mixing layer are given (Nance & Durran 1994).
Numerical solution of inviscid and viscous laminar and turbulent flow around the airfoil
Directory of Open Access Journals (Sweden)
Slouka Martin
2016-01-01
Full Text Available This work deals with the 2D numerical solution of inviscid compressible flow and viscous compressible laminar and turbulent flow around the profile. In a case of turbulent flow algebraic Baldwin-Lomax model is used and compared with Wilcox k-omega model. Calculations are done for NACA 0012 and RAE 2822 airfoil profile for the different angles of upstream flow. Numerical results are compared and discussed with experimental data.
Large-eddy simulation of the temporal mixing layer using the Clark model
Vreman, A.W.; Geurts, B.J.; Kuerten, J.G.M.
1996-01-01
The Clark model for the turbulent stress tensor in large-eddy simulation is investigated from a theoretical and computational point of view. In order to be applicable to compressible turbulent flows, the Clark model has been reformulated. Actual large-eddy simulation of a weakly compressible,
DEFF Research Database (Denmark)
Hjorth, Poul G.; Deryabin, Mikhail
Mixing of fluids in microchannels cannot rely on turbulence since the flow takes place at extremly low Reynolds numbers. Various active and passive devices have been developed to induce mixing in microfluid flow devices. We describe here a model of an active mixer where a transverse periodic flow...
Progress in turbulence research
International Nuclear Information System (INIS)
Bradshaw, P.
1990-01-01
Recent developments in experiments and eddy simulations, as an introduction to a discussion of turbulence modeling for engineers is reviewed. The most important advances in the last decade rely on computers: microcomputers to control laboratory experiments, especially for multidimensional imaging, and supercomputers to simulate turbulence. These basic studies in turbulence research are leading to genuine breakthroughs in prediction methods for engineers and earth scientists. The three main branches of turbulence research: experiments, simulations (numerically-accurate three-dimensional, time-dependent solutions of the Navier-Stokes equations, with any empiricism confined to the smallest eddies), and modeling (empirical closure of time-averaged equations for turbulent flow) are discussed. 33 refs
International Nuclear Information System (INIS)
Antonov, N V; Kapustin, A S
2012-01-01
Critical behaviour of the dynamical Potts model, subjected to vivid turbulent mixing, is studied by means of the renormalization group. The advecting velocity field is modelled by Kraichnan’s rapid-change ensemble: Gaussian statistics with a given pair correlator 〈vv〉∝δ(t − t′) k −d−ξ , where k is the wave number, d is the dimension of space and 0 < ξ < 2 is an arbitrary exponent. The system exhibits different types of infrared scaling behaviour, associated with four infrared attractors of the renormalization group equations. In addition to the known asymptotic regimes (equilibrium Potts model and passive scalar field), the existence of a new, strongly non-equilibrium type of critical behaviour (universality class) is established, where the self-interaction of the order parameter and the turbulent mixing are equally important. The corresponding critical dimensions and the regions of stability for all the regimes are calculated in the leading order of the double expansion in ξ and ε = 6 − d. Special attention is paid to the effects of compressibility of the fluid, because they lead to interesting crossover phenomena. (paper)
Near bed suspended sediment flux by single turbulent events
Amirshahi, Seyed Mohammad; Kwoll, Eva; Winter, Christian
2018-01-01
The role of small scale single turbulent events in the vertical mixing of near bed suspended sediments was explored in a shallow shelf sea environment. High frequency velocity and suspended sediment concentration (SSC; calibrated from the backscatter intensity) were collected using an Acoustic Doppler Velocimeter (ADV). Using quadrant analysis, the despiked velocity time series was divided into turbulent events and small background fluctuations. Reynolds stress and Turbulent Kinetic Energy (TKE) calculated from all velocity samples, were compared to the same turbulent statistics calculated only from velocity samples classified as turbulent events (Reevents and TKEevents). The comparison showed that Reevents and TKEevents was increased 3 and 1.6 times, respectively, when small background fluctuations were removed and that the correlation with SSC for TKE could be improved through removal of the latter. The correlation between instantaneous vertical turbulent flux (w ‧) and SSC fluctuations (SSC ‧) exhibits a tidal pattern with the maximum correlation at peak ebb and flood currents, when strong turbulent events appear. Individual turbulent events were characterized by type, strength, duration and length. Cumulative vertical turbulent sediment fluxes and average SSC associated with individual turbulent events were calculated. Over the tidal cycle, ejections and sweeps were the most dominant events, transporting 50% and 36% of the cumulative vertical turbulent event sediment flux, respectively. Although the contribution of outward interactions to the vertical turbulent event sediment flux was low (11%), single outward interaction events were capable of inducing similar SSC ‧ as sweep events. The results suggest that on time scales of tens of minutes to hours, TKE may be appropriate to quantify turbulence in sediment transport studies, but that event characteristics, particular the upward turbulent flux need to be accounted for when considering sediment transport
Guo, X.; Lange, R. A.; Ai, Y.
2010-12-01
FeO is an important component in magmatic liquids and yet its partial molar volume at one bar is not as well known as that for Fe2O3 because of the difficulty of performing double-bob density measurements under reducing conditions. Moreover, there is growing evidence from spectroscopic studies that Fe2+ occurs in 4, 5, and 6-fold coordination in silicate melts, and it is expected that the partial molar volume and compressibility of the FeO component will vary accordingly. We have conducted both density and relaxed sound speed measurements on four liquids in the An-Di-Hd (CaAl2Si2O8-CaMgSi2O6-CaFeSi2O6) system: (1) Di-Hd (50:50), (2) An-Hd (50:50), (3) An-Di-Hd (33:33:33) and (4) Hd (100). Densities were measured between 1573 and 1838 K at one bar with the double-bob Archimedean method using molybdenum bobs and crucibles in a reducing gas (1%CO-99%Ar) environment. The sound speeds were measured under similar conditions with a frequency-sweep acoustic interferometer, and used to calculate isothermal compressibility. All the density data for the three multi-component (model basalt) liquids were combined with density data on SiO2-Al2O3-CaO-MgO-K2O-Na2O liquids (Lange, 1997) in a fit to a linear volume equation; the results lead to a partial molar volume (±1σ) for FeO =11.7 ± 0.3(±1σ) cm3/mol at 1723 K. This value is similar to that for crystalline FeO at 298 K (halite structure; 12.06 cm3/mol), which suggests an average Fe2+ coordination of ~6 in these model basalt compositions. In contrast, the fitted partial molar volume of FeO in pure hedenbergite liquid is 14.6 ± 0.3 at 1723 K, which is consistent with an average Fe2+ coordination of 4.3 derived from EXAFS spectroscopy (Rossano, 2000). Similarly, all the compressibility data for the three multi-component liquids were combined with compressibility data on SiO2-Al2O3-CaO-MgO liquids (Ai and Lange, 2008) in a fit to an ideal mixing model for melt compressibility; the results lead to a partial molar
On specification of initial conditions in turbulence models
Energy Technology Data Exchange (ETDEWEB)
Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory
2010-12-01
Recent research has shown that initial conditions have a significant influence on the evolution of a flow towards turbulence. This important finding offers a unique opportunity for turbulence control, but also raises the question of how to properly specify initial conditions in turbulence models. We study this problem in the context of the Rayleigh-Taylor instability. The Rayleigh-Taylor instability is an interfacial fluid instability that leads to turbulence and turbulent mixing. It occurs when a light fluid is accelerated in to a heavy fluid because of misalignment between density and pressure gradients. The Rayleigh-Taylor instability plays a key role in a wide variety of natural and man-made flows ranging from supernovae to the implosion phase of Inertial Confinement Fusion (ICF). Our approach consists of providing the turbulence models with a predicted profile of its key variables at the appropriate time in accordance to the initial conditions of the problem.
Vertical Scope, Turbulence, and the Benefits of Commitment and Flexibility
DEFF Research Database (Denmark)
Claussen, Jörg; Kretschmer, Tobias; Stieglitz, Nils
2015-01-01
We address the contested state of theory and the mixed empirical evidence on the relationship between turbulence and vertical scope by studying how turbulence affects the benefits of commitment from integrated development of components and the benefits of flexibility from sourcing components...... externally. We show that increasing turbulence first increases but then decreases the relative value of vertical integration. Moderate turbulence reduces the value of flexibility by making supplier selection more difficult and increases the value of commitment by mitigating the status quo bias of integrated...... structures. Both effects improve the value of integration. Higher levels of turbulence undermine the adaptive benefits of commitment, but have a less adverse effect on flexibility, making nonintegration more attractive. We also show how complexity and uneven rates of turbulence moderate the nonmonotonic...
DNABIT Compress – Genome compression algorithm
Rajarajeswari, Pothuraju; Apparao, Allam
2011-01-01
Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our ...
DNABIT Compress – Genome compression algorithm
Rajarajeswari, Pothuraju; Apparao, Allam
2011-01-01
Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923
Spectral properties of electromagnetic turbulence in plasmas
Directory of Open Access Journals (Sweden)
D. Shaikh
2009-03-01
Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.
Numerical study of jet noise radiated by turbulent coherent structures
Energy Technology Data Exchange (ETDEWEB)
Bastin, F.
1995-08-01
a numerical approach of jet mixing noise prediction is presented, based on the assumption that the radiated sound field is essentially due to large-scale coherent turbulent structures. A semi-deterministic turbulence modelling is used to obtain the flow coherent fluctuations. This model is derived from the k-{epsilon} model and validated on the 2-D compressible shear layer case. Three plane jets at Mach 0.5, 1.33 and 2 are calculated. The semi-deterministic modelling yields a realistic unsteady representation of plane jets but not appropriate for axisymmetric jet computations. Lighthill`s analogy is used to estimate the noise radiated by the flow. Three integral formulations of the theory are compared and the most suitable one is expressed in space-time Fourier space. This formulation is associated to a geometrical interpretation of acoustic computations in (k, {omega}) plane. The only contribution of coherent structures cannot account for the high-frequency radiation of a subsonic jet and thus, the initial assumption is not verified in the subsonic range. The interpretation of Lighthill`s analogy in (k, {omega}) plane allows to conclude that the missing high-frequency components are due to the inner structure of the coherent motion. For supersonic jets, full acoustic spectra are obtained, at least in the forward arc where the dominant radiation is emitted. For the fastest jet (M = 2), no Mach waves are observed, which may be explained by a ratio of the structures convection velocity to the jet exit velocity lower in plane than in circular jets. This point is confirmed by instability theory calculations. Large eddy simulations (LES) were performed for subsonic jets. Data obtained in the plane jet case show that this technique allows only a slight improvement of acoustic results. To obtain a satisfactory high-frequency radiation, very fine grids should be considered, and the 2-D approximation could not be justified anymore. (Abstract Truncated)
Turbulence Visualization at the Terascale on Desktop PCs
Treib, M.
2012-12-01
Despite the ongoing efforts in turbulence research, the universal properties of the turbulence small-scale structure and the relationships between small-and large-scale turbulent motions are not yet fully understood. The visually guided exploration of turbulence features, including the interactive selection and simultaneous visualization of multiple features, can further progress our understanding of turbulence. Accomplishing this task for flow fields in which the full turbulence spectrum is well resolved is challenging on desktop computers. This is due to the extreme resolution of such fields, requiring memory and bandwidth capacities going beyond what is currently available. To overcome these limitations, we present a GPU system for feature-based turbulence visualization that works on a compressed flow field representation. We use a wavelet-based compression scheme including run-length and entropy encoding, which can be decoded on the GPU and embedded into brick-based volume ray-casting. This enables a drastic reduction of the data to be streamed from disk to GPU memory. Our system derives turbulence properties directly from the velocity gradient tensor, and it either renders these properties in turn or generates and renders scalar feature volumes. The quality and efficiency of the system is demonstrated in the visualization of two unsteady turbulence simulations, each comprising a spatio-temporal resolution of 10244. On a desktop computer, the system can visualize each time step in 5 seconds, and it achieves about three times this rate for the visualization of a scalar feature volume. © 1995-2012 IEEE.
On Challenges for Hypersonic Turbulent Simulations
International Nuclear Information System (INIS)
Yee, H.C.; Sjogreen, B.
2009-01-01
This short note discusses some of the challenges for design of suitable spatial numerical schemes for hypersonic turbulent flows, including combustion, and thermal and chemical nonequilibrium flows. Often, hypersonic turbulent flows in re-entry space vehicles and space physics involve mixed steady strong shocks and turbulence with unsteady shocklets. Material mixing in combustion poses additional computational challenges. Proper control of numerical dissipation in numerical methods beyond the standard shock-capturing dissipation at discontinuities is an essential element for accurate and stable simulations of the subject physics. On one hand, the physics of strong steady shocks and unsteady turbulence/shocklet interactions under the nonequilibrium environment is not well understood. On the other hand, standard and newly developed high order accurate (fourth-order or higher) schemes were developed for homogeneous hyperbolic conservation laws and mixed hyperbolic and parabolic partial differential equations (PDEs) (without source terms). The majority of finite rate chemistry and thermal nonequilibrium simulations employ methods for homogeneous time-dependent PDEs with a pointwise evaluation of the source terms. The pointwise evaluation of the source term might not be the best choice for stability, accuracy and minimization of spurious numerics for the overall scheme