Construction and analysis of compressible flow calculation algorithms
International Nuclear Information System (INIS)
Desideri, Jean-Antoine
1993-01-01
The aim of this study is to give a theoretical rationale of a 'paradox' related to the behavior at the stagnation point of some numerical solutions obtained by conventional methods for Eulerian non-equilibrium flows. This 'paradox' concerns the relationship between the solutions given by equilibrium and non-equilibrium models and was raised by several experts during the 'Workshop on Hypersonic Flows for Reentry Problems, Part 1. Antibes 1990'. In the first part, we show that equilibrium conditions are reached at the stagnation point and we analyse the sensitivity of these equilibrium conditions to the flow variables. In the second part, we develop an analysis of the behavior of the mathematical solution to an Eulerian non-equilibrium flow in the vicinity of the stagnation point, which gives an explanation to the described 'paradox'. Then, a numerical procedure, integrating the species convection equations projected on the stagnation point streamline in a Lagrangian time approach, gives a numerical support to the theoretical predictions. We also propose two numerical integration procedures, that allow us to recompute, starting from the equilibrium conditions at the stagnation point, the flow characteristics at the body. The validity limits of these procedures are discussed and the results obtained for a Workshop test-case are compared with the results given by several contributors. Finally, we survey briefly the influence of the local behavior of the solution on the coupling technique to a boundary layer calculation. (author) [fr
Calculation of external-internal flow fields for mixed-compression inlets
Chyu, W. J.; Kawamura, T.; Bencze, D. P.
1987-01-01
Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.
International Nuclear Information System (INIS)
Kimura, Toshiya.
1997-03-01
A two-dimensional explicit Euler solver has been implemented for five MIMD parallel computers of different machine architectures in Center for Promotion of Computational Science and Engineering of Japan Atomic Energy Research Institute. These parallel computers are Fujitsu VPP300, NEC SX-4, CRAY T94, IBM SP2, and Hitachi SR2201. The code was parallelized by several parallelization methods, and a typical compressible flow problem has been calculated for different grid sizes changing the number of processors. Their effective performances for parallel calculations, such as calculation speed, speed-up ratio and parallel efficiency, have been investigated and evaluated. The communication time among processors has been also measured and evaluated. As a result, the differences on the performance and the characteristics between vector-parallel and scalar-parallel computers can be pointed, and it will present the basic data for efficient use of parallel computers and for large scale CFD simulations on parallel computers. (author)
Application of a finite element method to the calculation of compressible subsonic flows
International Nuclear Information System (INIS)
Montagne, J.L.
1980-01-01
The accidental transients in nuclear reactors requires two-phase flow calculation in complicated geometries. In the present case, the flow has been limited to the study of an homogeneous bidimensional flow model. One obtains equations analogous to those for compressible gas. The two-phase nature leads to sudden variations of specific mass as a function of pressure and enthalpy. In practice, the flows are in a transport regime, this is why one has sought a stable discretization scheme for the hyperbolic system of Euler equations. In order to take into account the thermal phenomena, the natural variables were kept, flow rate, pressure enthalpy and the equations were used in their conservative form. A Galerkin method was used to solve the momentum conservation equation. The space to which the flow rates belong is submitted to a matching condition, the normal component of these vectors is continuous at the boundary between elements. The pressures, enthalpy specific mass, in contrast, are discontinuous between two elements. Correspondences must be established between these two type of discretization. The program set into operation uses a discretization of lowest order, and has been conceived for processing time steps conditioned only by the flow speed. It has been tested in two cases where the thermal phenomena are important: cool liquid introduced in vapor, and heating along a plate [fr
Introduction to compressible fluid flow
Oosthuizen, Patrick H
2013-01-01
IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices
Computer program for compressible flow network analysis
Wilton, M. E.; Murtaugh, J. P.
1973-01-01
Program solves problem of an arbitrarily connected one dimensional compressible flow network with pumping in the channels and momentum balancing at flow junctions. Program includes pressure drop calculations for impingement flow and flow through pin fin arrangements, as currently found in many air cooled turbine bucket and vane cooling configurations.
Ockendon, Hilary
2016-01-01
Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications. New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises. Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science. Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...
Magnetic compression into Brillouin flow
International Nuclear Information System (INIS)
Becker, R.
1977-01-01
The trajectories of beam edge electrons are calculated in the transition region between an electrostatic gun and an increasing magnetic field for various field shapes, transition length, and cathode fluxes, assuming that the resultant beam is of Brillouin flow type. The results give a good physical interpretation to the axial gradient of the magnetic field being responsible for the amount of magnetic compression and also for the proper injection conditions. Therefore it becomes possible to predict from the known characteristics of any fairly laminary electrostatic gun the necessary axial gradient of the magnetic field and the axial position of the gun with respect to the field build-up. (orig.) [de
International Nuclear Information System (INIS)
Enderle, G.
1979-01-01
The computer-code FLUST-2D is able to calculate the two-dimensional flow of a compressible fluid in arbitrary coupled rectangular areas. In a finite-difference scheme the program computes pressure, density, internal energy and velocity. Starting with a basic set of equations, the difference equations in a rectangular grid are developed. The computational cycle for coupled fluid areas is described. Results of test calculations are compared to analytical solutions and the influence of time step and mesh size are investigated. The program was used to precalculate the blowdown experiments of the HDR experimental program. Downcomer, plena, internal vessel region, blowdown pipe and a containment area have been modelled two-dimensionally. The major results of the precalculations are presented. This report also contains a description of the code structure and user information. (orig.) [de
Computer calculations of compressibility of natural gas
Energy Technology Data Exchange (ETDEWEB)
Abou-Kassem, J.H.; Mattar, L.; Dranchuk, P.M
An alternative method for the calculation of pseudo reduced compressibility of natural gas is presented. The method is incorporated into the routines by adding a single FORTRAN statement before the RETURN statement. The method is suitable for computer and hand-held calculator applications. It produces the same reduced compressibility as other available methods but is computationally superior. Tabular definitions of coefficients and comparisons of predicted pseudo reduced compressibility using different methods are presented, along with appended FORTRAN subroutines. 7 refs., 2 tabs.
Transient compressible flows in porous media
International Nuclear Information System (INIS)
Morrison, F.A. Jr.
1975-09-01
Transient compressible flow in porous media was investigated analytically. The major portion of the investigation was directed toward improving and understanding of dispersion in these flows and developing rapid accurate numerical techniques for predicting the extent of dispersion. The results are of interest in the containment of underground nuclear experiments. The transient one-dimensional transport of a trace component in a gas flow is analyzed. A conservation equation accounting for the effects of convective transport, dispersive transport, and decay, is developed. This relation, as well as a relation governing the fluid flow, is used to predict trace component concentration as a function of position and time. A detailed analysis of transport associated with the isothermal flow of an ideal gas is done. Because the governing equations are nonlinear, numerical calculations are performed. The ideal gas flow is calculated using a highly stable implicit iterative procedure with an Eulerian mesh. In order to avoid problems of anomolous dispersion associated with finite difference calculation, trace component convection and dispersion are calculated using a Lagrangian mesh. Details of the Eulerian-Lagrangian numerical technique are presented. Computer codes have been developed and implemented on the Lawrence Livermore Laboratory computer system
Compressibility, turbulence and high speed flow
Gatski, Thomas B
2013-01-01
Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current tre...
Compressibility, turbulence and high speed flow
Gatski, Thomas B
2009-01-01
This book introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. For the computation of turbulent compressible flows, current methods of averaging and filtering are presented so that the reader is exposed to a consistent development of applicable equation sets for both the mean or resolved fields as well as the transport equations for the turbulent stress field. For the measurement of turbulent compressible flows, current techniques ranging from hot-wire anemometry to PIV are evaluated and limitations assessed. Characterizing dynamic features of free shear flows, including jets, mixing layers and wakes, and wall-bounded flows, including shock-turbulence and shock boundary-layer interactions, obtained from computations, experiments and simulations are discussed. Key features: * Describes prediction methodologies in...
Large Eddy Simulation for Compressible Flows
Garnier, E; Sagaut, P
2009-01-01
Large Eddy Simulation (LES) of compressible flows is still a widely unexplored area of research. The authors, whose books are considered the most relevant monographs in this field, provide the reader with a comprehensive state-of-the-art presentation of the available LES theory and application. This book is a sequel to "Large Eddy Simulation for Incompressible Flows", as most of the research on LES for compressible flows is based on variable density extensions of models, methods and paradigms that were developed within the incompressible flow framework. The book addresses both the fundamentals and the practical industrial applications of LES in order to point out gaps in the theoretical framework as well as to bridge the gap between LES research and the growing need to use it in engineering modeling. After introducing the fundamentals on compressible turbulence and the LES governing equations, the mathematical framework for the filtering paradigm of LES for compressible flow equations is established. Instead ...
Mathematical theory of compressible fluid flow
von Mises, Richard
2004-01-01
A pioneer in the fields of statistics and probability theory, Richard von Mises (1883-1953) made notable advances in boundary-layer-flow theory and airfoil design. This text on compressible flow, unfinished upon his sudden death, was subsequently completed in accordance with his plans, and von Mises' first three chapters were augmented with a survey of the theory of steady plane flow. Suitable as a text for advanced undergraduate and graduate students - as well as a reference for professionals - Mathematical Theory of Compressible Fluid Flow examines the fundamentals of high-speed flows, with
Compressible flow in fluidic oscillators
Graff, Emilio; Hirsch, Damian; Gharib, Mory
2013-11-01
We present qualitative observations on the internal flow characteristics of fluidic oscillator geometries commonly referred to as sweeping jets in active flow control applications. We also discuss the effect of the geometry on the output jet in conditions from startup to supersonic exit velocity. Supported by the Boeing Company.
Adaptive Methods for Compressible Flow
1994-03-01
labor -intensive task of purpose of this work is to demonstrate the generating acceptable surface triangulations, advantages of integrating the CAD/CAM...sintilar results). L 1 (’-1)(2sn~p) boundary error (MUSCL) The flow variables wre then given by .04 .78% M=asOIne/i .02 AM% v= acosO /sintt .01 .0 p
Compressed-air flow control system.
Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S
2011-02-21
We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.
Cartesian anisotropic mesh adaptation for compressible flow
International Nuclear Information System (INIS)
Keats, W.A.; Lien, F.-S.
2004-01-01
Simulating transient compressible flows involving shock waves presents challenges to the CFD practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This paper discusses a novel two-dimensional Cartesian anisotropic mesh adaptation technique implemented for compressible flow. This technique, developed for laminar flow by Ham, Lien and Strong, is efficient because it refines and coarsens cells using criteria that consider the solution in each of the cardinal directions separately. In this paper the method will be applied to compressible flow. The procedure shows promise in its ability to deliver good quality solutions while achieving computational savings. The convection scheme used is the Advective Upstream Splitting Method (Plus), and the refinement/ coarsening criteria are based on work done by Ham et al. Transient shock wave diffraction over a backward step and shock reflection over a forward step are considered as test cases because they demonstrate that the quality of the solution can be maintained as the mesh is refined and coarsened in time. The data structure is explained in relation to the computational mesh, and the object-oriented design and implementation of the code is presented. Refinement and coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches are shown to be significant. (author)
Simulation of gas compressible flow by free surface water flow
International Nuclear Information System (INIS)
Altafini, C.R.; Silva Ferreira, R.T. da
1981-01-01
The analogy between the water flow with a free surface and the compressible fluid flow, commonly called hydraulic analogy, is analyzed and its limitations are identified. The water table is the equipment used for this simulation, which allows the quatitative analysis of subsonic and supersonic flow with a low cost apparatus. The hydraulic analogy is applied to subsonic flow around circular cylinders and supersonic flow around cones. The results are compared with available theoretical and experimental data and a good agreement is achieved. (Author) [pt
Multidomain spectral solution of compressible viscous flows
International Nuclear Information System (INIS)
Kopriva, D.A.
1994-01-01
We develop a nonoverlapping mutidomain spectral collocation method to solve compressible viscous flows. At the interfaces, the advection terms are treated with a characteristic correction method. The diffusion terms are treated with a penalty method. Spectral accuracy is demonstrated on linear model problems in one and two space dimensions. The method is applied to a subsonic and supersonic flow over a flat plate. The results are compared to solutions of the boundary-layer equations which show that two digit accuracy in the adiabatic plate temperature is obtained with 16 points in the boundary layer for a freestream Mach number of two. A second application is to a transonic flow in a two-dimensional converging-diverging nozzle, where the computed results are compared to experimental data
Schwarz-based algorithms for compressible flows
Energy Technology Data Exchange (ETDEWEB)
Tidriri, M.D. [ICASE, Hampton, VA (United States)
1996-12-31
To compute steady compressible flows one often uses an implicit discretization approach which leads to a large sparse linear system that must be solved at each time step. In the derivation of this system one often uses a defect-correction procedure, in which the left-hand side of the system is discretized with a lower order approximation than that used for the right-hand side. This is due to storage considerations and computational complexity, and also to the fact that the resulting lower order matrix is better conditioned than the higher order matrix. The resulting schemes are only moderately implicit. In the case of structured, body-fitted grids, the linear system can easily be solved using approximate factorization (AF), which is among the most widely used methods for such grids. However, for unstructured grids, such techniques are no longer valid, and the system is solved using direct or iterative techniques. Because of the prohibitive computational costs and large memory requirements for the solution of compressible flows, iterative methods are preferred. In these defect-correction methods, which are implemented in most CFD computer codes, the mismatch in the right and left hand side operators, together with explicit treatment of the boundary conditions, lead to a severely limited CFL number, which results in a slow convergence to steady state aerodynamic solutions. Many authors have tried to replace explicit boundary conditions with implicit ones. Although they clearly demonstrate that high CFL numbers are possible, the reduction in CPU time is not clear cut.
Conjugate Compressible Fluid Flow and Heat Transfer in Ducts
Cross, M. F.
2011-01-01
A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.
Subsampling-based compression and flow visualization
Energy Technology Data Exchange (ETDEWEB)
Agranovsky, Alexy; Camp, David; Joy, I; Childs, Hank
2016-01-19
As computational capabilities increasingly outpace disk speeds on leading supercomputers, scientists will, in turn, be increasingly unable to save their simulation data at its native resolution. One solution to this problem is to compress these data sets as they are generated and visualize the compressed results afterwards. We explore this approach, specifically subsampling velocity data and the resulting errors for particle advection-based flow visualization. We compare three techniques: random selection of subsamples, selection at regular locations corresponding to multi-resolution reduction, and introduce a novel technique for informed selection of subsamples. Furthermore, we explore an adaptive system which exchanges the subsampling budget over parallel tasks, to ensure that subsampling occurs at the highest rate in the areas that need it most. We perform supercomputing runs to measure the effectiveness of the selection and adaptation techniques. Overall, we find that adaptation is very effective, and, among selection techniques, our informed selection provides the most accurate results, followed by the multi-resolution selection, and with the worst accuracy coming from random subsamples.
Flux Limiter Lattice Boltzmann for Compressible Flows
International Nuclear Information System (INIS)
Chen Feng; Li Yingjun; Xu Aiguo; Zhang Guangcai
2011-01-01
In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limiter scheme is efficient in decreasing the artificial oscillations and numerical diffusion around the interface. Due to the kinetic nature, some interface problems being difficult to handle at the macroscopic level can be modeled more naturally through the LB method. Numerical simulations for the Richtmyer-Meshkov instability show that with the new model the computed interfaces are smoother and more consistent with physical analysis. The growth rates of bubble and spike present a satisfying agreement with the theoretical predictions and other numerical simulations. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Control volume based modelling of compressible flow in reciprocating machines
DEFF Research Database (Denmark)
Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik
2004-01-01
, and multidimensional effects must be calculated using empirical correlations; correlations for steady state flow can be used as an approximation. A transformation that assumes ideal gas is presented for transforming equations for masses and energies in control volumes into the corresponding pressures and temperatures......An approach to modelling unsteady compressible flow that is primarily one dimensional is presented. The approach was developed for creating distributed models of machines with reciprocating pistons but it is not limited to this application. The approach is based on the integral form of the unsteady...... conservation laws for mass, energy, and momentum applied to a staggered mesh consisting of two overlapping strings of control volumes. Loss mechanisms can be included directly in the governing equations of models by including them as terms in the conservation laws. Heat transfer, flow friction...
Spatial correlations in compressible granular flows
Van Noije, T. P. C.; Ernst, M. H.; Brito López, Ricardo
1998-01-01
The clustering instability in freely evolving granular fluids manifests itself in the density-density correlation function and structure factor. These functions are calculated from fluctuating hydrodynamics. As time increases, the structure factor of density fluctuations develops a maximum, which shifts to smaller wave numbers (growing correlation length). Furthermore, the inclusion of longitudinal velocity fluctuations changes long-range correlations in the flow field qualitatively and exten...
Physical and numerical modelling of low mach number compressible flows
International Nuclear Information System (INIS)
Paillerre, H.; Clerc, S.; Dabbene, F.; Cueto, O.
1999-01-01
This article reviews various physical models that may be used to describe compressible flow at low Mach numbers, as well as the numerical methods developed at DRN to discretize the different systems of equations. A selection of thermal-hydraulic applications illustrate the need to take into account compressibility and multidimensional effects as well as variable flow properties. (authors)
Compressible turbulent flows: aspects of prediction and analysis
Energy Technology Data Exchange (ETDEWEB)
Friedrich, R. [TU Muenchen, Garching (Germany). Fachgebiet Stroemungsmechanik
2007-03-15
Compressible turbulent flows are an important element of high-speed flight. Boundary layers developing along fuselage and wings of an aircraft and along engine compressor and turbine blades are compressible and mostly turbulent. The high-speed flow around rockets and through rocket nozzles involves compressible turbulence and flow separation. Turbulent mixing and combustion in scramjet engines is another example where compressibility dominates the flow physics. Although compressible turbulent flows have attracted researchers since the fifties of the last century, they are not completely understood. Especially interactions between compressible turbulence and combustion lead to challenging, yet unsolved problems. Direct numerical simulation (DNS) and large-eddy simulation (LES) represent modern powerful research tools which allow to mimic such flows in great detail and to analyze underlying physical mechanisms, even those which cannot be accessed by the experiment. The present lecture provides a short description of these tools and some of their numerical characteristics. It then describes DNS and LES results of fully-developed channel and pipe flow and highlights effects of compressibility on the turbulence structure. The analysis of pressure fluctuations in such flows with isothermal cooled walls leads to the conclusion that the pressure-strain correlation tensor decreases in the wall layer and that the turbulence anisotropy increases, since the mean density falls off relative to the incompressible flow case. Similar increases in turbulence anisotropy due to compressibility are observed in inert and reacting temporal mixing layers. The nature of the pressure fluctuations is however two-facetted. While inert compressible mixing layers reveal wave-propagation effects in the pressure and density fluctuations, compressible reacting mixing layers seem to generate pressure fluctuations that are controlled by the time-rate of change of heat release and mean density
A GPU-accelerated implicit meshless method for compressible flows
Zhang, Jia-Le; Ma, Zhi-Hua; Chen, Hong-Quan; Cao, Cheng
2018-05-01
This paper develops a recently proposed GPU based two-dimensional explicit meshless method (Ma et al., 2014) by devising and implementing an efficient parallel LU-SGS implicit algorithm to further improve the computational efficiency. The capability of the original 2D meshless code is extended to deal with 3D complex compressible flow problems. To resolve the inherent data dependency of the standard LU-SGS method, which causes thread-racing conditions destabilizing numerical computation, a generic rainbow coloring method is presented and applied to organize the computational points into different groups by painting neighboring points with different colors. The original LU-SGS method is modified and parallelized accordingly to perform calculations in a color-by-color manner. The CUDA Fortran programming model is employed to develop the key kernel functions to apply boundary conditions, calculate time steps, evaluate residuals as well as advance and update the solution in the temporal space. A series of two- and three-dimensional test cases including compressible flows over single- and multi-element airfoils and a M6 wing are carried out to verify the developed code. The obtained solutions agree well with experimental data and other computational results reported in the literature. Detailed analysis on the performance of the developed code reveals that the developed CPU based implicit meshless method is at least four to eight times faster than its explicit counterpart. The computational efficiency of the implicit method could be further improved by ten to fifteen times on the GPU.
Meshless Method for Simulation of Compressible Flow
Nabizadeh Shahrebabak, Ebrahim
In the present age, rapid development in computing technology and high speed supercomputers has made numerical analysis and computational simulation more practical than ever before for large and complex cases. Numerical simulations have also become an essential means for analyzing the engineering problems and the cases that experimental analysis is not practical. There are so many sophisticated and accurate numerical schemes, which do these simulations. The finite difference method (FDM) has been used to solve differential equation systems for decades. Additional numerical methods based on finite volume and finite element techniques are widely used in solving problems with complex geometry. All of these methods are mesh-based techniques. Mesh generation is an essential preprocessing part to discretize the computation domain for these conventional methods. However, when dealing with mesh-based complex geometries these conventional mesh-based techniques can become troublesome, difficult to implement, and prone to inaccuracies. In this study, a more robust, yet simple numerical approach is used to simulate problems in an easier manner for even complex problem. The meshless, or meshfree, method is one such development that is becoming the focus of much research in the recent years. The biggest advantage of meshfree methods is to circumvent mesh generation. Many algorithms have now been developed to help make this method more popular and understandable for everyone. These algorithms have been employed over a wide range of problems in computational analysis with various levels of success. Since there is no connectivity between the nodes in this method, the challenge was considerable. The most fundamental issue is lack of conservation, which can be a source of unpredictable errors in the solution process. This problem is particularly evident in the presence of steep gradient regions and discontinuities, such as shocks that frequently occur in high speed compressible flow
Methods for compressible multiphase flows and their applications
Kim, H.; Choe, Y.; Kim, H.; Min, D.; Kim, C.
2018-06-01
This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.
International Nuclear Information System (INIS)
Caruso, A.; Mechitoua, N.; Duplex, J.
1995-01-01
The R and D thermal hydraulic codes, notably the finite difference codes Melodie (2D) and ESTET (3D) or the 2D and 3D versions of the finite element code N3S were initially developed for incompressible, possibly dilatable, turbulent flows, i.e. those where density is not pressure-dependent. Subsequent minor modifications to these finite difference code algorithms enabled extension of their scope to subsonic compressible flows. The first applications in both single-phase and two flow contexts have now been completed. This paper presents the techniques used to adapt these algorithms for the processing of compressible flows in an N3S type finite element code, whereby complex geometries normally difficult to model in finite difference meshes could be successfully dealt with. The development of version 3.0 of he N3S code led to dilatable flow calculations at lower cost. On this basis, a 2-D prototype version of N3S was programmed, tested and validated, drawing maximum benefit from Cray vectorization possibilities and from physical, numerical or data processing experience with other fluid dynamics codes, such as Melodie, ESTET or TELEMAC. The algorithms are the same as those used in finite difference codes, but their formulation is variational. The first part of the paper deals with the fundamental equations involved, expressed in basic form, together with the associated digital method. The modifications to the k-epsilon turbulence model extended to compressible flows are also described. THe second part presents the algorithm used, indicating the additional terms required by the extension. The third part presents the equations in integral form and the associated matrix systems. The solutions adopted for calculation of the compressibility related terms are indicated. Finally, a few representative applications and test cases are discussed. These include subsonic, but also transsonic and supersonic cases, showing the shock responses of the digital method. The application of
Weak-strong clustering transition in renewing compressible flows
Dhanagare, Ajinkya; Musacchio, Stefano; Vincenzi, Dario
2014-01-01
International audience; We investigate the statistical properties of Lagrangian tracers transported by a time-correlated compressible renewing flow. We show that the preferential sampling of the phase space performed by tracers yields significant differences between the Lagrangian statistics and its Eulerian counterpart. In particular, the effective compressibility experienced by tracers has a non-trivial dependence on the time correlation of the flow. We examine the consequence of this pheno...
Modelling and simulation of the compressible turbulence in supersonic shear flows
International Nuclear Information System (INIS)
Guezengar, Dominique
1997-02-01
This research thesis addresses the modelling of some specific physical problems of fluid mechanics: compressibility (issue of mixing layers), large variations of volumetric mass (boundary layers), and anisotropy (compression ramps). After a presentation of the chosen physical modelling and numerical approximation, the author pays attention to flows at the vicinity of a wall, and to boundary conditions. The next part addresses existing compressibility models and their application to the calculation of supersonic mixing layers. A critical assessment is also performed through calculations of boundary layers and of compression ramps. The next part addresses problems related to large variations of volumetric mass which are not taken by compressibility models into account. A modification is thus proposed for the diffusion term, and is tested for the case of supersonic boundary layers and of mixing layers with high density rates. Finally, anisotropy effects are addressed through the implementation of Explicit Algebraic Stress k-omega Turbulence models (EARSM), and their tests on previously studied cases [fr
A multiphase compressible model for the simulation of multiphase flows
International Nuclear Information System (INIS)
Caltagirone, J.P.; Vincent, St.; Caruyer, C.
2011-01-01
A compressible model able to manage incompressible two-phase flows as well as compressible motions is proposed. After a presentation of the multiphase compressible concept, the new model and related numerical methods are detailed on fixed structured grids. The presented model is a 1-fluid model with a reformulated mass conservation equation which takes into account the effects of compressibility. The coupling between pressure and flow velocity is ensured by introducing mass conservation terms in the momentum and energy equations. The numerical model is then validated with four test cases involving the compression of an air bubble by water, the liquid injection in a closed cavity filled with air, a bubble subjected to an ultrasound field and finally the oscillations of a deformed air bubble in melted steel. The numerical results are compared with analytical results and convergence orders in space are provided. (authors)
Application of PDF methods to compressible turbulent flows
Delarue, B. J.; Pope, S. B.
1997-09-01
A particle method applying the probability density function (PDF) approach to turbulent compressible flows is presented. The method is applied to several turbulent flows, including the compressible mixing layer, and good agreement is obtained with experimental data. The PDF equation is solved using a Lagrangian/Monte Carlo method. To accurately account for the effects of compressibility on the flow, the velocity PDF formulation is extended to include thermodynamic variables such as the pressure and the internal energy. The mean pressure, the determination of which has been the object of active research over the last few years, is obtained directly from the particle properties. It is therefore not necessary to link the PDF solver with a finite-volume type solver. The stochastic differential equations (SDE) which model the evolution of particle properties are based on existing second-order closures for compressible turbulence, limited in application to low turbulent Mach number flows. Tests are conducted in decaying isotropic turbulence to compare the performances of the PDF method with the Reynolds-stress closures from which it is derived, and in homogeneous shear flows, at which stage comparison with direct numerical simulation (DNS) data is conducted. The model is then applied to the plane compressible mixing layer, reproducing the well-known decrease in the spreading rate with increasing compressibility. It must be emphasized that the goal of this paper is not as much to assess the performance of models of compressibility effects, as it is to present an innovative and consistent PDF formulation designed for turbulent inhomogeneous compressible flows, with the aim of extending it further to deal with supersonic reacting flows.
Compressible fluid flows driven by stochastic forcing
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Maslowski, B.; Novotný, A.
2013-01-01
Roč. 254, č. 3 (2013), s. 1342-1358 ISSN 0022-0396 R&D Projects: GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Institutional support: RVO:67985840 Keywords : stochastic Navier-Stokes equations * compressible fluid * random driving force Subject RIV: BA - General Mathematics Impact factor: 1.570, year: 2013 http://www.sciencedirect.com/science/article/pii/S0022039612004135
Calculation of afterbody flows with a composite velocity formulation
Swanson, R. C.; Rubin, S. G.; Khosla, P. K.
1983-01-01
A recently developed technique for numerical solution of the Navier-Stokes equations for subsonic, laminar flows is investigated. It is extended here to allow for the computation of transonic and turbulent flows. The basic approach involves a multiplicative composite of the appropriate velocity representations for the inviscid and viscous flow regions. The resulting equations are structured so that far from the surface of the body the momentum equations lead to the Bernoulli equation for the pressure, while the continuity equation reduces to the familiar potential equation. Close to the body surface, the governing equations and solution techniques are characteristic of those describing interacting boundary layers. The velocity components are computed with a coupled strongly implicity procedure. For transonic flows the artificial compressibility method is used to treat supersonic regions. Calculations are made for both laminar and turbulent flows over axisymmetric afterbody configurations. Present results compare favorably with other numerical solutions and/or experimental data.
Birdsell, D.; Karra, S.; Rajaram, H.
2017-12-01
The governing equations for subsurface flow codes in deformable porous media are derived from the fluid mass balance equation. One class of these codes, which we call general subsurface flow (GSF) codes, does not explicitly track the motion of the solid porous media but does accept general constitutive relations for porosity, density, and fluid flux. Examples of GSF codes include PFLOTRAN, FEHM, STOMP, and TOUGH2. Meanwhile, analytical and numerical solutions based on the groundwater flow equation have assumed forms for porosity, density, and fluid flux. We review the derivation of the groundwater flow equation, which uses the form of Darcy's equation that accounts for the velocity of fluids with respect to solids and defines the soil matrix compressibility accordingly. We then show how GSF codes have a different governing equation if they use the form of Darcy's equation that is written only in terms of fluid velocity. The difference is seen in the porosity change, which is part of the specific storage term in the groundwater flow equation. We propose an alternative definition of soil matrix compressibility to correct for the untracked solid velocity. Simulation results show significantly less error for our new compressibility definition than the traditional compressibility when compared to analytical solutions from the groundwater literature. For example, the error in one calculation for a pumped sandstone aquifer goes from 940 to <70 Pa when the new compressibility is used. Code users and developers need to be aware of assumptions in the governing equations and constitutive relations in subsurface flow codes, and our newly-proposed compressibility function should be incorporated into GSF codes.
Integral representation in the hodograph plane of compressible flow
DEFF Research Database (Denmark)
Hansen, Erik Bent; Hsiao, G.C.
2003-01-01
Compressible flow is considered in the hodograph plane. The linearity of the equation determining the stream function is exploited to derive a representation formula involving boundary data only, and a fundamental solution to the adjoint equation. For subsonic flow, an efficient algorithm...
Videos and images from 25 years of teaching compressible flow
Settles, Gary
2008-11-01
Compressible flow is a very visual topic due to refractive optical flow visualization and the public fascination with high-speed flight. Films, video clips, and many images are available to convey this in the classroom. An overview of this material is given and selected examples are shown, drawn from educational films, the movies, television, etc., and accumulated over 25 years of teaching basic and advanced compressible-flow courses. The impact of copyright protection and the doctrine of fair use is also discussed.
Potential Flow Model for Compressible Stratified Rayleigh-Taylor Instability
Rydquist, Grant; Reckinger, Scott; Owkes, Mark; Wieland, Scott
2017-11-01
The Rayleigh-Taylor Instability (RTI) is an instability that occurs when a heavy fluid lies on top of a lighter fluid in a gravitational field, or a gravity-like acceleration. It occurs in many fluid flows of a highly compressive nature. In this study potential flow analysis (PFA) is used to model the early stages of RTI growth for compressible fluids. In the localized region near the bubble tip, the effects of vorticity are negligible, so PFA is applicable, as opposed to later stages where the induced velocity due to vortices generated from the growth of the instability dominate the flow. The incompressible PFA is extended for compressibility effects by applying the growth rate and the associated perturbation spatial decay from compressible linear stability theory. The PFA model predicts theoretical values for a bubble terminal velocity for single-mode compressible RTI, dependent upon the Atwood (A) and Mach (M) numbers, which is a parameter that measures both the strength of the stratification and intrinsic compressibility. The theoretical bubble terminal velocities are compared against numerical simulations. The PFA model correctly predicts the M dependence at high A, but the model must be further extended to include additional physics to capture the behavior at low A. Undergraduate Scholars Program - Montana State University.
Calculating Shocks In Flows At Chemical Equilibrium
Eberhardt, Scott; Palmer, Grant
1988-01-01
Boundary conditions prove critical. Conference paper describes algorithm for calculation of shocks in hypersonic flows of gases at chemical equilibrium. Although algorithm represents intermediate stage in development of reliable, accurate computer code for two-dimensional flow, research leading up to it contributes to understanding of what is needed to complete task.
Polar-coordinate lattice Boltzmann modeling of compressible flows
Lin, Chuandong; Xu, Aiguo; Zhang, Guangcai; Li, Yingjun; Succi, Sauro
2014-01-01
We present a polar coordinate lattice Boltzmann kinetic model for compressible flows. A method to recover the continuum distribution function from the discrete distribution function is indicated. Within the model, a hybrid scheme being similar to, but different from, the operator splitting is proposed. The temporal evolution is calculated analytically, and the convection term is solved via a modified Warming-Beam (MWB) scheme. Within the MWB scheme a suitable switch function is introduced. The current model works not only for subsonic flows but also for supersonic flows. It is validated and verified via the following well-known benchmark tests: (i) the rotational flow, (ii) the stable shock tube problem, (iii) the Richtmyer-Meshkov (RM) instability, and (iv) the Kelvin-Helmholtz instability. As an original application, we studied the nonequilibrium characteristics of the system around three kinds of interfaces, the shock wave, the rarefaction wave, and the material interface, for two specific cases. In one of the two cases, the material interface is initially perturbed, and consequently the RM instability occurs. It is found that the macroscopic effects due to deviating from thermodynamic equilibrium around the material interface differ significantly from those around the mechanical interfaces. The initial perturbation at the material interface enhances the coupling of molecular motions in different degrees of freedom. The amplitude of deviation from thermodynamic equilibrium around the shock wave is much higher than those around the rarefaction wave and material interface. By comparing each component of the high-order moments and its value in equilibrium, we can draw qualitatively the main behavior of the actual distribution function. These results deepen our understanding of the mechanical and material interfaces from a more fundamental level, which is indicative for constructing macroscopic models and other kinds of kinetic models.
Twopool strategy and the combined compressible/incompressible flow problem
International Nuclear Information System (INIS)
Sienicki, J.J.; Abramson, P.B.
1979-01-01
Most recent numerical modeling of two-phase flow involves an implicit determination of a pressure field upon which computational efficiency is strongly dependent. While cell by cell schemes (which treat the pressures in adjacent cells as known source terms) offer fast running times, permit the use of large time steps limited by a Courant condition restriction based on material velocities, and favor enhanced implicit coupling between the thermodynamic and hydrodynamic variables within individual cells, strong implicit coupling (as obtained with elimination schemes) between pressures in adjacent cells in pure single-phase liquid regions is necessary for the calculation of combined two-phase (compressible)/single-phase (incompressible) flows. The TWOPOOL strategy, which consists of a separation in the determination of a pressure field between the single-phase liquid cells where elimination is used and the two-phase cells where a cell by cell scheme is used, constitutes the fastest running strategy which permits the use of large time steps limited only by a Courant condition restriction based on material velocities
Spatial correlations in compressible granular flows
van Noije, T.P.C.; Ernst, M.H.; Brito, R.
The clustering instability in freely evolving granular fluids manifests itself in the density-density correlation function and structure factor. These functions are calculated from fluctuating hydrodynamics. As time increases, the structure factor of density fluctuations develops a maximum, which
Investigation of turbulence models with compressibility corrections for hypersonic boundary flows
Directory of Open Access Journals (Sweden)
Han Tang
2015-12-01
Full Text Available The applications of pressure work, pressure-dilatation, and dilatation-dissipation (Sarkar, Zeman, and Wilcox models to hypersonic boundary flows are investigated. The flat plate boundary layer flows of Mach number 5–11 and shock wave/boundary layer interactions of compression corners are simulated numerically. For the flat plate boundary layer flows, original turbulence models overestimate the heat flux with Mach number high up to 10, and compressibility corrections applied to turbulence models lead to a decrease in friction coefficients and heating rates. The pressure work and pressure-dilatation models yield the better results. Among the three dilatation-dissipation models, Sarkar and Wilcox corrections present larger deviations from the experiment measurement, while Zeman correction can achieve acceptable results. For hypersonic compression corner flows, due to the evident increase of turbulence Mach number in separation zone, compressibility corrections make the separation areas larger, thus cannot improve the accuracy of calculated results. It is unreasonable that compressibility corrections take effect in separation zone. Density-corrected model by Catris and Aupoix is suitable for shock wave/boundary layer interaction flows which can improve the simulation accuracy of the peak heating and have a little influence on separation zone.
Combustion and Mixing Studies in Compressible Flows.
1996-09-01
Astronautics 2 FULLER ET AL. dence times. It is a primary concern in hypersonic aircraft In fact, studies conducted by Povinelli et al.1 3 and Schetz...downstream. It was reasoned that pressure gradients in the swirling flow. Povinelli et al." such behavior should lead to increased turbulence levels...E.M., "Design and Calibration of Stagnation Tem- tion, 1968, pp. 1153-1162.11 .perature Probes for Use at High Supersonic Speeds and Elevated Povinelli
Pressure correction schemes for compressible flows
International Nuclear Information System (INIS)
Kheriji, W.
2011-01-01
This thesis is concerned with the development of semi-implicit fractional step schemes, for the compressible Navier-Stokes equations; these schemes are part of the class of the pressure correction methods. The chosen spatial discretization is staggered: non conforming mixed finite elements (Crouzeix-Raviart or Rannacher-Turek) or the classic MA C scheme. An upwind finite volume discretization of the mass balance guarantees the positivity of the density. The positivity of the internal energy is obtained by discretizing the internal energy balance by an upwind finite volume scheme and b y coupling the discrete internal energy balance with the pressure correction step. A special finite volume discretization on dual cells is performed for the convection term in the momentum balance equation, and a renormalisation step for the pressure is added to the algorithm; this ensures the control in time of the integral of the total energy over the domain. All these a priori estimates imply the existence of a discrete solution by a topological degree argument. The application of this scheme to Euler equations raises an additional difficulty. Indeed, obtaining correct shocks requires the scheme to be consistent with the total energy balance, property which we obtain as follows. First of all, a local discrete kinetic energy balance is established; it contains source terms winch we somehow compensate in the internal energy balance. The kinetic and internal energy equations are associated with the dual and primal meshes respectively, and thus cannot be added to obtain a total energy balance; its continuous counterpart is however recovered at the limit: if we suppose that a sequence of discrete solutions converges when the space and time steps tend to 0, we indeed show, in 1D at least, that the limit satisfies a weak form of the equation. These theoretical results are comforted by numerical tests. Similar results are obtained for the baro-tropic Navier-Stokes equations. (author)
Analysis of the transient compressible vapor flow in heat pipes
Jang, J. H.; Faghri, A.; Chang, W. S.
1989-01-01
The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.
Analysis of the transient compressible vapor flow in heat pipe
International Nuclear Information System (INIS)
Jang, J.H.; Faghri, A.; Chang, W.S.
1989-07-01
The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures
Analysis of the transient compressible vapor flow in heat pipe
Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon
1989-01-01
The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.
Nozzle flow calculation for real gases
International Nuclear Information System (INIS)
Bier, K.; Ehrler, F.; Hartz, U.; Kissau, G.
1977-01-01
The flow of CHF 2 Cl vapor (refrigerant R 22) through a Laval nozzle of annular geometry has been investigated in the region near the saturation line with stagnation pressures up to 85 per cent of the critical pressure. Static pressure profiles measured along the nozzle axis were found in good agreement with profiles calculated for one-dimensional isentropic flow of the real gas the thermal properties of which were derived from an equation of state proposed previously by Rombusch. Minor deviations between measured and calculated static pressure curves occur in the supersonic part of the mozzle, especially when supersaturated states of the vapour are passed. These deviations can be attributed to uncertainties in the calculation of the enthalpy and to a small influence of the static pressure probe. An additional investigation was concerned with an approximate calculation of the nozzle flow of real gases. In this approximation the well known relations of ideal gas dynamics are applied, the ratio of specific heats for the ideal gas being replaced, however, by a suitably adapted isentropic exponent, which can be determined e.g. from measured values of the Laval pressure or of the mass flow. For pressure ratios p/po between 1 and approximately 0.1, corresponding to Mach numbers up to approximately 2.2, all the interesting properties of the investigated flow of CHF 2 Cl vapour are approximated within a few per cent. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Park, Sun Ho [Korea Maritime and Ocean University, Busan (Korea, Republic of); Rhee, Shin Hyung [Seoul National University, Seoul (Korea, Republic of)
2015-08-15
Incompressible flow solvers are generally used for numerical analysis of cavitating flows, but with limitations in handling compressibility effects on vapor phase. To study compressibility effects on vapor phase and cavity interface, pressure-based incompressible and isothermal compressible flow solvers based on a cell-centered finite volume method were developed using the OpenFOAM libraries. To validate the solvers, cavitating flow around a hemispherical head-form body was simulated and validated against the experimental data. The cavity shedding behavior, length of a re-entrant jet, drag history, and the Strouhal number were compared between the two solvers. The results confirmed that computations of the cavitating flow including compressibility effects improved the reproduction of cavitation dynamics.
Flow-induced vibration of helical coil compression springs
International Nuclear Information System (INIS)
Stokes, F.E.; King, R.A.
1983-01-01
Helical coil compression springs are used in some nuclear fuel assembly designs to maintain holddown and to accommodate thermal expansion. In the reactor environment, the springs are exposed to flowing water, elevated temperatures and pressures, and irradiation. Flow parallel to the longitudinal axis of the spring may excite the spring coils and cause vibration. The purpose of this investigation was to determine the flow-induced vibration (FIV) response characteristics of the helical coil compression springs. Experimental tests indicate that a helical coil spring responds like a single circular cylinder in cross-flow. Two FIV excitation mechanisms control spring vibration. Namely: 1) Turbulent Buffeting causes small amplitude vibration which increases as a function of velocity squared. 2) Vortex Shedding causes large amplitude vibration when the spring natural frequency and Strouhal frequency coincide. Several methods can be used to reduce or to prevent vortex shedding large amplitude vibrations. One method is compressing the spring to a coil pitch-to-diameter ratio of 2 thereby suppressing the vibration amplitude. Another involves modifying the spring geometry to alter its stiffness and frequency characteristics. These changes result in separation of the natural and Strouhal frequencies. With an understanding of how springs respond in the flowing water environment, the spring physical parameters can be designed to avoid large amplitude vibration. (orig.)
Pressure calculations in nanochannel gas flows
Kim, J.H.; Frijns, A.J.H.; Nedea, S.V.; Steenhoven, van A.A.; Frijns, A.J.H.; Valougeorgis, D.; Colin, S.; Baldas, L.
2012-01-01
In this research, pressure driven flow within a nanochannel is studied for argon in rarefied gas states. A Molecular Dynamics simulation is used to resolve the density and stress variations. Normal stress calculations are based on Irving-Kirkwood method, which divides the stress tensor into its
Moortgat, J.; Amooie, M. A.; Soltanian, M. R.
2016-12-01
Problems in hydrogeology and hydrocarbon reservoirs generally involve the transport of solutes in a single solvent phase (e.g., contaminants or dissolved injection gas), or the flow of multiple phases that may or may not exchange mass (e.g., brine, NAPL, oil, gas). Often, flow is viscously and gravitationally unstable due to mobility and density contrasts within a phase or between phases. Such instabilities have been studied in detail for single-phase incompressible fluids and for two-phase immiscible flow, but to a lesser extent for multiphase multicomponent compressible flow. The latter is the subject of this presentation. Robust phase stability analyses and phase split calculations, based on equations of state, determine the mass exchange between phases and the resulting phase behavior, i.e., phase densities, viscosities, and volumes. Higher-order finite element methods and fine grids are used to capture the small-scale onset of flow instabilities. A full matrix of composition dependent coefficients is considered for each Fickian diffusive phase flux. Formation heterogeneity can have a profound impact and is represented by realistic geostatistical models. Qualitatively, fingering in multiphase compositional flow is different from single-phase problems because 1) phase mobilities depend on rock wettability through relative permeabilities, and 2) the initial density and viscosity ratios between phases may change due to species transfer. To quantify mixing rates in different flow regimes and for varying degrees of miscibility and medium heterogeneities, we define the spatial variance, scalar dissipation rate, dilution index, skewness, and kurtosis of the molar density of introduced species. Molar densities, unlike compositions, include compressibility effects. The temporal evolution of these measures shows that, while transport at the small-scale (cm) is described by the classical advection-diffusion-dispersion relations, scaling at the macro-scale (> 10 m) shows
Vortex breakdown of compressible swirling flows in a pipe
Lee, Harry; Rusak, Zvi; Wang, Shixiao
2017-11-01
The manifold of branches of steady and axisymmetric states of compressible subsonic swirling flows in a finite-length straight circular pipe are developed. The analysis is based on Rusak et al. (2015) nonlinear partial differential equation for the solution of the flow stream function in terms of the inlet flow total enthalpy, entropy and circulation functions. This equation reflects the complicated thermo-physical interactions in the flows. The flow problem is solved numerically using a finite difference approach with a penalty procedure for identifying vortex breakdown and wall-separation states. Several types of solutions are found and used to form the bifurcation diagram of steady compressible flows with swirl as the inlet swirl level is increased at a fixed inlet Mach number. Results are compared with predictions from the global analysis approach of Rusak et al. (2015). The computed results provide theoretical predictions of the critical swirl levels for the first appearance of vortex breakdown states as a function of the inlet Mach number. The shows the delay in the appearance of breakdown with increase of the inlet axial flow Mach number in the subsonic range of operation.
Gaseous Nitrogen Orifice Mass Flow Calculator
Ritrivi, Charles
2013-01-01
The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.
Energy Technology Data Exchange (ETDEWEB)
Rian, Kjell Erik
2003-07-01
In numerical simulations of turbulent reacting compressible flows, artificial boundaries are needed to obtain a finite computational domain when an unbounded physical domain is given. Artificial boundaries which fluids are free to cross are called open boundaries. When calculating such flows, non-physical reflections at the open boundaries may occur. These reflections can pollute the solution severely, leading to inaccurate results, and the generation of spurious fluctuations may even cause the numerical simulation to diverge. Thus, a proper treatment of the open boundaries in numerical simulations of turbulent reacting compressible flows is required to obtain a reliable solution for realistic conditions. A local quasi-one-dimensional characteristic-based open-boundary treatment for the Favre-averaged governing equations for time-dependent three-dimensional multi-component turbulent reacting compressible flow is presented. A k-{epsilon} model for turbulent compressible flow and Magnussen's EDC model for turbulent combustion is included in the analysis. The notion of physical boundary conditions is incorporated in the method, and the conservation equations themselves are applied on the boundaries to complement the set of physical boundary conditions. A two-dimensional finite-difference-based computational fluid dynamics code featuring high-order accurate numerical schemes was developed for the numerical simulations. Transient numerical simulations of the well-known, one-dimensional shock-tube problem, a two-dimensional pressure-tower problem in a decaying turbulence field, and a two-dimensional turbulent reacting compressible flow problem have been performed. Flow- and combustion-generated pressure waves seem to be well treated by the non-reflecting subsonic open-boundary conditions. Limitations of the present open-boundary treatment are demonstrated and discussed. The simple and solid physical basis of the method makes it both favourable and relatively easy to
Viscous and gravitational fingering in multiphase compositional and compressible flow
Moortgat, Joachim
2016-03-01
Viscous and gravitational fingering refer to flow instabilities in porous media that are triggered by adverse mobility or density ratios, respectively. These instabilities have been studied extensively in the past for (1) single-phase flow (e.g., contaminant transport in groundwater, first-contact-miscible displacement of oil by gas in hydrocarbon production), and (2) multi-phase immiscible and incompressible flow (e.g., water-alternating-gas (WAG) injection in oil reservoirs). Fingering in multiphase compositional and compressible flow has received much less attention, perhaps due to its high computational complexity. However, many important subsurface processes involve multiple phases that exchange species. Examples are carbon sequestration in saline aquifers and enhanced oil recovery (EOR) by gas or WAG injection below the minimum miscibility pressure. In multiphase flow, relative permeabilities affect the mobility contrast for a given viscosity ratio. Phase behavior can also change local fluid properties, which can either enhance or mitigate viscous and gravitational instabilities. This work presents a detailed study of fingering behavior in compositional multiphase flow in two and three dimensions and considers the effects of (1) Fickian diffusion, (2) mechanical dispersion, (3) flow rates, (4) domain size and geometry, (5) formation heterogeneities, (6) gravity, and (7) relative permeabilities. Results show that fingering in compositional multiphase flow is profoundly different from miscible conditions and upscaling techniques used for the latter case are unlikely to be generalizable to the former.
Three-dimensional lattice Boltzmann model for compressible flows.
Sun, Chenghai; Hsu, Andrew T
2003-07-01
A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.
Acceleration methods for multi-physics compressible flow
Peles, Oren; Turkel, Eli
2018-04-01
In this work we investigate the Runge-Kutta (RK)/Implicit smoother scheme as a convergence accelerator for complex multi-physics flow problems including turbulent, reactive and also two-phase flows. The flows considered are subsonic, transonic and supersonic flows in complex geometries, and also can be either steady or unsteady flows. All of these problems are considered to be a very stiff. We then introduce an acceleration method for the compressible Navier-Stokes equations. We start with the multigrid method for pure subsonic flow, including reactive flows. We then add the Rossow-Swanson-Turkel RK/Implicit smoother that enables performing all these complex flow simulations with a reasonable CFL number. We next discuss the RK/Implicit smoother for time dependent problem and also for low Mach numbers. The preconditioner includes an intrinsic low Mach number treatment inside the smoother operator. We also develop a modified Roe scheme with a corresponding flux Jacobian matrix. We then give the extension of the method for real gas and reactive flow. Reactive flows are governed by a system of inhomogeneous Navier-Stokes equations with very stiff source terms. The extension of the RK/Implicit smoother requires an approximation of the source term Jacobian. The properties of the Jacobian are very important for the stability of the method. We discuss what the chemical physics theory of chemical kinetics tells about the mathematical properties of the Jacobian matrix. We focus on the implication of the Le-Chatelier's principle on the sign of the diagonal entries of the Jacobian. We present the implementation of the method for turbulent flow. We use a two RANS turbulent model - one equation model - Spalart-Allmaras and a two-equation model - k-ω SST model. The last extension is for two-phase flows with a gas as a main phase and Eulerian representation of a dispersed particles phase (EDP). We present some examples for such flow computations inside a ballistic evaluation
Method for Calculation of Steam-Compression Heat Transformers
Directory of Open Access Journals (Sweden)
S. V. Zditovetckaya
2012-01-01
Full Text Available The paper considers a method for joint numerical analysis of cycle parameters and heatex-change equipment of steam-compression heat transformer contour that takes into account a non-stationary operational mode and irreversible losses in devices and pipeline contour. The method has been realized in the form of the software package and can be used while making design or selection of a heat transformer with due account of a coolant and actual equipment being included in its structure.The paper presents investigation results revealing influence of pressure loss in an evaporator and a condenser from the side of the coolant caused by a friction and local resistance on power efficiency of the heat transformer which is operating in the mode of refrigerating and heating installation and a thermal pump. Actually obtained operational parameters of the thermal pump in the nominal and off-design operatinal modes depend on the structure of the concrete contour equipment.
Coherent structures in compressible free-shear-layer flows
Energy Technology Data Exchange (ETDEWEB)
Aeschliman, D.P.; Baty, R.S. [Sandia National Labs., Albuquerque, NM (United States). Engineering Sciences Center; Kennedy, C.A.; Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion and Physical Sciences Center
1997-08-01
Large scale coherent structures are intrinsic fluid mechanical characteristics of all free-shear flows, from incompressible to compressible, and laminar to fully turbulent. These quasi-periodic fluid structures, eddies of size comparable to the thickness of the shear layer, dominate the mixing process at the free-shear interface. As a result, large scale coherent structures greatly influence the operation and efficiency of many important commercial and defense technologies. Large scale coherent structures have been studied here in a research program that combines a synergistic blend of experiment, direct numerical simulation, and analysis. This report summarizes the work completed for this Sandia Laboratory-Directed Research and Development (LDRD) project.
Numerical calculations on heterogeneity of groundwater flow
International Nuclear Information System (INIS)
Follin, S.
1992-01-01
The upscaling of model parameters is a key issue in many research fields concerned with parameter heterogeneity. The upscaling process allows for fewer model blocks and relaxes the numerical problems caused by high contrasts in the hydraulic conductivity. The trade-offs are dependent on the object but the general drawback is an increasing uncertainty about the representativeness. The present study deals with numerical calculations of heterogeneity of groundwater flow and solute transport in hypothetical blocks of fractured hard rock in a '3m scale' and addresses both conceptual and practical problems in numerical simulation. Evidence that the hydraulic conductivity (K) of the rock mass between major fracture zones is highly heterogeneous in a 3m scale is provided by a large number of field investigations. The present uses the documented heterogeneity and investigates flow and transport in a two-dimensional stochastic continuum characterized by a variance in Y = In(K) of σ y 2 = 16, corresponding to about 12 log 10 cycles in K. The study considers anisotropy, channelling, non-Fickian and Fickian transport, and conditional simulation. The major conclusions are: * heterogeneity gives rise to anisotropy in the upscaling process, * the choice of support scale is crucial for the modelling of solute transport. As a consequence of the obtained results, a two-dimensional stochastic discontinuum model is presented, which provides a tool for linking stochastic continuum models to discrete fracture network models. (au) (14 figs., 136 refs.)
Low-Reynolds number compressible flow around a triangular airfoil
Munday, Phillip; Taira, Kunihiko; Suwa, Tetsuya; Numata, Daiju; Asai, Keisuke
2013-11-01
We report on the combined numerical and experimental effort to analyze the nonlinear aerodynamics of a triangular airfoil in low-Reynolds number compressible flow that is representative of wings on future Martian air vehicles. The flow field around this airfoil is examined for a wide range of angles of attack and Mach numbers with three-dimensional direct numerical simulations at Re = 3000 . Companion experiments are conducted in a unique Martian wind tunnel that is placed in a vacuum chamber to simulate the Martian atmosphere. Computational findings are compared with pressure sensitive paint and direct force measurements and are found to be in agreement. The separated flow from the leading edge is found to form a large leading-edge vortex that sits directly above the apex of the airfoil and provides enhanced lift at post stall angles of attack. For higher subsonic flows, the vortical structures elongate in the streamwise direction resulting in reduced lift enhancement. We also observe that the onset of spanwise instability for higher angles of attack is delayed at lower Mach numbers. Currently at Mitsubishi Heavy Industries, Ltd., Nagasaki.
Self-organization in three-dimensional compressible magnetohydrodynamic flow
International Nuclear Information System (INIS)
Horiuchi, Ritoku; Sato, Tetsuya.
1987-07-01
A three-dimensional self-organization process of a compressible dissipative plasma with a velocity-magnetic field correlation is investigated in detail by means of a variational method and a magnetohydrodynamic simulation. There are two types of relaxation, i.e., fast relaxation in which the cross helicity is not conserved, and slow relaxation in which the cross helicity is approximately conserved. In the slow relaxation case the cross helicity consists of two components with opposite sign which have almost the same amplitude in the large wavenumber region. In both cases the system approaches a high correlation state, dependent on the initial condition. These results are consistent with an observational data of the solar wind. Selective dissipation of magnetic energy, normal cascade of magnetic energy spectrum and inverse cascade of magnetic helicity spectrum are observed for the sub-Alfvenic flow case as was previously observed for the zero flow case. When the flow velocity is super-Alfvenic, the relaxation process is significantly altered from the zero flow case. (author)
Mechanics of occurrence of critical flow in compressible two-phase flow
International Nuclear Information System (INIS)
Katto, Yoshiro; Sudo, Yukio
1976-01-01
Fundamental framework of mechanics for the occurrence of critical flow is investigated, following the principle that the critical flow appears as a limit in a continuous change of state of flow along a nozzle (or a pipe) and should be derived only from simultaneous mechanical equations concerned with the flow. Mathematical procedures with which the critical flow: (i) the single phase flow of an arbitrary fluid, unrestricted by the equation of state of ideal gas, where the number of simultaneous equations is equal to the number of independent variables, and (ii) the one-component, separated two-phase flow under saturated condition, where the number of equations exceeds that of variables. In each case, interesting mechanism of leading to the occurrence of a limiting state of flow at a definite cross-section in a nozzle (incl. a pipe) is clarified, and a definite state of flow at the critical cross-section is also determined. Then, the analysis is extended to the critical flow which should appear in the completely isolated and the homogeneously dispersed, two-component, two-phase flow (composed of a compressible and an incompressible substance). It is found that the analyses of these special flow patterns provide several supplementary information to the mechanics of critical flow. (auth.)
Chattoraj, Sayantan; Sun, Changquan Calvin
2018-04-01
Continuous manufacturing of tablets has many advantages, including batch size flexibility, demand-adaptive scale up or scale down, consistent product quality, small operational foot print, and increased manufacturing efficiency. Simplicity makes direct compression the most suitable process for continuous tablet manufacturing. However, deficiencies in powder flow and compression of active pharmaceutical ingredients (APIs) limit the range of drug loading that can routinely be considered for direct compression. For the widespread adoption of continuous direct compression, effective API engineering strategies to address power flow and compression problems are needed. Appropriate implementation of these strategies would facilitate the design of high-quality robust drug products, as stipulated by the Quality-by-Design framework. Here, several crystal and particle engineering strategies for improving powder flow and compression properties are summarized. The focus is on the underlying materials science, which is the foundation for effective API engineering to enable successful continuous manufacturing by the direct compression process. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
A compressive sensing approach to the calculation of the inverse data space
Khan, Babar Hasan
2012-01-01
Seismic processing in the Inverse Data Space (IDS) has its advantages like the task of removing the multiples simply becomes muting the zero offset and zero time data in the inverse domain. Calculation of the Inverse Data Space by sparse inversion techniques has seen mitigation of some artifacts. We reformulate the problem by taking advantage of some of the developments from the field of Compressive Sensing. The seismic data is compressed at the sensor level by recording projections of the traces. We then process this compressed data directly to estimate the inverse data space. Due to the smaller number of data set we also gain in terms of computational complexity.
A Finite Element Method for Simulation of Compressible Cavitating Flows
Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad
2016-11-01
This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.
Nonlinear Thermal Instability in Compressible Viscous Flows Without Heat Conductivity
Jiang, Fei
2018-04-01
We investigate the thermal instability of a smooth equilibrium state, in which the density function satisfies Schwarzschild's (instability) condition, to a compressible heat-conducting viscous flow without heat conductivity in the presence of a uniform gravitational field in a three-dimensional bounded domain. We show that the equilibrium state is linearly unstable by a modified variational method. Then, based on the constructed linearly unstable solutions and a local well-posedness result of classical solutions to the original nonlinear problem, we further construct the initial data of linearly unstable solutions to be the one of the original nonlinear problem, and establish an appropriate energy estimate of Gronwall-type. With the help of the established energy estimate, we finally show that the equilibrium state is nonlinearly unstable in the sense of Hadamard by a careful bootstrap instability argument.
Numerical calculation of two-phase flows
International Nuclear Information System (INIS)
Travis, J.R.; Harlow, F.H.; Amsden, A.A.
1975-06-01
The theoretical study of time-varying two-phase flow problems in several space dimensions introduces such a complicated set of coupled nonlinear partial differential equations that numerical solution procedures for high-speed computers are required in almost all but the simplest examples. Efficient attainment of realistic solutions for practical problems requires a finite- difference formulation that is simultaneously implicit in the treatment of mass convection, equations of state, and the momentum coupling between phases. Such a method is described, the equations on which it is based are discussed, and its properties are illustrated by means of examples. In particular, the capability for calculating physical instabilities and other time-varying dynamics, at the same time avoiding numerical instability is emphasized. The computer code is applicable to problems in reactor safety analysis, the dynamics of fluidized dust beds, raindrops or aerosol transport, and a variety of similar circumstances, including the effects of phase transitions and the release of latent heat or chemical energy. (U.S.)
Zuj, K A; Prince, C N; Hughson, R L; Peterson, S D
2018-02-01
This study tested the hypothesis that intermittent compression of the lower limb would increase blood flow during exercise and postexercise recovery. Data were collected from 12 healthy individuals (8 men) who performed 3 min of standing plantar flexion exercise. The following three conditions were tested: no applied compression (NoComp), compression during the exercise period only (ExComp), and compression during 2 min of standing postexercise recovery. Doppler ultrasound was used to determine superficial femoral artery (SFA) blood flow responses. Mean arterial pressure (MAP) and cardiac stroke volume (SV) were assessed using finger photoplethysmography, with vascular conductance (VC) calculated as VC = SFA flow/MAP. Compared with the NoComp condition, compression resulted in increased MAP during exercise [+3.5 ± 4.1 mmHg (mean ± SD)] but not during postexercise recovery (+1.6 ± 5.9 mmHg). SV increased with compression during both exercise (+4.8 ± 5.1 ml) and recovery (+8.0 ± 6.6 ml) compared with NoComp. There was a greater increase in SFA flow with compression during exercise (+52.1 ± 57.2 ml/min) and during recovery (+58.6 ± 56.7 ml/min). VC immediately following exercise was also significantly greater in the ExComp condition compared with the NoComp condition (+0.57 ± 0.42 ml·min -1 ·mmHg -1 ), suggesting the observed increase in blood flow during exercise was in part because of changes in VC. Results from this study support the hypothesis that intermittent compression applied during exercise and recovery from exercise results in increased limb blood flow, potentially contributing to changes in exercise performance and recovery. NEW & NOTEWORTHY Blood flow to working skeletal muscle is achieved in part through the rhythmic actions of the skeletal muscle pump. This study demonstrated that the application of intermittent pneumatic compression during the diastolic phase of the cardiac cycle, to mimic the mechanical
Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown
Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.
1991-01-01
The unsteady, compressible Navier-Stokes equations are used to compute and analyze compressible quasi-axisymmetric isolated vortices. The Navier-Stokes equations are solved using an implicit, upwind, flux-difference splitting finite-volume scheme. The developed three-dimensional solver has been verified by comparing its solution profiles with those of a slender, quasi-axisymmetric vortex solver for a subsonic, isolated quasi-axisymmetric vortex in an unbounded domain. The Navier-Stokes solver is then used to solve for a supersonic quasi-axisymmetric vortex flow in a configured circular duct. Steady and unsteady vortex-shock interactions and breakdown have been captured. The problem has also been calculated using the Euler solver of the same code and the results are compared with those of the Navier-Stokes solver. The effect of the initial swirl has been tentatively studied.
Computation of compressible quasi-axisymmetric slender vortex flow and breakdown
Kandil, Osama A.; Kandil, Hamdy A.
1991-01-01
The unsteady, compressible Navier-Stokes equations are used to compute and analyze compressible quasi-axisymmetric isolated vortices. The Navier-Stokes equations are solved using an implicit, upwind, flux difference splitting finite volume scheme. The developed three dimensional solver was verified by comparing its solution profiles with those of a slender, quasi-axisymmetric vortex solver for a subsonic, quasi-axisymmetric vortex in an unbounded domain. The Navier-Stokes solver is then used to solve for a supersonic, quasi-axisymmetric vortex flow in a configured circular duct. Steady and unsteady vortex-shock interactions and breakdown were captured. The problem was also calculated using the Euler solver of the same code; the results were compared with those of the Navier-Stokes solver. The effect of the initial swirl was investigated.
CCAN and TCAN - 1 1/2-D compressible-flow and time-dependent codes for conductor analysis
International Nuclear Information System (INIS)
Gierszewski, P.J.; Wan, A.S.; Yang, T.F.
1983-01-01
This report documents the computer programs CCAN (steady-state Compressible flow Conductor ANalysis) and TCAN (Time-dependent incompressible-flow Conductor ANalysis). These codes calculate temperature, pressure, power and other engineering quantities along the length of an actively-cooled electrical conductor. Present versions contain detailed property information for copper and aluminum conductors; and gaseous helium, liquid nitrogen and water coolants. CCAN and TCAN are available on the NMFECC CDC 7600
An efficient shock-capturing scheme for simulating compressible homogeneous mixture flow
Energy Technology Data Exchange (ETDEWEB)
Dang, Son Tung; Ha, Cong Tu; Park, Warn Gyu [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Jung, Chul Min [Advanced Naval Technology CenterNSRDI, ADD, Changwon (Korea, Republic of)
2016-09-15
This work is devoted to the development of a procedure for the numerical solution of Navier-Stokes equations for cavitating flows with and without ventilation based on a compressible, multiphase, homogeneous mixture model. The governing equations are discretized on a general structured grid using a high-resolution shock-capturing scheme in conjunction with appropriate limiters to prevent the generation of spurious solutions near shock waves or discontinuities. Two well-known limiters are examined, and a new limiter is proposed to enhance the accuracy and stability of the numerical scheme. A sensitivity analysis is first conducted to determine the relative influences of various model parameters on the solution. These parameters are adopted for the computation of water flows over a hemispherical body, conical body and a divergent/convergent nozzle. Finally, numerical calculations of ventilated supercavitating flows over a hemispherical cylinder body with a hot propulsive jet are conducted to verify the capabilities of the numerical scheme.
An efficient shock-capturing scheme for simulating compressible homogeneous mixture flow
International Nuclear Information System (INIS)
Dang, Son Tung; Ha, Cong Tu; Park, Warn Gyu; Jung, Chul Min
2016-01-01
This work is devoted to the development of a procedure for the numerical solution of Navier-Stokes equations for cavitating flows with and without ventilation based on a compressible, multiphase, homogeneous mixture model. The governing equations are discretized on a general structured grid using a high-resolution shock-capturing scheme in conjunction with appropriate limiters to prevent the generation of spurious solutions near shock waves or discontinuities. Two well-known limiters are examined, and a new limiter is proposed to enhance the accuracy and stability of the numerical scheme. A sensitivity analysis is first conducted to determine the relative influences of various model parameters on the solution. These parameters are adopted for the computation of water flows over a hemispherical body, conical body and a divergent/convergent nozzle. Finally, numerical calculations of ventilated supercavitating flows over a hemispherical cylinder body with a hot propulsive jet are conducted to verify the capabilities of the numerical scheme
Ill-posedness of Dynamic Equations of Compressible Granular Flow
Shearer, Michael; Gray, Nico
2017-11-01
We introduce models for 2-dimensional time-dependent compressible flow of granular materials and suspensions, based on the rheology of Pouliquen and Forterre. The models include density dependence through a constitutive equation in which the density or volume fraction of solid particles with material density ρ* is taken as a function of an inertial number I: ρ = ρ * Φ(I), in which Φ(I) is a decreasing function of I. This modelling has different implications from models relying on critical state soil mechanics, in which ρ is treated as a variable in the equations, contributing to a flow rule. The analysis of the system of equations builds on recent work of Barker et al in the incompressible case. The main result is the identification of a criterion for well-posedness of the equations. We additionally analyze a modification that applies to suspensions, for which the rheology takes a different form and the inertial number reflects the role of the fluid viscosity.
Compressible turbulent channel flow with impedance boundary conditions
Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.
2015-03-01
We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with
Energy Technology Data Exchange (ETDEWEB)
Kuepper, S.
1997-12-01
In this study an analysis method is presented which allows numerical simulation of in situ air sparging coupled with soil vapor extraction. The improved FE-program takes the following phenomena into account: - Two-phase flow of compressible air and incompressible water - convective-dispersive contamination migration with air and water - transfer of volatile components from liquid phase to gas and water phase - sorption of contaminants onto soil - transfer of contaminants between air and water phase - biological processes. By means of back calculations of the results of laboratory experiments made by Eisele (1989) it was shown that with the developed program GWLCOND some of the necessary parameters for the numerical simulation of remedial systems can be determined. (orig./SR) [Deutsch] In dieser Arbeit wird ein Verfahren vorgestellt, mit dem eine numerische Simulation der Drucklufteinblasung und Bodenluftabsaugung durchgefuehrt werden kann. Das weiterentwickelte FE-Programmsystem beinhaltet folgende Ablaeufe: - Zweiphasenstroemung der kompressiblen Luft- und der inkompressiblen Wasserphase - Konvektiv-dispersiver Schadstofftransport mit der Gas- und der Wasserphase - Uebergang fluessiger Schadstoffe in die Gas- und in die Wasserphase - Sorption der Schadstoffe an der Feststoffphase - Uebergang der Schadstoffe zwischen der Gas- und der Wasserphase - Biologischer Abbau. Anhand der Nachrechnung eines Laborversuches von Eisele (1989) wird gezeigt, wie mit dem entwickelten Transportprogramm GWLCOND ein Teil der fuer die numerische Simulation des Sanierungsverfahrens benoetigten Kennwerte ermittelt werden kann. (orig./SR)
Overview of multifluid-flow-calculation methods
International Nuclear Information System (INIS)
Stewart, H.B.
1981-01-01
Two categories of numerical methods which may be useful in multiphase flow research are discussed. The first category includes methods which are specifically intended for accurate computation of discontinuities, such as the method of characteristics, particle-in-cell method, flux-corrected transport, and random choice methods. Methods in this category could be applied to research on rocket exhaust plumes and interior ballistics. The second category includes methods for smooth, subsonic flows, such as fractional step methods, semi-implicit method, and methods which treat convection implicitly. The subsonic flow methods could be of interest for ice flows
Seldam, C.A. ten; Groot, S.R. de
1952-01-01
From Jensen's and Gombás' modification of the statistical Thomas-Fermi atom model, a theory for compressed atoms is developed by changing the boundary conditions. Internal kinetic energy and polarizability of argon are calculated as functions of pressure. At 1000 atm. an internal kinetic energy of
International Nuclear Information System (INIS)
Nemeth, J.; Barranco, M.; Ngo, C.; Tomasi, E.
1985-01-01
We have used a self-consistent time dependent Thomas-Fermi model at finite temperature to calculate the dynamical evolution of hot and compressed nuclei. It has been found that nuclei can accomodate more thermal energy than compressional energy before they break. (orig.)
Advanced Fluid Reduced Order Models for Compressible Flow.
Energy Technology Data Exchange (ETDEWEB)
Tezaur, Irina Kalashnikova [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Fike, Jeffrey A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlberg, Kevin Thomas [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maddix, Danielle [Stanford Univ., CA (United States); Mussoni, Erin E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Balajewicz, Maciej [Univ. of Illinois, Urbana-Champaign, IL (United States)
2017-09-01
This report summarizes fiscal year (FY) 2017 progress towards developing and implementing within the SPARC in-house finite volume flow solver advanced fluid reduced order models (ROMs) for compressible captive-carriage flow problems of interest to Sandia National Laboratories for the design and qualification of nuclear weapons components. The proposed projection-based model order reduction (MOR) approach, known as the Proper Orthogonal Decomposition (POD)/Least- Squares Petrov-Galerkin (LSPG) method, can substantially reduce the CPU-time requirement for these simulations, thereby enabling advanced analyses such as uncertainty quantification and de- sign optimization. Following a description of the project objectives and FY17 targets, we overview briefly the POD/LSPG approach to model reduction implemented within SPARC . We then study the viability of these ROMs for long-time predictive simulations in the context of a two-dimensional viscous laminar cavity problem, and describe some FY17 enhancements to the proposed model reduction methodology that led to ROMs with improved predictive capabilities. Also described in this report are some FY17 efforts pursued in parallel to the primary objective of determining whether the ROMs in SPARC are viable for the targeted application. These include the implemen- tation and verification of some higher-order finite volume discretization methods within SPARC (towards using the code to study the viability of ROMs on three-dimensional cavity problems) and a novel structure-preserving constrained POD/LSPG formulation that can improve the accuracy of projection-based reduced order models. We conclude the report by summarizing the key takeaways from our FY17 findings, and providing some perspectives for future work.
Hejranfar, Kazem; Parseh, Kaveh
2017-09-01
The preconditioned characteristic boundary conditions based on the artificial compressibility (AC) method are implemented at artificial boundaries for the solution of two- and three-dimensional incompressible viscous flows in the generalized curvilinear coordinates. The compatibility equations and the corresponding characteristic variables (or the Riemann invariants) are mathematically derived and then applied as suitable boundary conditions in a high-order accurate incompressible flow solver. The spatial discretization of the resulting system of equations is carried out by the fourth-order compact finite-difference (FD) scheme. In the preconditioning applied here, the value of AC parameter in the flow field and also at the far-field boundary is automatically calculated based on the local flow conditions to enhance the robustness and performance of the solution algorithm. The code is fully parallelized using the Concurrency Runtime standard and Parallel Patterns Library (PPL) and its performance on a multi-core CPU is analyzed. The incompressible viscous flows around a 2-D circular cylinder, a 2-D NACA0012 airfoil and also a 3-D wavy cylinder are simulated and the accuracy and performance of the preconditioned characteristic boundary conditions applied at the far-field boundaries are evaluated in comparison to the simplified boundary conditions and the non-preconditioned characteristic boundary conditions. It is indicated that the preconditioned characteristic boundary conditions considerably improve the convergence rate of the solution of incompressible flows compared to the other boundary conditions and the computational costs are significantly decreased.
Compressible fluid flow through rocks of variable permeability
International Nuclear Information System (INIS)
Lin, W.
1977-01-01
The effectiveness of course-grained igneous rocks as shelters for burying radioactive waste can be assessed by determining the rock permeabilities at their in situ pressures and stresses. Analytical and numerical methods were used to solve differential equations of one-dimensional fluid flow through rocks with permeabilities from 10 4 to 1 nD. In these calculations, upstream and downstream reservoir volumes of 5, 50, and 500 cm 3 were used. The optimal size combinations of the two reservoirs were determined for measurements of permeability, stress, strain, acoustic velocity, and electrical conductivity on low-porosity, coarse-grained igneous rocks
Band calculation of lithium cold compression up to 8.8 Gbar
International Nuclear Information System (INIS)
Chernov, S.V.
1988-01-01
Quantum-mechanical calculation of pressure ''cold'' component at lithium compression from zero pressure up to 8.8 Gbar is carried out by Coring-Kohm-Rostoker method for bcc and fcc lattices. Changing of pressure curve slope at ≅ 5.4 compression degree, which is connected with 2 1/2 order elctron phase transition, is pointed out. Insiguificant oscillation is observed near the curve of Thomas-Fermi-quantum corrections model, connected with deep level displacement into the band. Three regions, where the existance of rarefaction shoch waves is possible, are pointed out
Unsteady State Two Phase Flow Pressure Drop Calculations
Ayatollahi, Shahaboddin
1992-01-01
A method is presented to calculate unsteady state two phase flow in a gas-liquid line based on a quasi-steady state approach. A computer program for numerical solution of this method was prepared. Results of calculations using the computer program are presented for several unsteady state two phase flow systems
Numerical solution of compressible flow equations inside an ejector
International Nuclear Information System (INIS)
Omid khah, M. R.; Navid Famili, M. H.; Jalili Keshtiban, E.
2002-01-01
Ejector is important equipment in the chemical industry. It is mainly used for vaccuming and mixing of flows. In the present work a computer modeling of the flow inside an ejector is used to give a better understanding of the principle of the operation of an ejector. Since the fluid inside an ejector passes through subsonic, sonic and supersonic regimens, the pressure field is used as the controlling variable and the density is found through the constitutive equations. The control volume method with a co-location grid, attached to the boundary is used to discretize the domain. The overall solution is obtained by the SIMPLEC method and to dissociate the pressure and the velocity grid Rhie-Chow interpolation method is employed. A central difference approximation method is used to approximate the density on the elements borders and the upwind approximation is used to correct the density correction factors. Both upwind, quick and minimum gradient methods were used to approximate the momentum variables on the control volumes. The resultant matrices are solved with the tri-diagonal method. The accuracy of the model is checked by simulating a flow regiment in a converging-diverging nozzle, and comparing the results with the available experimental data. The results show that for an inviscid the first order approximation produce as an accurate results as the higher order approximations while it has a better stability. However, for the viscous fluid the second order approximation produces a better understanding of the physics of the problem. The solution also showes that the flow field inside an ejector is a complex one and the shock wave has a great influence on the pressure field especially close to the walls. The upper convective quick method did not converge well in the shock calculations while the slowest descent method had a very stable behavior in the analysis of the shock behavior
Schmid, L. A.
1977-01-01
The first and second variations are calculated for the irreducible form of Hamilton's Principle that involves the minimum number of dependent variables necessary to describe the kinetmatics and thermodynamics of inviscid, compressible, baroclinic flow in a specified gravitational field. The form of the second variation shows that, in the neighborhood of a stationary point that corresponds to physically stable flow, the action integral is a complex saddle surface in parameter space. There exists a form of Hamilton's Principle for which a direct solution of a flow problem is possible. This second form is related to the first by a Friedrichs transformation of the thermodynamic variables. This introduces an extra dependent variable, but the first and second variations are shown to have direct physical significance, namely they are equal to the free energy of fluctuations about the equilibrium flow that satisfies the equations of motion. If this equilibrium flow is physically stable, and if a very weak second order integral constraint on the correlation between the fluctuations of otherwise independent variables is satisfied, then the second variation of the action integral for this free energy form of Hamilton's Principle is positive-definite, so the action integral is a minimum, and can serve as the basis for a direct trail and error solution. The second order integral constraint states that the unavailable energy must be maximum at equilibrium, i.e. the fluctuations must be so correlated as to produce a second order decrease in the total unavailable energy.
On some Approximation Schemes for Steady Compressible Viscous Flow
Bause, M.; Heywood, J. G.; Novotny, A.; Padula, M.
This paper continues our development of approximation schemes for steady compressible viscous flow based on an iteration between a Stokes like problem for the velocity and a transport equation for the density, with the aim of improving their suitability for computations. Such schemes seem attractive for computations because they offer a reduction to standard problems for which there is already highly refined software, and because of the guidance that can be drawn from an existence theory based on them. Our objective here is to modify a recent scheme of Heywood and Padula [12], to improve its convergence properties. This scheme improved upon an earlier scheme of Padula [21], [23] through the use of a special ``effective pressure'' in linking the Stokes and transport problems. However, its convergence is limited for several reasons. Firstly, the steady transport equation itself is only solvable for general velocity fields if they satisfy certain smallness conditions. These conditions are met here by using a rescaled variant of the steady transport equation based on a pseudo time step for the equation of continuity. Another matter limiting the convergence of the scheme in [12] is that the Stokes linearization, which is a linearization about zero, has an inevitably small range of convergence. We replace it here with an Oseen or Newton linearization, either of which has a wider range of convergence, and converges more rapidly. The simplicity of the scheme offered in [12] was conducive to a relatively simple and clearly organized proof of its convergence. The proofs of convergence for the more complicated schemes proposed here are structured along the same lines. They strengthen the theorems of existence and uniqueness in [12] by weakening the smallness conditions that are needed. The expected improvement in the computational performance of the modified schemes has been confirmed by Bause [2], in an ongoing investigation.
Calculation of incompressible fluid flow through cambered blades
Hsu, C. C.
1970-01-01
Conformal mapping technique yields linear, approximate solutions for calculating flow of an incompressible fluid through staggered array of cambered blades for the cases of flow with partial cavitation and supercavitation. Lift and drag coefficients, cavitation number, cavity shape, and exit flow conditions can be determined.
International Nuclear Information System (INIS)
Fassmann-Glaser, I.
1984-01-01
A study with 25 patients was performed in order to find out whether intermittent, sequential, pneumatic leg compression is of value in the preventive management of thrombosis due to its effect on the venous flow rates. For this purpose, xenon 133 was injected into one of the foot veins and the flow rate in each case determined for the distance between instep and inguen using different compression strengths, with pressure being exerted on the ankle, calf and thigh. Increased flow rates were already measured at an average pressure value of 34.5 mmHg, while the maximum effect was achieved by exerting a pressure of 92.5 mmHg, which increased the flow rate by 366% as compared to the baseline value. The results point to a significant improvement of the venous flow rates due to intermittent, sequential, pneumatic leg compression and thus provide evidence to prove the value of this method in the prevention of hemostasis and thrombosis. (TRV) [de
Particle flow of ceramic breeder pebble beds in bi-axial compression experiments
International Nuclear Information System (INIS)
Hermsmeyer, S.; Reimann, J.
2002-01-01
Pebble beds of Tritium breeding ceramic material are investigated within the framework of developing solid breeder blankets for future nuclear fusion power plants. For the thermo-mechanical characterisation of such pebble beds, bed compression experiments are the standard tools. New bi-axial compression experiments on 20 and 30 mm high pebble beds show pebble flow effects much more pronounced than in previous 10 mm beds. Owing to the greater bed height, conditions are reached where the bed fails in cross direction and unhindered flow of the pebbles occurs. The paper presents measurements for the orthosilicate and metatitanate breeder materials that are envisaged to be used in a solid breeder blanket. The data are compared with calculations made with a Drucker-Prager soil model within the finite-element code ABAQUS, calibrated with data from other experiments. It is investigated empirically whether internal bed friction angles can be determined from pebble beds of the considered heights, which would simplify, and broaden the data base for, the calibration of the Drucker-Prager pebble bed models
The new high resolution method of Godunov`s type for 3D viscous flow calculations
Energy Technology Data Exchange (ETDEWEB)
Yershov, S.V.; Rusanov, A.V. [Ukranian National Academy of Sciences, Kahrkov (Ukraine)
1996-12-31
The numerical method is suggested for the calculations of the 3D viscous compressible flows described by the thin-layer Reynolds-averaged Navier-Stokes equations. The method is based on the Godunov`s finite-difference scheme and it uses the ENO reconstruction suggested by Harten to achieve the uniformly high-order accuracy. The computational efficiency is provided with the simplified multi grid approach and the implicit step written in {delta} -form. The turbulent effects are simulated with the Baldwin - Lomax turbulence model. The application package FlowER is developed to calculate the 3D turbulent flows within complex-shape channels. The numerical results for the 3D flow around a cylinder and through the complex-shaped channels show the accuracy and the reliability of the suggested method. (author)
The new high resolution method of Godunov`s type for 3D viscous flow calculations
Energy Technology Data Exchange (ETDEWEB)
Yershov, S V; Rusanov, A V [Ukranian National Academy of Sciences, Kahrkov (Ukraine)
1997-12-31
The numerical method is suggested for the calculations of the 3D viscous compressible flows described by the thin-layer Reynolds-averaged Navier-Stokes equations. The method is based on the Godunov`s finite-difference scheme and it uses the ENO reconstruction suggested by Harten to achieve the uniformly high-order accuracy. The computational efficiency is provided with the simplified multi grid approach and the implicit step written in {delta} -form. The turbulent effects are simulated with the Baldwin - Lomax turbulence model. The application package FlowER is developed to calculate the 3D turbulent flows within complex-shape channels. The numerical results for the 3D flow around a cylinder and through the complex-shaped channels show the accuracy and the reliability of the suggested method. (author)
Expansion and compression shock wave calculation in pipes with the C.V.M. numerical method
International Nuclear Information System (INIS)
Raymond, P.; Caumette, P.; Le Coq, G.; Libmann, M.
1983-03-01
The Control Variables Method for fluid transients computations has been used to compute expansion and compression shock waves propagations. In this paper, first analytical solutions for shock wave and rarefaction wave propagation are detailed. Then after a rapid description of the C.V.M. technique and its stability and monotonicity properties, we will present some results about standard shock tube problem, reflection of shock wave, finally a comparison between experimental results obtained on the ELF facility and calculations is given
Scagliarini, Andrea; Biferale, L.; Sbragaglia, M.; Sugiyama, K.; Toschi, F.
2010-01-01
We compute the continuum thermohydrodynamical limit of a new formulation of lattice kinetic equations for thermal compressible flows, recently proposed by Sbragaglia et al. [J. Fluid Mech. 628, 299 (2009)] . We show that the hydrodynamical manifold is given by the correct compressible
Numerical Solution of Compressible Steady Flows around the RAE 2822 Airfoil
Kryštůfek, P.; Kozel, K.
2014-03-01
The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil.
Numerical Solution of Compressible Steady Flows around the RAE 2822 Airfoil
Directory of Open Access Journals (Sweden)
Kryštůfek P.
2014-03-01
Full Text Available The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil.
Numerical Solution of Compressible Steady Flows around the NACA 0012 Airfoil
Directory of Open Access Journals (Sweden)
Kozel K
2013-04-01
Full Text Available The article presents results of a numerical solution of subsonic and transonic flows described by the system of Navier-Stokes equations in 2D laminar compressible flows around the NACA 0012 airfoil. Authors used Runge-Kutta method to numerically solve the flows around the NACA 0012 airfoil.
An Improved Ghost-cell Immersed Boundary Method for Compressible Inviscid Flow Simulations
Chi, Cheng
2015-01-01
This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary
The boundary data immersion method for compressible flows with application to aeroacoustics
Energy Technology Data Exchange (ETDEWEB)
Schlanderer, Stefan C., E-mail: stefan.schlanderer@unimelb.edu.au [Faculty for Engineering and the Environment, University of Southampton, SO17 1BJ Southampton (United Kingdom); Weymouth, Gabriel D., E-mail: G.D.Weymouth@soton.ac.uk [Faculty for Engineering and the Environment, University of Southampton, SO17 1BJ Southampton (United Kingdom); Sandberg, Richard D., E-mail: richard.sandberg@unimelb.edu.au [Department of Mechanical Engineering, University of Melbourne, Melbourne VIC 3010 (Australia)
2017-03-15
This paper introduces a virtual boundary method for compressible viscous fluid flow that is capable of accurately representing moving bodies in flow and aeroacoustic simulations. The method is the compressible extension of the boundary data immersion method (BDIM, Maertens & Weymouth (2015), ). The BDIM equations for the compressible Navier–Stokes equations are derived and the accuracy of the method for the hydrodynamic representation of solid bodies is demonstrated with challenging test cases, including a fully turbulent boundary layer flow and a supersonic instability wave. In addition we show that the compressible BDIM is able to accurately represent noise radiation from moving bodies and flow induced noise generation without any penalty in allowable time step.
An improved ghost-cell immersed boundary method for compressible flow simulations
Chi, Cheng; Lee, Bok Jik; Im, Hong G.
2016-01-01
This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary
Subramanian, Ramanathan Vishnampet Ganapathi
Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvement. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs. Such methods have enabled sensitivity analysis and active control of turbulence at engineering flow conditions by providing gradient information at computational cost comparable to that of simulating the flow. They accelerate convergence of numerical design optimization algorithms, though this is predicated on the availability of an accurate gradient of the discretized flow equations. This is challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. We analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space--time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge--Kutta-like scheme
International Nuclear Information System (INIS)
Chang, Chih-Hao; Liou, Meng-Sing
2007-01-01
In this paper, we propose a new approach to compute compressible multifluid equations. Firstly, a single-pressure compressible multifluid model based on the stratified flow model is proposed. The stratified flow model, which defines different fluids in separated regions, is shown to be amenable to the finite volume method. We can apply the conservation law to each subregion and obtain a set of balance equations. Secondly, the AUSM + scheme, which is originally designed for the compressible gas flow, is extended to solve compressible liquid flows. By introducing additional dissipation terms into the numerical flux, the new scheme, called AUSM + -up, can be applied to both liquid and gas flows. Thirdly, the contribution to the numerical flux due to interactions between different phases is taken into account and solved by the exact Riemann solver. We will show that the proposed approach yields an accurate and robust method for computing compressible multiphase flows involving discontinuities, such as shock waves and fluid interfaces. Several one-dimensional test problems are used to demonstrate the capability of our method, including the Ransom's water faucet problem and the air-water shock tube problem. Finally, several two dimensional problems will show the capability to capture enormous details and complicated wave patterns in flows having large disparities in the fluid density and velocities, such as interactions between water shock wave and air bubble, between air shock wave and water column(s), and underwater explosion
International Nuclear Information System (INIS)
Karpp, R.R.
1984-01-01
The particle solution of the problem of the symmetric impact of two compressible fluid stream is derived. The plane two-dimensional flow is assumed to be steady, and the inviscid compressible fluid is of the Chaplygin (tangent gas) type. The equations governing this flow are transformed to the hodograph plane where an exact, closed-form solution for the stream function is obtained. The distribution of fluid properties along the plane of symmetry and the shape of free surface streamlines are determined by transformation back to the physical plane. The problem of a compressible fluid jet penetrating an infinite target of similar material is also solved by considering a limiting case of this solution. Differences between compressible and incompressible flows of the type considered are illustrated
International Nuclear Information System (INIS)
Narayan, A.P.; Rainwater, J.C.; Hanley, H.J.M.
1995-01-01
A study of the Weissenberg effect (rod climbing in a stirred system) based on nonequilibrium molecular dynamics (NEMD) is reported. Simulation results from a soft-sphere fluid are used to obtain a self-consistent free-surface profile of the fluid of finite compressibility undergoing Couette flow between concentric cylinders. A numerical procedure is then applied to calculate the height profile for a hypothetical fluid with thermophysical properties of the soft-sphere liquid and of a dense colloidal suspension. The height profile calculated is identified with shear thickening and the forms of the viscometric functions. The maximum climb occurs between the cylinders rather than at the inner cylinder
On the implicit density based OpenFOAM solver for turbulent compressible flows
Fürst, Jiří
The contribution deals with the development of coupled implicit density based solver for compressible flows in the framework of open source package OpenFOAM. However the standard distribution of OpenFOAM contains several ready-made segregated solvers for compressible flows, the performance of those solvers is rather week in the case of transonic flows. Therefore we extend the work of Shen [15] and we develop an implicit semi-coupled solver. The main flow field variables are updated using lower-upper symmetric Gauss-Seidel method (LU-SGS) whereas the turbulence model variables are updated using implicit Euler method.
Fast calculation of microphone array steering vectors with shear flow
Sijtsma, P.
2018-01-01
This paper proposes a fast method for calculating the acoustic time delay between an observer and a receiver in a shear flow. This method is applied to an outdoor microphone array measurement on a large-scale wind turbine. In such a set-up, a shear flow represents the actual wind field better than a
ESE a 2D compressible multiphase flow code developed for MFCI analysis - code validation
International Nuclear Information System (INIS)
Leskovar, M.; Mavko, B.
1998-01-01
ESE (Evaluation of Steam Explosions) is a general second order accurate two-dimensional compressible multiphase flow computer code. It has been developed to model the interaction of molten core debris with water during the first premixing stage of a steam explosion. A steam explosion is a physical event, which may occur during a severe reactor accident following core meltdown when the molten fuel comes into contact with the coolant water. Since the exchanges of mass, momentum and energy are regime dependent, different exchange laws have been incorporated in ESE for the major flow regimes. With ESE a number of premixing experiments performed at the Oxford University and at the QUEOS facility at Forschungszentrum Karlsruhe has been simulated. In these premixing experiments different jets of spheres were injected in a water poll. The ESE validation plan was carefully chosen, starting from very simple, well-defined problems, and gradually working up to more complicated ones. The results of ESE simulations, which were compared to experimental data and also to first order accurate calculations, are presented in form graphs. Most of the ESE results agree qualitatively as quantitatively reasonably well with experimental data and in general better than the results obtained with the first order accurate calculation.(author)
Energy Technology Data Exchange (ETDEWEB)
Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Zeiler, Christoph, E-mail: Christoph.Zeiler@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)
2017-05-01
The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevant physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.
Calculation of the dynamic air flow resistivity of fibre materials
DEFF Research Database (Denmark)
Tarnow, Viggo
1997-01-01
The acoustic attenuation of acoustic fiber materials is mainly determined by the dynamic resistivity to an oscillating air flow. The dynamic resistance is calculated for a model with geometry close to the geometry of real fibre material. The model constists of parallel cylinders placed randomly.......The second procedure is an extension to oscillating air flow of the Brinkman self-consistent procedure for dc flow. The procedures are valid for volume concentrations of cylinders less than 0.1. The calculations show that for the density of fibers of interest for acoustic fibre materials the simple self...
Bandyopadhyay, Alak; Majumdar, Alok
2007-01-01
The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.
MONOTONIC DERIVATIVE CORRECTION FOR CALCULATION OF SUPERSONIC FLOWS WITH SHOCK WAVES
Directory of Open Access Journals (Sweden)
P. V. Bulat
2015-07-01
Full Text Available Subject of Research. Numerical solution methods of gas dynamics problems based on exact and approximate solution of Riemann problem are considered. We have developed an approach to the solution of Euler equations describing flows of inviscid compressible gas based on finite volume method and finite difference schemes of various order of accuracy. Godunov scheme, Kolgan scheme, Roe scheme, Harten scheme and Chakravarthy-Osher scheme are used in calculations (order of accuracy of finite difference schemes varies from 1st to 3rd. Comparison of accuracy and efficiency of various finite difference schemes is demonstrated on the calculation example of inviscid compressible gas flow in Laval nozzle in the case of continuous acceleration of flow in the nozzle and in the case of nozzle shock wave presence. Conclusions about accuracy of various finite difference schemes and time required for calculations are made. Main Results. Comparative analysis of difference schemes for Euler equations integration has been carried out. These schemes are based on accurate and approximate solution for the problem of an arbitrary discontinuity breakdown. Calculation results show that monotonic derivative correction provides numerical solution uniformity in the breakdown neighbourhood. From the one hand, it prevents formation of new points of extremum, providing the monotonicity property, but from the other hand, causes smoothing of existing minimums and maximums and accuracy loss. Practical Relevance. Developed numerical calculation method gives the possibility to perform high accuracy calculations of flows with strong non-stationary shock and detonation waves. At the same time, there are no non-physical solution oscillations on the shock wave front.
Energy Technology Data Exchange (ETDEWEB)
Berry, R. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2017-08-14
In the literature, the abundance of pipe network junction models, as well as inclusion of dissipative losses between connected pipes with loss coefficients, has been treated using the incompressible flow assumption of constant density. This approach is fundamentally, physically wrong for compressible flow with density change. This report introduces a mathematical modeling approach for general junctions in piping network systems for which the transient flows are compressible and single-phase. The junction could be as simple as a 1-pipe input and 1-pipe output with differing pipe cross-sectional areas for which a dissipative loss is necessary, or it could include an active component, between an inlet pipe and an outlet pipe, such as a pump or turbine. In this report, discussion will be limited to the former. A more general branching junction connecting an arbitrary number of pipes with transient, 1-D compressible single-phase flows is also presented. These models will be developed in a manner consistent with the use of a general equation of state like, for example, the recent Spline-Based Table Look-up method [1] for incorporating the IAPWS-95 formulation [2] to give accurate and efficient calculations for properties for water and steam with RELAP-7 [3].
Buys, Gerhard M; du Plessis, Lissinda H; Marais, Andries F; Kotze, Awie F; Hamman, Josias H
2013-06-01
Chitosan is a polymer derived from chitin that is widely available at relatively low cost, but due to compression challenges it has limited application for the production of direct compression tablets. The aim of this study was to use certain process and formulation variables to improve manufacturing of tablets containing chitosan as bulking agent. Chitosan particle size and flow properties were determined, which included bulk density, tapped density, compressibility and moisture uptake. The effect of process variables (i.e. compression force, punch depth, percentage compaction in a novel double fill compression process) and formulation variables (i.e. type of glidant, citric acid, pectin, coating with Eudragit S®) on chitosan tablet performance (i.e. mass variation, tensile strength, dissolution) was investigated. Moisture content of the chitosan powder, particle size and the inclusion of glidants had a pronounced effect on its flow ability. Varying the percentage compaction during the first cycle of a double fill compression process produced chitosan tablets with more acceptable tensile strength and dissolution rate properties. The inclusion of citric acid and pectin into the formulation significantly decreased the dissolution rate of isoniazid from the tablets due to gel formation. Direct compression of chitosan powder into tablets can be significantly improved by the investigated process and formulation variables as well as applying a double fill compression process.
Pressure algorithm for elliptic flow calculations with the PDF method
Anand, M. S.; Pope, S. B.; Mongia, H. C.
1991-01-01
An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.
Solution of weakly compressible isothermal flow in landfill gas collection networks
Energy Technology Data Exchange (ETDEWEB)
Nec, Y [Thompson Rivers University, Kamloops, British Columbia (Canada); Huculak, G, E-mail: cranberryana@gmail.com, E-mail: greg@gnhconsulting.ca [GNH Consulting, Delta, British Columbia (Canada)
2017-12-15
Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy–Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein. (paper)
Solution of weakly compressible isothermal flow in landfill gas collection networks
Nec, Y.; Huculak, G.
2017-12-01
Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy-Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein.
Solution of weakly compressible isothermal flow in landfill gas collection networks
International Nuclear Information System (INIS)
Nec, Y; Huculak, G
2017-01-01
Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy–Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein. (paper)
Hydromagnetic stability of rotating stratified compressible fluid flows
Energy Technology Data Exchange (ETDEWEB)
Srinivasan, V; Kandaswamy, P [Dept. of Mathematics, Bharathiar University, Coimbatore, Tamil Nadu, India; Debnath, L [Dept. of Mathematics, University of Central Florida, Orlando, USA
1984-09-01
The hydromagnetic stability of a radially stratified compressible fluid rotating between two coaxial cylinders is investigated. The stability with respect to axisymmetric disturbances is examined. The fluid system is found to be thoroughly stable to axisymmetric disturbances provided the fluid rotates very rapidly. The system is shown to be unstable to non-axisymmetric disturbances, and the slow amplifying hydromagnetic wave modes propagate against the basic rotation. The lower and upper bounds of the azimuthal phase speeds of the amplifying waves are determined. A quadrant theorem on the slow waves characteristic of a rapidly rotating fluid is derived. Special attention is given to the effects of compressibility of the fluid. Some results concerning the stability of an incompressible fluid system are obtained as special cases of the present analysis.
Numerical Modeling of Compressible Flow and Its Control
2014-03-01
such that the plate centerline corresponded to z = 0. The medium grid was then constructed from the coarse grid using a cubic spline to divide each...implicit terms were linearized in the standard thin layer manner. The implicit terms were evaluated with second- order spatial accuracy, yielding a...compression ramp. The configuration included a flat- plate region to develop an equilibrium turbulent boundary layer at Mach 2.25, which was validated
International Nuclear Information System (INIS)
Shirani, E.; Zirak, S.
2001-01-01
Compressible flows for unsteady, inviscid and viscous cases have been studied. Important features of flows such as formation of shock waves across the flow in an unsteady flow as well as interaction of shock waves with boundary layers and their effects on the flow around the blades have been analyzed. Jameson control volume approach was used to spatially integrate the flow equations and the fourth order Runge-Kutta method was used for time integration. The obtained finite difference equations were used to simulate inviscid and viscous flows in V KI cascades and the effects of viscosity, angle of attack, bal de pitches and back pressure on the flow were obtained. It was shown that when the flow was assumed inviscid, the error on the distribution of pressure on the blades were about ten percent. Finally, unsteady flow were simulated and formation of shock waves and their motions were analyzed
Effects of homogeneous condensation in compressible flows: Ludwieg-tube experiments and simulations
Luo, X.; Lamanna, G.; Holten, A.P.C.; Dongen, van M.E.H.
2007-01-01
Effects of homogeneous nucleation and subsequent droplet growth in compressible flows in humid nitrogen are investigated numerically and exptl. A Ludwieg tube is employed to produce expansion flows. Corresponding to different configurations, three types of expt. are carried out in such a tube.
The influence of external compression on muscle blood flow during exercise
International Nuclear Information System (INIS)
Styf, J.
1990-01-01
Intramuscular pressures and muscle blood flow were measured in the anterior tibial muscle during dynamic concentric exercise in 14 subjects. Pressures were recorded by the microcapillary infusion method and muscle blood flow by the 133-Xenon clearance technique. Muscle blood flow during constant exercise decreased from 34.5 (SD = 10.3) to 10.6 (SD = 4.9) ml/100 g/min (P less than 0.001) when muscle relaxation pressure was increased from 13.5 (SD = 2.7) to 39.9 (SD = 9.0) mm Hg by external compression. Muscle relaxation pressure during exercise is the intramuscular pressure between contractions. External compression of the lower limb during exercise impedes muscle blood flow by increasing muscle relaxation pressure. The experimental model seems suitable to study the influence of external compression by knee braces on intramuscular pressure during exercise
Calculating e-flow using UAV and ground monitoring
Zhao, C. S.; Zhang, C. B.; Yang, S. T.; Liu, C. M.; Xiang, H.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Yu, X. Y.; Shao, N. F.; Yu, Q.
2017-09-01
Intense human activity has led to serious degradation of basin water ecosystems and severe reduction in the river flow available for aquatic biota. As an important water ecosystem index, environmental flows (e-flows) are crucial for maintaining sustainability. However, most e-flow measurement methods involve long cycles, low efficiency, and transdisciplinary expertise. This makes it impossible to rapidly assess river e-flows at basin or larger scales. This study presents a new method to rapidly assessing e-flows coupling UAV and ground monitorings. UAV was firstly used to calculate river-course cross-sections with high-resolution stereoscopic images. A dominance index was then used to identify key fish species. Afterwards a habitat suitability index, along with biodiversity and integrity indices, was used to determine an appropriate flow velocity with full consideration of the fish spawning period. The cross-sections and flow velocity values were then combined into AEHRA, an e-flow assessment method for studying e-flows and supplying-rate. To verify the results from this new method, the widely used Tennant method was employed. The root-mean-square errors of river cross-sections determined by UAV are less than 0.25 m, which constitutes 3-5% water-depth of the river cross-sections. In the study area of Jinan city, the ecological flow velocity (VE) is equal to or greater than 0.11 m/s, and the ecological water depth (HE) is greater than 0.8 m. The river ecosystem is healthy with the minimum e-flow requirements being always met when it is close to large rivers, which is beneficial for the sustainable development of the water ecosystem. In the south river channel of Jinan, the upstream flow mostly meets the minimum e-flow requirements, and the downstream flow always meets the minimum e-flow requirements. The north of Jinan consists predominantly of artificial river channels used for irrigation. Rainfall rarely meets the minimum e-flow and irrigation water requirements
International Nuclear Information System (INIS)
Asahi, Kouichi; Hori, M; Hamasaki, N; Sato, S; Nakanishi, H; Kuwatsuru, R; Sasai, K; Aoki, S
2012-01-01
It is difficult to non-invasively visualize changes in regional cerebral blood flow caused by manual compression of the carotid artery. To visualize dynamic changes in regional cerebral blood flow during and after manual compression of the carotid artery. Two healthy volunteers were recruited. Anatomic features and flow directions in the circle of Willis were evaluated with time-of-flight magnetic resonance angiography (MRA) and two-dimensional phase-contrast (2DPC) MRA, respectively. Regional cerebral blood flow was visualized with territorial arterial spin-labeling magnetic resonance imaging (TASL-MRI). TASL-MRI and 2DPC-MRA were performed in three states: at rest, during manual compression of the right carotid artery, and after decompression. In one volunteer, time-space labeling inversion pulse (Time-SLIP) MRA was performed to confirm collateral flow. During manual carotid compression, in one volunteer, the right thalamus changed to be fed only by the vertebrobasilar system, and the right basal ganglia changed to be fed by the left internal carotid artery. In the other volunteer, the right basal ganglia changed to be fed by the vertebrobasilar system. 2DPC-MRA showed that the flow direction changed in the right A1 segment of the anterior cerebral artery and the right posterior communicating artery. Perfusion patterns and flow directions recovered after decompression. Time-SLIP MRA showed pial vessels and dural collateral circulation when the right carotid artery was manually compressed. Use of TASL-MRI and 2DPC-MRA was successful for non-invasive visualization of the dynamic changes in regional cerebral blood flow during and after manual carotid compression
International Nuclear Information System (INIS)
Moawad, S. M.; Ibrahim, D. A.
2016-01-01
The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.
International Nuclear Information System (INIS)
Castillo, Edward; Guerrero, Thomas; Castillo, Richard; White, Benjamin; Rojo, Javier
2012-01-01
Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration. (paper)
Local Limit Phenomena, Flow Compression, and Fuel Cracking Effects in High-Speed Turbulent Flames
2015-06-01
e.g. local extinction and re- ignition , interactions between flow compression and fast-reaction induced dilatation (reaction compression ), and to...time as a function of initial temperature in constant-pressure auto - ignition , and (b) the S-curves of perfectly stirred reactors (PSRs), for n...mechanism. The reduction covered auto - ignition and perfectly stirred reactors for equivalence ratio range of 0.5~1.5, initial temperature higher than
International Nuclear Information System (INIS)
Motte, R.; Braeunig, J.P.; Peybernes, M.
2012-01-01
As the simulation of compressible flows with several materials is essential for applications studied within the CEA-DAM, the authors propose an approach based on finite volumes with centred variables for the resolution of compressible Euler equations. Moreover, they allow materials to slide with respect to each other as it is the case for water and air, for example. A conservation law is written for each material in a hybrid grid, and a condition of contact between materials under the form of fluxes is expressed. It is illustrated by the case of an intense shock propagating in water and interacting with an air bubble which will be strongly deformed and compressed
Numerical Solution of Inviscid Compressible Steady Flows around the RAE 2822 Airfoil
Kryštůfek, P.; Kozel, K.
2015-05-01
The article presents results of a numerical solution of subsonic, transonic and supersonic flows described by the system of Euler equations in 2D compressible flows around the RAE 2822 airfoil. Authors used FVM multistage Runge-Kutta method to numerically solve the flows around the RAE 2822 airfoil. The results are compared with the solution using the software Ansys Fluent 15.0.7.
Effect of compressibility on the global stability of axisymmetric wake flows
Meliga , Philippe; Sipp , D.; Chomaz , Jean-Marc
2010-01-01
International audience; We study the linear dynamics of global eigenmodes in compressible axisymmetric wake flows, up to the high subsonic regime. We consider both an afterbody flow at zero angle of attack and a sphere, and find that the sequence of bifurcations destabilizing the axisymmetric steady flow is independent of the Mach number and reminiscent of that documented in the incompressible wake past a sphere and a disk (Natarajan & Acrivos, J. Fluid Mech., vol. 254, 1993, p. 323), hence s...
Numerical Calculation of the Flow in a Centrifugal Compressor Volute
International Nuclear Information System (INIS)
Seong, Seon Mo; Kang, Shin Hyoung; Cho, Kyung Seok; Kim, Woo June
2007-01-01
Flows in the centrifugal compressor volute with circular cross section are numerically investigated. The computational domain contained inlet passage, impeller, radial and axial diffuser, and volute. The volute grid for the calculation utilized a multi-block arrangement to form a butterfly grid and flow calculations are performed using commercial CFD software, CFX-TASCflow. The centrifugal compressor of this study has the inlet passage like steps and axial diffuser after radial diffuser because of the shape of the motor cooling fins and installation constraints. Due to this feature the swirling flow pattern is different from the other investigations. The loss in through the inlet passage was considerable and the flow inside volute is very complex and three dimensional with strong vortex and recirculation through volute tongue
Numerical Calculation of Interaction Between Plane Jet and Subsonic Flow
Directory of Open Access Journals (Sweden)
V. O. Moskalenko
2016-01-01
Full Text Available The paper makes numerical calculation of interaction between plane jet and subsonic flow. Its aim is to determine the jet trajectory, velocity profiles, distribution of pressure coefficient on the plate surface at different jet angles, namely ωj=45°; 90°; 105° and at low blowing strengths ( ≤1.5 as well as a to make comparison with the experimental data of other authors.To simulate a two-dimensional jet in the subsonic flow the software package “CAD SolidWorks Flow Simulation” has been used. Initially, the test task was solved with its calculation results compared with experimental ones [6.8] in order to improve the convergence; the size of the computational domain and a computational grid within the k-ε turbulence model were selected. As a result of the calculation, were identified and analysed the pressure values, jet trajectories, and velocity profiles. In the graphs the solid lines show calculation results, and dots represent experimental data.From the calculation results it is seen that, with increasing intensity of the reduced mass flow ¯q in the above range, the change of the jet pressure coefficient p¯ distribution behind a slotted nozzle is almost linear and significant. Before the nozzle, with increasing ¯q the pressure coefficient increases slightly.Analysis of results has shown that blowing of jets with ωj>90ω, provides a greater perturbation of the subsonic flow. Thus, the jet penetrates into the flow deeper, forms a dead region of the greater length, and more significantly redistributes the pressure coefficient on the surface of the plate.The calculation results are in good compliance with the experimental data both for the jet axis and for the pressure coefficient distribution on the plate surface. The research results can be used in the designing the jet control of aircrafts.
Determination of mean pressure from PIV in compressible flows using the Reynolds-averaging approach
van Gent, Paul L.; van Oudheusden, Bas W.; Schrijer, Ferry F. J.
2018-03-01
The feasibility of computing the flow pressure on the basis of PIV velocity data has been demonstrated abundantly for low-speed conditions. The added complications occurring for high-speed compressible flows have, however, so far proved to be largely inhibitive for the accurate experimental determination of instantaneous pressure. Obtaining mean pressure may remain a worthwhile and realistic goal to pursue. In a previous study, a Reynolds-averaging procedure was developed for this, under the moderate-Mach-number assumption that density fluctuations can be neglected. The present communication addresses the accuracy of this assumption, and the consistency of its implementation, by evaluating of the relevance of the different contributions resulting from the Reynolds-averaging. The methodology involves a theoretical order-of-magnitude analysis, complemented with a quantitative assessment based on a simulated and a real PIV experiment. The assessments show that it is sufficient to account for spatial variations in the mean velocity and the Reynolds-stresses and that temporal and spatial density variations (fluctuations and gradients) are of secondary importance and comparable order-of-magnitude. This result permits to simplify the calculation of mean pressure from PIV velocity data and to validate the approximation of neglecting temporal and spatial density variations without having access to reference pressure data.
Directory of Open Access Journals (Sweden)
Tahmina Akhter
2014-01-01
Full Text Available The flow of a compressible fluid with slip through a cylinder with an asymmetric local constriction has been considered both numerically, as well as analytically. For the numerical work, a particle-based method whose dynamics is governed by the multiparticle collision (MPC rule has been used together with a generalized boundary condition that allows for slip at the wall. Since it is well known that an MPC system corresponds to an ideal gas and behaves like a compressible, viscous flow on average, an approximate analytical solution has been derived from the compressible Navier–Stokes equations of motion coupled to an ideal gas equation of state using the Karman–Pohlhausen method. The constriction is assumed to have a polynomial form, and the location of maximum constriction is varied throughout the constricted portion of the cylinder. Results for centerline densities and centerline velocities have been compared for various Reynolds numbers, Mach numbers, wall slip values and flow geometries.
An implicit numerical model for multicomponent compressible two-phase flow in porous media
Zidane, Ali; Firoozabadi, Abbas
2015-11-01
We introduce a new implicit approach to model multicomponent compressible two-phase flow in porous media with species transfer between the phases. In the implicit discretization of the species transport equation in our formulation we calculate for the first time the derivative of the molar concentration of component i in phase α (cα, i) with respect to the total molar concentration (ci) under the conditions of a constant volume V and temperature T. The species transport equation is discretized by the finite volume (FV) method. The fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides the pressure at grid-cell interfaces in addition to the pressure at the grid-cell center. The efficiency of the proposed model is demonstrated by comparing our results with three existing implicit compositional models. Our algorithm has low numerical dispersion despite the fact it is based on first-order space discretization. The proposed algorithm is very robust.
Numerical calculation of two phase flow in a shock tube
International Nuclear Information System (INIS)
Rivard, W.C.; Travis, J.R.; Torrey, M.D.
1976-01-01
Numerical calculations of the dynamics of initially saturated water-steam mixtures in a shock tube demonstrate the accuracy and efficiency of a new solution technique for the transient, two-dimensional, two-fluid equations. The dependence of the calculated results on time step and cell size are investigated. The effects of boiling and condensation on the flow physics suggest the merits of basic fluid dynamic measurements for the determination and evaluation of mass exchange models
On heat transfer of weakly compressible power-law flows
Directory of Open Access Journals (Sweden)
Li Botong
2017-01-01
Full Text Available This paper completes a numerical research on steady momentum and heat transfer in power-law fluids in a channel. Weakly compressible laminar fluids are studied with no slip at the walls and uniform wall temperatures. The full governing equations are solved by continuous finite element method. Three thermal conductivity models are adopted in this paper, that is, constant thermal conductivity model, thermal conductivity varying as a function of temperature gradient, and a modified temperature-gradient-dependent thermal conductivity model. The results are compared with each other and the physical characteristics for values of parameters are also discussed in details. It is shown that the velocity curve from the solution becomes straight at higher power-law index. The effects of Reynolds numbers on the dilatant fluid and the pseudo-plastic look similar to each other and their trends can be easily predicted. Furthermore, for different models, the temperature curves also present pseudo-plastic and dilatant properties.
On compressible and piezo-viscous flow in thin porous media.
Pérez-Ràfols, F; Wall, P; Almqvist, A
2018-01-01
In this paper, we study flow through thin porous media as in, e.g. seals or fractures. It is often useful to know the permeability of such systems. In the context of incompressible and iso-viscous fluids, the permeability is the constant of proportionality relating the total flow through the media to the pressure drop. In this work, we show that it is also relevant to define a constant permeability when compressible and/or piezo-viscous fluids are considered. More precisely, we show that the corresponding nonlinear equation describing the flow of any compressible and piezo-viscous fluid can be transformed into a single linear equation. Indeed, this linear equation is the same as the one describing the flow of an incompressible and iso-viscous fluid. By this transformation, the total flow can be expressed as the product of the permeability and a nonlinear function of pressure, which represents a generalized pressure drop.
International Nuclear Information System (INIS)
Costa, Gustavo Koury
2004-11-01
Although incompressible fluid flows can be regarded as a particular case of a general problem, numerical methods and the mathematical formulation aimed to solve compressible and incompressible flows have their own peculiarities, in such a way, that it is generally not possible to attain both regimes with a single approach. In this work, we start from a typically compressible formulation, slightly modified to make use of pressure variables and, through augmenting the stabilising parameters, we end up with a simplified model which is able to deal with a wide range of flow regimes, from supersonic to low speed gas flows. The resulting methodology is flexible enough to allow for the simulation of liquid flows as well. Examples using conservative and pressure variables are shown and the results are compared to those published in the literature, in order to validate the method. (author)
Compressible gas flow through idealized cracks of large aspect ratio
International Nuclear Information System (INIS)
Chivers, T.C.; Skinner, J.; Williams, M.E.
1975-07-01
Gas flow through large aspect ratio idealized cracks is considered, where isothermal conditions with choking at exit are assumed in the theoretical analysis. For smooth wall cracks, comparisons are made between experimentally determined flowrates and those predicted, and good agreement is shown. This is followed by consideration of flow through a notional crack to examine the influence of width and surface roughness. By considering flow as simply proportional to Wsup(n), the treatment shows 'n' to reduce with W increasing, but surface roughness increases 'n' over the value appropriate to smooth conditions. From these observations it is concluded that further work is required to determine:- (i) real crack geometry and its influence on any leak-before-break philosophy, and (ii) the influence of real surface roughness on flowrate. (author)
Kwon, Young-Sam; Lin, Ying-Chieh; Su, Cheng-Fang
2018-04-01
In this paper, we consider the compressible models of magnetohydrodynamic flows giving rise to a variety of mathematical problems in many areas. We derive a rigorous quasi-geostrophic equation governed by magnetic field from the rotational compressible magnetohydrodynamic flows with the well-prepared initial data. It is a first derivation of quasi-geostrophic equation governed by the magnetic field, and the tool is based on the relative entropy method. This paper covers two results: the existence of the unique local strong solution of quasi-geostrophic equation with the good regularity and the derivation of a quasi-geostrophic equation.
An Improved Ghost-cell Immersed Boundary Method for Compressible Inviscid Flow Simulations
Chi, Cheng
2015-05-01
This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. In addition, a shock sensor is in- troduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently. The improved ghost-cell method is validated against five test cases: (a) double Mach reflections on a ramp, (b) supersonic flows in a wind tunnel with a forward- facing step, (c) supersonic flows over a circular cylinder, (d) smooth Prandtl-Meyer expansion flows, and (e) steady shock-induced combustion over a wedge. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Implementation of the improved ghost-cell method in reacting Euler flows further validates its general applicability for compressible flow simulations.
Compressive Loads on the Lumbar Spine During Lifting: 4D WATBAK versus Inverse Dynamics Calculations
Directory of Open Access Journals (Sweden)
M. H. Cole
2005-01-01
Full Text Available Numerous two- and three-dimensional biomechanical models exist for the purpose of assessing the stresses placed on the lumbar spine during the performance of a manual material handling task. More recently, researchers have utilised their knowledge to develop specific computer-based models that can be applied in an occupational setting; an example of which is 4D WATBAK. The model used by 4D WATBAK bases its predications on static calculations and it is assumed that these static loads reasonably depict the actual dynamic loads acting on the lumbar spine. Consequently, it was the purpose of this research to assess the agreement between the static predictions made by 4D WATBAK and those from a comparable dynamic model. Six individuals were asked to perform a series of five lifting tasks, which ranged from lifting 2.5 kg to 22.5 kg and were designed to replicate the lifting component of the Work Capacity Assessment Test used within Australia. A single perpendicularly placed video camera was used to film each performance in the sagittal plane. The resultant two-dimensional kinematic data were input into the 4D WATBAK software and a dynamic biomechanical model to quantify the compression forces acting at the L4/L5 intervertebral joint. Results of this study indicated that as the mass of the load increased from 2.5 kg to 22.5 kg, the static compression forces calculated by 4D WATBAK became increasingly less than those calculated using the dynamic model (mean difference ranged from 22.0% for 2.5 kg to 42.9% for 22.5 kg. This study suggested that, for research purposes, a validated three-dimensional dynamic model should be employed when a task becomes complex and when a more accurate indication of spinal compression or shear force is required. Additionally, although it is clear that 4D WATBAK is particularly suited to industrial applications, it is suggested that the limitations of such modelling tools be carefully considered when task-risk and employee
An Algorithm to Compress Line-transition Data for Radiative-transfer Calculations
Cubillos, Patricio E.
2017-11-01
Molecular line-transition lists are an essential ingredient for radiative-transfer calculations. With recent databases now surpassing the billion-line mark, handling them has become computationally prohibitive, due to both the required processing power and memory. Here I present a temperature-dependent algorithm to separate strong from weak line transitions, reformatting the large majority of the weaker lines into a cross-section data file, and retaining the detailed line-by-line information of the fewer strong lines. For any given molecule over the 0.3-30 μm range, this algorithm reduces the number of lines to a few million, enabling faster radiative-transfer computations without a significant loss of information. The final compression rate depends on how densely populated the spectrum is. I validate this algorithm by comparing Exomol’s HCN extinction-coefficient spectra between the complete (65 million line transitions) and compressed (7.7 million) line lists. Over the 0.6-33 μm range, the average difference between extinction-coefficient values is less than 1%. A Python/C implementation of this algorithm is open-source and available at https://github.com/pcubillos/repack. So far, this code handles the Exomol and HITRAN line-transition format.
Numerical solver for compressible two-fluid flow
J. Naber (Jorick)
2005-01-01
textabstractThis report treats the development of a numerical solver for the simulation of flows of two non-mixing fluids described by the two-dimensional Euler equations. A level-set equation in conservative form describes the interface. After each time step the deformed level-set function is
A blended pressure/density based method for the computation of incompressible and compressible flows
International Nuclear Information System (INIS)
Rossow, C.-C.
2003-01-01
An alternative method to low speed preconditioning for the computation of nearly incompressible flows with compressible methods is developed. For this approach the leading terms of the flux difference splitting (FDS) approximate Riemann solver are analyzed in the incompressible limit. In combination with the requirement of the velocity field to be divergence-free, an elliptic equation to solve for a pressure correction to enforce the divergence-free velocity field on the discrete level is derived. The pressure correction equation established is shown to be equivalent to classical methods for incompressible flows. In order to allow the computation of flows at all speeds, a blending technique for the transition from the incompressible, pressure based formulation to the compressible, density based formulation is established. It is found necessary to use preconditioning with this blending technique to account for a remaining 'compressible' contribution in the incompressible limit, and a suitable matrix directly applicable to conservative residuals is derived. Thus, a coherent framework is established to cover the discretization of both incompressible and compressible flows. Compared with standard preconditioning techniques, the blended pressure/density based approach showed improved robustness for high lift flows close to separation
Yayama, Takafumi; Kobayashi, Shigeru; Nakanishi, Yoshitaka; Uchida, Kenzo; Kokubo, Yasuo; Miyazaki, Tsuyoshi; Takeno, Kenichi; Awara, Kosuke; Mwaka, Erisa S; Iwamoto, Yukihide; Baba, Hisatoshi
2010-04-01
Entrapment neuropathy is a frequent clinical problem that can be caused by, among other factors, mechanical compression; however, exactly how a compressive force affects the peripheral nerves remains poorly understood. In this study, using a rabbit model of sciatic nerve injury (n=12), we evaluated the time-course of changes in intraneural blood flow, compound nerve action potentials, and functioning of the blood-nerve barrier during graded mechanical compression. Nerve injury was applied using a compressor equipped with a custom-made pressure transducer. Cessation of intraneural blood flow was noted at a mean compressive force of 0.457+/-0.022 N (+/-SEM), and the compound action potential became zero at 0.486+/-0.031 N. Marked extravasation of Evans blue albumin was noted after 20 min of intraneural ischemia. The functional changes induced by compression are likely due to intraneural edema, which could subsequently result in impairment of nerve function. These changes may be critical factors in the development of symptoms associated with nerve compression. (c) 2009 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Cline, M.C.
1981-08-01
VNAP2 is a computer program for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow. VNAP2 solves the two-dimensional, time-dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing-length model, a one-equation model, or the Jones-Launder two-equation model. The geometry may be a single- or a dual-flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference-plane-characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free-jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet-powered afterbodies, airfoils, and free-jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.
Calculated viscosity-distance dependence for some actively flowing lavas
International Nuclear Information System (INIS)
Pieri, D.
1987-01-01
The importance of viscosity as a gauge of the various energy and momentum dissipation regimes of lava flows has been realized for a long time. Nevertheless, despite its central role in lava dynamics and kinematics, it remains among the most difficult of flow physical properties to measure in situ during an eruption. Attempts at reconstructing the actual emplacement viscosities of lava flows from their solidified topographic form are difficult. Where data are available on the position of an advancing flow front as a function of time, it is possible to calculate the effective viscosity of the front as a function of distance from the vent, under the assumptions of a steady state regime. As an application and test of an equation given, relevant parameters from five recent flows on Mauna Loa and Kilauea were utilized to infer the dynamic structure of their aggregate flow front viscosity as they advanced, up to cessation. The observed form of the viscosity-distance relation for the five active Hawaiian flows examined appears to be exponential, with a rapid increase just before the flows stopped as one would expect
AbuAlSaud, Moataz
2012-07-01
The purpose of this thesis is to solve unsteady two-dimensional compressible Navier-Stokes equations for a moving mesh using implicit explicit (IMEX) Runge- Kutta scheme. The moving mesh is implemented in the equations using Arbitrary Lagrangian Eulerian (ALE) formulation. The inviscid part of the equation is explicitly solved using second-order Godunov method, whereas the viscous part is calculated implicitly. We simulate subsonic compressible flow over static NACA-0012 airfoil at different angle of attacks. Finally, the moving mesh is examined via oscillating the airfoil between angle of attack = 0 and = 20 harmonically. It is observed that the numerical solution matches the experimental and numerical results in the literature to within 20%.
Energy Technology Data Exchange (ETDEWEB)
Poojitganont, T.; Berg, H.P.; Izweik, H.T. [Brandenburg Univ. of Technology Cottbus, Cottbus (Germany)
2009-07-01
As a result of continuously increasing oil prices, automotive industries are looking for alternative power sources for their automobiles. An excellent solution is the hybrid system. However due to the additional weight of its batteries, this causes the total weight of the car to increase. This higher battery weight can be compensated by reducing the weight of the engine. A rotary engine, such as the Wankel rotary engine, has a more attractive power to weight ratio than the normal reciprocating engine. The rotary engine can be treated and evaluated with respect to performance characteristics as a displacement type, four-stroke internal combustion engine, one-cycle similar to the reciprocating engine. For any combustion engine to reach the maximum power output, the mixture formation inside the engine should be considered. The flow phenomenon inside the engine is a key parameter which involves the mixture formation mechanism. This paper investigated the spray characteristic from the injector and the flow phenomena inside the combustion chamber. Its behaviours were studied using computational fluid dynamics simulation. The simulation setup was described in detail, with reference to meshes; initial condition; and boundary condition. Verification of the calculation was also presented. A comparison of the temperature during compression stroke from the analytical calculation and the adiabetic system simulation were also illustrated. Simulation results showed that the speed of the engine provides a proportional effect on the magnitude of air velocity inside the engine, whereas the circulation region can be expanded by increasing the intake pressure during the intake stroke. 9 refs., 1 tab., 13 figs.
Determining the phase diagram of lithium via ab initio calculation and ramp compression
Shulenburger, Luke; Seagle, Chris; Haill, Thomas; Harding, Eric
2015-06-01
Diamond anvil cell experiments have shown elemental lithium to have an extraordinarily complex phase diagram under pressure exhibiting numerous solid phases at pressures below 1 Mbar, as well as a complicated melting behavior. We explore this phase diagram utilizing a combination of quantum mechanical calculations and ramp compression experiments performed on Sandia National Laboratories' Z-machine. We aim to extend our knowledge of the high pressure behavior to moderate temperatures at pressures above 50 GPa with a specific focus on the melt line above 70 GPa. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Dept of Energy's Natl. Nuclear Security Administration under Contract DE-AC04-94AL85000.
Energy Technology Data Exchange (ETDEWEB)
Pinkerton, Gary Wayne [Univ. of Illinois, Urbana-Champaign, IL (United States)
1993-01-01
The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression.
International Nuclear Information System (INIS)
Pinkerton, G.W.
1993-01-01
The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression
Spectral Element Method for the Simulation of Unsteady Compressible Flows
Diosady, Laslo Tibor; Murman, Scott M.
2013-01-01
This work uses a discontinuous-Galerkin spectral-element method (DGSEM) to solve the compressible Navier-Stokes equations [1{3]. The inviscid ux is computed using the approximate Riemann solver of Roe [4]. The viscous fluxes are computed using the second form of Bassi and Rebay (BR2) [5] in a manner consistent with the spectral-element approximation. The method of lines with the classical 4th-order explicit Runge-Kutta scheme is used for time integration. Results for polynomial orders up to p = 15 (16th order) are presented. The code is parallelized using the Message Passing Interface (MPI). The computations presented in this work are performed using the Sandy Bridge nodes of the NASA Pleiades supercomputer at NASA Ames Research Center. Each Sandy Bridge node consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory. On a Sandy Bridge node the Tau Benchmark [6] runs in a time of 7.6s.
Influence of sequential room-temperature compressive creep on flow stress of TA2
Mengyuan, Zhang; Boqin, Gu; Jiahui, Tao
2018-03-01
This paper studied the sequential room temperature compressive creep and its effects on compressive properties of TA2 with stress-control loading pattern by using cylindrical compressive test specimen. The significant time-dependent deformation under constant load was observed in the TA2 at room temperature, and the deformation was dependent on the loading process under the same loading stress rate. It was also found that the occurrence of room temperature compressive creep obviously enhanced the subsequent yielding strength and flow stress of TA2 due to the increase of network dislocation density. And the effects of room temperature creep on the strain rate-stress behavior could be explained by the local mobile dislocation density model.
High-Fidelity Numerical Modeling of Compressible Flow
2015-11-01
using exact flux Jacobians. The data-parallel line relaxation (DPLR) method, based on the Gauss - Seidel line relaxation method of MacCormack,29 is...then employed to solve the resulting linear system. To improve performance on parallel systems, the DPLR method replaces the Gauss - Seidel sweeps with a...boundary-layer height and edge velocity), but that higher-moments, like secondary flow, required more iterations to converge . Since the medium and fine grids
Scalar conservation and boundedness in simulations of compressible flow
Subbareddy, Pramod K.; Kartha, Anand; Candler, Graham V.
2017-11-01
With the proper combination of high-order, low-dissipation numerical methods, physics-based subgrid-scale models, and boundary conditions it is becoming possible to simulate many combustion flows at relevant conditions. However, non-premixed flows are a particular challenge because the thickness of the fuel/oxidizer interface scales inversely with Reynolds number. Sharp interfaces can also be present in the initial or boundary conditions. When higher-order numerical methods are used, there are often aphysical undershoots and overshoots in the scalar variables (e.g. passive scalars, species mass fractions or progress variable). These numerical issues are especially prominent when low-dissipation methods are used, since sharp jumps in flow variables are not always coincident with regions of strong variation in the scalar fields: consequently, special detection mechanisms and dissipative fluxes are needed. Most numerical methods diffuse the interface, resulting in artificial mixing and spurious reactions. In this paper, we propose a numerical method that mitigates this issue. We present methods for passive and active scalars, and demonstrate their effectiveness with several examples.
Hamamoto, Yuichiro; Ogata, Tadanori; Morino, Tadao; Hino, Masayuki; Yamamoto, Haruyasu
2007-08-15
An in vivo study to measure rat spinal cord blood flow in real-time at the site of compression using a newly developed device. To evaluate the change in thoracic spinal cord blood flow by compression force and to clarify the association between blood flow recovery and motor deficiency after a spinal cord compression injury. Until now, no real-time measurement of spinal cord blood flow at the site of compression has been conducted. In addition, it has not been clearly determined whether blood flow recovery is related to motor function after a spinal cord injury. Our blood flow measurement system was a combination of a noncontact type laser Doppler system and a spinal cord compression device. The rat thoracic spinal cord was exposed at the 11th vertebra and spinal cord blood flow at the site of compression was continuously measured before, during, and after the compression. The functioning of the animal's hind-limbs was evaluated by the Basso, Beattie and Bresnahan scoring scale and the frequency of voluntary standing. Histologic changes such as permeability of blood-spinal cord barrier, microglia proliferation, and apoptotic cell death were examined in compressed spinal cord tissue. The spinal blood flow decreased on each increase in the compression force. After applying a 5-g weight, the blood flow decreased to compression), while no significant difference was observed between the 20-minute ischemia group and the sham group. In the 20-minute ischemia group, the rats whose spinal cord blood flow recovery was incomplete showed significant motor function loss compared with rats that completely recovered blood flow. Extensive breakdown of blood-spinal cord barrier integrity and the following microglia proliferation and apoptotic cell death were detected in the 40-minute complete ischemia group. Duration of ischemia/compression and blood flow recovery of the spinal cord are important factors in the recovery of motor function after a spinal cord injury.
Symmetries of the Euler compressible flow equations for general equation of state
Energy Technology Data Exchange (ETDEWEB)
Boyd, Zachary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baty, Roy S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-10-15
The Euler compressible flow equations exhibit different Lie symmetries depending on the equation of state (EOS) of the medium in which the flow occurs. This means that, in general, different types of similarity solution will be available in different flow media. We present a comprehensive classification of all EOS’s to which the Euler equations apply, based on the Lie symmetries admitted by the corresponding flow equations, restricting to the case of 1-D planar, cylindrical, or spherical geometry. The results are conveniently summarized in tables. This analysis also clarifies past work by Axford and Ovsiannikov on symmetry classification.
Large scale steam flow test: Pressure drop data and calculated pressure loss coefficients
International Nuclear Information System (INIS)
Meadows, J.B.; Spears, J.R.; Feder, A.R.; Moore, B.P.; Young, C.E.
1993-12-01
This report presents the result of large scale steam flow testing, 3 million to 7 million lbs/hr., conducted at approximate steam qualities of 25, 45, 70 and 100 percent (dry, saturated). It is concluded from the test data that reasonable estimates of piping component pressure loss coefficients for single phase flow in complex piping geometries can be calculated using available engineering literature. This includes the effects of nearby upstream and downstream components, compressibility, and internal obstructions, such as splitters, and ladder rungs on individual piping components. Despite expected uncertainties in the data resulting from the complexity of the piping geometry and two-phase flow, the test data support the conclusion that the predicted dry steam K-factors are accurate and provide useful insight into the effect of entrained liquid on the flow resistance. The K-factors calculated from the wet steam test data were compared to two-phase K-factors based on the Martinelli-Nelson pressure drop correlations. This comparison supports the concept of a two-phase multiplier for estimating the resistance of piping with liquid entrained into the flow. The test data in general appears to be reasonably consistent with the shape of a curve based on the Martinelli-Nelson correlation over the tested range of steam quality
A soap film shock tube to study two-dimensional compressible flows
Energy Technology Data Exchange (ETDEWEB)
Wen, C.Y.; Chen, Y.M.; Chang-Jian, S.K. [Dept. of Mechanical Engineering, Da-Yeh University Chang-Hwa (Taiwan)
2001-07-01
A new experimental approach to the study of the two-dimensional compressible flow phenomena is presented. In this technique, a variety of compressible flows were generated by bursting plane vertical soap films. An aureole and a ''shock wave'' preceding the rim of the expanding hole were clearly observed using traditional high-speed flash photography and a fast line-scan charge coupled device (CCD) camera. The moving shock wave images obtained from the line-scan CCD camera were similar to the x-t diagrams in gas dynamics. The moving shock waves cause thickness jumps and induce supersonic flows. Photographs of the supersonic flows over a cylinder and a wedge are presented. The results suggest clearly the feasibility of the ''soap film shock tube''. (orig.)
DEFF Research Database (Denmark)
Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove
2006-01-01
We present an approach for modelling unsteady, primarily one-dimensional, compressible flow. The conservation laws for mass, energy, and momentum are applied to a staggered mesh of control volumes and loss mechanisms are included directly as extra terms. Heat transfer, flow friction, and multidim...... are presented. The capabilities of the approach are illustrated with an example solution and an experimental validation of a Stirling engine model....
Simulation techniques for spatially evolving instabilities in compressible flow over a flat plate
Wasistho, B.; Geurts, Bernardus J.; Kuerten, Johannes G.M.
1997-01-01
In this paper we present numerical techniques suitable for a direct numerical simulation in the spatial setting. We demonstrate the application to the simulation of compressible flat plate flow instabilities. We compare second and fourth order accurate spatial discretization schemes in combination
Analysis of time integration methods for the compressible two-fluid model for pipe flow simulations
B. Sanderse (Benjamin); I. Eskerud Smith (Ivar); M.H.W. Hendrix (Maurice)
2017-01-01
textabstractIn this paper we analyse different time integration methods for the two-fluid model and propose the BDF2 method as the preferred choice to simulate transient compressible multiphase flow in pipelines. Compared to the prevailing Backward Euler method, the BDF2 scheme has a significantly
Comparison of high order algorithms in Aerosol and Aghora for compressible flows
Directory of Open Access Journals (Sweden)
Mbengoue D. A.
2013-12-01
Full Text Available This article summarizes the work done within the Colargol project during CEMRACS 2012. The aim of this project is to compare the implementations of high order finite element methods for compressible flows that have been developed at ONERA and at INRIA for about one year, within the Aghora and Aerosol libraries.
Calculating the evaporated water flow in a wet cooling tower
International Nuclear Information System (INIS)
Grange, J.L.
1994-04-01
On a cooling tower, it is necessary to determine the evaporated water flow in order to estimate the water consumption with a good accuracy according to the atmospheric conditions, and in order to know the characteristics of the plume. The evaporated flow is small compared to the circulating flow. A direct measurement is very inaccurate and cannot be used. Only calculation can give a satisfactory valuation. The two usable theories are the Merkel's one in which there are some simplifying assumptions, and the Poppe's one which is more exact. Both theories are used in the numerical code TEFERI which has been developed and is run by Electricite de France. The results obtained by each method are compared and validated by measurements made in the hot air of a cooling tower. The consequences of each hypothesis of Merkel's theory are discussed. This theory does not give the liquid water content in the plume and it under-estimates the evaporated flow all the lower the ambient temperature is. On the other hand, the Poppe's method agrees very closely with the measurements as well for the evaporated flow than for the liquid water concentration. This method is used to establish the specific consumption curves of the great nuclear plants cooling towers as well as to calculate the emission of liquid water drops in the plumes. (author). 11 refs., 9 figs
A discrete model for compressible flows in heterogeneous media
International Nuclear Information System (INIS)
Le Metayer, O.; Massol, A.; Favrie, N.; Hank, S.
2011-01-01
This work deals with the building of a discrete model able to describe and to predict the evolution of complex gas flows in heterogeneous media. In many physical applications, large scales numerical simulation is no longer possible because of a lack of computing resources. Indeed the medium topology may be complex due to the presence of many obstacles (walls, pipes, equipments, geometric singularities etc.). Aircraft powerplant compartments are examples where topology is complex due to the presence of pipes, ducts, coolers and other equipment. Other important examples are gas explosions and large scale dispersion of hazardous materials in urban places, cities or underground involving obstacles such as buildings and various infrastructures. In all cases efficient safety responses are required. Then a new discrete model is built and solved in reasonable execution times for large cells volumes including such obstacles. Quantitative comparisons between experimental and numerical results are shown for different significant test cases, showing excellent agreement.
Nonlinear parameter estimation in inviscid compressible flows in presence of uncertainties
International Nuclear Information System (INIS)
Jemcov, A.; Mathur, S.
2004-01-01
The focus of this paper is on the formulation and solution of inverse problems of parameter estimation using algorithmic differentiation. The inverse problem formulated here seeks to determine the input parameters that minimize a least squares functional with respect to certain target data. The formulation allows for uncertainty in the target data by considering the least squares functional in a stochastic basis described by the covariance of the target data. Furthermore, to allow for robust design, the formulation also accounts for uncertainties in the input parameters. This is achieved using the method of propagation of uncertainties using the directional derivatives of the output parameters with respect to unknown parameters. The required derivatives are calculated simultaneously with the solution using generic programming exploiting the template and operator overloading features of the C++ language. The methodology described here is general and applicable to any numerical solution procedure for any set of governing equations but for the purpose of this paper we consider a finite volume solution of the compressible Euler equations. In particular, we illustrate the method for the case of supersonic flow in a duct with a wedge. The parameter to be determined is the inlet Mach number and the target data is the axial component of velocity at the exit of the duct. (author)
Effect of lower limb compression on blood flow and performance in elite wheelchair rugby athletes.
Vaile, Joanna; Stefanovic, Brad; Askew, Christopher D
2016-01-01
To investigate the effects of compression socks worn during exercise on performance and physiological responses in elite wheelchair rugby athletes. In a non-blinded randomized crossover design, participants completed two exercise trials (4 × 8 min bouts of submaximal exercise, each finishing with a timed maximal sprint) separated by 24 hr, with or without compression socks. National Sports Training Centre, Queensland, Australia. Ten national representative male wheelchair rugby athletes with cervical spinal cord injuries volunteered to participate. Participants wore medical grade compression socks on both legs during the exercise task (COMP), and during the control trial no compression was worn (CON). The efficacy of the compression socks was determined by assessments of limb blood flow, core body temperature, heart rate, and ratings of perceived exertion, perceived thermal strain, and physical performance. While no significant differences between conditions were observed for maximal sprint time, average lap time was better maintained in COMP compared to CON (Pbenefit may be associated with an augmentation of upper limb blood flow.
International Nuclear Information System (INIS)
Petitpas, Fabien; Franquet, Erwin; Saurel, Richard; Le Metayer, Olivier
2007-01-01
The relaxation-projection method developed in Saurel et al. [R. Saurel, E. Franquet, E. Daniel, O. Le Metayer, A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, J. Comput. Phys. (2007) 822-845] is extended to the non-conservative hyperbolic multiphase flow model of Kapila et al. [A.K. Kapila, Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration to detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024]. This model has the ability to treat multi-temperatures mixtures evolving with a single pressure and velocity and is particularly interesting for the computation of interface problems with compressible materials as well as wave propagation in heterogeneous mixtures. The non-conservative character of this model poses however computational challenges in the presence of shocks. The first issue is related to the Riemann problem resolution that necessitates shock jump conditions. Thanks to the Rankine-Hugoniot relations proposed and validated in Saurel et al. [R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump conditions for multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (3) (2007) 209-232] exact and approximate 2-shocks Riemann solvers are derived. However, the Riemann solver is only a part of a numerical scheme and non-conservative variables pose extra difficulties for the projection or cell average of the solution. It is shown that conventional Godunov schemes are unable to converge to the exact solution for strong multiphase shocks. This is due to the incorrect partition of the energies or entropies in the cell averaged mixture. To circumvent this difficulty a specific Lagrangian scheme is developed. The correct partition of the energies is achieved by using an artificial heat exchange in the shock layer. With the help of an asymptotic analysis this heat exchange takes a similar form as
Petitpas, Fabien; Franquet, Erwin; Saurel, Richard; Le Metayer, Olivier
2007-08-01
The relaxation-projection method developed in Saurel et al. [R. Saurel, E. Franquet, E. Daniel, O. Le Metayer, A relaxation-projection method for compressible flows. Part I: The numerical equation of state for the Euler equations, J. Comput. Phys. (2007) 822-845] is extended to the non-conservative hyperbolic multiphase flow model of Kapila et al. [A.K. Kapila, Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration to detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002-3024]. This model has the ability to treat multi-temperatures mixtures evolving with a single pressure and velocity and is particularly interesting for the computation of interface problems with compressible materials as well as wave propagation in heterogeneous mixtures. The non-conservative character of this model poses however computational challenges in the presence of shocks. The first issue is related to the Riemann problem resolution that necessitates shock jump conditions. Thanks to the Rankine-Hugoniot relations proposed and validated in Saurel et al. [R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, Shock jump conditions for multiphase mixtures with stiff mechanical relaxation, Shock Waves 16 (3) (2007) 209-232] exact and approximate 2-shocks Riemann solvers are derived. However, the Riemann solver is only a part of a numerical scheme and non-conservative variables pose extra difficulties for the projection or cell average of the solution. It is shown that conventional Godunov schemes are unable to converge to the exact solution for strong multiphase shocks. This is due to the incorrect partition of the energies or entropies in the cell averaged mixture. To circumvent this difficulty a specific Lagrangian scheme is developed. The correct partition of the energies is achieved by using an artificial heat exchange in the shock layer. With the help of an asymptotic analysis this heat exchange takes a similar form as
The flow behavior and constitutive equation in isothermal compression of FGH4096-GH4133B dual alloy
International Nuclear Information System (INIS)
Liu, Yanhui; Yao, Zekun; Ning, Yongquan; Nan, Yang; Guo, Hongzhen; Qin, Chun; Shi, Zhifeng
2014-01-01
Highlights: • Hot compression behaviors of the FGH4096-GH4133B dual alloy were investigated. • Constitutive equation also represented deformation behavior of a dual alloy. • The effects of deformation activation energy on the microstructures were discussed. • Constitutive equation represented an accurate and precise estimate of flow stress. - Abstract: The electron beam welding of superalloy FGH4096 and GH4133B was conducted, and the cylindrical compression specimens were machined from the central part of the electron beam weldments. Isothermal compression tests were carried out on electron beam weldments FGH4096-GH4133B alloy at the temperatures of 1020–11140 °C (the nominal γ′-transus temperature is about 1080 °C) and the strain rates of 0.001–1.0 s −1 with the height reduction of 50%. True stress–true strain curves are sensitive to the deformation temperature and strain rate, and the flow stress decreases with the increasing deformation temperature and the decreasing strain rate. The true stress–true strain curves can indicate the intrinsic relationship between the flow stress and the thermal-dynamic behavior. The apparent activation energy of deformation at the strain of 0.6 was calculated to be 550 kJ/mol, and the apparent activation energy has a great effect on the microstructure. The constitutive equation that describes the flow stress as a function of strain rate and deformation temperature was proposed for modeling the hot deformation process of FGH4096-GH4133B electron beam weldments. The constitutive equation at the strain of 0.6 was established using the hyperbolic law. The relationship between the strain and the values of parameters was studied, and the cubic functions were built. The constitutive equation during the whole process can be obtained based on the parameters under different strains. Comparing the experimental flow stress and the calculated flow stress, the constitutive equation obtained in this paper can be very good
Design of a lube oil reservoir by using flow calculations
Energy Technology Data Exchange (ETDEWEB)
Rinkinen, J; Alfthan, A. [Institute of Hydraulics and Automation IHA, Tampere University of Technology, Tampere (Finland)] Suominen, J. [Institute of Energy and Process Engineering, Tampere University of Technology, Tampere (Finland); Airaksinen, A; Antila, K [R and D Engineer Safematic Oy, Muurame (Finland)
1998-12-31
The volume of usual oil reservoir for lubrication oil systems is designed by the traditional rule of thumb so that the total oil volume is theoretically changed in every 30 minutes by rated pumping capacity. This is commonly used settling time for air, water and particles to separate by gravity from the oil returning of the bearings. This leads to rather big volumes of lube oil reservoirs, which are sometimes difficult to situate in different applications. In this presentation traditionally sized lube oil reservoir (8 m{sup 3}) is modelled in rectangular coordinates and laminar oil flow is calculated by using FLUENT software that is based on finite difference method. The results of calculation are velocity and temperature fields inside the reservoir. The velocity field is used to visualize different particle paths through the reservoir. Particles that are studied by the model are air bubbles and water droplets. The interest of the study has been to define the size of the air bubbles that are released and the size of the water droplets that are separated in the reservoir. The velocity field is also used to calculate the modelled circulating time of the oil volume which is then compared with the theoretical circulating time that is obtained from the rated pump flow. These results have been used for designing a new lube oil reservoir. This reservoir has also been modelled and optimized by the aid of flow calculations. The best shape of the designed reservoir is constructed in real size for empirical measurements. Some results of the oil flow measurements are shown. (orig.) 7 refs.
Design of a lube oil reservoir by using flow calculations
Energy Technology Data Exchange (ETDEWEB)
Rinkinen, J.; Alfthan, A. [Institute of Hydraulics and Automation IHA, Tampere University of Technology, Tampere (Finland)] Suominen, J. [Institute of Energy and Process Engineering, Tampere University of Technology, Tampere (Finland); Airaksinen, A.; Antila, K. [R and D Engineer Safematic Oy, Muurame (Finland)
1997-12-31
The volume of usual oil reservoir for lubrication oil systems is designed by the traditional rule of thumb so that the total oil volume is theoretically changed in every 30 minutes by rated pumping capacity. This is commonly used settling time for air, water and particles to separate by gravity from the oil returning of the bearings. This leads to rather big volumes of lube oil reservoirs, which are sometimes difficult to situate in different applications. In this presentation traditionally sized lube oil reservoir (8 m{sup 3}) is modelled in rectangular coordinates and laminar oil flow is calculated by using FLUENT software that is based on finite difference method. The results of calculation are velocity and temperature fields inside the reservoir. The velocity field is used to visualize different particle paths through the reservoir. Particles that are studied by the model are air bubbles and water droplets. The interest of the study has been to define the size of the air bubbles that are released and the size of the water droplets that are separated in the reservoir. The velocity field is also used to calculate the modelled circulating time of the oil volume which is then compared with the theoretical circulating time that is obtained from the rated pump flow. These results have been used for designing a new lube oil reservoir. This reservoir has also been modelled and optimized by the aid of flow calculations. The best shape of the designed reservoir is constructed in real size for empirical measurements. Some results of the oil flow measurements are shown. (orig.) 7 refs.
Numerical simulation of compressible two-phase flow using a diffuse interface method
International Nuclear Information System (INIS)
Ansari, M.R.; Daramizadeh, A.
2013-01-01
Highlights: ► Compressible two-phase gas–gas and gas–liquid flows simulation are conducted. ► Interface conditions contain shock wave and cavitations. ► A high-resolution diffuse interface method is investigated. ► The numerical results exhibit very good agreement with experimental results. -- Abstract: In this article, a high-resolution diffuse interface method is investigated for simulation of compressible two-phase gas–gas and gas–liquid flows, both in the presence of shock wave and in flows with strong rarefaction waves similar to cavitations. A Godunov method and HLLC Riemann solver is used for discretization of the Kapila five-equation model and a modified Schmidt equation of state (EOS) is used to simulate the cavitation regions. This method is applied successfully to some one- and two-dimensional compressible two-phase flows with interface conditions that contain shock wave and cavitations. The numerical results obtained in this attempt exhibit very good agreement with experimental results, as well as previous numerical results presented by other researchers based on other numerical methods. In particular, the algorithm can capture the complex flow features of transient shocks, such as the material discontinuities and interfacial instabilities, without any oscillation and additional diffusion. Numerical examples show that the results of the method presented here compare well with other sophisticated modeling methods like adaptive mesh refinement (AMR) and local mesh refinement (LMR) for one- and two-dimensional problems
Improving the performance of a compression ignition engine by directing flow of inlet air
Kemper, Carlton
1946-01-01
The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.
Shornikov, A; Wolf, A
2014-01-01
We present design and commissioning results of a forced flow cooling system utilizing neon at 30 K. The cryogen is pumped through the system by a room-temperature compression stage. To decouple the cold zone from the compression stage a recuperating counterflow tube-in-tube heat exchanger is used. Commissioning demonstrated successful condensation of neon and transfer of up to 30 W cooling power to the load at 30 K using only 30 g of the cryogen circulating in the system at pressures below 170 kPa.
Particle flow of ceramic breeder pebble beds in bi-axial compression experiments
International Nuclear Information System (INIS)
Hermsmeyer, S.; Reimann, J.
2002-01-01
Pebble beds of ceramic material are investigated within the framework of developing solid breeder blankets for future fusion power plants. A thermo-mechanical characterisation of such pebble beds is mandatory for understanding the behaviour of pebble beds, and thus the overall blanket, under fusion environment conditions. The mechanical behaviour of pebble beds is typically explored with uni-axial, bi-axial and tri-axial compression experiments. The latter two types of experiment are particularly revealing since they contain explicitly, beyond a compression behaviour of the bed, information on the conditions for pebble flow, i.e. macroscopic relocation, in the pebble bed. (orig.)
Analysis of the one-dimensional transient compressible vapor flow in heat pipes
Jang, Jong H.; Faghri, Amir; Chang, Won S.
1991-01-01
The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds as well as high mass flow rates are successfully predicted.
Directory of Open Access Journals (Sweden)
FU Ping
2017-08-01
Full Text Available The flow stress behavior of 5083 aluminum alloy was investigated under hot compression deformation at 523-723K,strain rates of 0.01-10s-1 and true strains of 0-0.7 with Gleeble-3800 thermal simulator. Based on the heat transfer effect on alloy deformation heat effect, the flow stress curves were corrected. The results show that influence of heat conduction can not be neglected and becomes more obvious with the increase of true strain. The corrected flow stress has little influence on the peak stress, but the steady flow stress softening trends to be diminished to some degree. The flow stress can be predicted by the Zener-Hollomon parameters in the constitutive equation. The corrected measured value exhibits a good agreement with the flow stress predicted by the constitutive equation, and the average relative error is only 5.21%.
Valentine, Greg A.; Sweeney, Matthew R.
2018-02-01
Many geological flows are sourced by falling gas-particle mixtures, such as during collapse of lava domes, and impulsive eruptive jets, and sustained columns, and rock falls. The transition from vertical to lateral flow is complex due to the range of coupling between particles of different sizes and densities and the carrier gas, and due to the potential for compressible flow phenomena. We use multiphase modeling to explore these dynamics. In mixtures with small particles, and with subsonic speeds, particles follow the gas such that outgoing lateral flows have similar particle concentration and speed as the vertical flows. Large particles concentrate immediately upon impact and move laterally away as granular flows overridden by a high-speed jet of expelled gas. When a falling flow is supersonic, a bow shock develops above the impact zone, and this produces a zone of high pressure from which lateral flows emerge as overpressured wall jets. The jets form complex structures as the mixtures expand and accelerate and then recompress through a recompression zone that mimics a Mach disk shock in ideal gas jets. In mixtures with moderate to high ratios of fine to coarse particles, the latter tend to follow fine particles through the expansion-recompression flow fields because of particle-particle drag. Expansion within the flow fields can lead to locally reduced gas pressure that could enhance substrate erosion in natural flows. The recompression zones form at distances, and have peak pressures, that are roughly proportional to the Mach numbers of impacting flows.
Calculation of Wind Power Limit adjusting the Continuation Power Flow
International Nuclear Information System (INIS)
Santos Fuentefria, Ariel; Castro Fernández, Miguel; Martínez García, Antonio
2012-01-01
The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit is a very important matter. Existing in bibliography a few methods for calculation of wind power limit. The calculation is based in static constrains, dynamic constraints or both. In this paper is developed a method for the calculation of wind power limit using some adjust in the continuation power flow, and having into account the static constrains. The method is complemented with Minimal Power Production Criterion. The method is proved in the Isla de la Juventud Electric System. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)
International Nuclear Information System (INIS)
Ahmad, M.
2007-09-01
Maldistribution of liquid-vapour two phase flows causes a significant decrease of the thermal and hydraulic performance of evaporators in thermodynamic vapour compression cycles. A first experimental installation was used to visualize the two phase flow evolution between the expansion valve and the evaporator inlet. A second experimental set-up simulating a compact heat exchanger has been designed to identify the functional and geometrical parameters creating the best distribution of the two phases in the different channels. An analysis and a comprehension of the relation between the geometrical and functional parameters with the flow pattern inside the header and the two phase distribution, has been established. A numerical simulations of a stratified flow and a stratified jet flow have been carried out using two CFD codes: FLUENT and NEPTUNE. In the case of a fragmented jet configuration, a global definition of the interfacial area concentration for a separated phases and dispersed phases flow has been established and a model calculating the fragmented mass fraction has been developed. (author)
Flow design and simulation of a gas compression system for hydrogen fusion energy production
Energy Technology Data Exchange (ETDEWEB)
Avital, E J; Salvatore, E [School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd London E1 4NS (United Kingdom); Munjiza, A [Civil Engineering, University of Split, Livanjska 2100 Split (Croatia); Suponitsky, V; Plant, D; Laberge, M, E-mail: e.avital@qmul.ac.uk [General Fusion Inc.,108-3680 Bonneville Place, Burnaby, BC V3N 4T5 (Canada)
2017-08-15
An innovative gas compression system is proposed and computationally researched to achieve a short time response as needed in engineering applications such as hydrogen fusion energy reactors and high speed hammers. The system consists of a reservoir containing high pressure gas connected to a straight tube which in turn is connected to a spherical duct, where at the sphere’s centre plasma resides in the case of a fusion reactor. Diaphragm located inside the straight tube separates the reservoir’s high pressure gas from the rest of the plenum. Once the diaphragm is breached the high pressure gas enters the plenum to drive pistons located on the inner wall of the spherical duct that will eventually end compressing the plasma. Quasi-1D and axisymmetric flow formulations are used to design and analyse the flow dynamics. A spike is designed for the interface between the straight tube and the spherical duct to provide a smooth geometry transition for the flow. Flow simulations show high supersonic flow hitting the end of the spherical duct, generating a return shock wave propagating upstream and raising the pressure above the reservoir pressure as in the hammer wave problem, potentially giving temporary pressure boost to the pistons. Good agreement is revealed between the two flow formulations pointing to the usefulness of the quasi-1D formulation as a rapid solver. Nevertheless, a mild time delay in the axisymmetric flow simulation occurred due to moderate two-dimensionality effects. The compression system is settled down in a few milliseconds for a spherical duct of 0.8 m diameter using Helium gas and a uniform duct cross-section area. Various system geometries are analysed using instantaneous and time history flow plots. (paper)
Flow design and simulation of a gas compression system for hydrogen fusion energy production
Avital, E. J.; Salvatore, E.; Munjiza, A.; Suponitsky, V.; Plant, D.; Laberge, M.
2017-08-01
An innovative gas compression system is proposed and computationally researched to achieve a short time response as needed in engineering applications such as hydrogen fusion energy reactors and high speed hammers. The system consists of a reservoir containing high pressure gas connected to a straight tube which in turn is connected to a spherical duct, where at the sphere’s centre plasma resides in the case of a fusion reactor. Diaphragm located inside the straight tube separates the reservoir’s high pressure gas from the rest of the plenum. Once the diaphragm is breached the high pressure gas enters the plenum to drive pistons located on the inner wall of the spherical duct that will eventually end compressing the plasma. Quasi-1D and axisymmetric flow formulations are used to design and analyse the flow dynamics. A spike is designed for the interface between the straight tube and the spherical duct to provide a smooth geometry transition for the flow. Flow simulations show high supersonic flow hitting the end of the spherical duct, generating a return shock wave propagating upstream and raising the pressure above the reservoir pressure as in the hammer wave problem, potentially giving temporary pressure boost to the pistons. Good agreement is revealed between the two flow formulations pointing to the usefulness of the quasi-1D formulation as a rapid solver. Nevertheless, a mild time delay in the axisymmetric flow simulation occurred due to moderate two-dimensionality effects. The compression system is settled down in a few milliseconds for a spherical duct of 0.8 m diameter using Helium gas and a uniform duct cross-section area. Various system geometries are analysed using instantaneous and time history flow plots.
Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.
2016-08-01
The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.
Groundwater flow modelling under ice sheet conditions. Scoping calculations
Energy Technology Data Exchange (ETDEWEB)
Jaquet, O.; Namar, R. (In2Earth Modelling Ltd (Switzerland)); Jansson, P. (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))
2010-10-15
The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the
Groundwater flow modelling under ice sheet conditions. Scoping calculations
International Nuclear Information System (INIS)
Jaquet, O.; Namar, R.; Jansson, P.
2010-10-01
The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the
Energy Technology Data Exchange (ETDEWEB)
Klimachkov, D. A., E-mail: klimchakovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)
2016-09-15
Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describes static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence of the
Nonaffine deformation under compression and decompression of a flow-stabilized solid
Ortiz, Carlos P.; Riehn, Robert; Daniels, Karen E.
2016-08-01
Understanding the particle-scale transition from elastic deformation to plastic flow is central to making predictions about the bulk material properties and response of disordered materials. To address this issue, we perform experiments on flow-stabilized solids composed of micron-scale spheres within a microfluidic channel, in a regime where particle inertia is negligible. Each solid heap exists within a stress field imposed by the flow, and we track the positions of particles in response to single impulses of fluid-driven compression or decompression. We find that the resulting deformation field is well-decomposed into an affine field, with a constant strain profile throughout the solid, and a non-affine field. The magnitude of this non-affine response decays with the distance from the free surface in the long-time limit, suggesting that the distance from jamming plays a significant role in controlling the length scale of plastic flow. Finally, we observe that compressive pulses create more rearrangements than decompressive pulses, an effect that we quantify using the D\\text{min}2 statistic for non-affine motion. Unexpectedly, the time scale for the compression response is shorter than for decompression at the same strain (but unequal pressure), providing insight into the coupling between deformation and cage-breaking.
Application of a New Hybrid RANS/LES Modeling Paradigm to Compressible Flow
Oliver, Todd; Pederson, Clark; Haering, Sigfried; Moser, Robert
2017-11-01
It is well-known that traditional hybrid RANS/LES modeling approaches suffer from a number of deficiencies. These deficiencies often stem from overly simplistic blending strategies based on scalar measures of turbulence length scale and grid resolution and from use of isotropic subgrid models in LES regions. A recently developed hybrid modeling approach has shown promise in overcoming these deficiencies in incompressible flows [Haering, 2015]. In the approach, RANS/LES blending is accomplished using a hybridization parameter that is governed by an additional model transport equation and is driven to achieve equilibrium between the resolved and unresolved turbulence for the given grid. Further, the model uses an tensor eddy viscosity that is formulated to represent the effects of anisotropic grid resolution on subgrid quantities. In this work, this modeling approach is extended to compressible flows and implemented in the compressible flow solver SU2 (http://su2.stanford.edu/). We discuss both modeling and implementation challenges and show preliminary results for compressible flow test cases with smooth wall separation.
Two compressible and immiscible flow in porous media: mathematical and numerical analysis
International Nuclear Information System (INIS)
Khalil, Z.
2010-01-01
The aim of this thesis is the study of Cauchy problem (existence of weak solutions) for three degenerate highly coupled parabolic systems modeling compressible immiscible flow in porous media. The motivation of this work is a benchmark of the GNR MoMaS, to study the impact of the gas flow due to the corrosion of ferrous materials in a radioactive waste storage site. This thesis is divided into three independent chapters. Firstly, we look at a problem modeling the flow of two immiscible phases and considering one phase is compressible and the other is incompressible (water/gas). Secondly, we consider the problem modeling two-compressible immiscible flow in porous media. An existence results for both problems established by a semi-discretization method. Finally, The fourth chapter is devoted to the construction and convergence of a multi-dimensional finite volume method (upwind scheme) for the gas-water model under the assumption that the gas density is a function of a global pressure. (author)
International Nuclear Information System (INIS)
Fereshteh-Saniee, F.; Barati, F.; Badnava, H.; Fallah Nejad, Kh.
2012-01-01
Highlights: ► The exponential model can represent flow behaviors of AZ series Mg alloys very well. ► Strain rate sensitivities of AZ series Mg alloys in compression are nearly the same. ► Effect of zinc element on tensile activation energy is higher than on compressive one. ► Activation energies of AZ80 and AZ81 in tension were greater than in compression. ► Tensile and compressive rate sensitivities of AZ80 are not close to each other. -- Abstract: This paper is concerned with flow behaviors of several magnesium alloys, such as AZ31, AZ80 and AZ81, in tension and compression. The experiments were performed at elevated temperatures and for various strain rates. In order to eliminate the effect of inhomogeneous deformation in tensile and compression tests, the Bridgeman’s and numerical correction factors were respectively employed. A two-section exponential mathematical model was also utilized for prediction of flow stresses of different magnesium alloys in tension and compression. Moreover, based on the compressive flow model proposed, the peak stress and the relevant true strain could be estimated. The true stress and strain of the necking point can also be predicted using the corresponding relations. It was found that the flow behaviors estimated by the exponential flow model were encouragingly in very good agreement with experimental findings.
International Nuclear Information System (INIS)
Karpp, R.R.
1980-10-01
This report treats analytically the problem of the symmetric impact of two compressible fluid streams. The flow is assumed to be steady, plane, inviscid, and subsonic and that the compressible fluid is of the Chaplygin (tangent gas) type. In the analysis, the governing equations are first transformed to the hodograph plane where an exact, closed-form solution is obtained by standard techniques. The distributions of fluid properties along the plane of symmetry as well as the shapes of the boundary streamlines are exactly determined by transforming the solution back to the physical plane. The problem of a compressible fluid jet penetrating into an infinite target of similar material is also exactly solved by considering a limiting case of this solution. This new compressible flow solution reduces to the classical result of incompressible flow theory when the sound speed of the fluid is allowed to approach infinity. Several illustrations of the differences between compressible and incompressible flows of the type considered are presented
The New Performance Calculation Method of Fouled Axial Flow Compressor
Directory of Open Access Journals (Sweden)
Huadong Yang
2014-01-01
Full Text Available Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds’ law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail.
Zheng, H. W.; Shu, C.; Chew, Y. T.
2008-07-01
In this paper, an object-oriented and quadrilateral-mesh based solution adaptive algorithm for the simulation of compressible multi-fluid flows is presented. The HLLC scheme (Harten, Lax and van Leer approximate Riemann solver with the Contact wave restored) is extended to adaptively solve the compressible multi-fluid flows under complex geometry on unstructured mesh. It is also extended to the second-order of accuracy by using MUSCL extrapolation. The node, edge and cell are arranged in such an object-oriented manner that each of them inherits from a basic object. A home-made double link list is designed to manage these objects so that the inserting of new objects and removing of the existing objects (nodes, edges and cells) are independent of the number of objects and only of the complexity of O( 1). In addition, the cells with different levels are further stored in different lists. This avoids the recursive calculation of solution of mother (non-leaf) cells. Thus, high efficiency is obtained due to these features. Besides, as compared to other cell-edge adaptive methods, the separation of nodes would reduce the memory requirement of redundant nodes, especially in the cases where the level number is large or the space dimension is three. Five two-dimensional examples are used to examine its performance. These examples include vortex evolution problem, interface only problem under structured mesh and unstructured mesh, bubble explosion under the water, bubble-shock interaction, and shock-interface interaction inside the cylindrical vessel. Numerical results indicate that there is no oscillation of pressure and velocity across the interface and it is feasible to apply it to solve compressible multi-fluid flows with large density ratio (1000) and strong shock wave (the pressure ratio is 10,000) interaction with the interface.
International Nuclear Information System (INIS)
Ruspini, L.C.
2012-01-01
Highlights: ► The stability influence of piping fluid inertia on two-phase instabilities is studied. ► Inlet inertia stabilizes the system while outlet inertia destabilizes it. ► High-order modes oscillations are found and analyzed. ► The effect of compressible volumes in the system is studied. ► Inlet compressibility destabilizes the system while outlet comp. stabilizes it. - Abstract: The most common kind of static and dynamic two-phase flow instabilities namely Ledinegg and density wave oscillations are studied. A new model to study two-phase flow instabilities taking into account general parameters from real systems is proposed. The stability influence of external parameters such as the fluid inertia and the presence of compressible gases in the system is analyzed. High-order oscillation modes are found to be related with the fluid inertia of external piping. The occurrence of high-order modes in experimental works is analyzed with focus on the results presented in this work. Moreover, both inertia and compressibility are proven to have a high impact on the stability limits of the systems. The performed study is done by modeling the boiling channel using a one dimensional equilibrium model. An incompressible transient model describes the evolution of the flow and pressure in the non-heated regions and an ideal gas model is used to simulate the compressible volumes in the system. The use of wavelet decomposition analysis is proven to be an efficient tool in stability analysis of several frequencies oscillations.
Effects of cord compression on fetal blood flow distribution and O2 delivery
International Nuclear Information System (INIS)
Itskovitz, J.; LaGamma, E.F.; Rudolph, A.M.
1987-01-01
The authors used the radionuclide microsphere technique in nine fetal lambs to examine the effect of partial cord compression on distribution of cardiac output and O 2 delivery to fetal organs and venous flow patterns. With a 50% reduction in umbilical blood flow the fraction of fetal cardiac output distributed to the brain, heart, carcass, kidneys, and gastrointestinal tract increased. Pulmonary blood flow fell. O 2 delivery to the brain and myocardium was maintained but was reduced to peripheral, renal, and gastrointestinal circulations. Hepatic blood flow decreased and O 2 delivery fell by 75%. The proportion of umbilical venous blood passing through the ductus venosus increased from 43.9 to 71.8%. The preferential distribution of ductus venosus blood flow through the foramen ovale was enhanced and the proportion of O 2 delivery to upper body organs derived from the ductus venosus increased. Abdominal inferior vena caval blood flow increased, and it was also preferentially distributed through the foramen ovale and constituted the major fraction of the arterial blood supply to the upper body organs. Thus cord compression modified the distribution of cardiac output and the patterns of venous returns in the fetus. This pattern of circulatory response differs from that observed with other causes of reduced O 2 delivery
An improved ghost-cell immersed boundary method for compressible flow simulations
Chi, Cheng
2016-05-20
This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. A sensor is introduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently in the Cartesian grid system. The improved ghost-cell method is validated against four test cases: (a) double Mach reflections on a ramp, (b) smooth Prandtl-Meyer expansion flows, (c) supersonic flows in a wind tunnel with a forward-facing step, and (d) supersonic flows over a circular cylinder. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Copyright © 2016 John Wiley & Sons, Ltd.
Preconditioned Conjugate Gradient methods for low speed flow calculations
Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing
1993-01-01
An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations are integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and the convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the lower-upper (L-U)-successive symmetric over-relaxation iterative scheme is more efficient than a preconditioner based on incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional line Gauss-Seidel relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.
International Nuclear Information System (INIS)
Kambe, Tsutomu
2013-01-01
A new representation of the solution to Euler's equation of motion is presented by using a system of expressions for compressible rotational flows of an ideal fluid. This is regarded as a generalization of Bernoulli's theorem to compressible rotational flows. The present expressions are derived from the variational principle. The action functional for the principle consists of the main terms of the total kinetic, potential and internal energies, together with three additional terms yielding the equations of continuity, entropy and a third term that provides the rotational component of velocity field. The last term has the form of scalar product satisfying gauge symmetry with respect to both translation and rotation. This is a generalization of the Clebsch transformation from a physical point of view. It is verified that the system of new expressions, in fact, satisfies Euler's equation of motion. (paper)
Interactive boundary-layer calculations of a transonic wing flow
Kaups, Kalle; Cebeci, Tuncer; Mehta, Unmeel
1989-01-01
Results obtained from iterative solutions of inviscid and boundary-layer equations are presented and compared with experimental values. The calculated results were obtained with an Euler code and a transonic potential code in order to furnish solutions for the inviscid flow; they were interacted with solutions of two-dimensional boundary-layer equations having a strip-theory approximation. Euler code results are found to be in better agreement with the experimental data than with the full potential code, especially in the presence of shock waves, (with the sole exception of the near-tip region).
Development of throughflow calculation code for axial flow compressors
International Nuclear Information System (INIS)
Kim, Ji Hwan; Kim, Hyeun Min; No, Hee Cheon
2005-01-01
The power conversion systems of the current HTGRs are based on closed Brayton cycle and major concern is thermodynamic performance of the axial flow helium gas turbines. Particularly, the helium compressor has some unique design challenges compared to the air-breathing compressor such as high hub-to-tip ratios throughout the machine and a large number of stages due to the physical property of the helium and thermodynamic cycle. Therefore, it is necessary to develop a design and analysis code for helium compressor that can estimate the design point and off-design performance accurately. KAIST nuclear system laboratory has developed a compressor design and analysis code by means of throughflow calculation and several loss models. This paper presents the outline of the development of a throughflow calculation code and its verification results
Calculation of Thomson scattering spectral fits for interpenetrating flows
Energy Technology Data Exchange (ETDEWEB)
Swadling, G. F., E-mail: george.swadling@imperial.ac.uk; Lebedev, S. V., E-mail: george.swadling@imperial.ac.uk; Burdiak, G. C.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Suzuki-Vidal, F. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2JI (Canada); Hall, G. N. [Blackett Laboratory, Imperial College, London, United Kingdom SW7 2BW and Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)
2014-12-15
Collective mode optical Thomson scattering has been used to investigate the interactions of radially convergent ablation flows in Tungsten wire arrays. These experiments were carried out at the Magpie pulsed power facility at Imperial College, London. Analysis of the scattered spectra has provided direct evidence of ablation stream interpenetration on the array axis, and has also revealed a previously unobserved axial deflection of the ablation streams towards the anode as they approach the axis. It is has been suggested that this deflection is caused by the presence of a static magnetic field, advected with the ablation streams, stagnated and accrued around the axis. Analysis of the Thomson scattering spectra involved the calculation and fitting of the multi-component, non-relativistic, Maxwellian spectral density function S (k, ω). The method used to calculate the fits of the data are discussed in detail.
Czech Academy of Sciences Publication Activity Database
Punčochářová-Pořízková, P.; Kozel, K.; Horáček, Jaromír
2011-01-01
Roč. 46, č. 1 (2011), s. 404-410 ISSN 0045-7930 R&D Projects: GA MŠk OC09019 Institutional research plan: CEZ:AV0Z20760514 Keywords : finite volume method * unsteady flow * low Mach number * viscous compressible fluid Subject RIV: BI - Acoustics Impact factor: 1.810, year: 2011 http://www.sciencedirect.com/science/article/pii/S0045793010003439
Temperature measurement in a compressible flow field using laser-induced iodine fluorescence
Fletcher, D. G.; Mcdaniel, J. C.
1987-01-01
The thermometric capability of a two-line fluorescence technique using iodine seed molecules in air is investigated analytically and verified experimentally in a known steady compressible flow field. Temperatures ranging from 165 to 295 K were measured in the flowfield using two iodine transitions accessed with a 30-GHz dye-laser scan near 543 nm. The effect of pressure broadening on temperature measurement is evaluated.
Cross-coupling effects in chemically non-equilibrium viscous compressible flows
International Nuclear Information System (INIS)
Kustova, E.V.; Giordano, D.
2011-01-01
Graphical abstract: Self-cosistent kinetic-theory description of chemical-reaction rates and mean normal stress in one-temperature viscous compressible gas flows. Reaearch highlights: → In chemically non-equilibrium viscous compressible flows, the rate of each reaction depends on the velocity divergence and rates of all other reactions. → Cross effects between the rates of chemical reactions and normal mean stress can be found in the symmetric form and expressed in terms of the reaction affinities. → In the case of small affinities, the entropy production is unconditionally non-negative; in the case of finite affinities, the entropy production related to the scalar forces has no definite sign. - Abstract: A closed self-consistent description of a one-temperature non-equilibrium reacting flow is presented on the basis of the kinetic theory methods. A general case including internal degrees of freedom, dissociation-recombination and exchange reactions, and arbitrary values of affinities of chemical reactions is considered. Chemical-reaction rates and mean normal stress in viscous compressible flows are studied and a symmetric cross coupling between these terms is found. It is shown that the rate of each chemical reaction and the mean normal stress depend on velocity divergence and affinities of all chemical reactions; the law of mass action is violated in viscous flows. The results obtained in the frame of linear irreversible thermodynamics can be deduced from the proposed model for the particular case of small affinities. The reciprocal Onsager-Casimir relations are verified, the symmetry of kinetic coefficients is demonstrated, and the entropy production in a viscous flow is studied.
Overall Ventilation System Flow Network Calculation for Site Recommendation
International Nuclear Information System (INIS)
Steinhoff, Jeff J.
2001-01-01
The scope of this calculation is to determine ventilation system resistances, pressure drops, airflows, and operating cost estimates for the Site Recommendation (SR) design as detailed in the ''Site Recommendation Subsurface Layout'' (BSC (Bechtel SAIC Company) 2001a). The statutory limit for emplacement of waste in Yucca Mountain is 70,000 metric tons of uranium (MTU) and is considered the base case for this report. The objective is to determine the overall repository system ventilation flow network for the monitoring phase during normal operations and to provide a basis for the system description document design descriptions. Any values derived from this calculation will not be used to support construction, fabrication, or procurement. The work scope is identified in the ''Technical Work Plan for Subsurface Design Section FY01 Work Activities'' (CRWMS M and O 2001, pp. 6 and 13). In accordance with the technical work plan this calculation was prepared in accordance with AP-3.12Q, ''Calculations'' and other procedures invoked by AP-3.12Q. It also incorporates the procedure AP-SI1.Q, ''Software Management''
Propagation of Shock on NREL Phase VI Wind Turbine Airfoil under Compressible Flow
Directory of Open Access Journals (Sweden)
Mohammad A. Hossain
2013-01-01
Full Text Available The work is focused on numeric analysis of compressible flow around National Renewable Energy Laboratory (NREL phase VI wind turbine blade airfoil S809. Although wind turbine airfoils are low Reynolds number airfoils, a reasonable investigation of compressible flow under extreme condition might be helpful. A subsonic flow (mach no. M=0.8 has been considered for this analysis and the impacts of this flow under seven different angles of attack have been determined. The results show that shock takes place just after the mid span at the top surface and just before the mid span at the bottom surface at zero angle of attack. Slowly the shock waves translate their positions as angle of attack increases. A relative translation of the shock waves in upper and lower face of the airfoil are presented. Variation of Turbulent viscosity ratio and surface Y+ have also been determined. A k-ω SST turbulent model is considered and the commercial CFD code ANSYS FLUENT is used to find the pressure coefficient (Cp as well as the lift (CL and drag coefficients (CD. A graphical comparison of shock propagation has been shown with different angle of attack. Flow separation and stream function are also determined.
Applicability of higher-order TVD method to low mach number compressible flows
International Nuclear Information System (INIS)
Akamatsu, Mikio
1995-01-01
Steep gradients of fluid density are the influential factor of spurious oscillation in numerical solutions of low Mach number (M<<1) compressible flows. The total variation diminishing (TVD) scheme is a promising remedy to overcome this problem and obtain accurate solutions. TVD schemes for high-speed flows are, however, not compatible with commonly used methods in low Mach number flows using pressure-based formulation. In the present study a higher-order TVD scheme is constructed on a modified form of each individual scalar equation of primitive variables. It is thus clarified that the concept of TVD is applicable to low Mach number flows within the framework of the existing numerical method. Results of test problems of the moving interface of two-component gases with the density ratio ≥ 4, demonstrate the accurate and robust (wiggle-free) profile of the scheme. (author)
A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension
Energy Technology Data Exchange (ETDEWEB)
Garrick, Daniel P. [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States); Owkes, Mark [Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT (United States); Regele, Jonathan D., E-mail: jregele@iastate.edu [Department of Aerospace Engineering, Iowa State University, Ames, IA (United States)
2017-06-15
Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.
Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Rahim Hematiyan, Mohammad; Koontz, Craig; Meigooni, Ali S.
2015-12-01
Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost® brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5% ± 5.9%.
International Nuclear Information System (INIS)
Mohammadyari, Parvin; Faghihi, Reza; Mosleh-Shirazi, Mohammad Amin; Lotfi, Mehrzad; Hematiyan, Mohammad Rahim; Koontz, Craig; Meigooni, Ali S
2015-01-01
Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost ® brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney–Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5% ± 5.9%. (paper)
Muralidharan, Balaji; Menon, Suresh
2018-03-01
A high-order adaptive Cartesian cut-cell method, developed in the past by the authors [1] for simulation of compressible viscous flow over static embedded boundaries, is now extended for reacting flow simulations over moving interfaces. The main difficulty related to simulation of moving boundary problems using immersed boundary techniques is the loss of conservation of mass, momentum and energy during the transition of numerical grid cells from solid to fluid and vice versa. Gas phase reactions near solid boundaries can produce huge source terms to the governing equations, which if not properly treated for moving boundaries, can result in inaccuracies in numerical predictions. The small cell clustering algorithm proposed in our previous work is now extended to handle moving boundaries enforcing strict conservation. In addition, the cell clustering algorithm also preserves the smoothness of solution near moving surfaces. A second order Runge-Kutta scheme where the boundaries are allowed to change during the sub-time steps is employed. This scheme improves the time accuracy of the calculations when the body motion is driven by hydrodynamic forces. Simple one dimensional reacting and non-reacting studies of moving piston are first performed in order to demonstrate the accuracy of the proposed method. Results are then reported for flow past moving cylinders at subsonic and supersonic velocities in a viscous compressible flow and are compared with theoretical and previously available experimental data. The ability of the scheme to handle deforming boundaries and interaction of hydrodynamic forces with rigid body motion is demonstrated using different test cases. Finally, the method is applied to investigate the detonation initiation and stabilization mechanisms on a cylinder and a sphere, when they are launched into a detonable mixture. The effect of the filling pressure on the detonation stabilization mechanisms over a hyper-velocity sphere launched into a hydrogen
A numerical method to calculate flow-induced vibrations in a turbulent flow
International Nuclear Information System (INIS)
Sadaoka, Noriyuki; Umegaki, Kikuo
1993-01-01
An unsteady fluid force on structures in a turbulent flow can cause their vibration. The phenomenon is the most important among various flow-induced vibrations and it is an important subject in design nuclear plant components such as heat exchangers. A new approach to simulate flow-induced vibrations is introduced. A fully coupled analysis of fluid-structure interaction has been realized in a turbulent flow field by integrating the following calculational steps: (a) solving turbulent flow by a direct simulation method where the ALE (arbitrary Lagrangian Eulerian) type approximation is adopted to take account of structure displacements; (b) estimating fluid force on structures by integrating fluid pressure and shear stress; (c) calculating dynamic response of structures and determining the amount of displacement; (d) regenerate curvilinear grids for new geometry using the boundary-fitted coordinate transformation method. Forced vibration of a circular cylinder in a cross flow were successfully simulated and the synchronization phenomena between Karman-vortices and cylinder vibrations were clearly seen
A renormalization group scaling analysis for compressible two-phase flow
International Nuclear Information System (INIS)
Chen, Y.; Deng, Y.; Glimm, J.; Li, G.; Zhang, Q.; Sharp, D.H.
1993-01-01
Computational solutions to the Rayleigh--Taylor fluid mixing problem, as modeled by the two-fluid two-dimensional Euler equations, are presented. Data from these solutions are analyzed from the point of view of Reynolds averaged equations, using scaling laws derived from a renormalization group analysis. The computations, carried out with the front tracking method on an Intel iPSC/860, are highly resolved and statistical convergence of ensemble averages is achieved. The computations are consistent with the experimentally observed growth rates for nearly incompressible flows. The dynamics of the interior portion of the mixing zone is simplified by the use of scaling variables. The size of the mixing zone suggests fixed-point behavior. The profile of statistical quantities within the mixing zone exhibit self-similarity under fixed-point scaling to a limited degree. The effect of compressibility is also examined. It is found that, for even moderate compressibility, the growth rates fail to satisfy universal scaling, and moreover, increase significantly with increasing compressibility. The growth rates predicted from a renormalization group fixed-point model are in a reasonable agreement with the results of the exact numerical simulations, even for flows outside of the incompressible limit
Identifiability of location and magnitude of flow barriers in slightly compressible flow
Kahrobaei, S.; Mansoori Habib Abadi, M.; Joosten, G.J.P.; Hof, Van den P.M.J.; Jansen, J.D.
2015-01-01
Classic identifiability analysis of flow barriers in incompressible single-phase flow reveals that it is not possible to identify the location and permeability of low-permeability barriers from production data (wellbore pressures and rates), and that only averaged reservoir properties in between
Identifiability of location and magnitude of flow barriers in slightly compressible flow
Kahrobaei, S.; Mansoori Habib Abadi, M.; Joosten, G.J.P.; Van den Hof, P.; Jansen, J.D.
2016-01-01
Classic identifiability analysis of flow barriers in incompressible single-phase flow reveals that it is not possible to identify the location and permeability of low-permeability barriers from production data (wellbore pressures and rates), and that only averaged reservoir properties in between
Modeling the Plasma Flow in the Inner Heliosheath with a Spatially Varying Compression Ratio
Energy Technology Data Exchange (ETDEWEB)
Nicolaou, G. [Swedish Institute of Space Physics, Kiruna (Sweden); Livadiotis, G. [Southwest Research Institute, San Antonio, Texas (United States)
2017-03-20
We examine a semi-analytical non-magnetic model of the termination shock location previously developed by Exarhos and Moussas. In their study, the plasma flow beyond the shock is considered incompressible and irrotational, thus the flow potential is analytically derived from the Laplace equation. Here we examine the characteristics of the downstream flow in the heliosheath in order to resolve several inconsistencies existing in the Exarhos and Moussas model. In particular, the model is modified in order to be consistent with the Rankine–Hugoniot jump conditions and the geometry of the termination shock. It is shown that a shock compression ratio varying along the latitude can lead to physically correct results. We describe the new model and present several simplified examples for a nearly spherical, strong termination shock. Under those simplifications, the upstream plasma is nearly adiabatic for large (∼100 AU) heliosheath thickness.
A multiscale method for compressible liquid-vapor flow with surface tension*
Directory of Open Access Journals (Sweden)
Jaegle Felix
2013-01-01
Full Text Available Discontinuous Galerkin methods have become a powerful tool for approximating the solution of compressible flow problems. Their direct use for two-phase flow problems with phase transformation is not straightforward because this type of flows requires a detailed tracking of the phase front. We consider the fronts in this contribution as sharp interfaces and propose a novel multiscale approach. It combines an efficient high-order Discontinuous Galerkin solver for the computation in the bulk phases on the macro-scale with the use of a generalized Riemann solver on the micro-scale. The Riemann solver takes into account the effects of moderate surface tension via the curvature of the sharp interface as well as phase transformation. First numerical experiments in three space dimensions underline the overall performance of the method.
Pre-compression volume on flow ripple reduction of a piston pump
Xu, Bing; Song, Yuechao; Yang, Huayong
2013-11-01
Axial piston pump with pre-compression volume(PCV) has lower flow ripple in large scale of operating condition than the traditional one. However, there is lack of precise simulation model of the axial piston pump with PCV, so the parameters of PCV are difficult to be determined. A finite element simulation model for piston pump with PCV is built by considering the piston movement, the fluid characteristic(including fluid compressibility and viscosity) and the leakage flow rate. Then a test of the pump flow ripple called the secondary source method is implemented to validate the simulation model. Thirdly, by comparing results among the simulation results, test results and results from other publications at the same operating condition, the simulation model is validated and used in optimizing the axial piston pump with PCV. According to the pump flow ripples obtained by the simulation model with different PCV parameters, the flow ripple is the smallest when the PCV angle is 13°, the PCV volume is 1.3×10-4 m3 at such operating condition that the pump suction pressure is 2 MPa, the pump delivery pressure 15 MPa, the pump speed 1 000 r/min, the swash plate angle 13°. At the same time, the flow ripple can be reduced when the pump suction pressure is 2 MPa, the pump delivery pressure is 5 MPa,15 MPa, 22 MPa, pump speed is 400 r/min, 1 000 r/min, 1 500 r/min, the swash plate angle is 11°, 13°, 15° and 17°, respectively. The finite element simulation model proposed provides a method for optimizing the PCV structure and guiding for designing a quieter axial piston pump.
Melcher, Kevin J.
2006-01-01
This report provides a user guide for the Compressible Flow Toolbox, a collection of algorithms that solve almost 300 linear and nonlinear classical compressible flow relations. The algorithms, implemented in the popular MATLAB programming language, are useful for analysis of one-dimensional steady flow with constant entropy, friction, heat transfer, or shock discontinuities. The solutions do not include any gas dissociative effects. The toolbox also contains functions for comparing and validating the equation-solving algorithms against solutions previously published in the open literature. The classical equations solved by the Compressible Flow Toolbox are: isentropic-flow equations, Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section.), normal-shock equations, oblique-shock equations, and Prandtl-Meyer expansion equations. At the time this report was published, the Compressible Flow Toolbox was available without cost from the NASA Software Repository.
Numerical groundwater flow calculations at the Finnsjoen site
International Nuclear Information System (INIS)
Lindbom, B.; Boghammar, A.; Lindberg, H.; Bjelkaas, J.
1991-02-01
The Swedish Nuclear Fuel and Waste Management Company (SKB) has initiated a research project called SKB 91, which is related to performance assessment of repositories for high level waste from nuclear power plants. Specifically the Finnsjoen site is of concern. As part of this research project, the report describes groundwater flow calculations at the Finnsjoen site, located in northern Uppland, approximately 150 km north of Stockholm. The calculations have been performed with the finite element method applying the porous media approach. The project comprises three steps, the first of which is concerned with the presence of salt below a hydraulically significant structure. This step was modelled in two dimensions in a semi-generic fashion, while the two following steps comprised three-dimensional modelling of the site at a semi-regional and a local scale. The semi-regional model covered approximately 43 square km while the area of the local model was roughly 6.6 square km. The semi-regional model included well expressed regional fracture zones that were explicitly modelled in deterministic manner. The modelling was performed with the finite element code NAMMU, used together with the program-package HYPAC. The latter was used for pre- and postprocessing purposes. The modelling was performed with 8-noded brick elements for the three-dimensional calculations, and the two-dimensional model involved the use of 8-noded rectangular elements. The present report is a revised version of a report previously published as a working report. The difference between the present report and the previous one, is that the present report describes the conclusions more site-specifically, the presentation of a number of the cases tackled has been pruned down, some editorial effort has been put into having the volume of the report reduced, and finally the summary has been edited and cut down. (authors)
Directory of Open Access Journals (Sweden)
Kokh Samuel
2012-04-01
Full Text Available We propose a method dedicated to the simulation of interface flows involving an arbitrary number m of compressible components. Our task is two-fold: we first introduce a m-component flow model that generalizes the two-material five-equation model of [2,3]. Then, we present a discretization strategy by means of a Lagrange-Remap [8,10] approach following the lines of [5,7,12]. The projection step involves an anti-dissipative mechanism derived from [11,12]. This feature allows to prevent the numerical diffusion of the material interfaces. We present two-dimensional simulation results of three-material flow. Nous proposons une méthode de simulation pour des écoulements comportant un nombre arbitraire m de composants compressibles séparés par des interfaces. Nous procdons en deux tapes : tout d’abord nous introduisons un modèle d’écoulementm composants qui généralise le modèle à cinq équations de [2,3]. Ensuite nous présentons une stratégie de discrétisation de type Lagrange-Projection [8,10] inspirée de [5,7,12]. La phase de projection met en œuvre une technique de transport anti-diffusive [11,12] qui permet de limiter la diffusion numérique des interfaces matérielles. Nous présentons des résultats de calcul bidimensionnel d’écoulement à trois composants.
Shallcross, Gregory; Capecelatro, Jesse
2017-11-01
Compressible particle-laden flows are common in engineering systems. Applications include but are not limited to water injection in high-speed jet flows for noise suppression, rocket-plume surface interactions during planetary landing, and explosions during coal mining operations. Numerically, it is challenging to capture these interactions due to the wide range of length and time scales. Additionally, there are many forms of the multiphase compressible flow equations with volume fraction effects, some of which are conflicting in nature. The purpose of this presentation is to develop the capability to accurately capture particle-shock interactions in systems with a large number of particles from dense to dilute regimes. A thorough derivation of the volume filtered equations is presented. The volume filtered equations are then implemented in a high-order, energy-stable Eulerian-Lagrangian framework. We show this framework is capable of decoupling the fluid mesh from the particle size, enabling arbitrary particle size distributions in the presence of shocks. The proposed method is then assessed against particle-laden shock tube data. Quantities of interest include fluid-phase pressure profiles and particle spreading rates. The effect of collisions in 2D and 3D are also evaluated.
Numerical research of the compressible flow in a vortex tube using OpenFOAM software
Directory of Open Access Journals (Sweden)
Burazer Jela M.
2017-01-01
Full Text Available The work presented in this paper is dealing with numerical simulation of energy separation mechanism and flow phenomena within a Ranque-Hilsch vortex tube. Simulation of turbulent, compressible, highly swirling flow inside vortex tube is performed using RANS approach, with Favre averaged conservation equations. For turbulence closure, k-ε and k-ω shear-stress transport models are used. It is assumed that the mean flow is axisymmetric, so the 2-D computational domain is used. Computations were performed using open-source CFD software Open- FOAM. All compressible solvers available within OpenFOAM were tested, and it was found that most of the solvers cannot predict energy separation. Code of two chosen solvers, which proved as the most robust, is modified in terms of mean energy equation implementation. Newly created solvers predict physically accepted behavior in vortex tube, with good agreement with experimental results. Comparison between performances of solvers is also presented. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 35046
Energy Technology Data Exchange (ETDEWEB)
Rusanov, A V; Yershov, S V [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine Kharkov (Ukraine)
1998-12-31
The numerical method is suggested for the calculation of the 3D periodically unsteady viscous cascade flow evoked by the aerodynamics interaction of blade rows. Such flow is described by the thin-layer Reynolds-averaged unsteady Navier-Stokes equations. The turbulent effects are simulated with the modified Baldwin-Lomax turbulence model. The problem statement allows to consider an unsteady flow through either a single turbo-machine stage or a multi stage turbomachine. The sliding mesh techniques and the time-space non-oscillatory square interpolation are used in axial spacings to calculate the flow in a computational domain that contains the reciprocally moving elements. The gasdynamical equations are integrated numerically with the implicit quasi-monotonous Godunov`s type ENO scheme of the second or third order of accuracy. The suggested numerical method is incorporated in the FlowER code developed by authors for calculations of the 3D viscous compressible flows through multi stage turbomachines. The numerical results are presented for unsteady turbine stage throughflows. The method suggested is shown to simulate qualitatively properly the main unsteady cascade effects in particular the periodically blade loadings, the propagation of stator wakes through rotor blade passage and the unsteady temperature flowfields for stages with cooled stator blades. (author) 21 refs.
Energy Technology Data Exchange (ETDEWEB)
Rusanov, A.V.; Yershov, S.V. [Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine Kharkov (Ukraine)
1997-12-31
The numerical method is suggested for the calculation of the 3D periodically unsteady viscous cascade flow evoked by the aerodynamics interaction of blade rows. Such flow is described by the thin-layer Reynolds-averaged unsteady Navier-Stokes equations. The turbulent effects are simulated with the modified Baldwin-Lomax turbulence model. The problem statement allows to consider an unsteady flow through either a single turbo-machine stage or a multi stage turbomachine. The sliding mesh techniques and the time-space non-oscillatory square interpolation are used in axial spacings to calculate the flow in a computational domain that contains the reciprocally moving elements. The gasdynamical equations are integrated numerically with the implicit quasi-monotonous Godunov`s type ENO scheme of the second or third order of accuracy. The suggested numerical method is incorporated in the FlowER code developed by authors for calculations of the 3D viscous compressible flows through multi stage turbomachines. The numerical results are presented for unsteady turbine stage throughflows. The method suggested is shown to simulate qualitatively properly the main unsteady cascade effects in particular the periodically blade loadings, the propagation of stator wakes through rotor blade passage and the unsteady temperature flowfields for stages with cooled stator blades. (author) 21 refs.
The effect of compressed air massage on skin blood flow and temperature.
Mars, Maurice; Maharaj, Sunil S; Tufts, Mark
2005-01-01
Compressed air massage is a new treatment modality that uses air under pressure to massage skin and muscle. It is claimed to improve skin blood flow but this has not been verified. Several pilot studies were undertaken to determine the effects of compressed air massage on skin blood flow and temperature. Skin blood flow (SBF), measured using laser Doppler fluxmetry and skin temperature was recorded under several different situations: (i) treatment, at 1 Bar pressure using a single-hole (5-mm) applicator head, for 1 min at each of several sites on the right and left lower legs, with SBF measured on the dorsum of the left foot; (ii) at the same treatment pressure, SBF was measured over the left tibialis anterior when treatment was performed at different distances from the probe; (iii) SBF and skin temperature of the lower leg were measured with treatment at 0 or 1 Bar for 45 min, using two different applicator heads; (iv) SBF was measured on the dorsum of the foot of 10 subjects with treatment for 1 min at 0, 0.5, 1, 1.5 and 2 Bar using three different applicator heads. (i) SBF of the left foot was not altered by treatment of the right leg or chest, but was significantly increased during treatment of the left sole and first web, p Compressed air massage causes an immediate increase in SBF, and an immediate fall in SBF when treatment is stopped. The effect appears to be locally and not centrally mediated and is related to the pressure used. Treatment cools the skin for at least 15 min after a 45-min treatment.
Toluene laser-induced fluorescence imaging of compressible flows in an expansion tube
Miller, V. A.; Gamba, M.; Mungal, M. G.; Hanson, R. K.; Mohri, K.; Schulz, C.
2011-11-01
Laser-induced fluorescence (LIF) imaging using toluene as a tracer molecule has been developed for high-speed, low-to-moderate enthalpy conditions in the Stanford 6-inch Expansion Tube. The approach is demonstrated on three canonical compressible flow configurations: (i) supersonic flow over a 20° wedge, (ii) around a cylinder, and (iii) a supersonic boundary layer. Under constant-pressure conditions, toluene LIF offers unique sensitivity to temperature and can therefore be used as an accurate thermometry diagnostic for supersonic flows; on the other hand, for variable-pressure flow fields (e.g., flow around a blunt body), toluene LIF imaging is demonstrated to be an effective flow visualization tool. The three configurations selected demonstrate the diagnostic in these two capacities. For all configurations considered in the study, toluene (0.6% by volume) is seeded into a nitrogen freestream at a Mach number ~ 2.2, T ~ 500K, and p ~ 1.5 bar. A frequency-quadrupled pulsed Nd:YAG laser is used to excite the tracer, and the resulting fluorescence is captured by an ICCD camera. Synthetic fluorescence signals from CFD solutions of each case have been computed and compare favorably to measured signals. Sponsored by DoE PSAAP at Stanford University.
Experiments in a flighted conveyor comparing shear rates in compressed versus free surface flows
Pohlman, Nicholas; Higgins, Hannah; Krupiarz, Kamila; O'Connor, Ryan
2017-11-01
Uniformity of granular flow rate is critical in industry. Experiments in a flighted conveyor system aim to fill a gap in knowledge of achieving steady mass flow rate by correlating velocity profile data with mass flow rate measurements. High speed images were collected for uniformly-shaped particles in a bottom-driven flow conveyor belt system from which the velocity profiles can be generated. The correlation of mass flow rates from the velocity profiles to the time-dependent mass measurements will determine energy dissipation rates as a function of operating conditions. The velocity profiles as a function of the size of the particles, speed of the belt, and outlet size, will be compared to shear rate relationships found in past experiments that focused on gravity-driven systems. The dimension of the linear shear and type of decaying transition to the stationary bed may appear different due to the compression versus dilation space in open flows. The application of this research can serve to validate simulations in discrete element modeling and physically demonstrate a process that can be further developed and customized for industry applications, such as feeding a biomass conversion reactor. Sponsored by NIU's Office of Student Engagement and Experiential Learning.
Del Pino, S.; Labourasse, E.; Morel, G.
2018-06-01
We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is). The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach. This imposes a multidimensional definition and analysis of the scheme.
Chemically reacting flow of a compressible thermally radiating two-component plasma
International Nuclear Information System (INIS)
Bestman, A.R.
1990-12-01
The paper studies the compressible flow of a hot two-component plasma in the presence of gravitation and chemical reaction in a vertical channel. For the optically thick gas approximation, closed form analytical solutions are possible. Asymptotic solutions are also obtained for the general differential approximation when the temperature of the two bounding walls are the same. In the general case the problem is reduced to the solution of standard nonlinear integral equations which can be tackled by iterative procedure. The results are discussed quantitatively. The problem may be applicable to the understanding of explosive hydrogen-burning model of solar flares. (author). 6 refs, 4 figs
Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.
Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter
2010-01-01
We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.
Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†
Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter
2010-01-01
We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518
Analysis of compressible light dynamic stall flow at transitional Reynolds numbers
DEFF Research Database (Denmark)
Dyken, R.D. Van; Ekaterinaris, John A.; Chandrasekhara, M.S.
1996-01-01
Numerical and experimental results of steady and light dynamic stall flow over an oscillating NACA 0012 airfoil at a freestream Mach number of 0.3 and Reynolds number of 0.54 x 10(6) are compared, The experimental observation that dynamic stall is induced from the bursting of a laminar separation...... point is specified suitably and a simple transition length model is incorporated to determine the extent of the laminar separation bubble. The thin-layer approximations of compressible, Reynolds-averaged, Navier-Stokes equations are used for the numerical solution, with an implicit, upwind-biased, third...
Numerical simulation of fluid-structure interaction of compressible flow and elastic structure
Czech Academy of Sciences Publication Activity Database
Hasnedlová, J.; Feistauer, M.; Horáček, Jaromír; Kosík, A.; Kučera, V.
2013-01-01
Roč. 95, Suppl 1 (2013), s. 343-361 ISSN 0010-485X R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional research plan: CEZ:AV0Z20760514 Institutional support: RVO:61388998 Keywords : fluid–structure interaction * compressible flow * discontinuous Galerkin finite element method * coupling algorithms Subject RIV: BI - Acoustics Impact factor: 1.055, year: 2013 http://link.springer.com/article/10.1007%2Fs00607-012-0240-x
Gurovich, V.; Virozub, A.; Rososhek, A.; Bland, S.; Spielman, R. B.; Krasik, Ya. E.
2018-05-01
A major experimental research area in material equation-of-state today involves the use of off-Hugoniot measurements rather than shock experiments that give only Hugoniot data. There is a wide range of applications using quasi-isentropic compression of matter including the direct measurement of the complete isentrope of materials in a single experiment and minimizing the heating of flyer plates for high-velocity shock measurements. We propose a novel approach to generating quasi-isentropic compression of matter. Using analytical modeling and hydrodynamic simulations, we show that a working fluid composed of compressed water, generated by an underwater electrical explosion of a planar wire array, might be used to efficiently drive the quasi-isentropic compression of a copper target to pressures ˜2 × 1011 Pa without any complex target designs.
International Nuclear Information System (INIS)
Gan Yanbiao; Li Yingjun; Xu Aiguo; Zhang Guangcai
2011-01-01
We further develop the lattice Boltzmann (LB) model [Physica A 382 (2007) 502] for compressible flows from two aspects. Firstly, we modify the Bhatnagar-Gross-Krook (BGK) collision term in the LB equation, which makes the model suitable for simulating flows with different Prandtl numbers. Secondly, the flux limiter finite difference (FLFD) scheme is employed to calculate the convection term of the LB equation, which makes the unphysical oscillations at discontinuities be effectively suppressed and the numerical dissipations be significantly diminished. The proposed model is validated by recovering results of some well-known benchmarks, including (i) The thermal Couette flow; (ii) One- and two-dimensional Riemann problems. Good agreements are obtained between LB results and the exact ones or previously reported solutions. The flexibility, together with the high accuracy of the new model, endows the proposed model considerable potential for tracking some long-standing problems and for investigating nonlinear nonequilibrium complex systems. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
International Nuclear Information System (INIS)
Oh, Kyeongmin; Won, Seongyeon; Ju, Hyunchul
2015-01-01
Highlights: • The effects of electrode compression on VRFB are examined. • The electronic conductivity is improved when the compression is increased. • The kinetic losses are similar regardless of the electrode compression level. • The vanadium distribution is more uniform within highly compressed electrode. - Abstract: The porous carbon felt electrode is one of the major components of all-vanadium redox flow batteries (VRFBs). These electrodes are necessarily compressed during stack assembly to prevent liquid electrolyte leakage and diminish the interfacial contact resistance among VRFB stack components. The porous structure and properties of carbon felt electrodes have a considerable influence on the electrochemical reactions, transport features, and cell performance. Thus, a numerical study was performed herein to investigate the effects of electrode compression on the charge and discharge behavior of VRFBs. A three-dimensional, transient VRFB model developed in a previous study was employed to simulate VRFBs under two degrees of electrode compression (10% vs. 20%). The effects of electrode compression were precisely evaluated by analysis of the solid/electrolyte potential profiles, transfer current density, and vanadium concentration distributions, as well as the overall charge and discharge performance. The model predictions highlight the beneficial impact of electrode compression; the electronic conductivity of the carbon felt electrode is the main parameter improved by electrode compression, leading to reduction in ohmic loss through the electrodes. In contrast, the kinetics of the redox reactions and transport of vanadium species are not significantly altered by the degree of electrode compression (10% to 20%). This study enhances the understanding of electrode compression effects and demonstrates that the present VRFB model is a valuable tool for determining the optimal design and compression of carbon felt electrodes in VRFBs.
Analysis of a discrete element method and coupling with a compressible fluid flow method
International Nuclear Information System (INIS)
Monasse, L.
2011-01-01
This work aims at the numerical simulation of compressible fluid/deformable structure interactions. In particular, we have developed a partitioned coupling algorithm between a Finite Volume method for the compressible fluid and a Discrete Element method capable of taking into account fractures in the solid. A survey of existing fictitious domain methods and partitioned algorithms has led to choose an Embedded Boundary method and an explicit coupling scheme. We first showed that the Discrete Element method used for the solid yielded the correct macroscopic behaviour and that the symplectic time-integration scheme ensured the preservation of energy. We then developed an explicit coupling algorithm between a compressible inviscid fluid and an un-deformable solid. Mass, momentum and energy conservation and consistency properties were proved for the coupling scheme. The algorithm was then extended to the coupling with a deformable solid, in the form of a semi implicit scheme. Finally, we applied this method to unsteady inviscid flows around moving structures: comparisons with existing numerical and experimental results demonstrate the excellent accuracy of our method. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Coste, D. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1964-07-01
With a view to determining the changes occurring in gas reactors after cooling accidents, a calculation programme is established for unidimensional gas flows with pressure drops, heat exchanges and in certain cases blowing, in a reticulated lattice. Any schematization can be taken into account by the use of a set of indices. This programme, of which the FORTRAN list is given, is applied to particular cases of sudden pressure drops in the circuits. The results obtained are in good agreement with those obtained both from the graphical method using the characteristics and from experimental recorded data. (author) [French] En vue de determiner les evolutions des reacteurs a gaz apres accident de refroidissement, on etablit un programme de calcul pour les ecoulements gazeux unidimensionnels avec pertes de charge, echanges thermiques et eventuellement soufflage, en reseau maille. Toute schematisation peut etre prise en compte grace a un jeu d'indices. Ce programme, dont la liste FORTRAN est presentee, est applique a des cas particuliers de degonflage brutal de circuits. Ses resultats sont en bon accord, d'une part avec ceux de la methode graphique des caracteristiques, d'autre part avec des enregistrements experimentaux. (auteur)
Energy Technology Data Exchange (ETDEWEB)
Coste, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1964-07-01
With a view to determining the changes occurring in gas reactors after cooling accidents, a calculation programme is established for unidimensional gas flows with pressure drops, heat exchanges and in certain cases blowing, in a reticulated lattice. Any schematization can be taken into account by the use of a set of indices. This programme, of which the FORTRAN list is given, is applied to particular cases of sudden pressure drops in the circuits. The results obtained are in good agreement with those obtained both from the graphical method using the characteristics and from experimental recorded data. (author) [French] En vue de determiner les evolutions des reacteurs a gaz apres accident de refroidissement, on etablit un programme de calcul pour les ecoulements gazeux unidimensionnels avec pertes de charge, echanges thermiques et eventuellement soufflage, en reseau maille. Toute schematisation peut etre prise en compte grace a un jeu d'indices. Ce programme, dont la liste FORTRAN est presentee, est applique a des cas particuliers de degonflage brutal de circuits. Ses resultats sont en bon accord, d'une part avec ceux de la methode graphique des caracteristiques, d'autre part avec des enregistrements experimentaux. (auteur)
Go with the Flow. Moving meshes and solution monitoring for compressible flow simulation
van Dam, A.
2009-01-01
The simulation of time-dependent physical problems, such as flows of some kind, places high demands on the domain discretization in order to obtain high accuracy of the numerical solution. We present a moving mesh method in which the mesh points automatically move towards regions where high spatial
Isentropic Gas Flow for the Compressible Euler Equation in a Nozzle
Tsuge, Naoki
2013-08-01
We study the motion of isentropic gas in a nozzle. Nozzles are used to increase the thrust of engines or to accelerate a flow from subsonic to supersonic. Nozzles are essential parts for jet engines, rocket engines and supersonicwind tunnels. In the present paper, we consider unsteady flow, which is governed by the compressible Euler equation, and prove the existence of global solutions for the Cauchy problem. For this problem, the existence theorem has already been obtained for initial data away from the sonic state, (Liu in Commun Math Phys 68:141-172, 1979). Here, we are interested in the transonic flow, which is essential for engineering and physics. Although the transonic flow has recently been studied (Tsuge in J Math Kyoto Univ 46:457-524, 2006; Lu in Nonlinear Anal Real World Appl 12:2802-2810, 2011), these papers assume monotonicity of the cross section area. Here, we consider the transonic flow in a nozzle with a general cross section area. When we prove global existence, the most difficult point is obtaining a bounded estimate for approximate solutions. To overcome this, we employ a new invariant region that depends on the space variable. Moreover, we introduce a modified Godunov scheme. The corresponding approximate solutions consist of piecewise steady-state solutions of an auxiliary equation, which yield a desired bounded estimate. In order to prove their convergence, we use the compensated compactness framework.
Interactive computer graphics applications for compressible aerodynamics
Benson, Thomas J.
1994-01-01
Three computer applications have been developed to solve inviscid compressible fluids problems using interactive computer graphics. The first application is a compressible flow calculator which solves for isentropic flow, normal shocks, and oblique shocks or centered expansions produced by two dimensional ramps. The second application couples the solutions generated by the first application to a more graphical presentation of the results to produce a desk top simulator of three compressible flow problems: 1) flow past a single compression ramp; 2) flow past two ramps in series; and 3) flow past two opposed ramps. The third application extends the results of the second to produce a design tool which solves for the flow through supersonic external or mixed compression inlets. The applications were originally developed to run on SGI or IBM workstations running GL graphics. They are currently being extended to solve additional types of flow problems and modified to operate on any X-based workstation.
One-dimensional model of steady, compressible channel flow with mass, momentum, and energy addition
International Nuclear Information System (INIS)
Johnston, S.C.
1976-09-01
A one-dimensional model of steady, compressible channel flow with mass, momentum and energy addition is discussed. An exact solution to the governing equations was found and from it a similarity parameter relating dimensionless mass, momentum and energy addition identified. This similarity parameter is used to make two flows having different dimensionless mass, momentum and energy additions equivalent. Application of the similarity parameter to the LASL Intense Neutron Source experiment and the Sandia simulation of that experiment results in an expression relating the dimensionless mass addition of combustible gas required in the Sandia experiment to dimensionless energy addition in the LASL experiment. Results of the analysis indicate that the Sandia experiment can realistically simulate the energy addition in the LASL Intense Neutron Source experiment
Saturated-unsaturated flow to a partially penetrating well with storage in a compressible aquifer
Mishra, P. K.; Neuman, S. P.
2010-12-01
Mishra and Neuman [2010] developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or the unsaturated zone. We extend their solution to the case of a finite diameter pumping well with storage. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten - Mualem constitutive model; and use our solution to analyze drawdown data from a pumping test conducted at the Borden site in Ontario, Canada.
Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field
Moawad, S. M.; Moawad
2013-10-01
The equilibrium and stability properties of ideal magnetohydrodynamics (MHD) of compressible flow in a gravitational field with a translational symmetry are investigated. Variational principles for the steady-state equations are formulated. The MHD equilibrium equations are obtained as critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross helicity), the momentum, and the magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear second-order partial differential equation (PDE) associated with hydrodynamic Bernoulli law. The PDE can be an elliptic or a parabolic equation depending on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability conditions under translational symmetric perturbations are established for the equilibrium states.
Application of the annular dispersed flow model to two-phase critical flow calculation
International Nuclear Information System (INIS)
Ivandaev, A.I.; Nigmatulin, B.I.
1977-01-01
The application of the annular dispersed flow model with an effective monodisperse core to the calculation of vapour-liquid mixture maximum rates through long pipes is discussed. An effect of the main dominant parameters such as evaporation intensity, diameter of drops picked out from the film surface and initial drop diameter at the pipe inlet on the outlet critical condition formation process has been investigated. The corresponding model constants have been determined. The calculated and experimental values of critical rates and pressure profiles along the channel have been found to be in a satisfactory agreement in the studied range of parameters. The observed non-conformity of the calculated and experimental values of critical pressures and vapour contents can be due to inadequate accuracy of the experimental techniques
Numerically stable fluid–structure interactions between compressible flow and solid structures
Grétarsson, Jón Tómas
2011-04-01
We propose a novel method to implicitly two-way couple Eulerian compressible flow to volumetric Lagrangian solids. The method works for both deformable and rigid solids and for arbitrary equations of state. The method exploits the formulation of [11] which solves compressible fluid in a semi-implicit manner, solving for the advection part explicitly and then correcting the intermediate state to time tn+1 using an implicit pressure, obtained by solving a modified Poisson system. Similar to previous fluid-structure interaction methods, we apply pressure forces to the solid and enforce a velocity boundary condition on the fluid in order to satisfy a no-slip constraint. Unlike previous methods, however, we apply these coupled interactions implicitly by adding the constraint to the pressure system and combining it with any implicit solid forces in order to obtain a strongly coupled, symmetric indefinite system (similar to [17], which only handles incompressible flow). We also show that, under a few reasonable assumptions, this system can be made symmetric positive-definite by following the methodology of [16]. Because our method handles the fluid-structure interactions implicitly, we avoid introducing any new time step restrictions and obtain stable results even for high density-to-mass ratios, where explicit methods struggle or fail. We exactly conserve momentum and kinetic energy (thermal fluid-structure interactions are not considered) at the fluid-structure interface, and hence naturally handle highly non-linear phenomenon such as shocks, contacts and rarefactions. © 2011 Elsevier Inc.
Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes
McGrath, T.; St. Clair, J.; Balachandar, S.
2018-05-01
Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.
Laser driven supersonic flow over a compressible foam surface on the Nike lasera)
Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Plewa, T.; Velikovich, A. L.; Gillespie, R. S.; Weaver, J. L.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.
2010-05-01
A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.
Laser driven supersonic flow over a compressible foam surface on the Nike laser
International Nuclear Information System (INIS)
Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Visco, A.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Velikovich, A. L.; Weaver, J. L.; Plewa, T.
2010-01-01
A laser driven millimeter-scale target was used to generate a supersonic shear layer in an attempt to create a Kelvin-Helmholtz (KH) unstable interface in a high-energy-density (HED) plasma. The KH instability is a fundamental fluid instability that remains unexplored in HED plasmas, which are relevant to the inertial confinement fusion and astrophysical environments. In the experiment presented here the Nike laser [S. P. Obenschain et al., Phys. Plasmas 3, 2098 (1996)] was used to create and drive Al plasma over a rippled foam surface. In response to the supersonic Al flow (Mach=2.6±1.1) shocks should form in the Al flow near the perturbations. The experimental data were used to infer the existence and location of these shocks. In addition, the interface perturbations show growth that has possible contributions from both KH and Richtmyer-Meshkov instabilities. Since compressible shear layers exhibit smaller growth, it is important to use the KH growth rate derived from the compressible dispersion relation.
Energy Technology Data Exchange (ETDEWEB)
R. A. Berry; R. Saurel; F. Petitpas; E. Daniel; O. Le Metayer; S. Gavrilyuk; N. Dovetta
2008-10-01
In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. Within the context of multiphase flows, two bubble-dynamic phenomena – boiling (heterogeneous) and flashing or cavitation (homogeneous boiling), with bubble collapse, are technologically very important to nuclear reactor systems. The main difference between boiling and flashing is that bubble growth (and collapse) in boiling is inhibited by limitations on the heat transfer at the interface, whereas bubble growth (and collapse) in flashing is limited primarily by inertial effects in the surrounding liquid. The flashing process tends to be far more explosive (and implosive), and is more violent and damaging (at least in the near term) than the bubble dynamics of boiling. However, other problematic phenomena, such as crud deposition, appear to be intimately connecting with the boiling process. In reality, these two processes share many details.
Study of compressible turbulent flows in supersonic environment by large-eddy simulation
Genin, Franklin
The numerical resolution of turbulent flows in high-speed environment is of fundamental importance but remains a very challenging problem. First, the capture of strong discontinuities, typical of high-speed flows, requires the use of shock-capturing schemes, which are not adapted to the resolution of turbulent structures due to their intrinsic dissipation. On the other hand, low-dissipation schemes are unable to resolve shock fronts and other sharp gradients without creating high amplitude numerical oscillations. Second, the nature of turbulence in high-speed flows differs from its incompressible behavior, and, in the context of Large-Eddy Simulation, the subgrid closure must be adapted to the modeling of compressibility effects and shock waves on turbulent flows. The developments described in this thesis are two-fold. First, a state of the art closure approach for LES is extended to model subgrid turbulence in compressible flows. The energy transfers due to compressible turbulence and the diffusion of turbulent kinetic energy by pressure fluctuations are assessed and integrated in the Localized Dynamic ksgs model. Second, a hybrid numerical scheme is developed for the resolution of the LES equations and of the model transport equation, which combines a central scheme for turbulent resolutions to a shock-capturing method. A smoothness parameter is defined and used to switch from the base smooth solver to the upwind scheme in regions of discontinuities. It is shown that the developed hybrid methodology permits a capture of shock/turbulence interactions in direct simulations that agrees well with other reference simulations, and that the LES methodology effectively reproduces the turbulence evolution and physical phenomena involved in the interaction. This numerical approach is then employed to study a problem of practical importance in high-speed mixing. The interaction of two shock waves with a high-speed turbulent shear layer as a mixing augmentation technique is
Tribological properties of high-speed steel treated by compression plasma flow
International Nuclear Information System (INIS)
Cherenda, K.K.; Uglov, V.V.; Anishchik, V.M.; Stalmashonak, A.K.; Astashinski, V.M.
2004-01-01
Full text: The investigation of tribological properties of two high-speed steels AISI M2 and AISI Tl treated by the nitrogen compression plasma flow was the main aim of this work. Two types of samples were investigated before and after quenching. The plasma flow was received in a magneto-plasma compressor. The impulse duration was ∼100 μs, the number of impulses varied in the range of 1-5, the nitrogen pressure in the chamber was 400-4000 Pa, the energy absorbed by the sample was 2-10 J/cm 2 per impulse. Tribological properties were examined by means of a tribometer TAYl under conditions of dry friction. The Vickers's microhardness was measured by a hard meter PMT3. X-ray diffraction analysis, Auger electron spectroscopy, scanning electron microscopy and energy dispersion microanalysis were used for samples characterization. The earlier conducted investigations showed that the compression plasma flow suited well for the improvement of tribological properties of iron and low-alloyed steels due to the formation of hardening nitrides in the near surface layer. It was found that in the case of high-speed steels only not quenched samples had increased hardness after treatment. The latter can be explained by the formation of hardening nitrides though the phase analysis did not clearly reveal their presence. The element composition confirmed the presence of nitrogen in the surface layer with the concentration up to 30 at. %. The treatment of quenched samples almost always resulted in the hardness decrease due to the dissolution or partial dissolution of alloying elements carbides: M 6 C, MC, M 23 C 6 . The rate of carbides dissolution increased with the growth of the energy absorbed by the sample. The treated samples showed a lower value of the friction coefficient than the untreated one. It could be explained by the formation of nitrogenous austenite which was found out by the phase analysis. At the same time the compression plasma flow strongly influenced surface
Yang, Shan; Tong, Xiangqian
2016-01-01
Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverte...
International Nuclear Information System (INIS)
Haffner, D.R.
1976-01-01
1 - Description of problem or function: PACTOLUS is a code for computing nuclear power costs using the discounted cash flow method. The cash flows are generated from input unit costs, time schedules and burnup data. CLOTHO calculates and communicates to PACTOLUS mass flow data to match a specified load factor history. 2 - Method of solution: Plant lifetime power costs are calculated using the discounted cash flow method. 3 - Restrictions on the complexity of the problem - Maxima of: 40 annual time periods into which all costs and mass flows are accumulated, 20 isotopic mass flows charged into and discharged from the reactor model
Thermodynamic bounds for existence of normal shock in compressible fluid flow in pipes
Directory of Open Access Journals (Sweden)
SERGIO COLLE
Full Text Available Abstract The present paper is concerned with the thermodynamic theory of the normal shock in compressible fluid flow in pipes, in the lights of the pioneering works of Lord Rayleigh and G. Fanno. The theory of normal shock in pipes is currently presented in terms of the Rayleigh and Fanno curves, which are shown to cross each other in two points, one corresponding to a subsonic flow and the other corresponding to a supersonic flow. It is proposed in this paper a novel differential identity, which relates the energy flux density, the linear momentum flux density, and the entropy, for constant mass flow density. The identity so obtained is used to establish a theorem, which shows that Rayleigh and Fanno curves become tangent to each other at a single sonic point. At the sonic point the entropy reaches a maximum, either as a function of the pressure and the energy density flux or as a function of the pressure and the linear momentum density flux. A Second Law analysis is also presented, which is fully independent of the Second Law analysis based on the Rankine-Hugoniot adiabatic carried out by Landau and Lifshitz (1959.
International Nuclear Information System (INIS)
Pettersen, G.; Ostgaard, E.
1988-01-01
The pressure and the compressibility of solid H 2 and D 2 are obtained from ground-state energies calculated by means of a modified variational lowest order constrained-variation (LOCV) method. Both fcc and hcp structures are considered, but results are given for the fcc structure only. The pressure and the compressibility are calculated or estimated from the dependence of the ground-state energy on density or molar volume, generally in a density region of 0.65σ -3 to 1.3σ -3 , corresponding to a molar volume of 0.65σ -3 to 1.3σ -3 , corresponding to a molar volume of 12-24 cm 3 mole, where σ = 2.958 angstrom, and the calculations are done for five different two-body potentials. Theoretical results for the pressure are 340-460 atm for solid H 2 at a particle density of 0.82σ -3 or a molar volume of 19 cm 3 /mole, and 370-490 atm for solid 4 He at a particle density of 0.92σ -3 or a molar volume of 17 cm 3 /mole. The corresponding experimental results are 650 and 700 atm, respectively. Theoretical results for the compressibility are 210 times 10 -6 to 260 times 10 -6 atm -1 for solid H 2 at a particle density of 0.82σ -3 or a molar volume of 19 cm 3 /mole, and 150 times 10 -6 to 180 times 10 -6 atm -1 for solid D 2 at a particle density of 0.92σ -3 or a molar volume of 17 cm 3 mole. The corresponding experimental results are 180 times 10 -6 and 140 times 10 -6 atm -1 , respectively. The agreement with experimental results is better for higher densities
Software for X-Ray Images Calculation of Hydrogen Compression Device in Megabar Pressure Range
Egorov, Nikolay; Bykov, Alexander; Pavlov, Valery
2007-06-01
Software for x-ray images simulation is described. The software is a part of x-ray method used for investigation of an equation of state of hydrogen in a megabar pressure range. A graphical interface that clearly and simply allows users to input data for x-ray image calculation: properties of the studied device, parameters of the x-ray radiation source, parameters of the x-ray radiation recorder, the experiment geometry; to represent the calculation results and efficiently transmit them to other software for processing. The calculation time is minimized. This makes it possible to perform calculations in a dialogue regime. The software is written in ``MATLAB'' system.
Calculation of the flow distribution for the new core of the RA-6 reactor
International Nuclear Information System (INIS)
Garcia, J.C.; Delmastro, Dario F.
2007-01-01
In this work the pressure drop, the flow distribution, effective cooling flow rate and the velocity in the subchannels that cool fuel plates for the new core of RA-6 research reactor were calculated. These calculations were performed for a flow of 340 m 3 /hr and water temperatures of 12 C degrees, of 35 C degrees and 42 C degrees. The flow distribution was calculated without considering either safety factors or geometric changes. All the calculations were performed considering the flow as isothermal. (author) [es
Dahlburg, R. B.; Picone, J. M.
1989-01-01
The results of fully compressible, Fourier collocation, numerical simulations of the Orszag-Tang vortex system are presented. The initial conditions for this system consist of a nonrandom, periodic field in which the magnetic and velocity field contain X points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average Mach number of the flow. In these numerical simulations, this initial Mach number is varied from 0.2-0.6. These values correspond to average plasma beta values ranging from 30.0 to 3.3, respectively. It is found that compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as the mass density and the nonsolenoidal flow field. These effects include (1) a retardation of growth of correlation between the magnetic field and the velocity field, (2) the emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.
Barth, Timothy J.; Chan, Tony F.; Tang, Wei-Pai
1998-01-01
This paper considers an algebraic preconditioning algorithm for hyperbolic-elliptic fluid flow problems. The algorithm is based on a parallel non-overlapping Schur complement domain-decomposition technique for triangulated domains. In the Schur complement technique, the triangulation is first partitioned into a number of non-overlapping subdomains and interfaces. This suggests a reordering of triangulation vertices which separates subdomain and interface solution unknowns. The reordering induces a natural 2 x 2 block partitioning of the discretization matrix. Exact LU factorization of this block system yields a Schur complement matrix which couples subdomains and the interface together. The remaining sections of this paper present a family of approximate techniques for both constructing and applying the Schur complement as a domain-decomposition preconditioner. The approximate Schur complement serves as an algebraic coarse space operator, thus avoiding the known difficulties associated with the direct formation of a coarse space discretization. In developing Schur complement approximations, particular attention has been given to improving sequential and parallel efficiency of implementations without significantly degrading the quality of the preconditioner. A computer code based on these developments has been tested on the IBM SP2 using MPI message passing protocol. A number of 2-D calculations are presented for both scalar advection-diffusion equations as well as the Euler equations governing compressible fluid flow to demonstrate performance of the preconditioning algorithm.
Numerical method for two-phase flow discontinuity propagation calculation
International Nuclear Information System (INIS)
Toumi, I.; Raymond, P.
1989-01-01
In this paper, we present a class of numerical shock-capturing schemes for hyperbolic systems of conservation laws modelling two-phase flow. First, we solve the Riemann problem for a two-phase flow with unequal velocities. Then, we construct two approximate Riemann solvers: an one intermediate-state Riemann solver and a generalized Roe's approximate Riemann solver. We give some numerical results for one-dimensional shock-tube problems and for a standard two-phase flow heat addition problem involving two-phase flow instabilities
CFD Calculations of the Flow Around a Wind Turbine Nacelle
International Nuclear Information System (INIS)
Varela, J.; Bercebal, D.
1999-01-01
The purpose of this work is to identify the influence of a MADE AE30 wind turbine nacelle on the site calibration anemometer placed on the upper back of the nacelle by means of flow simulations around the nacelle using FLUENT, a Commercial Computational Fluid Dynamics code (CFD), which provides modeling capabilities for the simulation of wide range laminar and turbulent fluid flow problems. Different 2D and 3D simulations were accomplished in order to estimate the effects of the complex geometry on the flow behavior. The speed up and braking values of the air flow at the anemometer position are presented for different flow conditions. Finally some conclusions about the accuracy of results are mentioned. (Author) 5 refs
CFD Calculations of the Flow Around a Wind Turbine Nacelle
Energy Technology Data Exchange (ETDEWEB)
Varela, J.; Bercebal, D. [Ciemat, Madrid (Spain)
2000-07-01
The purpose of this work is to identify the influence of a MADE AE30 wind turbine nacelle on the site calibration anemometer placed on the upper back of the nacelle by means of flow simulations around the nacelle using FLUENT, a Commercial Computational Fluid Dynamics code (CFD), which provides modeling capabilities for the simulation of wide range laminar and turbulent fluid flow problems. Different 2D and 3D simulations were accomplished in order to estimate the effects of the complex geometry on the flow behavior. The speed up and braking values of the air flow at the anemometer position are presented for different flow conditions. Finally some conclusions about the accuracy of results are mentioned. (Author) 5 refs.
A ghost fluid method for sharp interface simulations of compressible multiphase flows
International Nuclear Information System (INIS)
Majidi, Sahand; Afshari, Asghar
2016-01-01
A ghost fluid based computational tool is developed to study a wide range of compressible multiphase flows involving strong shocks and contact discontinuities while accounting for surface tension, viscous stresses and gravitational forces. The solver utilizes constrained reinitialization method to predict the interface configuration at each time step. Surface tension effect is handled via an exact interface Riemann problem solver. Interfacial viscous stresses are approximated by considering continuous velocity and viscous stress across the interface. To assess the performance of the solver several benchmark problems are considered: One-dimensional gas-water shock tube problem, shock-bubble interaction, air cavity collapse in water, underwater explosion, Rayleigh-Taylor Instability, and ellipsoidal drop oscillations. Results obtained from the numerical simulations indicate that the numerical methodology performs reasonably well in predicting flow features and exhibit a very good agreement with prior experimental and numerical observations. To further examine the accuracy of the developed ghost fluid solver, the obtained results are compared to those by a conventional diffuse interface solver. The comparison shows the capability of our ghost fluid method in reproducing the experimentally observed flow characteristics while revealing more details regarding topological changes of the interface.
A ghost fluid method for sharp interface simulations of compressible multiphase flows
Energy Technology Data Exchange (ETDEWEB)
Majidi, Sahand; Afshari, Asghar [University of Tehran, Teheran (Iran, Islamic Republic of)
2016-04-15
A ghost fluid based computational tool is developed to study a wide range of compressible multiphase flows involving strong shocks and contact discontinuities while accounting for surface tension, viscous stresses and gravitational forces. The solver utilizes constrained reinitialization method to predict the interface configuration at each time step. Surface tension effect is handled via an exact interface Riemann problem solver. Interfacial viscous stresses are approximated by considering continuous velocity and viscous stress across the interface. To assess the performance of the solver several benchmark problems are considered: One-dimensional gas-water shock tube problem, shock-bubble interaction, air cavity collapse in water, underwater explosion, Rayleigh-Taylor Instability, and ellipsoidal drop oscillations. Results obtained from the numerical simulations indicate that the numerical methodology performs reasonably well in predicting flow features and exhibit a very good agreement with prior experimental and numerical observations. To further examine the accuracy of the developed ghost fluid solver, the obtained results are compared to those by a conventional diffuse interface solver. The comparison shows the capability of our ghost fluid method in reproducing the experimentally observed flow characteristics while revealing more details regarding topological changes of the interface.
Low-pressure sequential compression of lower limbs enhances forearm skin blood flow.
Amah, Guy; Voicu, Sebastian; Bonnin, Philippe; Kubis, Nathalie
2016-12-01
We investigated whether forearm skin blood flow could be improved when a multilayer pulsatile inflatable suit was applied at a low pressure to the lower limbs and abdomen. We hypothesized that a non-invasive purely mechanical stimulation of the lower limbs could induce remote forearm blood flow modifications. The pulsatile suit induced a sequential compartmentalized low compression (65 mmHg), which was synchronized with each diastole of the cardiac cycle with each phase evolving centripetally (lower limbs to abdomen). Modifications of the forearm skin blood flow were continuously recorded by laser Doppler flowmetry (LDF) at baseline and during the pulsatile suit application. Endothelium-dependent and endothelium-independent vasodilations of the forearm skin microcirculation were measured by LDF in response to a local transdermal iontophoretic application of acetylcholine (ACh-test) and to hyperthermia (hyperT- test). Twenty-four healthy volunteers, 12 men and 12 women (43±14 years) were included in the study. LDF responses increased 1) under pulsatile suit (97±106%, p.
PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows
Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen
2017-11-01
The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows
Saurel, Richard; Pantano, Carlos
2018-01-01
Simulation of compressible flows became a routine activity with the appearance of shock-/contact-capturing methods. These methods can determine all waves, particularly discontinuous ones. However, additional difficulties may appear in two-phase and multimaterial flows due to the abrupt variation of thermodynamic properties across the interfacial region, with discontinuous thermodynamical representations at the interfaces. To overcome this difficulty, researchers have developed augmented systems of governing equations to extend the capturing strategy. These extended systems, reviewed here, are termed diffuse-interface models, because they are designed to compute flow variables correctly in numerically diffused zones surrounding interfaces. In particular, they facilitate coupling the dynamics on both sides of the (diffuse) interfaces and tend to the proper pure fluid-governing equations far from the interfaces. This strategy has become efficient for contact interfaces separating fluids that are governed by different equations of state, in the presence or absence of capillary effects, and with phase change. More sophisticated materials than fluids (e.g., elastic-plastic materials) have been considered as well.
Omori, S.
1973-01-01
The turbulent kinetic energy equation is coupled with boundary layer equations to solve the characteristics of compressible turbulent boundary layers with mass injection and combustion. The Reynolds stress is related to the turbulent kinetic energy using the Prandtl-Wieghardt formulation. When a lean mixture of hydrogen and nitrogen is injected through a porous plate into the subsonic turbulent boundary layer of air flow and ignited by external means, the turbulent kinetic energy increases twice as much as that of noncombusting flow with the same mass injection rate of nitrogen. The magnitudes of eddy viscosity between combusting and noncombusting flows with injection, however, are almost the same due to temperature effects, while the distributions are different. The velocity profiles are significantly affected by combustion; that is, combustion alters the velocity profile as if the mass injection rate is increased, reducing the skin-friction as a result of a smaller velocity gradient at the wall. If pure hydrogen as a transpiration coolant is injected into a rocket nozzle boundary layer flow of combustion products, the temperature drops significantly across the boundary layer due to the high heat capacity of hydrogen. At a certain distance from the wall, hydrogen reacts with the combustion products, liberating an extensive amount of heat. The resulting large increase in temperature reduces the eddy viscosity in this region.
A Schur complement method for compressible two-phase flow models
International Nuclear Information System (INIS)
Dao, Thu-Huyen; Ndjinga, Michael; Magoules, Frederic
2014-01-01
In this paper, we will report our recent efforts to apply a Schur complement method for nonlinear hyperbolic problems. We use the finite volume method and an implicit version of the Roe approximate Riemann solver. With the interface variable introduced in [4] in the context of single phase flows, we are able to simulate two-fluid models ([12]) with various schemes such as upwind, centered or Rusanov. Moreover, we introduce a scaling strategy to improve the condition number of both the interface system and the local systems. Numerical results for the isentropic two-fluid model and the compressible Navier-Stokes equations in various 2D and 3D configurations and various schemes show that our method is robust and efficient. The scaling strategy considerably reduces the number of GMRES iterations in both interface system and local system resolutions. Comparisons of performances with classical distributed computing with up to 218 processors are also reported. (authors)
An Embedded Ghost-Fluid Method for Compressible Flow in Complex Geometry
Almarouf, Mohamad Abdulilah Alhusain Alali; Samtaney, Ravi
2016-01-01
We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. The PDE multidimensional extrapolation approach of Aslam [1] is used to reconstruct the solution in the ghost-fluid regions and impose boundary conditions at the fluid-solid interface. The CNS equations are numerically solved by the second order multidimensional upwind method of Colella [2] and Saltzman [3]. Block-structured adaptive mesh refinement implemented under the Chombo framework is utilized to reduce the computational cost while keeping high-resolution mesh around the embedded boundary and regions of high gradient solutions. Numerical examples with different Reynolds numbers for low and high Mach number flow will be presented. We compare our simulation results with other reported experimental and computational results. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well. © 2016 Trans Tech Publications.
Linearly decoupled energy-stable numerical methods for multi-component two-phase compressible flow
Kou, Jisheng
2017-12-06
In this paper, for the first time we propose two linear, decoupled, energy-stable numerical schemes for multi-component two-phase compressible flow with a realistic equation of state (e.g. Peng-Robinson equation of state). The methods are constructed based on the scalar auxiliary variable (SAV) approaches for Helmholtz free energy and the intermediate velocities that are designed to decouple the tight relationship between velocity and molar densities. The intermediate velocities are also involved in the discrete momentum equation to ensure a consistency relationship with the mass balance equations. Moreover, we propose a component-wise SAV approach for a multi-component fluid, which requires solving a sequence of linear, separate mass balance equations. We prove that the methods have the unconditional energy-dissipation feature. Numerical results are presented to verify the effectiveness of the proposed methods.
An Embedded Ghost-Fluid Method for Compressible Flow in Complex Geometry
Almarouf, Mohamad Abdulilah Alhusain Alali
2016-06-03
We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. The PDE multidimensional extrapolation approach of Aslam [1] is used to reconstruct the solution in the ghost-fluid regions and impose boundary conditions at the fluid-solid interface. The CNS equations are numerically solved by the second order multidimensional upwind method of Colella [2] and Saltzman [3]. Block-structured adaptive mesh refinement implemented under the Chombo framework is utilized to reduce the computational cost while keeping high-resolution mesh around the embedded boundary and regions of high gradient solutions. Numerical examples with different Reynolds numbers for low and high Mach number flow will be presented. We compare our simulation results with other reported experimental and computational results. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well. © 2016 Trans Tech Publications.
Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†
Directory of Open Access Journals (Sweden)
Nicolas Craquelin
2010-12-01
Full Text Available We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.
Bresch, D.; Fernández-Nieto, E. D.; Ionescu, I. R.; Vigneaux, P.
In this paper we propose a well-balanced finite volume/augmented Lagrangian method for compressible visco-plastic models focusing on a compressible Bingham type system with applications to dense avalanches. For the sake of completeness we also present a method showing that such a system may be derived for a shallow flow of a rigid-viscoplastic incompressible fluid, namely for incompressible Bingham type fluid with free surface. When the fluid is relatively shallow and spreads slowly, lubrication-style asymptotic approximations can be used to build reduced models for the spreading dynamics, see for instance [N.J. Balmforth et al., J. Fluid Mech (2002)]. When the motion is a little bit quicker, shallow water theory for non-Newtonian flows may be applied, for instance assuming a Navier type boundary condition at the bottom. We start from the variational inequality for an incompressible Bingham fluid and derive a shallow water type system. In the case where Bingham number and viscosity are set to zero we obtain the classical Shallow Water or Saint-Venant equations obtained for instance in [J.F. Gerbeau, B. Perthame, DCDS (2001)]. For numerical purposes, we focus on the one-dimensional in space model: We study associated static solutions with sufficient conditions that relate the slope of the bottom with the Bingham number and domain dimensions. We also propose a well-balanced finite volume/augmented Lagrangian method. It combines well-balanced finite volume schemes for spatial discretization with the augmented Lagrangian method to treat the associated optimization problem. Finally, we present various numerical tests.
Israel, R.; Rosner, D. E.
1983-01-01
The aerodynamic capture efficiency of small but nondiffusing particles suspended in a high-speed stream flowing past a target is known to be influenced by parameters governing small particle inertia, departures from the Stokes drag law, and carrier fluid compressibility. By defining an effective Stokes number in terms of the actual (prevailing) particle stopping distance, local fluid viscosity, and inviscid fluid velocity gradient at the target nose, it is shown that these effects are well correlated in terms of a 'standard' (cylindrical collector, Stokes drag, incompressible flow, sq rt Re much greater than 1) capture efficiency curve. Thus, a correlation follows that simplifies aerosol capture calculations in the parameter range already included in previous numerical solutions, allows rational engineering predictions of deposition in situations not previously specifically calculated, and should facilitate the presentation of performance data for gas cleaning equipment and aerosol instruments.
International Nuclear Information System (INIS)
Masoud Ziaei-Rad
2010-01-01
In this paper, a two-dimensional numerical scheme is presented for the simulation of turbulent, viscous, transient compressible flows in the simultaneously developing hydraulic and thermal boundary layer region. The numerical procedure is a finite-volume-based finite-element method applied to unstructured grids. This combination together with a new method applied for the boundary conditions allows for accurate computation of the variables in the entrance region and for a wide range of flow fields from subsonic to transonic. The Roe-Riemann solver is used for the convective terms, whereas the standard Galerkin technique is applied for the viscous terms. A modified κ-ε model with a two-layer equation for the near-wall region combined with a compressibility correction is used to predict the turbulent viscosity. Parallel processing is also employed to divide the computational domain among the different processors to reduce the computational time. The method is applied to some test cases in order to verify the numerical accuracy. The results show significant differences between incompressible and compressible flows in the friction coefficient, Nusselt number, shear stress and the ratio of the compressible turbulent viscosity to the molecular viscosity along the developing region. A transient flow generated after an accidental rupture in a pipeline was also studied as a test case. The results show that the present numerical scheme is stable, accurate and efficient enough to solve the problem of transient wall-bounded flow.
International Nuclear Information System (INIS)
Hodgdon, M.L.; Oona, H.; Martinez, A.R.; Salon, S.; Wendling, P.; Krahenbuhl, L.; Nicolas, A.; Nicolas, L.
1990-01-01
The authors present the results of three electromagnetic field problems for compressed magnetic field generators and their associated power flow channels. The first problem is the computation of the transient magnetic field in a two-dimensional model of a helical generator during loading. The second problem is the three-dimensional eddy current patterns in a section of an armature beneath a bifurcation point of a helical winding. The authors' third problem is the calculation of the three-dimensional electrostatic fields in a region known as the post-hole convolute in which a rod connects the inner and outer walls of a system of three concentric cylinders through a hole in the middle cylinder. While analytic solutions exist for many electromagnetic filed problems in cases of special and ideal geometries, the solution of these and similar problems for the proper analysis and design of compressed magnetic field generators and their related hardware require computer simulations
Mathematical model for the calculation of internal turbulent flow
International Nuclear Information System (INIS)
Nicolau, V. de P.; Valle Pereira Filho, H. do
1981-01-01
The Navier-Stokes and the turbulent kinetic energy equations for the incompressible, turbulent and fully developed pipe flow, were solved by a finite difference procedure. The distributions of the mean velocity, turbulent shear stress and turbulent kinetic energy were obtained at different Reynolds numbers. Those numerical results were compared with experimental data and the agreement was good in whole cross section of the flow. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiulu [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China); Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, 621010 Mianyang, Sichuan (China); Liu, Zhongli [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China); College of Physics and Electric Information, Luoyang Normal University, 471022 Luoyang, Henan (China); Jin, Ke; Xi, Feng; Yu, Yuying; Tan, Ye; Dai, Chengda; Cai, Lingcang [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, P.O. Box 919-102, 621900 Mianyang, Sichuan (China)
2015-02-07
The high-pressure solid phase stability of molybdenum (Mo) has been the center of a long-standing controversy on its high-pressure melting. In this work, experimental and theoretical researches have been conducted to check its solid phase stability under compression. First, we performed sound velocity measurements from 38 to 160 GPa using the two-stage light gas gun and explosive loading in backward- and forward-impact geometries, along with the high-precision velocity interferometry. From the sound velocities, we found no solid-solid phase transition in Mo before shock melting, which does not support the previous solid-solid phase transition conclusion inferred from the sharp drops of the longitudinal sound velocity [Hixson et al., Phys. Rev. Lett. 62, 637 (1989)]. Then, we searched its structures globally using the multi-algorithm collaborative crystal structure prediction technique combined with the density functional theory. By comparing the enthalpies of body centered cubic structure with those of the metastable structures, we found that bcc is the most stable structure in the range of 0–300 GPa. The present theoretical results together with previous ones greatly support our experimental conclusions.
The first-principles calculations for the elastic properties of Zr2Al under compression
International Nuclear Information System (INIS)
Yuan Xiaoli; Wei Dongqing; Chen Xiangrong; Zhang Qingming; Gong Zizheng
2011-01-01
Graphical abstract: The calculated elastic constants C ij as a function of pressure P. Display Omitted Research highlights: → It is found that the five independent elastic constants increase monotonically with pressure. C 11 and C 33 vary rapidly as pressure increases, C 13 and C 12 becomes moderate. However, C 44 increases comparatively slowly with pressure. Figure shows excellent satisfaction of the calculated elastic constants of Zr 2 Al to these equations and hence in our calculation, the Zr 2 Al is mechanically stable at pressure up to 100 GPa. - Abstract: The first-principles calculations were applied to investigate the structural, elastic constants of Zr 2 Al alloy with increasing pressure. These properties are based on the plane wave pseudopotential density functional theory (DFT) method within the generalized gradient approximation (GGA) for exchange and correlation. The result of the heat of formation of Zr 2 Al crystal investigated is in excellent consistent with results from other study. The anisotropy, the shear modulus, and Young's modulus for the ideal polycrystalline Zr 2 Al are also studied. It is found that (higher) pressure can significantly improve the ductility of Zr 2 Al. Moreover, the elastic constants of Zr 2 Al increase monotonically and the anisotropies decrease with the increasing pressure. Finally, it is observed that Zr d electrons are mainly contributed to the density of states at the Fermi level.
A compressive sensing approach to the calculation of the inverse data space
Khan, Babar Hasan; Saragiotis, Christos; Alkhalifah, Tariq Ali
2012-01-01
Seismic processing in the Inverse Data Space (IDS) has its advantages like the task of removing the multiples simply becomes muting the zero offset and zero time data in the inverse domain. Calculation of the Inverse Data Space by sparse inversion
Chen, Gui-Qiang G.; Schrecker, Matthew R. I.
2018-04-01
We are concerned with globally defined entropy solutions to the Euler equations for compressible fluid flows in transonic nozzles with general cross-sectional areas. Such nozzles include the de Laval nozzles and other more general nozzles whose cross-sectional area functions are allowed at the nozzle ends to be either zero (closed ends) or infinity (unbounded ends). To achieve this, in this paper, we develop a vanishing viscosity method to construct globally defined approximate solutions and then establish essential uniform estimates in weighted L p norms for the whole range of physical adiabatic exponents γ\\in (1, ∞) , so that the viscosity approximate solutions satisfy the general L p compensated compactness framework. The viscosity method is designed to incorporate artificial viscosity terms with the natural Dirichlet boundary conditions to ensure the uniform estimates. Then such estimates lead to both the convergence of the approximate solutions and the existence theory of globally defined finite-energy entropy solutions to the Euler equations for transonic flows that may have different end-states in the class of nozzles with general cross-sectional areas for all γ\\in (1, ∞) . The approach and techniques developed here apply to other problems with similar difficulties. In particular, we successfully apply them to construct globally defined spherically symmetric entropy solutions to the Euler equations for all γ\\in (1, ∞).
Numerical analysis of a non equilibrium two-component two-compressible flow in porous media
Saad, Bilal Mohammed
2013-09-01
We propose and analyze a finite volume scheme to simulate a non equilibrium two components (water and hydrogen) two phase flow (liquid and gas) model. In this model, the assumption of local mass non equilibrium is ensured and thus the velocity of the mass exchange between dissolved hydrogen and hydrogen in the gas phase is supposed finite. The proposed finite volume scheme is fully implicit in time together with a phase-by-phase upwind approach in space and it is discretize the equations in their general form with gravity and capillary terms We show that the proposed scheme satisfies the maximum principle for the saturation and the concentration of the dissolved hydrogen. We establish stability results on the velocity of each phase and on the discrete gradient of the concentration. We show the convergence of a subsequence to a weak solution of the continuous equations as the size of the discretization tends to zero. At our knowledge, this is the first convergence result of finite volume scheme in the case of two component two phase compressible flow in several space dimensions.
Central upwind scheme for a compressible two-phase flow model.
Ahmed, Munshoor; Saleem, M Rehan; Zia, Saqib; Qamar, Shamsul
2015-01-01
In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.
A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry
Almarouf, Mohamad Abdulilah Alhusain Alali
2017-02-25
We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. A PDE multidimensional extrapolation approach is used to reconstruct the solution in the ghost-fluid regions and imposing boundary conditions on the fluid-solid interface, coupled with a multi-dimensional algebraic interpolation for freshly cleared cells. The CNS equations are numerically solved by the second order multidimensional upwind method. Block-structured adaptive mesh refinement, implemented with the Chombo framework, is utilized to reduce the computational cost while keeping high resolution mesh around the embedded boundary and regions of high gradient solutions. The versatility of the method is demonstrated via several numerical examples, in both static and moving geometry, ranging from low Mach number nearly incompressible flows to supersonic flows. Our simulation results are extensively verified against other numerical results and validated against available experimental results where applicable. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well.
Compression of freestanding gold nanostructures: from stochastic yield to predictable flow
International Nuclear Information System (INIS)
Mook, W M; Niederberger, C; Bechelany, M; Philippe, L; Michler, J
2010-01-01
Characterizing the mechanical response of isolated nanostructures is vitally important to fields such as microelectromechanical systems (MEMS) where the behaviour of nanoscale contacts can in large part determine system reliability and lifetime. To address this challenge directly, single crystal gold nanodots are compressed inside a high resolution scanning electron microscope (SEM) using a nanoindenter equipped with a flat punch tip. These structures load elastically, and then yield in a stochastic manner, at loads ranging from 16 to 110 μN, which is up to five times higher than the load necessary for flow after yield. Yielding is immediately followed by displacement bursts equivalent to 1-50% of the initial height, depending on the yield point. During the largest displacement bursts, strain energy within the structure is released while new surface area is created in the form of localized slip bands, which are evident in both the SEM movies and still-images. A first order estimate of the apparent energy release rate, in terms of fracture mechanics concepts, for bursts representing 5-50% of the structure's initial height is on the order of 10-100 J m -2 , which is approximately two orders of magnitude lower than bulk values. Once this initial strain burst during yielding has occurred, the structures flow in a ductile way. The implications of this behaviour, which is analogous to a brittle to ductile transition, are discussed with respect to mechanical reliability at the micro- and nanoscales.
A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry
Almarouf, Mohamad Abdulilah Alhusain Alali; Samtaney, Ravi
2017-01-01
We present an embedded ghost-fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. A PDE multidimensional extrapolation approach is used to reconstruct the solution in the ghost-fluid regions and imposing boundary conditions on the fluid-solid interface, coupled with a multi-dimensional algebraic interpolation for freshly cleared cells. The CNS equations are numerically solved by the second order multidimensional upwind method. Block-structured adaptive mesh refinement, implemented with the Chombo framework, is utilized to reduce the computational cost while keeping high resolution mesh around the embedded boundary and regions of high gradient solutions. The versatility of the method is demonstrated via several numerical examples, in both static and moving geometry, ranging from low Mach number nearly incompressible flows to supersonic flows. Our simulation results are extensively verified against other numerical results and validated against available experimental results where applicable. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well.
Central upwind scheme for a compressible two-phase flow model.
Directory of Open Access Journals (Sweden)
Munshoor Ahmed
Full Text Available In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.
Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes
Capuano, M.; Bogey, C.; Spelt, P. D. M.
2018-05-01
A computational method for the simulation of viscous and compressible gas-gas flows is presented. It consists in solving the Navier-Stokes equations associated with a convection equation governing the motion of the interface between two gases using high-order finite-difference schemes. A discontinuity-capturing methodology based on sensors and a spatial filter enables capturing shock waves and deformable interfaces. One-dimensional test cases are performed as validation and to justify choices in the numerical method. The results compare well with analytical solutions. Shock waves and interfaces are accurately propagated, and remain sharp. Subsequently, two-dimensional flows are considered including viscosity and thermal conductivity. In Richtmyer-Meshkov instability, generated on an air-SF6 interface, the influence of the mesh refinement on the instability shape is studied, and the temporal variations of the instability amplitude is compared with experimental data. Finally, for a plane shock wave propagating in air and impacting a cylindrical bubble filled with helium or R22, numerical Schlieren pictures obtained using different grid refinements are found to compare well with experimental shadow-photographs. The mass conservation is verified from the temporal variations of the mass of the bubble. The mean velocities of pressure waves and bubble interface are similar to those obtained experimentally.
International Nuclear Information System (INIS)
Holtz, A.; Nystroem, B.G.; Gerdin, B.
1989-01-01
The relations between degree of thoracic spinal cord compression causing myelographic block, reversible paraparesis, and extinction of the sensory evoked potential on one hand, and spinal cord blood flow on the other, were investigated. This was done in rats using the blocking weight-technique and 14 C-iodoantipyrine autoradiography. A load of 9 g caused myelographic block. Five minutes of compression with that load caused a reduction of spinal cord blood flow to about 25%, but 5 and 60 minutes after the compression spinal cord blood flow was restored to 60% of the pretrauma value. A load of 35 g for 5 minutes caused transient paraparesis. Recovery to about 30% was observed 5 and 60 minutes thereafter. During compression at a load of 55 g, which caused almost total extinction of sensory evoked potential and irreversible paraplegia, spinal cord blood flow under the load ceased. The results indicate that myelographic block occurs at a load which does not cause irreversible paraparesis and that a load which permits sensory evoked potential to be elicited results in potentially salvageable damage
Shock stand off Calculations for Hemisphere in Hypersonic Flows
International Nuclear Information System (INIS)
Hanif, M.; Ghaffar, A.; Bilal, S.; Zahir, S.; Khan, M.A.
2004-01-01
The shape and location of shock has been studied by solving the axi symmetric Navier Stokes Equations for a hemisphere in hypersonic flow. The effect of Mach number on shock stand-off distance has been investigated. It is found that the shock location varies with Mach number and the free stream conditions at a given nose radius. (author)
Microstructure Evolution and Flow Stress Model of a 20Mn5 Hollow Steel Ingot during Hot Compression.
Liu, Min; Ma, Qing-Xian; Luo, Jian-Bin
2018-03-21
20Mn5 steel is widely used in the manufacture of heavy hydro-generator shaft due to its good performance of strength, toughness and wear resistance. However, the hot deformation and recrystallization behaviors of 20Mn5 steel compressed under high temperature were not studied. In this study, the hot compression experiments under temperatures of 850-1200 °C and strain rates of 0.01/s-1/s are conducted using Gleeble thermal and mechanical simulation machine. And the flow stress curves and microstructure after hot compression are obtained. Effects of temperature and strain rate on microstructure are analyzed. Based on the classical stress-dislocation relation and the kinetics of dynamic recrystallization, a two-stage constitutive model is developed to predict the flow stress of 20Mn5 steel. Comparisons between experimental flow stress and predicted flow stress show that the predicted flow stress values are in good agreement with the experimental flow stress values, which indicates that the proposed constitutive model is reliable and can be used for numerical simulation of hot forging of 20Mn5 hollow steel ingot.
Accurate and efficient calculation of response times for groundwater flow
Carr, Elliot J.; Simpson, Matthew J.
2018-03-01
We study measures of the amount of time required for transient flow in heterogeneous porous media to effectively reach steady state, also known as the response time. Here, we develop a new approach that extends the concept of mean action time. Previous applications of the theory of mean action time to estimate the response time use the first two central moments of the probability density function associated with the transition from the initial condition, at t = 0, to the steady state condition that arises in the long time limit, as t → ∞ . This previous approach leads to a computationally convenient estimation of the response time, but the accuracy can be poor. Here, we outline a powerful extension using the first k raw moments, showing how to produce an extremely accurate estimate by making use of asymptotic properties of the cumulative distribution function. Results are validated using an existing laboratory-scale data set describing flow in a homogeneous porous medium. In addition, we demonstrate how the results also apply to flow in heterogeneous porous media. Overall, the new method is: (i) extremely accurate; and (ii) computationally inexpensive. In fact, the computational cost of the new method is orders of magnitude less than the computational effort required to study the response time by solving the transient flow equation. Furthermore, the approach provides a rigorous mathematical connection with the heuristic argument that the response time for flow in a homogeneous porous medium is proportional to L2 / D , where L is a relevant length scale, and D is the aquifer diffusivity. Here, we extend such heuristic arguments by providing a clear mathematical definition of the proportionality constant.
Discussion of various flow calculation methods in high-speed centrifuges
International Nuclear Information System (INIS)
Louvet, P.; Cortet, C.
1979-01-01
The flow in high-speed centrifuges for the separation of uranium isotopes has been studied in the frame of linearized theory for long years. Three different methods have been derived for viscous compressible flow with small Ekman numbers and high Mach numbers: - numerical solution of flow equation by finite element method and Gaussian elimination (Centaure Code), - boundary layer theory using matched asymptotic expansions, - the so called eigenfunction method slightly modified. The mathematical assumptions, the easiness and the accuracy of the computations are compared. Numerical applications are performed successively for thermal countercurrent centrifuges with or without injections
Multi-scale Modeling of Compressible Single-phase Flow in Porous Media using Molecular Simulation
Saad, Ahmed Mohamed
2016-05-01
In this study, an efficient coupling between Monte Carlo (MC) molecular simulation and Darcy-scale flow in porous media is presented. The cell-centered finite difference method with a non-uniform rectangular mesh were used to discretize the simulation domain and solve the governing equations. To speed up the MC simulations, we implemented a recently developed scheme that quickly generates MC Markov chains out of pre-computed ones, based on the reweighting and reconstruction algorithm. This method astonishingly reduces the required computational time by MC simulations from hours to seconds. In addition, the reweighting and reconstruction scheme, which was originally designed to work with the LJ potential model, is extended to work with a potential model that accounts for the molecular quadrupole moment of fluids with non-spherical molecules such as CO2. The potential model was used to simulate the thermodynamic equilibrium properties for single-phase and two-phase systems using the canonical ensemble and the Gibbs ensemble, respectively. Comparing the simulation results with the experimental data showed that the implemented model has an excellent fit outperforming the standard LJ model. To demonstrate the strength of the proposed coupling in terms of computational time efficiency and numerical accuracy in fluid properties, various numerical experiments covering different compressible single-phase flow scenarios were conducted. The novelty in the introduced scheme is in allowing an efficient coupling of the molecular scale and Darcy scale in reservoir simulators. This leads to an accurate description of the thermodynamic behavior of the simulated reservoir fluids; consequently enhancing the confidence in the flow predictions in porous media.
A calculation method for transient flow distribution of SCWR(CSR1000)
International Nuclear Information System (INIS)
Chen, Juan; Zhou, Tao; Chen, Jie; Liu, Liang; Muhammad, Ali Shahzad; Muhammad, Zeeshan Ali; Xia, Bangyang
2017-01-01
The supercritical water reactor CSR1000 is selected for the study. A parallel channel flow transient flow distribution module is developed, which is used for solving unsteady nonlinear equations. The incorporated programs of SCAC-CSR1000 are executed on normal and abnormal operating conditions. The analysis shows that: 1. Transient flow distribution can incorporate parallel channel flow calculation, with an error less than 0.1%; 2. After a total loss of coolant flow, the flow of each channel shows a downward trend; 3. In the event of introducing a traffic accident, the first coolant flow shows an increasing trend.
Calculation of pressure drop and flow redistribution in the core of LMFBR type reactors
International Nuclear Information System (INIS)
Botelho, D.A.; Morgado, O.J.
1985-01-01
It is studied the flow redistribution through of fuel elements to the pressure drop calculation in the core of sodium cooled reactors. Using the quasi-static formulation of equations of the conservation of mass, energy and momentum, it was developed a computer program to flow redistribution calculations and pressure drop for different power levels and total flow simulating an arbitrary number of channels for sodium flowing . An optimization of the number of sufficient channels for calculations of this nature is done. The method is applied in studies of transients in the same reactor. (M.C.K.) [pt
The calculation of dryout during flow and pressure transients
International Nuclear Information System (INIS)
James, P.W.; Whalley, P.B.
1981-01-01
The method for predicting dryout in a round tube by means of an annular flow model (Whalley et al 1974) is extended to cover the case where both inlet mass flux and pressure are time-dependent. The qualitative effects of an inlet pressure transient are assessed by performing a 'numerical experiment' and it is found that the predictions of the model represent reasonable physical trends. The relative merits of wo numerical solution schemes are also discussed
Numerical Calculation of the Swirling Flow in a Centrifugal Compressor Volute
International Nuclear Information System (INIS)
Seong, Seon Mo; Kang, Shin Hyoung; Cho, Kyung Seok; Kim, Woo June
2007-01-01
Flows in the centrifugal compressor volute with circular cross section are numerically investigated. The computational grid for the calculation utilized a multi-block arrangement to form a butterfly grid and flow calculations are performed using commercial CFD software, CFX-TASCflow. The centrifugal compressor of this study has axial diffuser after radial diffuser because of the shape of inlet duct and installation constraints. Due to this feature the swirling flow pattern is different from the other investigations. The flow inside volute is very complex and three dimensional with strong vortex and recirculation through volute tongue. The calculation results show circumferential variations of the swirl and through flow velocity and pressure distribution. The mechanism deciding flow structure is explained by considering the force balance in volute cross section. And static pressure recovery and total pressure loss are estimated from the calculated results and compared with Japikse model
Directory of Open Access Journals (Sweden)
K. Majidi
2000-01-01
Full Text Available The flow field in volute and circular casings interacting with a centrifugal impeller is obtained by numerical analysis. In the present study, effects of the volute and circular casings on the flow pattern have been investigated by successively combining a volute casing and a circular casing with a single centrifugal impeller. The numerical calculations are carried out with a multiple frame of reference to predict the flow field inside the entire impeller and casings. The impeller flow field is solved in a rotating frame and the flow field in the casings in a stationary frame. The static pressure and velocity in the casing and impeller, and the static pressures and secondary velocity vectors at several cross-sectional planes of the casings are calculated. The calculations show that the curvature of the casings creates pressure gradients that cause vortices at cross-sectional planes of the casings.
One-dimensional calculation of flow branching using the method of characteristics
International Nuclear Information System (INIS)
Meier, R.W.; Gido, R.G.
1978-05-01
In one-dimensional flow systems, the flow often branches, such as at a tee or manifold. The study develops a formulation for calculating the flow through branch points with one-dimensional method of characteristics equations. The resultant equations were verified by comparison with experimental measurements
Laminar and Turbulent Flow Calculations for the Hifire-5B Flight Test
2017-11-01
STATES AIR FORCE AFRL-RQ-WP-TP-2017-0172 LAMINAR AND TURBULENT FLOW CALCULATIONS FOR THE HIFIRE-5B FLIGHT TEST Roger L. Kimmel Hypersonic Sciences...stationary instabilities of the three-dimensional flow as the grid becomes finer. It may not be possible to obtain a strictly laminar basic state on a very...fine grid. A basic state solution was desired for the laminar flow calculations, and the oscillations observed in Fig. 3 were judged to be undesirable
Directory of Open Access Journals (Sweden)
Seyed mohammadjavad Zeidi
2015-04-01
Full Text Available Investigating nozzle’s orifice flow is challenging both experimentally and theoretically. This paper focuses on simulating flow inside diesel injector nozzle via Ansys fluent v15. Validation is performed with experimental results from Winkhofler et al (2001. Several important parameters such as mass flow rate, velocity profiles and pressure profiles are used for this validation. Results include the effects of contraction inside nozzle’s orifice, effect of compressibility; effect of injection pressures and several orifice entries are also simulated in this study. For considering the effect of compressibility a user defined function used in this simulation. Cavitation model which is used in this simulation is Singhal et al. cavitation model. Presto discretization method is used for Pressure equation and second upwind discretization method is used for Momentum equation. Converging Singhal et al. cavitation model is very challenging and it needs several efforts and simulations.
International Nuclear Information System (INIS)
Erden, Ayse; Yurdakul, Mehmet; Cumhur, Turhan
1999-01-01
Symptoms of chronic mesenteric ischemia develop when the celiac artery is constricted by the median arcuate ligament of the diaphragm. Lateral aortography is the primary modality for diagnosing ligamentous compression of the celiac artery. However, duplex Doppler sonography performed during deep expiration can cause a marked increase in flow velocities at the compressed region of the celiac artery and suggest the diagnosis of celiac arterial constriction due to the diaphragmatic ligament. RID='''' ID='''' Correspondence to: A. Erden, M.D., Hafta sokak. 23/6, Gaziosmanpasa, 06700 Ankara, Turkey
International Nuclear Information System (INIS)
Uchibori, Akihiro; Ohshima, Hiroyuki; Watanabe, Akira
2010-01-01
SERAPHIM is a computer program for the simulation of the compressible multiphase flow involving the sodium-water chemical reaction under a tube failure accident in a steam generator of sodium cooled fast reactors. In this study, the numerical analysis of the highly underexpanded air jets into the air or into the water was performed as a part of validation of the SERAPHIM program. The multi-fluid model, the second-order TVD scheme and the HSMAC method considering a compressibility were used in this analysis. Combining these numerical methods makes it possible to calculate the multiphase flow including supersonic gaseous jets. In the case of the air jet into the air, the calculated pressure, the shape of the jet and the location of a Mach disk agreed with the existing experimental results. The effect of the difference scheme and the mesh resolution on the prediction accuracy was clarified through these analyses. The behavior of the air jet into the water was also reproduced successfully by the proposed numerical method. (author)
Numerical fluid flow and heat transfer calculations on multiprocessor systems
Energy Technology Data Exchange (ETDEWEB)
Oehman, G.A.; Malen, T.E.; Kuusela, P.
1989-01-01
The first part of the report presents the basic principles of parallel processing, and factors influencing tbe efficiency of practical applications are discussed. In a multiprocessor computer, different parts of the program code are executed in parallel, i.e. simultaneous with respect to time, on different processors, and thus it becomes possible to decrease the overall computation time by a factor, which in the ideal case is equal to the number of processors. The application study starts from the numerical solution of the twodimesional Laplace equation, which describes the steady heat conduction in a solid plate and advances through the solution of the three dimensional Laplace equation to the case of study laminar fluid flow in a twodimensional box at Reynolds numbers up to 20. Hereby the stream function-vorticity method is first applied and the SIMPLER method. The conventional (sequential) numerical algoritms for these fluid flow and heat transfer problems are found not to be ideally suited for conversion to parallel computation, but sped-up ratios considerably above 50 % of the theoretical maximum are regularly achieved in the runs. The numerical procedures we coded in the OCCAM-2 language and the test runs were performed at who Akademi on the imperimental HATHI-computers containing 16 T4l4 and 100 INMOS T800 transputers respectively.
Numerical fluid flow and heat transfer calculations on multiprocessor systems
Energy Technology Data Exchange (ETDEWEB)
Oehman, G.A.; Malen, T.E.; Kuusela, P.
1989-12-31
The first part of the report presents the basic principles of parallel processing, and factors influencing tbe efficiency of practical applications are discussed. In a multiprocessor computer, different parts of the program code are executed in parallel, i.e. simultaneous with respect to time, on different processors, and thus it becomes possible to decrease the overall computation time by a factor, which in the ideal case is equal to the number of processors. The application study starts from the numerical solution of the twodimesional Laplace equation, which describes the steady heat conduction in a solid plate and advances through the solution of the three dimensional Laplace equation to the case of study laminar fluid flow in a twodimensional box at Reynolds numbers up to 20. Hereby the stream function-vorticity method is first applied and the SIMPLER method. The conventional (sequential) numerical algoritms for these fluid flow and heat transfer problems are found not to be ideally suited for conversion to parallel computation, but sped-up ratios considerably above 50 % of the theoretical maximum are regularly achieved in the runs. The numerical procedures we coded in the OCCAM-2 language and the test runs were performed at who Akademi on the imperimental HATHI-computers containing 16 T4l4 and 100 INMOS T800 transputers respectively.
Directory of Open Access Journals (Sweden)
Akhmetov Vadim
2017-01-01
Full Text Available Swirling flow with particle deposition effects at the lateral surface is numerically investigated. The flow field calculation results have been obtained as the solutions of the Navier-Stokes equations. Various flow regimes with the formation of axial recirculation zones are presented. The convection-diffusion model is used for the determination of the flow particle concentration and the formation of typical sedimentation zones.
Interactions of solitary waves and compression/expansion waves in core-annular flows
Maiden, Michelle; Anderson, Dalton; El, Gennady; Franco, Nevil; Hoefer, Mark
2017-11-01
The nonlinear hydrodynamics of an initial step leads to the formation of rarefaction waves and dispersive shock waves in dispersive media. Another hallmark of these media is the soliton, a localized traveling wave whose speed is amplitude dependent. Although compression/expansion waves and solitons have been well-studied individually, there has been no mathematical description of their interaction. In this talk, the interaction of solitons and shock/rarefaction waves for interfacial waves in viscous, miscible core-annular flows are modeled mathematically and explored experimentally. If the interior fluid is continuously injected, a deformable conduit forms whose interfacial dynamics are well-described by a scalar, dispersive nonlinear partial differential equation. The main focus is on interactions of solitons with dispersive shock waves and rarefaction waves. Theory predicts that a soliton can either be transmitted through or trapped by the extended hydrodynamic state. The notion of reciprocity is introduced whereby a soliton interacts with a shock wave in a reciprocal or dual fashion as with the rarefaction. Soliton reciprocity, trapping, and transmission are observed experimentally and are found to agree with the modulation theory and numerical simulations. This work was partially supported by NSF CAREER DMS-1255422 (M.A.H.) and NSF GRFP (M.D.M.).
On the modelling of compressible inviscid flow problems using AUSM schemes
Directory of Open Access Journals (Sweden)
Hajžman M.
2007-11-01
Full Text Available During last decades, upwind schemes have become a popular method in the field of computational fluid dynamics. Although they are only first order accurate, AUSM (Advection Upstream Splitting Method schemes proved to be well suited for modelling of compressible flows due to their robustness and ability of capturing shock discontinuities. In this paper, we review the composition of the AUSM flux-vector splitting scheme and its improved version noted AUSM+, proposed by Liou, for the solution of the Euler equations. Mach number splitting functions operating with values from adjacent cells are used to determine numerical convective fluxes and pressure splitting is used for the evaluation of numerical pressure fluxes. Both versions of the AUSM scheme are applied for solving some test problems such as one-dimensional shock tube problem and three dimensional GAMM channel. Features of the schemes are discussed in comparison with some explicit central schemes of the first order accuracy (Lax-Friedrichs and of the second order accuracy (MacCormack.
Soni, V.; Hadjadj, A.; Roussel, O.
2017-12-01
In this paper, a fully adaptive multiresolution (MR) finite difference scheme with a time-varying tolerance is developed to study compressible fluid flows containing shock waves in interaction with solid obstacles. To ensure adequate resolution near rigid bodies, the MR algorithm is combined with an immersed boundary method based on a direct-forcing approach in which the solid object is represented by a continuous solid-volume fraction. The resulting algorithm forms an efficient tool capable of solving linear and nonlinear waves on arbitrary geometries. Through a one-dimensional scalar wave equation, the accuracy of the MR computation is, as expected, seen to decrease in time when using a constant MR tolerance considering the accumulation of error. To overcome this problem, a variable tolerance formulation is proposed, which is assessed through a new quality criterion, to ensure a time-convergence solution for a suitable quality resolution. The newly developed algorithm coupled with high-resolution spatial and temporal approximations is successfully applied to shock-bluff body and shock-diffraction problems solving Euler and Navier-Stokes equations. Results show excellent agreement with the available numerical and experimental data, thereby demonstrating the efficiency and the performance of the proposed method.
Directory of Open Access Journals (Sweden)
Ahmed M. Elsayed
2013-01-01
Full Text Available Film cooling is vital to gas turbine blades to protect them from high temperatures and hence high thermal stresses. In the current work, optimization of film cooling parameters on a flat plate is investigated numerically. The effect of film cooling parameters such as inlet velocity direction, lateral and forward diffusion angles, blowing ratio, and streamwise angle on the cooling effectiveness is studied, and optimum cooling parameters are selected. The numerical simulation of the coolant flow through flat plate hole system is carried out using the “CFDRC package” coupled with the optimization algorithm “simplex” to maximize overall film cooling effectiveness. Unstructured finite volume technique is used to solve the steady, three-dimensional and compressible Navier-Stokes equations. The results are compared with the published numerical and experimental data of a cylindrically round-simple hole, and the results show good agreement. In addition, the results indicate that the average overall film cooling effectiveness is enhanced by decreasing the streamwise angle for high blowing ratio and by increasing the lateral and forward diffusion angles. Optimum geometry of the cooling hole on a flat plate is determined. In addition, numerical simulations of film cooling on actual turbine blade are performed using the flat plate optimal hole geometry.
Carbon dioxide fluid-flow modeling and injectivity calculations
Burke, Lauri
2011-01-01
At present, the literature lacks a geologic-based assessment methodology for numerically estimating injectivity, lateral migration, and subsequent long-term containment of supercritical carbon dioxide that has undergone geologic sequestration into subsurface formations. This study provides a method for and quantification of first-order approximations for the time scale of supercritical carbon dioxide lateral migration over a one-kilometer distance through a representative volume of rock. These calculations provide a quantified foundation for estimating injectivity and geologic storage of carbon dioxide.
Implicit thermohydraulic coupling of two-phause flow calculations
International Nuclear Information System (INIS)
Lekach, S.; Kaufman, J.M.
1980-01-01
A numerical scheme that implicitly couples the hydraulic variables with thermal variables during a one or two-phase transient calculation in a one-dimensional pipe is presented. The transients are performed to achieve a steady-state condition. It is shown that by preserving the strong interdependence that exists between the hydraulic and thermal variables with an implicit flux treatment, it is possible to achieve a greater degree of numerical stability and in less computer time than with an explicit treatment. The method is slightly more complex but the large time step advantage more than pays for the overhead
Calculation of reverse flow in inverted U-Tubes of steam generator during natural circulation
International Nuclear Information System (INIS)
Yang Ruichang; Liu Jinggong; Liu Ruolei; Qin Shiwei; Huang Yanping
2010-01-01
The mechanism of reverse flow in inverted U-tubes of steam generators of pressurized water reactors during natural circulation is analyzed by using the full range characteristic curve of parallel U-tubes. A lumped-distributed model to calculate the reverse flow occurred in inverted U-tubes of real steam generators with a large number of U-tubes during natural circulation is developed. The model has the advantages of quick calculation and high accuracy for the analysis of reverse flow in inverted U-tubes of real steam generators with natural circulation. This model has been used to calculate the normal and reverse flows occurred in inverted U-tubes of a steam generator with natural circulation. The comparison of calculated results indicates a well agreement with that predicted by the model in which normal or reverse flow in each individual U-tube is analyzed, which verifies the reliability of the model developed in this paper. (authors)
Calculation of pressure drop and flow redistribution in the LMFBR core
International Nuclear Information System (INIS)
Morgado, O.J.
1984-01-01
The flow redistribution through fuel assemblies of LMFBRs: for the correct calculation of mass flow rates and pressure drop, are studied. Using a quasi-static formulation of conservation equations of mass and energy, a computer program was developed to simulate any arbitrary number of flow channels, operating at different linear power levels. Therefore f flow channels, operating at different linear power levels. Therefore, it was possible to perform thermal transient calculations for the Clinch River reactor core. The results of the calculations agree with the data found in the literature and supply accurate information about flow redistribution, average temperature, and pressure drop in the core, when the reactor is operated at conditions from the designed flow conditions, as is always the case in a load changing operation, or during transients. (Autor) [pt
Calculation of the Instream Ecological Flow of the Wei River Based on Hydrological Variation
Directory of Open Access Journals (Sweden)
Shengzhi Huang
2014-01-01
Full Text Available It is of great significance for the watershed management department to reasonably allocate water resources and ensure the sustainable development of river ecosystems. The greatly important issue is to accurately calculate instream ecological flow. In order to precisely compute instream ecological flow, flow variation is taken into account in this study. Moreover, the heuristic segmentation algorithm that is suitable to detect the mutation points of flow series is employed to identify the change points. Besides, based on the law of tolerance and ecological adaptation theory, the maximum instream ecological flow is calculated, which is the highest frequency of the monthly flow based on the GEV distribution and very suitable for healthy development of the river ecosystems. Furthermore, in order to guarantee the sustainable development of river ecosystems under some bad circumstances, minimum instream ecological flow is calculated by a modified Tennant method which is improved by replacing the average flow with the highest frequency of flow. Since the modified Tennant method is more suitable to reflect the law of flow, it has physical significance, and the calculation results are more reasonable.
Dynamic relaxation processes in compressible multiphase flows. Application to evaporation phenomena
Directory of Open Access Journals (Sweden)
Le Métayer O.
2013-07-01
Full Text Available Phase changes and heat exchanges are examples of physical processes appearing in many industrial applications involving multiphase compressible flows. Their knowledge is of fundamental importance to reproduce correctly the resulting effects in simulation tools. A fine description of the flow topology is thus required to obtain the interfacial area between phases. This one is responsible for the dynamics and the kinetics of heat and mass transfer when evaporation or condensation occurs. Unfortunately this exchange area cannot be obtained easily and accurately especially when complex mixtures (drops, bubbles, pockets of very different sizes appear inside the transient medium. The natural way to solve this specific trouble consists in using a thin grid to capture interfaces at all spatial scales. But this possibility needs huge computing resources and can be hardly used when considering physical systems of large dimensions. A realistic method is to consider instantaneous exchanges between phases by the way of additional source terms in a full non-equilibrium multiphase flow model [2,15,17]. In this one each phase obeys its own equation of state and has its own set of equations and variables (pressure, temperature, velocity, energy, entropy,.... When enabling the relaxation source terms the multiphase mixture instantaneously tends towards a mechanical or thermodynamic equilibrium state at each point of the flow. This strategy allows to mark the boundaries of the real flow behavior and to magnify the dominant physical effects (heat exchanges, evaporation, drag,... inside the medium. A description of the various relaxation processes is given in the paper. Les changements de phase et les transferts de chaleur sont des exemples de phénomènes physiques présents dans de nombreuses applications industrielles faisant intervenir des écoulements compressibles multiphasiques. La connaissance des mécanismes associés est primordiale afin de reproduire
Krebs, R. P.
1971-01-01
The computer program described in this report calculates the design-point characteristics of a compressed-air generator for use in V/STOL applications such as systems with a tip-turbine-driven lift fan. The program computes the dimensions and mass, as well as the thermodynamic performance of a model air generator configuration which involves a straight through-flow combustor. Physical and thermodynamic characteristics of the air generator components are also given. The program was written in FORTRAN IV language. Provision has been made so that the program will accept input values in either SI units or U.S. customary units. Each air generator design-point calculation requires about 1.5 seconds of 7094 computer time for execution.
Finite elements for the calculation of turbulent flows in three-dimensional complex geometries
Ruprecht, A.
A finite element program for the calculation of incompressible turbulent flows is presented. In order to reduce the required storage an iterative algorithm is used which solves the necessary equations sequentially. The state of turbulence is defined by the k-epsilon model. In addition to the standard k-epsilon model, the modification of Bardina et al., taking into account the rotation of the mean flow, is investigated. With this program, the flow in the draft tube of a Kaplan turbine is examined. Calculations are carried out for swirling and nonswirling entrance flow. The results are compared with measurements.
Directory of Open Access Journals (Sweden)
Guoqiang Wang
2014-01-01
Full Text Available Effect of anisotropy in compression is studied on hot rolling of AZ31 magnesium alloy with a three-dimensional constitutive model based on the quadratic Hill48 yield criterion and nonassociated flow rule (non-AFR. The constitutive model is characterized by compressive tests of AZ31 billets since plastic deformations of materials are mostly caused by compression during rolling processes. The characterized plasticity model is implemented into ABAQUS/Explicit as a user-defined material subroutine (VUMAT based on semi-implicit backward Euler's method. The subroutine is employed to simulate square-bar rolling processes. The simulation results are compared with rolled specimens and those predicted by the von Mises and the Hill48 yield function under AFR. Moreover, strip rolling is also simulated for AZ31 with the Hill48 yield function under non-AFR. The strip rolling simulation demonstrates that the lateral spread generated by the non-AFR model is in good agreement with experimental data. These comparisons between simulation and experiments validate that the proposed Hill48 yield function under non-AFR provides satisfactory description of plastic deformation behavior in hot rolling for AZ31 alloys in case that the anisotropic parameters in the Hill48 yield function and the non-associated flow rule are calibrated by the compressive experimental results.
Orifice Mass Flow Calculation in NASA's W-8 Single Stage Axial Compressor Facility
Bozak, Richard F.
2018-01-01
Updates to the orifice mass flow calculation for the W-8 Single Stage Axial Compressor Facility at NASA Glenn Research Center are provided to include the effect of humidity and incorporate ISO 5167. A methodology for including the effect of humidity into the inlet orifice mass flow calculation is provided. Orifice mass flow calculations provided by ASME PTC-19.5-2004, ASME MFC-3M-2004, ASME Fluid Meters, and ISO 5167 are compared for W-8's atmospheric inlet orifice plate. Differences in expansion factor and discharge coefficient given by these standards give a variation of about +/- 75% mass flow except for a few cases. A comparison of the calculations with an inlet static pressure mass flow correlation and a fan exit mass flow integration using test data from a 2017 turbofan rotor test in W-8 show good agreement between the inlet static pressure mass flow correlation, ISO 5167, and ASME Fluid Meters. While W-8's atmospheric inlet orifice plate violates the pipe diameter limit defined by each of the standards, the ISO 5167 is chosen to be the primary orifice mass flow calculation to use in the W-8 facility.
Forest fuel reduces the nitrogen load - calculations of nitrogen flows
International Nuclear Information System (INIS)
Burstroem, F.; Johansson, Jan.
1995-12-01
Nitrogen deposition in Sweden has increased strongly during recent decades, particularly in southern Sweden. Nitrogen appears to be largely accumulated in biomass and in the soil. It is therefore desirable to check the accumulation of nitrogen in the forest. The most suitable way of doing this is to remove more nitrogen-rich biomass from the forest, i.e., increase the removal of felling residues from final fellings and cleanings. An ecological condition for intensive removal of fuel is that the ashes are returned. The critical load for nitrogen, CL(N), indicates the level of nitrogen deposition that the forest can withstand without leading to ecological changes. Today, nitrogen deposition is higher than the CL(N) in almost all of Sweden. CL(N) is calculated in such a manner that nitrogen deposition should largely be balanced by nitrogen losses through harvesting during a forest rotation. The value of CL(N) thus largely depends on how much nitrogen is removed with the harvested biomass. When both stems and felling residues are harvested, the CL(N) is about three times higher than in conventional forestry. The increase is directly related to the amount of nitrogen in the removed biofuel. Use of biofuel also causes a certain amount of nitrogen emissions. From the environmental viewpoint there is no difference between the sources of the nitrogen compounds. An analysis of the entire fuel chain shows that, compared with the amount of nitrogen removed from the forest with the fuel, about 5 % will be emitted as nitrogen oxides or ammonia during combustion, and a further ca 5 % during handling and transports. A net amount of about 90 % of biomass nitrogen is removed from the system and becomes inert nitrogen (N 2 ). 60 refs, 3 figs, 4 tabs, 11 appendices
Global low-energy weak solution and large-time behavior for the compressible flow of liquid crystals
Wu, Guochun; Tan, Zhong
2018-06-01
In this paper, we consider the weak solution of the simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows in R3. When the initial data are of small energy and initial density is positive and essentially bounded, we prove the existence of a global weak solution in R3. The large-time behavior of a global weak solution is also established.
Kamman, J. H.; Hall, C. L.
1975-01-01
Two inlet performance tests and one inlet/airframe drag test were conducted in 1969 at the NASA-Ames Research Center. The basic inlet system was two-dimensional, three ramp (overhead), external compression, with variable capture area. The data from these tests were analyzed to show the effects of selected design variables on the performance of this type of inlet system. The inlet design variables investigated include inlet bleed, bypass, operating mass flow ratio, inlet geometry, and variable capture area.
Comparison of Mixing Calculations for Reacting and Non-Reacting Flows in a Cylindrical Duct
Oechsle, V. L.; Mongia, H. C.; Holdeman, J. D.
1994-01-01
A production 3-D elliptic flow code has been used to calculate non-reacting and reacting flow fields in an experimental mixing section relevant to a rich burn/quick mix/lean burn (RQL) combustion system. A number of test cases have been run to assess the effects of the variation in the number of orifices, mass flow ratio, and rich-zone equivalence ratio on the flow field and mixing rates. The calculated normalized temperature profiles for the non-reacting flow field agree qualitatively well with the normalized conserved variable isopleths for the reacting flow field indicating that non-reacting mixing experiments are appropriate for screening and ranking potential rapid mixing concepts. For a given set of jet momentum-flux ratio, mass flow ratio, and density ratio (J, MR, and DR), the reacting flow calculations show a reduced level of mixing compared to the non-reacting cases. In addition, the rich-zone equivalence ratio has noticeable effect on the mixing flow characteristics for reacting flows.
International Nuclear Information System (INIS)
Perrier, V.
2007-07-01
This work deals with the modelling and simulation of compressible flows. A seven equations model is obtained by homogenizing the Euler system. Fluctuation terms are modeled as relaxation terms. When the relaxation terms tend to infinity, which means that the phases are well mixed, a five equations model is obtained via an asymptotic expansion. This five equations model is strictly hyperbolic, but nonconservative. The discretization of this model is obtained by an asymptotic expansion of a scheme for the seven equations model. The numerical method is implemented, validated on analytic cases, and compared with experiments in the case of multiphase shocks. We are then interested in the modelling of phase transition with two equations of state. Optimization of the mixture entropy leads to the fact that three zones can be separated: one in which the pure liquid is the most stable, one in which the pure gas is the most stable, and one in which a mixture with equality of temperature, pressure and chemical potentials is the most stable. Conditions are given on the coupling of the two equations of state for ensuring that the mixture equation of state is convex, and that the system is strictly hyperbolic. In order to take into account phase transition, a vaporization wave is introduced in the solution of the Riemann problem, that is modeled as a deflagration wave. It is then proved that the usual closure, the Chapman-Jouguet closure, is wrong in general, and a correct closure in the case when both fluids have a perfect gas equation of state. Last, the solution of the Riemann problem is implemented in a multiphase code, and validated on analytic cases. In the same code, models of laser release and thermal conduction are implemented to simulate laser ablation. The results are comparable to the ones obtained with scale laws. The last chapter, fully independent, is concerned with correctors in stochastic homogenization in the case of heavy tails process. (author)
International Nuclear Information System (INIS)
Vasil'ev, S.A.; Dovganchuk, I.I.; Sozinov, Y.A.
1988-01-01
The laminar flow of a liquid metal in the clearance between rotating disks is examined in an axial magnetic field. A comparison is made between the experimental and calculated values of the potential difference
FLOWNET: A Computer Program for Calculating Secondary Flow Conditions in a Network of Turbomachinery
Rose, J. R.
1978-01-01
The program requires the network parameters, the flow component parameters, the reservoir conditions, and the gas properties as input. It will then calculate all unknown pressures and the mass flow rate in each flow component in the network. The program can treat networks containing up to fifty flow components and twenty-five unknown network pressures. The types of flow components that can be treated are face seals, narrow slots, and pipes. The program is written in both structured FORTRAN (SFTRAN) and FORTRAN 4. The program must be run in an interactive (conversational) mode.
Peng, Naifu; Yang, Yue
2018-01-01
We investigate the evolution of vortex-surface fields (VSFs) in compressible Taylor-Green flows at Mach numbers (Ma) ranging from 0.5 to 2.0 using direct numerical simulation. The formulation of VSFs in incompressible flows is extended to compressible flows, and a mass-based renormalization of VSFs is used to facilitate characterizing the evolution of a particular vortex surface. The effects of the Mach number on the VSF evolution are different in three stages. In the early stage, the jumps of the compressive velocity component near shocklets generate sinks to contract surrounding vortex surfaces, which shrink vortex volume and distort vortex surfaces. The subsequent reconnection of vortex surfaces, quantified by the minimal distance between approaching vortex surfaces and the exchange of vorticity fluxes, occurs earlier and has a higher reconnection degree for larger Ma owing to the dilatational dissipation and shocklet-induced reconnection of vortex lines. In the late stage, the positive dissipation rate and negative pressure work accelerate the loss of kinetic energy and suppress vortex twisting with increasing Ma.
FLATT - a computer programme for calculating flow and temperature transients in nuclear fuels
International Nuclear Information System (INIS)
Venkat Raj, V.; Koranne, S.M.
1976-01-01
FLATT is a computer code written in Fortran language for BESM-6 computer. The code calculates the flow transients in the coolant circuit of a nuclear reactor, caused by pump failure, and the consequent temperature transients in the fuel, clad, and the coolant. In addition any desired flow transient can be fed into the programme and the resulting temperature transients can be calculated. A case study is also presented. (author)
For effective thermodynamic calculation of turbines flow-through by gas and steam
Energy Technology Data Exchange (ETDEWEB)
Fischer, S; Hultsch, M
1982-03-01
A programme system for the medium and multiple section calculation of axial-flow turbines is explained. It allows calculations of turbine flow-through by gas and steam at designing and partial load states. The algorithms are independent upon the formulation of thermodynamic function, so that the programmes can be used for any means of production. The highest accuracy and efficiency can be guaranteed by the use of formulations of thermodynamic functions of water.
Directory of Open Access Journals (Sweden)
Shan Yang
2016-01-01
Full Text Available Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverter based distributed generation is proposed. The proposed method let the inverter based distributed generation be equivalent to Iθ bus, which makes it suitable to calculate the power flow of distribution network with a current limited inverter based distributed generation. And the low voltage ride through capability of inverter based distributed generation can be considered as well in this paper. Finally, some tests of power flow and short circuit current calculation are performed on a 33-bus distribution network. The calculated results from the proposed method in this paper are contrasted with those by the traditional method and the simulation method, whose results have verified the effectiveness of the integrated method suggested in this paper.
Numerically stable fluid–structure interactions between compressible flow and solid structures
Gré tarsson, Jó n Tó mas; Kwatra, Nipun; Fedkiw, Ronald
2011-01-01
] which solves compressible fluid in a semi-implicit manner, solving for the advection part explicitly and then correcting the intermediate state to time tn+1 using an implicit pressure, obtained by solving a modified Poisson system. Similar to previous
International Nuclear Information System (INIS)
KLEM, M.J.
2000-01-01
The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869
Shelef, Eitan; Hilley, George E.
2013-12-01
Flow routing across real or modeled topography determines the modeled discharge and wetness index and thus plays a central role in predicting surface lowering rate, runoff generation, likelihood of slope failure, and transition from hillslope to channel forming processes. In this contribution, we compare commonly used flow-routing rules as well as a new routing rule, to commonly used benchmarks. We also compare results for different routing rules using Airborne Laser Swath Mapping (ALSM) topography to explore the impact of different flow-routing schemes on inferring the generation of saturation overland flow and the transition between hillslope to channel forming processes, as well as on location of saturation overland flow. Finally, we examined the impact of flow-routing and slope-calculation rules on modeled topography produced by Geomorphic Transport Law (GTL)-based simulations. We found that different rules produce substantive differences in the structure of the modeled topography and flow patterns over ALSM data. Our results highlight the impact of flow-routing and slope-calculation rules on modeled topography, as well as on calculated geomorphic metrics across real landscapes. As such, studies that use a variety of routing rules to analyze and simulate topography are necessary to determine those aspects that most strongly depend on a chosen routing rule.
PSFC: a Pathway Signal Flow Calculator App for Cytoscape [version 2; referees: 2 approved
Directory of Open Access Journals (Sweden)
Lilit Nersisyan
2017-04-01
Full Text Available Cell signaling pathways are sequences of biochemical reactions that propagate an input signal, such as a hormone binding to a cell-surface receptor, into the cell to trigger a reactive process. Assessment of pathway activities is crucial for determining which pathways play roles in disease versus normal conditions. To date various pathway flow/perturbation assessment tools are available, however they are constrained to specific algorithms and specific data types. There are no accepted standards for evaluation of pathway activities or simulation of flow propagation events in pathways, and the results of different software are difficult to compare. Here we present Pathway Signal Flow Calculator (PSFC, a Cytoscape app for calculation of a pathway signal flow based on the pathway topology and node input data. The app provides a rich framework for customization of different signal flow algorithms to allow users to apply various approaches within a single computational framework.
Energy Technology Data Exchange (ETDEWEB)
Jung, Jong-Kil; Yoon, Jun-Kyu [Gachon Univ., Sungnam (Korea, Republic of); Kim, Kwang-Chu [KEPCO-E& C, Kimchun (Korea, Republic of)
2017-10-15
A rupture in a high-pressure pipe causes the fluid in the pipe to be discharged in the atmosphere at a high speed resulting in a supersonic jet that generates the compressible flow. This supersonic jet may display complicated and unsteady behavior in general . In this study, Computational Fluid Dynamics (CFD) analysis was performed to investigate the compressible flow generated by a supersonic jet ejected from a high-pressure pipe. A Shear Stress Transport (SST) turbulence model was selected to analyze the unsteady nature of the flow, which depends upon the various gases as well as the diameter of the pipe. In the CFD analysis, the basic boundary conditions were assumed to be as follows: pipe of diameter 10 cm, jet pressure ratio of 5, and an inlet gas temperature of 300 K. During the analysis, the behavior of the shockwave generated by a supersonic jet was observed and it was found that the blast wave was generated indirectly. The pressure wave characteristics of hydrogen gas, which possesses the smallest molecular mass, showed the shortest distance to the safety zone. There were no significant difference observed for nitrogen gas, air, and oxygen gas, which have similar molecular mass. In addition, an increase in the diameter of the pipe resulted in the ejected impact caused by the increased flow rate to become larger and the zone of jet influence to extend further.
Lee, Jeffrey M.
1999-01-01
This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.
International Nuclear Information System (INIS)
Thornton, E.A.; Ramakrishnan, R.
1986-06-01
Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes
Flow aerodynamics modeling of an MHD swirl combustor - calculations and experimental verification
International Nuclear Information System (INIS)
Gupta, A.K.; Beer, J.M.; Louis, J.F.; Busnaina, A.A.; Lilley, D.G.
1981-01-01
This paper describes a computer code for calculating the flow dynamics of constant density flow in the second stage trumpet shaped nozzle section of a two stage MHD swirl combustor for application to a disk generator. The primitive pressure-velocity variable, finite difference computer code has been developed to allow the computation of inert nonreacting turbulent swirling flows in an axisymmetric MHD model swirl combustor. The method and program involve a staggered grid system for axial and radial velocities, and a line relaxation technique for efficient solution of the equations. Tue produces as output the flow field map of the non-dimensional stream function, axial and swirl velocity. 19 refs
International Nuclear Information System (INIS)
Blanchard, M.; Schuller, T.; Sipp, D.; Schmid, P. J.
2015-01-01
The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in the numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated
Rainfall threshold calculation for debris flow early warning in areas with scarcity of data
Pan, Hua-Li; Jiang, Yuan-Jun; Wang, Jun; Ou, Guo-Qiang
2018-05-01
Debris flows are natural disasters that frequently occur in mountainous areas, usually accompanied by serious loss of lives and properties. One of the most commonly used approaches to mitigate the risk associated with debris flows is the implementation of early warning systems based on well-calibrated rainfall thresholds. However, many mountainous areas have little data regarding rainfall and hazards, especially in debris-flow-forming regions. Therefore, the traditional statistical analysis method that determines the empirical relationship between rainstorms and debris flow events cannot be effectively used to calculate reliable rainfall thresholds in these areas. After the severe Wenchuan earthquake, there were plenty of deposits deposited in the gullies, which resulted in several debris flow events. The triggering rainfall threshold has decreased obviously. To get a reliable and accurate rainfall threshold and improve the accuracy of debris flow early warning, this paper developed a quantitative method, which is suitable for debris flow triggering mechanisms in meizoseismal areas, to identify rainfall threshold for debris flow early warning in areas with a scarcity of data based on the initiation mechanism of hydraulic-driven debris flow. First, we studied the characteristics of the study area, including meteorology, hydrology, topography and physical characteristics of the loose solid materials. Then, the rainfall threshold was calculated by the initiation mechanism of the hydraulic debris flow. The comparison with other models and with alternate configurations demonstrates that the proposed rainfall threshold curve is a function of the antecedent precipitation index (API) and 1 h rainfall. To test the proposed method, we selected the Guojuanyan gully, a typical debris flow valley that during the 2008-2013 period experienced several debris flow events, located in the meizoseismal areas of the Wenchuan earthquake, as a case study. The comparison with other
Saturated-unsaturated flow to a well with storage in a compressible unconfined aquifer
Mishra, Phoolendra Kumar; Neuman, Shlomo P.
2011-05-01
Mishra and Neuman (2010) developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or unsaturated zones. Their solution accounts for horizontal as well as vertical flows in each zone. It represents unsaturated zone constitutive properties in a manner that is at once mathematically tractable and sufficiently flexible to provide much improved fits to standard constitutive models. In this paper we extend the solution of [2010] to the case of a finite diameter pumping well with storage; investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the [1980]- [1976] model; use our solution to analyze 11 transducer-measured drawdown records from a seven-day pumping test conducted by University of Waterloo researchers at the Canadian Forces Base Borden in Ontario, Canada; validate our parameter estimates against manually-measured drawdown records in 14 other piezometers at Borden; and compare (a) our estimates of aquifer parameters with those obtained on the basis of all these records by [2008], (b) on the basis of 11 transducer-measured drawdown records by [2007], (c) our estimates of van Genuchten-Mualem parameters with those obtained on the basis of laboratory drainage data from the site by [1992], and (d) our corresponding prediction of how effective saturation varies with elevation above the initial water table under static conditions with a profile based on water contents measured in a neutron access tube at a radial distance of about 5 m from the center of the pumping well. We also use our solution to analyze 11 transducer-measured drawdown
International Nuclear Information System (INIS)
Li, N.; Mara, N.A.; Wang, Y.Q.; Nastasi, M.; Misra, A.
2011-01-01
Research highlights: → Firstly micro-pillar compression technique has been used to measure the implanted metal films. → The magnitude of radiation hardening decreased with decreasing layer thickness. → When thickness decreases to 2.5 nm, no hardening and no loss in deformability after implantation. -- Focused-ion-beam machined compression specimens were used to investigate the effect of nanometer-scale helium bubbles on the strength and deformability of sputter-deposited Cu and Cu/Nb multilayers with different layer thickness. The flow strength of Cu films increased by more than a factor of 2 due to helium bubbles but in multilayers, the magnitude of radiation hardening decreased with decreasing layer thickness. When the layer thickness decreases to 2.5 nm, insignificant hardening and no measurable loss in deformability is observed after implantation.
Davis, Mark T; Potter, Catherine B; Walker, Gavin M
2018-06-10
Downstream processing aspects of a stable form of amorphous itraconazole exhibiting enhanced dissolution properties were studied. Preparation of this ternary amorphous solid dispersion by either spray drying or hot melt extrusion led to significantly different powder processing properties. Particle size and morphology was analysed using scanning electron microscopy. Flow, compression, blending and dissolution were studied using rheometry, compaction simulation and a dissolution kit. The spray dried material exhibited poorer flow and reduced sensitivity to aeration relative to the milled extrudate. Good agreement was observed between differing forms of flow measurement, such as Flow Function, Relative flow function, Flow rate index, Aeration rate, the Hausner ratio and the Carr index. The stability index indicated that both powders were stable with respect to agglomeration, de-agglomeration and attrition. Tablet ability and compressibility studies showed that spray dried material could be compressed into stronger compacts than extruded material. Blending of the powders with low moisture, freely-flowing excipients was shown to influence both flow and compression. Porosity studies revealed that blending could influence the mechanism of densification in extrudate and blended extrudate formulations. Following blending, the powders were compressed into four 500 mg tablets, each containing a 100 mg dose of amorphous itraconazole. Dissolution studies revealed that the spray dried material released drug faster and more completely and that blending excipients could further influence the dissolution rate. Copyright © 2018 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Xiong Ping
2018-01-01
Full Text Available In order to improve the validity of the previous models on calculating flow pressure for oil well with partially perforating fracture, a new physical model that obeys the actual heterogeneous reservoir characteristics was built. Different conditions, including reservoir with impermeable top and bottom borders or the reservoir top which has constant pressure, were considered. Through dimensionless transformation, Laplace transformation, Fourier cosine transformation, separation of variables, and other mathematical methods, the analytical solution of Laplace domain was obtained. By using Stephenson numerical methods, the numerical solution pressure in a real domain was obtained. The results of this method agree with the numerical simulations, suggesting that this new method is reliable. The following sensitivity analysis showed that the pressure dynamic linear flow curve can be divided into four flow streams of early linear flow, midradial flow, advanced spherical flow, and border controlling flow. Fracture length controls the early linear flow. Permeability anisotropy significantly affects the midradial flow. The degree of penetration and fracture orientation dominantly affect the late spherical flow. The boundary conditions and reservoir boundary width mainly affect the border controlling flow. The method can be used to determine the optimal degree of opening shot, vertical permeability, and other useful parameters, providing theoretical guidance for reservoir engineering analysis.
Calculation of local flow conditions in the lower core of a PWR with code-Saturne
International Nuclear Information System (INIS)
Fournier, Y.
2003-01-01
In order to better understand the stresses to which fuel rods are subjected, we need to improve our knowledge of the fluid flow inside the core. A code specialized for calculations in tube bundles is used to calculate the flow inside the whole of the core, with a resolution at the assembly level. Still, it is necessary to obtain realistic entry conditions, and these depend on the flow in the downcomer and lower plenum. Also, the flow in the first stages of the core features 4 incoming jets per assembly, and requires a resolution much finer than that used for the whole core calculation. A series of calculations are thus run with our incompressible Navier-Stokes solver, Code-Saturne, using a classical Ranse turbulence model. The first calculations involve a detailed geometry, including part of the cold legs, downcomer, lower plenum, and lower core of a pressurized water reactor. The level of detail includes most obstacles below the core. The lower core plate, being pierced with close to 800 holes, cannot be realistically represented within a practical mesh size, so that a head loss model is used. The lower core itself requiring even more detail is also represented with head losses. We make full use of Code-Saturne's non conforming mesh possibilities to represent a complex geometry, being careful to retain a good mesh quality. Starting just under the lower core, the mesh is aligned with fuel rod assemblies, so that different types of assemblies can be represented through different head loss coefficients. These calculations yield steady-state or near steady-state results, which are compared to experimental data, and should be sufficient to yield realistic entry conditions for full core calculations at assembly width resolution, and beyond those mechanical strain calculations. We are also interested in more detailed flow conditions and fluctuations in the lower core area, so as to better quantify vibrational input. This requires a much higher resolution, which we limit
Boccardi, G.; Lillo, G.; Mastrullo, R.; Mauro, A. W.; Saraceno, L.; Pieve, M.; Trinchieri, R.
2017-11-01
Nowadays, air conditioning systems, especially those used in residential and office buildings, contribute largely to the energy consumptions and to the direct and indirect emissions of greenhouse gases. Carbon dioxide (CO2) is an interesting option to replace traditional HFCs in vapor compression systems, due to its environmentally friendly characteristics: zero ODP and extremely low GWP. In the case of heat pumps, the use of ejection systems for the expansion phase can contribute to recovery a fraction of the mechanical energy otherwise dissipated as friction, bringing to significant benefits in terms of performance. Currently, at the laboratory DTE-PCU-SPCT of the research center ENEA (Casaccia) in cooperation with the Industrial Engineering Department of Federico II University of Naples, a project is in progress, in order to evaluate experimentally the effect of several ejectors geometries on the global performance of a CO2 heat pump working with a transcritical cycle. As a part of this project, measurements of the motive flow mass flow rate have been carried out, in transcritical CO2 conditions. The ejector sizing is a crucial point for the balancing of components and the correct operation of the CO2 heat pump and therefore the availability of reliable calculation methods for the motive flowrate would be useful. This paper presents the results obtained by a comparison between the new experimental data and the predictions of some predictive semi-empirical correlations available in the open literature for transcritical CO2 conditions. Their predictions are analyzed as a function of the main physical parameters of the process to assess their reliability compared to the experimental data. Based on these indications and of the available experimental data, a new semi-empirical correlations and a calculation method based on the hypothesis of isentropic and choked two-phase flow are presented.
Directory of Open Access Journals (Sweden)
Shun Takahashi
2014-01-01
Full Text Available A computational code adopting immersed boundary methods for compressible gas-particle multiphase turbulent flows is developed and validated through two-dimensional numerical experiments. The turbulent flow region is modeled by a second-order pseudo skew-symmetric form with minimum dissipation, while the monotone upstream-centered scheme for conservation laws (MUSCL scheme is employed in the shock region. The present scheme is applied to the flow around a two-dimensional cylinder under various freestream Mach numbers. Compared with the original MUSCL scheme, the minimum dissipation enabled by the pseudo skew-symmetric form significantly improves the resolution of the vortex generated in the wake while retaining the shock capturing ability. In addition, the resulting aerodynamic force is significantly improved. Also, the present scheme is successfully applied to moving two-cylinder problems.
Yang, L M; Shu, C; Wang, Y
2016-03-01
In this work, a discrete gas-kinetic scheme (DGKS) is presented for simulation of two-dimensional viscous incompressible and compressible flows. This scheme is developed from the circular function-based GKS, which was recently proposed by Shu and his co-workers [L. M. Yang, C. Shu, and J. Wu, J. Comput. Phys. 274, 611 (2014)]. For the circular function-based GKS, the integrals for conservation forms of moments in the infinity domain for the Maxwellian function-based GKS are simplified to those integrals along the circle. As a result, the explicit formulations of conservative variables and fluxes are derived. However, these explicit formulations of circular function-based GKS for viscous flows are still complicated, which may not be easy for the application by new users. By using certain discrete points to represent the circle in the phase velocity space, the complicated formulations can be replaced by a simple solution process. The basic requirement is that the conservation forms of moments for the circular function-based GKS can be accurately satisfied by weighted summation of distribution functions at discrete points. In this work, it is shown that integral quadrature by four discrete points on the circle, which forms the D2Q4 discrete velocity model, can exactly match the integrals. Numerical results showed that the present scheme can provide accurate numerical results for incompressible and compressible viscous flows with roughly the same computational cost as that needed by the Roe scheme.
A flow-based methodology for the calculation of TSO to TSO compensations for cross-border flows
International Nuclear Information System (INIS)
Glavitsch, H.; Andersson, G.; Lekane, Th.; Marien, A.; Mees, E.; Naef, U.
2004-01-01
In the context of the development of the European internal electricity market, several methods for the tarification of cross-border flows have been proposed. This paper presents a flow-based method for the calculation of TSO to TSO compensations for cross-border flows. The basic principle of this approach is the allocation of the costs of cross-border flows to the TSOs who are responsible for these flows. This method is cost reflective, non-transaction based and compatible with domestic tariffs. It can be applied when limited data are available. Each internal transmission network is then modelled as an aggregated node, called 'supernode', and the European network is synthesized by a graph of supernodes and arcs, each arc representing all cross-border lines between two adjacent countries. When detailed data are available, the proposed methodology is also applicable to all the nodes and lines of the transmission network. Costs associated with flows transiting through supernodes or network elements are forwarded through the network in a way reflecting how the flows make use of the network. The costs can be charged either towards loads and exports or towards generations and imports. Combination of the two charging directions can also be considered. (author)
Numerical method for three dimensional steady-state two-phase flow calculations
International Nuclear Information System (INIS)
Raymond, P.; Toumi, I.
1992-01-01
This paper presents the numerical scheme which was developed for the FLICA-4 computer code to calculate three dimensional steady state two phase flows. This computer code is devoted to steady state and transient thermal hydraulics analysis of nuclear reactor cores 1,3 . The first section briefly describes the FLICA-4 flow modelling. Then in order to introduce the numerical method for steady state computations, some details are given about the implicit numerical scheme based upon an approximate Riemann solver which was developed for calculation of flow transients. The third section deals with the numerical method for steady state computations, which is derived from this previous general scheme and its optimization. We give some numerical results for steady state calculations and comparisons on required CPU time and memory for various meshing and linear system solvers
McCue, Justin T; Cecchini, Douglas; Chu, Cathy; Liu, Wei-Han; Spann, Andrew
2007-03-23
A two-dimensional model was formulated to describe the pressure-flow behavior of compressible stationary phases for protein chromatography at different temperatures and column scales. The model was based on the assumption of elastic deformation of the solid phase and steady-state Darcy flow. Using a single fitted value for the empirical modulus parameters, the model was applied to describe the pressure-flow behavior of several adsorbents packed using both fluid flow and mechanical compression. Simulations were in agreement with experimental data and accurately predicted the pressure-flow and compression behavior of three adsorbents over a range of column scales and operating temperatures. Use of the described theoretical model potentially improves the accuracy of the column scale-up process, allowing the use of limited laboratory scale data to predict column performance in large scale applications.
Numerical calculation of velocity distribution near a vertical flat plate immersed in bubble flow
International Nuclear Information System (INIS)
Matsuura, Akihiro; Nakamura, Hajime; Horihata, Hideyuki; Hiraoka, Setsuro; Aragaki, Tsutomu; Yamada, Ikuho; Isoda, Shinji.
1992-01-01
Liquid and gas velocity distributions for bubble flow near a vertical flat plate were calculated numerically by using the SIMPLER method, where the flow was assumed to be laminar, two-dimensional, and at steady state. The two-fluid flow model was used in the numerical analysis. To calculate the drag force on a small bubble, Stokes' law for a rigid sphere is applicable. The dimensionless velocity distributions which were arranged with characteristic boundary layer thickness and maximum liquid velocity were adjusted with a single line and their forms were similar to that for single-phase wall-jet flow. The average wall shear stress derived from the velocity gradient at the plate wall was strongly affected by bubble diameter but not by inlet liquid velocity. The present dimensionless velocity distributions obtained numerically agreed well with previous experimental results, and the proposed numerical algorithm was validated. (author)
International Nuclear Information System (INIS)
Migliavacca, S.C.P.
1991-01-01
A review of the isotope separation theory for the countercurrent gas centrifuge is presented. The diffusion-convection equation is solved according to the ONSAGER-COHEN solution for the constant internal flow and adapted to an axially varying countercurrent flow. Based on that theory, a numerical program is developed for the calculation of the isotopic compositions and the separative parameters of the centrifuge. The influence of the feed flow and the internal parameters. Like cut and countercurrent flow, on the separative parameters is then analysed for a model-centrifuge, which afterwards is optimized with respect to its separative power. Finally, a comparison between the present calculation procedure and some published results, provided by different theories, shows deviations lower then 20%. (author)
On numerical solution of compressible flow in time-dependent domains
Czech Academy of Sciences Publication Activity Database
Feistauer, M.; Horáček, Jaromír; Kučera, V.; Prokopová, Jaroslava
2012-01-01
Roč. 137, č. 1 (2012), s. 1-16 ISSN 0862-7959 R&D Projects: GA MŠk OC09019 Institutional research plan: CEZ:AV0Z20760514 Keywords : compressible Navier-Stokes equations * arbitrary Lagrangian-Eulerian method * discontinuous Galerkin finite element method * interior and boundary penalty Subject RIV: BI - Acoustics
On the modeling of gas flow through porous compression packings used in valve stuffing-boxes
International Nuclear Information System (INIS)
Kazeminia, Mehdi; Bouzid, Abdel-Hakim
2015-01-01
Predicting leak rate through porous compression packing rings is a significant challenge for the design of packed stuffing boxes. Although few studies have been conducted to predict the leak rate through these seals, there is no comprehensive standard procedure to be used to design compression packings for a maximum tolerated leak for a given application. With the ubiquitous use of the yarned packing rings and the strict regulations on fugitive emissions and the new environment protection laws quantification of leak rate through yarned stuffing boxes becomes more than necessary and a tightness criteria based design procedure must be developed. In this study a new approach to predict leak rate through compression packing rings has been developed. It is based on Darcy's model to which Klinkenberg slip effect is incorporated. The predicted leak rates are compared to those measured experimentally using two different graphite-based packing rings subjected to different compression levels and pressures. A good agreement is found between the predicted and the measured leak rates which illustrates the validity of the developed model. (author)
Czech Academy of Sciences Publication Activity Database
Kosík, Adam; Feistauer, M.; Hadrava, Martin; Horáček, Jaromír
2015-01-01
Roč. 267, September (2015), s. 382-396 ISSN 0096-3003 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : discontinuous Galerkin method * nonlinear elasticity * compressible viscous flow * fluid–structure interaction Subject RIV: BI - Acoustics Impact factor: 1.345, year: 2015 http://www.sciencedirect.com/science/article/pii/S0096300315002453/pdfft?md5=02d46bc730e3a7fb8a5008aaab1da786&pid=1-s2.0-S0096300315002453-main.pdf
Wang, Yaping; Lin, Shunjiang; Yang, Zhibin
2017-05-01
In the traditional three-phase power flow calculation of the low voltage distribution network, the load model is described as constant power. Since this model cannot reflect the characteristics of actual loads, the result of the traditional calculation is always different from the actual situation. In this paper, the load model in which dynamic load represented by air conditioners parallel with static load represented by lighting loads is used to describe characteristics of residents load, and the three-phase power flow calculation model is proposed. The power flow calculation model includes the power balance equations of three-phase (A,B,C), the current balance equations of phase 0, and the torque balancing equations of induction motors in air conditioners. And then an alternating iterative algorithm of induction motor torque balance equations with each node balance equations is proposed to solve the three-phase power flow model. This method is applied to an actual low voltage distribution network of residents load, and by the calculation of three different operating states of air conditioners, the result demonstrates the effectiveness of the proposed model and the algorithm.
Calculation of nonstationary gas-dynamic flows with periodic local supply of energy
International Nuclear Information System (INIS)
Mikhailova, N.V.; Myshetskaya, E.E.; Rakhimov, A.T.; Favorskii, A.P.
The paper considers the motion of a flow of gas with local supply of energy periodic in time. Solution of the problem in one-dimensional formulation in the approximation of an ideal nonviscous non-heat-conducting gas is carried out by numerical methods. The possibility of emergence of the flow into a periodic regime is established and the rate of this process is calculated. The character of the periodic structure is investigated in dependence on the frequency of the superimposition of perturbations and the Mach number in unperturbed flow of the gas
International Nuclear Information System (INIS)
Uehara, Yasushi; Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Koshizuka, Seiichi
2009-01-01
In order to predict and mitigate flow accelerated corrosion (FAC) of carbon steel piping in PWR and BWR secondary systems, computer program packages for evaluating FAC have been developed by coupling one through three dimensional (1-3D) computational flow dynamics (CFD) models and corrosion models. To evaluate corrosive conditions, e.g., oxygen concentration and electrochemical corrosion potential (ECP) along the flow path, flow pattern and temperature in each elemental volume were obtained with 1D computational flow dynamics (CFD) codes. Precise flow turbulence and mass transfer coefficients at the structure surface were calculated with 3D CFD codes to determine wall thinning rates. One of the engineering options is application of k-ε calculation as a 3D CFD code, which has limitation of detail evaluation of flow distribution at very surface of large scale piping. A combination of k-ε calculation and wall function was proposed to evaluate precise distribution of mass transfer coefficients with reasonable CPU volume and computing time and, at the same time, reasonable accuracy. (author)
On calculation of a steam-water flow in a geothermal well
Shulyupin, A. N.; Chermoshentseva, A. A.
2013-08-01
Approaches to calculation of a steam-water flow in a geothermal well are considered. For hydraulic applications, a WELL-4 model of a steam-water well is developed. Data obtained using this model are compared with experimental data and also with calculations by similar models including the well-known HOLA model. The capacity of the A-2 well in the Mutnovskoe flash-steam field (Kamchatka half-island, Russia) after planned reconstruction is predicted.
International Nuclear Information System (INIS)
Kokh, S.
2001-01-01
This research thesis reports the development of a numerical direct simulation of compressible two-phase flows by using interface capturing methods. These techniques are based on the use of an Eulerian fixed grid to describe flow variables as well as the interface between fluids. The author first recalls conventional interface capturing methods and makes the distinction between those based on discontinuous colour functions and those based on level set functions. The approach is then extended to a five equation model to allow the largest as possible choice of state equations for the fluids. Three variants are developed. A solver inspired by the Roe scheme is developed for one of them. These interface capturing methods are then refined, more particularly for problems of numerical diffusion at the interface. A last part addresses the study of dynamic phase change. Non-conventional thermodynamics tools are used to study the structures of an interface which performs phase transition [fr
On the low Mach number limit of compressible flows in exterior moving domains
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Kreml, Ondřej; Mácha, Václav; Nečasová, Šárka
2016-01-01
Roč. 16, č. 3 (2016), s. 705-722 ISSN 1424-3199 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : compressible Navier-Stokes system * incompressible limit * moving domain Subject RIV: BA - General Mathematics Impact factor: 1.038, year: 2016 http://link.springer.com/article/10.1007%2Fs00028-016-0338-2
Czech Academy of Sciences Publication Activity Database
Pořízková, P.; Kozel, Karel; Horáček, Jaromír
2014-01-01
Roč. 270, November (2014), s. 323-329 ISSN 0377-0427 R&D Projects: GA ČR(CZ) GAP101/11/0207; GA ČR(CZ) GAP101/10/1329 Institutional support: RVO:61388998 Keywords : compressible * incompressible * unsteady * CFD * acoustic * vocal tract Subject RIV: BI - Acoustics Impact factor: 1.266, year: 2014 http://www.sciencedirect.com/science/article/pii/S0377042713007188#
Directory of Open Access Journals (Sweden)
Adam B. Sefkow
2008-07-01
Full Text Available Large-space-scale and long-time-scale plasma flow simulations are executed in order to study the spatial and temporal evolution of plasma parameters for two types of plasma sources used in the neutralized drift compression experiment (NDCX. The results help assess the charge neutralization conditions for ion beam compression experiments and can be employed in more sophisticated simulations, which previously neglected the dynamical evolution of the plasma. Three-dimensional simulations of a filtered cathodic-arc plasma source show the coupling efficiency of the plasma flow from the source to the drift region depends on geometrical factors. The nonuniform magnetic topology complicates the well-known general analytical considerations for evaluating guiding-center drifts, and particle-in-cell simulations provide a self-consistent evaluation of the physics in an otherwise challenging scenario. Plasma flow profiles of a ferroelectric plasma source demonstrate that the densities required for longitudinal compression experiments involving ion beams are provided over the drift length, and are in good agreement with measurements. Simulations involving azimuthally asymmetric plasma creation conditions show that symmetric profiles are nevertheless achieved at the time of peak on-axis plasma density. Also, the ferroelectric plasma expands upstream on the thermal expansion time scale, and therefore avoids the possibility of penetration into the acceleration gap and transport sections, where partial neutralization would increase the beam emittance. Future experiments on NDCX will investigate the transverse focusing of an axially compressing intense charge bunch to a sub-mm spot size with coincident focal planes using a strong final-focus solenoid. In order to fill a multi-tesla solenoid with the necessary high-density plasma for beam charge neutralization, the simulations predict that supersonically injected plasma from the low-field region will penetrate and
Practical Calculation of Second-order Supersonic Flow past Nonlifting Bodies of Revolution
Van Dyke, Milton D
1952-01-01
Calculation of second-order supersonic flow past bodies of revolution at zero angle of attack is described in detail, and reduced to routine computation. Use of an approximate tangency condition is shown to increase the accuracy for bodies with corners. Tables of basic functions and standard computing forms are presented. The procedure is summarized so that one can apply it without necessarily understanding the details of the theory. A sample calculation is given, and several examples are compared with solutions calculated by the method of characteristics.
Colera, Manuel; Pérez-Saborid, Miguel
2017-09-01
A finite differences scheme is proposed in this work to compute in the time domain the compressible, subsonic, unsteady flow past an aerodynamic airfoil using the linearized potential theory. It improves and extends the original method proposed in this journal by Hariharan, Ping and Scott [1] by considering: (i) a non-uniform mesh, (ii) an implicit time integration algorithm, (iii) a vectorized implementation and (iv) the coupled airfoil dynamics and fluid dynamic loads. First, we have formulated the method for cases in which the airfoil motion is given. The scheme has been tested on well known problems in unsteady aerodynamics -such as the response to a sudden change of the angle of attack and to a harmonic motion of the airfoil- and has been proved to be more accurate and efficient than other finite differences and vortex-lattice methods found in the literature. Secondly, we have coupled our method to the equations governing the airfoil dynamics in order to numerically solve problems where the airfoil motion is unknown a priori as happens, for example, in the cases of the flutter and the divergence of a typical section of a wing or of a flexible panel. Apparently, this is the first self-consistent and easy-to-implement numerical analysis in the time domain of the compressible, linearized coupled dynamics of the (generally flexible) airfoil-fluid system carried out in the literature. The results for the particular case of a rigid airfoil show excellent agreement with those reported by other authors, whereas those obtained for the case of a cantilevered flexible airfoil in compressible flow seem to be original or, at least, not well-known.
Calculations of flow oscillations during reflood using RELAP4/MOD6
International Nuclear Information System (INIS)
Chen, Y.S.; Fischer, S.R.; Sullivan, L.H.
1979-01-01
RELAP4/MOD6 is an analytical computer code which can be used for best-estimate analysis of LWR reactor system blowdown and reflood response to a postulated LOCA. In this study, flow oscillations in the PKL reflood test K5A were investigated using RELAP4/MOD6. Both calculated and measured oscillations exhibited transient characteristics of density-wave and pressure-drop oscillations. The calculated average core mixture level rising rate agrees closely with the test data. Several mechanisms which appear to be responsible for initiation and continuation of calculated or experimental reflood flow oscillations are (a) the coupling between the vapor generation in the core channel and the U-tube geometrical arrangement of a downcomer and a heated core; (b) the inherent low core inlet resistance and the high system outlet resistance; (c) the dependence of heat transfer rate on mass flow rate especially in the dispersed flow ially in the dispersed flow regime; (d) the amount of the liquid entrainment fraction of the heated core channel
International Nuclear Information System (INIS)
Ejtehadi, Omid; Esfahani, Javad Abolfazli; Roohi, Ehsan
2012-01-01
In the present work, compressible flow of argon gas in the famous problem of Couette flow in micro/nano-scale is considered and numerically analyzed using the direct simulation Monte Carlo (DSMC) method. The effects of compressibility and rarefaction on entropy and entropy generation in terms of viscous dissipation and thermal diffusion are studied in a wide range of Mach and Knudsen numbers and the observed physics are discussed. In this regard, we computed entropy by using its kinetic theory formulation in a microscopic way while the entropy generation distribution is achieved by applying a semi-microscopic approach and thoroughly free from equilibrium assumptions. The results of our simulations demonstrated that the entropy profiles are in accordance with the temperature profiles. It is also illustrated that the increase of Mach number will result in non-uniform entropy profiles with increase in the vicinity of the central regions of the channel. Moreover, generation of entropy in all regions of the domain stages clear growth. By contrast, increasing the Knudsen number has inverse effects such as: uniform entropy profiles and a falling off in entropy generation amount throughout the channel.
Directory of Open Access Journals (Sweden)
Xiaoqing Wei
2017-02-01
Full Text Available As one of the most widely used units in water cooling systems, the closed wet cooling towers (CWCTs have two typical counter-flow constructions, in which the spray water flows from the top to the bottom, and the moist air and cooling water flow in the opposite direction vertically (parallel or horizontally (cross, respectively. This study aims to present a simplified calculation method for conveniently and accurately analyzing the thermal performance of the two types of counter-flow CWCTs, viz. the parallel counter-flow CWCT (PCFCWCT and the cross counter-flow CWCT (CCFCWCT. A simplified cooling capacity model that just includes two characteristic parameters is developed. The Levenberg–Marquardt method is employed to determine the model parameters by curve fitting of experimental data. Based on the proposed model, the predicted outlet temperatures of the process water are compared with the measurements of a PCFCWCT and a CCFCWCT, respectively, reported in the literature. The results indicate that the predicted values agree well with the experimental data in previous studies. The maximum absolute errors in predicting the process water outlet temperatures are 0.20 and 0.24 °C for the PCFCWCT and CCFCWCT, respectively. These results indicate that the simplified method is reliable for performance prediction of counter-flow CWCTs. Although the flow patterns of the two towers are different, the variation trends of thermal performance are similar to each other under various operating conditions. The inlet air wet-bulb temperature, inlet cooling water temperature, air flow rate, and cooling water flow rate are crucial for determining the cooling capacity of a counter-flow CWCT, while the cooling tower effectiveness is mainly determined by the flow rates of air and cooling water. Compared with the CCFCWCT, the PCFCWCT is much more applicable in a large-scale cooling water system, and the superiority would be amplified when the scale of water
Numerically induced pressure excursions in two-phase-flow calculations. Final report
International Nuclear Information System (INIS)
Mahaffy, J.H.; Liles, D.R.
1983-01-01
Pressure spikes that cannot be traced to any physical origin sometimes are observed when standard Eulerian finite-difference methods are used to calculate two-phase-flow transients. This problem occurs with varying frequency in nuclear reactor safety codes such as RELAP, RETRAN, COBRA, and TRAC. These spikes usually result from numerical water packing or from interactions between spatial discretization and heat transfer
International Nuclear Information System (INIS)
KLEM, M.J.
2000-01-01
The purpose of this calculation document is to develop the bases for the material balances of the Multi-Canister Overpack (MCO) Level 1 Process Flow Diagram (PFD). The attached mass balances support revision two of the PFD for the MCO and provide future reference
Magnetic particle movement program to calculate particle paths in flow and magnetic fields
International Nuclear Information System (INIS)
Inaba, Toru; Sakazume, Taku; Yamashita, Yoshihiro; Matsuoka, Shinya
2014-01-01
We developed an analysis program for predicting the movement of magnetic particles in flow and magnetic fields. This magnetic particle movement simulation was applied to a capturing process in a flow cell and a magnetic separation process in a small vessel of an in-vitro diagnostic system. The distributions of captured magnetic particles on a wall were calculated and compared with experimentally obtained distributions. The calculations involved evaluating not only the drag, pressure gradient, gravity, and magnetic force in a flow field but also the friction force between the particle and the wall, and the calculated particle distributions were in good agreement with the experimental distributions. Friction force was simply modeled as static and kinetic friction forces. The coefficients of friction were determined by comparing the calculated and measured results. This simulation method for solving multiphysics problems is very effective at predicting the movements of magnetic particles and is an excellent tool for studying the design and application of devices. - Highlights: ●We developed magnetic particles movement program in flow and magnetic fields. ●Friction force on wall is simply modeled as static and kinetic friction force. ●This program was applied for capturing and separation of an in-vitro diagnostic system. ●Predicted particle distributions on wall were agreed with experimental ones. ●This method is very effective at predicting movements of magnetic particles
Howlett, James T.; Bland, Samuel R.
1987-01-01
A method is described for calculating unsteady transonic flow with viscous interaction by coupling a steady integral boundary-layer code with an unsteady, transonic, inviscid small-disturbance computer code in a quasi-steady fashion. Explicit coupling of the equations together with viscous -inviscid iterations at each time step yield converged solutions with computer times about double those required to obtain inviscid solutions. The accuracy and range of applicability of the method are investigated by applying it to four AGARD standard airfoils. The first-harmonic components of both the unsteady pressure distributions and the lift and moment coefficients have been calculated. Comparisons with inviscid calcualtions and experimental data are presented. The results demonstrate that accurate solutions for transonic flows with viscous effects can be obtained for flows involving moderate-strength shock waves.
International Nuclear Information System (INIS)
Núñez, M A; Mendoza, R
2015-01-01
Several methods to estimate the velocity field of atmospheric flows, have been proposed to the date for applications such as emergency response systems, transport calculations and for budget studies of all kinds. These applications require a wind field that satisfies the conservation of mass but, in general, estimated wind fields do not satisfy exactly the continuity equation. An approach to reduce the effect of using a divergent wind field as input in the transport-diffusion equations, was proposed in the literature. In this work, a linear local analysis of a wind field, is used to show analytically that the perturbation of a large-scale nondivergent flow can yield a divergent flow with a substantially different structure. The effects of these structural changes in transport calculations are illustrated by means of analytic solutions of the transport equation
Energy Technology Data Exchange (ETDEWEB)
Nishioka, K.; Nakamura, Y. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Nishimura, S. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Lee, H. Y. [Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Kobayashi, S.; Mizuuchi, T.; Nagasaki, K.; Okada, H.; Minami, T.; Kado, S.; Yamamoto, S.; Ohshima, S.; Konoshima, S.; Sano, F. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)
2016-03-15
A moment approach to calculate neoclassical transport in non-axisymmetric torus plasmas composed of multiple ion species is extended to include the external parallel momentum sources due to unbalanced tangential neutral beam injections (NBIs). The momentum sources that are included in the parallel momentum balance are calculated from the collision operators of background particles with fast ions. This method is applied for the clarification of the physical mechanism of the neoclassical parallel ion flows and the multi-ion species effect on them in Heliotron J NBI plasmas. It is found that parallel ion flow can be determined by the balance between the parallel viscosity and the external momentum source in the region where the external source is much larger than the thermodynamic force driven source in the collisional plasmas. This is because the friction between C{sup 6+} and D{sup +} prevents a large difference between C{sup 6+} and D{sup +} flow velocities in such plasmas. The C{sup 6+} flow velocities, which are measured by the charge exchange recombination spectroscopy system, are numerically evaluated with this method. It is shown that the experimentally measured C{sup 6+} impurity flow velocities do not contradict clearly with the neoclassical estimations, and the dependence of parallel flow velocities on the magnetic field ripples is consistent in both results.
Development of a calculation methodology for potential flow over irregular topographies
International Nuclear Information System (INIS)
Del Carmen, Alejandra F.; Ferreri, Juan C.; Boutet, Luis I.
2003-01-01
Full text: Computer codes for the calculation of potential flow fields over surfaces with irregular topographies have been developed. The flows past multiple simple obstacles and past the neighboring region of the Embalse Nuclear Power Station have been considered. The codes developed allow the calculation of velocities quite near the surface. It, in turn, imposed developing high accuracy techniques. The Boundary Element Method, using a linear approximation on triangular plane elements and an analytical integration methodology has been applied. A particular and quite efficient technique for the calculation of the solid angle at each node vertex was also considered. The results so obtained will be applied to predict the dispersion of passive pollutants coming from discontinuous emissions. (authors)
Compressible magma flow in a two-dimensional elastic-walled dike
Woods, A.W.; Bokhove, Onno; de Boer, A; Hill, B.E.
2006-01-01
The ascent of magma to the Earth's surface is commonly modeled by assuming a fixed dike or flow geometry from a deep subsurface reservoir to the surface. In practice, however, this flow geometry is produced by deformation of the crust by ascending overpressured magma. Here, we explore how this
Liu, Shun; Xu, Jinglei; Yu, Kaikai
2017-06-01
This paper proposes an improved approach for extraction of pressure fields from velocity data, such as obtained by particle image velocimetry (PIV), especially for steady compressible flows with strong shocks. The principle of this approach is derived from Navier-Stokes equations, assuming adiabatic condition and neglecting viscosity of flow field boundaries measured by PIV. The computing method is based on MacCormack's technique in computational fluid dynamics. Thus, this approach is called the MacCormack method. Moreover, the MacCormack method is compared with several approaches proposed in previous literature, including the isentropic method, the spatial integration and the Poisson method. The effects of velocity error level and PIV spatial resolution on these approaches are also quantified by using artificial velocity data containing shock waves. The results demonstrate that the MacCormack method has higher reconstruction accuracy than other approaches, and its advantages become more remarkable with shock strengthening. Furthermore, the performance of the MacCormack method is also validated by using synthetic PIV images with an oblique shock wave, confirming the feasibility and advantage of this approach in real PIV experiments. This work is highly significant for the studies on aerospace engineering, especially the outer flow fields of supersonic aircraft and the internal flow fields of ramjets.
Quasiconservation laws for compressible three-dimensional Navier-Stokes flow.
Gibbon, J D; Holm, D D
2012-10-01
We formulate the quasi-Lagrangian fluid transport dynamics of mass density ρ and the projection q=ω·∇ρ of the vorticity ω onto the density gradient, as determined by the three-dimensional compressible Navier-Stokes equations for an ideal gas, although the results apply for an arbitrary equation of state. It turns out that the quasi-Lagrangian transport of q cannot cross a level set of ρ. That is, in this formulation, level sets of ρ (isopycnals) are impermeable to the transport of the projection q.
Navier-Stokes analysis and experimental data comparison of compressible flow within ducts
Harloff, G. J.; Reichert, B. A.; Sirbaugh, J. R.; Wellborn, S. R.
1992-01-01
Many aircraft employ ducts with centerline curvature or changing cross-sectional shape to join the engine with inlet and exhaust components. S-ducts convey air to the engine compressor from the intake and often decelerate the flow to achieve an acceptable Mach number at the engine compressor by increasing the cross-sectional area downstream. Circular-to-rectangular transition ducts are used on aircraft with rectangular exhaust nozzles to connect the engine and nozzle. To achieve maximum engine performance, the ducts should minimize flow total pressure loss and total pressure distortion at the duct exit. Changes in the curvature of the duct centerline or the duct cross-sectional shape give rise to streamline curvature which causes cross stream pressure gradients. Secondary flows can be caused by deflection of the transverse vorticity component of the boundary layer. This vortex tilting results in counter-rotating vortices. Additionally, the adverse streamwise pressure gradient caused by increasing cross-sectional area can lead to flow separation. Vortex pairs have been observed in the exit planes of both duct types. These vortices are due to secondary flows induced by pressure gradients resulting from streamline curvature. Regions of low total pressure are produced when the vortices convect boundary layer fluid into the main flow. The purpose of the present study is to predict the measured flow field in a diffusing S-duct and a circular-to-rectangular transition duct with a full Navier-Stokes computer program, PARC3D, and to compare the numerical predictions with new detailed experimental measurements. The work was undertaken to extend previous studies and to provide additional CFD validation data needed to help model flows with strong secondary flow and boundary layer separation. The S-duct computation extends the study of Smith et al, and Harloff et al, which concluded that the computation might be improved by using a finer grid and more advanced turbulence models
International Nuclear Information System (INIS)
Yan, Ke-Le; Liu, Huang; Sun, Chang-Yu; Ma, Qing-Lan; Chen, Guang-Jin; Shen, De-Ji; Xiao, Xiang-Jiao; Wang, Hai-Ying
2013-01-01
Highlights: • Volumetric properties of two reservoir fluid samples were measured with pressure up to 116 MPa. • Dew point pressures at four temperatures for condensate gas sample are obtained. • Correlations and thermodynamic model for describing gas compressibility factor under high pressure were compared. • The thermodynamic model recommended is most suitable for fluids produced from reservoirs with a wide pressure range. -- Abstract: The volumetric properties of two reservoir fluid samples collected from one condensate gas well and one natural gas well were measured under four groups of temperatures, respectively, with pressure up to 116 MPa. For the two samples examined, the experimental results show that the gas compressibility factor increases with the increase of pressure. But the influence of the temperature is related to the range of the experimental pressure. It approximately decreases with the increase of temperature when the pressure is larger than (45 to 50) MPa, while there is the opposite trend when the pressure is lower than (45 to 50) MPa. The dew point pressure was also determined for the condensate gas sample, which decreases with the increase of temperature. The capabilities of four empirical correlations and a thermodynamic model based on equation of state for describing gas compressibility factor of reservoir fluids under high pressure were investigated. The comparison results show that the thermodynamic model recommended is the most suitable for fluids whatever produced from high-pressure reservoirs or conventional mild-pressure reservoirs
Directory of Open Access Journals (Sweden)
Yi Li
2017-01-01
Full Text Available With the blossoming of intermittent energy, compressed air energy storage (CAES has attracted much attention as a potential large-scale energy storage technology. Compared with caverns as storage vessels, compressed air energy storage in aquifers (CAESA has the advantages of wide availability and lower costs. The wellbore can play an important role as the energy transfer mechanism between the surroundings and the air in CAESA system. In this paper, we investigated the influences of the well screen length on CAESA system performance using an integrated wellbore-reservoir simulator (T2WELL/EOS3. The results showed that the well screen length can affect the distribution of the initial gas bubble and that a system with a fully penetrating wellbore can obtain acceptably stable pressurized air and better energy efficiencies. Subsequently, we investigated the impact of the energy storage scale and the target aquifer depth on the performance of a CAESA system using a fully penetrating wellbore. The simulation results demonstrated that larger energy storage scales exhibit better performances of CAESA systems. In addition, deeper target aquifer systems, which could decrease the energy loss by larger storage density and higher temperature in surrounding formation, can obtain better energy efficiencies.
Scalable Methods for Eulerian-Lagrangian Simulation Applied to Compressible Multiphase Flows
Zwick, David; Hackl, Jason; Balachandar, S.
2017-11-01
Multiphase flows can be found in countless areas of physics and engineering. Many of these flows can be classified as dispersed two-phase flows, meaning that there are solid particles dispersed in a continuous fluid phase. A common technique for simulating such flow is the Eulerian-Lagrangian method. While useful, this method can suffer from scaling issues on larger problem sizes that are typical of many realistic geometries. Here we present scalable techniques for Eulerian-Lagrangian simulations and apply it to the simulation of a particle bed subjected to expansion waves in a shock tube. The results show that the methods presented here are viable for simulation of larger problems on modern supercomputers. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138. This work was supported in part by the U.S. Department of Energy under Contract No. DE-NA0002378.
Kawahara, Mutsuto
2016-01-01
This book focuses on the finite element method in fluid flows. It is targeted at researchers, from those just starting out up to practitioners with some experience. Part I is devoted to the beginners who are already familiar with elementary calculus. Precise concepts of the finite element method remitted in the field of analysis of fluid flow are stated, starting with spring structures, which are most suitable to show the concepts of superposition/assembling. Pipeline system and potential flow sections show the linear problem. The advection–diffusion section presents the time-dependent problem; mixed interpolation is explained using creeping flows, and elementary computer programs by FORTRAN are included. Part II provides information on recent computational methods and their applications to practical problems. Theories of Streamline-Upwind/Petrov–Galerkin (SUPG) formulation, characteristic formulation, and Arbitrary Lagrangian–Eulerian (ALE) formulation and others are presented with practical results so...
Computation of 2D compressible flows with a finite element method
International Nuclear Information System (INIS)
Montagne, J.L.
1981-04-01
When the homogeneous modelisation of the two phase flow is used the set of equations describing the flow is similar to an Euler system. Mixed finite elements are appropriate to discretize the equations. First, main properties of this kind of elements are reminded. Then, some properties of semi-implicite schemes on stability and entropy are given. Numerical tests have been performed, and the scheme gave satisfactory results
Wu, Yuanqing; Kowitz, Christoph; Sun, Shuyu; Salama, Amgad
2015-01-01
Flash calculations have become a performance bottleneck in the simulation of compositional flow in subsurface reservoirs. We apply a sparse grid surrogate model to substitute the flash calculation and thus try to remove the bottleneck from
Scott, James R.
1991-01-01
A numerical method is developed for solving periodic, three-dimensional, vortical flows around lifting airfoils in subsonic flow. The first-order method that is presented fully accounts for the distortion effects of the nonuniform mean flow on the convected upstream vortical disturbances. The unsteady velocity is split into a vortical component which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and an irrotational field whose potential satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation. Using an elliptic coordinate transformation, the unsteady boundary value problem is solved in the frequency domain on grids which are determined as a function of the Mach number and reduced frequency. The numerical scheme is validated through extensive comparisons with known solutions to unsteady vortical flow problems. In general, it is seen that the agreement between the numerical and analytical results is very good for reduced frequencies ranging from 0 to 4, and for Mach numbers ranging from .1 to .8. Numerical results are also presented for a wide variety of flow configurations for the purpose of determining the effects of airfoil thickness, angle of attack, camber, and Mach number on the unsteady lift and moment of airfoils subjected to periodic vortical gusts. It is seen that each of these parameters can have a significant effect on the unsteady airfoil response to the incident disturbances, and that the effect depends strongly upon the reduced frequency and the dimensionality of the gust. For a one-dimensional (transverse) or two-dimensional (transverse and longitudinal) gust, the results indicate that airfoil thickness increases the unsteady lift and moment at the low reduced frequencies but decreases it at the high reduced frequencies. The results show that an increase in airfoil Mach number leads to a significant increase in the unsteady lift and moment for the low reduced frequencies, but a
Sohn, J. L.; Heinrich, J. C.
1990-01-01
The calculation of pressures when the penalty-function approximation is used in finite-element solutions of laminar incompressible flows is addressed. A Poisson equation for the pressure is formulated that involves third derivatives of the velocity field. The second derivatives appearing in the weak formulation of the Poisson equation are calculated from the C0 velocity approximation using a least-squares method. The present scheme is shown to be efficient, free of spurious oscillations, and accurate. Examples of applications are given and compared with results obtained using mixed formulations.
Identification of calculation hierarchy and information flow for postclosure performance assessment
International Nuclear Information System (INIS)
Avci, H.I.; Cunnane, J.C.; Brandstetter, A.
1990-01-01
A management tool consisting of calculation hierarchy and information flow diagrams is being prepared to address the resolution of major postclosure performance issues for a geologic high-level radioactive waste repository in the U.S.A. The diagrams will indicate the types of calculations and data needed to assess the postclosure performance of the repository. Separate diagrams will be generated for different scenario classes and conceptual models. The methodology used in developing these diagrams and their contents are illustrated for a single scenario and conceptual model. 5 refs., 5 figs
Mathematical modelling and numerical resolution of multi-phase compressible fluid flows problems
International Nuclear Information System (INIS)
Lagoutiere, Frederic
2000-01-01
This work deals with Eulerian compressible multi-species fluid dynamics, the species being either mixed or separated (with interfaces). The document is composed of three parts. The first parts devoted to the numerical resolution of model problems: advection equation, Burgers equation, and Euler equations, in dimensions one and two. The goal is to find a precise method, especially for discontinuous initial conditions, and we develop non dissipative algorithms. They are based on a downwind finite-volume discretization under some stability constraints. The second part treats of the mathematical modelling of fluids mixtures. We construct and analyse a set of multi-temperature and multi-pressure models that are entropy, symmetrizable, hyperbolic, not ever conservative. In the third part, we apply the ideas developed in the first part (downwind discretization) to the numerical resolution of the partial differential problems we have constructed for fluids mixtures in the second part. We present some numerical results in dimensions one and two. (author) [fr
Bayesian inference in mass flow simulations - from back calculation to prediction
Kofler, Andreas; Fischer, Jan-Thomas; Hellweger, Valentin; Huber, Andreas; Mergili, Martin; Pudasaini, Shiva; Fellin, Wolfgang; Oberguggenberger, Michael
2017-04-01
Mass flow simulations are an integral part of hazard assessment. Determining the hazard potential requires a multidisciplinary approach, including different scientific fields such as geomorphology, meteorology, physics, civil engineering and mathematics. An important task in snow avalanche simulation is to predict process intensities (runout, flow velocity and depth, ...). The application of probabilistic methods allows one to develop a comprehensive simulation concept, ranging from back to forward calculation and finally to prediction of mass flow events. In this context optimized parameter sets for the used simulation model or intensities of the modeled mass flow process (e.g. runout distances) are represented by probability distributions. Existing deterministic flow models, in particular with respect to snow avalanche dynamics, contain several parameters (e.g. friction). Some of these parameters are more conceptual than physical and their direct measurement in the field is hardly possible. Hence, parameters have to be optimized by matching simulation results to field observations. This inverse problem can be solved by a Bayesian approach (Markov chain Monte Carlo). The optimization process yields parameter distributions, that can be utilized for probabilistic reconstruction and prediction of avalanche events. Arising challenges include the limited amount of observations, correlations appearing in model parameters or observed avalanche characteristics (e.g. velocity and runout) and the accurate handling of ensemble simulations, always taking into account the related uncertainties. Here we present an operational Bayesian simulation framework with r.avaflow, the open source GIS simulation model for granular avalanches and debris flows.
Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by
Energy Technology Data Exchange (ETDEWEB)
Costa, Gustavo Koury
2004-11-15
Although incompressible fluid flows can be regarded as a particular case of a general problem, numerical methods and the mathematical formulation aimed to solve compressible and incompressible flows have their own peculiarities, in such a way, that it is generally not possible to attain both regimes with a single approach. In this work, we start from a typically compressible formulation, slightly modified to make use of pressure variables and, through augmenting the stabilising parameters, we end up with a simplified model which is able to deal with a wide range of flow regimes, from supersonic to low speed gas flows. The resulting methodology is flexible enough to allow for the simulation of liquid flows as well. Examples using conservative and pressure variables are shown and the results are compared to those published in the literature, in order to validate the method. (author)
Colera, Manuel; Pérez-Saborid, Miguel
2018-06-01
We have carried out a numerical study of the influence of the upstream Mach number on the flutter of a two-dimensional, cantilevered, flexible plate subject to a subsonic, inviscid, open flow. We have assumed a linear elastic model for the plate and that the fluid flow is governed by the linearized potential theory. The fluid equations are solved with a novel frequency-domain, finite differences method to obtain the generalized aerodynamic forces as a function of the plate displacements. Then, these generalized forces are coupled to the equation of motion of the plate and an eigenvalue analysis is performed to find the flutter point. The obtained results are in good agreement with those of related theoretical and experimental studies found in the literature. To the best of our knowledge, the analysis performed here is the first self-consistent, parametric study of the influence of the compressibility on the flutter point of a two-dimensional cantilevered plate in subsonic flow.
Mishra, P. K.; Neuman, S. P.
2009-12-01
Tartakovsky and Neuman [2007] developed an analytical solution for flow to a partially penetrating well pumping at a constant rate from a compressible unconfined aquifer considering an unsaturated zone of infinite thickness. In their solution three-dimensional, axially symmetric unsaturated flow was described by a linearized version of Richards’ equation in which both relative hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value. Both exponential functions were characterized by a common exponent. We present an improved solution in which relative hydraulic conductivity and water content are characterized by separate parameters and the unsaturated zone has finite thickness. Our four-parameter representation of these functions is more flexible than the three-parameter version of Mathias and Butler [2006], who consider flow in the unsaturated zone to be strictly vertical and the pumping well to be fully penetrating. We investigate the effects of unsaturated zone thickness and constitutive parameters on drawdown in the unsaturated and saturated zones as functions of position and time. We then use our new solution to analyze data from synthetic and real pumping tests.
Spanogle, J A; Moore, C S
1931-01-01
Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.
Energy Technology Data Exchange (ETDEWEB)
McGrath, Thomas P., E-mail: thomas.p.mcgrath@navy.mil [Naval Surface Warfare Center Indian Head Explosive Ordnance Disposal Technology Division, 4013 Fowler Rd., Indian Head, Maryland 20640 (United States); St Clair, Jeffrey G. [Naval Surface Warfare Center Indian Head Explosive Ordnance Disposal Technology Division, 4013 Fowler Rd., Indian Head, Maryland 20640 (United States); Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, P.O. Box 116250, Gainesville, Florida 32611 (United States); Balachandar, S. [Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, P.O. Box 116250, Gainesville, Florida 32611 (United States)
2016-05-07
Multiphase flows are present in many important fields ranging from multiphase explosions to chemical processing. An important subset of multiphase flow applications involves dispersed materials, such as particles, droplets, and bubbles. This work presents an Eulerian–Eulerian model for multiphase flows containing dispersed particles surrounded by a continuous media such as air or water. Following a large body of multiphase literature, the driving force for particle acceleration is modeled as a direct function of both the continuous-phase pressure gradient and the gradient of intergranular stress existing within the particle phase. While the application of these two components of driving force is well accepted in much of the literature, other models exist in which the particle-phase pressure gradient itself drives particle motion. The multiphase model treats all phases as compressible and is derived to ensure adherence to the 2nd Law of Thermodynamics. The governing equations are presented and discussed, and a characteristic analysis shows the model to be hyperbolic, with a degeneracy in the case that the intergranular stress, which is modeled as a configuration pressure, is zero. Finally, results from a two sample problems involving shock-induced particle dispersion are presented. The results agree well with experimental measurements, providing initial confidence in the proposed model.
Saturated-unsaturated flow in a compressible leaky-unconfined aquifer
Mishra, Phoolendra K.; Vesselinov, Velimir V.; Kuhlman, Kristopher L.
2012-06-01
An analytical solution is developed for three-dimensional flow towards a partially penetrating large-diameter well in an unconfined aquifer bounded below by a leaky aquitard of finite or semi-infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the unsaturated zone following an assumption of instantaneous drainage due to Neuman. We extend the theory of leakage in unconfined aquifers by (1) including water flow and storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter pumping well to partially penetrate the aquifer. The investigation of model-predicted results shows that aquitard leakage leads to significant departure from the unconfined solution without leakage. The investigation of dimensionless time-drawdown relationships shows that the aquitard drawdown also depends on unsaturated zone properties and the pumping-well wellbore storage effects.
International Nuclear Information System (INIS)
Chawla, T.C.
1978-01-01
It is demonstrated that for a compressible flow model with heat transfer, the introduction of a specific state equation to supplement the continuity, momentum an enthalpy equations, leads to a very specific form of an expression for a speed of wave propagation. Consequently, the numerous expressions obtained for various choices of state equations are not easily identifiable and, therefore, can not be evaluated directly in terms of measurable properties. By use of the various thermodynamic relationships, it has been shown that these expressions are all equivalent and are identifiable as isentropic sonic velocity. As a corollary to this demonstration, expressions have also been obtained in terms of measurable properties for various thermodynamic-state variables occurring in the coefficients of the governing equations. These expressions are required if loss in accuracy owing to noise introduced in the direct numerical differentiation of the derivatives that these state-variables represent is to be avoided. (author)
Advanced numerical methods for three dimensional two-phase flow calculations
Energy Technology Data Exchange (ETDEWEB)
Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)
1997-07-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.
Advanced numerical methods for three dimensional two-phase flow calculations
International Nuclear Information System (INIS)
Toumi, I.; Caruge, D.
1997-01-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe's method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations
International Nuclear Information System (INIS)
Hoffman, W.D.
1991-01-01
The purpose of this paper is to convey the logic of the CERCLA document flow including Work Plans, Characterization Studies, Risk Assessments, Remedial Investigations, Feasibility Studies, proposed plans, and Records of Decision. The intent is to show how schedules at the Savannah River Site are being formulated to accomplish work using an observational approach where carefully planned tasks can be initiated early and carried out in parallel. This paper will share specific proactive experience in working with the EPA to expedite projects, begin removal actions, take interim actions, speed document flow, and eliminate unnecessary documents from the review cycle
The three-dimensional compressible flow in a radial inflow turbine scroll
Hamed, A.; Tabakoff, W.; Malak, M.
1984-01-01
This work presents the results of an analytical study and an experimental investigation of the three-dimensional flow in a turbine scroll. The finite element method is used in the iterative numerical solution of the locally linearized governing equations for the three-dimensional velocity potential field. The results of the numerical computations are compared with the experimental measurements in the scroll cross sections, which were obtained using laser Doppler velocimetry and hot wire techniques. The results of the computations show a variation in the flow conditions around the rotor periphery which was found to depend on the scroll geometry.
3D nozzle flow simulations including state-to-state kinetics calculation
Cutrone, L.; Tuttafesta, M.; Capitelli, M.; Schettino, A.; Pascazio, G.; Colonna, G.
2014-12-01
In supersonic and hypersonic flows, thermal and chemical non-equilibrium is one of the fundamental aspects that must be taken into account for the accurate characterization of the plasma. In this paper, we present an optimized methodology to approach plasma numerical simulation by state-to-state kinetics calculations in a fully 3D Navier-Stokes CFD solver. Numerical simulations of an expanding flow are presented aimed at comparing the behavior of state-to-state chemical kinetics models with respect to the macroscopic thermochemical non-equilibrium models that are usually used in the numerical computation of high temperature hypersonic flows. The comparison is focused both on the differences in the numerical results and on the computational effort associated with each approach.
Advanced numerical methods for three dimensional two-phase flow calculations in PWR
International Nuclear Information System (INIS)
Toumi, I.; Gallo, D.; Royer, E.
1997-01-01
This paper is devoted to new numerical methods developed for three dimensional two-phase flow calculations. These methods are finite volume numerical methods. They are based on an extension of Roe's approximate Riemann solver to define convective fluxes versus mean cell quantities. To go forward in time, a linearized conservative implicit integrating step is used, together with a Newton iterative method. We also present here some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. This kind of numerical method, which is widely used for fluid dynamic calculations, is proved to be very efficient for the numerical solution to two-phase flow problems. This numerical method has been implemented for the three dimensional thermal-hydraulic code FLICA-4 which is mainly dedicated to core thermal-hydraulic transient and steady-state analysis. Hereafter, we will also find some results obtained for the EPR reactor running in a steady-state at 60% of nominal power with 3 pumps out of 4, and a thermal-hydraulic core analysis for a 1300 MW PWR at low flow steam-line-break conditions. (author)
CSIR Research Space (South Africa)
Malan, AG
2011-08-01
Full Text Available to modelling both forced convection as well as heat transfer and fluid flow through heterogeneous saturated porous materials via an edge-based finite volume discretization scheme. A volume-averaged set of local thermal disequilibrium governing equations...
Numerical simulation of unsteady compressible low Mach number flow in a channel
Czech Academy of Sciences Publication Activity Database
Punčochářová-Pořízková, P.; Kozel, Karel; Horáček, Jaromír; Fürst, J.
2010-01-01
Roč. 17, č. 2 (2010), s. 83-97 ISSN 1802-1484 R&D Projects: GA MŠk OC09019 Institutional research plan: CEZ:AV0Z20760514 Keywords : CFD * finite volume method * unsteady flow * low Mach number Subject RIV: BI - Acoustics
Dynamics of compressible gas-liquid flows with a stiff density ratio
International Nuclear Information System (INIS)
Cortes, Julien
1999-01-01
This work is devoted to the study of transient two-phase flows when the ratio of the two densities is stiff. At first, we review briefly some of the basic principles about two-phase flow, hyperbolicity and the finite volume method. Then we develop a perturbation method, based on the stiffness of the density ratio, to examine the Eigen-structure of two-fluid models. Indeed, in such models, complex phasic interactions yield a complex Eigen-structure which may raise numerous problems in simulations. We show that our approach provides a convenient frame to study the hyperbolicity of such models. At this stage, advanced numerical tests are computed showing the efficiency of our approach in the context of unstructured multidimensional meshes. Our tests are validated for non-equilibrium flows using experimental data or through mesh refinements. At last, we use the scaling of the densities to analyse how momentum is transferred between phases in the context of bubbly flows. We study the relevance of a stiff relaxation term related to the ratio of the densities using linear stability properties and Chapman-Enskog expansions. Our results and some numerical computations tends to show that such a system is apparently well-posed despite being 'weakly' hyperbolic. (author) [fr
Well-balanced compressible cut-cell simulation of atmospheric flow.
Klein, R; Bates, K R; Nikiforakis, N
2009-11-28
Cut-cell meshes present an attractive alternative to terrain-following coordinates for the representation of topography within atmospheric flow simulations, particularly in regions of steep topographic gradients. In this paper, we present an explicit two-dimensional method for the numerical solution on such meshes of atmospheric flow equations including gravitational sources. This method is fully conservative and allows for time steps determined by the regular grid spacing, avoiding potential stability issues due to arbitrarily small boundary cells. We believe that the scheme is unique in that it is developed within a dimensionally split framework, in which each coordinate direction in the flow is solved independently at each time step. Other notable features of the scheme are: (i) its conceptual and practical simplicity, (ii) its flexibility with regard to the one-dimensional flux approximation scheme employed, and (iii) the well-balancing of the gravitational sources allowing for stable simulation of near-hydrostatic flows. The presented method is applied to a selection of test problems including buoyant bubble rise interacting with geometry and lee-wave generation due to topography.
Method for calculating internal radiation and ventilation with the ADINAT heat-flow code
International Nuclear Information System (INIS)
Butkovich, T.R.; Montan, D.N.
1980-01-01
One objective of the spent fuel test in Climax Stock granite (SFTC) is to correctly model the thermal transport, and the changes in the stress field and accompanying displacements from the application of the thermal loads. We have chosen the ADINA and ADINAT finite element codes to do these calculations. ADINAT is a heat transfer code compatible to the ADINA displacement and stress analysis code. The heat flow problem encountered at SFTC requires a code with conduction, radiation, and ventilation capabilities, which the present version of ADINAT does not have. We have devised a method for calculating internal radiation and ventilation with the ADINAT code. This method effectively reproduces the results from the TRUMP multi-dimensional finite difference code, which correctly models radiative heat transport between drift surfaces, conductive and convective thermal transport to and through air in the drifts, and mass flow of air in the drifts. The temperature histories for each node in the finite element mesh calculated with ADINAT using this method can be used directly in the ADINA thermal-mechanical calculation
International Nuclear Information System (INIS)
Muehlbauer, P.
1981-08-01
Experience is described gained with the application of computer code VELASCO in calculating the velocity field in fast reactor fuel assemblies taking into account configuration disturbances due to fuel pin displacement. Theoretical results are compared with the results of experiments conducted by UJV on aerodynamic models HEM-1 (model of the fuel assembly central part) and HEM-2 (model of the fuel assembly peripheral part). The results are reported of calculating the distribution of shear stress in wetted rod surfaces and in the assembly wall (model HEM-2) and the corresponding experimental results are shown. The shear stress distribution in wetted surfaces obtained using the VELASCO code allowed forming an opinion on the code capability of comprising local parameters of turbulent flow through a fuel rod bundle. The applicability was also tested of the code for calculating mean velocities in the individual zones, eg., in elementary cells. (B.S.)
Influence of compressive gear on powerlifting performance: role of blood flow restriction training.
Godawa, Travis M; Credeur, Daniel P; Welsch, Michael A
2012-05-01
This study investigated the effects of powerlifting gear on training volume and performance, defined by the squat, bench press, and deadlift. Eighteen powerlifters (18-26 years) were randomized into either a group that trained and competed using compressive gear (CG) or without the gear (NON). Training volume, volume progression, and powerlifting performance were assessed before and after 10 weeks of training. Training volume increased in the first 4 weeks for both groups. Volume lifted for squat and the totals were greater in the CG. There was an increase in squat (19.05 ± 30.97 lb, p = 0.02), deadlift (19.05 ± 21.17 lb, p = 0.001), and the total score (44.00 ± 60.44 lb, p = 0.005) for both the groups. The improvements in squat (CG = 33.85 vs. NON = 5.74, p = 0.07) and totals (CG = 66.59 vs. NON = 23.67, p = 0.15) were greater in the CG. Both groups showed a significant and similar increase in the Wilks scores (+13.54 points, p = 0.03). There was a trend toward greater volume progression in those wearing CG during the initial stages of training. Both the groups significantly improved performance for the squat, and deadlift, and had higher totals, and Wilks scores, indicating significant strength gains. The greater magnitude of improvements in the squat and totals for the CG lifters suggests an ergogenic potential of training with powerlifting gear.
Numerical Simulation of Unsteady Compressible Flow in Convergent Channel: Pressure Spectral Analysis
Czech Academy of Sciences Publication Activity Database
Pořízková, P.; Kozel, Karel; Horáček, Jaromír
2012-01-01
Roč. 2012, č. 545120 (2012), s. 1-9 ISSN 1110-757X R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional research plan: CEZ:AV0Z20760514 Keywords : finite volume method * simulation of flow in vibrating glottis * biomechanics of voice Subject RIV: BI - Acoustics Impact factor: 0.834, year: 2012 http://www.hindawi.com/journals/jam/2012/545120/
International Nuclear Information System (INIS)
Deconinck, Thomas; Mahadevan, Shankar; Raja, Laxminarayan L.
2009-01-01
The microplasma thruster (MPT) concept is a simple extension of a cold gas micronozzle propulsion device, where a direct-current microdischarge is used to preheat the gas stream to improve the specific impulse of the device. Here we study a prototypical MPT device using a detailed, self-consistently coupled plasma and flow computational model. The model describes the microdischarge power deposition, plasma dynamics, gas-phase chemical kinetics, coupling of the plasma phenomena with high-speed flow, and overall propulsion system performance. Compared to a cold gas micronozzle, a significant increase in specific impulse is obtained from the power deposition in the diverging section of the MPT nozzle. For a discharge voltage of 750 V, a power input of 650 mW, and an argon mass flow rate of 5 SCCM (SCCM denotes cubic centimeter per minute at STP), the specific impulse of the device is increased by a factor of ∼1.5 to about 74 s. The microdischarge remains mostly confined inside the micronozzle and operates in an abnormal glow discharge regime. Gas heating, primarily due to ion Joule heating, is found to have a strong influence on the overall discharge behavior. The study provides a validation of the MPT concept as a simple and effective approach to improve the performance of micronozzle cold gas propulsion devices.
International Nuclear Information System (INIS)
Aya, I.
1975-11-01
The proposed model was developed at ORNL to calculate mass flow rate and other quantities of two-phase flow in a pipe when the flow is dispersed with slip between the phases. The calculational model is based on assumptions concerning the characteristics of a turbine meter and a drag disk. The model should be validated with experimental data before being used in blowdown analysis. In order to compare dispersed flow and homogeneous flow, the ratio of readings from each flow regime for each device discussed is calculated for a given mass flow rate and steam quality. The sensitivity analysis shows that the calculated flow rate of a steam-water mixture (based on the measurements of a drag disk and a gamma densitometer in which the flow is assumed to be homogeneous even if there is some slip between phases) is very close to the real flow rate in the case of dispersed flow at a low quality. As the steam quality increases at a constant slip ratio, all models are prone to overestimate. At 20 percent quality the overestimates reach 8 percent in the proposed model, 15 percent in Rouhani's model, 38 percent in homogeneous model, and 75 percent in Popper's model
Mishra, Phoolendra Kumar; Neuman, Shlomo P.
2010-07-01
We present an analytical solution for flow to a partially penetrating well in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from drawdowns recorded in the saturated and/or unsaturated zone. We improve upon a previous such solution due to Tartakovsky and Neuman (2007) by (1) adopting a more flexible representation of unsaturated zone constitutive properties and (2) allowing the unsaturated zone to have finite thickness. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of unsaturated zone constitutive parameters and thickness on drawdowns in the saturated and unsaturated zones as functions of position and time; demonstrate the development of significant horizontal hydraulic gradients in the unsaturated zone in response to pumping; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten-Mualem constitutive model; use our solution to analyze drawdown data from a pumping test conducted by the U.S. Geological Survey at Cape Cod, Massachusetts; and compare our estimates of van Genuchten-Mualem parameters with laboratory values obtained for similar materials in the area.
Weston, Brian; Nourgaliev, Robert; Delplanque, Jean-Pierre
2017-11-01
We present a new block-based Schur complement preconditioner for simulating all-speed compressible flow with phase change. The conservation equations are discretized with a reconstructed Discontinuous Galerkin method and integrated in time with fully implicit time discretization schemes. The resulting set of non-linear equations is converged using a robust Newton-Krylov framework. Due to the stiffness of the underlying physics associated with stiff acoustic waves and viscous material strength effects, we solve for the primitive-variables (pressure, velocity, and temperature). To enable convergence of the highly ill-conditioned linearized systems, we develop a physics-based preconditioner, utilizing approximate block factorization techniques to reduce the fully-coupled 3×3 system to a pair of reduced 2×2 systems. We demonstrate that our preconditioned Newton-Krylov framework converges on very stiff multi-physics problems, corresponding to large CFL and Fourier numbers, with excellent algorithmic and parallel scalability. Results are shown for the classic lid-driven cavity flow problem as well as for 3D laser-induced phase change. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Braman, Kalen; Raman, Venkat
2011-11-01
A novel direct numerical simulation (DNS) based a posteriori technique has been developed to investigate scalar transport modeling error. The methodology is used to test Reynolds-averaged Navier-Stokes turbulent scalar flux models for compressible boundary layer flows. Time-averaged DNS velocity and turbulence fields provide the information necessary to evolve the time-averaged scalar transport equation without requiring the use of turbulence modeling. With this technique, passive dispersion of a scalar from a boundary layer surface in a supersonic flow is studied with scalar flux modeling error isolated from any flowfield modeling errors. Several different scalar flux models are used. It is seen that the simple gradient diffusion model overpredicts scalar dispersion, while anisotropic scalar flux models underpredict dispersion. Further, the use of more complex models does not necessarily guarantee an increase in predictive accuracy, indicating that key physics is missing from existing models. Using comparisons of both a priori and a posteriori scalar flux evaluations with DNS data, the main modeling shortcomings are identified. Results will be presented for different boundary layer conditions.
Repeatability of regional myocardial blood flow calculation in 82Rb PET imaging
International Nuclear Information System (INIS)
Knešaurek, Karin; Machac, Josef; Zhang, Zhuangyu
2009-01-01
We evaluated the repeatability of the calculation of myocardial blood flow (MBF) at rest and pharmacological stress, and calculated the coronary flow reserve (CFR) utilizing 82 Rb PET imaging. The aim of the research was to prove high repeatability for global MBF and CFR values and good repeatability for regional MBF and CFR values. The results will have significant impact on cardiac PET imaging in terms of making it more affordable and increasing its use. 12 normal volunteers were imaged at rest and during pharmacological stress, with 2220 MBq of 82 Rb each. A GE Advance PET system was used to acquire dynamic 50-frame studies. MBF was calculated with a 2-compartmental model using a modified PMOD program (PMOD; University Hospital Zurich, Zurich, Switzerland). Two differential equations, describing a 2-compartmental model, were solved by numerical integration and using Levenberg-Marquardt's method for fitting data. The PMOD program defines 16 standard segments and calculates myocardial flow for each segment, as well as average septal, anterior, lateral, inferior and global flow. Repeatability was evaluated according to the method of Bland and Altman. Global rest and stress MBF, as well as global CFR, showed very good repeatability. No significant differences were found between the paired resting global MBF (0.63 ± 0.13 vs. 0.64 ± 0.13 mL/min/g; mean difference, -1.0% ± 2.6%) and the stress global MBF (1.37 ± 0.23 vs. 1.37 ± 0.24; mean difference, 0.1% ± 2.3%). Global CFR was highly reproducible (2.25 ± 0.56 vs. 2.22 ± 0.54, P = not statistically significant; mean difference, 1.3% ± 14.3%). Repeatability coefficients for global rest MBF were 0.033 (5.2%) and stress MBF 0.062 (4.5%) mL/min/g. Regional rest and stress MBF and CFR have shown good reproducibility. The average per sector repeatability coefficients for rest MBF were 0.056 (8.5%) and stress MBF 0.089 (6.3%) mL/min/g, and average repeatability coefficient for CFR was 0.25 (10.6%). The results
Performance prediction and flow field calculation for airfoil fan with impeller inlet clearance
International Nuclear Information System (INIS)
Kang, Shin Hyoung; Cao, Renjing; Zhang, Yangjun
2000-01-01
The performance prediction of an airfoil fan using a commercial code, STAR/CD, is verified by comparing the calculated results with measured performance data and velocity fields of an airfoil fan. The effects of inlet tip clearance on performance are investigated. The calculations overestimate the pressure rise performance by about 10-25 percent. However, the performance reduction due to tip clearance is well predicted by numerical simulations. Main source of performance decrease is not only the slip factor but also impeller efficiency. The reduction in performance is 12-16 percent for 1 percent gap of the diameter. The calculated reductions in impeller efficiency and slip factor are also linearly proportional to the gap size. The span-wise distributions of phase averaged velocity and pressure at the impeller exit are strongly influenced by the radial gap size. The radial component of velocity and the flow angle increase over the passage as the gap increases. The slip factor decreases and the loss increases with the gap size. The high velocity of leakage jet affects the impeller inlet and passage flows. With a larger clearance, the main stream moves to the impeller hub side and high loss region extends from the shroud to the hub
Evolution of the Orszag-Tang vortex system in a compressible medium. II - Supersonic flow
Picone, J. Michael; Dahlburg, Russell B.
1991-01-01
A study is presented on the effect of embedded supersonic flows and the resulting emerging shock waves on phenomena associated with MHD turbulence, including reconnection, the formation of current sheets and vortex structures, and the evolution of spatial and temporal correlations among physical variables. A two-dimensional model problem, the Orszag-Tang (1979) vortex system, is chosen, which involves decay from nonrandom initial conditions. The system is doubly periodic, and the initial conditions consist of single-mode solenoidal velocity and magnetic fields, each containing X points and O points. The initial mass density is flat, and the initial pressure fluctuations are incompressible, balancing the local forces for a magnetofluid of unit mass density. Results on the evolution of the local structure of the flow field, the global properties of the system, and spectral correlations are presented. The important dynamical properties and observational consequences of embedded supersonic regions and emerging shocks in the Orszag-Tang model of an MHD system undergoing reconnection are discussed. Conclusions are drawn regarding the effects of local supersonic regions on MHD turbulence.
International Nuclear Information System (INIS)
Boccaccini, L.V.
1986-07-01
To take advantages of the semi-implicit computer models - to solve the two phase flow differential system - a proper averaging procedure is also needed for the source terms. In fact, in some cases, the correlations normally used for the source terms - not time averaged - fail using the theoretical time step that arises from the linear stability analysis used on the right handside. Such a time averaging procedure is developed with reference to the bubbly flow regime. Moreover, the concept of mass that must be exchanged to reach equilibrium from a non-equilibrium state is introduced to limit the mass transfer during a time step. Finally some practical calculations are performed to compare the different correlations for the average mass transfer rate developed in this work. (orig.) [de
A simplified method of calculating heat flow through a two-phase heat exchanger
Energy Technology Data Exchange (ETDEWEB)
Yohanis, Y.G. [Thermal Systems Engineering Group, Faculty of Engineering, University of Ulster, Newtownabbey, Co Antrim, BT37 0QB Northern Ireland (United Kingdom)]. E-mail: yg.yohanis@ulster.ac.uk; Popel, O.S. [Non-traditional Renewable Energy Sources, Institute for High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya str., IVTAN, Moscow 125412 (Russian Federation); Frid, S.E. [Non-traditional Renewable Energy Sources, Institute for High Temperatures, Russian Academy of Sciences, 13/19 Izhorskaya str., IVTAN, Moscow 125412 (Russian Federation)
2005-10-01
A simplified method of calculating the heat flow through a heat exchanger in which one or both heat carrying media are undergoing a phase change is proposed. It is based on enthalpies of the heat carrying media rather than their temperatures. The method enables the determination of the maximum rate of heat flow provided the thermodynamic properties of both heat-carrying media are known. There will be no requirement to separately simulate each part of the system or introduce boundaries within the heat exchanger if one or both heat-carrying media undergo a phase change. The model can be used at the pre-design stage, when the parameters of the heat exchangers may not be known, i.e., to carry out an assessment of a complex energy scheme such as a steam power plant. One such application of this model is in thermal simulation exercises within the TRNSYS modeling environment.
A simplified method of calculating heat flow through a two-phase heat exchanger
International Nuclear Information System (INIS)
Yohanis, Y.G.; Popel, O.S.; Frid, S.E.
2005-01-01
A simplified method of calculating the heat flow through a heat exchanger in which one or both heat carrying media are undergoing a phase change is proposed. It is based on enthalpies of the heat carrying media rather than their temperatures. The method enables the determination of the maximum rate of heat flow provided the thermodynamic properties of both heat-carrying media are known. There will be no requirement to separately simulate each part of the system or introduce boundaries within the heat exchanger if one or both heat-carrying media undergo a phase change. The model can be used at the pre-design stage, when the parameters of the heat exchangers may not be known, i.e., to carry out an assessment of a complex energy scheme such as a steam power plant. One such application of this model is in thermal simulation exercises within the TRNSYS modeling environment
Comparison of Steady-State SVC Models in Load Flow Calculations
DEFF Research Database (Denmark)
Chen, Peiyuan; Chen, Zhe; Bak-Jensen, Birgitte
2008-01-01
This paper compares in a load flow calculation three existing steady-state models of static var compensator (SVC), i.e. the generator-fixed susceptance model, the total susceptance model and the firing angle model. The comparison is made in terms of the voltage at the SVC regulated bus, equivalent...... SVC susceptance at the fundamental frequency and the load flow convergence rate both when SVC is operating within and on the limits. The latter two models give inaccurate results of the equivalent SVC susceptance as compared to the generator model due to the assumption of constant voltage when the SVC...... is operating within the limits. This may underestimate or overestimate the SVC regulating capability. Two modified models are proposed to improve the SVC regulated voltage according to its steady-state characteristic. The simulation results of the two modified models show the improved accuracy...
Roseguini, Bruno T; Arce-Esquivel, Arturo A; Newcomer, Sean C; Yang, Hsiao T; Terjung, Ronald; Laughlin, M H
2012-05-01
Despite the escalating prevalence in the aging population, few therapeutic options exist to treat patients with peripheral arterial disease. Application of intermittent pneumatic leg compressions (IPC) is regarded as a promising noninvasive approach to treat this condition, but the clinical efficacy, as well the mechanistic basis of action of this therapy, remain poorly defined. We tested the hypothesis that 2 wk of daily application of IPC enhances exercise tolerance by improving blood flow and promoting angiogenesis in skeletal muscle in a model of peripheral arterial insufficiency. Male Sprague-Dawley rats were subjected to bilateral ligation of the femoral artery and randomly allocated to treatment or sham groups. Animals were anesthetized daily and exposed to 1-h sessions of bilateral IPC or sham treatment for 14-16 consecutive days. A third group of nonligated rats was also studied. Marked increases in treadmill exercise tolerance (∼33%, P < 0.05) and improved muscle performance in situ (∼10%, P < 0.05) were observed in IPC-treated animals. Compared with sham-treated controls, blood flow measured with isotope-labeled microspheres during in situ contractions tended to be higher in IPC-treated animals in muscles composed of predominantly fast-twitch white fibers, such as the plantaris (∼93%, P = 0.02). Capillary contacts per fiber and citrate synthase activity were not significantly altered by IPC treatment. Collectively, these data indicate that IPC improves exercise tolerance in a model of peripheral arterial insufficiency in part by enhancing blood flow to collateral-dependent tissues.
A rapid and low noise switch from RANS to WMLES on curvilinear grids with compressible flow solvers
Deck, Sébastien; Weiss, Pierre-Elie; Renard, Nicolas
2018-06-01
A turbulent inflow for a rapid and low noise switch from RANS to Wall-Modelled LES on curvilinear grids with compressible flow solvers is presented. It can be embedded within the computational domain in practical applications with WMLES grids around three-dimensional geometries in a flexible zonal hybrid RANS/LES modelling context. It relies on a physics-motivated combination of Zonal Detached Eddy Simulation (ZDES) as the WMLES technique together with a Dynamic Forcing method processing the fluctuations caused by a Zonal Immersed Boundary Condition describing roughness elements. The performance in generating a physically-sound turbulent flow field with the proper mean skin friction and turbulent profiles after a short relaxation length is equivalent to more common inflow methods thanks to the generation of large-scale streamwise vorticity by the roughness elements. Comparisons in a low Mach-number zero-pressure-gradient flat-plate turbulent boundary layer up to Reθ = 6 100 reveal that the pressure field is dominated by the spurious noise caused by the synthetic turbulence methods (Synthetic Eddy Method and White Noise injection), contrary to the new low-noise approach which may be used to obtain the low-frequency component of wall pressure and reproduce its intermittent nature. The robustness of the method is tested in the flow around a three-element airfoil with WMLES in the upper boundary layer near the trailing edge of the main element. In spite of the very short relaxation distance allowed, self-sustainable resolved turbulence is generated in the outer layer with significantly less spurious noise than with the approach involving White Noise. The ZDES grid count for this latter test case is more than two orders of magnitude lower than the Wall-Resolved LES requirement and a unique mesh is involved, which is much simpler than some multiple-mesh strategies devised for WMLES or turbulent inflow.
Preconditioned conjugate-gradient methods for low-speed flow calculations
Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing
1993-01-01
An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations is integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the Lower-Upper Successive Symmetric Over-Relaxation iterative scheme is more efficient than a preconditioner based on Incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional Line Gauss-Seidel Relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.
Numerical simulation of energy equation with viscous dissipation for compressible flow over cones
International Nuclear Information System (INIS)
Asif, M.; Chughtai, I.R.
1998-01-01
A finite volume discretization technique has been used to solve the energy equation with viscous dissipation. The effects of viscous heat dissipation for Mach numbers 1.5 and 2.0, at an angle of attack of 0 degree, over sharp and blunt cones have been studied. Algebraic equations have been solved using line-by-line Tda method. Supersonic flow over cones has been analyzed and discussed with and without considering the viscous dissipation effects. It has been found that the effects of viscous dissipation increase with the increase in Mach number. Viscous dissipation affects the temperature distribution of the body. However, the temperature difference in these cases was insignificant. This may be due to the fact that these analysis have been done at 0 km altitude. (author)
Integral linear momentum balance in combining flows for calculating the pressure drop coefficients
International Nuclear Information System (INIS)
Bollmann, A.
1983-01-01
Equations for calculating the loss coefficient in combining flows in tee functions are obtained by an integral linear momentum balance. It is a practice, when solving this type of problem, to neglect the pressure difference in the upstream location as well as the wall-fluid interaction in the lateral branch of the junction. In this work it is demonstrated the influence of the above parameters on the loss coefficient based on experimental values and by apropriate algebraic manipulation of the loss coefficient values published by previous investigators. (Author) [pt
Saitou, Sona; Iijima, Jun; Fujimoto, Mayu; Mochizuki, Yuji; Okuwaki, Koji; Doi, Hideo; Komeiji, Yuto
2018-01-01
We have applied Google's TensorFlow deep learning toolkit to recognize the visualized results of the fragment molecular orbital (FMO) calculations. Typical protein structures of alpha-helix and beta-sheet provide some characteristic patterns in the two-dimensional map of inter-fragment interaction energy termed as IFIE-map (Kurisaki et al., Biophys. Chem. 130 (2007) 1). A thousand of IFIE-map images with labels depending on the existences of alpha-helix and beta-sheet were prepared by employi...
International Nuclear Information System (INIS)
Gawusu, S.
2015-07-01
Oil extraction represents an important investment and the control of a rational exploitation of a field means mastering various scientific techniques including the understanding of the dynamics of fluids in place. This thesis presents a theoretical investigation of the dynamic behaviour of an oil reservoir during its exploitation. The study investigated the dynamics of fluid flow patterns in a homogeneous oil reservoir using the Radial Diffusivity Equation (RDE) as well as two phase oil-water flow equations. The RDE model was solved analytically and numerically for pressure using the Constant Terminal Rate Solution (CTRS) and the fully implicit Finite Difference Method (FDM) respectively. The mathematical derivations of the models and their solution procedures were presented to allow for easy utilization of the techniques for reservoir and engineering applications. The study predicted that the initial oil reservoir pressure will be able to do the extraction for a very long time before any other recovery method will be used to aid in the extraction process depending on the rate of production. Reservoir simulation describing a one dimensional radial flow of a compressible fluid in porous media may be adequately performed using ordinary laptop computers as revealed by the study. For the simulation of MATLAB, the case of the Jubilee Fields, Tano Basin was studied, an algorithm was developed for the simulation of pressure in the reservoir. It ensues from the analysis of the plots of pressure vrs time and space that the Pressure Transient Analysis (PTA) was duly followed. The approximate solutions of the analytical and numerical solutions to the Radial Diffusivity Equation (RDE) were in excellent agreement, thus the reservoir simulation model developed can be used to describe typical pressure-time relationships that are used in conventional Pressure Transient Analysis (PTA). The study was extended to two phase oil-water flow in reservoirs. The flow of fluids in multi
International Nuclear Information System (INIS)
Cliffe, K.A.; Morris, S.T.; Porter, J.D.
1998-05-01
NAMMU is a computer program for modelling groundwater flow and transport through porous media. This document provides an overview of the use of the program for geosphere modelling in performance assessment calculations and gives a detailed description of the program itself. The aim of the document is to give an indication of the grounds for having confidence in NAMMU as a performance assessment tool. In order to achieve this the following topics are discussed. The basic premises of the assessment approach and the purpose of and nature of the calculations that can be undertaken using NAMMU are outlined. The concepts of the validation of models and the considerations that can lead to increased confidence in models are described. The physical processes that can be modelled using NAMMU and the mathematical models and numerical techniques that are used to represent them are discussed in some detail. Finally, the grounds that would lead one to have confidence that NAMMU is fit for purpose are summarised
Calculation of large Reynolds number two-dimensional flow using discrete vortices with random walk
International Nuclear Information System (INIS)
Milinazzo, F.; Saffman, P.G.
1977-01-01
The numerical calculation of two-dimensional rotational flow at large Reynolds number is considered. The method of replacing a continuous distribution of vorticity by a finite number, N, of discrete vortices is examined, where the vortices move under their mutually induced velocities plus a random component to simulate effects of viscosity. The accuracy of the method is studied by comparison with the exact solution for the decay of a circular vortex. It is found, and analytical arguments are produced in support, that the quantitative error is significant unless N is large compared with a characteristic Reynolds number. The mutually induced velocities are calculated by both direct summation and by the ''cloud in cell'' technique. The latter method is found to produce comparable error and to be much faster
Directory of Open Access Journals (Sweden)
Guadalupe de la Lanza Espino
2014-03-01
Full Text Available The calculation of river flows necessary to maintain the environmental services of the diverse river basins in Mexico has been an element to be considered in complying with the Mexican Norm and in allowing an adequate administration of water resources. Several methods have been proposed for this calculation, among which a very simple one is a hydrological method that requires a data base on runoff to determine the volume of water that ecosystem functions need. Hydrological methodology proposed by the NMX cited above, provides guidelines for establishing a regime as a percentage of average annual runoff and it is assumed maintain biological attributes at certain levels of conservation. It also analyzes the regime of seasonal normal flow for wet hydrological conditions, socks, dry and very dry, and the system of avenues (considered as the sudden increase in the volume and speed of the current in a river due to runoff resulting from rain cyclical or extraordinary, it is also known as flooding, considering at least three categories of avenues (intra-annual, annual and interannual low magnitude of average size with corresponding attributes of magnitude, duration, frequency, time of occurrence and rate exchange. For greater certainty calculation it will always be necessary to have records in the three levels of a basin. This level of analysis is to determine the final volume of ecological flow, considering the benchmark to achieve the previously defined environmental objective. For ecological calculation referred by the NMX, some fundamental aspects were considered, such as: ecology importance (which ranks among very high, high, medium and low based on the concepts of the rule itself ; use pressures (determined as the ratio percentage of the volume allocated over the concession between the annual average availability basin or aquifer, determined as high ≥ 80%, ≥ 40% high, medium and low ≥ 11% ≤ 10% ; the environmental objective (ecological
Dynamics of Two Point Vortices in an External Compressible Shear Flow
Vetchanin, Evgeny V.; Mamaev, Ivan S.
2017-12-01
This paper is concerned with a system of equations that describes the motion of two point vortices in a flow possessing constant uniform vorticity and perturbed by an acoustic wave. The system is shown to have both regular and chaotic regimes of motion. In addition, simple and chaotic attractors are found in the system. Attention is given to bifurcations of fixed points of a Poincaré map which lead to the appearance of these regimes. It is shown that, in the case where the total vortex strength changes, the "reversible pitch-fork" bifurcation is a typical scenario of emergence of asymptotically stable fixed and periodic points. As a result of this bifurcation, a saddle point, a stable and an unstable point of the same period emerge from an elliptic point of some period. By constructing and analyzing charts of dynamical regimes and bifurcation diagrams we show that a cascade of period-doubling bifurcations is a typical scenario of transition to chaos in the system under consideration.
International Nuclear Information System (INIS)
Park, Chan Wook; Lee, Sung Su
2008-01-01
Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of ech phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe's approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated
Calculation of laminar incompressible fluid flow and heat transfer during spherical annulus filling
International Nuclear Information System (INIS)
Tuft, D.B.
1979-04-01
A method of computing laminar incompressible fluid-flow and heat transfer during the filling of a spherical annulus is presented. Transient fluid temperatures and heat flux rates in the spherical annulus are calculated for an insulated outer sphere and a constant temperature inner sphere with heated water filling the annulus from the bottom. To achieve a solution, laminar axially symmetric flow is assumed and the Marker-and-Cell (MAC) free surface computational method is applied to this problem in spherical coordinates. Changes in the standard MAC treatment are incorporated and special methods for handling the free surface are introduced. A variable mesh is used to improve resolution near the inner sphere where temperature and velocity gradients are steep and the governing equations are derived for variable fluid properties to allow an eddy viscosity turbulence model to be applied later. Calculations of velocity, temperature, and inner sphere heat flux in a spherical annulus of 139.7 mm inner radius, and 168.3 mm outer radius within an inlet tube diameter of 38.1 mm are presented
Calculation of gas-flow in plasma reactor for carbon partial oxidation
Bespala, Evgeny; Myshkin, Vyacheslav; Novoselov, Ivan; Pavliuk, Alexander; Makarevich, Semen; Bespala, Yuliya
2018-03-01
The paper discusses isotopic effects at carbon oxidation in low temperature non-equilibrium plasma at constant magnetic field. There is described routine of experiment and defined optimal parameters ensuring maximum enrichment factor at given electrophysical, gas-dynamic, and thermodymanical parameters. It has been demonstrated that at high-frequency generator capacity of 4 kW, supply frequency of 27 MHz and field density of 44 mT the concentration of paramagnetic heavy nuclei 13C in gaseous phase increases up to 1.78 % compared to 1.11 % for natural concentration. Authors explain isotopic effect decrease during plasmachemical separation induced by mixing gas flows enriched in different isotopes at the lack of product quench. With the help of modeling the motion of gas flows inside the plasma-chemical reactor based on numerical calculation of Navier-Stokes equation authors determine zones of gas mixing and cooling speed. To increase isotopic effects and proportion of 13C in gaseous phase it has been proposed to use quench in the form of Laval nozzle of refractory steel. The article represents results on calculation of optimal Laval Nozzle parameters for plasma-chemical reactor of chosen geometry of. There are also given dependences of quench time of products on pressure at the diffuser output and on critical section diameter. Authors determine the location of quench inside the plasma-chemical reactor in the paper.
Calculation of three-dimensional fluid flow with multiple free surfaces
International Nuclear Information System (INIS)
Vander Vorst, M.J.; Chan, R.K.C.
1978-01-01
This paper presents a method for computing incompressible fluid flows with multiple free surfaces which are not restricted in their orientation. The method is presented in the context of the three-dimensional flow in a Mark I reactor pressure suppression system immediately following a postulated loss of coolant accident. The assumption of potential flow is made. The numerical method is a mixed Eulerian-Lagrangian formulation with the interior treated as Eulerian and the free surfaces as Lagrangian. The accuracy of solution hinges on the careful treatment of two important aspects. First, the Laplace equation for the potential is solved at interior points of the Eulerian finite difference mesh using a three-dimensional ''irregular star'' so that boundary conditions can be imposed at the exact position of the free surface. Second, the Lagrangian free surfaces are composed of triangular elements, upon each vertex of which is applied the fully nonlinear Bernoulli equation. One result of these calculations is the transient load on the suppression vessel during the vent clearing and bubble formation events of a loss of coolant accident
VALIDATION OF NUMERICAL METHODS TO CALCULATE BYPASS FLOW IN A PRISMATIC GAS-COOLED REACTOR CORE
Directory of Open Access Journals (Sweden)
NAM-IL TAK
2013-11-01
Full Text Available For thermo-fluid and safety analyses of a High Temperature Gas-cooled Reactor (HTGR, intensive efforts are in progress in the developments of the GAMMA+ code of Korea Atomic Energy Research Institute (KAERI and the AGREE code of the University of Michigan (U of M. One of the important requirements for GAMMA+ and AGREE is an accurate modeling capability of a bypass flow in a prismatic core. Recently, a series of air experiments were performed at Seoul National University (SNU in order to understand bypass flow behavior and generate an experimental database for the validation of computer codes. The main objective of the present work is to validate the GAMMA+ and AGREE codes using the experimental data published by SNU. The numerical results of the two codes were compared with the measured data. A good agreement was found between the calculations and the measurement. It was concluded that GAMMA+ and AGREE can reliably simulate the bypass flow behavior in a prismatic core.
Premixed autoignition in compressible turbulence
Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline
2016-11-01
Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.
International Nuclear Information System (INIS)
Saurel, Richard; Franquet, Erwin; Daniel, Eric; Le Metayer, Olivier
2007-01-01
A new projection method is developed for the Euler equations to determine the thermodynamic state in computational cells. It consists in the resolution of a mechanical relaxation problem between the various sub-volumes present in a computational cell. These sub-volumes correspond to the ones traveled by the various waves that produce states with different pressures, velocities, densities and temperatures. Contrarily to Godunov type schemes the relaxed state corresponds to mechanical equilibrium only and remains out of thermal equilibrium. The pressure computation with this relaxation process replaces the use of the conventional equation of state (EOS). A simplified relaxation method is also derived and provides a specific EOS (named the Numerical EOS). The use of the Numerical EOS gives a cure to spurious pressure oscillations that appear at contact discontinuities for fluids governed by real gas EOS. It is then extended to the computation of interface problems separating fluids with different EOS (liquid-gas interface for example) with the Euler equations. The resulting method is very robust, accurate, oscillation free and conservative. For the sake of simplicity and efficiency the method is developed in a Lagrange-projection context and is validated over exact solutions. In a companion paper [F. Petitpas, E. Franquet, R. Saurel, A relaxation-projection method for compressible flows. Part II: computation of interfaces and multiphase mixtures with stiff mechanical relaxation. J. Comput. Phys. (submitted for publication)], the method is extended to the numerical approximation of a non-conservative hyperbolic multiphase flow model for interface computation and shock propagation into mixtures
Saad, Bilal Mohammed; Saad, Mazen Naufal B M
2014-01-01
We propose and analyze a combined finite volume-nonconforming finite element scheme on general meshes to simulate the two compressible phase flow in porous media. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. The relative permeability of each phase is decentred according the sign of the velocity at the dual interface. This technique also ensures the validity of the discrete maximum principle for the saturation under a non restrictive shape regularity of the space mesh and the positiveness of all transmissibilities. Next, a priori estimates on the pressures and a function of the saturation that denote capillary terms are established. These stabilities results lead to some compactness arguments based on the use of the Kolmogorov compactness theorem, and allow us to derive the convergence of a subsequence of the sequence of approximate solutions to a weak solution of the continuous equations, provided the mesh size tends to zero. The proof is given for the complete system when the density of the each phase depends on its own pressure. © 2014 Springer-Verlag Berlin Heidelberg.
Pasquariello, Vito; Hammerl, Georg; Örley, Felix; Hickel, Stefan; Danowski, Caroline; Popp, Alexander; Wall, Wolfgang A.; Adams, Nikolaus A.
2016-02-01
We present a loosely coupled approach for the solution of fluid-structure interaction problems between a compressible flow and a deformable structure. The method is based on staggered Dirichlet-Neumann partitioning. The interface motion in the Eulerian frame is accounted for by a conservative cut-cell Immersed Boundary method. The present approach enables sub-cell resolution by considering individual cut-elements within a single fluid cell, which guarantees an accurate representation of the time-varying solid interface. The cut-cell procedure inevitably leads to non-matching interfaces, demanding for a special treatment. A Mortar method is chosen in order to obtain a conservative and consistent load transfer. We validate our method by investigating two-dimensional test cases comprising a shock-loaded rigid cylinder and a deformable panel. Moreover, the aeroelastic instability of a thin plate structure is studied with a focus on the prediction of flutter onset. Finally, we propose a three-dimensional fluid-structure interaction test case of a flexible inflated thin shell interacting with a shock wave involving large and complex structural deformations.
International Nuclear Information System (INIS)
Pasquariello, Vito; Hammerl, Georg; Örley, Felix; Hickel, Stefan; Danowski, Caroline; Popp, Alexander; Wall, Wolfgang A.; Adams, Nikolaus A.
2016-01-01
We present a loosely coupled approach for the solution of fluid–structure interaction problems between a compressible flow and a deformable structure. The method is based on staggered Dirichlet–Neumann partitioning. The interface motion in the Eulerian frame is accounted for by a conservative cut-cell Immersed Boundary method. The present approach enables sub-cell resolution by considering individual cut-elements within a single fluid cell, which guarantees an accurate representation of the time-varying solid interface. The cut-cell procedure inevitably leads to non-matching interfaces, demanding for a special treatment. A Mortar method is chosen in order to obtain a conservative and consistent load transfer. We validate our method by investigating two-dimensional test cases comprising a shock-loaded rigid cylinder and a deformable panel. Moreover, the aeroelastic instability of a thin plate structure is studied with a focus on the prediction of flutter onset. Finally, we propose a three-dimensional fluid–structure interaction test case of a flexible inflated thin shell interacting with a shock wave involving large and complex structural deformations.
Saad, Bilal Mohammed
2014-06-28
We propose and analyze a combined finite volume-nonconforming finite element scheme on general meshes to simulate the two compressible phase flow in porous media. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. The relative permeability of each phase is decentred according the sign of the velocity at the dual interface. This technique also ensures the validity of the discrete maximum principle for the saturation under a non restrictive shape regularity of the space mesh and the positiveness of all transmissibilities. Next, a priori estimates on the pressures and a function of the saturation that denote capillary terms are established. These stabilities results lead to some compactness arguments based on the use of the Kolmogorov compactness theorem, and allow us to derive the convergence of a subsequence of the sequence of approximate solutions to a weak solution of the continuous equations, provided the mesh size tends to zero. The proof is given for the complete system when the density of the each phase depends on its own pressure. © 2014 Springer-Verlag Berlin Heidelberg.
Energy Technology Data Exchange (ETDEWEB)
Ahmad, M
2007-09-15
Maldistribution of liquid-vapour two phase flows causes a significant decrease of the thermal and hydraulic performance of evaporators in thermodynamic vapour compression cycles. A first experimental installation was used to visualize the two phase flow evolution between the expansion valve and the evaporator inlet. A second experimental set-up simulating a compact heat exchanger has been designed to identify the functional and geometrical parameters creating the best distribution of the two phases in the different channels. An analysis and a comprehension of the relation between the geometrical and functional parameters with the flow pattern inside the header and the two phase distribution, has been established. A numerical simulations of a stratified flow and a stratified jet flow have been carried out using two CFD codes: FLUENT and NEPTUNE. In the case of a fragmented jet configuration, a global definition of the interfacial area concentration for a separated phases and dispersed phases flow has been established and a model calculating the fragmented mass fraction has been developed. (author)
A calculation and measurement of the flow field in a steam condenser external to the tube nest
International Nuclear Information System (INIS)
Stastny, M.; Feistauer, M.
1989-01-01
The suggested physical and mathematical model is used to solve the flow of steam normal to the cooling tubes of condenser cross-sections in the region external to the nests. Numerical calculations are carried out by means of a multipurpose system of programmes for the finite element method and a programme for the boundary layer calculation. The results of the calculations are compared with measurements on the condenser of a 500MW steam turbine. The calculations of the flow field in a double pass condenser for the 1000MW saturated steam turbine are described. (author)
THEBES: a thermal hydraulic code for the calculation of transient two phase flow in bundle geometry
International Nuclear Information System (INIS)
Camous, F.
1983-01-01
The three dimensional thermal hydraulic code THEBES, capable to calculate transient boiling of sodium in rod bundles is described here. THEBES, derived from the transient single phase code SABRE-2A, was developed in CADARACHE by the SIES to analyse the SCARABEE N loss of flow experiments. This paper also presents the results of tests which were performed against various types of experiments: (1) transient boiling in a 7 pin bundle simulating a partial blockage at the bottom of a subassembly (rapid transient SCARABEE 7.2 experiment), (2) transient boiling in a 7 pin bundle simulating a coolant coast down (slow transient SCARABEE 7.3 experiment), (3) steady local and generalised boiling in a 19 pin bundle (GR 19 I experiment), (4) transient boiling in a 19 pin bundle simulating a coolant coast down (GR 19 I experiment), (5) steady local boiling in a 37 pin bundle with internal blockage (MOL 7C experiment). Excellent agreement was found between calculated and experimental results for these different situations. Our conclusion is that THEBES is able to calculate transient boiling of sodium in rod bundles in a quite satisfying way
A method for bubble volume calculating in vertical two-phase flow
International Nuclear Information System (INIS)
Wang, H Y; Dong, F
2009-01-01
The movement of bubble is a basic subject in gas-liquid two-phase flow research. A method for calculating bubble volume which is one of the most important characters in bubble motion research was proposed. A suit of visualized experimental device was designed and set up. Single bubble rising in stagnant liquid in a rectangular tank was studied using the high-speed video system. Bubbles generated by four orifice with different diameter (1mm, 2mm, 3mm, 4mm) were recorded respectively. Sequences of recorded high-speed images were processed by digital image processing method, such as image noise remove, binary image transform, bubble filling, and so on. then, Several parameters could be obtained from the processed image. Bubble area, equivalent diameter, bubble velocity, bubble acceleration are all indispensable in bubble volume calculating. In order to get the force balance equation, forces that work on bubble along vertical direction, including drag force, virtual mass force, buoyancy, gravity and liquid thrust, were analyzed. Finally, the bubble volume formula could be derived from the force balance equation and bubble parameters. Examples were given to shown the computing process and results. Comparison of the bubble volume calculated by geomettic method and the present method have shown the superiority of the proposed method in this paper.
International Nuclear Information System (INIS)
Majer, P.
1990-01-01
The fundamentals are outlined of the discounted value flows method, which is used in industrial countries for calculating the specific electricity production costs. Actual calculations were performed for the first two units of the Temelin nuclear power plant. All costs associated with the construction, operation and decommissioning of this nuclear power plant were taken into account. With a high degree of certainty, the specific production costs of the Temelin nuclear power plant will lie within the range of 0.32 to 0.36 CSK/kWh. Nearly all results of the sensitivity analysis performed for the possible changes in the input values fall within this range. An increase in the interest rate to above 8% is an exception; this, however, can be regarded as rather improbable on a long-term basis. Sensitivity analysis gave evidence that the results of the electricity production cost calculations for the Temelin nuclear power plant can be considered sufficiently stable. (Z.M.). 7 figs., 2 tabs., 14 refs
Time-dependent Flow and Transport Calculations for Project Opalinus Clay (Entsorgungsnachweis)
International Nuclear Information System (INIS)
Kosakowski, G.
2004-07-01
This report describes two specific assessment cases used in the safety assessment for a proposed deep geological repository for spent fuel, high level waste and long-lived intermediate-level waste, sited in the Opalinus Clay of the Zuercher Weinland in northern Switzerland (Project Entsorgungsnachweis, NAG RA, 2002d). In this study the influence of time dependent flow processes on the radionuclide transport in the geosphere is investigated. In the Opalinus Clay diffusion dominates the transport of radionuclides, but processes exist that can locally increase the importance of the advective transport for some time. Two important cases were investigated: (1) glaciation-induced flow due to an additional overburden in the form of an ice shield of up to 400 m thickness and (2) fluid flow driven by tunnel convergence. For the calculations the code FRAC3DVS (Therrien and Sudicky, 1996) was used. FRAC3DVS solves the three-dimensional flow and transport equation in porous and fractured media. For the case of glaciation-induced flow (1) a two-dimensional reference model without glaciations was calculated. During the glaciations the geosphere release-rates are up to a factor of about 1.7 higher compared to the reference model. The influence of glaciations on the transport of cations or neutral species is less than for anions, since the importance of the advective transport for anions is higher due to the lower accessible porosity for anions. The increase in the release rates during glaciations is lower for sorbing compared to non-sorbing radionuclides. The influence of the tunnel convergence (2) on the transport of radionuclides in the geosphere is very small. Due to the higher source term the geosphere release rates are slightly higher if tunnel convergence is considered. In addition to the two assessment cases this report investigates the applicability of the one-dimensional approximation for modelling transport through the Opalinus Clay. For the reference case of the safety
Qin, Cheng-Zhi; Zhan, Lijun
2012-06-01
As one of the important tasks in digital terrain analysis, the calculation of flow accumulations from gridded digital elevation models (DEMs) usually involves two steps in a real application: (1) using an iterative DEM preprocessing algorithm to remove the depressions and flat areas commonly contained in real DEMs, and (2) using a recursive flow-direction algorithm to calculate the flow accumulation for every cell in the DEM. Because both algorithms are computationally intensive, quick calculation of the flow accumulations from a DEM (especially for a large area) presents a practical challenge to personal computer (PC) users. In recent years, rapid increases in hardware capacity of the graphics processing units (GPUs) provided in modern PCs have made it possible to meet this challenge in a PC environment. Parallel computing on GPUs using a compute-unified-device-architecture (CUDA) programming model has been explored to speed up the execution of the single-flow-direction algorithm (SFD). However, the parallel implementation on a GPU of the multiple-flow-direction (MFD) algorithm, which generally performs better than the SFD algorithm, has not been reported. Moreover, GPU-based parallelization of the DEM preprocessing step in the flow-accumulation calculations has not been addressed. This paper proposes a parallel approach to calculate flow accumulations (including both iterative DEM preprocessing and a recursive MFD algorithm) on a CUDA-compatible GPU. For the parallelization of an MFD algorithm (MFD-md), two different parallelization strategies using a GPU are explored. The first parallelization strategy, which has been used in the existing parallel SFD algorithm on GPU, has the problem of computing redundancy. Therefore, we designed a parallelization strategy based on graph theory. The application results show that the proposed parallel approach to calculate flow accumulations on a GPU performs much faster than either sequential algorithms or other parallel GPU
A numerical calculation method for flow discretisation in complex geometry with body-fitted grids
International Nuclear Information System (INIS)
Jin, X.
2001-04-01
A numerical calculation method basing on body fitted grids is developed in this work for computational fluid dynamics in complex geometry. The method solves the conservation equations in a general nonorthogonal coordinate system which matches the curvilinear boundary. The nonorthogonal, patched grid is generated by a grid generator which solves algebraic equations. By means of an interface its geometrical data can be used by this method. The conservation equations are transformed from the Cartesian system to a general curvilinear system keeping the physical Cartesian velocity components as dependent variables. Using a staggered arrangement of variables, the three Cartesian velocity components are defined on every cell surface. Thus the coupling between pressure and velocity is ensured, and numerical oscillations are avoided. The contravariant velocity for calculating mass flux on one cell surface is resulting from dependent Cartesian velocity components. After the discretisation and linear interpolation, a three dimensional 19-point pressure equation is found. Using the explicit treatment for cross-derivative terms, it reduces to the usual 7-point equation. Under the same data and process structure, this method is compatible with the code FLUTAN using Cartesian coordinates. In order to verify this method, several laminar flows are simulated in orthogonal grids at tilted space directions and in nonorthogonal grids with variations of cell angles. The simulated flow types are considered like various duct flows, transient heat conduction, natural convection in a chimney and natural convection in cavities. Their results achieve very good agreement with analytical solutions or empirical data. Convergence for highly nonorthogonal grids is obtained. After the successful validation of this method, it is applied for a reactor safety case. A transient natural convection flow for an optional sump cooling concept SUCO is simulated. The numerical result is comparable with the
Energy Technology Data Exchange (ETDEWEB)
Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)
2012-07-01
Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)
A virtual power plant model for time-driven power flow calculations
Directory of Open Access Journals (Sweden)
Gerardo Guerra
2017-11-01
Full Text Available This paper presents the implementation of a custom-made virtual power plant model in OpenDSS. The goal is to develop a model adequate for time-driven power flow calculations in distribution systems. The virtual power plant is modeled as the aggregation of renewable generation and energy storage connected to the distribution system through an inverter. The implemented operation mode allows the virtual power plant to act as a single dispatchable generation unit. The case studies presented in the paper demonstrate that the model behaves according to the specified control algorithm and show how it can be incorporated into the solution scheme of a general parallel genetic algorithm in order to obtain the optimal day-ahead dispatch. Simulation results exhibit a clear benefit from the deployment of a virtual power plant when compared to distributed generation based only on renewable intermittent generation.
International Nuclear Information System (INIS)
Lindbom, B.; Boghammar, A.
1992-04-01
The present report describes the modelling efforts of the groundwater flow situation at the Finnsjoen site in northern Uppland, approximately 140 km north of Stockholm. The study forms part of the SKB 91 performance assessment project, and aims at describing the model sensitivity to changes in the prevailing regional gradient, as well as the local, with regard to both direction and magnitude. Particular emphasis has been put into the evaluation of travel times and travel paths form a potential repository, and also on flux values at repository level. The analyses were based on the finite element technique and made use of the NAMMU-code for stationary calculations in three dimensions. The fracture zones within the modelled area were modelled implicitly with an averaging technique. (au)
Isotope-hydrological models and calculational methods for investigation of groundwater flow
International Nuclear Information System (INIS)
Marton, L.
1982-01-01
Recharge of groundwater through a semi-confining bed is a typical hydrogeological phenomenon in quaternary deposits which are elevated to a lesser or greater degree above the surroundings. A simple hydrological model has been introduced in which the aquifer is recharged only by precipitation through a semi-permeable layer. For applying the model, it is necessary to know the age of the water or the radioisotope concentrations in some sections of the ground-water flow system. On the basis of the age, the hydraulic conductivity of the aquifer and of the semiconfining bed and the steady rate of infiltration can be calculated. Other hydraulic parameters can be determined with the help of a mathemathical model worked out by Freeze and Witherspoon. The hydrological and mathemathical models are inversely used and are complementary. The reliability and applicability of the hydrological model has been proved in practice and good results were gained in hydrogeological research carried out in Hungary. (author)
International Nuclear Information System (INIS)
Xu Mingyang; Wang Wenran; Wang Jiaying
1999-01-01
To reduce the flow velocity in the high differential pressure regulating valve with labyrinth. A type of complicated valve core structure were designed with tortuous flow path made from reversal double elbows. It is very difficult to calculate the pressure-drop of the un-fully developed two-phase flow under high temperature and pressure which flow through the valve core. A calculation method called 'constant (varing) pressure-drop progressing step by step design method' was developed. The complicated flow path was disintegrated into a series of independent resistance units and with the valve stem end progressing step by step the dimensions of the flow path were designed in accordance with the principle that in every position the total pressure-drop of the valve should amount to that required by the design goal curve. In the course of calculating the total pressure-drop, the valve flow path was also divided into a series of independent resistance units. The experiment results show that design flow characteristics are approximately consistent with the flow characteristics measured in the test
James, C. M.; Gildfind, D. E.; Lewis, S. W.; Morgan, R. G.; Zander, F.
2018-03-01
Expansion tubes are an important type of test facility for the study of planetary entry flow-fields, being the only type of impulse facility capable of simulating the aerothermodynamics of superorbital planetary entry conditions from 10 to 20 km/s. However, the complex flow processes involved in expansion tube operation make it difficult to fully characterise flow conditions, with two-dimensional full facility computational fluid dynamics simulations often requiring tens or hundreds of thousands of computational hours to complete. In an attempt to simplify this problem and provide a rapid flow condition prediction tool, this paper presents a validated and comprehensive analytical framework for the simulation of an expansion tube facility. It identifies central flow processes and models them from state to state through the facility using established compressible and isentropic flow relations, and equilibrium and frozen chemistry. How the model simulates each section of an expansion tube is discussed, as well as how the model can be used to simulate situations where flow conditions diverge from ideal theory. The model is then validated against experimental data from the X2 expansion tube at the University of Queensland.
Improvement of Power Flow Calculation with Optimization Factor Based on Current Injection Method
Directory of Open Access Journals (Sweden)
Lei Wang
2014-01-01
Full Text Available This paper presents an improvement in power flow calculation based on current injection method by introducing optimization factor. In the method proposed by this paper, the PQ buses are represented by current mismatches while the PV buses are represented by power mismatches. It is different from the representations in conventional current injection power flow equations. By using the combined power and current injection mismatches method, the number of the equations required can be decreased to only one for each PV bus. The optimization factor is used to improve the iteration process and to ensure the effectiveness of the improved method proposed when the system is ill-conditioned. To verify the effectiveness of the method, the IEEE test systems are tested by conventional current injection method and the improved method proposed separately. Then the results are compared. The comparisons show that the optimization factor improves the convergence character effectively, especially that when the system is at high loading level and R/X ratio, the iteration number is one or two times less than the conventional current injection method. When the overloading condition of the system is serious, the iteration number in this paper appears 4 times less than the conventional current injection method.
Calculation of Flows Over Underwater Bodies with Hull, Sail and Appendages
International Nuclear Information System (INIS)
Shoab, M.; Ayub, M.; Bilal, S.; Zahir, S.; Khan, M.A.
2004-01-01
A comprehensive study has been made for the hydrodynamic analysis of the submarine DARPA 2. The analysis was first performed for hull, then hull with sail on top and then for the complete submarine including hull, sail and appendages. A comparison of tangential velocity and pressure distribution for hull is accomplished using CFD flow solvers and published data. Further, the pressure distribution over the hull with sail is also analyzed. Finally, pressure distribution, forces and moments were calculated over the complete submarine including hull, sail and appendages. Comparison 01 pressure distribution and tangential velocity for the hull show a good agreement with published data. Pressure coefficient comparison for the hull with sail shows the good CFD-CFD agreement. Comparison of Normal force and pitching moment of complete submarine having hull, sail and appendages shows a reasonable agreement with the experimental results of DARPA 2. Both quantitative and qualitative analysis of the complete submarine estimates the required design force and moment at different angles of attack and also demonstrate the flow visualization. (author)
Electromagnetic field modeling and ion optics calculations for a continuous-flow AMS system
International Nuclear Information System (INIS)
Han, B.X.; Reden, K.F. von; Roberts, M.L.; Schneider, R.J.; Hayes, J.M.; Jenkins, W.J.
2007-01-01
A continuous-flow 14 C AMS (CFAMS) system is under construction at the NOSAMS facility. This system is based on a NEC Model 1.5SDH-1 0.5 MV Pelletron accelerator and will utilize a combination of a microwave ion source (MIS) and a charge exchange canal (CXC) to produce negative carbon ions from a continuously flowing stream of CO 2 gas. For high-efficiency transmission of the large emittance, large energy-spread beam from the ion source unit, a large-acceptance and energy-achromatic injector consisting of a 45 o electrostatic spherical analyzer (ESA) and a 90 o double-focusing magnet has been designed. The 45 o ESA is rotatable to accommodate a 134-sample MC-SNICS as a second ion source. The high-energy achromat (90 o double focusing magnet and 90 o ESA) has also been customized for large acceptance. Electromagnetic field modeling and ion optics calculations of the beamline were done with Infolytica MagNet, ElecNet, and Trajectory Evaluator. PBGUNS and SIMION were used for the modeling of ion source unit
International Nuclear Information System (INIS)
Li Jiequan; Li Qibing; Xu Kun
2011-01-01
The generalized Riemann problem (GRP) scheme for the Euler equations and gas-kinetic scheme (GKS) for the Boltzmann equation are two high resolution shock capturing schemes for fluid simulations. The difference is that one is based on the characteristics of the inviscid Euler equations and their wave interactions, and the other is based on the particle transport and collisions. The similarity between them is that both methods can use identical MUSCL-type initial reconstructions around a cell interface, and the spatial slopes on both sides of a cell interface involve in the gas evolution process and the construction of a time-dependent flux function. Although both methods have been applied successfully to the inviscid compressible flow computations, their performances have never been compared. Since both methods use the same initial reconstruction, any difference is solely coming from different underlying mechanism in their flux evaluation. Therefore, such a comparison is important to help us to understand the correspondence between physical modeling and numerical performances. Since GRP is so faithfully solving the inviscid Euler equations, the comparison can be also used to show the validity of solving the Euler equations itself. The numerical comparison shows that the GRP exhibits a slightly better computational efficiency, and has comparable accuracy with GKS for the Euler solutions in 1D case, but the GKS is more robust than GRP. For the 2D high Mach number flow simulations, the GKS is absent from the shock instability and converges to the steady state solutions faster than the GRP. The GRP has carbuncle phenomena, likes a cloud hanging over exact Riemann solvers. The GRP and GKS use different physical processes to describe the flow motion starting from a discontinuity. One is based on the assumption of equilibrium state with infinite number of particle collisions, and the other starts from the non-equilibrium free transport process to evolve into an
Whittenberger, J. D.; Wirth, G.
1983-01-01
Swaging between 750 and 1050 C has been investigated as a means to introduce work into the directionally solidified eutectic alloy gamma/gamma prime-alpha (Ni-32.3 wt percent Mo-6.3 wt percent Al) and increase the elevated temperature creep strength. The 1000 C slow plastic compressive flow stress-strain rate properties in air of as-grown, annealed, and worked nominally 10 and 25 percent materials have been determined. Swaging did not improve the slow plastic behavior. In fact large reductions tended to degrade the strength and produced a change in the deformation mechanism from uniform flow to one involving intense slip band formation. Comparison of 1000 C tensile and compressive strength-strain rate data reveals that deformation is independent of the stress state.
Movable scour protection. CFD calculation of flow and scour around foundation
Energy Technology Data Exchange (ETDEWEB)
Miller, R.
2002-07-01
In the design of scour protections a basic parameter is the variation of the bed shear stress around the structure and the potential of the flow for using the stones of the scour protection. This report investigates whether it is: 1. Possible to calculate the correct bed shear stress for various wave and current situations at the base of the foundations, 2. Possible to calculate the scour depths with and without scour protection or in the case of movable scour protection. A number of test runs were made with the Elypsos computer code with the added morphological module (=sediment transport module). It turned out that it is possible to make such calculations but they are extremely time consuming on even a large computer for a simple structure like the circular foundation. It turns out that the computations overpredict the scour depth somewhat. Therefore a more practical approach was made. The morphological model was taken out. Instead the distribution of bottom shear stress distribution around the base of the structure was calculated. This is the important parameter for designing the armour layer of the scour protection. The Shields criterion was used for predicting stable stones and a suitable high value of the shear stress is used. The high bottom shear stress appears for a horizontal bottom. If the sea bottom is allowed to deepen in the areas with maximum shear stress amplification the horseshoe eddy is weakened. This again reduces the shear stress amplification. The computer program was used to perform such calculations and it turned out to be a powerful tool for this. The shear stress amplification can be reduced with a factor 2. Interactively, it is thus possible to calculate the form of a scour hole by trial and error. The scour protection surface shape with the smallest amplification of the shear stress and with the shear stress below the critical Shields Parameter is the optimum scour protection. The program can be used interactively to calculate the extent
Calculation of Heat-Bearing Agent’s Steady Flow in Fuel Bundle
Amosova, E. V.; Guba, G. G.
2017-11-01
This paper introduces the result of studying the heat exchange in the fuel bundle of the nuclear reactor’s fuel magazine. The article considers the fuel bundle of the infinite number of fuel elements, fuel elements are considered in the checkerboard fashion (at the tops of a regular triangle a fuel element is a plain round rod. The inhomogeneity of volume energy release in the rod forms the inhomogeneity of temperature and velocity fields, and pressure. Computational methods for studying hydrodynamics in magazines and cores with rod-shape fuel elements are based on a significant simplification of the problem: using basic (averaged) equations, isobaric section hypothesis, porous body model, etc. This could be explained by the complexity of math description of the three-dimensional fluid flow in the multi-connected area with the transfer coefficient anisotropy, curved boundaries and technical computation difficulties. Thus, calculative studying suggests itself as promising and important. There was developed a method for calculating the heat-mass exchange processes of inter-channel fuel element motions, which allows considering the contribution of natural convection to the heat-mass exchange based on the Navier-Stokes equations and Boussinesq approximation.
International Nuclear Information System (INIS)
Shirakawa, Toshihiko; Hatanaka, Koichiro
2001-11-01
In order to document a basic manual about input data, output data, execution of computer code on groundwater flow and radionuclide transport calculation in heterogeneous porous rock, we investigated the theoretical background about geostatistical computer codes and the user's manual for the computer code on groundwater flow and radionuclide transport which calculates water flow in three dimension, the path of moving radionuclide, and one dimensional radionuclide migration. In this report, based on above investigation we describe the geostatistical background about simulating heterogeneous permeability field. And we describe construction of files, input and output data, a example of calculating of the programs which simulates heterogeneous permeability field, and calculates groundwater flow and radionuclide transport. Therefore, we can document a manual by investigating the theoretical background about geostatistical computer codes and the user's manual for the computer code on groundwater flow and radionuclide transport calculation. And we can model heterogeneous porous rock and analyze groundwater flow and radionuclide transport by utilizing the information from this report. (author)
Energy Technology Data Exchange (ETDEWEB)
Escudier, M.P.; Smith, S. [Department of Engineering, Mechanical Engineering, University of Liverpool, Brownlow Hill, Liverpool L69 3GH (United Kingdom); Oliveira, P.J. [Departamento de Engenharia Electromecanica, Universidade da Beira Interior, Rua Marques D' Avila e Boloma, 6200 Covilha (Portugal); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal)
2002-07-01
Experimental data are reported for fully developed laminar flow of a shear-thinning liquid through both a concentric and an 80% eccentric annulus with and without centrebody rotation. The working fluid was an aqueous solution of 0.1% xanthan gum and 0.1% carboxymethylcellulose for which the flow curve is well represented by the Cross model. Comparisons are reported between numerical calculations and the flow data, as well as with other laminar annular-flow data for a variety of shear-thinning liquids previously reported in the literature. In general, the calculations are in good quantitative agreement with the experimental data, even in situations where viscoelastic effects, neglected in the calculations, would be expected to play a role. (orig.)
Directory of Open Access Journals (Sweden)
Edgar Vladimiro Mantilla Carrasco
2008-02-01
Full Text Available O objetivo deste trabalho foi apresentar uma metodologia para o cálculo da incerteza de medição do resultado do ensaio de resistência à compressão paralela às fibras. Pretendeu-se reunir subsídios que justifiquem a adoção do Procedimento de Cálculo de Incerteza de Medição como exigência normativa e parte integrante do relatório de ensaios de caracterização de madeiras. A motivação para a apresentação dessa proposta surgiu devido à dificuldade observada no atendimento a alguns requisitos técnicos da norma ABNT 2005 - NBR ISO/IEC 17025, em especial o requisito 5.9 sobre a "Garantia da Qualidade de Resultados de Ensaio e Calibração". A metodologia proposta consolida os procedimentos necessários para a obtenção da incerteza de medida individual da tensão de ruptura e o resultado da incerteza da média das tensões de ruptura. Essa metodologia atende aos requisitos de um Sistema de Gestão da Qualidade. Os valores de incerteza obtidos dos resultados individuais da tensão de ruptura foram pouco significativos, indicando elevada qualidade dos equipamentos e boa calibração dos mesmos. Já a incerteza de medição da média da tensão de ruptura foi considerável, indicando a importância de sua consideração na segurança das estruturas de madeira.The purpose of this paper is to present a methodology to determine the uncertainty calculation in the compression parallel to grain strength test. Subsidies were collected to justify the application of the Procedure for Uncertainty Calculation as a normative requirement and integrant part of the report on wood characterization testing. The motivation to the presentation of this proposal is due to the existing difficulty to meet some technical requirements of standard ABNT 2005 - NBR ISO/IEC 17025, especially requirement 5.9 "Quality guarantee of the calibration and testing results". The methodology proposed consolidates all the necessary procedures to obtain the uncertainty
International Nuclear Information System (INIS)
Hoefer, I.
1980-12-01
For the calculation of flows in high-temperature reactors and of their temperature behavior the equations of the method of turbulent flow in the primitive form are derived for inhomogeneous regions. This system of equations is appropriate for the investigation of transient and quasi-stationary phenomena in pebble beds. By modification of the flow function in parallel arranged reflector channels a parallel flow can be simulated. For simplification the flow in region with a smaller pressure loss is assumed to be a potential flow. For the numerical solution of the time-dependent convective parts of the system of equations a number of explicit and implicit difference methods are compared. If the method using UP-WIND differences is taken to be an interpolation method the introduction of an extension becomes possible, which together with preliminary integration of the fictional terms allows to apply larger time steps. The algebraic system of equations for numerical calculation of a steady flow field also is established by formation of UP-WIND differences for the convective terms. By mathematical verification of some examples the applicability of the mathematical model for flow problems in pebble beds with forced or natural convection is shown. (orig.) [de
Application of the Lion's integral to calculate heat transfer with the N2O4 turbulent flow in a tube
International Nuclear Information System (INIS)
Petrovich, V.Yu.; Tverkovkin, B.E.; Nesterenko, V.B.
1976-01-01
When carrying out engineering calculation of heat transfer in the case of turbulent flow of non-equilibrium reacting gas in a tube, it is necessary to dispose of criterion dependence to calculate Nusselt number. As a rule, dependences obtained by empirical methods are not widely adopted. It is proposed that the integral of Lion type be used for the heat transfer calculation in the form of which an expression for Nusselt number has been written under the conditions of turbulent flow with a non-equilibrium chemical reaction. On calculating turbulent fluctuations Millionshchikov two-layer model is used. A simple approximation of source-discharge of the mass of mixture components is suggested for the sake of simplification of Lion integral. The proposed theoretical dependences for the heat transfer calculation when chemical reactions are available substantially extend the field of application of Lion integral and may be used designing equipment with a chemically reacting coolant
On the calculation of flow and heat transfer characteristics for CANDU-type 19-rod fuel bundles
International Nuclear Information System (INIS)
Yuh-Shan Yueh; Ching-Chang Chieng
1987-01-01
A numerical study is reported of flow and heat transfer in a CANDU-type 19 rod fuel bundle. The flow domain of interest includes combinations of trangular, square, and peripheral subchannels. The basic equations of momentum and energy are solved with the standard k--ε model of turbulence. Isotropic turbulent viscosity is assumed and no secondary flow is considered for this steady-state, fully developed flow. Detailed velocity and temperature distributions with wall shear stress and Nusselt number distributions are obtained for turbulent flow of Re = 4.35 x 10 4 , 10 5 , 2 x 10 5 , and for laminar flow of Re--2400. Friction factor and heat transfer ceofficients of various subchannels inside the full bundle are compared with those of infinite rod arrays of triangular or square arrangements. The calculated velocity contours of peripheral subchannel agreed reasonably with measured data
REFLOS, Fuel Loading and Cost from Burnup and Heavy Atomic Mass Flow Calculation in HWR
International Nuclear Information System (INIS)
Boettcher, W.; Schmidt, E.
1969-01-01
1 - Nature of physical problem solved: REFLOS is a programme for the evaluation of fuel-loading schemes in heavy water moderated reactors. The problems involved in this study are: a) Burn-up calculation for the reactor cell. b) Determination of reactivity behaviour, power distribution, attainable burn-up for both the running-in period and the equilibrium of a 3-dimensional heterogeneous reactor model; investigation of radial fuel movement schemes. c) Evaluation of mass flows of heavy atoms through the reactor and fuel cycle costs for the running-in, the equilibrium, and the shut down of a power reactor. If the subroutine for treating the reactor cell were replaced by a suitable routine, other reactors with weakly absorbing moderators could be analyzed. 2 - Method of solution: Nuclear constants and isotopic compositions of the different fuels in the reactor are calculated by the cell-burn-up programme and tabulated as functions of the burn-up rate (MWD/T). Starting from a known state of the reactor, the 3-dimensional heterogeneous reactor programme (applying an extension of the technique of Feinberg and Galanin) calculates reactivity and neutron flux distribution using one thermal and one or two fast neutron groups. After a given irradiation time, the new state of the reactor is determined, and new nuclear constants are assigned to the various defined locations in the reactor. Reloading of fuel may occur if the prescribed life of the reactor is reached or if the effective multiplication factor or the power form factor falls below a specified level. The scheme of reloading to be carried out is specified by a load vector, giving the number of channels to be discharged, the kind of movement from one to another channel and the type of fresh fuel to be charged for each single reloading event. After having determined the core states characterizing the equilibrium period, and having decided the fuel reloading scheme for the running-in period of the reactor life, the fuel
SPLOSH III. A code for calculating reactivity and flow transients in CSGHWR
International Nuclear Information System (INIS)
Halsall, M.J.; Course, A.F.; Sidell, J.
1979-09-01
SPLOSH is a time dependent, one dimensional, finite difference (in time and space) coupled neutron kinetics and thermal hydraulics code for studying pressurised faults and control transients in water reactor systems. An axial single channel model with equally spaced mesh intervals is used to represent the neutronics of the reactor core. A radial finite difference model is used for heat conduction through the fuel pin, gas gap and can. Appropriate convective, boiling or post-dryout heat transfer correlations are used at the can-coolant interface. The hydraulics model includes the important features of the SGHWR primary loop including 'slave' channels in parallel with the 'mean' channel. Standard mass, energy and momentum equations are solved explicitly. Circuit features modelled include pumps, spray cooling and the SGHWR steam drum. Perturbations to almost any feature of the circuit model may be specified by the user although blowdown calculations resulting in critical or reversed flows are not permitted. Automatic reactor trips may be defined and the ensuing actions of moderator dumping and rod firing can be specified. (UK)
Calculation of groundwater flow and particle tracking for the Gorleben site with Metropol
International Nuclear Information System (INIS)
Leijnse, A.; Glasbergen, P.; Nijhoff-Pan, I.; Sauter, F.
1989-01-01
In the framework of the European Community Management and storage of radioactive waste programme and its Pagis project (Performance assessment of geological isolation systems), a study of the groundwater flow system in the permeable strata overlaying the Gorleben salt-dome in the Federal Republic of Germany has been carried out. The main purpose of this study was to compare the results obtained previously with the finite difference Swift computer code and the results obtained with the finite element Metropol computer code, developed at RIVM. Such a direct comparison was hampered by the fact that no standard is available for the results obtained. As a follow-up, Metropol was used for simulations that included the variations in the liquid density due to variations in the salt concentration. Some conclusions could be drawn: the travelling times of a particle through a single high permeable block increases by approximately two orders of magnitude compared to the constant density calculations due to the effect of high concentration gradients. However, the complexity of the problem considered has not yet made it possible to formulate conclusions for the complete model in a general way
Comparative calculations on selected two-phase flow phenomena using major PWR system codes
International Nuclear Information System (INIS)
1990-01-01
In 1988 a comparative study on important features and models in six major best estimate thermal hydraulic codes for PWR systems was implemented (Comparison of thermal hydraulic safety codes for PWR Graham, Trotman, London, EUR 11522). It was a limitation of that study that the source codes themselves were not available but the comparison had to be based on the available documentation. In the present study, the source codes were available and the capability of four system codes to predict complex two-phase flow phenomena has been assessed. Two areas of investigation were selected: (a) pressurized spray phenomena; (b) boil-up phenomena in rod bundles. As regards the first area, experimental data obtained in 1972 on the Neptunus Facility (Delft University of Technology) were compared with the results of the calculations using Athlet, Cathare, Relap 5 and TRAC-PT1 and, concerning the second area, the results of two experimental facilities obtained in 1980 and 1985 on Thetis (UKEA) and Pericles (CEA-Grenoble) were considered
International Nuclear Information System (INIS)
Faix-Gantier, A.
2001-12-01
This thesis concerns the study of flame propagation in a turbulent flow of lean hydrogen-air mixtures. The aim is to precise the characteristics of propagation as well as combustion and turbulence models able to take into account the peculiarities of these mixtures. This research work is related to the prevention of fire hazards associated with accidental release of hydrogen within the reactor of a nuclear power plant. In a first part, the scales (the flame velocity and thickness) associated with the laminar flame propagation in hydrogen-air mixtures are studied. A specific attention is devoted to the intrinsic instability properties of such flames. Then, the turbulence scales potentially present within a reactor are estimated in order to allow for the determination of the regimes of combustion that might be present within the reactor and among which the flamelet regime appears to be conceivable. In a second part, starting with the analysis of the propagation properties of a mean reaction zone calculated with a flamelet model, we show that, with an adequate tuning of the parameter appearing in the mean reaction rate expression, it is possible to predict numerically the turbulent flame speeds available with the literature. (author)
Directory of Open Access Journals (Sweden)
Alireza Khoshfetrat
2018-05-01
Full Text Available Under transient flow condition, the behavior of water conveyance system varies according to their characteristics. In the present study, the pressure was measured using a fast and sensitive pressure gauge in Bukan and Piranshahr water conveyance system. The pressure simulation was conducted using Bentley Hammer software. The friction head loss was calculated by different methods. The results showed that Unsteady Vitkovsky method had minimum error comparing with other methods. Wave velocity increase had direct effect on maximum pressures while velocity decrease affected minimum pressures. In a shorter water conveyance system, the reduction of wave velocity had direct effect on maximum pressure. Destruction to the long conveyance system was more probable and maximum and minimum pressures occurred during the first period. Shorter conveyance system had more pressure fluctuations and the minimum pressure did not occur in the first period. Coincidence of periods happened at the beginning and continued untill the end of data recording in the longer conveyance system. However, as time passed by, such coincidence did not occure in shorter conveyance system.
Directory of Open Access Journals (Sweden)
Möhlenkamp Stefan
2006-06-01
Full Text Available Abstract Background The pressure drop – flow relations in myocardial bridges and the assessment of vascular heart disease via fractional flow reserve (FFR have motivated many researchers the last decades. The aim of this study is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow separation and secondary motions, which are difficult to calculate and analyse. Methods Because a three dimensional simulation of the haemodynamic conditions in myocardial bridges in a network of coronary arteries is time-consuming, we present a boundary layer model for the calculation of the pressure drop and flow separation. The approach is based on the assumption that the flow can be sufficiently well described by the interaction of an inviscid core and a viscous boundary layer. Under the assumption that the idealised flow through a constriction is given by near-equilibrium velocity profiles of the Falkner-Skan-Cooke (FSC family, the evolution of the boundary layer is obtained by the simultaneous solution of the Falkner-Skan equation and the transient von-Kármán integral momentum equation. Results The model was used to investigate the relative importance of several physical parameters present in myocardial bridges. Results have been obtained for steady and unsteady flow through vessels with 0 – 85% diameter stenosis. We compare two clinical relevant cases of a myocardial bridge in the middle segment of the left anterior descending coronary artery (LAD. The pressure derived FFR of fixed and dynamic lesions has shown that the flow is less affected in the dynamic case, because the distal
International Nuclear Information System (INIS)
Braun, Sabine; Schindler, Christian; Leuzinger, Sebastian
2010-01-01
For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO 3 SE model. - A method was developed to derive stomatal functions and ozone uptake calculation from sap flow.