WorldWideScience

Sample records for compounds potential multielectron

  1. Coherent Operations and Screening in Multielectron Spin Qubits

    DEFF Research Database (Denmark)

    Higginbotham, Andrew Patrick; Kuemmeth, Ferdinand; Hanson, M.P.

    2014-01-01

    Multielectron spin qubits are demonstrated, and performance examined by comparing coherent exchange oscillations in coupled single-electron and multielectron quantum dots, measured in the same device. Fast (>1 GHz) exchange oscillations with a quality factor Q ∼ 15 are found for the multielectron...

  2. NOVEL SYNTHESIS OF POLYARYLENESULFONIUM CATIONS THROUGH A MULTI-ELECTRON TRANSFER PROCESS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The oxidative polymerization of aryl sulfoxides provides a novel polysulfonium compound, poly(methylsulfonio-1,4-phenylenethio-1,4-phenylene cation) in quantitative yield. The polymerization proceeds efficiently in an acidic solution under atmospheric conditions. Oxygen, chemical and electrochemical oxidations are available. Vanadyl acetylacetonate and cerium ammonium nitrate act as an effective catalyst for the oxygen oxidative polymerization. The polymerization mechanism involves multielectron oxidation of the sulfides followed by successive electrophilic substitution. The resulting polyarylenesulfonium cations are useful as a soluble precursor for the synthesis of high molecular weight (Mw>105) poly(thio arylne)s.

  3. Spin of a Multielectron Quantum Dot and Its Interaction with a Neighboring Electron

    Directory of Open Access Journals (Sweden)

    Filip K. Malinowski

    2018-03-01

    Full Text Available We investigate the spin of a multielectron GaAs quantum dot in a sequence of nine charge occupancies, by exchange coupling the multielectron dot to a neighboring two-electron double quantum dot. For all nine occupancies, we make use of a leakage spectroscopy technique to reconstruct the spectrum of spin states in the vicinity of the interdot charge transition between a single- and a multielectron quantum dot. In the same regime we also perform time-resolved measurements of coherent exchange oscillations between the single- and multielectron quantum dot. With these measurements, we identify distinct characteristics of the multielectron spin state, depending on whether the dot’s occupancy is even or odd. For three out of four even occupancies, we do not observe any exchange interaction with the single quantum dot, indicating a spin-0 ground state. For the one remaining even occupancy, we observe an exchange interaction that we associate with a spin-1 multielectron quantum dot ground state. For all five of the odd occupancies, we observe an exchange interaction associated with a spin-1/2 ground state. For three of these odd occupancies, we clearly demonstrate that the exchange interaction changes sign in the vicinity of the charge transition. For one of these, the exchange interaction is negative (i.e., triplet preferring beyond the interdot charge transition, consistent with the observed spin-1 for the next (even occupancy. Our experimental results are interpreted through the use of a Hubbard model involving two orbitals of the multielectron quantum dot. Allowing for the spin correlation energy (i.e., including a term favoring Hund’s rules and different tunnel coupling to different orbitals, we qualitatively reproduce the measured exchange profiles for all occupancies.

  4. Quantum Hall Effect: proposed multi-electron tunneling experiment

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1985-11-01

    Here we propose a tunneling experiment for the fractional and Integral Quantum Hall Effect. It may demonstrate multi-electron tunneling and may provide information about the nature of the macroscopic quantum states of 2D electronic liquid or solid. (author)

  5. Time ordering in multi-electron dynamics

    International Nuclear Information System (INIS)

    McGuire, J H; Godunov, A L; Shakov, Kh Kh; Shipakov, V A; Merabet, H; Bruch, R; Hanni, J

    2003-01-01

    Time ordering of interactions in dynamic quantum multi-electron systems provides a constraint that interconnects the time evolution of different electrons. In energy space, time ordering appears as the principal value contribution from the Green function, which corresponds to the asymptotic condition that specifies whether the system has outgoing (or possibly incoming) scattered waves. We report evidence of effects of time correlation found by comparing calculations to recent spectropolarimetric data

  6. Time ordering in multi-electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, J H [Department of Physics, Tulane University, New Orleans, LA (United States); Godunov, A L [Department of Physics, Tulane University, New Orleans, LA (United States); Shakov, Kh Kh [Department of Physics, Tulane University, New Orleans, LA (United States); Shipakov, V A [Troitsk Institute for Innovation and Fusion Research, Troitsk (Russian Federation); Merabet, H [Department of Physics, University of Nevada Reno, Reno, NV (United States); Bruch, R [Department of Physics, University of Nevada Reno, Reno, NV (United States); Hanni, J [Department of Physics, University of Nevada Reno, Reno, NV (United States)

    2003-01-28

    Time ordering of interactions in dynamic quantum multi-electron systems provides a constraint that interconnects the time evolution of different electrons. In energy space, time ordering appears as the principal value contribution from the Green function, which corresponds to the asymptotic condition that specifies whether the system has outgoing (or possibly incoming) scattered waves. We report evidence of effects of time correlation found by comparing calculations to recent spectropolarimetric data.

  7. Spin-based quantum computation in multielectron quantum dots

    OpenAIRE

    Hu, Xuedong; Sarma, S. Das

    2001-01-01

    In a quantum computer the hardware and software are intrinsically connected because the quantum Hamiltonian (or more precisely its time development) is the code that runs the computer. We demonstrate this subtle and crucial relationship by considering the example of electron-spin-based solid state quantum computer in semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the outermost shell do not behave simply as an effective single spin system unles...

  8. Microelectrode voltammetry of multi-electron transfers complicated by coupled chemical equilibria: a general theory for the extended square scheme.

    Science.gov (United States)

    Laborda, Eduardo; Gómez-Gil, José María; Molina, Angela

    2017-06-28

    A very general and simple theoretical solution is presented for the current-potential-time response of reversible multi-electron transfer processes complicated by homogeneous chemical equilibria (the so-called extended square scheme). The expressions presented here are applicable regardless of the number of electrons transferred and coupled chemical processes, and they are particularized for a wide variety of microelectrode geometries. The voltammetric response of very different systems presenting multi-electron transfers is considered for the most widely-used techniques (namely, cyclic voltammetry, square wave voltammetry, differential pulse voltammetry and steady state voltammetry), studying the influence of the microelectrode geometry and the number and thermodynamics of the (electro)chemical steps. Most appropriate techniques and procedures for the determination of the 'interaction' between successive transfers are discussed. Special attention is paid to those situations where homogeneous chemical processes, such as protonation, complexation or ion association, affect the electrochemical behaviour of the system by different stabilization of the oxidation states.

  9. Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Changhua [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China); College of Chemistry and Biology, Beihua University, Jilin 132013 (China); Zhang, Xintong, E-mail: xtzhang@nenu.edu.cn [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China); Liu, Yichun [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China)

    2015-12-15

    Highlights: • Oxygen reduction reaction (ORR) in photocatalysis process is focused. • Multi-electron transfer ORR is reviewed. • This review provides a guide to access to enhanced photocatalysis via multi-electron transfer. - Abstract: Semiconductor photocatalysis has attracted significant interest for solar light induced environmental remediation and solar fuel generation. As is well known, photocatalytic performance is determined by three steps: photoexcitation, separation and transport of photogenerated charge carriers, and surface reactions. To achieve higher efficiency, significant efforts have been made on improvement of efficiency of above first two steps, which have been well documented in recent review articles. In contrast, this review intends to focus on strategies moving onto the third step of improvement for enhanced photocatalysis wherein active oxygen species including superoxide radical, hydrogen peroxide, hydroxyl radical are in situ detected. Particularly, surface electron-transfer reduction of oxygen over single component photocatalysts is reviewed and systems enabling multi-electron transfer induced oxygen reduction reaction (ORR) are highlighted. It is expected this review could provide a guideline for readers to better understand the critical role of ORR over photocatalyst in charge carrier separation and transfer and obtain reliable results for enhanced aerobic photocatalysis.

  10. Gate-dependent spin-orbit coupling in multielectron carbon nanotubes

    DEFF Research Database (Denmark)

    Jespersen, Thomas Sand; Grove-Rasmussen, Kasper; Paaske, Jens

    2011-01-01

    Understanding how the orbital motion of electrons is coupled to the spin degree of freedom in nanoscale systems is central for applications in spin-based electronics and quantum computation. Here we demonstrate such spin–orbit coupling in a carbon-nanotube quantum dot in the general multielectron...... graphene lattice. Our findings suggest that the spin–orbit coupling is a general property of carbon-nanotube quantum dots, which should provide a unique platform for the study of spin–orbit effects and their applications....

  11. Harnessing redox activity for the formation of uranium tris(imido) compounds

    Science.gov (United States)

    Anderson, Nickolas H.; Odoh, Samuel O.; Yao, Yiyi; Williams, Ursula J.; Schaefer, Brian A.; Kiernicki, John J.; Lewis, Andrew J.; Goshert, Mitchell D.; Fanwick, Phillip E.; Schelter, Eric J.; Walensky, Justin R.; Gagliardi, Laura; Bart, Suzanne C.

    2014-10-01

    Classically, late transition-metal organometallic compounds promote multielectron processes solely through the change in oxidation state of the metal centre. In contrast, uranium typically undergoes single-electron chemistry. However, using redox-active ligands can engage multielectron reactivity at this metal in analogy to transition metals. Here we show that a redox-flexible pyridine(diimine) ligand can stabilize a series of highly reduced uranium coordination complexes by storing one, two or three electrons in the ligand. These species reduce organoazides easily to form uranium-nitrogen multiple bonds with the release of dinitrogen. The extent of ligand reduction dictates the formation of uranium mono-, bis- and tris(imido) products. Spectroscopic and structural characterization of these compounds supports the idea that electrons are stored in the ligand framework and used in subsequent reactivity. Computational analyses of the uranium imido products probed their molecular and electronic structures, which facilitated a comparison between the bonding in the tris(imido) structure and its tris(oxo) analogue.

  12. Electron emission relevant to inner-shell photoionization of condensed water studied by multi-electron coincidence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hikosaka, Y., E-mail: hikosaka@las.u-toyama.ac.jp [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Mashiko, R.; Konosu, Y.; Soejima, K. [Department of Environmental Science, Niigata University, Niigata 950-2181 (Japan); Shigemasa, E. [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); SOKENDAI, Okazaki 444-8585 (Japan)

    2016-11-15

    Highlights: • Multi-electron coincidence spectroscopy is applied to the study of electron emissions from condensed H2O molecules. • Coincidence Auger spectra are obtained for different photoelectron energies. • The energy distribution of the slow electrons ejected in the Auger decay is deduced from three-fold coincidences. - Abstract: Multi-electron coincidence spectroscopy using a magnetic-bottle electron spectrometer has been applied to the study of the Auger decay following O1s photoionization of condensed H{sub 2}O molecules. Coincidence Auger spectra are obtained for three different photoelectron energy ranges. In addition, the energy distribution of the slow electrons ejected in the Auger decay of the O1s core hole is deduced from three-fold coincidences.

  13. Fission of Multielectron Bubbles in Liquid Helium Under Electric Fields

    Science.gov (United States)

    Vadakkumbatt, V.; Ghosh, A.

    2017-06-01

    Multielectron bubbles (MEBs) are cavities in liquid helium which contain a layer of electrons trapped within few nanometres from their inner surfaces. These bubbles are promising candidates to probe a system of interacting electrons in curved geometries, but have been subjected to limited experimental investigation. Here, we report on the observation of fission of MEBs under strong electric fields, which arises due to fast rearrangement of electrons inside the bubbles, leading to their deformation and eventually instability. We measured the electrons to be distributed unequally between the daughter bubbles which could be used to control the charge density inside MEBs.

  14. A multi-electron redox mediator for redox-targeting lithium-sulfur flow batteries

    Science.gov (United States)

    Li, Guochun; Yang, Liuqing; Jiang, Xi; Zhang, Tianran; Lin, Haibin; Yao, Qiaofeng; Lee, Jim Yang

    2018-02-01

    The lithium-sulfur flow battery (LSFB) is a new addition to the rechargeable lithium flow batteries (LFBs) where sulfur or a sulfur compound is used as the cathode material against the lithium anode. We report here our evaluation of an organic sulfide - dimethyl trisulfide (DMTS), as 1) a catholyte of a LFB and 2) a multi-electron redox mediator for discharging and charging a solid sulfur cathode without any conductive additives. The latter configuration is also known as the redox-targeting lithium-sulfur flow battery (RTLSFB). The LFB provides an initial discharge capacity of 131.5 mAh g-1DMTS (1.66 A h L-1), which decreases to 59 mAh g-1DMTS (0.75 A h L-1) after 40 cycles. The RTLSFB delivers a significantly higher application performance - initial discharge capacity of 1225.3 mAh g-1sulfur (3.83 A h L-1), for which 1030.9 mAh g-1sulfur (3.23 A h L-1) is still available after 40 cycles. The significant increase in the discharge and charge duration of the LFB after sulfur addition indicates that DMTS is better used as a redox mediator in a RTLSFB than as a catholyte in a LFB.

  15. Temperature dependence of the electronic structure of La2CuO4 in the multielectron LDA+GTB approach

    International Nuclear Information System (INIS)

    Makarov, I. A.; Ovchinnikov, S. G.

    2015-01-01

    The band structure of La 2 CuO 4 in antiferromagnetic and paramagnetic phases is calculated at finite temperatures by the multielectron LDA+GTB method. The temperature dependence of the band spectrum and the spectral weight of Hubbard fermions is caused by a change in the occupation numbers of local multielectron spin-split terms in the antiferromagnetic phase. A decrease in the magnetization of the sublattice with temperature gives rise to new bands near the bottom of the conduction band and the top of the valence band. It is shown that the band gap decreases with increasing temperature, but La 2 CuO 4 remains an insulator in the paramagnetic phase as well. These results are consistent with measurements of the red shift of the absorption edge in La 2 CuO 4 with increasing temperature

  16. Non-orthogonal configuration interaction for the calculation of multielectron excited states

    Energy Technology Data Exchange (ETDEWEB)

    Sundstrom, Eric J., E-mail: eric.jon.sundstrom@berkeley.edu; Head-Gordon, Martin [Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-03-21

    We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing 〈S{sup 2}〉 for the ground and excited states.

  17. Communication: Time-dependent optimized coupled-cluster method for multielectron dynamics

    Science.gov (United States)

    Sato, Takeshi; Pathak, Himadri; Orimo, Yuki; Ishikawa, Kenichi L.

    2018-02-01

    Time-dependent coupled-cluster method with time-varying orbital functions, called time-dependent optimized coupled-cluster (TD-OCC) method, is formulated for multielectron dynamics in an intense laser field. We have successfully derived the equations of motion for CC amplitudes and orthonormal orbital functions based on the real action functional, and implemented the method including double excitations (TD-OCCD) and double and triple excitations (TD-OCCDT) within the optimized active orbitals. The present method is size extensive and gauge invariant, a polynomial cost-scaling alternative to the time-dependent multiconfiguration self-consistent-field method. The first application of the TD-OCC method of intense-laser driven correlated electron dynamics in Ar atom is reported.

  18. High-temperature fusion of a multielectron leviton

    Science.gov (United States)

    Moskalets, Michael

    2018-04-01

    The state of electrons injected onto the surface of the Fermi sea depends on temperature. The state is pure at zero temperature and is mixed at finite temperature. In the case of a single-electron injection, such a transformation can be detected as a decrease in shot noise with increasing temperature. In the case of a multielectron injection, the situation is subtler. The mixedness helps the development of quantum-mechanical exchange correlations between injected electrons, even if such correlations are absent at zero temperature. These correlations enhance the shot noise, which in part counteracts the reduction of noise with temperature. Moreover, at sufficiently high temperatures, the correlation contribution to noise predominates over the contribution of individual particles. As a result, in the system of N electrons, the apparent charge (which is revealed via the shot noise) is changed from e at zero temperature to N e at high temperatures. It looks like the exchange correlations glue electrons into one particle of total charge and energy. This point of view is supported by both charge noise and heat noise. Interestingly, in the macroscopic limit, N →∞ , the correlation contribution completely suppresses the effect of temperature on noise.

  19. Multi-Electron Production at High Transverse Momenta in ep Collisions at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Asmone, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, C.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boenig, M.O.; Boudry, V.; Bracinik, J.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Chekelian, V.; Clarke, D.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dodonov, V.; Dowell, J.D.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grabski, V.; Grassler, H.; Greenshaw, T.; Gregori, M.; Grindhammer, Guenter; Haidt, D.; Hajduk, L.; Haller, J.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.; Johnson, D.P.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Koutouev, R.; Kropivnitskaya, A.; Kroseberg, J.; Kueckens, J.; Kuhr, T.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Luders, S.; Luke, D.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milstead, D.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Newman, Paul R.; Niebergall, F.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Ozerov, D.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Petrukhin, A.; Pitzl, D.; Poschl, R.; Povh, B.; Raicevic, N.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vassiliev, S.; Vazdik, Y.; Veelken, C.; Vest, A.; Vichnevski, A.; Volchinski, V.; Wacker, K.; Wagner, J.; Waugh, B.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winde, M.; Winter, G.G.; Wissing, C.; Woehrling, E.E.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; zur Nedden, M.

    2003-01-01

    Multi-electron production is studied at high electron transverse momentum in positron- and electron-proton collisions using the H1 detector at HERA. The data correspond to an integrated luminosity of 115 pb-1. Di-electron and tri-electron event yields are measured. Cross sections are derived in a restricted phase space region dominated by photon-photon collisions. In general good agreement is found with the Standard Model predictions. However, for electron pair invariant masses above 100 GeV, three di-electron events and three tri-electron events are observed, compared to Standard Model expectations of 0.30 pm 0.04 and 0.23 pm 0.04, respectively.

  20. CDW-EIS model for single-electron capture in ion-atom collisions involving multielectronic targets

    International Nuclear Information System (INIS)

    Abufager, P N; MartInez, A E; Rivarola, R D; Fainstein, P D

    2004-01-01

    A generalization of the continuum distorted wave eikonal initial state (CDW-EIS) approximation, for the description of single-electron capture in ion-atom collisions involving multielectronic targets is presented. This approximation is developed within the framework of the independent electron model taking particular care of the representation of the bound and continuum target states. Total cross sections for single-electron capture from the K-shell of He, Ne and Ar noble gases by impact of bare ions are calculated. Present results are compared to previous CDW-EIS ones and to experimental data

  1. Stable Trapping of Multielectron Helium Bubbles in a Paul Trap

    Science.gov (United States)

    Joseph, E. M.; Vadakkumbatt, V.; Pal, A.; Ghosh, A.

    2017-06-01

    In a recent experiment, we have used a linear Paul trap to store and study multielectron bubbles (MEBs) in liquid helium. MEBs have a charge-to-mass ratio (between 10^{-4} and 10^{-2} C/kg) which is several orders of magnitude smaller than ions (between 10^6 and 10^8 C/kg) studied in traditional ion traps. In addition, MEBs experience significant drag force while moving through the liquid. As a result, the experimental parameters for stable trapping of MEBs, such as magnitude and frequency of the applied electric fields, are very different from those used in typical ion trap experiments. The purpose of this paper is to model the motion of MEBs inside a linear Paul trap in liquid helium, determine the range of working parameters of the trap, and compare the results with experiments.

  2. Performance and cost characteristics of multi-electron transfer, common ion exchange non-aqueous redox flow batteries

    Science.gov (United States)

    Laramie, Sydney M.; Milshtein, Jarrod D.; Breault, Tanya M.; Brushett, Fikile R.; Thompson, Levi T.

    2016-09-01

    Non-aqueous redox flow batteries (NAqRFBs) have recently received considerable attention as promising high energy density, low cost grid-level energy storage technologies. Despite these attractive features, NAqRFBs are still at an early stage of development and innovative design techniques are necessary to improve performance and decrease costs. In this work, we investigate multi-electron transfer, common ion exchange NAqRFBs. Common ion systems decrease the supporting electrolyte requirement, which subsequently improves active material solubility and decreases electrolyte cost. Voltammetric and electrolytic techniques are used to study the electrochemical performance and chemical compatibility of model redox active materials, iron (II) tris(2,2‧-bipyridine) tetrafluoroborate (Fe(bpy)3(BF4)2) and ferrocenylmethyl dimethyl ethyl ammonium tetrafluoroborate (Fc1N112-BF4). These results help disentangle complex cycling behavior observed in flow cell experiments. Further, a simple techno-economic model demonstrates the cost benefits of employing common ion exchange NAqRFBs, afforded by decreasing the salt and solvent contributions to total chemical cost. This study highlights two new concepts, common ion exchange and multi-electron transfer, for NAqRFBs through a demonstration flow cell employing model active species. In addition, the compatibility analysis developed for asymmetric chemistries can apply to other promising species, including organics, metal coordination complexes (MCCs) and mixed MCC/organic systems, enabling the design of low cost NAqRFBs.

  3. Multielectron transitions following heavy ion excitation: a comparison of self-consistent field calculations with experiment

    International Nuclear Information System (INIS)

    Hodge, W.L. Jr.

    1976-01-01

    A multielectron transition is an atomic transition in which two or three electrons change their states and a single photon is emitted. Although the mechanism was postulated in the thirties and observed in optical spectra, little research has been done since then. Experiments using heavy ion accelerators have measured satellite lines lower in energy than the Kα 12 energy and higher in energy than the Kβ satellite structure. These transitions are multielectron transitions. Experimental spectra of x-ray transitions induced by heavy ion bombardment are presented, and the experimental energies are compared to Hartree-Fock transition energies. The transitions observed lower in energy than the Kα line are two electron--one photon radiative Auger and three electron--one photon radiative electron rearrangement transitions. Experimental data taken at other laboratories have measured satellite lines higher in energy than the Kβ satellite structure. Relativistic Dirac-Fock transition energies will be compared to the experimental energies and the transitions will be shown to be two electron--one photon x-ray transitions. Heavy ion bombardment creates multiple inner shell vacancies so numerous that the satellite lines can be more intense than the diagram lines. Theoretical transition energies from five different self-consistent field atomic physics computer programs will be compared to the Kα satellite and Kα hypersatellite transitions of calcium. Transition energies from Declaux's relativistic Dirac-Fock program will be compared to the diagram lines of uranium and to other theoretical K x-ray transition energies of Z = 120. A discussion of how to calculate the term energies of a given configuration using the Slater F and G integrals is included

  4. Measuring multielectron beam imaging fidelity with a signal-to-noise ratio analysis

    Science.gov (United States)

    Mukhtar, Maseeh; Bunday, Benjamin D.; Quoi, Kathy; Malloy, Matt; Thiel, Brad

    2016-07-01

    Java Monte Carlo Simulator for Secondary Electrons (JMONSEL) simulations are used to generate expected imaging responses of chosen test cases of patterns and defects with the ability to vary parameters for beam energy, spot size, pixel size, and/or defect material and form factor. The patterns are representative of the design rules for an aggressively scaled FinFET-type design. With these simulated images and resulting shot noise, a signal-to-noise framework is developed, which relates to defect detection probabilities. Additionally, with this infrastructure, the effect of detection chain noise and frequency-dependent system response can be made, allowing for targeting of best recipe parameters for multielectron beam inspection validation experiments. Ultimately, these results should lead to insights into how such parameters will impact tool design, including necessary doses for defect detection and estimations of scanning speeds for achieving high throughput for high-volume manufacturing.

  5. A multi-band, multi-level, multi-electron model for efficient FDTD simulations of electromagnetic interactions with semiconductor quantum wells

    Science.gov (United States)

    Ravi, Koustuban; Wang, Qian; Ho, Seng-Tiong

    2015-08-01

    We report a new computational model for simulations of electromagnetic interactions with semiconductor quantum well(s) (SQW) in complex electromagnetic geometries using the finite-difference time-domain method. The presented model is based on an approach of spanning a large number of electron transverse momentum states in each SQW sub-band (multi-band) with a small number of discrete multi-electron states (multi-level, multi-electron). This enables accurate and efficient two-dimensional (2-D) and three-dimensional (3-D) simulations of nanophotonic devices with SQW active media. The model includes the following features: (1) Optically induced interband transitions between various SQW conduction and heavy-hole or light-hole sub-bands are considered. (2) Novel intra sub-band and inter sub-band transition terms are derived to thermalize the electron and hole occupational distributions to the correct Fermi-Dirac distributions. (3) The terms in (2) result in an explicit update scheme which circumvents numerically cumbersome iterative procedures. This significantly augments computational efficiency. (4) Explicit update terms to account for carrier leakage to unconfined states are derived, which thermalize the bulk and SQW populations to a common quasi-equilibrium Fermi-Dirac distribution. (5) Auger recombination and intervalence band absorption are included. The model is validated by comparisons to analytic band-filling calculations, simulations of SQW optical gain spectra, and photonic crystal lasers.

  6. New Equations for Calculating Principal and Fine-Structure Atomic Spectra for Single and Multi-Electron Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Surdoval, Wayne A. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Berry, David A. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Shultz, Travis R. [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2018-03-09

    A set of equations are presented for calculating atomic principal spectral lines and fine-structure energy splits for single and multi-electron atoms. Calculated results are presented and compared to the National Institute of Science and Technology database demonstrating very good accuracy. The equations do not require fitted parameters. The only experimental parameter required is the Ionization energy for the electron of interest. The equations have comparable accuracy and broader applicability than the single electron Dirac equation. Three Appendices discuss the origin of the new equations and present calculated results. New insights into the special relativistic nature of the Dirac equation and its relationship to the new equations are presented.

  7. [Loudness optimized registration of compound action potential in cochlear implant recipients].

    Science.gov (United States)

    Berger, Klaus; Hocke, Thomas; Hessel, Horst

    2017-11-01

    Background Postoperative measurements of compound action potentials are not always possible due to the insufficient acceptance of the CI-recipients. This study investigated the impact of different parameters on the acceptance of the measurements. Methods Compound action potentials of 16 CI recipients were measured with different pulse-widths. Recipients performed a loudness rating at the potential thresholds with the different sequences. Results Compound action potentials obtained with higher pulse-widths were rated softer than those obtained with smaller pulse-widths. Conclusions Compound action potentials measured with higher pulse-widths generate a gap between loudest acceptable presentation level and potential threshold. This gap contributes to a higher acceptance of postoperative measurements. Georg Thieme Verlag KG Stuttgart · New York.

  8. Kinetics of Multielectron Transfers and Redox-Induced Structural Changes in N-Aryl-Expanded Pyridiniums: Establishing Their Unusual, Versatile Electrophoric Activity

    Czech Academy of Sciences Publication Activity Database

    Lachmanová, Štěpánka; Dupeyre, G.; Tarábek, Ján; Ochsenbein, P.; Perruchot, Ch.; Ciofini, I.; Hromadová, Magdaléna; Pospíšil, Lubomír; Lainé, P. P.

    2015-01-01

    Roč. 137, č. 35 (2015), s. 11349-11364 ISSN 0002-7863 R&D Projects: GA ČR GA13-19213S; GA ČR(CZ) GA14-05180S; GA MŠk(CZ) 7AMB15FR027 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200401202 Program:M Institutional support: RVO:61388955 ; RVO:61388963 Keywords : multielectron transfer * electrochemistry * kinetics Subject RIV: CG - Electrochemistry Impact factor: 13.038, year: 2015

  9. Multielectron-Transfer-based Rechargeable Energy Storage of Two-Dimensional Coordination Frameworks with Non-Innocent Ligands.

    Science.gov (United States)

    Wada, Keisuke; Sakaushi, Ken; Sasaki, Sono; Nishihara, Hiroshi

    2018-04-19

    The metallically conductive bis(diimino)nickel framework (NiDI), an emerging class of metal-organic framework (MOF) analogues consisting of two-dimensional (2D) coordination networks, was found to have an energy storage principle that uses both cation and anion insertion. This principle gives high energy led by a multielectron transfer reaction: Its specific capacity is one of the highest among MOF-based cathode materials in rechargeable energy storage devices, with stable cycling performance up to 300 cycles. This mechanism was studied by a wide spectrum of electrochemical techniques combined with density-functional calculations. This work shows that a rationally designed material system of conductive 2D coordination networks can be promising electrode materials for many types of energy devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions

    Science.gov (United States)

    Shamie, Jack S.; Liu, Caihong; Shaw, Leon L.; Sprenkle, Vincent L.

    2015-01-01

    We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored. PMID:26063629

  11. High-order moments of spin-orbit energy in a multielectron configuration

    Science.gov (United States)

    Na, Xieyu; Poirier, M.

    2016-07-01

    In order to analyze the energy-level distribution in complex ions such as those found in warm dense plasmas, this paper provides values for high-order moments of the spin-orbit energy in a multielectron configuration. Using second-quantization results and standard angular algebra or fully analytical expressions, explicit values are given for moments up to 10th order for the spin-orbit energy. Two analytical methods are proposed, using the uncoupled or coupled orbital and spin angular momenta. The case of multiple open subshells is considered with the help of cumulants. The proposed expressions for spin-orbit energy moments are compared to numerical computations from Cowan's code and agree with them. The convergence of the Gram-Charlier expansion involving these spin-orbit moments is analyzed. While a spectrum with infinitely thin components cannot be adequately represented by such an expansion, a suitable convolution procedure ensures the convergence of the Gram-Charlier series provided high-order terms are accounted for. A corrected analytical formula for the third-order moment involving both spin-orbit and electron-electron interactions turns out to be in fair agreement with Cowan's numerical computations.

  12. EXAFS analysis of the L3 edge of Ce in CeO2: effects of multielectron excitations and final-state mixed valence

    International Nuclear Information System (INIS)

    Fonda, E.; Andreatta, D.; Colavita, P.E.; Vlaic, G.

    1999-01-01

    Cerium oxide (IV) (CeO 2 ) is extensively employed in heterogeneous catalysis, particularly as a promoter of noble metal action in three-way catalysts. For this reason there is a great scientific and economical interest in the development of any possible chemical or structural analysis technique that could provide information on these systems. EXAFS spectroscopy has revealed itself as a powerful technique for structural characterization of such catalysts. Unfortunately, good quality K-edge spectra of cerium are not yet easily obtainable because of the high photon energy required (>40 keV). On the other hand, at lower energies it is easy to collect very good spectra of the L 3 edge (5.5 keV), but L 3 -edge spectra of cerium (IV) are characterized by the presence of two undesired additional phenomena that interfere with EXAFS analysis: final-state mixed-valence behaviour and intense multi-electron excitations. Here, a comparative analysis of the K, L 3 , L 2 and L 1 edges of Ce in CeO 2 has been made and a procedure for obtaining structural parameters from L 3 -edge EXAFS, even in the presence of these features, has been developed. This procedure could allow further studies of catalytic compounds containing tetravalent cerium surrounded by oxygen ligands. (au)

  13. Antifouling potential of Nature-inspired sulfated compounds

    Science.gov (United States)

    Almeida, Joana R.; Correia-da-Silva, Marta; Sousa, Emília; Antunes, Jorge; Pinto, Madalena; Vasconcelos, Vitor; Cunha, Isabel

    2017-02-01

    Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL-1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL-1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina ( 1000 μg.mL-1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents.

  14. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.

    Science.gov (United States)

    Hammarström, Leif

    2015-03-17

    structural properties, they are typically more amenable to mechanistic analysis, and they are small and therefore require less material. Therefore, they have arguably greater potential as future efficient catalysts but must be efficiently coupled to accumulative charge separation. This Account discusses accumulative charge separation with focus on molecular and molecule-semiconductor hybrid systems. The coupling between charge separation and catalysis involves many challenges that are often overlooked, and they are not always apparent when studying water oxidation and fuel formation as separate half-reactions with sacrificial agents. Transition metal catalysts, as well as other multielectron donors and acceptors, cycle through many different states that may quench the excited sensitizer by nonproductive pathways. Examples where this has been shown, often with ultrafast rates, are reviewed. Strategies to avoid these competing energy-loss reactions and still obtain efficient coupling of charge separation to catalysis are discussed. This includes recent examples of dye-sensitized semiconductor devices with molecular catalysts and dyes that realize complete water splitting, albeit with limited efficiency.

  15. Triorganotin as a compound with potential reproductive toxicity in mammals

    Directory of Open Access Journals (Sweden)

    V.S. Delgado Filho

    2011-09-01

    Full Text Available Organotin compounds are typical environmental contaminants and suspected endocrine-disrupting substances, which cause irreversible sexual abnormality in female mollusks, called "imposex". However, little is known about the capability of triorganotin compounds, such as tributyltin and triphenyltin, to cause disorders in the sexual development and reproductive functions of mammals, including humans and rodents. Moreover, these compounds can act as potential competitive inhibitors of aromatase enzyme and other steroidogenic enzymes, affecting the reproductive capacity of male and female mammals. In this review, we discuss the cellular, biochemical, and molecular mechanisms by which triorganotin compounds induce adverse effects in the mammalian reproductive function.

  16. Active compounds from cyanobacteria and microalgae: properties and potential applications in biomedicine

    Directory of Open Access Journals (Sweden)

    Alexey Llopiz

    2016-05-01

    Full Text Available Cyanobacteria and microalgae are source of many chemicals substances with potential applications on biopharmaceutical industry. Many structures have been characterized in these organism, such as: peptides, proteins, carbohydrates, terpenoids, polyinsatured fatty acids, flavonoids, phenolic compounds, vitamins, porfirins and other organic substances. Chemicals structures of isolated compounds are diverse and it depends of microalgae habitats. Pharmacological activities located in microalgae are bactericides, immunomodulatory, antioxidants, cytoprotective, fungicides and antivirals. These properties may possible the potential treatment of many diseases including autoimmunes disorders, tumoral, and infectious process. In this review are presented and discussed some elements associated to chemical structure and biological activities around of compounds with potential uses as biopharmaceuticals.

  17. Antimicrobial activity of some potential active compounds against ...

    African Journals Online (AJOL)

    Antimicrobial activities of six potential active compounds (acetic acid, chitosan, catechin, gallic acid, lysozyme, and nisin) at the concentration of 500 g/ml against the growth of Escherichia coli, Staphylococcus aureus, Listeria innocua, and Saccharomyces cerevisiae were determined. Lysozyme showed the highest ...

  18. Potential Antifreeze Compounds in Present-Day Martian Seepage Groundwater

    Directory of Open Access Journals (Sweden)

    Jiin-Shuh Jean

    2008-01-01

    Full Text Available Is the recently found seepage groundwater on Mars pure H2O, or mixed with salts and other antifreeze compounds? Given the surface conditions of Mars, it is unlikely that pure water could either exist in its liquid state or have shaped Mars¡¦ fluid erosional landforms (gullies, channels, and valley networks. More likely is that Mars¡¦ seepage groundwater contains antifreeze and salt compounds that resist freezing and suppress evaporation. This model better accounts for Mars¡¦ enigmatic surface erosion. This paper suggests 17 antifreeze compounds potentially present in Martian seepage groundwater. Given their liquid state and physical properties, triethylene glycol, diethylene glycol, ethylene glycol, and 1,3-propylene glycol are advanced as the most likely candidate compounds. This paper also explores how a mixing of glycol or glycerol with salts in the Martian seepage groundwater may have lowered water¡¦s freezing point and raised its boiling point, with consequences that created fluid gully and channel erosion. Ethylene glycol and related hydrocarbon compounds have been identified in Martian and other interstellar meteorites. We suggest that these compounds and their proportions to water be included for detection in future explorations.

  19. Therapeutic potential of bryophytes and derived compounds against cancer

    Directory of Open Access Journals (Sweden)

    Abhijit Dey

    2015-08-01

    Full Text Available Bryophytes, taxonomically placed between the algae and the pteridophytes, are divided into three classes such as Liverworts, Hornworts and Mosses. Indigenous use involves this small group of plants to treat various diseases. Bryophytes have been investigated pharmacologically for active biomolecules. Several constituents with therapeutic potential have been isolated, characterized and investigated for antibacterial, antifungal, antiviral, antioxidative, antiinflamatory and anticancerous efficacy. The present review deals with the literature covering the anticancerous potential of bryophytes. Apart from the examples of the compounds and the containing bryophyte genera, the authors have tried to include the examples of cancer cell lines on which the efficacy have been tested and the mode of action of certain cytotoxic agents. Crude extracts and isolated compounds from bryophytes were found to possess potent cytotoxic properties. Different types of terpenoids and bibenzyls have been reported among the most potent cytotoxic compounds. Most of these compounds were found to induce apoptosis by activating a number of genes and enzymes. Biochemical markers such as DNA fragmentation, nuclear condensation, proteolysis of poly (ADP-ribose polymerase, activation of caspases, inhibition of antiapoptotic nuclear transcriptional factor-kappaB, activation of p38 mitogen-activated protein kinase etc. have been found to be associated with apoptotic and necrotic response. This review summarizes recent scientific findings and suggests further investigations to evaluate the cytotoxic efficacy of bryophytes.

  20. Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime

    Science.gov (United States)

    Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg

    2016-01-01

    Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources. PMID:27786287

  1. Potential Signatures of Semi-volatile Compounds Associated With Nuclear Processing

    Energy Technology Data Exchange (ETDEWEB)

    Probasco, Kathleen M.; Birnbaum, Jerome C.; Maughan, A. D.

    2002-06-01

    Semi-volatile chemicals associated with nuclear processes (e.g., the reprocessing of uranium to produce plutonium for nuclear weapons, or the separation of actinides from processing waste streams), can provide sticky residues or signatures that will attach to piping, ducting, soil, water, or other surface media. Volatile compounds, that are more suitable for electro-optical sensing, have been well studied. However, the semi-volatile compounds have not been well documented or studied. A majority of these semi-volatile chemicals are more robust than typical gaseous or liquid chemicals and can have lifetimes of several weeks, months, or years in the environment. However, large data gaps exist concerning these potential signature compounds and more research is needed to fill these data gaps so that important signature information is not overlooked or discarded. This report investigates key semi-volatile compounds associated with nuclear separations, identifies available chemical and physical properties, and discusses the degradation products that would result from hydrolysis, radiolysis and oxidation reactions on these compounds.

  2. Theoretical study of ionization and one-electron oxidation potentials of N-heterocyclic compounds.

    Science.gov (United States)

    Sviatenko, Liudmyla K; Gorb, Leonid; Hill, Frances C; Leszczynski, Jerzy

    2013-05-15

    A number of density functionals was utilized to predict gas-phase adiabatic ionization potentials (IPs) for nitrogen-rich heterocyclic compounds. Various solvation models were applied to the calculation of difference in free energies of solvation of oxidized and reduced forms of heterocyclic compounds in acetonitrile (AN) for correct reproduction of their standard oxidation potentials. We developed generally applicable protocols that could successfully predict the gas-phase adiabatic ionization potentials of nitrogen-rich heterocyclic compounds and their standard oxidation potentials in AN. This approach is supported by a MPW1K/6-31+G(d) level of theory which uses SMD(UA0) approximation for estimation of solvation energy of neutral molecules and PCM(UA0) model for ionized ones. The mean absolute derivation (MAD) and root mean square error (RMSE) of the current theoretical models for IP are equal to 0.22 V and 0.26, respectively, and for oxidation potentials MAD = 0.13 V and RMSE = 0.17. Copyright © 2013 Wiley Periodicals, Inc.

  3. Potential of Lichen Compounds as Antidiabetic Agents with Antioxidative Properties: A Review

    Science.gov (United States)

    Karunaratne, Veranja

    2017-01-01

    The advancement in the knowledge of potent antioxidants has uncovered the way for greater insight in the treatment of diabetic complications. Lichens are a rich resource of novel bioactive compounds and their antioxidant potential is well documented. Herein we review the antidiabetic potential of lichens which have received considerable attention, in the recent past. We have correlated the antidiabetic and the antioxidant potential of lichen compounds. The study shows a good accordance between antioxidant and antidiabetic activity of lichens and points out the need to look into gathering the scarce and scattered data on biological activities for effective utilization. The review establishes that the lichen extracts, especially of Parmotrema sp. and Ramalina sp. have shown promising potential in both antidiabetic and antioxidant assays. Ubiquitous compounds, namely, zeorin, methylorsellinate, methyl-β-orcinol carboxylate, methyl haematommate, lecanoric acid, salazinic acid, sekikaic acid, usnic acid, gyrophoric acid, and lobaric acid have shown promising potential in both antidiabetic as well as antioxidant assays highlighting their potential for effective treatment of diabetic mellitus and its associated complications. The available compilation of this data provides the future perspectives and highlight the need for further studies of this potent herbal source to harvest more beneficial therapeutic antidiabetic drugs. PMID:28491237

  4. Lichen-derived compounds show potential for central nervous system therapeutics.

    Science.gov (United States)

    Reddy, R Gajendra; Veeraval, Lenin; Maitra, Swati; Chollet-Krugler, Marylène; Tomasi, Sophie; Dévéhat, Françoise Lohézic-Le; Boustie, Joël; Chakravarty, Sumana

    2016-11-15

    Natural products from lichens are widely investigated for their biological properties, yet their potential as central nervous system (CNS) therapeutic agents is less explored. The present study investigated the neuroactive properties of selected lichen compounds (atranorin, perlatolic acid, physodic acid and usnic acid), for their neurotrophic, neurogenic and acetylcholine esterase (AChE) activities. Neurotrophic activity (neurite outgrowth) was determined using murine neuroblastoma Neuro2A cells. A MTT assay was performed to assess the cytotoxicity of compounds at optimum neurotrophic activity. Neuro2A cells treated with neurotrophic lichen compounds were used for RT-PCR to evaluate the induction of genes that code for the neurotrophic markers BDNF and NGF. Immunoblotting was used to assess acetyl H3 and H4 levels, the epigenetic markers associated with neurotrophic and/or neurogenic activity. The neurogenic property of the compounds was determined using murine hippocampal primary cultures. AChE inhibition activity was performed using a modified Ellman's esterase method. Lichen compounds atranorin, perlatolic acid, physodic acid and (+)-usnic acid showed neurotrophic activity in a preliminary cell-based screening based on Neuro2A neurite outgrowth. Except for usnic acid, no cytotoxic effects were observed for the two depsides (atranorin and perlatolic acid) and the alkyl depsidone (physodic acid). Perlatolic acid appears to be promising, as it also exhibited AChE inhibition activity and potent proneurogenic activity. The neurotrophic lichen compounds (atranorin, perlatolic acid, physodic acid) modulated the gene expression of BDNF and NGF. In addition, perlatolic acid showed increased protein levels of acetyl H3 and H4 in Neuro2A cells. These lichen depsides and depsidones showed neuroactive properties in vitro (Neuro2A cells) and ex vivo (primary neural stem or progenitor cells), suggesting their potential to treat CNS disorders. Copyright © 2016 Elsevier Gmb

  5. Compound sensory action potential in normal and pathological human nerves

    DEFF Research Database (Denmark)

    Krarup, Christian

    2004-01-01

    The compound sensory nerve action potential (SNAP) is the result of phase summation and cancellation of single fiber potentials (SFAPs) with amplitudes that depend on fiber diameter, and the amplitude and shape of the SNAP is determined by the distribution of fiber diameters. Conduction velocitie...... effort and attention to theory and practical detail that may be time consuming....

  6. Evaluating the mutagenic potential of aerosol organic compounds using informatics-based screening

    Science.gov (United States)

    Decesari, Stefano; Kovarich, Simona; Pavan, Manuela; Bassan, Arianna; Ciacci, Andrea; Topping, David

    2018-02-01

    Whilst general policy objectives to reduce airborne particulate matter (PM) health effects are to reduce exposure to PM as a whole, emerging evidence suggests that more detailed metrics associating impacts with different aerosol components might be needed. Since it is impossible to conduct toxicological screening on all possible molecular species expected to occur in aerosol, in this study we perform a proof-of-concept evaluation on the information retrieved from in silico toxicological predictions, in which a subset (N = 104) of secondary organic aerosol (SOA) compounds were screened for their mutagenicity potential. An extensive database search showed that experimental data are available for 13 % of the compounds, while reliable predictions were obtained for 82 %. A multivariate statistical analysis of the compounds based on their physico-chemical, structural, and mechanistic properties showed that 80 % of the compounds predicted as mutagenic were grouped into six clusters, three of which (five-membered lactones from monoterpene oxidation, oxygenated multifunctional compounds from substituted benzene oxidation, and hydroperoxides from several precursors) represent new candidate groups of compounds for future toxicological screenings. These results demonstrate that coupling model-generated compositions to in silico toxicological screening might enable more comprehensive exploration of the mutagenic potential of specific SOA components.

  7. Review of Natural Compounds for Potential Skin Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Tawona N. Chinembiri

    2014-08-01

    Full Text Available Most anti-cancer drugs are derived from natural resources such as marine, microbial and botanical sources. Cutaneous malignant melanoma is the most aggressive form of skin cancer, with a high mortality rate. Various treatments for malignant melanoma are available, but due to the development of multi-drug resistance, current or emerging chemotherapies have a relatively low success rates. This emphasizes the importance of discovering new compounds that are both safe and effective against melanoma. In vitro testing of melanoma cell lines and murine melanoma models offers the opportunity for identifying mechanisms of action of plant derived compounds and extracts. Common anti-melanoma effects of natural compounds include potentiating apoptosis, inhibiting cell proliferation and inhibiting metastasis. There are different mechanisms and pathways responsible for anti-melanoma actions of medicinal compounds such as promotion of caspase activity, inhibition of angiogenesis and inhibition of the effects of tumor promoting proteins such as PI3-K, Bcl-2, STAT3 and MMPs. This review thus aims at providing an overview of anti-cancer compounds, derived from natural sources, that are currently used in cancer chemotherapies, or that have been reported to show anti-melanoma, or anti-skin cancer activities. Phytochemicals that are discussed in this review include flavonoids, carotenoids, terpenoids, vitamins, sulforaphane, some polyphenols and crude plant extracts.

  8. Potential Compounds for Oral Cancer Treatment: Resveratrol, Nimbolide, Lovastatin, Bortezomib, Vorinostat, Berberine, Pterostilbene, Deguelin, Andrographolide, and Colchicine.

    Directory of Open Access Journals (Sweden)

    Saurabh Bundela

    Full Text Available Oral cancer is one of the main causes of cancer-related deaths in South-Asian countries. There are very limited treatment options available for oral cancer. Research endeavors focused on discovery and development of novel therapies for oral cancer, is necessary to control the ever rising oral cancer related mortalities. We mined the large pool of compounds from the publicly available compound databases, to identify potential therapeutic compounds for oral cancer. Over 84 million compounds were screened for the possible anti-cancer activity by custom build SVM classifier. The molecular targets of the predicted anti-cancer compounds were mined from reliable sources like experimental bioassays studies associated with the compound, and from protein-compound interaction databases. Therapeutic compounds from DrugBank, and a list of natural anti-cancer compounds derived from literature mining of published studies, were used for building partial least squares regression model. The regression model thus built, was used for the estimation of oral cancer specific weights based on the molecular targets. These weights were used to compute scores for screening the predicted anti-cancer compounds for their potential to treat oral cancer. The list of potential compounds was annotated with corresponding physicochemical properties, cancer specific bioactivity evidences, and literature evidences. In all, 288 compounds with the potential to treat oral cancer were identified in the current study. The majority of the compounds in this list are natural products, which are well-tolerated and have minimal side-effects compared to the synthetic counterparts. Some of the potential therapeutic compounds identified in the current study are resveratrol, nimbolide, lovastatin, bortezomib, vorinostat, berberine, pterostilbene, deguelin, andrographolide, and colchicine.

  9. Potential Compounds for Oral Cancer Treatment: Resveratrol, Nimbolide, Lovastatin, Bortezomib, Vorinostat, Berberine, Pterostilbene, Deguelin, Andrographolide, and Colchicine

    Science.gov (United States)

    Bundela, Saurabh; Sharma, Anjana; Bisen, Prakash S.

    2015-01-01

    Oral cancer is one of the main causes of cancer-related deaths in South-Asian countries. There are very limited treatment options available for oral cancer. Research endeavors focused on discovery and development of novel therapies for oral cancer, is necessary to control the ever rising oral cancer related mortalities. We mined the large pool of compounds from the publicly available compound databases, to identify potential therapeutic compounds for oral cancer. Over 84 million compounds were screened for the possible anti-cancer activity by custom build SVM classifier. The molecular targets of the predicted anti-cancer compounds were mined from reliable sources like experimental bioassays studies associated with the compound, and from protein-compound interaction databases. Therapeutic compounds from DrugBank, and a list of natural anti-cancer compounds derived from literature mining of published studies, were used for building partial least squares regression model. The regression model thus built, was used for the estimation of oral cancer specific weights based on the molecular targets. These weights were used to compute scores for screening the predicted anti-cancer compounds for their potential to treat oral cancer. The list of potential compounds was annotated with corresponding physicochemical properties, cancer specific bioactivity evidences, and literature evidences. In all, 288 compounds with the potential to treat oral cancer were identified in the current study. The majority of the compounds in this list are natural products, which are well-tolerated and have minimal side-effects compared to the synthetic counterparts. Some of the potential therapeutic compounds identified in the current study are resveratrol, nimbolide, lovastatin, bortezomib, vorinostat, berberine, pterostilbene, deguelin, andrographolide, and colchicine. PMID:26536350

  10. Synthesis, SAR and pharmacological characterization of novel anthraquinone cation compounds as potential anticancer agents.

    Science.gov (United States)

    Zheng, Yanyan; Zhu, Li; Fan, Lulu; Zhao, Wenna; Wang, Jianlong; Hao, Xianxiao; Zhu, Yunhui; Hu, Xiufang; Yuan, Yaofeng; Shao, Jingwei; Wang, Wenfeng

    2017-01-05

    Emodin, a natural anthraquinone derivative isolated from Rheum palmatum L., has been demonstrated to exhibit good anti-cancer effect. In this study, a series of novel quaternary ammonium salts of emodin, anthraquinone and anthrone were synthesized and their anticancer activities were tested in vitro. The effects of emodin quaternary ammonium salts on cell viability, apoptosis, intracellular ROS, and mitochondrial membrane potential were investigated in A375, BGC-823, HepG2 and HELF cells. The results demonstrated that compound 4a induced morphological changes and decreased cell viability. Apoptosis triggered by compound 4a was visualized using DAPI staining and Annexin V-FITC/PI staining. Compound 4a-induced apoptosis of A375 cells were showed to be associated with the dissipation of mitochondrial membrane potential (ΔΨm) as a result of the up-regulation of P53 and Caspase-3. When cancer cells were treated with emodin derivative, their ability to generate reactive oxygen species (ROS) rose significantly and the mitochondrial membrane potential decreased. Additionally, confocal microscopy assay confirmed that compound 4a was primarily located in the mitochondria of A375 cells. These results suggested that compound 4a has the potential for use in cancer therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. A three-stage-integrative approach for the identification of potential hepatotoxic compounds from botanical products.

    Science.gov (United States)

    Jin, Yecheng; Zhao, Xiaoping; Zhang, Yufeng; Li, Xiang; Nie, Xiaojing; Wang, Yi; Fan, Xiaohui

    2011-05-01

    With the increasing use of herbal medicines and dietary supplements, intensive concerns about their potential toxicities have been raised. Screening and identifying the toxic compounds from these botanical products composed by hundreds of components have become a critical but challenging problem. In this study, 3 methods, including fraction separation, an in-house-developed fluorescein diacetate-based automatic microscopy screening (FAMS) platform, and liquid chromatography-mass spectrometry-based compounds identification were integrated within the Three-Stage-Integrative (TSI) approach for the identification of potential hepatotoxicants from botanical products. The sensitivity and linear range of FAMS assay was validated and compared with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay by previously reported hepatotoxic compounds. The success of TSI approach was further demonstrated by its application to Fructus aristolochiae. Aristolochic acid IVa and aristolodione were tentatively identified to be potential hepatotoxicants in this plant. These applications suggested that our TSI approach provides an effective tool for identifying potential toxic compounds from botanical products.

  12. Model potentials in liquid water ionization by fast electron impact

    International Nuclear Information System (INIS)

    De Sanctis, M L; Stia, C R; Fojón, O A; Politis, M-F; Vuilleumier, R

    2015-01-01

    We study the ionization of water molecules in liquid phase by fast electron impact. We use our previous first-order model within an independent electron approximation that allows the reduction of the multielectronic problem into a monoelectronic one. The initial molecular states of the liquid water are represented in a realistic way through a Wannier orbital formalism. We complete our previous study by taking into account approximately the influence of the passive electrons of the target by means of different model potentials. We compute multiple differential cross sections for the most external orbital 1B 1 and compare them with other results

  13. Potential of Fruit Wastes as Natural Resources of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Wen-Hua Ling

    2012-07-01

    Full Text Available Fruit wastes are one of the main sources of municipal waste. In order to explore the potential of fruit wastes as natural resources of bioactive compounds, the antioxidant potency and total phenolic contents (TPC of lipophilic and hydrophilic components in wastes (peel and seed of 50 fruits were systematically evaluated. The results showed that different fruit residues had diverse antioxidant potency and the variation was very large. Furthermore, the main bioactive compounds were identified and quantified, and catechin, cyanidin 3-glucoside, epicatechin, galangin, gallic acid, homogentisic acid, kaempferol, and chlorogenic acid were widely found in these residues. Especially, the values of ferric-reducing antioxidant power (FRAP, trolox equivalent antioxidant capacity (TEAC and TPC in the residues were higher than in pulps. The results showed that fruit residues could be inexpensive and readily available resources of bioactive compounds for use in the food and pharmaceutical industries.

  14. Oxidative stress protection by newly synthesized nitrogen compounds with pharmacological potential.

    Science.gov (United States)

    Silva, João P; Areias, Filipe M; Proença, Fernanda M; Coutinho, Olga P

    2006-02-09

    In this study we used new nitrogen compounds obtained by organic synthesis whose structure predicted an antioxidant potential and then an eventual development as molecules of pharmacological interest in diseases involving oxidative stress. The compounds, identified as FMA4, FMA5, FMA7 and FMA8 differ in the presence of hydroxyl groups located in the C-3 and/or C-4 position of a phenolic unit, which is possibly responsible for their free radicals' buffering capacity. Data from the DPPH discoloration method confirm the high antiradical efficiency of the compounds. The results obtained with cellular models (L929 and PC12) show that they are not toxic and really protect from membrane lipid peroxidation induced by the ascorbate-iron oxidant pair. The level of protection correlates with the drug's lipophilic profile and is sometimes superior to trolox and equivalent to that observed for alpha-tocopherol. The compounds FMA4 and FMA7 present also a high protection from cell death evaluated in the presence of a staurosporine apoptotic stimulus. That protection results in a significant reduction of caspase-3 activity induced by staurosporine which by its turn seems to result from a protection observed in the membrane receptor pathway (caspase-8) together with a protection observed in the mitochondrial pathway (caspase-9). Taken together the results obtained with the new compounds, with linear chains, open up perspectives for their use as therapeutical agents, namely as antioxidants and protectors of apoptotic pathways. On the other hand the slight pro-oxidant profile obtained with the cyclic structures suggests a different therapeutic potential that is under current investigation.

  15. The Crystal Structures of Potentially Tautomeric Compounds

    Science.gov (United States)

    Furmanova, Nina G.

    1981-08-01

    Data on the structures of potentially proto-, metallo-, and carbono-tropic compounds, obtained mainly by X-ray diffraction, are surveyed. The results of neutron and electron diffraction studies have also been partly used. It is shown that a characteristic feature of all the systems considered is the formation of hydrogen or secondary bonds ensuring the contribution of both possible tautomeric forms to the structure. Systematic consideration of the experimental data leads to the conclusion that there is a close relation between the crystal structure and the dynamic behaviour of the molecules in solution and that secondary and hydrogen bonds play a significant role in the tautomeric transition. The bibliography includes 152 references.

  16. A practical theoretical formalism for atomic multielectron processes: direct multiple ionization by a single auger decay or by impact of a single electron or photon

    Science.gov (United States)

    Liu, Pengfei; Zeng, Jiaolong; Yuan, Jianmin

    2018-04-01

    Multiple electron processes occur widely in atoms, molecules, clusters, and condensed matters when they are interacting with energetic particles or intense laser fields. Direct multielectron processes (DMEP) are the most complicated among the general multiple electron processes and are the most difficult to describe theoretically. In this work, a unified and accurate theoretical formalism is proposed on the DMEP of atoms including the multiple auger decay and multiple ionization by an impact of a single electron or a single photon based on the atomic collision theory described by a correlated many-body Green's function. Such a practical treatment is made possible by taking consideration of the different coherence features of the atoms (matter waves) in the initial and final states. We first explain how the coherence characteristics of the ejected continuum electrons is largely destructed, by taking the electron impact direct double ionization process as an example. The direct double ionization process is completely different from the single ionization where the complete interference can be maintained. The detailed expressions are obtained for the energy correlations among the continuum electrons and energy resolved differential and integral cross sections according to the separation of knock-out (KO) and shake-off (SO) mechanisms for the electron impact direct double ionization, direct double and triple auger decay, and double and triple photoionization (TPI) processes. Extension to higher order DMEP than triple ionization is straight forward by adding contributions of the following KO and SO processes. The approach is applied to investigate the electron impact double ionization processes of C+, N+, and O+, the direct double and triple auger decay of the K-shell excited states of C+ 1s2{s}22{p}2{}2D and {}2P, and the double and TPI of lithium. Comparisons with the experimental and other theoretical investigations wherever available in the literature show that our

  17. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    International Nuclear Information System (INIS)

    Daisey, J.M.

    1991-11-01

    There is considerable interest in the ''unattached'' fraction of radon progeny in indoor air because of its significance to the estimation of the risks of radon exposure. Because of its high mobility in air, the unattached fraction is more efficiently deposited in the respiratory tract. Variation in the diameter of the ''unattached'' fraction and in its diffusion coefficient can be due to clustering of other atmospheric species around the 218 PoO 2 + ion. The purpose of this study was to investigate the potential for the formation of clusters of vapor phase organic compounds, found in indoor air, around the 218 PoO 2 + ion and to determine which were most likely to form clusters. A secondary purpose was to provide a compilation of measurements of indoor organic compounds for future experiments and theoretical calculations by the radon research community. The classical charged liquid droplet theory (Thomson equation) was used to estimate the Gibbs free energy of ion-induced nucleation and to provide an indication of the indoor organic compounds most likely to undergo ion-induced nucleation. Forty-four volatile and semi-volatile organic compounds out of the more than 300 which have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the 218 PoO 2 + ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones and the acetates) and the semi-volatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos)

  18. Marine Compounds with Therapeutic Potential in Gram-Negative Sepsis

    Directory of Open Access Journals (Sweden)

    Irina Yermak

    2013-06-01

    Full Text Available This paper concerns the potential use of compounds, including lipid A, chitosan, and carrageenan, from marine sources as agents for treating endotoxemic complications from Gram-negative infections, such as sepsis and endotoxic shock. Lipid A, which can be isolated from various species of marine bacteria, is a potential antagonist of bacterial endotoxins (lipopolysaccharide (LPSs. Chitosan is a widespread marine polysaccharide that is derived from chitin, the major component of crustacean shells. The potential of chitosan as an LPS-binding and endotoxin-neutralizing agent is also examined in this paper, including a discussion on the generation of hydrophobic chitosan derivatives to increase the binding affinity of chitosan to LPS. In addition, the ability of carrageenan, which is the polysaccharide of red alga, to decrease the toxicity of LPS is discussed. We also review data obtained using animal models that demonstrate the potency of carrageenan and chitosan as antiendotoxin agents.

  19. Promising Potential of Dietary (Poly)Phenolic Compounds in the Prevention and Treatment of Diabetes Mellitus.

    Science.gov (United States)

    Dias, Tania R; Alves, Marco G; Casal, Susana; Oliveira, Pedro F; Silva, Branca M

    2017-01-01

    The incidence of diabetes mellitus (DM) is reaching alarming proportions worldwide, particularly because it is increasingly affecting younger people. This reflects the sedentary lifestyle and inappropriate dietary habits, especially due to the advent of processed foods in modern societies. Thus, unsurprisingly, the first medical recommendation to patients with clinically evident DM is the alteration in their eating behaviour, particularly regarding carbohydrates and total energy intake. Despite individual and cultural preferences, human diet makes available a large amount of phytochemicals with therapeutic potential. Phenolic compounds are the most abundant class of phytochemicals in edible plants, fruits and beverages. These compounds have strong antioxidant and anti-inflammatory activities that have been associated with specific features of their chemical structure. Among others, such properties make them promising antidiabetic agents and several mechanisms of action have already been proposed. Herein, we discuss the recent findings on the potential of dietary phenolic compounds for the prevention and/or treatment of (pre)diabetes, and associated complications. A broad range of studies supports the innate potential of phenolic compounds to protect against DM-associated deleterious effects. Their antidiabetic activity has been demonstrated by: i) regulation of carbohydrate metabolism; ii) improvement of glucose uptake; iii) protection of pancreatic β-cells; iv) enhancement of insulin action and v) regulation of crucial signalling pathways to cell homeostasis. Dietary phenolic compounds constitute an easy, safe and cost-effective way to combat the worrying scenario of DM. The interesting particularities of phenolic compounds reinforce the implementation of a (poly)phenolic-rich nutritional regime, not only for (pre)diabetic patients, but also for non-diabetic people. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Potential use of DNA adducts to detect mutagenic compounds in soil

    International Nuclear Information System (INIS)

    Hua Guoxiong; Lyons, Brett; Killham, Ken; Singleton, Ian

    2009-01-01

    In this study, three different soils with contrasting features, spiked with 300 mg benzo[a]pyrene (BaP)/kg dry soil, were incubated at 20 deg. C and 60% water holding capacity for 540 days. At different time points, BaP and DNA were extracted and quantified, and DNA adducts were quantified by 32 P-postlabelling. After 540 days incubation, 69.3, 81.6 and 83.2% of initial BaP added remained in Cruden Bay, Boyndie and Insch soils, respectively. Meanwhile, a significantly different amount of DNA-BaP adducts were found in the three soils exposed to BaP over time. The work demonstrates the concept that DNA adducts can be detected on DNA extracted from soil. Results suggest the technique is not able to directly reflect bioavailability of BaP transformation products. However, this new method provides a potential way to detect mutagenic compounds in contaminated soil and to assess the outcomes of soil remediation. - A novel DNA adduct assay may provide a potential technique to detect mutagenic compounds in contaminated soil

  1. RESEARCH REGARDING THE POTENTIAL ACTIVITY OF SOME HETEROCYCLIC COMPOUNDS ON PLANTS GROWTH AND DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    OANA-IRINA PATRICIU

    2017-06-01

    Full Text Available It is well known that growth and morphogenesis of plant tissue cultures can be improved by small amounts of some organic compounds. Heterocyclic compounds such as chromanones and thiazoles derivatives, valuable because of their potential biological activities, have also been reported as pesticides, herbicides and plant-growth regulators. In the present study, different concentrations of chromanones and thiazoles derivatives were employed to evaluate their effects on plantlets growth of Ocimum basilicum L. and Echinacea purpurea L. The studied compounds were proved to be growth inhibitors at high concentrations. A growth stimulation effect was registered at low concentration.

  2. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  3. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A.C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  4. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    Science.gov (United States)

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  5. Scaffold Hopping Toward Agomelatine: Novel 3, 4-Dihydroisoquinoline Compounds as Potential Antidepressant Agents

    Science.gov (United States)

    Yang, Yang; Ang, Wei; Long, Haiyue; Chang, Ying; Li, Zicheng; Zhou, Liangxue; Yang, Tao; Deng, Yong; Luo, Youfu

    2016-10-01

    A scaffold-hopping strategy toward Agomelatine based on in silico screening and knowledge analysis was employed to design novel antidepressant agents. A series of 3, 4-dihydroisoquinoline compounds were selected for chemical synthesis and biological assessment. Three compounds (6a-1, 6a-2, 6a-9) demonstrated protective effects on corticosterone-induced lesion of PC12 cells. Compound 6a-1 also displayed low inhibitory effects on the growth of HEK293 and L02 normal cells and it was further evaluated for its potential antidepressant effects in vivo. The forced swim test (FST) results revealed that compound 6a-1 remarkably reduced the immobility time of rats and the open field test (OFT) results indicated a better general locomotor activity of the rats treated with compound 6a-1 than those with Agomelatine or Fluoxetine. Mechanism studies implied that compound 6a-1 can significantly reduce PC12 cell apoptosis by up-regulation of GSH and down-regulation of ROS in corticosterone-induced lesion of PC12 cells. Meanwhile, the down-regulation of calcium ion concentration and up-regulation of BDNF level in PC12 cells may account for the neuroprotective effects. Furthermore, compound 6a-1 can increase cell survival and cell proliferation, promote cell maturation in the rat hippocampus after chronic treatment. The acute toxicity data in vivo indicated compound 6a-1 exhibited less hepatotoxicity than Agomelatine.

  6. Phytogenic Compounds as Alternatives to In-Feed Antibiotics: Potentials and Challenges in Application

    Directory of Open Access Journals (Sweden)

    Chengbo Yang

    2015-03-01

    Full Text Available This article summarizes current experimental knowledge on the efficacy, possible mechanisms and feasibility in the application of phytogenic products as feed additives for food-producing animals. Phytogenic compounds comprise a wide range of plant-derived natural bioactive compounds and essential oils are a major group. Numerous studies have demonstrated that phytogenic compounds have a variety of functions, including antimicrobial/antiviral, antioxidative and anti-inflammation effects and improvement in the palatability of feed and gut development/health. However, the mechanisms underlying their functions are still largely unclear. In the past, there has been a lack of consistency in the results from both laboratory and field studies, largely due to the varied composition of products, dosages, purities and growing conditions of animals used. The minimal inhibitory concentration (MIC of phytogenic compounds required for controlling enteric pathogens may not guarantee the best feed intake, balanced immunity of animals and cost-effectiveness in animal production. The lipophilic nature of photogenic compounds also presents a challenge in effective delivery to the animal gut and this can partially be resolved by microencapsulation and combination with other compounds (synergistic effect. Interestingly, the effects of photogenic compounds on anti-inflammation, gut chemosensing and possible disruption of bacterial quorum sensing could explain a certain number of studies with different animal species for the better production performance of animals that have received phytogenic feed additives. It is obvious that phytogenic compounds have good potential as an alternative to antibiotics in feed for food animal production and the combination of different phytogenic compounds appears to be an approach to improve the efficacy and safety of phytogenic compounds in the application. It is our expectation that the recent development of high-throughput and

  7. Perfluorinated Compounds: Emerging POPs with Potential Immunotoxicity

    Science.gov (United States)

    Perfluorinated compounds (PFCs) have been recognized as an important class of environmental contaminants commonly detected in blood samples of both wildlife and humans. These compounds have been in use for more than 60 years as surface treatment chemicals, polymerization aids, an...

  8. Aqueous extract of Psidium guajava leaves: phenolic compounds and inhibitory potential on digestive enzymes

    Directory of Open Access Journals (Sweden)

    ANDERSON A. SIMÃO

    Full Text Available ABSTRACT Leaves of Psidium guajava L. (guava have been widely used in the popular way for prevention and treatment of various diseases. Thus, the objective of this study was to evaluate the inhibitory potential of leaves aqueous extract from three cultivars of P. guajava (Pedro Sato, Paluma and Século XXI on α-amylase, α-glycosidase, lipase, and trypsin enzymes, in the presence or not of simulated gastric fluid and to determine the content of phenolic compounds by high performance liquid chromatography. All cultivars presented the same composition in phenolic compounds, but in different proportions. The compounds identified are gallic acid, epigallocatechin gallate, syringic acid, o-coumaric acid, resveratrol, quercetin, and catechin (which was the major compound in all the cultivars evaluated. In the absence of simulated gastric fluid, it was observed different inhibitions exercised by the leaves aqueous extracts from three cultivars of P. guajava on each enzyme. In presence of simulated gastric fluid, all cultivars showed increase in the inhibition of lipase and α-glycosidase, and decrease in inhibition of α-amylase and trypsin enzymes. These results indicate that P. guajava leaves aqueous extracts from all cultivars evaluated possess potential of use as an adjuvant in the treatment of obesity and other dyslipidemias.

  9. Aqueous extract of Psidium guajava leaves: phenolic compounds and inhibitory potential on digestive enzymes.

    Science.gov (United States)

    Simão, Anderson A; Marques, Tamara R; Marcussi, Silvana; Corrêa, Angelita D

    2017-01-01

    Leaves of Psidium guajava L. (guava) have been widely used in the popular way for prevention and treatment of various diseases. Thus, the objective of this study was to evaluate the inhibitory potential of leaves aqueous extract from three cultivars of P. guajava (Pedro Sato, Paluma and Século XXI) on α-amylase, α-glycosidase, lipase, and trypsin enzymes, in the presence or not of simulated gastric fluid and to determine the content of phenolic compounds by high performance liquid chromatography. All cultivars presented the same composition in phenolic compounds, but in different proportions. The compounds identified are gallic acid, epigallocatechin gallate, syringic acid, o-coumaric acid, resveratrol, quercetin, and catechin (which was the major compound in all the cultivars evaluated). In the absence of simulated gastric fluid, it was observed different inhibitions exercised by the leaves aqueous extracts from three cultivars of P. guajava on each enzyme. In presence of simulated gastric fluid, all cultivars showed increase in the inhibition of lipase and α-glycosidase, and decrease in inhibition of α-amylase and trypsin enzymes. These results indicate that P. guajava leaves aqueous extracts from all cultivars evaluated possess potential of use as an adjuvant in the treatment of obesity and other dyslipidemias.

  10. Determination of one-electron reduction potentials of some radiosensitive compounds by pulse radiolysis

    International Nuclear Information System (INIS)

    Zuo Zhihua; Yao Side; Li Hucheng; Lin Nianyun; Jin Yizun

    1994-01-01

    One-electron reduction potential (E 7 1 ) is one of the important parameters of radiosensitive compound with high electron affinity. In this work one-electron reduction potentials of some radiosensitizers, such as Miso, 911, CMNa, SMU-1, SMU-2, SMD, SNN, S 3 and BSO, were determined pulse radiolytically by using anthraquinone-2-sulfate (AQS), duroquinone (DQ) and methyl viologen (MV 2+ ) as references

  11. Potential of chromatin modifying compounds for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Karagiannis, Tom C; Ververis, Katherine

    2012-01-01

    Alzheimer's disease is a very common progressive neurodegenerative disorder affecting the learning and memory centers in the brain. The hallmarks of disease are the accumulation of β-amyloid neuritic plaques and neurofibrillary tangles formed by abnormally phosphorylated tau protein. Alzheimer's disease is currently incurable and there is an intense interest in the development of new potential therapies. Chromatin modifying compounds such as sirtuin modulators and histone deacetylase inhibitors have been evaluated in models of Alzheimer's disease with some promising results. For example, the natural antioxidant and sirtuin 1 activator resveratrol has been shown to have beneficial effects in animal models of disease. Similarly, numerous histone deacetylase inhibitors including Trichostatin A, suberoylanilide hydroxamic acid, valproic acid and phenylbutyrate reduction have shown promising results in models of Alzheimer's disease. These beneficial effects include a reduction of β-amyloid production and stabilization of tau protein. In this review we provide an overview of the histone deacetylase enzymes, with a focus on enzymes that have been identified to have an important role in the pathobiology of Alzheimer's disease. Further, we discuss the potential for pharmacological intervention with chromatin modifying compounds that modulate histone deacetylase enzymes.

  12. Potential of chromatin modifying compounds for the treatment of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Tom C. Karagiannis

    2012-02-01

    Full Text Available Alzheimer's disease is a very common progressive neurodegenerative disorder affecting the learning and memory centers in the brain. The hallmarks of disease are the accumulation of β-amyloid neuritic plaques and neurofibrillary tangles formed by abnormally phosphorylated tau protein. Alzheimer's disease is currently incurable and there is an intense interest in the development of new potential therapies. Chromatin modifying compounds such as sirtuin modulators and histone deacetylase inhibitors have been evaluated in models of Alzheimer's disease with some promising results. For example, the natural antioxidant and sirtuin 1 activator resveratrol has been shown to have beneficial effects in animal models of disease. Similarly, numerous histone deacetylase inhibitors including Trichostatin A, suberoylanilide hydroxamic acid, valproic acid and phenylbutyrate reduction have shown promising results in models of Alzheimer's disease. These beneficial effects include a reduction of β-amyloid production and stabilization of tau protein. In this review we provide an overview of the histone deacetylase enzymes, with a focus on enzymes that have been identified to have an important role in the pathobiology of Alzheimer's disease. Further, we discuss the potential for pharmacological intervention with chromatin modifying compounds that modulate histone deacetylase enzymes.

  13. Evaluating the Potential Bioactivity of a Novel Compound ER1626

    OpenAIRE

    Wang, Lijun; Zeng, Yanyan; Wang, Tianling; Liu, Hongyi; Xiao, Hong; Xiang, Hua

    2014-01-01

    Background ER1626, a novel compound, is a derivate of indeno-isoquinoline ketone. This study was designed to evaluate the biological activity and potential anti-tumor mechanism of ER1626. Method MTT assay, scratch assay and flow cytometry were used to determine cell proliferation, cell migration and cell cycle distribution as well as cell apoptosis on human breast cancer MCF-7 cells and endometrial cancer Ishikawa cells. We also explored the antiangiogenic effect of ER1626 on HUVEC cells and ...

  14. Theobroma cacao: Review of the Extraction, Isolation, and Bioassay of Its Potential Anti-cancer Compounds

    Science.gov (United States)

    Baharum, Zainal; Akim, Abdah Md; Hin, Taufiq Yap Yun; Hamid, Roslida Abdul; Kasran, Rosmin

    2016-01-01

    Plants have been a good source of therapeutic agents for thousands of years; an impressive number of modern drugs used for treating human diseases are derived from natural sources. The Theobroma cacao tree, or cocoa, has recently garnered increasing attention and become the subject of research due to its antioxidant properties, which are related to potential anti-cancer effects. In the past few years, identifying and developing active compounds or extracts from the cocoa bean that might exert anti-cancer effects have become an important area of health- and biomedicine-related research. This review provides an updated overview of T. cacao in terms of its potential anti-cancer compounds and their extraction, in vitro bioassay, purification, and identification. This article also discusses the advantages and disadvantages of the techniques described and reviews the processes for future perspectives of analytical methods from the viewpoint of anti-cancer compound discovery. PMID:27019680

  15. Analysis of electrically evoked compound action potential of the auditory nerve in children with bilateral cochlear implants.

    Science.gov (United States)

    Caldas, Fernanda Ferreira; Cardoso, Carolina Costa; Barreto, Monique Antunes de Souza Chelminski; Teixeira, Marina Santos; Hilgenberg, Anacléia Melo da Silva; Serra, Lucieny Silva Martins; Bahmad Junior, Fayez

    2016-01-01

    The cochlear implant device has the capacity to measure the electrically evoked compound action potential of the auditory nerve. The neural response telemetry is used in order to measure the electrically evoked compound action potential of the auditory nerve. To analyze the electrically evoked compound action potential, through the neural response telemetry, in children with bilateral cochlear implants. This is an analytical, prospective, longitudinal, historical cohort study. Six children, aged 1-4 years, with bilateral cochlear implant were assessed at five different intervals during their first year of cochlear implant use. There were significant differences in follow-up time (p=0.0082) and electrode position (p=0.0019) in the T-NRT measure. There was a significant difference in the interaction between time of follow-up and electrode position (p=0.0143) when measuring the N1-P1 wave amplitude between the three electrodes at each time of follow-up. The electrically evoked compound action potential measurement using neural response telemetry in children with bilateral cochlear implants during the first year of follow-up was effective in demonstrating the synchronized bilateral development of the peripheral auditory pathways in the studied population. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  16. Molecular Mechanisms of Breast Cancer Metastasis and Potential Anti-metastatic Compounds.

    Science.gov (United States)

    Tungsukruthai, Sucharat; Petpiroon, Nalinrat; Chanvorachote, Pithi

    2018-05-01

    Throughout the world, breast cancer is among the major causes of cancer-related death and is the most common cancer found in women. The development of cancer molecular knowledge has surpassed the novel concept of cancer biology and unraveled principle targets for anticancer drug developments and treatment strategies. Metastatic breast cancer cells acquire their aggressive features through several mechanisms, including augmentation of survival, proliferation, tumorigenicity, and motility-related cellular pathways. Clearly, natural product-derived compounds have since long been recognized as an important source for anticancer drugs, several of which have been shown to have promising anti-metastasis activities by suppressing key molecular features supporting such cell aggressiveness. This review provides the essential details of breast cancer, the molecular-based insights into metastasis, as well as the effects and mechanisms of potential compounds for breast cancer therapeutic approaches. As the abilities of cancer cells to invade and metastasize are addressed as the hallmarks of cancer, compounds possessing anti-metastatic effects, together with their defined molecular drug action could benefit the development of new drugs as well as treatment strategies. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Compound sensory action potential in normal and pathological human nerves

    DEFF Research Database (Denmark)

    Krarup, Christian

    2004-01-01

    The compound sensory nerve action potential (SNAP) is the result of phase summation and cancellation of single fiber potentials (SFAPs) with amplitudes that depend on fiber diameter, and the amplitude and shape of the SNAP is determined by the distribution of fiber diameters. Conduction velocities...... dispersion over increasing conduction distance is greater for the SNAP than CMAP, and demonstration of conduction block is therefore difficult. In addition, the effect of temporal dispersion on amplitude and shape is strongly dependent on the number of conducting fibers and their distribution, and......, with fiber loss or increased conduction velocity variability changes of the SNAP may be smaller than expected from normal nerve. The biophysical characteristics of sensory and motor fibers differ, and this may to some extent determine divergent pathophysiological changes in sensory and motor fibers...

  18. Ionization Potentials of Chemical Warfare Agents and Related Compounds Determined with Density Functional Theory

    National Research Council Canada - National Science Library

    Wright, J

    2000-01-01

    ...) agents at contaminated sites. Reported herein are theoretical ionization potentials for CW agents and their related compounds calculated using density functional theory at the B3LYP/6-311+G(2d,p) level of theory...

  19. A novel method for beef potentiator preparation and identification of its characteristic aroma compounds.

    Science.gov (United States)

    Gao, Xianli; Yan, Shuang; Yang, Bao; Lu, Jian; Jin, Zhao

    2014-06-01

    Beef potentiator (BP) is the most popular savoury flavour and regarded as the soul of the modern food industry. In this work, BP was prepared by a novel method with Aspergillus oryzae and Aspergillus niger (BPSF). Three other BPs prepared using commercial enzymes (Protamex, Flavourzyme and papain; BPCEs) were used as controls to investigate its aroma characteristics and related compounds. Sensory evaluation showed that BPSF possessed more favourable and distinctive sauce-like, meat-like, roast and alcoholic attributes when compared with BPCEs. Significantly higher contents (peak areas) and proportions of pyrazines, pyrroles, sulfurous compounds and alcohols in BPSF were responsible for its sensory characteristics, and most of these aroma compounds were derived from microbial metabolism during beef koji preparation and the Maillard reaction. BP prepared by synergistic fermentation with A. oryzae and A. niger is a potential alternative for BP preparation. © 2013 Society of Chemical Industry.

  20. New compounds as potential radio diagnosticians Alzheimer

    International Nuclear Information System (INIS)

    Rivera Marrero, S.; Sablón Carrazana, M.; Bencomo Martinez, A.; Merceron Martínez, D.; Jimenez Martín, J.; Pérez Perera, R.; Díaz García, O.; Rodríguez Tanty, Ch.; Prats Capote, A.; Perera Pintado, A; Fernández Maza, L.; Balcerzyk, M; Fernández Gómez, I.; Parrado Gallego, Á; León Chaviano, S.; Acosta Medina, E.

    2016-01-01

    Alzheimer's disease (AD) is the most common cause of dementia in Cuba and all over the World. According to demographic trends it has been called the epidemic of the century. It is characterized by the presence of neuropathological brain deposits: senile plaques, formed by neurofibrillary tangles (NT) and deposits of β-amyloid protein (Aß). Aß plaques could appear even 20 years before the establishment of first clinical symptoms of the disease. The aim of this study was to synthesize new naphthalene derivatives, feasible to be labeled with radionuclides emitters of either gamma radiation or positrons. These labeled compounds should be able to cross blood–brain barrier (BBB) in healthy and AD transgenic animals. As a result of this work, several synthetic precursors were synthesized, which were labeled with iodine-131, carbon-11 and fluorine-18 with a satisfactory radiochemical purity. The corresponding non-radioactive control compounds were also synthesized.In in vitro and in silico studies, obtained compounds showed affinity for the β-amyloid protein. According to SPECT and PET-CT images in healthy laboratory animals, obtained labeled compounds crossed BBB in a bi-directional way without any sign of brain uptake.Furthermore, evaluation of the biodistribution of the [ 18 F] -2- (3-fluoropropyl) -6-methoxynaphthalene ([[ 18 F] Amyloid® was performed in healthy animals.[[ 18 F]Amylovis crossed blood brain barrier. Renal and hepatic pathways were the main excretion routes. On the other hand, in transgenic mice with AD, its uptake and its retention time were higher in comparison with healthy mice. Immunohistochemistry and Congo red staining of control and transgenic mice brain slices were performed to identify β-amyloid plaques.Conclusions: Obtained compounds were able to bi-directionally cross BBB.[[ 18 F]Amylovis® could be a promising PET radiotracer for amyloid plaques visualization. (author)

  1. Towards integrated environmental quality objectives for several compounds with a potential for secondary poisoning

    NARCIS (Netherlands)

    Plassche EJ van de; ACT; VW/RWS-DGW; AIDE

    1994-01-01

    Values are derived which can be used to set integrated environmental quality objectives (limit and target values) for 25 compounds with a potential for secondary poisoning. First, Maximum Permissible Concentrations (MPs) and Negligible Concentrations (NCs) are derived for water, sediment and soil

  2. In Vitro Wound Healing Potential and Identification of Bioactive Compounds from Moringa oleifera Lam

    Directory of Open Access Journals (Sweden)

    Abubakar Amali Muhammad

    2013-01-01

    Full Text Available Moringa oleifera Lam. (M. oleifera from the monogeneric family Moringaceae is found in tropical and subtropical countries. The present study was aimed at exploring the in vitro wound healing potential of M. oleifera and identification of active compounds that may be responsible for its wound healing action. The study included cell viability, proliferation, and wound scratch test assays. Different solvent crude extracts were screened, and the most active crude extract was further subjected to differential bioguided fractionation. Fractions were also screened and most active aqueous fraction was finally obtained for further investigation. HPLC and LC-MS/MS analysis were used for identification and confirmation of bioactive compounds. The results of our study demonstrated that aqueous fraction of M. oleifera significantly enhanced proliferation and viability as well as migration of human dermal fibroblast (HDF cells compared to the untreated control and other fractions. The HPLC and LC-MS/MS studies revealed kaempferol and quercetin compounds in the crude methanolic extract and a major bioactive compound Vicenin-2 was identified in the bioactive aqueous fraction which was confirmed with standard Vicenin-2 using HPLC and UV spectroscopic methods. These findings suggest that bioactive fraction of M. oleifera containing Vicenin-2 compound may enhance faster wound healing in vitro.

  3. Distribution and potential ecological risk of 50 phenolic compounds in three rivers in Tianjin, China.

    Science.gov (United States)

    Zhong, Wenjue; Wang, Donghong; Wang, Zijian

    2018-04-01

    Phenolic compounds widely exist in the surface water of many countries; however, few studies have simultaneously analyzed and evaluated broad-spectrum phenolic compounds in various components of the water environment. Therefore this study analyzed the distribution and potential ecological risk of 50 phenolic compounds in the surface water, sediment and suspended particulate matter of three important rivers in Tianjin, the main heavy industry city with high pollution in China. The qualitative results show that phenolic pollution existed extensively in the three rivers and the kinds of phenolic compounds in the water were relatively higher than in both sediment and suspended particulate matter. The quantitative results show that the phenolic pollution in the wet-season samples was serious than dry-season samples. Meanwhile, total concentrations of phenolic compounds in three components from the Dagu Drainage River (DDR) were all much higher than those in the Beitang Drainage River (BDR) and Yongdingxin River (YDXR). The highest total concentrations of phenolic compounds in three components all appeared in wet-season samples in DDR, and the highest total concentration was 1354 μg/L in surface water, 719 μg/kg dw in suspended particulate matter and 2937 μg/kg dw in sediment, respectively. The ecological risk of phenolic compounds in surface water was evaluated using the quotient method, and phenolic compounds with risk quotient (RQ) > 1 (RQ > 0.3 for YDXR) were identified as priority pollutants. Five kinds of phenolic compounds were identified as priority phenolic compounds in BDR, and the order of risk was 2-cresol > 2,4-xylenol > 2-sec-butylphenol > 2-naphthol > 3-cresol. Six kinds of phenolic compounds were identified as priority phenolic compounds in DDR, and the order of risk was 2-naphthol > p-chloro-m-xylenol > 4-cresol > 3-cresol > 2,4-xylenol > 2,3,6-Trimethylphenol. In YDXR, only phenol, 2-naphthol and 2,4-xylenol were identified as

  4. Identification of a potential superhard compound ReCN

    International Nuclear Information System (INIS)

    Fan, Xiaofeng; Li, M.M.; Singh, David J.; Jiang, Qing; Zheng, W.T.

    2015-01-01

    Highlights: • We identify a new ternary compound ReCN with theoretical calculation. • The ternary compound ReCN is with two stable structures with P63mc and P3m1. • ReCN is a semiconductor from the calculation of electronic structures. • ReCN is found to possess the outstanding mechanical properties. • ReCN may be synthesized relatively easily. - Abstract: We identify a new ternary compound, ReCN and characterize its properties including structural stability and indicators of hardness using first principles calculations. We find that there are two stable structures with space groups P63mc (HI) and P3m1 (HII), in which there are no C–C and N–N bonds. Both structures, H1 and III are elastically and dynamically stable. The electronic structures show that ReCN is a semiconductor, although the parent compounds, ReC 2 and ReN 2 are both metallic. ReCN is found to possess the outstanding mechanical properties with the large bulk modulus, shear modulus and excellent ideal strengths. In addition, ReCN may perhaps be synthesized relatively easily because it becomes thermodynamic stable with respect to decomposition at very low pressures

  5. Bitropic D3 Dopamine Receptor Selective Compounds as Potential Antipsychotics.

    Science.gov (United States)

    Luedtke, Robert R; Rangel-Barajas, Claudia; Malik, Mahinder; Reichert, David E; Mach, R H

    2015-01-01

    Neuropsychiatric disorders represent a substantial social and health care issue. The National Institutes of Health estimates that greater than 2 million adults suffer from neuropsychiatric disorders in the USA. These individuals experience symptoms that can include auditory hallucinations, delusions, unrealistic beliefs and cognitive dysfunction. Although antipsychotic medications are available, suboptimal therapeutic responses are observed for approximately one-third of patients. Therefore, there is still a need to explore new pharmacotherapeutic strategies for the treatment of neuropsychiatric disorders. Many of the medications that are used clinically to treat neuropsychiatric disorders have a pharmacological profile that includes being an antagonist at D2-like (D2, D3 and D4) dopamine receptor subtypes. However, dopamine receptor subtypes are involved in a variety of neuronal circuits that include movement coordination, cognition, emotion, affect, memory and the regulation of prolactin. Consequently, antagonism at D2-like receptors can also contribute to some of the adverse side effects associated with the long-term use of antipsychotics including the a) adverse extrapyramidal symptoms associated with the use of typical antipsychotics and b) metabolic side effects (weight gain, hyperglycemia, increased risk of diabetes mellitus, dyslipidemia and gynecomastia) associated with atypical antipsychotic use. Preclinical studies suggest that D3 versus D2 dopamine receptor selective compounds might represent an alternative strategy for the treatment of the symptoms of schizophrenia. In this review we discuss a) how bitropic Nphenylpiperazine D3 dopamine receptor selective compounds have been developed by modification of the primary (orthosteric) and secondary (allosteric or modulatory) pharmacophores to optimize D3 receptor affinity and D2/D3 binding selectivity ratios and b) the functional selectivity of these compounds. Examples of how these compounds might be

  6. Pharmaceutical Compounds in Wastewater: Wetland Treatment as a Potential Solution

    OpenAIRE

    White, John R.; Belmont, Marco A.; Metcalfe, Chris D.

    2006-01-01

    Pharmaceutical compounds are being released into the aquatic environment through wastewater discharge around the globe. While there is limited removal of these compounds within wastewater treatment plants, wetland treatment might prove to be an effective means to reduce the discharge of the compounds into the environment. Wetlands can promote removal of these pharmaceutical compounds through a number of mechanisms including photolysis, plant uptake, microbial degradation, and sorption to the ...

  7. Extraction and evaluation of bioactive compounds with antioxidant potential from green arabica coffee extract

    Directory of Open Access Journals (Sweden)

    Simona PATRICHE

    2015-12-01

    Full Text Available During the last decade researches concerning the essential role of coffee in health and disease prevention showed an increased development. In the present study we obtained extracts from three green Arabica coffee varieties which demonstrated a significant antioxidant potential due to the presence in their composition of two bioactive compounds, caffeine and chlorogenic acids. The content and antioxidant activity of bioactive compounds were evaluated by qualitative and quantitative analyses using spectrophotometric and chromatography methods. The chlorogenic acid was found in high concentrations, being followed by gallic, p-coumaric and ferulic acids. The highest caffeine contents were found in the green coffee extracts of the Supremo–Columbia and Top Quality–Kenya products.

  8. Content and evolution of potential furfural compounds in commercial milk-based infant formula powder after opening the packet.

    Science.gov (United States)

    Chávez-Servín, Jorge L; de la Torre Carbot, Karina; García-Gasca, Teresa; Castellote, Ana I; López-Sabater, M Carmen

    2015-01-01

    Potential furfural compounds were examined by RP-HPLC-DAD in 20 commercial milk-based powdered infant formula (IF) brands from local markets from Paris, France; DF, Mexico; Copenhagen, Denmark; England, UK; and Barcelona, Spain. We traced the evolution of these compounds after the packets had been opened at 0, 30 and 70 days of storage at room temperature (≈25 °C; minimum 23 °C and maximum 25.5 °C). All formula brands were analysed during the first 3-5 months of their shelf life. The mean values of all IFs for potential 5-hydroxymethyl-2-furaldehyde (HMF)+2-furaldehyde (F) were 1115.2 μg/100 g (just opened), 1157.6 μg/100 g (30 days) and 1344.5 μg/100 g of product (70 days). In general, slight increases of potential furfural contents were observed in most of the studied IFs, which suggests that the Maillard reaction increases after opening the packets. The main furfural compound found was HMF, as expected. The range of potential HMF consumed for an infant about 6 months old feeding only on formula was estimated between 0.63 mg and 3.25 mg per day. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Identification of a compound isolated from German chamomile (Matricaria chamomilla) with dermal sensitization potential

    International Nuclear Information System (INIS)

    Avonto, Cristina; Rua, Diego; Lasonkar, Pradeep B.; Chittiboyina, Amar G.; Khan, Ikhlas A.

    2017-01-01

    German chamomile is one of the most popular herbal ingredients used in cosmetics and personal care products. Allergic skin reactions following topical application of German chamomile have been occasionally reported, although it is not fully understood which of the chemical constituents is responsible for this adverse effect. In the present work, three candidate sensitizers were isolated from German chamomile based on activity-guided fractionation of chamomile extracts tested using the in vitro KeratinoSens™ assay. The compounds were identified as the polyacetylene tonghaosu (1), and both trans- and cis-glucomethoxycinnamic acids (2 and 3). These three compounds were classified as non- to weakly reactive using in chemico methods; however, aged tonghaosu was found to be more reactive when compared to freshly isolated tonghaosu. The polyacetylene (1) constituent was determined to be chemically unstable, generating a small electrophilic spirolactone, 1,6-dioxaspiro[4.4]non-3-en-2-one (4), upon aging. This small lactone (4) was strongly reactive in both in chemico HTS- and NMR-DCYA methods and further confirmed as a potential skin sensitizer by Local Lymph Node Assay (LLNA). - Highlights: • Fractions of German chamomile tested positive in the KeratinoSens™ assay. • Three compounds containing structural alerts were isolated and tested with in chemico methods. • The polyacetylene tonghaosu was found to be unstable and categorized as potential pre-hapten. • A degradation product of tonghaosu tested as positive dermal sensitizer in animal studies.

  10. Identification of a compound isolated from German chamomile (Matricaria chamomilla) with dermal sensitization potential

    Energy Technology Data Exchange (ETDEWEB)

    Avonto, Cristina [National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, MS 38677 (United States); Rua, Diego [The Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD 20740 (United States); Lasonkar, Pradeep B.; Chittiboyina, Amar G. [National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, MS 38677 (United States); Khan, Ikhlas A., E-mail: ikhan@olemiss.edu [National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, MS 38677 (United States); Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, MS 38677 (United States)

    2017-03-01

    German chamomile is one of the most popular herbal ingredients used in cosmetics and personal care products. Allergic skin reactions following topical application of German chamomile have been occasionally reported, although it is not fully understood which of the chemical constituents is responsible for this adverse effect. In the present work, three candidate sensitizers were isolated from German chamomile based on activity-guided fractionation of chamomile extracts tested using the in vitro KeratinoSens™ assay. The compounds were identified as the polyacetylene tonghaosu (1), and both trans- and cis-glucomethoxycinnamic acids (2 and 3). These three compounds were classified as non- to weakly reactive using in chemico methods; however, aged tonghaosu was found to be more reactive when compared to freshly isolated tonghaosu. The polyacetylene (1) constituent was determined to be chemically unstable, generating a small electrophilic spirolactone, 1,6-dioxaspiro[4.4]non-3-en-2-one (4), upon aging. This small lactone (4) was strongly reactive in both in chemico HTS- and NMR-DCYA methods and further confirmed as a potential skin sensitizer by Local Lymph Node Assay (LLNA). - Highlights: • Fractions of German chamomile tested positive in the KeratinoSens™ assay. • Three compounds containing structural alerts were isolated and tested with in chemico methods. • The polyacetylene tonghaosu was found to be unstable and categorized as potential pre-hapten. • A degradation product of tonghaosu tested as positive dermal sensitizer in animal studies.

  11. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles.

    Science.gov (United States)

    Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M

    2015-01-01

    Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet-visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties.

  12. New methodology for Ozone Depletion Potentials of short-lived compounds: n-Propyl bromide as an example

    Science.gov (United States)

    Wuebbles, Donald J.; Patten, Kenneth O.; Johnson, Matthew T.; Kotamarthi, Rao

    2001-07-01

    A number of the compounds proposed as replacements for substances controlled under the Montreal Protocol have extremely short atmospheric lifetimes, on the order of days to a few months. An important example is n-propyl bromide (also referred to as 1-bromopropane, CH2BrCH2CH3 or simplified as 1-C3H7Br or nPB). This compound, useful as a solvent, has an atmospheric lifetime of less than 20 days due to its reaction with hydroxyl. Because nPB contains bromine, any amount reaching the stratosphere has the potential to affect concentrations of stratospheric ozone. The definition of Ozone Depletion Potentials (ODP) needs to be modified for such short-lived compounds to account for the location and timing of emissions. It is not adequate to treat these chemicals as if they were uniformly emitted at all latitudes and longitudes as normally done for longer-lived gases. Thus, for short-lived compounds, policymakers will need a table of ODP values instead of the single value generally provided in past studies. This study uses the MOZART2 three-dimensional chemical-transport model in combination with studies with our less computationally expensive two-dimensional model to examine potential effects of nPB on stratospheric ozone. Multiple facets of this study examine key questions regarding the amount of bromine reaching the stratosphere following emission of nPB. Our most significant findings from this study for the purposes of short-lived replacement compound ozone effects are summarized as follows. The degradation of nPB produces a significant quantity of bromoacetone which increases the amount of bromine transported to the stratosphere due to nPB. However, much of that effect is not due to bromoacetone itself, but instead to inorganic bromine which is produced from tropospheric oxidation of nPB, bromoacetone, and other degradation products and is transported above the dry and wet deposition processes of the model. The MOZART2 nPB results indicate a minimal correction of the

  13. Rosewood oil induces sedation and inhibits compound action potential in rodents.

    Science.gov (United States)

    de Almeida, Reinaldo Nóbrega; Araújo, Demétrius Antonio Machado; Gonçalves, Juan Carlos Ramos; Montenegro, Fabrícia Costa; de Sousa, Damião Pergentino; Leite, José Roberto; Mattei, Rita; Benedito, Marco Antonio Campana; de Carvalho, José Gilberto Barbosa; Cruz, Jader Santos; Maia, José Guilherme Soares

    2009-07-30

    Aniba rosaeodora is an aromatic plant which has been used in Brazil folk medicine due to its sedative effect. Therefore, the purpose of the present study was to evaluate the sedative effect of linalool-rich rosewood oil in mice. In addition we sought to investigate the linalool-rich oil effects on the isolated nerve using the single sucrose-gap technique. Sedative effect was determined by measuring the potentiation of the pentobarbital-induced sleeping time. The compound action potential amplitude was evaluated as a way to detect changes in excitability of the isolated nerve. The results showed that administration of rosewood oil at the doses of 200 and 300 mg/kg significantly decreased latency and increased the duration of sleeping time. On the other hand, the dose of 100 mg/kg potentiated significantly the pentobarbital action decreasing pentobarbital latency time and increasing pentobarbital sleeping time. In addition, the effect of linalool-rich rosewood oil on the isolated nerve of the rat was also investigated through the single sucrose-gap technique. The amplitude of the action potential decreased almost 100% when it was incubated for 30 min at 100 microg/ml. From this study, it is suggested a sedative effect of linalool-rich rosewood oil that could, at least in part, be explained by the reduction in action potential amplitude that provokes a decrease in neuronal excitability.

  14. A survey of synthetic and natural phytotoxic compounds and phytoalexins as potential antimalarial compounds.

    Science.gov (United States)

    Bajsa, Joanna; Singh, Kshipra; Nanayakkara, Dhammika; Duke, Stephen Oscar; Rimando, Agnes Mamaril; Evidente, Antonio; Tekwani, Babu Lal

    2007-09-01

    The apicomplexan parasites pathogens such as Plasmodium spp. possess an apicoplast, a plastid organelle similar to those of plants. The apicoplast has some essential plant-like metabolic pathways and processes, making these parasites susceptible to inhibitors of these functions. The main objective of this paper is to determine if phytotoxins with plastid target sites are more likely to be good antiplasmodial compounds than are those with other modes of action. The antiplasmodial activities of some compounds with established phytotoxic action were determined in vitro on a chloroquine (CQ) sensitive (D6, Sierra Leone) strain of Plasmodium falciparum. In this study, we provide in vitro activities of almost 50 such compounds, as well as a few phytoalexins against P. falciparum. Endothall, anisomycin, and cerulenin had sufficient antiplasmodial action to be considered as new lead antimalarial structures. Some derivatives of fusicoccin possessed markedly improved antiplasmodial action than the parent compound. Our results suggest that phytotoxins with plastid targets may not necessarily be better antiplasmodials than those that act at other molecular sites. The herbicides, phytotoxins and the phytoalexins reported here with significant antiplasmodial activity may be useful probes for identification of new antimalarial drug targets and may also be used as new lead structures for new antiplasmodial drug discovery.

  15. Molecular Docking Analysis of Ginger Active Compound on Transient Receptor Potential Cation Channel Subfamily V Member 1 (TRPV1

    Directory of Open Access Journals (Sweden)

    Fifteen Aprila Fajrin

    2018-02-01

    Full Text Available Ginger had been reported to ameliorate painful diabetic neuropathy (PDN in an animal model. Gingerol and shogaol were active compounds of ginger that potentially act on transient receptor potential cation channel subfamily V member 1 (TRPV1, a key receptor in PDN. This study aims to predict the binding of gingerol and shogaol to TRPV1 using an in silico model. The ligands of the docking study were 3 chemical compounds of each gingerol and shogaol, i.e. 6-shogaol, 8-shogaol, 10-shogaol, 6-gingerol, 8 gingerol and 10-gingerol. Capsaicin, a TRPV1 agonist, was used as a native ligand. The TRPV1 structure was taken from Protein Data Bank (ID 3J9J. The docking analysis was performed using Autodock Vina. The result showed that among the ginger active compounds, 6-shogaol had the strongest binding energy (-7.10 kcal/mol to TRPV1. The 6-shogaol lacked the potential hydrogen bond to Ile265 of TRPV1 protein, which capsacin had. However, it's binding energy towards TRPV1 was not significantly different compared to capsaicin. Therefore, 6-shogaol had potential to be developed as a treatment for PDN.

  16. Pharmaceutical Compounds in Wastewater: Wetland Treatment as a Potential Solution

    Directory of Open Access Journals (Sweden)

    John R. White

    2006-01-01

    Full Text Available Pharmaceutical compounds are being released into the aquatic environment through wastewater discharge around the globe. While there is limited removal of these compounds within wastewater treatment plants, wetland treatment might prove to be an effective means to reduce the discharge of the compounds into the environment. Wetlands can promote removal of these pharmaceutical compounds through a number of mechanisms including photolysis, plant uptake, microbial degradation, and sorption to the soil. We review relevant laboratory research on these various mechanisms and provide data on the few studies that have examined wetland removal. There is a need to document the degree to which various pharmaceutical compounds are removed in full-scale treatment wetlands, as there is a paucity of data on overall pharmaceutical removal rates.

  17. Antimicrobial azobenzene compounds and their potential use in biomaterials

    Science.gov (United States)

    Sessa, L.; Concilio, S.; Iannelli, P.; De Santis, F.; Porta, A.; Piotto, S.

    2016-04-01

    We recently synthesized a class of active compounds with azobenzene structure [1] and lowest in silico toxicity values. The antimicrobial activity of these molecules and their thermal stability are very promising and indicate that they may have interesting and therapeutically significant applications. This work aims to develop new materials with antibacterial and antifungal activity inserting different percentages of synthetic antimicrobial azo compounds in commercial polymer matrices. We realized thin films using solvent casting and melt compounding techniques. The obtained materials retained the proprieties of the pure matrices. This means that azo dye dissolved in the matrix does not influence the thermal behavior and the morphology of the material. Tested films exhibited the capability to inhibit biofilms formation of S. aureus and C. albicans. Spectrophotometric investigation of the azo compound released from the polymer matrices confirmed that the realized materials might be interesting for biomedical tools, antibacterial surfaces, and films for active packaging.

  18. Tunable Hybrid Qubit in a Triple Quantum Dot

    Science.gov (United States)

    Wang, Bao-Chuan; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Hu, Xuedong; Jiang, Hong-Wen; Guo, Guo-Ping

    2017-12-01

    We experimentally demonstrate quantum-coherent dynamics of a triple-dot-based multielectron hybrid qubit. Pulsed experiments show that this system can be conveniently initialized, controlled, measured electrically, and has a good ratio Q ˜29 between the coherence time and gate time. Furthermore, the current multielectron hybrid qubit has an operation frequency that is tunable in a wide range, from 2 to about 15 GHz. We also provide a qualitative understanding of the experimental observations by mapping them onto a three-electron system. The demonstration of the high tunability in a triple dot system could be potentially useful for future quantum control.

  19. A single-electron picture based on the multiconfiguration time-dependent Hartree-Fock method: application to the anisotropic ionization and subsequent high-harmonic generation of the CO molecule

    Science.gov (United States)

    Ohmura, S.; Kato, T.; Oyamada, T.; Koseki, S.; Ohmura, H.; Kono, H.

    2018-02-01

    The mechanisms of anisotropic near-IR tunnel ionization and high-order harmonic generation (HHG) in a CO molecule are theoretically investigated by using the multiconfiguration time-dependent Hartree-Fock (MCTDHF) method developed for the simulation of multielectron dynamics of molecules. The multielectron dynamics obtained by numerically solving the equations of motion (EOMs) in the MCTDHF method is converted to a single orbital picture in the natural orbital representation where the first-order reduced density matrix is diagonalized. The ionization through each natural orbital is examined and the process of HHG is classified into different optical paths designated by a combinations of initial, intermediate and final natural orbitals. The EOMs for natural spin-orbitals are also derived within the framework of the MCTDHF, which maintains the first-order reduced density matrix to be a diagonal one throughout the time propagation of a many-electron wave function. The orbital dependent, time-dependent effective potentials that govern the dynamics of respective time-dependent natural orbitals are deduced from the derived EOMs, of which the temporal variation can be used to interpret the motion of the electron density associated with each natural spin-orbital. The roles of the orbital shape, multiorbital ionization, linear Stark effect and multielectron interaction in the ionization and HHG of a CO molecule are revealed by the effective potentials obtained. When the laser electric field points to the nucleus O from C, tunnel ionization from the C atom side is enhanced; a hump structure originating from multielectron interaction is then formed on the top of the field-induced distorted barrier of the HOMO effective potential. This hump formation, responsible for the directional anisotropy of tunnel ionization, restrains the influence of the linear Stark effect on the energy shifts of bound states.

  20. Compound muscle action potential duration in critical illness neuromyopathy.

    Science.gov (United States)

    Kramer, Christopher L; Boon, Andrea J; Harper, C Michel; Goodman, Brent P

    2018-03-01

    We sought to determine the specificity of compound muscle action potential (CMAP) durations and amplitudes in a large critical illness neuromyopathy (CINM) cohort relative to controls with other neuromuscular conditions. Fifty-eight patients with CINM who had been seen over a 17-year period were retrospectively studied. Electrodiagnostic findings of the CINM cohort were compared with patients with axonal peripheral neuropathy and myopathy due to other causes. Mean CMAP durations were prolonged, and mean CMAP amplitudes were severely reduced both proximally and distally in all nerves studied in the CINM cohort relative to the control groups. The specificity of prolonged CMAP durations for CINM approached 100% if they were encountered in more than 1 nerve. Prolonged, low-amplitude CMAPs occur more frequently and with greater severity in CINM patients than in neuromuscular controls with myopathy and axonal neuropathy and are highly specific for the diagnosis of CINM. Muscle Nerve 57: 395-400, 2018. © 2017 Wiley Periodicals, Inc.

  1. Ionic electrodeposition of II-VI and III-V compounds. III. Computer simulation of quasi-rest potentials for M/sub 1/X/sub 1/ compounds analogous to CdTe

    International Nuclear Information System (INIS)

    Engelken, R.D.

    1987-01-01

    The quasi-rest potential (QRP) has been proposed as a key quantity in characterizing compound semiconductor (e.g. CdTe) electrodeposition. This article expands the modeling/simulation representative of Cd/sub x/Te in chemical equilibrium to calculate two ''QRP's'': E/sub M/1/sub /, the mixed potential occurring immediately after current interruption and before any relaxation in double layer ion concentration and significant ion exchange/surface stoichiometry change occur, and E/sub M/2/sub /, another mixed potential occurring after the double layer ion concentrations have relaxed to their bulk values but still before any significant surface composition change occurs. Significant predictions include existence of a dramatic negative transition in QRP, with negative-going deposition potential, centered on the potential of perfect stoichiometry (PPS), inequality, in general, between the PPS and E/sub M/1/sub / unless the deposit remains in equilibrium with the electrolyte (no ion exchange at open circuit), negligible sensitivity of QRP-E curves to the activity coefficient parameter implying the importance of the PPS in characterizing compound deposition, and disappearance of the transition structure for sufficiently positive Gibbs free energies

  2. Recovery of valuable nitrogen compounds from agricultural liquid wastes: potential possibilities, bottlenecks and future technological challenges.

    NARCIS (Netherlands)

    Rulkens, W.H.; Klapwijk, A.; Willers, H.C.

    1998-01-01

    Agricultural liquid livestock wastes are an important potential source of valuable nitrogen-containing compounds such as ammonia and proteins. Large volumetric quantities of these wastes are produced in areas with a high livestock production density. Much technological research has been carried out

  3. Comparison of Two Old Phytochemicals versus Two Newly Researched Plant-Derived Compounds: Potential for Brain and Other Relevant Ailments

    Directory of Open Access Journals (Sweden)

    Chun-Mei Wang

    2014-01-01

    Full Text Available Among hundreds of formulae of Chinese herbal prescriptions and recently extracted active components from the herbs, some of which had demonstrated their functions on nervous system. For the last decade or more, Gingko biloba and Polygala tenuifolia were widely studied for their beneficial effects against damage to the brain. Two compounds extracted from Apium graveolens and Rhizoma coptidis, butylphthalide and berberine, respectively, received much attention recently as potential neuroprotective agents. In this review, the two traditionally used herbs and the two relatively new compounds will be discussed with regard to their potential advantages in alleviating brain and other relevant ailments.

  4. Profiling of the Tox21 Chemical Collection for Mitochondrial Function to Identify Compounds that Acutely Decrease Mitochondrial Membrane Potential

    Science.gov (United States)

    Attene-Ramos, Matias S.; Huang, Ruili; Michael, Sam; Witt, Kristine L.; Richard, Ann; Tice, Raymond R.; Simeonov, Anton; Austin, Christopher P.

    2014-01-01

    Background: Mitochondrial dysfunction has been implicated in the pathogenesis of a variety of disorders including cancer, diabetes, and neurodegenerative and cardiovascular diseases. Understanding whether different environmental chemicals and druglike molecules impact mitochondrial function represents an initial step in predicting exposure-related toxicity and defining a possible role for such compounds in the onset of various diseases. Objectives: We sought to identify individual chemicals and general structural features associated with changes in mitochondrial membrane potential (MMP). Methods: We used a multiplexed [two end points in one screen; MMP and adenosine triphosphate (ATP) content] quantitative high throughput screening (qHTS) approach combined with informatics tools to screen the Tox21 library of 10,000 compounds (~ 8,300 unique chemicals) at 15 concentrations each in triplicate to identify chemicals and structural features that are associated with changes in MMP in HepG2 cells. Results: Approximately 11% of the compounds (913 unique compounds) decreased MMP after 1 hr of treatment without affecting cell viability (ATP content). In addition, 309 compounds decreased MMP over a concentration range that also produced measurable cytotoxicity [half maximal inhibitory concentration (IC50) in MMP assay/IC50 in viability assay ≤ 3; p Tice RR, Simeonov A, Austin CP, Xia M. 2015. Profiling of the Tox21 chemical collection for mitochondrial function to identify compounds that acutely decrease mitochondrial membrane potential. Environ Health Perspect 123:49–56; http://dx.doi.org/10.1289/ehp.1408642 PMID:25302578

  5. Plasma biomarkers in juvenile marine fish provide evidence for endocrine modulation potential of organotin compounds.

    Science.gov (United States)

    Min, Byung Hwa; Kim, Bo-Mi; Kim, Moonkoo; Kang, Jung-Hoon; Jung, Jee-Hyun; Rhee, Jae-Sung

    2018-08-01

    Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used to control marine fouling. Here, we show that organotin stimulation reduces the hormone levels in the plasma of two economically important aquaculture fish. Blood plasma samples were collected from juvenile red seabream and black rockfish exposed to environmentally realistic concentrations of TBT and TPT for 14 days. The levels of two plasma biomarkers, namely the yolk protein precursor vitellogenin (VTG) and the sex steroid 17β-estradiol (E2), were measured to determine the endocrine disrupting potential of the organotin compounds. Both organotin compounds were dose-dependently accumulated in the blood of two fish. Exposure to waterborne TBT and TBT significantly decreased the plasma VTG levels in both the juvenile fish in a dose-dependent manner. In contrast, the treatment with E2, a well-known VTG inducer, significantly increased the plasma VTG levels in both the fish. In addition, the mRNA levels of vtg were also downregulated in the liver tissues of both the fish at 100 and/or 1000 ng L -1 of TBT or TPT exposure. The plasma E2 titers were significantly suppressed at 100 and/or 1000 ng L -1 of TBT or TPT exposure for 14 days compared to their titer in the control. Since estrogen directly regulates vtg gene expression and VTG synthesis, our results reveal the endocrine disrupting potential of organotin compounds, and subsequently the endocrine modulation at early stage of fish can trigger further fluctuations in sexual differentiation, maturation, sex ration or egg production. In addition, the results demonstrate their effects on non-target organisms, particularly on animals reared in aquaculture and fisheries. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Compound-Specific Isotopic Analysis of Meteoritic Amino Acids as a Tool for Evaluating Potential Formation Pathways

    Science.gov (United States)

    Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael C.; Charnley, Steven B.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Measurements of stable hydrogen, carbon, and nitrogen isotopic ratios (delta D, delta C-13, delta N-15) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may point towards the most likely of these proposed pathways. The technique of gas chromatography coupled with mass spectrometry and isotope ratio mass spectrometry provides compound-specific structural and isotopic information from a single splitless injection, enhancing the amount of information gained from small amounts of precious samples such as carbonaceous chondrites. We have applied this technique to measure the compound-specific C, N, and H isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites. We are using these measurements to evaluate predictions of expected isotopic enrichments from potential formation pathways and environments, leading to a better understanding of the origin of these compounds.

  7. Phenolic compounds, antioxidant potential and antiproliferative potential of 10 common edible flowers from China assessed using a simulated in vitro digestion-dialysis process combined with cellular assays.

    Science.gov (United States)

    Huang, Weisu; Mao, Shuqin; Zhang, Liuquan; Lu, Baiyi; Zheng, Lufei; Zhou, Fei; Zhao, Yajing; Li, Maiquan

    2017-11-01

    Phenolic compounds could be sensitive to digestive conditions, thus a simulated in vitro digestion-dialysis process and cellular assays was used to determine phenolic compounds and antioxidant and antiproliferative potentials of 10 common edible flowers from China and their functional components. Gallic acid, ferulic acid, and rutin were widely present in these flowers, which demonstrated various antioxidant capacities (DPPH, ABTS, FRAP and CAA values) and antiproliferative potentials measured by the MTT method. Rosa rugosa, Paeonia suffruticosa and Osmanthus fragrans exhibited the best antioxidant and antiproliferative potentials against HepG2, A549 and SGC-7901 cell lines, except that Osmanthus fragrans was not the best against SGC-7901 cells. The in vitro digestion-dialysis process decreased the antioxidant potential by 33.95-90.72% and the antiproliferative potential by 13.22-87.15%. Following the in vitro digestion-dialysis process, phenolics were probably responsible for antioxidant (R 2 = 0.794-0.924, P digestion and dialysis along with the reduction of phenolics. Nevertheless, they still had considerable antioxidant and antiproliferative potential, which merited further investigation in in vivo studies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Identification of Secondary Metabolite Gene Clusters in the Pseudovibrio Genus Reveals Encouraging Biosynthetic Potential toward the Production of Novel Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Lynn M. Naughton

    2017-08-01

    Full Text Available Increased incidences of antimicrobial resistance and the emergence of pan-resistant ‘superbugs’ have provoked an extreme sense of urgency amongst researchers focusing on the discovery of potentially novel antimicrobial compounds. A strategic shift in focus from the terrestrial to the marine environment has resulted in the discovery of a wide variety of structurally and functionally diverse bioactive compounds from numerous marine sources, including sponges. Bacteria found in close association with sponges and other marine invertebrates have recently gained much attention as potential sources of many of these novel bioactive compounds. Members of the genus Pseudovibrio are one such group of organisms. In this study, we interrogate the genomes of 21 Pseudovibrio strains isolated from a variety of marine sources, for the presence, diversity and distribution of biosynthetic gene clusters (BGCs. We expand on results obtained from antiSMASH analysis to demonstrate the similarity between the Pseudovibrio-related BGCs and those characterized in other bacteria and corroborate our findings with phylogenetic analysis. We assess how domain organization of the most abundant type of BGCs present among the isolates (Non-ribosomal peptide synthetases and Polyketide synthases may influence the diversity of compounds produced by these organisms and highlight for the first time the potential for novel compound production from this genus of bacteria, using a genome guided approach.

  9. Identification of a novel compound (β-sesquiphellandrene) from turmeric (Curcuma longa) with anticancer potential: comparison with curcumin.

    Science.gov (United States)

    Tyagi, Amit Kumar; Prasad, Sahdeo; Yuan, Wei; Li, Shiyou; Aggarwal, Bharat B

    2015-12-01

    Considering that as many as 80% of the anticancer drugs have their roots in natural products derived from traditional medicine, we examined compounds other than curcumin from turmeric (Curcuma longa) that could exhibit anticancer potential. Present study describes the isolation and characterization of another turmeric-derived compound, β-sesquiphellandrene (SQP) that exhibits anticancer potential comparable to that of curcumin. We isolated several compounds from turmeric, including SQP, α-curcumene, ar-turmerone, α-turmerone, β-turmerone, and γ-turmerone, only SQP was found to have antiproliferative effects comparable to those of curcumin in human leukemia, multiple myeloma, and colorectal cancer cells. While lack of the NF-κB-p65 protein had no effect on the activity of SQP, lung cancer cells that expressed p53 were more susceptible to the cytotoxic effect of SQP than were cells that lacked p53 expression. SQP was also found to be highly effective in suppressing cancer cell colony formation and inducing apoptosis, as shown by assays of intracellular esterase activity, plasma membrane integrity, and cell-cycle phase. SQP was found to induce cytochrome c release and activate caspases that lead to poly ADP ribose polymerase cleavage. SQP exposure was associated with downregulation of cell survival proteins such cFLIP, Bcl-xL, Bcl-2, c-IAP1, and survivin. Furthermore, SQP was found to be synergistic with the chemotherapeutic agents velcade, thalidomide and capecitabine. Overall, our results indicate that SQP has anticancer potential comparable to that of curcumin.

  10. Copaifera langsdorffii: evaluation of potential gastroprotective of extract and isolated compounds obtained from leaves

    Directory of Open Access Journals (Sweden)

    Marivane Lemos

    Full Text Available AbstractGastric ulcer is a prevalent gastrointestinal disease, and the drugs currently used in the treatment produce several adverse effects. In this context, the search for new therapeutic antiulcer agents is essential, and medicinal plants have great potential. Here, we investigated the gastroprotective properties of Copaifera langsdorffii Desf., Fabaceae, hydroalcoholic extract obtained from leaves and its isolated compounds. The phytochemistry studies and the compounds isolations were performed using chromatographic and spectroscopic methodologies. The hydroalcoholic extract was evaluated using ethanol/HCl, non-steroidal anti-inflammatory drug, stress-induced-ulcer and chronic ulcer-model. The effects on gastric content volume, pH, total acidity and mucus stomach production were evaluated in the pylorus ligated-model. The C. langsdorffii extract obtained from leaves (50, 250 or 500 mg/kg reduced the injured area compared to control group in all experiments. The extract showed a significant decrease in the total gastric juice acidity and an increase in mucus production (500 mg/kg when compared to vehicle. Among isolated compounds (30 mg/kg α-humulene, β-caryophyllene and caryophyllene oxide showed greater gastroprotective activity in the ethanol/HCl induced ulcer model. The data herein obtained shown that C. langsdorffii leaves extract and isolated compounds from it, presented gastroprotective properties in different animal models of gastric ulcer. These effects may be associated with the ability of the extract to decrease gastric secretion and increase the mucus production.

  11. Potential of volatile compounds produced by fungi to influence sensory quality of coffee beverage

    DEFF Research Database (Denmark)

    Iamanaka, B. T.; Teixeira, A. A.; Teixeira, A. R. R.

    2014-01-01

    Fungi are known producers of a large number of volatile compounds (VCs). Several VCs such as 2,4,6 trichloroanisole (TCA), geosmin and terpenes have been found in coffee beverages, and these compounds can be responsible for off-flavor development. However, few studies have related the fungal...... contamination of coffee with the sensory characteristics of the beverage. The aim of this research was to investigate the production of VCs by fungi isolated from coffee and their potential as modifiers of the sensory coffee beverage quality. Three species were isolated from coffee from the southwest of São...... Paulo state and selected for the study: Penicillium brevicompactum, Aspergillus luchuensis (belonging to section Nigri) and Penicillium sp. nov. (related to Penicillium crustosum). VCs produced by the fungal inoculated in raw coffee beans were extracted and tentatively identified by SPME...

  12. The potential of compounds isolated from Xylaria spp. as antifungal agents against anthracnose.

    Science.gov (United States)

    Elias, Luciana M; Fortkamp, Diana; Sartori, Sérgio B; Ferreira, Marília C; Gomes, Luiz H; Azevedo, João L; Montoya, Quimi V; Rodrigues, André; Ferreira, Antonio G; Lira, Simone P

    2018-03-31

    Anthracnose is a crop disease usually caused by fungi in the genus Colletotrichum or Gloeosporium. These are considered one of the main pathogens, causing significant economic losses, such as in peppers and guarana. The current forms of control include the use of resistant cultivars, sanitary pruning and fungicides. However, even with the use of some methods of controlling these cultures, the crops are not free of anthracnose. Additionally, excessive application of fungicides increases the resistance of pathogens to agrochemicals and cause harm to human health and the environment. In order to find natural antifungal agents against guarana anthracnose, endophytic fungi were isolated from Amazon guarana. The compounds piliformic acid and cytochalasin D were isolated by chromatographic techniques from two Xylaria spp., guided by assays with Colletotrichum gloeosporioides. The isolated compounds were identified by spectrometric techniques, as NMR and mass spectrometry. This is the first report that piliformic acid and cytochalasin D have antifungal activity against C. gloeosporioides with MIC 2.92 and 2.46μmolmL -1 respectively. Captan and difenoconazole were included as positive controls (MIC 16.63 and 0.02μmolmL -1 , respectively). Thus, Xylaria species presented a biotechnological potential and production of different active compounds which might be promising against anthracnose disease. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Versatile Organic Chemistry on Vanadium-Based Multi-Electron Reservoirs.

    Science.gov (United States)

    Nachtigall, Olaf; Spandl, Johann

    2018-02-21

    We report the synthesis, post-functionalization, and redox behavior of two organically functionalized aggregates, [V 6 O 7 (OMe) 9 {(OCH 2 ) 3 C-CH 2 N 3 }] and [V 6 O 7 (OMe) 9 {(OCH 2 ) 3 C-NH 2 }]. All twelve μ 2 -oxo groups on the edges of the Lindqvist-type {V 6 O 19 } core were replaced by alkoxo ligands. The absence of a negative charge and the closed organic shell make these neutral mixed-valence compounds very stable towards hydrolysis and well soluble in almost all common organic solvents. These are important advantages over classical POMs. By post-functionalization through copper(I)-catalyzed Huisgen cycloaddition or imine formation, various organic moieties could be introduced. Even a well-soluble trimer composed of three hexanuclear vanadium units connected through an aromatic triimino core was synthesized and studied. The diverse redox behavior, the versatile reactivity, the good stability, and the excellent solubility make our vanadium compounds highly interesting for applications as building blocks in macromolecular chemistry as well as redox labels in biochemistry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Towards integrated environmental quality objectives for several compounds with a potential for secondary poisoning

    OpenAIRE

    van de Plassche EJ; ACT; VW/RWS-DGW; AIDE

    1994-01-01

    Values are derived which can be used to set integrated environmental quality objectives (limit and target values) for 25 compounds with a potential for secondary poisoning. First, Maximum Permissible Concentrations (MPs) and Negligible Concentrations (NCs) are derived for water, sediment and soil based on direct effects on aquatic and soil organisms using extrapolation methods and on possible adverse effects due to secondary poisoning. Two foodchains are taken into account: an aquatic route (...

  15. Seaweed Bioactive Compounds against Pathogens and Microalgae: Potential Uses on Pharmacology and Harmful Algae Bloom Control.

    Science.gov (United States)

    Zerrifi, Soukaina El Amrani; El Khalloufi, Fatima; Oudra, Brahim; Vasconcelos, Vitor

    2018-02-09

    Cyanobacteria are found globally due to their adaptation to various environments. The occurrence of cyanobacterial blooms is not a new phenomenon. The bloom-forming and toxin-producing species have been a persistent nuisance all over the world over the last decades. Evidence suggests that this trend might be attributed to a complex interplay of direct and indirect anthropogenic influences. To control cyanobacterial blooms, various strategies, including physical, chemical, and biological methods have been proposed. Nevertheless, the use of those strategies is usually not effective. The isolation of natural compounds from many aquatic and terrestrial plants and seaweeds has become an alternative approach for controlling harmful algae in aquatic systems. Seaweeds have received attention from scientists because of their bioactive compounds with antibacterial, antifungal, anti-microalgae, and antioxidant properties. The undesirable effects of cyanobacteria proliferations and potential control methods are here reviewed, focusing on the use of potent bioactive compounds, isolated from seaweeds, against microalgae and cyanobacteria growth.

  16. Do Morphemes Matter when Reading Compound Words with Transposed Letters? Evidence from Eye-Tracking and Event-Related Potentials

    Science.gov (United States)

    Stites, Mallory C.; Federmeier, Kara D.; Christianson, Kiel

    2017-01-01

    The current study investigates the online processing consequences of encountering compound words with transposed letters (TLs), to determine if TLs that cross morpheme boundaries are more disruptive to reading than those within a single morpheme, as would be predicted by accounts of obligatory morpho-orthopgrahic decomposition. Two measures of online processing, eye movements and event-related potentials (ERPs), were collected in separate experiments. Participants read sentences containing correctly spelled compound words (cupcake), or compounds with TLs occurring either across morpheme boundaries (cucpake) or within one morpheme (cupacke). Results showed that between- and within-morpheme transpositions produced equal processing costs in both measures, in the form of longer reading times (Experiment 1) and a late posterior positivity (Experiment 2) that did not differ between conditions. Findings converge to suggest that within- and between-morpheme TLs are equally disruptive to recognition, providing evidence against obligatory morpho-orthographic processing and in favor of whole-word access of English compound words during sentence reading. PMID:28791313

  17. Molecular docking and ADME-toxicity studies of potential compounds of medicinal plants grown in Indonesia as an anti-rheumatoid arthritis

    Science.gov (United States)

    Awaluddin, Rizki; Muhtadi, Wildan Khairi; Chabib, Lutfi; Ikawati, Zullies; Martien, Ronny; Ismail, Hilda

    2017-03-01

    Rheumatoid arthritis (RA) is an autoimmune disease with recurrent bone destruction around the joints that could lead to permanent joint damage. DMARDs (Disease Modifying Anti-Rheumatoid Drugs) and NSAIDs (Non-Steroid Anti-Inflammatory Drugs) are the RA therapies with many side effects on long term use. Based on the ethnomedicine, there are many plants that could be found in Indonesia that contain the potential compounds as alternative RA therapies. The aim of this study is to assess the potential of compounds of various medicinal plants against multiple proteins that play an important role on RA through the molecular docking study and pharmacokinetic prediction. Hesperidin, EGCG (Epigallocatechin gallate), and mangiferin showed higher activity compared to the other compounds against TACE (TNF-α converting enzyme) which play an important role in the inhibition of TNF-α. Inhibition on it could suppress macrophage cell and T-cell activity by suppressing the regulation of cytokine secretion against inflammation. Furthermore, hesperidin, EGCG, and mangiferin did not show effects on CYP450 (cytochrome P450). Modification of drug delivery system must be done to increase the bioavailability of the compounds. It can be concluded that hesperidin, EGCG, and mangiferin are potential to be developed as an RA therapy with a modification of drug delivery system. This study suggest the encapsulation method using liposome as the drug carrier, which is suitable with the charactheristic of hesperidine, EGCG, and mangiferin.

  18. Potential of the octanol-water partition coefficient (logP) to predict the dermal penetration behaviour of amphiphilic compounds in aqueous solutions.

    Science.gov (United States)

    Korinth, Gintautas; Wellner, Tanja; Schaller, Karl Heinz; Drexler, Hans

    2012-11-23

    Aqueous amphiphilic compounds may exhibit enhanced skin penetration compared with neat compounds. Conventional models do not predict this percutaneous penetration behaviour. We investigated the potential of the octanol-water partition coefficient (logP) to predict dermal fluxes for eight compounds applied neat and as 50% aqueous solutions in diffusion cell experiments using human skin. Data for seven other compounds were accessed from literature. In total, seven glycol ethers, three alcohols, two glycols, and three other chemicals were considered. Of these 15 compounds, 10 penetrated faster through the skin as aqueous solutions than as neat compounds. The other five compounds exhibited larger fluxes as neat applications. For 13 of the 15 compounds, a consistent relationship was identified between the percutaneous penetration behaviour and the logP. Compared with the neat applications, positive logP were associated with larger fluxes for eight of the diluted compounds, and negative logP were associated with smaller fluxes for five of the diluted compounds. Our study demonstrates that decreases or enhancements in dermal penetration upon aqueous dilution can be predicted for many compounds from the sign of logP (i.e., positive or negative). This approach may be suitable as a first approximation in risk assessments of dermal exposure. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Isolation and characterization of antifungal compound from Lactobacillus plantarum KCC-10 from forage silage with potential beneficial properties.

    Science.gov (United States)

    Valan Arasu, M; Jung, M-W; Ilavenil, S; Jane, M; Kim, D-H; Lee, K-D; Park, H-S; Hur, T-Y; Choi, G-J; Lim, Y-C; Al-Dhabi, N A; Choi, K-C

    2013-11-01

    The purpose of this study was to isolate, identify and characterize an antifungal compound from Lactobacillus plantarum KCC-10 from forage silage with potential beneficial properties. The 16S rRNA gene-based phylogenetic affiliation was determined using bioinformatic tools and identified as Lactobacillus sp. KCC-10 with 100% sequence similarity to L. plantarum. The antifungal substances were extracted with ethyl acetate from spent medium in which Lactobacillus sp. KCC-10 was cultivated. Antifungal activity was assessed using the broth microdilution technique. The compounds were obtained by eluting the crude extract with various concentrations of solvents followed by chromatographic purification. Based on the infrared, (13) C nuclear magnetic resonance (NMR) and (1) H NMR spectral data, the compound was identified as a phenolic-related antibiotic. The minimum inhibitory concentration of the compound against Aspergillus clavatus, A. oryzae, Botrytis elliptica and Scytalidium vaccinii was 2.5 mg ml(-1) and that against A. fumigatus, A. niger and S. fusca was 5.0 mg ml(-1) , respectively. In addition, Lactobacillus sp. KCC-10 was highly sensitive towards oxgall (0.3%) but grew well in the presence of sodium taurocholate (0.3%). An antimicrobial susceptibility pattern was an intrinsic feature of this strain; thus, consumption does not represent a health risk to humans or animals. Novel L. plantarum KCC-10 with antifungal and potential probiotic properties was characterized for use in animal food. This study revealed that L. plantarum KCC-10 exhibited good antifungal activity similar to that of probiotic Lactobacillus strains. © 2013 The Society for Applied Microbiology.

  20. Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains.

    Science.gov (United States)

    Nourski, Kirill V; Abbas, Paul J; Miller, Charles A; Robinson, Barbara K; Jeng, Fuh-Cherng

    2005-04-01

    This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. Subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded from the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise. Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms. The effects of the acoustic noise were more prominent at lower electric pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and, for a particular electric stimulus level, at high acoustic noise levels.

  1. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi; Kumamoto, Eiichi, E-mail: kumamote@cc.saga-u.ac.jp

    2013-04-26

    Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC{sub 50} values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC{sub 50} = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.

  2. Evaluating the potential bioactivity of a novel compound ER1626.

    Science.gov (United States)

    Wang, Lijun; Zeng, Yanyan; Wang, Tianling; Liu, Hongyi; Xiao, Hong; Xiang, Hua

    2014-01-01

    ER1626, a novel compound, is a derivate of indeno-isoquinoline ketone. This study was designed to evaluate the biological activity and potential anti-tumor mechanism of ER1626. MTT assay, scratch assay and flow cytometry were used to determine cell proliferation, cell migration and cell cycle distribution as well as cell apoptosis on human breast cancer MCF-7 cells and endometrial cancer Ishikawa cells. We also explored the antiangiogenic effect of ER1626 on HUVEC cells and chicken embryos. The expression of estrogen receptor protein was investigated with western-blot analysis. ER1626 down-regulated the expression of estrogen receptor α protein and up-regulated β protein in MCF-7 and Ishikawa cells. The value of IC50 of ER1626 on MCF-7 and Ishikawa cells were respectively 8.52 and 3.08 µmol/L. Meanwhile, ER1626 decreased VEGF secretion of MCF-7 and Ishikawa cells, disturbed the formation of VEGF-stimulated tubular structure in HUVEC cells, and inhibited the angiogenesis on the chicken chorioallantoic membrane. Scratch assay revealed that ER1626 suppressed the migration of MCF-7, Ishikawa and HUVEC cells. In addition to induction tumor cell apoptosis, ER1626 arrested cell cycle in G1/G0 phase in MCF-7 cells and G2/M phase in Ishikawa cells. In conclusion, our results demonstrated that ER1626 has favorable bioactivities to be a potential candidate against breast cancer and angiogenesis.

  3. Evaluating the potential bioactivity of a novel compound ER1626.

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    Full Text Available ER1626, a novel compound, is a derivate of indeno-isoquinoline ketone. This study was designed to evaluate the biological activity and potential anti-tumor mechanism of ER1626.MTT assay, scratch assay and flow cytometry were used to determine cell proliferation, cell migration and cell cycle distribution as well as cell apoptosis on human breast cancer MCF-7 cells and endometrial cancer Ishikawa cells. We also explored the antiangiogenic effect of ER1626 on HUVEC cells and chicken embryos. The expression of estrogen receptor protein was investigated with western-blot analysis.ER1626 down-regulated the expression of estrogen receptor α protein and up-regulated β protein in MCF-7 and Ishikawa cells. The value of IC50 of ER1626 on MCF-7 and Ishikawa cells were respectively 8.52 and 3.08 µmol/L. Meanwhile, ER1626 decreased VEGF secretion of MCF-7 and Ishikawa cells, disturbed the formation of VEGF-stimulated tubular structure in HUVEC cells, and inhibited the angiogenesis on the chicken chorioallantoic membrane. Scratch assay revealed that ER1626 suppressed the migration of MCF-7, Ishikawa and HUVEC cells. In addition to induction tumor cell apoptosis, ER1626 arrested cell cycle in G1/G0 phase in MCF-7 cells and G2/M phase in Ishikawa cells.In conclusion, our results demonstrated that ER1626 has favorable bioactivities to be a potential candidate against breast cancer and angiogenesis.

  4. Synthesis of new heterocyclic compounds based on pyrazolopyridine scaffold and evaluation of their neuroprotective potential in MPP+-induced neurodegeneration.

    Science.gov (United States)

    Jouha, Jabrane; Loubidi, Mohammed; Bouali, Jamila; Hamri, Salha; Hafid, Abderrafia; Suzenet, Franck; Guillaumet, Gérald; Dagcı, Taner; Khouili, Mostafa; Aydın, Fadime; Saso, Luciano; Armagan, Güliz

    2017-03-31

    Neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, and Huntington's disease affect millions of people in the world. Thus several new approaches to treat brain disorders are under development. The aim of the present study is to synthesize potential neuroprotective heterocyclic compounds based on pyrazolopyridine derivatives and then to evaluate their effects in MPP + -induced neurodegeneration in human neuroblastoma cell line (SH-SY5Y cells). The effects of the compounds on cell viability were measured by MTT assay and the changes in apoptosis-related proteins including bax, Bcl-2, Bcl-xl and caspase-3 were investigated by western blot technique. Based on the cell viability results obtained by MTT assay, the percentage of neuroprotection-induced by compounds against MPP + -induced neurotoxicity in SH-SY5Y cells was between 20% and 30% at 5 μM concentrations of all synthesized compounds. Moreover, the downregulation in pro-apoptotic proteins including bax and caspase-3 were found following the novel synthesized compounds treatments and these effects were observed in a dose-dependent manner. Our results provide an evidence that these heterocyclic compounds based on pyrazolopyridine derivatives may have a role on dopaminergic neuroprotection via antiapoptotic pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Marine Fungi: A Source of Potential Anticancer Compounds

    Directory of Open Access Journals (Sweden)

    Sunil K. Deshmukh

    2018-01-01

    Full Text Available Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012–2016 against specific cancer cell lines.

  6. HIV-1 pseudovirus neutralisation by a natural compound: a potential microbicide

    CSIR Research Space (South Africa)

    Van den Berg, N

    2011-02-01

    Full Text Available . The mode of action of the compound is, however, yet to be determined. The aim is to develop a microbicide based on an indigenous plant for people infected with HIV-1. The compound will also be screened against other HIV-1 subtypes to test the neutralisation...

  7. Electron transfer and decay processes of highly charged iodine ions

    International Nuclear Information System (INIS)

    Sakaue, Hiroyuki A.; Danjo, Atsunori; Hosaka, Kazumoto

    2005-01-01

    In the present experimental work we have investigated multi-electron transfer processes in I q+ (q=10, 15, 20 and 25) + Ne, Ar, Kr and Xe collisions at 1.5q keV energy. The branching ratios between Auger and radiative decay channels have been measured in decay processes of multiply excited states formed by multi-electron transfer collisions. It has been shown that, in all the multi-electron transfer processes investigated, the Auger decays are far dominant over the radiative decay processes and the branching ratios are clearly characterized by the average principal quantum number of the initial excited states of projectile ions. We could express the branching ratios in high Rydberg states formed in multi-electron transfer processes by using the decay probability of one Auger electron emission. (author)

  8. Comparative potential of black tea leaves waste to granular activated carbon in adsorption of endocrine disrupting compounds from aqueous solution

    Directory of Open Access Journals (Sweden)

    A.O. Ifelebuegu

    2015-07-01

    Full Text Available The adsorption properties and mechanics of selected endocrine disrupting compounds; 17 β-estradiol, 17 α – ethinylestradiol and bisphenol A on locally available black tea leaves waste and granular activated carbon were investigated. The results obtained indicated that the kinetics of adsorption were pH, adsorbent dose, contact time and temperature dependent with equilibrium being reached at 20 to 40 minutes for tea leaves waste and 40 to 60 minutes for granular activated compound. Maximum adsorption capacities of 3.46, 2.44 and 18.35 mg/g were achieved for tea leaves waste compared to granular activated compound capacities of 4.01, 2.97 and 16.26 mg/g for 17 β- estradiol, 17 α-ethinylestradiol and bisphenol A respectively. Tea leaves waste adsorption followed pseudo-first order kinetics while granular activated compound fitted better to the pseudo-second order kinetic model. The experimental isotherm data for both tea leaves waste and granular activated compound showed a good fit to the Langmuir, Freundlich and Temkin isotherm models with the Langmuir model showing the best fit. The thermodynamic and kinetic data for the adsorption indicated that the adsorption process for tea leaves waste was predominantly by physical adsorption while the granular activated compound adsorption was more chemical in nature. The results have demonstrated the potential of waste tea leaves for the adsorptive removal of endocrine disrupting compounds from water.

  9. Organolanthanoid compounds

    International Nuclear Information System (INIS)

    Schumann, H.

    1984-01-01

    Up to little more than a decade ago organolanthanoid compounds were still a curiosity. Apart from the description of an isolated number of cyclopentadienyl and indenyl derivatives, very few significant contributions had been made to this interesting sector of organometallic chemistry. However, subsequent systematic studies using modern preparative and analytical techniques, together with X-ray single crystal structure determinations, enabled the isolation and characterization of a large number of very interesting homoleptic and heteroleptic compounds in which the lanthanoid is bound to hydrogen, to substituted or unsubstituted cyclopentadienyl groups, to allyl or alkynyl groups, or even to phosphorus ylides, trimethylsilyl, and carbonylmetal groups. These compounds, which are all extremely sensitive to oxygen and water, open up new possibilities in the field of catalysis and have great potential in organic synthesis - as recent studies with pentamethylcyclopentadienyl derivatives, organolanthanoid(II) compounds, and hexamethyllanthanoid complexes have already shown. (orig.) [de

  10. Human neural tuning estimated from compound action potentials in normal hearing human volunteers

    Science.gov (United States)

    Verschooten, Eric; Desloovere, Christian; Joris, Philip X.

    2015-12-01

    The sharpness of cochlear frequency tuning in humans is debated. Evoked otoacoustic emissions and psychophysical measurements suggest sharper tuning in humans than in laboratory animals [15], but this is disputed based on comparisons of behavioral and electrophysiological measurements across species [14]. Here we used evoked mass potentials to electrophysiologically quantify tuning (Q10) in humans. We combined a notched noise forward masking paradigm [9] with the recording of trans tympanic compound action potentials (CAP) from masked probe tones in awake human and anesthetized monkey (Macaca mulatta). We compare our results to data obtained with the same paradigm in cat and chinchilla [16], and find that CAP-Q10values in human are ˜1.6x higher than in cat and chinchilla and ˜1.3x higher than in monkey. To estimate frequency tuning of single auditory nerve fibers (ANFs) in humans, we derive conversion functions from ANFs in cat, chinchilla, and monkey and apply these to the human CAP measurements. The data suggest that sharp cochlear tuning is a feature of old-world primates.

  11. Vanadium Compounds as PTP Inhibitors

    Directory of Open Access Journals (Sweden)

    Elsa Irving

    2017-12-01

    Full Text Available Phosphotyrosine signaling is regulated by the opposing actions of protein tyrosine kinases (PTKs and protein tyrosine phosphatases (PTPs. Here we discuss the potential of vanadium derivatives as PTP enzyme inhibitors and metallotherapeutics. We describe how vanadate in the V oxidized state is thought to inhibit PTPs, thus acting as a pan-inhibitor of this enzyme superfamily. We discuss recent developments in the biological and biochemical actions of more complex vanadium derivatives, including decavanadate and in particular the growing number of oxidovanadium compounds with organic ligands. Pre-clinical studies involving these compounds are discussed in the anti-diabetic and anti-cancer contexts. Although in many cases PTP inhibition has been implicated, it is also clear that many such compounds have further biochemical effects in cells. There also remain concerns surrounding off-target toxicities and long-term use of vanadium compounds in vivo in humans, hindering their progress through clinical trials. Despite these current misgivings, interest in these chemicals continues and many believe they could still have therapeutic potential. If so, we argue that this field would benefit from greater focus on improving the delivery and tissue targeting of vanadium compounds in order to minimize off-target toxicities. This may then harness their full therapeutic potential.

  12. Catalytic properties of niobium compounds

    International Nuclear Information System (INIS)

    Tanabe, K.; Iizuka, T.

    1983-04-01

    The catalytic activity and selectivity of niobium compounds including oxides, salts, organometallic compounds and others are outlined. The application of these compounds as catalysts to diversified reactions is reported. The nature and action of niobium catalysts are characteristic and sometimes anomalous, suggesting the necessity of basic research and the potential use as catalysts for important processes in the chemical industry. (Author) [pt

  13. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies.

    Science.gov (United States)

    Huang, Binbin; Lei, Chao; Wei, Chaohai; Zeng, Guangming

    2014-10-01

    Chlorinated volatile organic compounds (Cl-VOCs), including polychloromethanes, polychloroethanes and polychloroethylenes, are widely used as solvents, degreasing agents and a variety of commercial products. These compounds belong to a group of ubiquitous contaminants that can be found in contaminated soil, air and any kind of fluvial mediums such as groundwater, rivers and lakes. This review presents a summary of the research concerning the production levels and sources of Cl-VOCs, their potential impacts on human health as well as state-of-the-art remediation technologies. Important sources of Cl-VOCs principally include the emissions from industrial processes, the consumption of Cl-VOC-containing products, the disinfection process, as well as improper storage and disposal methods. Human exposure to Cl-VOCs can occur through different routes, including ingestion, inhalation and dermal contact. The toxicological impacts of these compounds have been carefully assessed, and the results demonstrate the potential associations of cancer incidence with exposure to Cl-VOCs. Most Cl-VOCs thus have been listed as priority pollutants by the Ministry of Environmental Protection (MEP) of China, Environmental Protection Agency of the U.S. (U.S. EPA) and European Commission (EC), and are under close monitor and strict control. Yet, more efforts will be put into the epidemiological studies for the risk of human exposure to Cl-VOCs and the exposure level measurements in contaminated sites in the future. State-of-the-art remediation technologies for Cl-VOCs employ non-destructive methods and destructive methods (e.g. thermal incineration, phytoremediation, biodegradation, advanced oxidation processes (AOPs) and reductive dechlorination), whose advantages, drawbacks and future developments are thoroughly discussed in the later sections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Development and optimization of a cell-based assay for the selection of synthetic compounds that potentiate bone morphogenetic protein-2 activity.

    Science.gov (United States)

    Okada, Motohiro; Sangadala, Sreedhara; Liu, Yunshan; Yoshida, Munehito; Reddy, Boojala Vijay B; Titus, Louisa; Boden, Scott D

    2009-12-01

    reliability of our cell-based assay. Direct delivery of synthesized protein can be limited by high cost, instability or inadequate post-translational modifications. Thus, there would be a clear benefit for a low cost, cell penetrable chemical compound. We successfully used our gene expression-based assay to choose an active compound from a select group of compounds that were identified by computational screenings as the most likely candidates for mimicking the function of LMP-1. Among them, we selected SVAK-3, a compound that showed a dose-dependent potentiation of BMP-2 activity in inducing osteoblastic differentiation of C2C12 cells. We show that either the full length LMP-1 protein or its potential mimetic compound consistently exhibit similar potentiation of BMP-2 activity even when multiple markers of the osteoblastic phenotype were parallely monitored.

  15. The Influence of Glutamate on Axonal Compound Action Potential In Vitro.

    Science.gov (United States)

    Abouelela, Ahmed; Wieraszko, Andrzej

    2016-01-01

    Background  Our previous experiments demonstrated modulation of the amplitude of the axonal compound action potential (CAP) by electrical stimulation. To verify assumption that glutamate released from axons could be involved in this phenomenon, the modification of the axonal CAP induced by glutamate was investigated. Objectives  The major objective of this research is to verify the hypothesis that axonal activity would trigger the release of glutamate, which in turn would interact with specific axonal receptors modifying the amplitude of the action potential. Methods  Segments of the sciatic nerve were exposed to exogenous glutamate in vitro, and CAP was recorded before and after glutamate application. In some experiments, the release of radioactive glutamate analog from the sciatic nerve exposed to exogenous glutamate was also evaluated. Results  The glutamate-induced increase in CAP was blocked by different glutamate receptor antagonists. The effect of glutamate was not observed in Ca-free medium, and was blocked by antagonists of calcium channels. Exogenous glutamate, applied to the segments of sciatic nerve, induced the release of radioactive glutamate analog, demonstrating glutamate-induced glutamate release. Immunohistochemical examination revealed that axolemma contains components necessary for glutamatergic neurotransmission. Conclusion  The proteins of the axonal membrane can under the influence of electrical stimulation or exogenous glutamate change membrane permeability and ionic conductance, leading to a change in the amplitude of CAP. We suggest that increased axonal activity leads to the release of glutamate that results in changes in the amplitude of CAPs.

  16. Investigation of chronic efficacy and safety profile of two potential anti-inflammatory bipyrazole-based compounds in experimental animals

    Directory of Open Access Journals (Sweden)

    Domiati S

    2018-04-01

    examination of the stomach revealed normal mucosa for both tested compounds and controls. Likewise, kidneys showed neither significant histologic alteration nor biomarkers increase as compared to the control over both 7- and 30-day treatment periods. Mice that received the tested compounds or diclofenac exhibited transient liver damage specifically; congestion, vacuolization, necrosis and inflammation after 7 days of treatment which decreased significantly after 30 days of treatment as emphasized by the Suzuki score and biomarker levels. Conclusion: Since the tested compounds, specifically compound I, presented a satisfactory chronic safety profile as well as anti-inflammatory effect, it is worth conducting further molecular pharmacological, toxicological and bioavailability studies to elucidate the efficacy of these potential anti-inflammatory bipyrazole compounds. Keywords: peptic ulcer, hepatic injury, kidney injury, nonsteroidal anti-inflammatory drugs, pyrazole, histology

  17. The Immunomodulatory Potential of Selected Bioactive Plant-Based Compounds in Breast Cancer: A Review.

    Science.gov (United States)

    Baraya, Yushau Shuaibu; Wong, Kah Keng; Yaacob, Nik Soriani

    2017-01-01

    Breast cancer has continued to cause high cancer death rates among women worldwide. The use of plants' natural products in breast cancer treatment has received more attention in recent years due to their potentially wider safety margin and the potential to complement conventional chemotherapeutic drugs. Plantbased products have demonstrated anticancer potential through different biological pathways including modulation of the immune system. Immunomodulatory properties of medicinal plants have been shown to mitigate breast cancer cell growth. Different immune cell types participate in this process especially cytotoxic T cells and natural killer cells, and cytokines including chemokines and tumor necrosis factor-α. Medicinal plants such as Glycyrrhiza glabra, Uncaria tomentosa, Camellia sinensis, Panax ginseng, Prunus armenaica (apricot), Allium sativum, Arctium lappa and Curcuma longa were reported to hold strong potential in breast cancer treatment in various parts of the world. Interestingly, research findings have shown that these plants possess bioactive immunomodulators as their main constituents producing the anticancer effects. These immunomodulatory compounds include ajoene, arctigenin, β-carotene, curcumin, epigallocatechin-3-gallate, ginsan, glabridin and quinic acid. In this review, we discussed the ability of these eight immunomodulators in regulating the immune system potentially applicable in breast cancer treatment via anti-inflammatory (curcumin, arctigenin, glabridin and ajoene) and lymphocytes activation (β-carotene, epigallocatechin-3-gallate, quinic acid and ginsan) properties, as well as future research direction in their use for breast cancer treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. An Assessment of the Stability and the Potential for In-Situ Synthesis of Regulated Organic Compounds in High Level Radioactive Waste Stored at Hanford, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Wiemers, K.D.; Babad, H.; Hallen, R.T.; Jackson, L.P.; Lerchen, M.E.

    1999-01-04

    The stability assessment examined 269 non-detected regulated compounds, first seeking literature references of the stability of the compounds, then evaluating each compound based upon the presence of functional groups using professional judgment. Compounds that could potentially survive for significant periods in the tanks (>1 year) were designated as stable. Most of the functional groups associated with the regulated organic compounds were considered unstable under tank waste conditions. The general exceptions with respect to functional group stability are some simple substituted aromatic and polycyclic aromatic compounds that resist oxidation and the multiple substituted aliphatic and aromatic halides that hydrolyze or dehydrohalogenate slowly under tank waste conditions. One-hundred and eighty-one (181) regulated, organic compounds were determined as likely unstable in the tank waste environment.

  19. An Assessment of the Stability and the Potential for In-Situ Synthesis of Regulated Organic Compounds in High Level Radioactive Waste Stored at Hanford, Richland, Washington

    International Nuclear Information System (INIS)

    Wiemers, K.D.; Babad, H.; Hallen, R.T.; Jackson, L.P.; Lerchen, M.E.

    1999-01-01

    The stability assessment examined 269 non-detected regulated compounds, first seeking literature references of the stability of the compounds, then evaluating each compound based upon the presence of functional groups using professional judgment. Compounds that could potentially survive for significant periods in the tanks (>1 year) were designated as stable. Most of the functional groups associated with the regulated organic compounds were considered unstable under tank waste conditions. The general exceptions with respect to functional group stability are some simple substituted aromatic and polycyclic aromatic compounds that resist oxidation and the multiple substituted aliphatic and aromatic halides that hydrolyze or dehydrohalogenate slowly under tank waste conditions. One-hundred and eighty-one (181) regulated, organic compounds were determined as likely unstable in the tank waste environment

  20. The anti-tumour properties and biodistribution (as determined by the radiolabeled equivalent) of Au-compounds intended as potential chemotherapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Nell, M.J. [Department of Pharmacology, University of Pretoria, P.O. Box 2034, Pretoria 0001 (South Africa); Wagener, J.M. [Radiochemistry, NECSA (South African Nuclear Energy Corporation Ltd.), P.O. Box 582, Pretoria 0001 (South Africa)], E-mail: jwagener@necsa.co.za; Zeevaart, J.R. [CARST, North West University, Mafikeng Campus, P. Bag X2046, Mmabatho 2735 (South Africa); Kilian, E. [Department of Pharmacology, Onderstepoort, University of Pretoria, P.O. Box 2034, Pretoria 0001 (South Africa); Mamo, M.A.; Layh, M. [Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits, 2050 Johannesburg (South Africa); Coyanis, M. [Project AuTEK, Mintek, Private Bag X3015, Randburg 2125 (South Africa); Rensburg, C.E.J. van [Department of Pharmacology, University of Pretoria, P.O. Box 2034, Pretoria 0001 (South Africa)

    2009-07-15

    The anti-tumour activity of the Au (I) phosphine complex [Au(dppe{sub 2}]Cl was first discovered in the mid 1980s although promising results were obtained it did not pass clinical studies because of its toxicity to organs such as the liver and heart. The aim of this study was to determine whether the two novel gold compounds (MM5 and MM6), selected for this study, have higher selectivity for cancer cells with less toxicity towards normal cells than [Au(dppe){sub 2}]Cl, and also to determine whether they have improved bio distribution compared to [Au(dppe){sub 2}]Cl. The Au-compounds as potential chemotherapeutic drugs were evaluated by using radioactive tracers in the in vitro and in vivo studies. Results obtained from these experiments showed that the uptake of these experimental compounds was dependent on their octanol/water partition coefficient. However; the inhibition of cell growth did not correlate with the uptake of these compounds by the cells that were tested. In terms of the total uptake it was found that the compounds that were less lipophilic (MM5, MM6) were taken up less efficiently in cells than those that are more lipophilic. Therefore hydrophilic drugs are expected to have a limited biodistribution compared to lipophilic drugs. This might imply a more selective tumour uptake.

  1. Determination of Nerve Fiber Diameter Distribution From Compound Action Potential: A Continuous Approach.

    Science.gov (United States)

    Un, M Kerem; Kaghazchi, Hamed

    2018-01-01

    When a signal is initiated in the nerve, it is transmitted along each nerve fiber via an action potential (called single fiber action potential (SFAP)) which travels with a velocity that is related with the diameter of the fiber. The additive superposition of SFAPs constitutes the compound action potential (CAP) of the nerve. The fiber diameter distribution (FDD) in the nerve can be computed from the CAP data by solving an inverse problem. This is usually achieved by dividing the fibers into a finite number of diameter groups and solve a corresponding linear system to optimize FDD. However, number of fibers in a nerve can be measured sometimes in thousands and it is possible to assume a continuous distribution for the fiber diameters which leads to a gradient optimization problem. In this paper, we have evaluated this continuous approach to the solution of the inverse problem. We have utilized an analytical function for SFAP and an assumed a polynomial form for FDD. The inverse problem involves the optimization of polynomial coefficients to obtain the best estimate for the FDD. We have observed that an eighth order polynomial for FDD can capture both unimodal and bimodal fiber distributions present in vivo, even in case of noisy CAP data. The assumed FDD distribution regularizes the ill-conditioned inverse problem and produces good results.

  2. Electrophysiologic evaluation of lumbosacral single nerve roots using compound muscle action potentials.

    Science.gov (United States)

    Ogura, Taku; Shikata, Hideto; Hase, Hitoshi; Mori, Masaki; Hayashida, Taturo; Osawa, Toru; Mikami, Yasuo; Kubo, Toshikazu

    2003-10-01

    Transcutaneous electrical stimulation applied to the vertebral column produces compound muscle action potentials (CMAPs) from the leg muscles. Using this method, we evaluated the efferent pathways of the lumbosacral nerve roots. The subjects were 26 healthy volunteers and 31 patients with lumbar disc herniation (LDH). CMAP recordings were obtained from the bilateral vastus medialis, tibialis anterior, extensor digitorum brevis, and abductor hallucis muscles using low-output-impedance stimulation. In normal subjects, the CMAP latency increased linearly with the distance between the stimulating electrode and the recording electrode, with little difference in latency between the left and the right sides in each subject. The CMAP amplitude was significantly lower in the patients with LDH, and the latency was also prolonged when the stimulating electrode was placed above the lesion. This technique may thus be a useful noninvasive method for assessing lumbosacral nerve root function in patients with LDH.

  3. In-vitro characterization of a cochlear implant system for recording of evoked compound action potentials

    Science.gov (United States)

    2012-01-01

    Background Modern cochlear implants have integrated recording systems for measuring electrically evoked compound action potentials of the auditory nerve. The characterization of such recording systems is important for establishing a reliable basis for the interpretation of signals acquired in vivo. In this study we investigated the characteristics of the recording system integrated into the MED-EL PULSARCI100 cochlear implant, especially its linearity and resolution, in order to develop a mathematical model describing the recording system. Methods In-vitro setup: The cochlear implant, including all attached electrodes, was fixed in a tank of physiologic saline solution. Sinusoidal signals of the same frequency but with different amplitudes were delivered via a signal generator for measuring and recording on a single electrode. Computer simulations: A basic mathematical model including the main elements of the recording system, i.e. amplification and digitalization stage, was developed. For this, digital output for sinusoidal input signals of different amplitudes were calculated using in-vitro recordings as reference. Results Using an averaging of 100 measurements the recording system behaved linearly down to approximately -60 dB of the input signal range. Using the same method, a system resolution of 10 μV was determined for sinusoidal signals. The simulation results were in very good agreement with the results obtained from in-vitro experiments. Conclusions The recording system implemented in the MED-EL PULSARCI100 cochlear implant for measuring the evoked compound action potential of the auditory nerve operates reliably. The developed mathematical model provides a good approximation of the recording system. PMID:22531599

  4. Curcumin as a potential protective compound against cardiac diseases.

    Science.gov (United States)

    Jiang, Shuai; Han, Jing; Li, Tian; Xin, Zhenlong; Ma, Zhiqiang; Di, Wencheng; Hu, Wei; Gong, Bing; Di, Shouyin; Wang, Dongjin; Yang, Yang

    2017-05-01

    Curcumin, which was first used 3000 years ago as an anti-inflammatory agent, is a well-known bioactive compound derived from the active ingredient of turmeric (Curcuma longa). Previous research has demonstrated that curcumin has immense therapeutic potential in a variety of diseases via anti-oxidative, anti-apoptotic, and anti-inflammatory pathways. Cardiac diseases are the leading cause of mortality worldwide and cause considerable harm to human beings. Numerous studies have suggested that curcumin exerts a protective role in the human body whereas its actions in cardiac diseases remain elusive and poorly understood. On the basis of the current evidence, we first give a brief introduction of cardiac diseases and curcumin, especially regarding the effects of curcumin in embryonic heart development. Secondly, we analyze the basic roles of curcumin in pathways that are dysregulated in cardiac diseases, including oxidative stress, apoptosis, and inflammation. Thirdly, actions of curcumin in different cardiac diseases will be discussed, as will relevant clinical trials. Eventually, we would like to discuss the existing controversial opinions and provide a detailed analysis followed by the remaining obstacles, advancement, and further prospects of the clinical application of curcumin. The information compiled here may serve as a comprehensive reference of the protective effects of curcumin in the heart, which is significant to the further research and design of curcumin analogs as therapeutic options for cardiac diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Probing Xe electronic structure by two-color HHG

    International Nuclear Information System (INIS)

    Faccialà, D; Ciriolo, A G; De Silvestri, S; Devetta, M; Negro, M; Stagira, S; Vozzi, C; Pabst, S; Bruner, B D; Dudovich, N; Soifer, H

    2015-01-01

    The aim of this study is probing the multi-electron behavior in xenon by two-color driven high harmonic generation. By changing the relative polarization of the two colors we were able to study different aspects of the multi-electron response. (paper)

  6. ToxAlerts: a Web server of structural alerts for toxic chemicals and compounds with potential adverse reactions.

    Science.gov (United States)

    Sushko, Iurii; Salmina, Elena; Potemkin, Vladimir A; Poda, Gennadiy; Tetko, Igor V

    2012-08-27

    The article presents a Web-based platform for collecting and storing toxicological structural alerts from literature and for virtual screening of chemical libraries to flag potentially toxic chemicals and compounds that can cause adverse side effects. An alert is uniquely identified by a SMARTS template, a toxicological endpoint, and a publication where the alert was described. Additionally, the system allows storing complementary information such as name, comments, and mechanism of action, as well as other data. Most importantly, the platform can be easily used for fast virtual screening of large chemical datasets, focused libraries, or newly designed compounds against the toxicological alerts, providing a detailed profile of the chemicals grouped by structural alerts and endpoints. Such a facility can be used for decision making regarding whether a compound should be tested experimentally, validated with available QSAR models, or eliminated from consideration altogether. The alert-based screening can also be helpful for an easier interpretation of more complex QSAR models. The system is publicly accessible and tightly integrated with the Online Chemical Modeling Environment (OCHEM, http://ochem.eu). The system is open and expandable: any registered OCHEM user can introduce new alerts, browse, edit alerts introduced by other users, and virtually screen his/her data sets against all or selected alerts. The user sets being passed through the structural alerts can be used at OCHEM for other typical tasks: exporting in a wide variety of formats, development of QSAR models, additional filtering by other criteria, etc. The database already contains almost 600 structural alerts for such endpoints as mutagenicity, carcinogenicity, skin sensitization, compounds that undergo metabolic activation, and compounds that form reactive metabolites and, thus, can cause adverse reactions. The ToxAlerts platform is accessible on the Web at http://ochem.eu/alerts, and it is constantly

  7. Short latency compound action potentials from mammalian gravity receptor organs

    Science.gov (United States)

    Jones, T. A.; Jones, S. M.

    1999-01-01

    Gravity receptor function was characterized in four mammalian species using far-field vestibular evoked potentials (VsEPs). VsEPs are compound action potentials of the vestibular nerve and central relays that are elicited by linear acceleration ramps applied to the cranium. Rats, mice, guinea pigs, and gerbils were studied. In all species, response onset occurred within 1.5 ms of the stimulus onset. Responses persisted during intense (116 dBSPL) wide-band (50 to 50 inverted question mark omitted inverted question mark000 Hz) forward masking, whereas auditory responses to intense clicks (112 dBpeSPL) were eliminated under the same conditions. VsEPs remained after cochlear extirpation but were eliminated following bilateral labyrinthectomy. Responses included a series of positive and negative peaks that occurred within 8 ms of stimulus onset (range of means at +6 dBre: 1.0 g/ms: P1=908 to 1062 micros, N1=1342 to 1475 micros, P2=1632 to 1952 micros, N2=2038 to 2387 micros). Mean response amplitudes at +6 dBre: 1.0 g/ms ranged from 0.14 to 0.99 microV. VsEP input/output functions revealed latency slopes that varied across peaks and species ranging from -19 to -51 micros/dB. Amplitude-intensity slopes also varied ranging from 0.04 to 0.08 microV/dB for rats and mice. Latency values were comparable to those of birds although amplitudes were substantially smaller in mammals. VsEP threshold values were considerably higher in mammals compared to birds and ranged from -8.1 to -10.5 dBre 1.0 g/ms across species. These results support the hypothesis that mammalian gravity receptors are less sensitive to dynamic stimuli than are those of birds.

  8. Effects of multiple electronic shells on strong-field multiphoton ionization and high-order harmonic generation of diatomic molecules with arbitrary orientation: An all-electron time-dependent density-functional approach

    International Nuclear Information System (INIS)

    Telnov, Dmitry A.; Chu, S.-I

    2009-01-01

    We present a time-dependent density-functional theory approach with proper long-range potential for an ab initio study of the effect of correlated multielectron responses on the multiphoton ionization (MPI) and high-order harmonic generation (HHG) of diatomic molecules N 2 and F 2 in intense short laser pulse fields with arbitrary molecular orientation. We show that the contributions of inner molecular orbitals to the total MPI probability can be sufficiently large or even dominant over the highest-occupied molecular orbital, depending on detailed electronic structure and symmetry, laser field intensity, and orientation angle. The multielectron effects in HHG are also very important. They are responsible for enhanced HHG at some orientations of the molecular axis. Even strongly bound electrons may have a significant influence on the HHG process.

  9. Polyphenolic compounds with antioxidant potential and neuro-protective effect from Cimicifuga dahurica (Turcz.) Maxim.

    Science.gov (United States)

    Qin, Rulan; Zhao, Ying; Zhao, Yudan; Zhou, Wanrong; Lv, Chongning; Lu, Jincai

    2016-12-01

    Three new phenolic compounds (1-3), along with five known compounds (4-8) were isolated from the rhizome of Cimicifuga dahurica (Turcz.) Maxim. Their structures were elucidated by spectroscopic methods including 1D-NMR, 2D-NMR and HR-MS techniques. DPPH method and protective effect on PC12 cells against H 2 O 2 -induced oxidative damage model were carried to evaluate the antioxidant capability of these compounds. Compound 5 showed significant antioxidant activity with IC 50 values 9.33μM in DPPH assay and compound 2 displayed marked neuro-protective effect with 87.65% cell viability at the concentration of 10μM. Additionally, the possible structure-activity relationships of these phenolic compounds were tentatively discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Semantics vs Pragmatics of a Compound Word

    Science.gov (United States)

    Smirnova, Elena A.; Biktemirova, Ella I.; Davletbaeva, Diana N.

    2016-01-01

    This paper is devoted to the study of correlation between semantic and pragmatic potential of a compound word, which functions in informal speech, and the mechanisms of secondary nomination, which realizes the potential of semantic-pragmatic features of colloquial compounds. The relevance and the choice of the research question is based on the…

  11. Atomic physics with highly charged ions

    International Nuclear Information System (INIS)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations

  12. Na2 Vibrating in the Double-Well Potential of State 2 1Σu+ (JM = 00): A Pulsating "Quantum Bubble" with Antagonistic Electronic Flux.

    Science.gov (United States)

    Diestler, D J; Jia, D; Manz, J; Yang, Y

    2018-03-01

    The theory of concerted electronic and nuclear flux densities associated with the vibration and dissociation of a multielectron nonrotating homonuclear diatomic molecule (or ion) in an electronic state 2S+1 Σ g,u + (JM = 00) is presented. The electronic population density, nuclear probability density, and nuclear flux density are isotropic. A theorem of Barth , presented in this issue, shows that the electronic flux density (EFD) is also isotropic. Hence, the evolving system appears as a pulsating, or exploding, "quantum bubble". Application of the theory to Na 2 vibrating in the double-minimum potential of the 2   1 Σ u + (JM = 00) excited state reveals that the EFD consists of two antagonistic components. One arises from electrons that flow essentially coherently with the nuclei. The other, which is oppositely directed (i.e., antagonistic) and more intense, is due to the transition in electronic structure from "Rydberg" to "ionic" type as the nuclei traverse the potential barrier between inner and outer potential wells. This "transition" component of the EFD rises and falls sharply as the nuclei cross the barrier.

  13. Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles.

    Science.gov (United States)

    Kim, Youngsoo; Smith, Jeremy G; Jain, Prashant K

    2018-05-07

    Multi-electron redox reactions, although central to artificial photosynthesis, are kinetically sluggish. Amidst the search for synthetic catalysts for such processes, plasmonic nanoparticles have been found to catalyse multi-electron reduction of CO 2 under visible light. This example motivates the need for a general, insight-driven framework for plasmonic catalysis of such multi-electron chemistry. Here, we elucidate the principles underlying the extraction of multiple redox equivalents from a plasmonic photocatalyst. We measure the kinetics of electron harvesting from a gold nanoparticle photocatalyst as a function of photon flux. Our measurements, supported by theoretical modelling, reveal a regime where two-electron transfer from the excited gold nanoparticle becomes prevalent. Multiple electron harvesting becomes possible under continuous-wave, visible-light excitation of moderate intensity due to strong interband transitions in gold and electron-hole separation accomplished using a hole scavenger. These insights will help expand the utility of plasmonic photocatalysis beyond CO 2 reduction to other challenging multi-electron, multi-proton transformations such as N 2 fixation.

  14. Marine sponges: a potential source of eco-friendly antifouling compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Wagh, A.B.; Thakur, N.L.; Anil, A.C.; Venkat, K.

    biocides have environmental concerns. In view of this search for ecofriendly antifouling protocols gained momentum. Sourcing of such antifouling compounds has often been explored with marine organism. This paper reviews the efforts in this domain...

  15. Reliable determination of new lipid peroxidation compounds as potential early Alzheimer Disease biomarkers.

    Science.gov (United States)

    García-Blanco, Ana; Peña-Bautista, Carmen; Oger, Camille; Vigor, Claire; Galano, Jean-Marie; Durand, Thierry; Martín-Ibáñez, Nuria; Baquero, Miguel; Vento, Máximo; Cháfer-Pericás, Consuelo

    2018-07-01

    Lipid peroxidation plays an important role in Alzheimer Disease, so corresponding metabolites found in urine samples could be potential biomarkers. The aim of this work is to develop a reliable ultra-performance liquid chromatography-tandem mass spectrometry analytical method to determine a new set of lipid peroxidation compounds in urine samples. Excellent sensitivity was achieved with limits of detection between 0.08 and 17 nmol L -1 , which renders this method suitable to monitor analytes concentrations in real samples. The method's precision was satisfactory with coefficients of variation around 5-17% (intra-day) and 8-19% (inter-day). The accuracy of the method was assessed by analysis of spiked urine samples obtaining recoveries between 70% and 120% for most of the analytes. The utility of the described method was tested by analyzing urine samples from patients early diagnosed with mild cognitive impairment or mild dementia Alzheimer Disease following the clinical standard criteria. As preliminary results, some analytes (17(RS)-10-epi-SC-Δ 15 -11-dihomo-IsoF, PGE 2 ) and total parameters (Neuroprostanes, Isoprostanes, Isofurans) show differences between the control and the clinical groups. So, these analytes could be potential early Alzheimer Disease biomarkers assessing the patients' pro-oxidant condition. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. A Simple Assay to Screen Antimicrobial Compounds Potentiating the Activity of Current Antibiotics

    Directory of Open Access Journals (Sweden)

    Junaid Iqbal

    2013-01-01

    Full Text Available Antibiotic resistance continues to pose a significant problem in the management of bacterial infections, despite advances in antimicrobial chemotherapy and supportive care. Here, we suggest a simple, inexpensive, and easy-to-perform assay to screen antimicrobial compounds from natural products or synthetic chemical libraries for their potential to work in tandem with the available antibiotics against multiple drug-resistant bacteria. The aqueous extract of Juglans regia tree bark was tested against representative multiple drug-resistant bacteria in the aforementioned assay to determine whether it potentiates the activity of selected antibiotics. The aqueous extract of J. regia bark was added to Mueller-Hinton agar, followed by a lawn of multiple drug-resistant bacteria, Salmonella typhi or enteropathogenic E. coli. Next, filter paper discs impregnated with different classes of antibiotics were placed on the agar surface. Bacteria incubated with extract or antibiotics alone were used as controls. The results showed a significant increase (>30% in the zone of inhibition around the aztreonam, cefuroxime, and ampicillin discs compared with bacteria incubated with the antibiotics/extract alone. In conclusion, our assay is able to detect either synergistic or additive action of J. regia extract against multiple drug-resistant bacteria when tested with a range of antibiotics.

  17. Effect of DSPE-PEG on compound action potential, injury potential and ion concentration following compression in ex vivo spinal cord.

    Science.gov (United States)

    Wang, Aihua; Huo, Xiaolin; Zhang, Guanghao; Wang, Xiaochen; Zhang, Cheng; Wu, Changzhe; Rong, Wei; Xu, Jing; Song, Tao

    2016-05-04

    It has been shown that polyethylene glycol (PEG) can reseal membrane disruption on the spinal cord, but only high concentrations of PEG have been shown to have this effect. Therefore, the effect of PEG is somewhat limited, and it is necessary to investigate a new approach to repair spinal cord injury. This study assesses the ability of 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(poly (ethylene glycol)) 2000] (DSPE-PEG) to recover physiological function and attenuate the injury-induced influx of extracellular ions in ex vivo spinal cord injury. Isolated spinal cords were subjected to compression injury and treated with PEG or DSPE-PEG immediately after injury. The compound action potential (CAP) was recorded before and after injury to assess the functional recovery. Furthermore, injury potential, the difference in gap potentials before and after compression, and the concentration of intracellular ions were used to evaluate the effect of DSPE-PEG on reducing ion influx. Data showed that the injury potential and ion concentration of the untreated, PEG and DSPE-PEG group, without significant difference among them, are remarkably higher than those of the intact group. Moreover, the CAP recovery of the DSPE-PEG and PEG treated spinal cords was significantly greater than that of the untreated spinal cords. The level of CAP recovery in the DSPE-PEG and PEG treated groups was the same, but the concentration of DSPE-PEG used was much lower than the concentration of PEG. These results suggest that instant application of DSPE-PEG could effectively repair functional disturbance in SCI at a much lower concentration than PEG. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Organic electronic devices using phthalimide compounds

    Science.gov (United States)

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  19. Natural compounds with herbicidal activity

    Directory of Open Access Journals (Sweden)

    Mariano Fracchiolla

    2007-12-01

    Full Text Available Research about phytotoxic activity of natural compounds could lead both to find new herbicidal active ingredients and to plan environmental friendly weed control strategies. Particularly, living organisms could be a source of compounds that are impossible, for their complexity, to synthesize artificially. More over, they could have alternative sites of action respect to the known chemical herbicides and, due to their origin, they should be more environmental safe. Many living organism, such as bacteria, fungi, insects, lichens and plants, are able to produce bioactive compounds. They generally are secondary metabolites or simply waste molecules. In this paper we make a review about these compounds, highlighting potential and constraints.

  20. Natural compounds with herbicidal activity

    Directory of Open Access Journals (Sweden)

    Pasquale Montemurro

    2011-02-01

    Full Text Available Research about phytotoxic activity of natural compounds could lead both to find new herbicidal active ingredients and to plan environmental friendly weed control strategies. Particularly, living organisms could be a source of compounds that are impossible, for their complexity, to synthesize artificially. More over, they could have alternative sites of action respect to the known chemical herbicides and, due to their origin, they should be more environmental safe. Many living organism, such as bacteria, fungi, insects, lichens and plants, are able to produce bioactive compounds. They generally are secondary metabolites or simply waste molecules. In this paper we make a review about these compounds, highlighting potential and constraints.

  1. Identification of a gene expression core signature for Duchenne Muscular Dystrophy (DMD) via integrative analysis reveals novel potential compounds for treatment

    KAUST Repository

    Ichim-Moreno, Norú

    2010-05-01

    Duchenne muscular dystrophy (DMD) is a recessive X-linked form of muscular dystrophy and one of the most prevalent genetic disorders of childhood. DMD is characterized by rapid progression of muscle degeneration, and ultimately death. Currently, glucocorticoids are the only available treatment for DMD, but they have been shown to result in serious side effects. The purpose of this research was to define a core signature of gene expression related to DMD via integrative analysis of mouse and human datasets. This core signature was subsequently used to screen for novel potential compounds that antagonistically affect the expression of signature genes. With this approach we were able to identify compounds that are 1) already used to treat DMD, 2) currently under investigation for treatment, and 3) so far unknown but promising candidates. Our study highlights the potential of meta-analyses through the combination of datasets to unravel previously unrecognized associations and reveal new relationships. © IEEE.

  2. Effects of dissolved organic matter (DOM) sources and nature of solid extraction sorbent on recoverable DOM composition: Implication into potential lability of different compound groups.

    Science.gov (United States)

    Chen, Meilian; Kim, Sunghwan; Park, Jae-Eun; Kim, Hyun Sik; Hur, Jin

    2016-07-01

    Noting the source-dependent properties of dissolved organic matter (DOM), this study explored the recoverable compounds by solid phase extraction (SPE) of two common sorbents (C18 and PPL) eluted with methanol solvent for contrasting DOM sources via fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Fresh algae and leaf litter extracts DOM, one riverine DOM, and one upstream lacustrine DOM were selected for the comparison. C18 sorbent was generally found to extract more diverse molecular formula, relatively higher molecular weight, and more heteroatomic DOM compounds within the studied mass range than PPL sorbent except for the leaf litter extract. Even with the same sorbent, the main molecular features of the two end member DOM were distributed on different sides of the axes of a multivariate ordination, indicating the source-dependent characteristics of the recoverable compounds by the sorbents. In addition, further examination of the molecular formula uniquely present in the two end members and the upstream lake DOM suggested that proteinaceous, tannin-like, and heteroatomic DOM constituents might be potential compound groups which are labile and easily degraded during their mobilization into downstream watershed. This study provides new insights into the sorbent selectivity of DOM from diverse sources and potential lability of various compound groups.

  3. Allelopathic potential of Artemisia arborescens: isolation, identification and quantification of phytotoxic compounds through fractionation-guided bioassays.

    Science.gov (United States)

    Araniti, Fabrizio; Lupini, Antonio; Sorgonà, Agostino; Conforti, Filomena; Marrelli, Mariangela; Statti, Giancarlo Antonio; Menichini, Francesco; Abenavoli, Maria Rosa

    2013-01-01

    The aerial part of Artemisia arborescens L. (Asteraceae) was extracted with water and methanol, and both extracts were fractionated using n-hexane, chloroform, ethyl acetate and n-butanol. The potential phytotoxicity of both crude extracts and their fractions were assayed in vitro on seed germination and root growth of lettuce (Lactuca sativa L.), a sensitive species largely employed in the allelopathy studies. The inhibitory activities were analysed by dose-response curves and the ED 50 were estimated. Crude extracts strongly inhibited both germination and root growth processes. The fraction-bioassay indicated the following hierarchy of phytotoxicity for both physiological processes: ethyl acetate ≥ n-hexane > chloroform ≥ n-butanol. On the n-hexane fraction, GC-MS analyses were carried out to characterise and quantify some of the potential allelochemicals. Twenty-one compounds were identified and three of them, camphor, trans-caryophyllene and pulegone were quantified.

  4. Synthesis, characterization, and properties of peroxo-based oxygen-rich compounds for potential use as greener high energy density materials

    Science.gov (United States)

    Gamage, Nipuni-Dhanesha Horadugoda

    One main aspect of high energy density material (HEDM) design is to obtain greener alternatives for HEDMs that produce toxic byproducts. Primary explosives lead azide, lead styphnate, and mercury fulminate contain heavy metals that cause heavy metal poisoning. Leaching of the widely used tertiary explosive NH4ClO4 into groundwater has resulted in human exposure to ClO4-- ions, which cause disruptions of thyroid related metabolic pathways and even thyroid cancer. Many research efforts to find replacements have gained little success. Thus, there is a need for greener HEDMs. Peroxo-based oxygen-rich compounds are proposed as a potential new class of greener HEDMs due to the evolution of CO2 and/or CO, H2O, and O 2 as the main decomposition products. Currently, triacetone triperoxide (TATP), diacetone diperoxide (DADP), hexamethylene triperoxide diamine (HMTD), and methyl ethyl ketone peroxide (MEKP) are the only well-studied highly energetic peroxides. However, due to their high impact and friction sensitivities, low thermal stabilities, and low detonation velocities they have not found any civil or military HEDM applications. In this dissertation research, we have synthesized and fully characterized four categories of peroxo-based compounds: tert-butyl peroxides, tert-butyl peroxy esters, hydroperoxides, and peroxy acids to perform a systematic study of their sensitivities and the energetic properties for potential use as greener HEDMs. tert-Butyl peroxides were not sensitive to impact, friction, or electrostatic spark. Hence, tert-butyl peroxides can be described as fairly safe peroxo-based compounds to handle. tert-Butyl peroxy esters were all surprisingly energetic (4896--6003 m/s), despite the low oxygen and nitrogen contents. Aromatic tert -butyl peroxy esters were much lower in impact and friction sensitivities with respect to the known peroxo-based explosives. These are among the first low sensitivity peroxo-based compounds that can be categorized as secondary

  5. Infrared spectra of cyanoacetaldehyde (NCCH2CHO): a potential prebiotic compound of astrochemical interest.

    Science.gov (United States)

    Benidar, Abdessamad; Georges, Robert; Guillemin, Jean-Claude; Mó, Otilia; Yáñez, Manuel

    2013-08-26

    Cyanoacetaldehyde (NC-CH2CH=O) and its isomer, cyanovinylalcohol (NC-CH=CH-OH), as possible components of the interstellar medium, comets, or planetary atmospheres, exist in equilibrium in the gas phase, although the latter compound is very much in the minority (2%). The recording and analysis of the gas-phase infrared spectrum of the former compound within the 4000-500 cm(-1) spectroscopic range and the potential presence of the latter isomer, which could be vital for their detection in these media, are reported. CCSD(T) and G4 high-level ab initio methods, as well as density functional theory calculations, predict the existence of two stable rotamers of cyanoacetaldehyde. The global minimum has a structure with an unusual O-C-C-C dihedral angle (150°) that falls between the antiperiplanar (180°) and anticlinal forms (120°). The second rotamer, which is about 4.0 kJ mol(-1) less stable in terms of free energy, has a planar structure that corresponds to the synperiplanar form (O-C-C-C dihedral angle: 0°). The absorption vibrational bands of the two aldehyde rotamers that are present in the mixture lead to a spectrum with a very complex structure in the region of deformation movements, in which several low-intensity bands overlap. A complete and unambiguous assignment of the experimental spectrum has been achieved by using the calculated harmonic and anharmonic vibrational frequencies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Structural and vibrational study of 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone - A potential metal-protein attenuating compound (MPAC) for the treatment of Alzheimer's disease

    Science.gov (United States)

    de Freitas, Leonardo Viana; da Silva, Cecilia C. P.; Ellena, Javier; Costa, Luiz Antônio Sodré; Rey, Nicolás A.

    2013-12-01

    A comprehensive structural and vibrational study of the potential metal-protein attenuating compound 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone is reported. X-ray diffraction data, as well as FT-IR and Raman frequencies, were compared with the respective theoretical values obtained from DFT calculations. Theory agrees well with experiment. In this context, an attempt of total assignment concerning the FT-IR and Raman spectra of the title compound was performed, shedding new light on previous partial assignments published elsewhere.

  7. Antibacterial, Antiradical Potential and Phenolic Compounds of Thirty-One Polish Mushrooms.

    Directory of Open Access Journals (Sweden)

    Natalia Nowacka

    Full Text Available Among many sources of natural bioactive substances, mushrooms constitute a huge and almost unexplored group. Fungal compounds have been repeatedly reported to exert biological effects which have prompted their use in pharmaceutical and cosmetic industry. Therefore, the aim of this study was analysis of chemical composition and biological activity of 31 wild growing mushroom species (including saprophytic and parasitic from Poland.Qualitative and quantitative LC-ESI-MS/MS analysis of fourteen phenolic acids in the mushrooms analysed was performed. Moreover, total phenolic content was determined by the modified Folin-Ciocalteau method. Antioxidative activity of ethanolic extracts towards DPPH• free radical was examined. Antibacterial activity against Gram-positive (S. epidermidis, S. aureus, B. subtilis, M. luteus and Gram-negative (E. coli, K. pneumoniae, P. aeruginosa, P. mirabilis microbial strains was analyzed.As a result, the first such broad report on polyphenolic composition, antiradical and antimicrobial potential of wild growing Polish mushrooms was developed. Mushroom extracts were found to contain both benzoic (protocatechuic, 4-OH-benzoic, vanillic, syringic and cinnamic acid derivatives (caffeic, p-coumaric, ferulic. Total phenolic content in mushrooms ranged between 2.79 and 53.13 mg gallic acid equivalent /g of dried extract in Trichaptum fuscoviolaceum and Fomes fomentarius, respectively. Fungi showed much differentiated antiradical activity, from highly active F. fomentarius to poorly effective Russula fragilis (IC50 1.39 to 120.54 mg per mg DPPH•, respectively. A quite considerable relationship between phenolic content and antiradical activity has been demonstrated. Mushrooms varied widely in antimicrobial potential (MIC from 0.156 to 5 mg/ml. Generally, a slightly higher activity against Gram-positive than Gram-negative strains was observed. This is the first study concerning the chemical composition and biological activity

  8. Sulfur-containing heterocyclic compounds with potential antidiabetic activity

    Directory of Open Access Journals (Sweden)

    E. A. Savateeva

    2014-12-01

    Full Text Available The essential link in the pathogenesis of diabetes mellitus and its complications is a non-enzymatic glycosylation of proteins. However, modern endocrinology lacks of clinically effective pharmaceuticals for its correction. The screening of 23 derivatives of 1,3,4-thiadiazine the ability to inhibit the reaction of non-enzymatic glycosylation of proteins in vitro was held, and 11 the most active compounds of them were selected, also the relationship «structure – activity» was investigated. An essential part of the pathogenesis of diabetes mellitus and its complications is non-enzymatic glycosylation of proteins. However, modern endocrinology lacks clinically effective medicines for its correction.

  9. Antifouling Compounds from Marine Macroalgae.

    Science.gov (United States)

    Dahms, Hans Uwe; Dobretsov, Sergey

    2017-08-28

    Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way.

  10. Synthesis of Chlorinated Tetracyclic Compounds and Testing for Their Potential Antidepressant Effect in Mice

    Directory of Open Access Journals (Sweden)

    Usama Karama

    2016-01-01

    Full Text Available The synthesis of the tetracyclic compounds 1-(4,5-dichloro-9,10-dihydro-9,10-ethanoanthracen-11-yl-N-methylmethanamine (5 and 1-(1,8-dichloro-9,10-dihydro-9,10-ethanoanthracen-11-yl-N-methylmethanamine (6 as a homologue of the anxiolytic and antidepressant drugs benzoctamine and maprotiline were described. The key intermediate aldehydes (3 and (4 were successfully synthesized via a [4 + 2] cycloaddition between acrolein and 1,8-dichloroanthracene. The synthesized compounds were investigated for antidepressant activity using the forced swimming test. Compounds (5, (6 and (3 showed significant reduction in the mice immobility indicating significant antidepressant effects. These compounds significantly reduced the immobility times at a dose 80 mg/kg by 84.0%, 86.7% and 71.1% respectively.

  11. IRIS Toxicological Review of Thallium and Compounds ...

    Science.gov (United States)

    Thallium compounds are used in the semiconductor industry, the manufacture of optic lenses and low-melting glass, low-temperature thermometers, alloys, electronic devices, mercury lamps, fireworks, and imitation germs, and clinically as an imaging agent in the diagnosis of certain tumors. EPA's assessment of noncancer health effects and carcinogenic potential of thallium compounds was last prepared and added to the IRIS database between 1988 and 1990. The IRIS program is preparing an assessment that will incorporate current health effects information available for thallium and compounds, and current risk assessment methods. The IRIS assessment for thallium compounds will consist of a Toxicological Review and IRIS Summary. The Toxicological Review is a critical review of the physiochemical and toxicokinetic properties of a chemical, and its toxicity in humans and experimental systems. The assessment will present reference values for the noncancer effects of thallium compounds (RfD and Rfc), and a cancer assessment. The Toxicological Review and IRIS Summary have been subject to Agency review, Interagency review, and external scientific peer review. The final product will reflect the Agency opinion on the overall toxicity of thallium and compounds. EPA is undertaking an Integrated Risk Information System (IRIS) health assessment for thallium and compounds. IRIS is an EPA database containing Agency scientific positions on potential adverse human health effec

  12. Catalytic applications of niobium compounds

    International Nuclear Information System (INIS)

    Wright, C.J.; England, W.A.

    1984-01-01

    This article examines the potential uses of niobium, and its compounds, as catalysts in chemical processing. The word potential is deliberately chosen because in 1978 none of the world's twenty-five major catalysts (1) contained niobium. On the other hand, catalysts containing molybdenum and vanadium, neighbors of niobium in the periodic table, realized over 80 x 10 6 of sales in that same year. At the same time many of the patents for niobium catalysts cover applications in which niobium improves the activity of, or substitutes for, molybdenum based compounds. With favorable cost differentials and improvements in understanding, niobium may be able to replace molybdenum in some its traditional uses

  13. Diazo compounds in continuous-flow technology.

    Science.gov (United States)

    Müller, Simon T R; Wirth, Thomas

    2015-01-01

    Diazo compounds are very versatile reagents in organic chemistry and meet the challenge of selective assembly of structurally complex molecules. Their leaving group is dinitrogen; therefore, they are very clean and atom-efficient reagents. However, diazo compounds are potentially explosive and extremely difficult to handle on an industrial scale. In this review, it is discussed how continuous flow technology can help to make these powerful reagents accessible on large scale. Microstructured devices can improve heat transfer greatly and help with the handling of dangerous reagents safely. The in situ formation and subsequent consumption of diazo compounds are discussed along with advances in handling diazomethane and ethyl diazoacetate. The potential large-scale applications of a given methodology is emphasized. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Emissions of terpenoids, benzenoids, and other biogenic gas-phase organic compounds from agricultural crops and their potential implications for air quality

    Science.gov (United States)

    Gentner, D. R.; Ormeño, E.; Fares, S.; Ford, T. B.; Weber, R.; Park, J.-H.; Brioude, J.; Angevine, W. M.; Karlik, J. F.; Goldstein, A. H.

    2014-06-01

    Agriculture comprises a substantial, and increasing, fraction of land use in many regions of the world. Emissions from agricultural vegetation and other biogenic and anthropogenic sources react in the atmosphere to produce ozone and secondary organic aerosol, which comprises a substantial fraction of particulate matter (PM2.5). Using data from three measurement campaigns, we examine the magnitude and composition of reactive gas-phase organic carbon emissions from agricultural crops and their potential to impact regional air quality relative to anthropogenic emissions from motor vehicles in California's San Joaquin Valley, which is out of compliance with state and federal standards for tropospheric ozone PM2.5. Emission rates for a suite of terpenoid compounds were measured in a greenhouse for 25 representative crops from California in 2008. Ambient measurements of terpenoids and other biogenic compounds in the volatile and intermediate-volatility organic compound ranges were made in the urban area of Bakersfield and over an orange orchard in a rural area of the San Joaquin Valley during two 2010 seasons: summer and spring flowering. We combined measurements from the orchard site with ozone modeling methods to assess the net effect of the orange trees on regional ozone. When accounting for both emissions of reactive precursors and the deposition of ozone to the orchard, the orange trees are a net source of ozone in the springtime during flowering, and relatively neutral for most of the summer until the fall, when it becomes a sink. Flowering was a major emission event and caused a large increase in emissions including a suite of compounds that had not been measured in the atmosphere before. Such biogenic emission events need to be better parameterized in models as they have significant potential to impact regional air quality since emissions increase by several factors to over an order of magnitude. In regions like the San Joaquin Valley, the mass of biogenic

  15. Structure Based Virtual Screening Studies to Identify Novel Potential Compounds for GPR142 and Their Relative Dynamic Analysis for Study of Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Aman C. Kaushik

    2018-02-01

    Full Text Available GPR142 (G protein receptor 142 is a novel orphan GPCR (G protein coupled receptor belonging to “Class A” of GPCR family and expressed in β cells of pancreas. In this study, we reported the structure based virtual screening to identify the hit compounds which can be developed as leads for potential agonists. The results were validated through induced fit docking, pharmacophore modeling, and system biology approaches. Since, there is no solved crystal structure of GPR142, we attempted to predict the 3D structure followed by validation and then identification of active site using threading and ab initio methods. Also, structure based virtual screening was performed against a total of 1171519 compounds from different libraries and only top 20 best hit compounds were screened and analyzed. Moreover, the biochemical pathway of GPR142 complex with screened compound2 was also designed and compared with experimental data. Interestingly, compound2 showed an increase in insulin production via Gq mediated signaling pathway suggesting the possible role of novel GPR142 agonists in therapy against type 2 diabetes.

  16. Structure Based Virtual Screening Studies to Identify Novel Potential Compounds for GPR142 and Their Relative Dynamic Analysis for Study of Type 2 Diabetes

    Science.gov (United States)

    Kaushik, Aman C.; Kumar, Sanjay; Wei, Dong Q.; Sahi, Shakti

    2018-02-01

    GPR142 (G protein receptor 142) is a novel orphan GPCR (G protein coupled receptor) belonging to ‘Class A’ of GPCR family and expressed in beta cells of pancreas. In this study, we reported the structure based virtual screening to identify the hit compounds which can be developed as leads for potential agonists. The results were validated through induced fit docking, pharmacophore modeling and system biology approaches. Since, there is no solved crystal structure of GPR142, we attempted to predict the 3D structure followed by validation and then identification of active site using threading and ab initio methods. Also, structure based virtual screening was performed against a total of 1171519 compounds from different libraries and only top 20 best hit compounds were screened and analyzed. Moreover, the biochemical pathway of GPR142 complex with screened compound2 was also designed and compared with experimental data. Interestingly, compound2 showed an increase in insulin production via Gq mediated signaling pathway suggesting the possible role of novel GPR142 agonists in therapy against type 2 diabetes.

  17. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  18. Normative findings of electrically evoked compound action potential measurements using the neural response telemetry of the Nucleus CI24M cochlear implant system.

    NARCIS (Netherlands)

    Cafarelli-Dees, D.; Dillier, N.; Lai, W.K.; Wallenberg, E. von; Dijk, B. van; Akdas, F.; Aksit, M.; Batman, C.; Beynon, A.J.; Burdo, S.; Chanal, J.M.; Collet, L.; Conway, M.; Coudert, C.; Craddock, L.; Cullington, H.; Deggouj, N.; Fraysse, B.; Grabel, S.; Kiefer, J.; Kiss, J.G.; Lenarz, T.; Mair, A.; Maune, S.; Muller-Deile, J.; Piron, J.P.; Razza, S.; Tasche, C.; Thai-Van, H.; Toth, F.; Truy, E.; Uziel, A.; Smoorenburg, G.F.

    2005-01-01

    One hundred and forty-seven adult recipients of the Nucleus 24 cochlear implant system, from 13 different European countries, were tested using neural response telemetry to measure the electrically evoked compound action potential (ECAP), according to a standardised postoperative measurement

  19. Potential physiological effects of pharmaceutical compounds in Atlantic salmon (Salmo salar) implied by transcriptomic analysis.

    Science.gov (United States)

    Hampel, Miriam; Alonso, Esteban; Aparicio, Irene; Bron, James E; Santos, Juan Luis; Taggart, John B; Leaver, Michael J

    2010-05-01

    Pharmaceuticals are emerging pollutants widely used in everyday urban activities which can be detected in surface, ground, and drinking waters. Their presence is derived from consumption of medicines, disposal of expired medications, release of treated and untreated urban effluents, and from the pharmaceutical industry. Their growing use has become an alarming environmental problem which potentially will become dangerous in the future. However, there is still a lack of knowledge about long-term effects in non-target organisms as well as for human health. Toxicity testing has indicated a relatively low acute toxicity to fish species, but no information is available on possible sublethal effects. This study provides data on the physiological pathways involved in the exposure of Atlantic salmon as representative test species to three pharmaceutical compounds found in ground, surface, and drinking waters based on the evaluation of the xenobiotic-induced impairment resulting in the activation and silencing of specific genes. Individuals of Atlantic salmon (Salmo salar) parr were exposed during 5 days to environmentally relevant concentrations of three representative pharmaceutical compounds with high consumption rates: the analgesic acetaminophen (54.77+/-34.67 microg L(-1)), the anticonvulsant carbamazepine (7.85+/-0.13 microg L(-1)), and the beta-blocker atenolol (11.08+/-7.98 microg L(-1)). Five immature males were selected for transcriptome analysis in brain tissues by means of a 17k salmon cDNA microarray. For this purpose, mRNA was isolated and reverse-transcribed into cDNA which was labeled with fluorescent dyes and hybridized against a common pool to the arrays. Lists of significantly up- and down-regulated candidate genes were submitted to KEGG (Kyoto Encyclopedia of Genes and Genomes) in order to analyze for induced pathways and to evaluate the usefulness of this method in cases of not completely annotated test organisms. Exposure during 5 days to

  20. Carbon-14 radiolabelling and tissue distribution evaluation of a potential anti-TB compound.

    Science.gov (United States)

    Sonopo, Molahlehi S; Venter, Kobus; Winks, Susan; Marjanovic-Painter, Biljana; Morgans, Garreth L; Zeevaart, Jan R

    2016-06-15

    This paper describes a five-step synthesis of a carbon-14-labelled pyrazole compound (11). A total of 2.96 MBq of 11 was obtained with the specific activity of 2242.4 MBq/mmol. The radiochemical purity was >99%, and the overall radiochemical yield was 60% based on the [(14) C6 ] 4-bromoaniline starting material. Biodistribution results showed that the radiotracer (administrated orally) has a high accumulation in the small intestine, large intestine and liver of both non-infected and tuberculosis (TB)-infected mice. Therefore, this suggests that compound 11 undergoes hepatobiliary clearance. The compound under investigation has been found to be slowly released from the liver between 2 and 8 h. The study revealed that 11 has no affinity for TB cells. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Potential Precursor Compounds for Chlorohydrocarbons Detected in Gale Crater, Mars, by the SAM Instrument Suite on the Curiosity Rover

    Science.gov (United States)

    Miller, Kristen E.; Eigenbrode, Jennifer L.; Freissinet, Caroline; Glavin, Daniel P.; Kotrc, Benjamin; Francois, Pascaline; Summons, Roger E.

    2016-01-01

    The detection of chlorinated organic compounds in near-surface sedimentary rocks by the Sample Analysis at Mars (SAM) instrument suite aboard the Mars Science Laboratory Curiosity rover represents an important step toward characterizing habitable environments on Mars. However, this discovery also raises questions about the identity and source of their precursor compounds and the processes by which they become chlorinated. Here we present the results of analog experiments, conducted under conditions similar to SAM gas chromatography-mass spectrometry analyses, in which we pyrolyzed potential precursor compounds in the presence of various Cl salts and Fe oxides that have been identified in Martian sediments. While chloromethanes could not be unambiguously identified, 1,2-dichloropropane (1,2-DCP), which is one of the chlorinated compounds identified in SAM data, is formed from the chlorination of aliphatic precursors. Additionally, propanol produced more 1,2-DCP than nonfunctionalized aliphatics such as propane or hexanes. Chlorinated benzenes ranging from chlorobenzene to hexachlorobenzene were identified in experiments with benzene carboxylic acids but not with benzene or toluene. Lastly, the distribution of chlorinated benzenes depended on both the substrate species and the nature and concentration of the Cl salt. Ca and Mg perchlorate, both of which release O2 in addition to Cl2 and HCl upon pyrolysis, formed less chlorobenzene relative to the sum of all chlorinated benzenes than in experiments with ferric chloride. FeCl3, a Lewis acid, catalyzes chlorination but does not aid combustion. Accordingly, both the precursor chemistry and sample mineralogy exert important controls on the distribution of chlorinated organics.

  2. Cymbopogon citratus industrial waste as a potential source of bioactive compounds.

    Science.gov (United States)

    Tavares, Filipa; Costa, Gustavo; Francisco, Vera; Liberal, Joana; Figueirinha, Artur; Lopes, Maria Celeste; Cruz, Maria Teresa; Batista, Maria Teresa

    2015-10-01

    Cymbopogon citratus (Cc), commonly known as lemongrass, is a very important crop worldwide, being grown in tropical countries. It is widely used in the food, pharmaceutical, cosmetic and perfumery industries for its essential oil. Cc aqueous extracts are also used in traditional medicine. They contain high levels of polyphenols, which are known for their antioxidant and anti-inflammatory properties. Hydrodistillation of lemongrass essential oil produces an aqueous waste (CcHD) which is discarded. Therefore a comparative study between CcHD and Cc infusion (CcI) was performed to characterize its phytochemical profile and to research its antioxidant and anti-inflammatory potential. HPLC-PDA/ESI-MS(n) analysis showed that CcI and CcHD have similar phenolic profiles, with CcHD presenting a higher amount of polyphenols. Additionally, both CcI and CcHD showed antioxidant activity against DPPH (EC50 of 41.72 ± 0.05 and 42.29 ± 0.05 µg mL(-1) respectively) and strong anti-inflammatory properties, by reducing NO production and iNOS expression in macrophages and through their NO-scavenging activity, in a dose-dependent manner. Furthermore, no cytotoxicity was observed. The data of this study encourage considering the aqueous solution from Cc leaf hydrodistillation as a source of bioactive compounds, which may add great industrial value to this crop. © 2014 Society of Chemical Industry.

  3. Traditional Japanese medicines inhibit compound action potentials in the frog sciatic nerve.

    Science.gov (United States)

    Matsushita, Akitomo; Fujita, Tsugumi; Ohtsubo, Sena; Kumamoto, Eiichi

    2016-02-03

    Traditional Japanese (Kampo) medicines have a variety of clinical effects including pain alleviation, but evidence for a mechanism for their pain relief has not yet been elucidated fully. Considering that Kampo medicine contains many plant-derived chemicals having an ability to inhibit nerve action potential conduction, it is possible that this medicine inhibits nerve conduction. The purpose of the present study was to know how various Kampo medicines affect nerve conduction. We examined the effects of Kampo and crude medicines on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. Daikenchuto, rikkosan, kikyoto, rikkunshito, shakuyakukanzoto and kakkonto concentration-dependently reduced the peak amplitude of the CAP. Among the Kampo medicines, daikenchuto was the most effective in inhibiting CAPs. Daikenchuto is composed of three kinds of crude medicine, Japanese pepper, processed ginger and ginseng radix. When the crude medicines were tested, Japanese pepper and processed ginger reduced CAP peak amplitudes, while ginseng radix hardly affected CAPs. Moreover, there was an interaction between the Japanese pepper and processed ginger activities in such that one medicine at low but not high concentrations increased the extent of the inhibition by the other one that was co-applied. Kampo medicines have an ability to inhibit nerve conduction. This action of daikenchuto is due to Japanese pepper and processed ginger but not ginseng radix, probably through an interaction between Japanese pepper and processed ginger in a manner dependent on their concentrations. Nerve conduction inhibition could contribute to at least a part of Kampo medicine's clinical effects such as pain alleviation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Bioactive compounds and antioxidant potential for polyphenol-rich cocoa extract obtained by agroindustrial residue.

    Science.gov (United States)

    Gabbay Alves, Taís Vanessa; Silva da Costa, Russany; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Perego, Patrizia; Pinheiro Arruda, Mara Silvia; Carréra Silva Júnior, José Otávio; Converti, Attilio; Ribeiro Costa, Roseane Maria

    2017-11-10

    Processing of cocoa (Theobroma cacao L.) beans responsible for agricultural exports leads to large amounts of solid waste that were discarded, however, this one presents high contents of metabolites with biological activities. The major objective of this study was to valorise cocoa agroindustrial residue obtained by hydraulic pressing for extract rich in antioxidants. For it, the centesimal composition of residue was investigated, the green extraction was carried out from the residue after, the bioactive compounds, sugar contents and screaming by HPTLC were quantified for extract. The extract has a total polyphenol content of 229.64 mg/g and high antioxidant activity according to ABTS 225.0 μM/g. HTPLC analysis confirmed the presence in the extract, residue of terpenes, sesquiterpenes, flavonoids and antioxidant activity. These results, as a whole, suggest that the extract from the cocoa residue has interesting characteristics to alternative crops with potential industrial uses.

  5. Antibacterial Compounds from Red Seaweeds (Rhodophyta

    Directory of Open Access Journals (Sweden)

    Noer Kasanah

    2015-07-01

    Full Text Available Seaweeds produce great variety of metabolites benefit for human. Red seaweeds (Rhodophyta are well known as producer of phycocolloids such agar, agarose, carragenan and great variety of secondary metabolites. This review discusses the red algal secondary metabolites with antibacterial activity. The chemical constituents of red algae are steroid, terpenoid, acetogenin and dominated by halogenated compounds mainly brominated compounds. Novel compounds with intriguing skeleton are also reported such as bromophycolides and neurymenolides. In summary, red seaweeds are potential sources for antibacterial agents and can serve as lead in synthesis of new natural medicines.

  6. Synthesis of morpholine derivatives and Bunte's salt as compounds of potential radioprotective activity

    Energy Technology Data Exchange (ETDEWEB)

    Strzelczyk, M.; Kucharski, A. (Wojskowa Akademia Medyczna, Lodz (Poland))

    1980-01-01

    The purpose of the present study was to obtain several compounds possessing radioprotective activity. The syntheses yielded seven undescribed compounds i.e.: benzyl ester of the N-morpholinecarbathionothioglicol acid, ester bis S-(morpholine-4-thiocarbonyl)-2-thioethyl, morpholine salt of the N-morpholinecarbothionothiolic acid, sodium and potassium salt of S-morpholine-4-carbonyl, methylthiosulfate, sodium and potassium salt of beta-hydroxyethyl thiosulfate. Moreover, with the aid of other methods following compounds were synthetized: beta-S-(morpholine-4-thiocarbonyl) ethyl thiopropioniane, amide of the S-(morpholine-4-thiocarbonyl)-thioglicol acid, acid S-(morpholine-4-thiocarbonyl)-thioglicol acid, sodium salt of the S-(morpholine-4-thiocarbonyl)-thioglicol acid. The structure of these compounds was confirmed using elementary and spectral analysis.

  7. Monitoring of herbal mixtures potentially containing synthetic cannabinoids as psychoactive compounds.

    Science.gov (United States)

    Dresen, Sebastian; Ferreirós, Nerea; Pütz, Michael; Westphal, Folker; Zimmermann, Ralf; Auwärter, Volker

    2010-10-01

    Herbal mixtures like 'Spice' with potentially bioactive ingredients were available in many European countries since 2004 and are still widely used as a substitute for cannabis, although merchandized as 'herbal incense'. After gaining a high degree of popularity in 2008, big quantities of these drugs were sold. In December 2008, synthetic cannabinoids were identified in the mixtures which were not declared as ingredients: the C(8) homolog of the non-classical cannabinoid CP-47,497 (CP-47,497-C8) and a cannabimimetic aminoalkylindole called JWH-018. In February 2009, a few weeks after the German legislation put these compounds and further pharmacologically active homologs of CP-47,497 under control, another cannabinoid appeared in 'incense' products: the aminoalkylindole JWH-073. In this paper, the results of monitoring of commercially available 'incense' products from June 2008 to September 2009 are presented. In this period of time, more than 140 samples of herbal mixtures were analyzed for bioactive ingredients and synthetic cannabimimetic substances in particular. The results show that the composition of many products changed repeatedly over time as a reaction to prohibition and prosecution of resellers. Therefore neither the reseller nor the consumer of these mixtures can predict the actual content of the 'incense' products. As long as there is no possibility of generic definitions in the controlled substances legislation, further designer cannabinoids will appear on the market as soon as the next legal step has been taken. This is affirmed by the recent identification of the aminoalkylindoles JWH-250 and JWH-398. As further cannabinoids can be expected to occur in the near future, a continuous monitoring of these herbal mixtures is required. The identification of the synthetic opioid O-desmethyltramadol in a herbal mixture declared to contain 'kratom' proves that the concept of selling apparently natural products spiked with potentially dangerous synthetic

  8. Diazo Compounds: Versatile Tools for Chemical Biology.

    Science.gov (United States)

    Mix, Kalie A; Aronoff, Matthew R; Raines, Ronald T

    2016-12-16

    Diazo groups have broad and tunable reactivity. That and other attributes endow diazo compounds with the potential to be valuable reagents for chemical biologists. The presence of diazo groups in natural products underscores their metabolic stability and anticipates their utility in a biological context. The chemoselectivity of diazo groups, even in the presence of azido groups, presents many opportunities. Already, diazo compounds have served as chemical probes and elicited novel modifications of proteins and nucleic acids. Here, we review advances that have facilitated the chemical synthesis of diazo compounds, and we highlight applications of diazo compounds in the detection and modification of biomolecules.

  9. Biodegradation of NSO-compounds under different redox-conditions

    DEFF Research Database (Denmark)

    Dyreborg, S.; Arvin, E.; Broholm, K.

    1997-01-01

    Laboratory experiments were carried out to investigate the potential of groundwater microorganisms to degrade selected heterocyclic aromatic compounds containing nitrogen, sulphur, or oxygen (NSO-compounds) under four redox-conditions over a period of 846 days. Eight compounds (pyrrole, 1...... anaerobic conditions, even though the microorganisms present in the anaerobic microcosms were active throughout the incubation period. A high variability in the lag period among the NSO-compounds was observed under aerobic conditions. While quinoline, indole, and carbazole were degraded with a lag period...

  10. Electrochemistry of potentially bioreductive alkylating quinones : Part 1. Electrochemical properties of relatively simple quinones, as model compounds of mitomycin- and aziridinylquinone-type antitumour agents

    NARCIS (Netherlands)

    Driebergen, R.J.; den Hartigh, J.; Holthuis, J.J.M.; Hulshoff, A.; van Oort, W.J.; Postma kelder, S.J.; Verboom, Willem; Reinhoudt, David; Bos, M.; van der Linden, W.E.

    1990-01-01

    The influence of methyl-, hydroxy and amino substituents on the electrochemical behaviour of simple 1,4-naphtho-and 1,4-benzoquinones, model compounds of many quinoid antitumour agents, in aqueous media was studied. Significant changes in electrochemical behaviour were observed, potentially the

  11. Adjuvant effects and antiserum action potentiation by a (herbal) compound 2-hydroxy-4-methoxy benzoic acid isolated from the root extract of the Indian medicinal plant 'sarsaparilla' (Hemidesmus indicus R. Br.).

    Science.gov (United States)

    Alam, M I; Gomes, A

    1998-10-01

    The adjuvant effect and antiserum potentiation of a compound 2-hydroxy-4-methoxy benzoic acid were explored in the present investigation. This compound, isolated and purified from the Indian medicinal plant Hemidesmus indicus R. Br, possessed antisnake venom activity. Rabbits immunized with Vipera russellii venom in the presence and absence of the compound along with Freund's complete adjuvant, produced a precipitating band in immunogel diffusion and immunogel electrophoresis. The venom neutralizing capacity of this antiserum showed positive adjuvant effects as evident by the higher neutralization capacity (lethal and hemorrhage) when compared with the antiserum raised with venom alone. The pure compound potentiated the lethal action neutralization of venom by commercial equine polyvalent snake venom antiserum in experimental models. These observations raised the possibility of the use of chemical antagonists (from herbs) against snake bite, which may provide a better protection in presence of antiserum, especially in the rural parts of India.

  12. Electron structure of atoms in laser plasma: The Debye shielding model

    International Nuclear Information System (INIS)

    Sako, Tokuei; Okutsu, Hiroshi; Yamanouchi, Kaoru

    2005-01-01

    The electronic structure and the energy spectra of multielectron atoms in laser plasmas are examined by the Debye shielding model. The effect of the plasma environment on the electrons bound in an atom is taken into account by introducing the screened Coulomb-type potentials into the electronic Hamiltonian of an atom in place of the standard nuclear attraction and electron repulsion potentials. The capabilities of this new Hamiltonian are demonstrated for He and Li in laser plasmas. (author)

  13. Information profiles on potential occupational hazards: Inorganic chromium compounds. Draft report (Second)

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-01

    Information profiles are presented for the following inorganic chromium compounds: chromic(VI) acid, chromic(III) hydroxide, chromic(III) oxide, chromic(III) sulfate, chromic(III) sulfate (basic), chromium dioxide, potassium dichromate(VI), lead chromate, sodium-chromate(VI), sodium-dichromate(VI), and zinc-yellow-chromate(VI). Biological effects of hexavalent chromium in humans included skin ulceration, dermatitis, nasal membrane irritation and ulceration, nasal septal perforation, rhinitis, nosebleed, nephritis, liver damage, epigastric pain, pulmonary congestion and edema, and erosion and discoloration of teeth. Chromium(VI) compounds caused mutations in a variety of systems. Exposure to trivalent chromium in the work place has caused contact dermatitis and chrome ulcers. Epidemiological studies indicated respiratory carcinogenicity among workers occupationally exposed during chromate production.

  14. Essential Oils and Pure Volatile Compounds as Potential Drugs in Alzheimer's Disease Therapy: An Updated Review of the Literature.

    Science.gov (United States)

    Maggio, Antonella; Rosselli, Sergio; Bruno, Maurizio

    2016-01-01

    The use of aromatic plants to relief different illness is not a new therapy. Actually aromatic plants have been used for many centuries by different cultures around the world. Pharmacological studies provide scientific support to the traditional use of aromatic medicinal plants and aromatherapy; nevertheless, more clinical trials are required regarding to their effectiveness in order to establish a guidance for their use in routine healthcare. Moreover, modern medicine in studies about olfactory function has attained great achievements and got Nobel Prize in 2004. These new searches have obviously fueled interest in the essential oils and volatile compounds of natural origin. Several reviews on the newly discovered AChEi obtained from plants, fungus and marine organisms have also been published over the last years. The majority of these AChEi belong to the alkaloid group, including indole, isoquinoline, quinolizidine, piperidine and steroidal alkaloids. Probably the interest in the essential oils and volatile compounds will be fueled from the new available scientific data about receptor on olfactory mucosa of nasal cavity. It can receive and distinguish different odor molecules, which produce nerve impulse and transmit into olfactory bulb via olfactory nerves. The nerve cells in the olfactory bulb transmit the signals into hippocampus. Because hippocampus is closely related with learning and memory functions, the volatile compounds can be potential drugs in AD therapies.

  15. Kinetic studies and evaluation of potential compounds for the chemotherapy of Leishmaniasis using LdNH-MBP

    Energy Technology Data Exchange (ETDEWEB)

    Renno, M.N.; Figueroa-Villar, J.D. [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Dept. de Quimica; Silva, N.B. da; Tinoco, L.W. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Nucleo de Pesquisas de Produtos Naturais; Borja-Cabrera, G.P.; Palatnik-de-Sousa, C.B.P. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Inst. de Microbiologia

    2008-07-01

    Full text: Protozoan parasites rely exclusively on purine salvage from the host for DNA and RNA synthesis and nucleoside hydrolases (N Hs) are the enzymes that catalyze the N-rib osyl hydrolysis of all commonly occurring purine and pi rimidine nucleosides, thus being excellent targets for the design of antiparasitic compounds. The general aim of our work with Leishmania donovani NH (LdNH) is to find new inhibitors for this enzyme as potential agents for the chemotherapy of visceral leishmaniasis. In this part of the work we expressed LdNH bound to maltose-binding protein (MBP) in E. coli using the pMAL-C2x vector. After purification by affinity chromatography the enzyme activity was monitored by UV (280 nm) and {sup 1}H NMR spectroscopy using inosine as substrate. All the assays were carried out at 25 deg C in phosphate buffer (pH 8.0) in water (UV) and D{sub 2}O (NMR). Our results show that LdNH-MBP behaves kinetically in the same way as it have been reported for free LdNH, thus confirming that LdNH-MBP maintains the appropriate folding and activity of the enzyme active site, thus being a good model to develop and evaluate new inhibitors of LdNH. As an example, the kinetics tests with AZT have shown that this compound is not an effective inhibitor of this enzyme.

  16. Kinetic studies and evaluation of potential compounds for the chemotherapy of Leishmaniasis using LdNH-MBP

    International Nuclear Information System (INIS)

    Renno, M.N.; Figueroa-Villar, J.D.; Silva, N.B. da; Tinoco, L.W.; Borja-Cabrera, G.P.; Palatnik-de-Sousa, C.B.P.

    2008-01-01

    Full text: Protozoan parasites rely exclusively on purine salvage from the host for DNA and RNA synthesis and nucleoside hydrolases (N Hs) are the enzymes that catalyze the N-rib osyl hydrolysis of all commonly occurring purine and pi rimidine nucleosides, thus being excellent targets for the design of antiparasitic compounds. The general aim of our work with Leishmania donovani NH (LdNH) is to find new inhibitors for this enzyme as potential agents for the chemotherapy of visceral leishmaniasis. In this part of the work we expressed LdNH bound to maltose-binding protein (MBP) in E. coli using the pMAL-C2x vector. After purification by affinity chromatography the enzyme activity was monitored by UV (280 nm) and 1 H NMR spectroscopy using inosine as substrate. All the assays were carried out at 25 deg C in phosphate buffer (pH 8.0) in water (UV) and D 2 O (NMR). Our results show that LdNH-MBP behaves kinetically in the same way as it have been reported for free LdNH, thus confirming that LdNH-MBP maintains the appropriate folding and activity of the enzyme active site, thus being a good model to develop and evaluate new inhibitors of LdNH. As an example, the kinetics tests with AZT have shown that this compound is not an effective inhibitor of this enzyme

  17. Structure and Potential Cellular Targets of HAMLET-like Anti-Cancer Compounds made from Milk Components.

    Science.gov (United States)

    Rath, Emma M; Duff, Anthony P; Håkansson, Anders P; Vacher, Catherine S; Liu, Guo Jun; Knott, Robert B; Church, William Bret

    2015-01-01

    The HAMLET family of compounds (Human Alpha-lactalbumin Made Lethal to Tumours) was discovered during studies on the properties of human milk, and is a class of protein-lipid complexes having broad spectrum anti-cancer, and some specific anti-bacterial properties. The structure of HAMLET-like compounds consists of an aggregation of partially unfolded protein making up the majority of the compound's mass, with fatty acid molecules bound in the hydrophobic core. This is a novel protein-lipid structure and has only recently been derived by small-angle X-ray scattering analysis. The structure is the basis of a novel cytotoxicity mechanism responsible for anti-cancer activity to all of the around 50 different cancer cell types for which the HAMLET family has been trialled. Multiple cytotoxic mechanisms have been hypothesised for the HAMLET-like compounds, but it is not yet clear which of those are the initiating cytotoxic mechanism(s) and which are subsequent activities triggered by the initiating mechanism(s). In addition to the studies into the structure of these compounds, this review presents the state of knowledge of the anti-cancer aspects of HAMLET-like compounds, the HAMLET-induced cytotoxic activities to cancer and non-cancer cells, and the several prospective cell membrane and intracellular targets of the HAMLET family. The emerging picture is that HAMLET-like compounds initiate their cytotoxic effects on what may be a cancer-specific target in the cell membrane that has yet to be identified. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  18. A comparative assessment of the acute inhalation toxicity of vanadium compounds.

    Science.gov (United States)

    Rajendran, N; Seagrave, J C; Plunkett, L M; MacGregor, J A

    2016-11-01

    Vanadium compounds have become important in industrial processes, resulting in workplace exposure potential and are present in ambient air as a result of fossil fuel combustion. A series of acute nose-only inhalation toxicity studies was conducted in both rats and mice in order to obtain comparative data on the acute toxicity potential of compounds used commercially. V 2 O 3 , V 2 O 4 , and V 2 O 5 , which have different oxidation states (+3, +4, +5, respectively), were delivered as micronized powders; the highly water-soluble and hygroscopic VOSO 4 (+4) could not be micronized and was instead delivered as a liquid aerosol from an aqueous solution. V 2 O 5 was the most acutely toxic micronized powder in both species. Despite its lower overall percentage vanadium content, a liquid aerosol of VOSO 4 was more toxic than the V 2 O 5 particles in mice, but not in rats. These data suggest that an interaction of characteristics, i.e., bioavailability, solubility and oxidation state, as well as species sensitivity, likely affect the toxicity potential of vanadium compounds. Based on clinical observations and gross necropsy findings, the lung appeared to be the target organ for all compounds. The level of hazard posed will depend on the specific chemical form of the vanadium. Future work to define the inhalation toxicity potential of vanadium compounds of various oxidation states after repeated exposures will be important in understanding how the physico-chemical and biological characteristics of specific vanadium compounds interact to affect toxicity potential and the potential risks posed to human health.

  19. Phenolic Compounds in Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Pablo Velasco

    2010-12-01

    Full Text Available Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

  20. Prioritizing pesticide compounds for analytical methods development

    Science.gov (United States)

    Norman, Julia E.; Kuivila, Kathryn; Nowell, Lisa H.

    2012-01-01

    The U.S. Geological Survey (USGS) has a periodic need to re-evaluate pesticide compounds in terms of priorities for inclusion in monitoring and studies and, thus, must also assess the current analytical capabilities for pesticide detection. To meet this need, a strategy has been developed to prioritize pesticides and degradates for analytical methods development. Screening procedures were developed to separately prioritize pesticide compounds in water and sediment. The procedures evaluate pesticide compounds in existing USGS analytical methods for water and sediment and compounds for which recent agricultural-use information was available. Measured occurrence (detection frequency and concentrations) in water and sediment, predicted concentrations in water and predicted likelihood of occurrence in sediment, potential toxicity to aquatic life or humans, and priorities of other agencies or organizations, regulatory or otherwise, were considered. Several existing strategies for prioritizing chemicals for various purposes were reviewed, including those that identify and prioritize persistent, bioaccumulative, and toxic compounds, and those that determine candidates for future regulation of drinking-water contaminants. The systematic procedures developed and used in this study rely on concepts common to many previously established strategies. The evaluation of pesticide compounds resulted in the classification of compounds into three groups: Tier 1 for high priority compounds, Tier 2 for moderate priority compounds, and Tier 3 for low priority compounds. For water, a total of 247 pesticide compounds were classified as Tier 1 and, thus, are high priority for inclusion in analytical methods for monitoring and studies. Of these, about three-quarters are included in some USGS analytical method; however, many of these compounds are included on research methods that are expensive and for which there are few data on environmental samples. The remaining quarter of Tier 1

  1. Possible impact of multi-electron loss events on the average beam charge state in an HIF target chamber and a neutral beam approach

    Science.gov (United States)

    Grisham, L. R.

    2001-05-01

    Experiments were carried out during the early 1980s to assess the obtainable atomic neutralization of energetic beams of negative ions ranging from lithium to silicon. The experiments found (Grisham et al. Rev. Sci. Instrum. 53 (1982) 281; Princeton Plasma Physics Laboratory Report PPPL-1857, 1981) that, for higher atomic number elements than lithium, it appeared that a substantial fraction of the time more than one electron was being lost in a single collision. This result was inferred from the existence of more than one ionization state in the product beam for even the thinnest line densities at which any electron removal took place. Because of accelerator limitations, these experiments were limited to maximum energies of 7 MeV. However, based upon these results, it is possible that multi-electron loss events may also play a significant role in determining the average ion charge state of the much higher Z and more energetic beams traversing the medium in an heavy ion fusion chamber. This could result in the beam charge state being considerably higher than previously anticipated, and might require designers to consider harder vacuum ballistic focusing approaches, or the development of additional space charge neutralization schemes. This paper discusses the measurements that gave rise for these concerns, as well as a description of further measurements that are proposed to be carried out for atomic numbers and energies per amu which would be closer to those required for heavy ion fusion drivers. With a very low current beam of a massive, but low charge state energetic ion, the charge state distribution emerging from a target gas cell could be measured as a function of line density and medium composition. Varying the line density would allow one to simulate the charge state evolution of the beam as a function of distance into the target chamber. This paper also briefly discusses a possible alternative driver approach using photodetachment-neutralized atomic beams

  2. Lichens as source of versatile bioactive compounds

    Directory of Open Access Journals (Sweden)

    Mitrović, T.

    2011-09-01

    Full Text Available Lichens represent unique symbiosis of fungi (mycobionts and algae (photobionts. Living in extreme conditions they developed various compounds to survive. Many of these original compounds have proven biological activities (antibiotic, antimycotic, antiviral, antitumor, antioxidant, etc . This paper is synthesis of currently known data about lichens extracts and their potential use in pharmaceutics and medicine.

  3. Workshop report of problems relating to multi-electron excited ions in plasma

    International Nuclear Information System (INIS)

    Fujimoto, Takashi; Suzuki, Hiroshi; Takayanagi, Toshinobu; Koike, Fumihiro; Nakamura, Koji.

    1979-08-01

    A workshop was held to discuss the problems relating to multiple electron-excited ions in plasma. The first part of this report deals with the problems of satellite lines. The satellite lines from laser plasma and vacuum sparks are discussed. Review papers on satellite lines and bielectronic recombination are also presented. The second part of this report deals with the problems of autoionization. Theory, comment on the compound state, observation of autoionization and resonance scattering, excitation cross-section, inner shell ionization, excitation through autoionization, and the bielectronic recombination of helium-like ions are discussed. (Kato, T.)

  4. Applying Quality by Design Concepts to Pharmacy Compounding.

    Science.gov (United States)

    Timko, Robert J

    2015-01-01

    Compounding of medications is an important part of the practice of the pharmacy profession. Because compounded medications do not have U.S. Food and Drug Administration approval, a pharmacist has the responsibility to ensure that compounded medications are of suitable quality, safety, and efficacy. The Federal Government and numerous states have updated their laws and regulations regarding pharmacy compounding as a result of recent quality issues. Compounding pharmacists are expected to follow good preparation prodecures in their compounding practices in much the same way pharmaceutical manufacturers are required to follow Current Good Manufacturing Procedures as detailed in the United States Code of Federal Regulations. Application of Quality by Design concepts to the preparation process for a compounded medication can help in understanding the potential pitfalls and the means to mitigate their impact. The goal is to build quality into the compounding process to ensure that the resultant compounded prescription meets the human or animal patients' requirements.

  5. Natural Compounds as Regulators of the Cancer Cell Metabolism

    Directory of Open Access Journals (Sweden)

    Claudia Cerella

    2013-01-01

    Full Text Available Even though altered metabolism is an “old” physiological mechanism, only recently its targeting became a therapeutically interesting strategy and by now it is considered an emerging hallmark of cancer. Nevertheless, a very poor number of compounds are under investigation as potential modulators of cell metabolism. Candidate agents should display selectivity of action towards cancer cells without side effects. This ideal favorable profile would perfectly overlap the requisites of new anticancer therapies and chemopreventive strategies as well. Nature represents a still largely unexplored source of bioactive molecules with a therapeutic potential. Many of these compounds have already been characterized for their multiple anticancer activities. Many of them are absorbed with the diet and therefore possess a known profile in terms of tolerability and bioavailability compared to newly synthetized chemical compounds. The discovery of important cross-talks between mediators of the most therapeutically targeted aberrancies in cancer (i.e., cell proliferation, survival, and migration and the metabolic machinery allows to predict the possibility that many anticancer activities ascribed to a number of natural compounds may be due, in part, to their ability of modulating metabolic pathways. In this review, we attempt an overview of what is currently known about the potential of natural compounds as modulators of cancer cell metabolism.

  6. Effects of terpineol on the compound action potential of the rat sciatic nerve

    Directory of Open Access Journals (Sweden)

    M.R. Moreira

    2001-10-01

    Full Text Available Terpineol, a volatile terpenoid alcohol of low toxicity, is widely used in the perfumery industry. It is an important chemical constituent of the essential oil of many plants with widespread applications in folk medicine and in aromatherapy. The effects of terpineol on the compound action potential (CAP of rat sciatic nerve were studied. Terpineol induced a dose-dependent blockade of the CAP. At 100 µM, terpineol had no demonstrable effect. At 300 µM terpineol, peak-to-peak amplitude and conduction velocity of CAP were significantly reduced at the end of 180-min exposure of the nerve to the drug, from 3.28 ± 0.22 mV and 33.5 ± 7.05 m/s, respectively, to 1.91 ± 0.51 mV and 26.2 ± 4.55 m/s. At 600 µM, terpineol significantly reduced peak-to-peak amplitude and conduction velocity from 2.97 ± 0.55 mV and 32.8 ± 3.91 m/s to 0.24 ± 0.23 mV and 2.72 ± 2.72 m/s, respectively (N = 5. All these effects developed slowly and were reversible upon 180-min washout.

  7. Identification of volatile organic compounds in suburban Bangkok, Thailand and their potential for ozone formation

    Science.gov (United States)

    Suthawaree, Jeeranut; Tajima, Yosuke; Khunchornyakong, Alisa; Kato, Shungo; Sharp, Alice; Kajii, Yoshizumi

    2012-02-01

    Measurement of Volatile Organic Compound (VOC) was carried out in suburban Bangkok during July 2-8, 2008. Analysis was performed using GC-FID and GC-MS. High mixing ratios of VOCs detected during the morning and evening are most likely due to vehicular emissions. Averaged VOC mixing ratios revealed distinct difference between mixing ratios of weekdays and weekend, which the latter were found to be lower. The most abundance species were propane and toluene. Ratios of benzene over toluene suggested that additional toluene mixing ratios was owing to industrial emission, which was particularly larger during weekdays. Comparison between C2Cl4 and CH3Cl mixing ratios obtained for suburban Tokyo reveal a relatively lower influence of biomass burning than suburban Bangkok. Elucidating by Ozone Formation Potential, toluene was found to contribute the most to O3 production followed by ethylene, m-,p-xylene, and propylene.

  8. Integrated modelling of two xenobiotic organic compounds

    DEFF Research Database (Denmark)

    Lindblom, Erik Ulfson; Gernaey, K.V.; Henze, Mogens

    2006-01-01

    This paper presents a dynamic mathematical model that describes the fate and transport of two selected xenobiotic organic compounds (XOCs) in a simplified representation. of an integrated urban wastewater system. A simulation study, where the xenobiotics bisphenol A and pyrene are used as reference...... compounds, is carried out. Sorption and specific biological degradation processes are integrated with standardised water process models to model the fate of both compounds. Simulated mass flows of the two compounds during one dry weather day and one wet weather day are compared for realistic influent flow...... rate and concentration profiles. The wet weather day induces resuspension of stored sediments, which increases the pollutant load on the downstream system. The potential of the model to elucidate important phenomena related to origin and fate of the model compounds is demonstrated....

  9. Synthesis of sulfenamides, derivatives of morpholine, 4-aminomorpholine and thiomorpholine as compounds of potential radioprotective action

    Energy Technology Data Exchange (ETDEWEB)

    Strzelczyk, M.; Kucharski, A. (Wojskowa Akademia Medyczna, Lodz (Poland))

    1979-01-01

    Sulfenamides belong to the group of compounds displaying radioprotective action. Their mechanism of action is based mainly on the protection against oxygenation. Six compounds were synthetized four of which i.e. 3-nitrophenylothiomorpholine, 2,4-dinitrophenylothiomorpholine, 2,4-dinitrophenylothio-4-aminomorpholine and 2,4-dinitrophenylothiothiomorpholine were to date not described in the literature. The structure of the synthetized compounds was confirmed by elementary and infrared spectral analysis.

  10. Formulation, evaluation and bioactive potential of Xylaria primorskensis terpenoid nanoparticles from its major compound xylaranic acid.

    Science.gov (United States)

    Adnan, Mohd; Patel, Mitesh; Reddy, Mandadi Narsimha; Alshammari, Eyad

    2018-01-29

    In recent years, fungi have been shown to produce a plethora of new bioactive secondary metabolites of interest, as new lead structures for medicinal and other pharmacological applications. The present investigation was carried out to study the pharmacological properties of a potent and major bioactive compound: xylaranic acid, which was obtained from Xylaria primorskensis (X. primorskensis) terpenoids in terms of antibacterial activity, antioxidant potential against DPPH & H 2 O 2 radicals and anticancer activity against human lung cancer cells. Due to terpenoid nature, low water solubility and wretched bioavailability, its pharmacological use is limited. To overcome these drawbacks, a novel xylaranic acid silver nanoparticle system (AgNPs) is developed. In addition to improving its solubility and bioavailability, other advantageous pharmacological properties has been evaluated. Furthermore, enhanced anticancer activity of xylaranic acid and its AgNPs due to induced apoptosis were also confirmed by determining the expression levels of apoptosis regulatory genes p53, bcl-2 and caspase-3 via qRT PCR method. This is the first study developing the novel xylaranic acid silver nanoparticle system and enlightening its therapeutic significance with its improved physico-chemical properties and augmented bioactive potential.

  11. Molecular basis of biodegradation of chloroaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sangodkar, U M.X.; Aldrich, T L; Haugland, R A; Johnson, J; Rothmel, R K; Chakrabarty, A M [Illinois Univ., Chicago (USA). Coll. of Medicine; Chapman, P J [Environmental Protection Agency, Gulf Breeze, FL (USA). Microbial Ecology and Biotechnology

    1989-01-01

    Chlorinated aromatic hydrocarbons are widely used in industry and agriculture, and comprise the bulk of environmental pollutants. Although simple aromatic compounds are biodegradable by a variety of degradative pathways, their halogenated counterparts are more resistant to bacterial attack and often necessitate evolution of novel pathways. An understanding of such evolutionary processes is essential for developing genetically improved strains capable of mineralizing highly chlorinated compounds. This article provides an overview of the genetic aspects of dissimilation of chloroaromatic compounds and discusses the potential of gene manipulation to promote enhanced evolution of the degradation pathways. (orig.).

  12. Antimicrobial Compounds from Marine Invertebrates-Derived Microorganisms.

    Science.gov (United States)

    Liu, Juan; Jung, Jee H; Liu, Yonghong

    2016-01-01

    It is known that marine invertebrates, including sponges, tunicates, cnidaria or mollusks, host affluent and various communities of symbiotic microorganisms. The microorganisms associated with the invertebrates metabolized various biologically active compounds, which could be an important resource for the discovery and development of potentially novel drugs. In this review, the new compounds with antimicrobial activity isolated from marine invertebrate-derived microorganisms in the last decade (2004-2014) will be presented, with focus on the relevant antimicrobial activities, origin of isolation, and information of strain species. New compounds without antimicrobial activity were not revealed.

  13. Radiopharmaceuticals and other compounds labelled with short-lived radionuclides

    CERN Document Server

    Welch, Michael J

    2013-01-01

    Radiopharmaceuticals and Other Compounds Labelled with Short-Lived Radionuclides covers through both review and contributed articles the potential applications and developments in labeling with short-lived radionuclides whose use is restricted to institutions with accelerators. The book discusses the current and potential use of generator-produced radionuclides as well as other short-lived radionuclides, and the problems of quality control of such labeled compounds. The book is useful to nuclear medicine physicians.

  14. Assessing two different peroxidases´ potential for application in recalcitrant organic compound bioremediation

    Directory of Open Access Journals (Sweden)

    Nelson Caicedo

    2001-07-01

    Full Text Available This work shows the promising future presented by the following enzymes: Chloroperoxidase (CPO from Caldariomyces fumago and royal palm peroxidase (Roystonea regia, PPR. These peroxidases were obtained from different sources (microbial and vegetable and used as biocatalysts for applicating them in bioremediation of recalcitrant organic compounds. Each one of the enzymes' peroxidase catalytic activity was evaluated in organic phase systems, using different model compounds such as: PAHs (pyrene and anthracene, organic-nitrogenated compounds (diphenylamine, monoaromatic phenolic molecules (guayacol and dyes (methyl orange and ABTS. The reaction systems were composed of mono-phase water mixtures and organic miscible solvent (methanol, ethanol, isopropanol, acetonitrile, tetrahydrofuran, dimethyl sulfoxide and dimethyl formamide, on which both peroxidases' catalytic activity was evaluated. The two enzymes' catalytic activity was observed on the evaluated substrates in most of these assays. However, PPR did not show biocatalytic oxidation for methyl orange dye and some PAHs. This enzyme did show the best tolerance to the evaluated solvents. Its catalytic activity was appreciably enhanced when low hydrophobic solvents were used. The kcat was calculated from this experimental data (as kinetic parameter leading to each enzyme's biocatalytic performance on substrates being compared.

  15. Toxicological perspectives on perfluorinated compounds in avian species

    Energy Technology Data Exchange (ETDEWEB)

    Giesy, J.; Jones, P. [Michigan State Univ., East Lansing, MI (United States)

    2004-09-15

    Perfluorinated chemicals have been widely used in commerce for the last few decades. Until recently little was known about their environmental fate and even less was known about their potential environmental effects. Since Giesy and co-workers first demonstrated the widespread occurrence of perfluorooctane sulfonic acid (PFOS) in wildlife there has been renewed interest in determining the biological and possible ecological effects of these compounds. The assessment of possible effects of these chemicals has been hampered by a limited understanding of their mode of action and by a lack of toxicological data for wildlife species. Here we summarize recently obtained toxicological studies available for perfluorinated compounds (PFCs) in two avian species and use this information and environmental concentration data to evaluate the potential for environmental risk that these compounds pose.

  16. Respiratory carcinogenicity assessment of soluble nickel compounds.

    Science.gov (United States)

    Oller, Adriana R

    2002-10-01

    The many chemical forms of nickel differ in physicochemical properties and biological effects. Health assessments for each main category of nickel species are needed. The carcinogenicity assessment of water-soluble nickel compounds has proven particularly difficult. Epidemiologic evidence indicates an association between inhalation exposures to nickel refinery dust containing soluble nickel compounds and increased risk of respiratory cancers. However, the nature of this association is unclear because of limitations of the exposure data, inconsistent results across cohorts, and the presence of mixed exposures to water-insoluble nickel compounds and other confounders that are known or suspected carcinogens. Moreover, well-conducted animal inhalation studies, where exposures were solely to soluble nickel, failed to demonstrate a carcinogenic potential. Similar negative results were seen in animal oral studies. A model exists that relates respiratory carcinogenic potential to the bioavailability of nickel ion at nuclear sites within respiratory target cells. This model helps reconcile human, animal, and mechanistic data for soluble nickel compounds. For inhalation exposures, the predicted lack of bioavailability of nickel ion at target sites suggests that water-soluble nickel compounds, by themselves, will not be complete human carcinogens. However, if inhaled at concentrations high enough to induce chronic lung inflammation, these compounds may enhance carcinogenic risks associated with inhalation exposure to other substances. Overall, the weight of evidence indicates that inhalation exposure to soluble nickel alone will not cause cancer; moreover, if exposures are kept below levels that cause chronic respiratory toxicity, any possible tumor-enhancing effects (particularly in smokers) would be avoided.

  17. Functional food productions: release the potential of bioactive compounds through food processing

    Science.gov (United States)

    Epidemiological studies of bioactive compounds from plant-based foods have consistently pointed to undisputed benefits of consumption of plant-based foods on human health particularly regarding cardiovascular diseases and cancers. However, in order to attain the dosage required from these studies, p...

  18. Carbohydrate degradation mechanisms and compounds from pretreated biomass

    DEFF Research Database (Denmark)

    Rasmussen, Helena

    The formation of inhibitors during pretreatment of lignocellulosic feedstocks is a persistent problem, and notably the compounds that retard enzymatic cellulose conversion represent an obstacle for achieving optimal enzymatic productivity and high glucose yields. Compounds with many chemical...... pretreated wheat straw after enzymatic treatment. It was found that formation of the oligophenolic degradation compounds were common across biomass sources as sugar cane bagasse and oil palm empty fruit bunches. These findings were in line with that the oligophenolic compounds arise from reactions involving...... functionalities are formed during biomass pretreatment, which gives possibilities for various chemical reactions to take place and hence formation of many new potential inhibitor compounds. This somehow overlooked contemplation formed the basis for the main hypothesis investigated in this work: Hypothesis 1...

  19. Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application

    OpenAIRE

    Antonopoulou, Io; Varriale, Simona; Topakas, Evangelos; Rova, Ulrika; Christakopoulos, Paul; Faraco, Vincenza

    2016-01-01

    Cosmeceuticals are cosmetic products containing biologically active ingredients purporting to offer a pharmaceutical therapeutic benefit. The active ingredients can be extracted and purified from natural sources (botanicals, herbal extracts, or animals) but can also be obtained biotechnologically by fermentation and cell cultures or by enzymatic synthesis and modification of natural compounds. A cosmeceutical ingredient should possess an attractive property such as anti-oxidant, anti-inflamma...

  20. Assessment of the potential activity of major dietary compounds as selective estrogen receptor modulators in two distinct cell models for proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte, Sylvain; Lelong, Marie; Bourgine, Gaëlle [Institut de Recherche en Santé-Environnement-Travail (IRSET), Inserm UMR 1085, Team Transcription, Environment and Cancer, University of Rennes 1, 9 Avenue du Pr Léon Bernard, 35000 Rennes (France); Efstathiou, Theo [Laboratoire Nutrinov, Technopole Atalante Champeaux, 8 rue Jules Maillard de la Gournerie, 35012 Rennes Cedex (France); Saligaut, Christian [Institut de Recherche en Santé-Environnement-Travail (IRSET), Inserm UMR 1085, Team Transcription, Environment and Cancer, University of Rennes 1, 9 Avenue du Pr Léon Bernard, 35000 Rennes (France); Pakdel, Farzad, E-mail: farzad.pakdel@univ-rennes1.fr [Institut de Recherche en Santé-Environnement-Travail (IRSET), Inserm UMR 1085, Team Transcription, Environment and Cancer, University of Rennes 1, 9 Avenue du Pr Léon Bernard, 35000 Rennes (France)

    2017-06-15

    Estrogen receptors (ERs) α and β are distributed in most tissues of women and men. ERs are bound by estradiol (E2), a natural hormone, and mediate the pleiotropic and tissue-specific effects of E2, such as proliferation of breast epithelial cells or protection and differentiation of neuronal cells. Numerous environmental molecules, called endocrine disrupting compounds, also interact with ERs. Phytoestrogens belong to this large family and are considered potent therapeutic molecules that act through their selective estrogen receptor modulator (SERM) activity. Using breast cancer cell lines as a model of estrogen-dependent proliferation and a stably ER-expressing PC12 cell line as a model of neuronal differentiating cells, we studied the SERM activity of major dietary compounds, such as apigenin, liquiritigenin, daidzein, genistein, coumestrol, resveratrol and zearalenone. The ability of these compounds to induce ER-transactivation and breast cancer cell proliferation and enhance Nerve Growth Factor (NGF) -induced neuritogenesis was assessed. Surprisingly, although all compounds were able to activate the ER through an estrogen responsive element reporter gene, they showed differential activity toward proliferation or differentiation. Apigenin and resveratrol showed a partial or no proliferative effect on breast cancer cells but fully contributed to the neuritogenesis effect of NGF. However, daidzein and zearalenone showed full effects on cellular proliferation but did not induce cellular differentiation. In summary, our results suggest that the therapeutic potential of phytoestrogens can diverge depending on the molecule and the phenotype considered. Hence, apigenin and resveratrol might be used in the development of therapeutics for breast cancer and brain diseases. - Highlights: • SERM activity of dietary compounds on proliferation and differentiation is studied. • All the dietary compounds tested transactivate estrogen receptors. • Apigenin and

  1. Potential for reduction of odorous compounds in swine manure through diet modification.

    Science.gov (United States)

    Sutton, A L; Kephart, K B; Verstegen, M W; Canh, T T; Hobbs, P J

    1999-02-01

    Recent public concern about air pollution from pork production units has prompted more research to develop methods to reduce and control odors. Masking agents, enzymes and bacterial preparations, feed additives, chemicals, oxidation processes, air scrubbers, biofilters, and new ventilation systems have been studied. Research relating the effects of the swine diet on manure odors has been scarce. Introducing feed additives to bind ammonia, change digesta pH, affect specific enzyme activity, and mask odors has been either costly or not consistently successful. Recent research emphasis has focused on manipulating the diet 1) to increase the nutrient utilization of the diet to reduce excretion products, 2) to enhance microbial metabolism in the lower digestive tract to reduce excretion of odor-causing compounds, and 3) to change the physical characteristics of urine and feces to reduce odor emissions. Primary odor-causing compounds evolve from excess degradable proteins and lack of specific fermentable carbohydrates during microbial fermentation. Reductions in ammonia emissions by 28 to 79% through diet modifications have been reported. Limited research on reduction of other odorous volatile organic compounds through diet modifications is promising. Use of synthetic amino acids with reduced intact protein levels in diets significantly reduces nitrogen excretions and odor production. Addition of nonstarch polysaccharides and specific oligosaccharides further alters the pathway of nitrogen excretion and reduces odor emission. Continued nutritional and microbial research to incorporate protein degradation products, especially sulfur-containing organics, with fermentable carbohydrates in the lower gastrointestinal tract of pigs will further control odors from manure.

  2. Unheated Cannabis sativa extracts and its major compound THC-acid have potential immuno-modulating properties not mediated bu CB1 en CB2 receptor coupled pathways

    NARCIS (Netherlands)

    Verhoeckx, K.C.M.; Korthout, H.A.A.J.; Meeteren-Kreikamp, van A.P.; Ehlert, K.A.; Wang, M.; Greef, de J.; Rodenburg, R.J.T.; Witkamp, R.F.

    2006-01-01

    There is a great interest in the pharmacological properties of cannabinoid like compounds that are not linked to the adverse effects of ¿9-tetrahydrocannabinol (THC), e.g. psychoactive properties. The present paper describes the potential immuno-modulating activity of unheated Cannabis sativa

  3. Unheated Cannabis sativa extracts and its major compound THC-acid have potential immuno-modulating properties not mediated by CB1 and CB2 receptor coupled pathways.

    NARCIS (Netherlands)

    Verhoeckx, K.C.; Korthout, H.A.; Meeteren-Kreikamp, A.P. van; Ehlert, K.A.; Wang, M.; Greef, J. van der; Rodenburg, R.J.T.; Witkamp, R.F.

    2006-01-01

    There is a great interest in the pharmacological properties of cannabinoid like compounds that are not linked to the adverse effects of Delta(9)-tetrahydrocannabinol (THC), e.g. psychoactive properties. The present paper describes the potential immuno-modulating activity of unheated Cannabis sativa

  4. Unheated Cannabis sativa extracts and its major compound THC-acid have potential immuno-modulating properties not mediated by CB1 and CB2 receptor coupled pathways

    NARCIS (Netherlands)

    Verhoeckx, K.C.M.; Korthout, H.A.A.J.; Meeteren-Kreikamp, A.P. van; Ehlert, K.A.; Wang, M.; Greef, J. van der; Rodenburg, R.J.T.; Witkamp, R.F.

    2006-01-01

    There is a great interest in the pharmacological properties of cannabinoid like compounds that are not linked to the adverse effects of Δ9-tetrahydrocannabinol (THC), e.g. psychoactive properties. The present paper describes the potential immuno-modulating activity of unheated Cannabis sativa

  5. Microwave spectrum of 2-aminooxazole, a compound of potential prebiotic and astrochemical interest.

    Science.gov (United States)

    Møllendal, Harald; Konovalov, Alexey

    2010-02-11

    The microwave spectrum in the 26.6-80 GHz spectral range of 2-aminooxazole, which may have played a potential role in the prebiotic generation of pyrimidine ribonucleotides, is reported. A large number of transitions have been assigned, and accurate values of the rotational and quartic centrifugal distortion constants have been obtained for the four lowest vibrational states. The frequencies of the vibrationally excited states have been determined by relative intensity measurements. The microwave spectra should be useful for the identification of this compound in planetary atmospheres or in interstellar space. 2-Aminooxazole is nonplanar with the amino group bent 35(5) degrees out of the oxazole plane. Inversion of the amino group manifests itself in a characteristic doubling of the microwave transitions and the absence of c-type transitions. The microwave work has been augmented by quantum chemical calculations at the MP2/aug-cc-pVTZ and B3LYP/6-311++G(3df,3pd) levels of theory. The spectroscopic constants obtained by these two methods are in good agreement with one another, as well as with their experimental counterparts. The B3LYP method predicts a more accurate value for the angle between the oxazole ring and the plane formed by the amino group than the MP2 procedure.

  6. Steel slag aggregate in concrete: the effect of ageing on potentially expansive compounds

    Directory of Open Access Journals (Sweden)

    Frías, M.

    2010-02-01

    Full Text Available Growing numbers of plants have sprung up in recent years to treat the electric arc furnace slag generated in scrap metal melting. When this by-product is separated, crushed and screened, it yields a granular material known as steel slag aggregate, which may be profitably used in the manufacture of commercial concrete. The feasibility of this application depends essentially on the volume stability of the resulting aggregate. The present paper discusses the potentially expansive compounds (Cl-, SO3, free CaO and free MgO present in aggregate derived from different types of black slag during aggregate ageing. The aim is to establish optimal ageing conditions to ensure volume stability in steel slag aggregate. The findings showed that the slag analyzed had low concentrations of the expansive compounds studied and that possible swelling can be reduced by 45day ageing.

    En los últimos años están surgiendo diferentes plantas de tratamiento de las escorias generadas en el proceso de fusión de la chatarra en los hornos de arco eléctrico. Mediante procesos de separación, machaqueo y cribado se obtiene un material granular denominado árido siderúrgico, que puede ser atractivo para su utilización en la fabricación de hormigones comerciales. En este sentido, la viabilidad de dicha aplicación dependerá, fundamentalmente, de asegurar su estabilidad en volumen. Este trabajo presenta un estudio de los compuestos potencialmente expansivos (Cl-, SO3, CaO libre y MgO libre de los áridos siderúrgicos procedentes de diferentes tipos de escorias negras, así como su evolución después de un proceso de envejecimiento. El objetivo es establecer las condiciones óptimas de un proceso de envejecimiento a partir del cual se pueda asegurar la estabilidad, en volumen, del árido siderúrgico. Los resultados evidencian que las escorias analizadas tienen bajas concentraciones de los compuestos expansivos

  7. Diazo Compounds: Versatile Tools for Chemical Biology

    OpenAIRE

    Mix, Kalie A.; Aronoff, Matthew R.; Raines, Ronald T.

    2016-01-01

    Diazo groups have broad and tunable reactivity. That and other attributes endow diazo compounds with the potential to be valuable reagents for chemical biologists. The presence of diazo groups in natural products underscores their metabolic stability and anticipates their utility in a biological context. The chemoselectivity of diazo groups, even in the presence of azido groups, presents many opportunities. Already, diazo compounds have served as chemical probes and elicited novel modificatio...

  8. Charge transfer from TiO2 into adsorbed benzene diazonium compounds

    Science.gov (United States)

    Merson, A.; Dittrich, Th.; Zidon, Y.; Rappich, J.; Shapira, Yoram

    2004-08-01

    Electron transfer from sol-gel-prepared TiO2 into adsorbed benzene diazonium compounds has been investigated using cyclic voltammetry, x-ray photoelectron spectroscopy, contact potential difference, and surface photovoltage spectroscopy. The results show that the potential of maximum electron transfer depends strongly on the dipole moment of the benzene compound. Two reactive surface sites at which electron transfer occurs have been identified.

  9. Toxicology of perfluorinated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Thorsten [Hessian State Laboratory, Wiesbaden (Germany); Mattern, Daniela; Brunn, Hubertus [Hessian State Laboratory, Giessen (Germany)

    2011-12-15

    Perfluorinated compounds [PFCs] have found a wide use in industrial products and processes and in a vast array of consumer products. PFCs are molecules made up of carbon chains to which fluorine atoms are bound. Due to the strength of the carbon/fluorine bond, the molecules are chemically very stable and are highly resistant to biological degradation; therefore, they belong to a class of compounds that tend to persist in the environment. These compounds can bioaccumulate and also undergo biomagnification. Within the class of PFC chemicals, perfluorooctanoic acid and perfluorosulphonic acid are generally considered reference substances. Meanwhile, PFCs can be detected almost ubiquitously, e.g., in water, plants, different kinds of foodstuffs, in animals such as fish, birds, in mammals, as well as in human breast milk and blood. PFCs are proposed as a new class of 'persistent organic pollutants'. Numerous publications allude to the negative effects of PFCs on human health. The following review describes both external and internal exposures to PFCs, the toxicokinetics (uptake, distribution, metabolism, excretion), and the toxicodynamics (acute toxicity, subacute and subchronic toxicities, chronic toxicity including carcinogenesis, genotoxicity and epigenetic effects, reproductive and developmental toxicities, neurotoxicity, effects on the endocrine system, immunotoxicity and potential modes of action, combinational effects, and epidemiological studies on perfluorinated compounds). (orig.)

  10. Sapwood of Carob Tree (Ceratonia siliqua L. as a Potential Source of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Luísa Custódio

    2013-05-01

    Full Text Available Methanol (ME and hot water extracts (WE of carob tree sapwood (Ceratonia siliqua L. exhibited high antioxidant activity and were rich in phenolic compounds, with the main compounds identified by HPLC/DAD as gentisic acid and (--epicatechin. The ME displayed a high in vitro antitumor activity against human tumoural cell lines and reduced intracellular ROS production by HeLa cells after treatment with H 2O 2. (--Epicatechin was shown to contribute to the cytotoxic activity of the ME. This is the first report on the biological activity of carob tree sapwood.

  11. Mortality (1968-2008) in a French cohort of uranium enrichment workers potentially exposed to rapidly soluble uranium compounds.

    Science.gov (United States)

    Zhivin, Sergey; Guseva Canu, Irina; Samson, Eric; Laurent, Olivier; Grellier, James; Collomb, Philippe; Zablotska, Lydia B; Laurier, Dominique

    2016-03-01

    Until recently, enrichment of uranium for civil and military purposes in France was carried out by gaseous diffusion using rapidly soluble uranium compounds. We analysed the relationship between exposure to soluble uranium compounds and exposure to external γ-radiation and mortality in a cohort of 4688 French uranium enrichment workers who were employed between 1964 and 2006. Data on individual annual exposure to radiological and non-radiological hazards were collected for workers of the AREVA NC, CEA and Eurodif uranium enrichment plants from job-exposure matrixes and external dosimetry records, differentiating between natural, enriched and depleted uranium. Cause-specific mortality was compared with the French general population via standardised mortality ratios (SMR), and was analysed via Poisson regression using log-linear and linear excess relative risk models. Over the period of follow-up, 131 161 person-years at risk were accrued and 21% of the subjects had died. A strong healthy worker effect was observed: all causes SMR=0.69, 95% CI 0.65 to 0.74. SMR for pleural cancer was significantly increased (2.3, 95% CI 1.06 to 4.4), but was only based on nine cases. Internal uranium and external γ-radiation exposures were not significantly associated with any cause of mortality. This is the first study of French uranium enrichment workers. Although limited in statistical power, further follow-up of this cohort, estimation of internal uranium doses and pooling with similar cohorts should elucidate potential risks associated with exposure to soluble uranium compounds. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Synthesis of potentially bioactive compounds and tools for biological studies

    International Nuclear Information System (INIS)

    Cappa, F.

    2014-01-01

    NMR spectroscopy is one of the most versatile tools for studying structural parameters of organic and bioorganic compounds. It became a highly suitable method to achieve spectra simplification of macromolecules in combination with isotope labeling techniques. This technique is used to study protein structures, folding properties and mechanisms of chemical and biochemical reactions. Proteins typically feature a high molecular mass showing a high number of spin systems, being responsible for increasingly difficult to interpret NMR spectra, which is why it is essential to introduce 13 C- and 15 N- isotopes to obtain reasonable signal intensities. The development of a new synthetic route towards 13 C-isotope labeled Phenylalanine or precursors thereof, starting from inexpensive and easily accessible labeled starting materials, is the main purpose of this work. Label sources such as [ 13 C]-acetic acid, [ 13 C]-formaldehyde, [ 13 C]-allyl alcohol and [ 13 C]-glycine will be used. The synthetic pathway will be carried out in a way where the position-selective incorporation of labeled isotopes can be performed. This important feature of the synthesis may open access towards newly designed NMR-experiments. Key steps for the tested route are ring closing metatheses as well as indium mediated reactions. The second part of this work focuses on the field of sugar chemistry, in particular on the family of deoxy sugars, components of many natural products, found in different plants, fungi and bacteria. Deoxy sugars also participate in a wide range of biological processes. Special focus is given to 3-deoxy sugars and the research of a versatile and flexible synthetic route for their preparation starting from the easily accessible D-glyceraldehyde. These sugars are found on Gram-negative bacteria where they are a key component of the lipopolysaccharides, or where they can take place in the biosynthesis of aromatic amino acids in bacteria and plants. Being able to perform this

  13. Ontogeny of vestibular compound action potentials in the domestic chicken

    Science.gov (United States)

    Jones, S. M.; Jones, T. A.

    2000-01-01

    Compound action potentials of the vestibular nerve were measured from the surface of the scalp in 148 chickens (Gallus domesticus). Ages ranged from incubation day 18 (E18) to 22 days posthatch (P22). Responses were elicited using linear acceleration cranial pulses. Response thresholds decreased at an average rate of -0.45 dB/day. The decrease was best fit by an exponential model with half-maturity time constant of 5.1 days and asymptote of approximately -25.9 dB re:1.0 g/ms. Mean threshold approached within 3 dB of the asymptote by ages P6-P9. Similarly, response latencies decreased exponentially to within 3% of mature values at ages beyond P9. The half-maturity time constant for peripheral response peak latencies P1, N1, and P2 was comparable to thresholds and ranged from approximately 4.6 to 6.2 days, whereas central peaks (N2, P3, and N3) ranged from 2.9 to 3.4 days. Latency-intensity slopes for P1, N1, and P2 tended to decrease with age, reaching mature values within approximately 100 hours of hatching. Amplitudes increased as a function of age with average growth rates for response peaks ranging from 0.04 to 0.09 microV/day. There was no obvious asymptote to the growth of amplitudes over the ages studied. Amplitude-intensity slopes also increased modestly with age. The results show that gravity receptors are responsive to transient cranial stimuli as early as E19 in the chicken embryo. The functional response of gravity receptors continues to develop for many days after all major morphological structures are in place. Distinct maturational processes can be identified in central and peripheral neural relays. Functional improvements during maturation may result from refinements in the receptor epithelia, improvements in central and peripheral synaptic transmission, increased neural myelination, as well as changes in the mechanical coupling between the cranium and receptor organ.

  14. Facile synthesis of conjugated polymeric Schiff base as negative electrodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Ye, Haijun; Jiang, Fangqing; Li, Hongqin; Xu, Zheng; Yin, Jiao; Zhu, Hui

    2017-01-01

    Graphical abstract: Polymeric Schiff base (PSB) exhibits a stable cyclability as an organic Li-ion battery anode Display Omitted -- Highlights: •A conjugated Schiff base polymer has been synthesized by a solid-phase reaction. •The polymer suppresses the dissolution of organic monomer into the organic electrolyte. •The polymer demonstrates high reversible capacity and excellent cyclic performance. -- Abstract: The redox-active organic compounds show great potentials as anodes for high energy density Li-ion batteries (LIBs), comparing with the traditional transition metal-based inorganic compounds. However, the inevitable dissolution behaviors of these organics in organic electrolyte will arouse the recession in their cycling stabilities. To circumvent this problem, we successfully applied an electrochemically active imine group to connect the carbonyl compound to form conjugated polymer, where the occurrence of multi-electron reactions suppressed the dissolution of anthraquinone in the organic electrolyte with improved cycling stability and high capacity for LIBs. In detail, by virtue of a facile solid-phase reaction between 1, 4-diaminoanthraquinone (14DAAQ) and p-phthalaldehyde (PPD), a highly conjugated polymeric Schiff base (PSB) was synthesized. The obtained PSB exhibited a reversible specific capacity of 175 mAh g −1 at a current density of 10 mA g −1 . In addition, after 100 cycles, a cycling stability with 90% capacity retention can be maintained, manifesting a promising application of the organic material in high performance anodes for LIBs.

  15. Stress-enhanced lithiation in MAX compounds for battery applications

    KAUST Repository

    Zhu, Jiajie

    2017-07-31

    Li-ion batteries are well-established energy storage systems. Upon lithiation conventional group IVA compound anodes undergo large volume expansion and thus suffer from stress-induced performance degradation. Instead of the emerging MXene anodes fabricated by an expensive and difficult-to-control etching technique, we study the feasibility of utilizing the parent MAX compounds. We reveal that M2AC (M=Ti, V and A=Si, S) compounds repel lithiation at ambient conditions, while structural stress turns out to support lithiation, in contrast to group IVA compounds. For V2SC the Li diffusion barrier is found to be lower than reported for group IVA compound anodes, reflecting potential to achieve fast charge/discharge.

  16. Stress-enhanced lithiation in MAX compounds for battery applications

    KAUST Repository

    Zhu, Jiajie; Chroneos, Alexander; Wang, Lei; Rao, Feng; Schwingenschlö gl, Udo

    2017-01-01

    Li-ion batteries are well-established energy storage systems. Upon lithiation conventional group IVA compound anodes undergo large volume expansion and thus suffer from stress-induced performance degradation. Instead of the emerging MXene anodes fabricated by an expensive and difficult-to-control etching technique, we study the feasibility of utilizing the parent MAX compounds. We reveal that M2AC (M=Ti, V and A=Si, S) compounds repel lithiation at ambient conditions, while structural stress turns out to support lithiation, in contrast to group IVA compounds. For V2SC the Li diffusion barrier is found to be lower than reported for group IVA compound anodes, reflecting potential to achieve fast charge/discharge.

  17. Volatile sulfur compounds in tropical fruits

    Directory of Open Access Journals (Sweden)

    Robert J. Cannon

    2018-04-01

    Full Text Available Global production and demand for tropical fruits continues to grow each year as consumers are enticed by the exotic flavors and potential health benefits that these fruits possess. Volatile sulfur compounds (VSCs are often responsible for the juicy, fresh aroma of tropical fruits. This poses a challenge for analytical chemists to identify these compounds as most often VSCs are found at low concentrations in most tropical fruits. The aim of this review is to discuss the extraction methods, enrichment techniques, and instrumentation utilized to identify and quantify VSCs in natural products. This will be followed by a discussion of the VSCs reported in tropical and subtropical fruits, with particular attention to the odor and taste attributes of each compound. Finally, the biogenesis and enzymatic formation of specific VSCs in tropical fruits will be highlighted along with the contribution each possesses to the aroma of their respective fruit. Keywords: Tropical fruits, Volatile sulfur compounds, Extraction methods

  18. Analyzing compound and project progress through multi-objective-based compound quality assessment.

    Science.gov (United States)

    Nissink, J Willem M; Degorce, Sébastien

    2013-05-01

    Compound-quality scoring methods designed to evaluate multiple drug properties concurrently are useful to analyze and prioritize output from drug-design efforts. However, formalized multiparameter optimization approaches are not widely used in drug design. We rank molecules synthesized in drug-discovery projects using simple and aggregated desirability functions reflecting medicinal chemistry 'rules'. Our quality score deals transparently with missing data, a key requirement in drug-hunting projects where data availability is often limited. We further estimate confidence in the interpretation of such a compound-quality measure. Scores and associated confidences provide systematic insight in the quality of emerging chemical equity. Tracking quality of synthetic output over time yields valuable insight into the progress of drug-design teams, with potential applications in risk and resource management of a drug portfolio.

  19. Effect of pharmaceutical potential endocrine disruptor compounds on protein disulfide isomerase reductase activity using di-eosin-oxidized-glutathione.

    Directory of Open Access Journals (Sweden)

    Danièle Klett

    Full Text Available BACKGROUND: Protein Disulfide Isomerase (PDI in the endoplasmic reticulum of all cells catalyzes the rearrangement of disulfide bridges during folding of membrane and secreted proteins. As PDI is also known to bind various molecules including hormones such as estradiol and thyroxin, we considered the hypothesis that adverse effects of endocrine-disrupter compounds (EDC could be mediated through their interaction with PDI leading to defects in membrane or secreted proteins. METHODOLOGY/PRINCIPAL FINDINGS: Taking advantage of the recent description of the fluorescence self quenched substrate di-eosin-oxidized-glutathione (DiE-GSSG, we determined kinetically the effects of various potential pharmaceutical EDCs on the in-vitro reductase activity of bovine liver PDI by measuring the fluorescence of the reaction product (E-GSH. Our data show that estrogens (ethynylestradiol and bisphenol-A as well as indomethacin exert an inhibition whereas medroxyprogesteroneacetate and nortestosterone exert a potentiation of bovine PDI reductase activity. CONCLUSIONS: The present data indicate that the tested EDCs could not only affect endocrine target cells through nuclear receptors as previously shown, but could also affect these and all other cells by positively or negatively affecting PDI activity. The substrate DiE-GSSG has been demonstrated to be a convenient substrate to measure PDI reductase activity in the presence of various potential EDCs. It will certainly be usefull for the screening of potential effect of all kinds of chemicals on PDI reductase activity.

  20. Nanofibrous matrixes with biologically active hydroxybenzophenazine pyrazolone compound for cancer theranostics

    International Nuclear Information System (INIS)

    Kandhasamy, Subramani; Ramanathan, Giriprasath; Muthukumar, Thangavelu; Thyagarajan, SitaLakshmi; Umamaheshwari, Narayanan; Santhanakrishnan, V P; Sivagnanam, Uma Tiruchirapalli; Perumal, Paramasivan Thirumalai

    2017-01-01

    The nanomaterial with the novel biologically active compounds has been actively investigated for application in cancer research. Substantial use of nanofibrous scaffold for cancer research with potentially bioactive compounds through electrospinning has not been fully explored. Here, we describe the series of fabrication of nanofibrous scaffold loaded with novel potential biologically active hydroxybenzo[a]phenazine pyrazol-5(4H)-one derivatives were designed, synthesized by a simple one-pot, two step four component condensation based on Michael type addition reaction of lawsone, benzene-1,2-diamine, aromatic aldehydes and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one as the substrates. The heterogeneous solid state catalyst (Fe (III) Y-Zeolite) could effectively catalyze the reaction to obtain the product with high yield and short reaction time. The synthesized compounds (5a–5p) were analyzed by NMR, FTIR and HRMS analysis. Compound 5c was confirmed by single crystal XRD studies. All the compounds were biologically evaluated for their potential inhibitory effect on anticancer (MCF-7, Hep-2) and microbial (MRSA, MTCC 201 and FRCA) activities. Among the compounds 5i exhibited the highest levels of inhibitory activity against both MCF-7, Hep-2 cell lines. Furthermore, the compound 5i (BPP) was evaluated for DNA fragmentation, flow cytometry studies and cytotoxicity against MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. In addition, molecular docking (PDB ID: (1T46)) studies were performed to predict the binding affinity of ligand with receptor. Moreover, the synthesized BPP compound was loaded in to the PHB-PCL nanofibrous scaffold to check the cytotoxicity against the MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. The in vitro apoptotic potential of the PHB-PCL-BPP nanofibrous scaffold was assessed against MCF-7, Hep-2 cancerous cells and fibroblast cells at 12, 24 and 48 h respectively. The nanofibrous scaffold with BPP can induce apoptosis and also suppress the

  1. Nanofibrous matrixes with biologically active hydroxybenzophenazine pyrazolone compound for cancer theranostics

    Energy Technology Data Exchange (ETDEWEB)

    Kandhasamy, Subramani [Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu (India); Ramanathan, Giriprasath [Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu (India); Muthukumar, Thangavelu [Department of Clinical and Experimental Medicine (IKE), Division of Neuro and Inflammation Sciences (NIV), Linkoping University (Sweden); Thyagarajan, SitaLakshmi [Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu (India); Umamaheshwari, Narayanan [Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu (India); Santhanakrishnan, V P [Department of Plant Biotechnology, TNAU, Coimbatore, Tamilnadu (India); Sivagnanam, Uma Tiruchirapalli, E-mail: suma67@gmail.com [Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu (India); Perumal, Paramasivan Thirumalai, E-mail: ptperumal@gmail.com [Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, Tamilnadu (India)

    2017-05-01

    The nanomaterial with the novel biologically active compounds has been actively investigated for application in cancer research. Substantial use of nanofibrous scaffold for cancer research with potentially bioactive compounds through electrospinning has not been fully explored. Here, we describe the series of fabrication of nanofibrous scaffold loaded with novel potential biologically active hydroxybenzo[a]phenazine pyrazol-5(4H)-one derivatives were designed, synthesized by a simple one-pot, two step four component condensation based on Michael type addition reaction of lawsone, benzene-1,2-diamine, aromatic aldehydes and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one as the substrates. The heterogeneous solid state catalyst (Fe (III) Y-Zeolite) could effectively catalyze the reaction to obtain the product with high yield and short reaction time. The synthesized compounds (5a–5p) were analyzed by NMR, FTIR and HRMS analysis. Compound 5c was confirmed by single crystal XRD studies. All the compounds were biologically evaluated for their potential inhibitory effect on anticancer (MCF-7, Hep-2) and microbial (MRSA, MTCC 201 and FRCA) activities. Among the compounds 5i exhibited the highest levels of inhibitory activity against both MCF-7, Hep-2 cell lines. Furthermore, the compound 5i (BPP) was evaluated for DNA fragmentation, flow cytometry studies and cytotoxicity against MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. In addition, molecular docking (PDB ID: (1T46)) studies were performed to predict the binding affinity of ligand with receptor. Moreover, the synthesized BPP compound was loaded in to the PHB-PCL nanofibrous scaffold to check the cytotoxicity against the MCF-7, Hep-2 and NIH 3T3 fibroblast cell lines. The in vitro apoptotic potential of the PHB-PCL-BPP nanofibrous scaffold was assessed against MCF-7, Hep-2 cancerous cells and fibroblast cells at 12, 24 and 48 h respectively. The nanofibrous scaffold with BPP can induce apoptosis and also suppress the

  2. Electronic structure of A15 compounds

    International Nuclear Information System (INIS)

    Pickett, W.E.

    1980-01-01

    For the past twenty-five years compounds with the A15 crystal structure have dominated the class of high temperature superconductors. The crystal structure of an A15 compound A 3 B is cubic (space group O/sub h/ 3 ). However, the site symmetry (D/sub 2d/) of the A atoms is much lower than cubic, an unusual occurrence in cubic binary compounds. Variations on this theme have supplied the basis of many theoretical models of the anomalous temperature (T) dependence of normal state properties and the low temperature cubic reversible tetragonal structural transformations which accompany high values of T/sub c/ in A15 compounds. In this paper results of self-consistent pseudopotential band structure calculations are used to assess some important aspects of the unique and unusual behavior in A15 compounds: (1) the role of the B atom in determining the overall electronic structure will be shown to be important; (2) the effect of the low site symmetry of the A atom on the charge density and potential will be assessed; and (3) the bonding will be shown to be metallic-covalent with no significant A-B charge transfer

  3. Volatile organic compounds speciation and their influence on ozone formation potential in an industrialized urban area in Brazil.

    Science.gov (United States)

    Galvão, Elson Silva; Santos, Jane Meri; Reis Junior, Neyval Costa; Stuetz, Richard Michael

    2016-09-01

    Speciation and the influence on the ozone formation potential (OFP) from volatile organic compounds (VOCs) have been studied between February June 2013 in Vitória, ES, Brazil. Passive samplers were installed at three air-quality monitoring stations and a total of 96 samplings were collected. A total of 78 VOCs were characterized by gas chromatograph-mass spectrometer. The predominant group was organic acids, followed by alcohols and substituted aromatics and 14 precursor species were quantified. An analysis correlating concentrations with wind direction was conducted to identify possible sources. The OFP was calculated applying the scale of maximum incremental reactivity proposed by Carter.[ 23 ] Ozone precursors with the greatest OFP such as undecane, toluene, ethylbenzene and m, p-xylene compounds were the most abundant with means of 0.855, 0.365, 0.259 and 0.289 µg m(-3), respectively. The benzene, toluene, ethylbenzene and xylene (BTEX) group was found below the limits considered harmful to the health of the population living in Vitória. The OFP calculated for the precursors group was 22.55 µg m(-3) for the rainy season and 32.11 µg m(-3) for the dry season. The VOC/NOx ratio in Vitória is approximately 1.71, indicating that the region has a VOC-limiting condition for the production of ozone.

  4. Antioxidant evaluation of heterocyclic compounds by cytokinesis-block micronucleus assay.

    Science.gov (United States)

    Godevac, Dejan; Tesević, Vele; Vajs, Vlatka; Milosavljević, Slobodan; Stanković, Miroslava

    2013-03-01

    This article summarizes the results of using cytokinesis-block micronucleus (CBMN) assay to evaluate the antioxidant potential of heterocyclic compounds. Most studies were carried out with naturally occurring heterocyclic compounds such as plant polyphenols: flavonoids, xanthones, coumarins, and ellagitannins, or plant derived products (juices, extracts, supplements) rich in bioactive heterocyclic compounds. There are also some studies dealing with synthetic heterocyclic antioxidants. CBMN assay is an in vitro study that has been used to evaluate antioxidant and protective effects of heterocyclic compounds on induced chromosome aberration in human lymphocytes.

  5. Investigating the potential of selected natural compounds to increase the potency of pyrethrum against houseflies Musca domestica (Diptera: Muscidae)

    DEFF Research Database (Denmark)

    Joffe, Tanya; Gunning, Robin V; Allen, Geoff R

    2012-01-01

    oil, grapefruit oil and parsley seed oil, with 59, 50 and 41% mortality respectively, compared with 18% mortality with unsynergised pyrethrum. Against 381zb houseflies, the most effective natural synergists were parsley seed oil and dillapiole oil. Esterase inhibition by the natural compounds and PBO...... in vitro showed no correlation with pyrethrum synergism in vivo, whereas the inhibition of oxidases in vitro more closely correlated with pyrethrum synergism in vivo. CONCLUSION: Dillapiole oil and parsley seed oil showed the greatest potential as pyrethrum synergists. PBO remained the most effective...

  6. Identification of potential inhibitors based on compound proposal contest: Tyrosine-protein kinase Yes as a target.

    Science.gov (United States)

    Chiba, Shuntaro; Ikeda, Kazuyoshi; Ishida, Takashi; Gromiha, M Michael; Taguchi, Y-H; Iwadate, Mitsuo; Umeyama, Hideaki; Hsin, Kun-Yi; Kitano, Hiroaki; Yamamoto, Kazuki; Sugaya, Nobuyoshi; Kato, Koya; Okuno, Tatsuya; Chikenji, George; Mochizuki, Masahiro; Yasuo, Nobuaki; Yoshino, Ryunosuke; Yanagisawa, Keisuke; Ban, Tomohiro; Teramoto, Reiji; Ramakrishnan, Chandrasekaran; Thangakani, A Mary; Velmurugan, D; Prathipati, Philip; Ito, Junichi; Tsuchiya, Yuko; Mizuguchi, Kenji; Honma, Teruki; Hirokawa, Takatsugu; Akiyama, Yutaka; Sekijima, Masakazu

    2015-11-26

    A search of broader range of chemical space is important for drug discovery. Different methods of computer-aided drug discovery (CADD) are known to propose compounds in different chemical spaces as hit molecules for the same target protein. This study aimed at using multiple CADD methods through open innovation to achieve a level of hit molecule diversity that is not achievable with any particular single method. We held a compound proposal contest, in which multiple research groups participated and predicted inhibitors of tyrosine-protein kinase Yes. This showed whether collective knowledge based on individual approaches helped to obtain hit compounds from a broad range of chemical space and whether the contest-based approach was effective.

  7. Polyfluoroalkyl compounds in landfill leachates

    International Nuclear Information System (INIS)

    Busch, Jan; Ahrens, Lutz; Sturm, Renate; Ebinghaus, Ralf

    2010-01-01

    Polyfluoroalkyl compounds (PFCs) are widely used in industry and consumer products. These products could end up finally in landfills where their leachates are a potential source for PFCs into the aqueous environment. In this study, samples of untreated and treated leachate from 22 landfill sites in Germany were analysed for 43 PFCs. ΣPFC concentrations ranged from 31 to 12,819 ng/L in untreated leachate and 4-8060 ng/L in treated leachate. The dominating compounds in untreated leachate were perfluorobutanoic acid (PFBA) (mean contribution 27%) and perfluorobutane sulfonate (PFBS) (24%). The discharge of PFCs into the aqueous environment depended on the cleaning treatment systems. Membrane treatments (reverse osmosis and nanofiltrations) and activated carbon released lower concentrations of PFCs into the environment than cleaning systems using wet air oxidation or only biological treatment. The mass flows of ΣPFCs into the aqueous environment ranged between 0.08 and 956 mg/day. - The first comprehensive survey of polyfluoroalkyl compounds (PFCs) in landfill leachates.

  8. Co-cultivation of Streptomyces californicus and Stachybotrys chartarum stimulates the production of cytostatic compound(s) with immunotoxic properties

    International Nuclear Information System (INIS)

    Penttinen, Piia; Pelkonen, Jukka; Huttunen, Kati; Hirvonen, Maija-Riitta

    2006-01-01

    We have recently shown that the actinobacterium Streptomyces californicus and the fungus Stachybotrys chartarum originating from moisture damaged buildings possess both immunotoxic and immunostimulatory characteristics, which are synergistically potentiated by microbial interaction. In the search for the causative agent(s) behind the immunotoxicity, the cytostatic effects of the co-cultivated spores of S. californicus and S. chartarum were compared to those caused by widely used cytostatic agents produced by streptomycetes. The RAW264.7 macrophages were exposed to four doses of doxorubicin (DOX), actinomycin D (AMD), mitomycin C (MMC) or phleomycin (PHLEO) for 24 h. Kinetics of the spores of the co-cultivated and the separately cultivated microbes (1 x 10 6 spores/ml) was compared to DOX (0.15 μM). Apoptotic responses were analyzed by measuring DNA content and mitochondria membrane depolarization with flow cytometer, and by the fluorometric caspase-3 assay. The present data indicate that interactions during co-cultivation of S. californicus and S. chartarum stimulate the production of an unidentified cytostatic compound(s) capable of inducing mitochondria mediated apoptosis and cell cycle arrest at S-G 2 /M. The spores of co-cultivated microbes caused a 4-fold collapse of mitochondrial membrane potential and an almost 6-fold caspase-3 activation and DNA fragmentation when compared to control. Similar responses were induced by DNA cleaving compounds, especially DOX and AMD, at the relatively low concentrations, but not the spores of the same microbes when they were grown separately. These data suggest that when growing in the same habitat, interactions between S. californicus and S. chartarum stimulates the production of an unknown cytostatic compound(s) which evoke immunotoxic effects similar to those by chemotherapeutic drugs

  9. Review of pulmonary toxicity of indium compounds to animals and humans

    International Nuclear Information System (INIS)

    Tanaka, Akiyo; Hirata, Miyuki; Kiyohara, Yutaka; Nakano, Makiko; Omae, Kazuyuki; Shiratani, Masaharu; Koga, Kazunori

    2010-01-01

    Due to the increased production of ITO, the potential health hazards arising from occupational exposure to this material have attracted much attention. This review consists of three parts: 1) toxic effects of indium compounds on animals, 2) toxic effects of indium compounds on humans, and 3) recommendations for preventing exposure to indium compounds in the workplace. Available data have indicated that insoluble form of indium compounds, such as ITO, indium arsenide (InAs) and indium phosphide (InP), can be toxic to animals. Furthermore, InP has demonstrated clear evidence of carcinogenic potential in long-term inhalation studies using experimental animals. As for the dangers to humans, some data are available concerning adverse health effects to workers who have been exposed to indium-containing particles. The Japan Society for Occupational Health recommended the value of 3 μg/L of indium in serum as the occupational exposure limit based on biological monitoring to preventing adverse health effects in workers resulting from occupational exposure to indium compounds. Accordingly, it is essential that much greater attention is focused on human exposure to indium compounds, and precautions against possible exposure to indium compounds are most important with regard to health management among indium-handling workers.

  10. Potential role of natural compounds against skin aging.

    Science.gov (United States)

    Tundis, R; Loizzo, M R; Bonesi, M; Menichini, F

    2015-01-01

    Skin aging is an inevitable biological phenomenon of human life. Advancing age brings changes to all components of the integumentary system with consequent signs on the skin. Skin aging is mainly due to intrinsic (chronologic) and extrinsic aging (photo-aging). Photo-aging is a consequence of exposure to ultraviolet radiations. Despite variable economic conditions, the skin care market based on natural products continues to see strong growth. In this context, the research of naturally occurring anti-aging agents is greatly expanding and in recent years numerous plant-derived products have been investigated. This review article focuses on highlighting recent advances in current knowledge on anti-aging natural products grouped and presented according to their family origin. Plants from 35 families were reviewed. A variety of phytomolecules, derived in particular from polyphenols, triterpenes and sterols classes, demonstrated a promising activity. Among them carnosic acid, curculigoside, curcumin, glycyrrhizic acid, mangiferin, mirkoin, asiaticoside, rosmarinic acid, tectorigenin, tyrosol etc., able to inhibit tyrosinase, hyaluronidase, elastase, and collagenase, to scavenge free radicals from skin cells, to prevent trans-epidermal water loss, and to contribute to protect skin from wrinkles, were largely investigated and herein discussed. Extracts and pure compounds from Fabaceae, Asperaceae and Zingiberaceae families have shown particular interest and appear most promising in the development of anti-aging products.

  11. Functionalised isocoumarins as antifungal compounds: Synthesis and biological studies.

    Science.gov (United States)

    Simic, Milena; Paunovic, Nikola; Boric, Ivan; Randjelovic, Jelena; Vojnovic, Sandra; Nikodinovic-Runic, Jasmina; Pekmezovic, Marina; Savic, Vladimir

    2016-01-01

    A series of novel 3-substituted isocoumarins was prepared via Pd-catalysed coupling processes and screened in vitro for antifungal activity against Candida species. The study revealed antifungal potential of isocoumarins possessing the azole substituents, which, in some cases, showed biological properties equal to those of clinically used voriconazole. Selected compounds were also screened against voriconazole resistant Candida krusei 6258 and a clinical isolate Candida parapsilosis CA-27. Although the activity against these targets needs to be improved further, the results emphasise additional potential of this new class of antifungal compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Synthesis and characterization of osmium carbonyl cluster compounds with molecular oxygen electroreduction capacity

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos, R.H.; Ocampo, A.L.; Moreira-Acosta, J.; Sebastian, P.J. [CIE-UNAM Solar Energy Laboratory, Morelos (Mexico). Photovoltaic Systems Group, Solar-Hydrogen-Fuel Cell

    2001-12-01

    A transition metal cluster electrocatalyst based on Os{sub x}(CO){sub n} was synthesized by pyrolysis of Os{sub 3} (CO){sub 12} in 1,2-Dichlorobenzene (b.p.{approx_equal}180{sup o}C) under inert atmosphere (N{sub 2}). The electrocatalytic parameters of the oxygen reduction reaction (ORR) for an Os{sub x}(CO){sub n} catalyst were studied with a rotating disk electrode in 0.5 MH{sub 2}SO{sub 4} electrolyte. The diffusion coefficient and solubility of O{sub 2} in 0.5 MH{sub 2}SO{sub 4} were calculated. Koutecky-Levich analysis of the linear voltamperometry data showed that the reaction follows first-order kinetics and the value of the Koutecky-Levich slope indicates a multielectron charge transfer during the ORR. The value of the Tafel slope obtained from the mass transfer corrected Tafel plots is 131 mV/decade. The performance of the catalyst in a H{sub 2}/O{sub 2} PEM fuel cell cathode was evaluated and found to be nearly as good as that of Pt. (author)

  13. The potential of volatile organic compounds for the detection of active disease in patients with ulcerative colitis.

    Science.gov (United States)

    Smolinska, A; Bodelier, A G L; Dallinga, J W; Masclee, A A M; Jonkers, D M; van Schooten, F-J; Pierik, M J

    2017-05-01

    To optimise treatment of ulcerative colitis (UC), patients need repeated assessment of mucosal inflammation. Current non-invasive biomarkers and clinical activity indices do not accurately reflect disease activity in all patients and cannot discriminate UC from non-UC colitis. Volatile organic compounds (VOCs) in exhaled air could be predictive of active disease or remission in Crohn's disease. To investigate whether VOCs are able to differentiate between active UC, UC in remission and non-UC colitis. UC patients participated in a 1-year study. Clinical activity index, blood, faecal and breath samples were collected at each out-patient visit. Patients with clear defined active faecal calprotectin >250 μg/g and inactive disease (Simple Clinical Colitis Activity Index Non-UC colitis was confirmed by stool culture or radiological evaluation. Breath samples were analysed by gas chromatography time-of-flight mass spectrometry and kernel-based method to identify discriminating VOCs. In total, 72 UC (132 breath samples; 62 active; 70 remission) and 22 non-UC-colitis patients (22 samples) were included. Eleven VOCs predicted active vs. inactive UC in an independent internal validation set with 92% sensitivity and 77% specificity (AUC 0.94). Non-UC colitis patients could be clearly separated from active and inactive UC patients with principal component analysis. Volatile organic compounds can accurately distinguish active disease from remission in UC and profiles in UC are clearly different from profiles in non-UC colitis patients. VOCs have demonstrated potential as new non-invasive biomarker to monitor inflammation in UC. © 2017 John Wiley & Sons Ltd.

  14. Potential of electric discharge plasma methods in abatement of volatile organic compounds originating from the food industry.

    Science.gov (United States)

    Preis, S; Klauson, D; Gregor, A

    2013-01-15

    Increased volatile organic compounds emissions and commensurate tightening of applicable legislation mean that the development and application of effective, cost-efficient abatement methods are areas of growing concern. This paper reviews the last two decades' publications on organic vapour emissions from food processing, their sources, impacts and treatment methods. An overview of the latest developments in conventional air treatment methods is presented, followed by the main focus of the paper, non-thermal plasma technology. The results of the review suggest that non-thermal plasma technology, in its pulsed corona discharge configuration, is an emerging treatment method with potential for low-cost, effective abatement of a wide spectrum of organic air pollutants. It is found that the combination of plasma treatment with catalysis is a development trend that demonstrates considerable potential. The as yet relatively small number of plasma treatment applications is considered to be due to the novelty of pulsed electric discharge techniques and a lack of reliable pulse generators and reactors. Other issues acting as barriers to widespread adoption of the technique include the possible formation of stable oxidation by-products, residual ozone and nitrogen oxides, and sensitivity towards air humidity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Potentials of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Munack, A.; Schroder, O. [Johann Heinrich von Thunen Inst., Braunschweig (Germany); Krahl, J. [Coburg Univ. of Applied Sciences, Coburg (Germany); Bunger, J. [Inst. for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr-Univ. Inst., Bochum (Germany)

    2010-07-01

    This paper discussed the potential of biofuels with particular reference to the situation in Germany and Europe. Emphasis was on technical potential, such as biofuel production, utilization and environmental aspects. The Institute of Agricultural Technology and Biosystems Engineering ran vTI emission tests on diesel engines to evaluate the environmental impacts of biofuels. This testing facility is able to drive heavy-duty diesel engines in both stationary and dynamic test cycles, such as the European ESC and ETC. Additional analyses were conducted to determine the fine and ultra-fine particles, polycyclic aromatic hydrocarbons (PAH), aldehydes, ketones, and the usual regulated exhaust gas compounds. Ames tests were conducted to assess the mutagenic potential of tailpipe emissions. Previous study results showed that neat vegetable oils can render the exhaust high in mutagenic potency. Some of the non-regulated exhaust gas compounds were found to vary nonlinearly with the blend composition. B20 was found to have high mutagenic potential and was subject to sedimentation.

  16. Draft Genome Sequence of Hoeflea sp. Strain BAL378, a Potential Producer of Bioactive Compounds

    DEFF Research Database (Denmark)

    Bentzon-Tilia, Mikkel; Riemann, Lasse; Gram, Lone

    2014-01-01

    Some phytoplankton-associated marine bacteria produce bioactive compounds. Members of the genus Hoeflea may be examples of such bacteria; however, data describing their metabolisms are scarce. Here, we report the draft genome sequence of Hoeflea sp. strain BAL378, a putative producer of bacterioc......Some phytoplankton-associated marine bacteria produce bioactive compounds. Members of the genus Hoeflea may be examples of such bacteria; however, data describing their metabolisms are scarce. Here, we report the draft genome sequence of Hoeflea sp. strain BAL378, a putative producer...

  17. Anaerobic catabolism of aromatic compounds: a genetic and genomic view.

    Science.gov (United States)

    Carmona, Manuel; Zamarro, María Teresa; Blázquez, Blas; Durante-Rodríguez, Gonzalo; Juárez, Javier F; Valderrama, J Andrés; Barragán, María J L; García, José Luis; Díaz, Eduardo

    2009-03-01

    Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.

  18. Occurrence and potential human-health relevance of volatile organic compounds in drinking water from domestic wells in the United States

    Science.gov (United States)

    Rowe, B.L.; Toccalino, P.L.; Moran, M.J.; Zogorski, J.S.; Price, C.V.

    2011-01-01

    BACKGROUND: As the population and demand for safe drinking water from domestic wells increase, it is important to examine water quality and contaminant occurrence. A national assessment in 2006 by the U.S. Geological Survey reported findings for 55 volatile organic compounds (VOCs) based on 2,401 domestic wells sampled during 1985-2002. OBJECTIVES: We examined the occurrence of individual and multiple VOCs and assessed the potential human-health relevance of VOC concentrations. We also identified hydrogeologic and anthropogenic variables that influence the probability of VOC occurrence. METHODS: The domestic well samples were collected at the wellhead before treatment of water and analyzed for 55 VOCs. Results were used to examine VOC occurrence and identify associations of multiple explanatory variables using logistic regression analyses. We used a screening-level assessment to compare VOC concentrations to U.S. Environmental Protection Agency maximum contaminant levels (MCLs) and health-based screening levels. RESULTS: We detected VOCs in 65% of the samples; about one-half of these samples contained VOC mixtures. Frequently detected VOCs included chloroform, toluene, 1,2,4-trimethylbenzene, and perchloroethene. VOC concentrations generally were < 1 ??g/L. One or more VOC concentrations were greater than MCLs in 1.2% of samples, including dibromochloropropane, 1,2-dichloropropane, and ethylene dibromide (fumigants); perchloroethene and trichloroethene (solvents); and 1,1-dichloroethene (organic synthesis compound). CONCLUSIONS: Drinking water supplied by domestic wells is vulnerable to low-level VOC contamination. About 1% of samples had concentrations of potential human-health concern. Identifying factors associated with VOC occurrence may aid in understanding the sources, transport, and fate of VOCs in groundwater.

  19. Characterization of ToxCast Phase II compounds disruption of ...

    Science.gov (United States)

    The development of multi-well microelectrode array (mwMEA) systems has increased in vitro screening throughput making them an effective method to screen and prioritize large sets of compounds for potential neurotoxicity. In the present experiments, a multiplexed approach was used to determine compound effects on both neural function and cell health in primary cortical networks grown on mwMEA plates following exposure to ~1100 compounds from EPA’s Phase II ToxCast libraries. On DIV 13, baseline activity (40 min) was recorded prior to exposure to each compound at 40 µM. DMSO and the GABAA antagonist bicuculline (BIC) were included as controls on each mwMEA plate. Changes in spontaneous network activity (mean firing rate; MFR) and cell viability (lactate dehydrogenase; LDH and CellTiter Blue; CTB) were assessed within the same well following compound exposure. Activity calls (“hits”) were established using the 90th and 20th percentiles of the compound-induced change in MFR (medians of triplicates) across all tested compounds; compounds above (top 10% of compounds increasing MFR), and below (bottom 20% of compounds decreasing MFR) these thresholds, respectively were considered hits. MFR was altered beyond one of these thresholds by 322 compounds. Four compound categories accounted for 66% of the hits, including: insecticides (e.g. abamectin, lindane, prallethrin), pharmaceuticals (e.g. haloperidol, reserpine), fungicides (e.g. hexaconazole, fenamidone), and h

  20. Mini-review: Molecular mechanisms of antifouling compounds

    KAUST Repository

    Qian, Pei-Yuan

    2013-04-01

    Various antifouling (AF) coatings have been developed to protect submerged surfaces by deterring the settlement of the colonizing stages of fouling organisms. A review of the literature shows that effective AF compounds with specific targets are ones often considered non-toxic. Such compounds act variously on ion channels, quorum sensing systems, neurotransmitters, production/release of adhesive, and specific enzymes that regulate energy production or primary metabolism. In contrast, AF compounds with general targets may or may not act through toxic mechanisms. These compounds affect a variety of biological activities including algal photosynthesis, energy production, stress responses, genotoxic damage, immunosuppressed protein expression, oxidation, neurotransmission, surface chemistry, the formation of biofilms, and adhesive production/release. Among all the targets, adhesive production/release is the most common, possibly due to a more extensive research effort in this area. Overall, the specific molecular targets and the molecular mechanisms of most AF compounds have not been identified. Thus, the information available is insufficient to draw firm conclusions about the types of molecular targets to be used as sensitive biomarkers for future design and screening of compounds with AF potential. In this review, the relevant advantages and disadvantages of the molecular tools available for studying the molecular targets of AF compounds are highlighted briefly and the molecular mechanisms of the AF compounds, which are largely a source of speculation in the literature, are discussed. © 2013 Copyright Taylor and Francis Group, LLC.

  1. Synthesis, biological activity and computational studies of novel azo-compounds

    International Nuclear Information System (INIS)

    Ashraf, J.; Murtaza, S.; Mughal, E.U.; Sadiq, A.

    2017-01-01

    In the present protocol, we report the synthesis and characterization of some novel azo-compounds starting from 4-methoxyaniline and 4-aminophenazone, which were diazotized at low temperature. 4-nitrophenol, 2-aminobenzoic acid, benzamide, 4-aminobenzoic acid, resorcinol, o-bromonitrobenzene and 2-nitroaniline were used as active aromatic coupling compounds for the second step. The synthesized compounds were investigated for their potential antibacterial activities by using disc diffusion method against Escherichia coli, Shigellasonnei, Streptococcus pyrogenes, Staphylococcus aureus and Neisseria gonorrhoeae strains. They were also subjected to antioxidant activities by using DPPH method. Results revealed that the compounds of 4-methoxyaniline and 4-aminophenazone showed good antibacterial activity against all strains, where as some azo-compounds have moderate to good antioxidant activities. Furthermore, these compounds were studied by computational analysis. (author)

  2. Evaluation of radiolabeled ruthenium compounds as tumor-localizing agents

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Richards, P.; Meinken, G.E.; Som, P.; Atkins, H.L.; Larson, S.M.; Grunbaum, Z.; Rasey, J.S.; Clarke, M.H.; Dowling, M.

    1979-01-01

    This work introduces a new class of radiopharmaceuticals based on ruthenium-97. The excellent physical properties of Ru-97, the high chemical reactivity of Ru, the potential antitumor activity of several Ru coordination compounds, and BLIP production of Ru-97, provide a unique combination for the application of this isotope in nuclear oncology. A systematic study was undertaken on the synthesis, characterization, and evaluation of a number of ruthenium-labeled compounds. In a variety of animal tumor models, several compounds show considerable promise as tumor-localizing agents when compared to gallium-67 citrate. The compounds studied (with Ru in different oxidation states) include ionic Ru, a number of hydrophilic and lipophilic chelates, and various ammine derivatives

  3. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

    Science.gov (United States)

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  4. Assessing the Electrode-Neuron Interface with the Electrically Evoked Compound Action Potential, Electrode Position, and Behavioral Thresholds.

    Science.gov (United States)

    DeVries, Lindsay; Scheperle, Rachel; Bierer, Julie Arenberg

    2016-06-01

    Variability in speech perception scores among cochlear implant listeners may largely reflect the variable efficacy of implant electrodes to convey stimulus information to the auditory nerve. In the present study, three metrics were applied to assess the quality of the electrode-neuron interface of individual cochlear implant channels: the electrically evoked compound action potential (ECAP), the estimation of electrode position using computerized tomography (CT), and behavioral thresholds using focused stimulation. The primary motivation of this approach is to evaluate the ECAP as a site-specific measure of the electrode-neuron interface in the context of two peripheral factors that likely contribute to degraded perception: large electrode-to-modiolus distance and reduced neural density. Ten unilaterally implanted adults with Advanced Bionics HiRes90k devices participated. ECAPs were elicited with monopolar stimulation within a forward-masking paradigm to construct channel interaction functions (CIF), behavioral thresholds were obtained with quadrupolar (sQP) stimulation, and data from imaging provided estimates of electrode-to-modiolus distance and scalar location (scala tympani (ST), intermediate, or scala vestibuli (SV)) for each electrode. The width of the ECAP CIF was positively correlated with electrode-to-modiolus distance; both of these measures were also influenced by scalar position. The ECAP peak amplitude was negatively correlated with behavioral thresholds. Moreover, subjects with low behavioral thresholds and large ECAP amplitudes, averaged across electrodes, tended to have higher speech perception scores. These results suggest a potential clinical role for the ECAP in the objective assessment of individual cochlear implant channels, with the potential to improve speech perception outcomes.

  5. Novel vitamin D compounds and skin cancer prevention

    OpenAIRE

    Tongkao-on, Wannit; Gordon-Thomson, Clare; Dixon, Katie M.; Song, Eric J.; Luu, Tan; Carter, Sally E.; Sequeira, Vanessa B.; Reeve, Vivienne E.; Mason, Rebecca S.

    2013-01-01

    As skin cancer is one of the most costly health issues in many countries, particularly in Australia, the possibility that vitamin D compounds might contribute to prevention of this disease is becoming increasingly more attractive to researchers and health communities. In this article, important epidemiologic, mechanistic and experimental data supporting the chemopreventive potential of several vitamin D-related compounds are explored. Evidence of photoprotection by the active hormone, 1α,25di...

  6. Supercritical Algal Extracts: A Source of Biologically Active Compounds from Nature

    Directory of Open Access Journals (Sweden)

    Izabela Michalak

    2015-01-01

    Full Text Available The paper discusses the potential applicability of the process of supercritical fluid extraction (SFE in the production of algal extracts with the consideration of the process conditions and yields. State of the art in the research on solvent-free isolation of biologically active compounds from the biomass of algae was presented. Various aspects related with the properties of useful compounds found in cells of microalgae and macroalgae were discussed, including their potential applications as the natural components of plant protection products (biostimulants and bioregulators, dietary feed and food supplements, and pharmaceuticals. Analytical methods of determination of the natural compounds derived from algae were discussed. Algal extracts produced by SFE process enable obtaining a solvent-free concentrate of biologically active compounds; however, detailed economic analysis, as well as elaboration of products standardization procedures, is required in order to implement the products in the market.

  7. Synthesis of esters of morpholino-4-carbothionothiolic acid as compounds of potential radioprotective action

    Energy Technology Data Exchange (ETDEWEB)

    Strzelczyk, M.; Kucharski, A. (Wojskowa Akademia Medyczna, Lodz (Poland))

    1979-01-01

    The compounds of the group of dithiocarbaminianes as complexing compounds are of importance in radioprotection. Present paper concerns the synthesis of 19, as yet undescribed dithiocarbaminianes esters of morpholino-4-carbothionothiolic acid. They were obtained in the reaction of the potassium salt of the mentioned acid with adequate alkyl or alkyloaryl halogenatas. Potassium salt of the morpholino-4-carbothionothiolic acid was obtained in the reaction of morpholine with carbon disulphite in the presence of potassium hydroxide. Obtaining of the pure potassium salt of the mentioned acid enabled the accurate calculation of the used substarate in further reactions and conduction of reaction in different solvents. Phenyloalkyl, phenacyl and morpholino-4-carbonyloalkyl esters were obtained. Their chemical structure was confirmed by elementary and spectral infrared analysis.

  8. Synthesis and characterization of volatile technetium compound

    International Nuclear Information System (INIS)

    Childs, Bradley C.; Poineau, Frederic; Czerwinski, Ken R.

    2013-01-01

    Technetium-99 is an important fission (T 1/2 = 2.13.105 y) product of the nuclear industry. Technetium in its highest oxidation state (VII) is highly mobile and can represent a threat to the environment. There are over 55 million gallons of high level mixed waste located at the Hanford site. Waste tanks at the Hanford site contain Tc that could potentially leak, and in the context of management of technetium, a glass waste form was proposed to counteract the issue. In the process of synthesizing melt glass between the temperatures of 600°C and 1100°C, volatile technetium compounds were observed in the reaction tube. These compounds displayed characteristic colors based upon the reaction environments of either breathing air or nitrogen gas. A breathing air atmosphere produces a red compound that adheres to the walls of the reaction tube. An atmosphere of nitrogen gas produces a white compound that was observed on the walls of the reaction tube. (author)

  9. A fluorescence-based rapid screening assay for cytotoxic compounds

    International Nuclear Information System (INIS)

    Montoya, Jessica; Varela-Ramirez, Armando; Estrada, Abril; Martinez, Luis E.; Garza, Kristine; Aguilera, Renato J.

    2004-01-01

    A simple fluorescence-based assay was developed for the rapid screening of potential cytotoxic compounds generated by combinatorial chemistry. The assay is based on detection of nuclear green fluorescent protein (GFP) staining of a human cervical cancer cell line (HeLa) carrying an integrated histone H2B-GFP fusion gene. Addition of a cytotoxic compound to the HeLa-GFP cells results in the eventual degradation of DNA and loss of the GFP nuclear fluorescence. Using this assay, we screened 11 distinct quinone derivatives and found that several of these compounds were cytotoxic. These compounds are structurally related to plumbagin an apoptosis-inducing naphthoquinone isolated from Black Walnut. In order to determine the mechanism by which cell death was induced, we performed additional experiments with the most cytotoxic quinones. These compounds were found to induce morphological changes (blebbing and nuclear condensation) consistent with induction of apoptosis. Additional tests revealed that the cytotoxic compounds induce both necrotic and apoptotic modes of death

  10. Phenolic compounds and bioactive properties of wild German and Roman chamomiles

    OpenAIRE

    Guimarães, Rafaela; Barros, Lillian; Dueñas, Montserrat; Calhelha, Ricardo C.; Carvalho, Ana Maria; Santos-Buelga, Celestino; Queiroz, Maria João R.P.; Ferreira, Isabel C.F.R.

    2012-01-01

    Natural products represent a rich source of biologically active compounds and are an example of molecular diversity, with recognized potential in drug discovery. In the present work, methanolic extracts of Matricaria recutita L. (German chamomile) and Chamaemelum nobile L. (Roman chamomile) and their decoction and infusion (the most consumed preparations of these herbs) were submitted to an analysis of phenolic compounds and bioactivity evaluation. Phenolic compounds were characterized by HPL...

  11. Large nondipole correlation effects near atomic photoionization thresholds

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Felfli, Z.; Msezane, A.Z.; Amusia, M.Y.; Amusia, M.Y.; Baltenkov, A.S.

    1999-01-01

    The parameter that determines the nondipole correction to the angular distribution is calculated for Ar 1s and 3s subshells in the Hartree-Fock (HF) approximation and taking account of the multielectron correlations, using the random-phase approximation with exchange. In the photoelectron energy range 0 - 100 eV the parameter, which for s subshells is nonzero at threshold, is found for Ar 3s to be strongly affected by multielectron correlations. Results are also presented for He and Be in the HF approximation. copyright 1999 The American Physical Society

  12. Drug-likeness analysis of traditional Chinese medicines: 2. Characterization of scaffold architectures for drug-like compounds, non-drug-like compounds, and natural compounds from traditional Chinese medicines.

    Science.gov (United States)

    Tian, Sheng; Li, Youyong; Wang, Junmei; Xu, Xiaojie; Xu, Lei; Wang, Xiaohong; Chen, Lei; Hou, Tingjun

    2013-01-21

    In order to better understand the structural features of natural compounds from traditional Chinese medicines, the scaffold architectures of drug-like compounds in MACCS-II Drug Data Report (MDDR), non-drug-like compounds in Available Chemical Directory (ACD), and natural compounds in Traditional Chinese Medicine Compound Database (TCMCD) were explored and compared. First, the different scaffolds were extracted from ACD, MDDR and TCMCD by using three scaffold representations, including Murcko frameworks, Scaffold Tree, and ring systems with different complexity and side chains. Then, by examining the accumulative frequency of the scaffolds in each dataset, we observed that the Level 1 scaffolds of the Scaffold Tree offer advantages over the other scaffold architectures to represent the scaffold diversity of the compound libraries. By comparing the similarity of the scaffold architectures presented in MDDR, ACD and TCMCD, structural overlaps were observed not only between MDDR and TCMCD but also between MDDR and ACD. Finally, Tree Maps were used to cluster the Level 1 scaffolds of the Scaffold Tree and visualize the scaffold space of the three datasets. The analysis of the scaffold architectures of MDDR, ACD and TCMCD shows that, on average, drug-like molecules in MDDR have the highest diversity while natural compounds in TCMCD have the highest complexity. According to the Tree Maps, it can be observed that the Level 1 scaffolds present in MDDR have higher diversity than those presented in TCMCD and ACD. However, some representative scaffolds in MDDR with high frequency show structural similarities to those in TCMCD and ACD, suggesting that some scaffolds in TCMCD and ACD may be potentially drug-like fragments for fragment-based and de novo drug design.

  13. Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs

    OpenAIRE

    Lin, Chun-Yuan; Wang, Chung-Hung; Hung, Che-Lun; Lin, Yu-Shiang

    2015-01-01

    Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n 2), where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore,...

  14. Electrochemical screening of biomembrane-active compounds in water

    Energy Technology Data Exchange (ETDEWEB)

    Mohamadi, Shahrzad, E-mail: cmsm@leeds.ac.uk; Tate, Daniel J.; Vakurov, Alexander; Nelson, Andrew

    2014-02-01

    Graphical abstract: - Highlights: • Analytical technology application with improvement allowing for on-line high-throughput water toxin screening is presented. • Compound classes of related structure and shape interact with DOPC coated Pt/Hg with a class specific response. • Predecessor membrane system proved as fragile, complex and for environmental application incompatible. - Abstract: Interactions of biomembrane-active compounds with phospholipid monolayers on microfabricated Pt/Hg electrodes in an on-line high throughput flow system are demonstrated by recording capacitance current peak changes as rapid cyclic voltammograms (RCV). Detection limits of the compounds’ effects on the layer have been estimated from the data. Compounds studied include steroids, polycyclic aromatic hydrocarbons, tricyclic antidepressants and tricyclic phenothiazines. The results show that the extent and type of interaction depends on the—(a) presence and number of aromatic rings and substituents, (b) presence and composition of side chains and, (c) molecular shape. Interaction is only indirectly related to compound hydrophobicity. For a selection of tricyclic antidepressants and tricyclic phenothiazines the detection limit in water is related to their therapeutic normal threshold. The sensing assay has been tested in the presence of humic acid as a potential interferent and in a tap water matrix. The system can be applied to the screening of putative hazardous substances and pharmaceuticals allowing for early detection thereof in the water supply. The measurements are made in real time which means that potentially toxic compounds are detected rapidly within <10 min per assay. This technology will contribute greatly to environment safety and health.

  15. Electrochemical screening of biomembrane-active compounds in water

    International Nuclear Information System (INIS)

    Mohamadi, Shahrzad; Tate, Daniel J.; Vakurov, Alexander; Nelson, Andrew

    2014-01-01

    Graphical abstract: - Highlights: • Analytical technology application with improvement allowing for on-line high-throughput water toxin screening is presented. • Compound classes of related structure and shape interact with DOPC coated Pt/Hg with a class specific response. • Predecessor membrane system proved as fragile, complex and for environmental application incompatible. - Abstract: Interactions of biomembrane-active compounds with phospholipid monolayers on microfabricated Pt/Hg electrodes in an on-line high throughput flow system are demonstrated by recording capacitance current peak changes as rapid cyclic voltammograms (RCV). Detection limits of the compounds’ effects on the layer have been estimated from the data. Compounds studied include steroids, polycyclic aromatic hydrocarbons, tricyclic antidepressants and tricyclic phenothiazines. The results show that the extent and type of interaction depends on the—(a) presence and number of aromatic rings and substituents, (b) presence and composition of side chains and, (c) molecular shape. Interaction is only indirectly related to compound hydrophobicity. For a selection of tricyclic antidepressants and tricyclic phenothiazines the detection limit in water is related to their therapeutic normal threshold. The sensing assay has been tested in the presence of humic acid as a potential interferent and in a tap water matrix. The system can be applied to the screening of putative hazardous substances and pharmaceuticals allowing for early detection thereof in the water supply. The measurements are made in real time which means that potentially toxic compounds are detected rapidly within <10 min per assay. This technology will contribute greatly to environment safety and health

  16. Evaluation of antioxidant potential, enzyme inhibition activity and phenolic profile of Lathyrus cicera and Lathyrus digitatus: Potential sources of bioactive compounds for the food industry.

    Science.gov (United States)

    Llorent-Martínez, E J; Ortega-Barrales, P; Zengin, G; Mocan, A; Simirgiotis, M J; Ceylan, R; Uysal, S; Aktumsek, A

    2017-09-01

    The genus Lathyrus has great importance in terms of food and agricultural areas. In this study, the in vitro antioxidant activity (phosphomolybdenum, DPPH, ABTS, FRAP, CUPRAC and metal chelating) and enzyme inhibitory activity evaluation (acetylcholinesterase, butyrylcholinesterase, α-amylase and α-glucosidase) of L. cicera and L. digitatus were investigated, as well as their phytochemical profiles. The screening of the main phytochemical compounds in aerial parts of L. cicera and L. digitatus was carried out by high-performance liquid chromatography with electrospray ionization mass spectrometric detection (HPLC-ESI-MS n ), observing that flavonoids represent the highest percentage of identified compounds, with abundance of tri- and tetra-glycosilated flavonoids, including acylated ones, especially in L. cicera. Generally, L. digitatus exhibited stronger antioxidant and enzyme inhibitory activities in correlation with its higher level of phenolics. The high number of phenolic compounds and the results of the antioxidant and enzyme assays suggest that these plants may be further used as sources of bioactive compounds, and for the preparation of new nutraceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Glycyrrhetinic acid and E.resveratroloside act as potential plant derived compounds against dopamine receptor D3 for Parkinson’s disease: a pharmacoinformatics study

    Directory of Open Access Journals (Sweden)

    Mirza MU

    2014-12-01

    Full Text Available Muhammad Usman Mirza,1 A Hammad Mirza,2 Noor-Ul-Huda Ghori,3 Saba Ferdous4 1Centre for Research in Molecular Medicine, The University of Lahore, Lahore, Pakistan; 2Department of Bioscience, COMSATS Institute of Information Technology, Sahiwal, Pakistan; 3Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan; 4Institute of Structural and Molecular Biology, University College London, UK Abstract: Parkinson’s disease (PD is caused by loss in nigrostriatal dopaminergic neurons and is ranked as the second most common neurodegenerative disorder. Dopamine receptor D3 is considered as a potential target in drug development against PD because of its lesser side effects and higher degree of neuro-protection. One of the prominent therapies currently available for PD is the use of dopamine agonists which mimic the natural action of dopamine in the brain and stimulate dopamine receptors directly. Unfortunately, use of these pharmacological therapies such as bromocriptine, apomorphine, and ropinirole provides only temporary relief of the disease symptoms and is frequently linked with insomnia, anxiety, depression, and agitation. Thus, there is a need for an alternative treatment that not only hinders neurodegeneration, but also has few or no side effects. Since the past decade, much attention has been given to exploitation of phytochemicals and their use in alternative medicine research. This is because plants are a cheap, indispensable, and never ending resource of active compounds that are beneficial against various diseases. In the current study, 40 active phytochemicals against PD were selected through literature survey. These ligands were docked with dopamine receptor D3 using AutoDock and AutoDockVina. Binding energies were compared to docking results of drugs approved by the US Food and Drug Administration against PD. The compounds were further analyzed for their absorption, distribution

  18. Antiviral Screening of Multiple Compounds against Ebola Virus.

    Science.gov (United States)

    Dowall, Stuart D; Bewley, Kevin; Watson, Robert J; Vasan, Seshadri S; Ghosh, Chandradhish; Konai, Mohini M; Gausdal, Gro; Lorens, James B; Long, Jason; Barclay, Wendy; Garcia-Dorival, Isabel; Hiscox, Julian; Bosworth, Andrew; Taylor, Irene; Easterbrook, Linda; Pitman, James; Summers, Sian; Chan-Pensley, Jenny; Funnell, Simon; Vipond, Julia; Charlton, Sue; Haldar, Jayanta; Hewson, Roger; Carroll, Miles W

    2016-10-27

    In light of the recent outbreak of Ebola virus (EBOV) disease in West Africa, there have been renewed efforts to search for effective antiviral countermeasures. A range of compounds currently available with broad antimicrobial activity have been tested for activity against EBOV. Using live EBOV, eighteen candidate compounds were screened for antiviral activity in vitro. The compounds were selected on a rational basis because their mechanisms of action suggested that they had the potential to disrupt EBOV entry, replication or exit from cells or because they had displayed some antiviral activity against EBOV in previous tests. Nine compounds caused no reduction in viral replication despite cells remaining healthy, so they were excluded from further analysis (zidovudine; didanosine; stavudine; abacavir sulphate; entecavir; JB1a; Aimspro; celgosivir; and castanospermine). A second screen of the remaining compounds and the feasibility of appropriateness for in vivo testing removed six further compounds (ouabain; omeprazole; esomeprazole; Gleevec; D-LANA-14; and Tasigna). The three most promising compounds (17-DMAG; BGB324; and NCK-8) were further screened for in vivo activity in the guinea pig model of EBOV disease. Two of the compounds, BGB324 and NCK-8, showed some effect against lethal infection in vivo at the concentrations tested, which warrants further investigation. Further, these data add to the body of knowledge on the antiviral activities of multiple compounds against EBOV and indicate that the scientific community should invest more effort into the development of novel and specific antiviral compounds to treat Ebola virus disease.

  19. Antiviral Screening of Multiple Compounds against Ebola Virus

    Directory of Open Access Journals (Sweden)

    Stuart D. Dowall

    2016-10-01

    Full Text Available In light of the recent outbreak of Ebola virus (EBOV disease in West Africa, there have been renewed efforts to search for effective antiviral countermeasures. A range of compounds currently available with broad antimicrobial activity have been tested for activity against EBOV. Using live EBOV, eighteen candidate compounds were screened for antiviral activity in vitro. The compounds were selected on a rational basis because their mechanisms of action suggested that they had the potential to disrupt EBOV entry, replication or exit from cells or because they had displayed some antiviral activity against EBOV in previous tests. Nine compounds caused no reduction in viral replication despite cells remaining healthy, so they were excluded from further analysis (zidovudine; didanosine; stavudine; abacavir sulphate; entecavir; JB1a; Aimspro; celgosivir; and castanospermine. A second screen of the remaining compounds and the feasibility of appropriateness for in vivo testing removed six further compounds (ouabain; omeprazole; esomeprazole; Gleevec; D-LANA-14; and Tasigna. The three most promising compounds (17-DMAG; BGB324; and NCK-8 were further screened for in vivo activity in the guinea pig model of EBOV disease. Two of the compounds, BGB324 and NCK-8, showed some effect against lethal infection in vivo at the concentrations tested, which warrants further investigation. Further, these data add to the body of knowledge on the antiviral activities of multiple compounds against EBOV and indicate that the scientific community should invest more effort into the development of novel and specific antiviral compounds to treat Ebola virus disease.

  20. Pectolinarigenin - A Flavonoid Compound from Cirsium Japonicum ...

    African Journals Online (AJOL)

    HP

    /tjpr.v13i2.9. Original Research Article. Pectolinarigenin - A Flavonoid Compound from Cirsium. Japonicum with Potential Anti-proliferation Activity in MCF-. 7 Breast Cancer Cell. Mingqian Lu. 1,2,3. , Qingzhi Kong. 1,4. *, Xinhua Xu. 2,3.

  1. Bioactive compounds in edible flowers processed by radiation

    International Nuclear Information System (INIS)

    Koike, Amanda Cristina Ramos

    2015-01-01

    Edible flowers are increasingly being used in culinary preparations, being also recognized for their potential valuable effects in human health, which require new approaches to improve their conservation and safety. These highly perishable products should be grown without using any pesticide. Irradiation treatment might be the answer to these problems, ensuring food quality, increasing shelf-life and disinfestation of foods. Irradiation treatment might be the answer to these problems, to ensure food quality, to increase shelf-life and disinfestation of foods. Tropaeolum majus L. (nasturtium) and Viola tricolor L. (johnny-jump-up) flowers are widely used in culinary preparations, being also acknowledged for their antioxidant properties and high content of phenolics. The purpose of this study was to evaluate the dose-dependent effects of gamma and electron beam irradiation (doses of 0, 0.5, 0.8 and 1 kGy) on the antioxidant activity, phenolic compounds, physical aspects and antiproliferative potential of edible flowers. Kaempferol-O-hexoside-O-hexoside was the most abundant compound in all samples of Tropaeolum majus flower while pelargonidin-3-O-sophoroside was the major anthocyanin. In general, irradiated samples gave higher antioxidant activity, probably due to their higher amounts of phenolic compounds, which were also favored by the 1.0 kGy dose, regardless of the source . The Viola tricolor samples displayed flavonols as the most abundant phenolic compounds, particularly those derived from quercetin. In general, gamma-irradiated samples, independently of the applied dose, showed higher amounts in phenolic compounds, which were also favored by the 1.0 kGy dose, regardless of the source. The antioxidant activity was also higher among irradiated samples. The two species of edible flowers have not provided the samples did not show potential antiproliferative and cytotoxicity. Accordingly, the applied irradiation treatments seemed to represent a feasible technology

  2. Isotopically modified compounds

    International Nuclear Information System (INIS)

    Kuruc, J.

    2009-01-01

    In this chapter the nomenclature of isotopically modified compounds in Slovak language is described. This chapter consists of following parts: (1) Isotopically substituted compounds; (2) Specifically isotopically labelled compounds; (3) Selectively isotopically labelled compounds; (4) Non-selectively isotopically labelled compounds; (5) Isotopically deficient compounds.

  3. Mobile organic compounds in biochar - a potential source of contamination - phytotoxic effects on cress seed (Lepidium sativum) germination.

    Science.gov (United States)

    Buss, Wolfram; Mašek, Ondřej

    2014-05-01

    Biochar can be contaminated during pyrolysis by re-condensation of pyrolysis vapours. In this study two biochar samples contaminated by pyrolysis liquids and gases to a high degree, resulting in high volatile organic compound (high-VOC) content, were investigated and compared to a biochar with low volatile organic compound (low-VOC) content. All biochar samples were produced from the same feedstock (softwood pellets) under the same conditions (550 °C, 20 min mean residence time). In experiments where only gaseous compounds could access germinating cress seeds (Lepidium sativum), application amounts ranging from 1 to 30 g of high-VOC biochar led to total inhibition of cress seed germination, while exposure to less than 1 g resulted in only partial reduction. Furthermore, leachates from biochar/sand mixtures (1, 2, 5 wt.% of biochar) induced heavy toxicity to germination and showed that percolating water could dissolve toxic compounds easily. Low-VOC biochar didn't exhibit any toxic effects in either germination test. Toxicity mitigation via blending of a high-VOC biochar with a low-VOC biochar increased germination rate significantly. These results indicate re-condensation of VOCs during pyrolysis can result in biochar containing highly mobile, phytotoxic compounds. However, it remains unclear, which specific compounds are responsible for this toxicity and how significant re-condensation in different pyrolysis units might be. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Interaction of complex atoms with radiation

    International Nuclear Information System (INIS)

    Amus'ya, M.Ya.

    1984-01-01

    Different manifestations of multielectron atomic structure under photoionization are discussed. Collectivization of external electron shells essential both in production cross section and in angular distribution as well as in photoelectron polarization are noted. In a wide range of quantum energies (of the order of ionization potential) an incident electron scattering on the atom irradiates quite differently than on the potential. It polarizes atoms mainly dipolarly, and virtually excited atom emits ''bremsstrahlung'' quantum. With energy growth of the incident electron at small momentum transferred to it by the atom the role of the second mechanism turns to be determinant

  5. Non-classical structures of organic compounds: unusual stereochemistry and hypercoordination

    International Nuclear Information System (INIS)

    Minkin, Vladimir I; Minyaev, Ruslan M; Hoffmann, Roald

    2002-01-01

    Non-classical structures of organic compounds are defined as molecules containing non-tetrahedral tetracoordinate and/or hypercoordinate carbon atoms. The evolution of the views on this subject is considered and the accumulated theoretical and experimental data on the structures and dynamic transformations of non-classical organic compounds are systematised. It is shown that computational analysis using the methods and the software potential of modern quantum chemistry has now acquired high predictive capacity and is the most important source of data on the structures of non-classical compounds. The bibliography includes 227 references.

  6. Compounds in food packaging materials - toxicological profiling of knowns and unknowns

    DEFF Research Database (Denmark)

    Rosenmai, Anna Kjerstine

    compounds present in these materials. Specific focus was placed on in vitroendpoints assessing endocrine activity. BPA, five BPA analogues, and 19 fluorinated substances including fluorochemical containing technical mixtures (TMs) were investigated. The in vitro assays included the androgen receptor (AR....... It is recommended to test more FCMs of paper and board with the strategy to obtain information on other potentially problematic compounds present in these materials. The presented data overall suggest that some compounds present in FCMs or suspected of being used can exert endocrine activities in vitro, though......Food contact materials (FCMs) are sources of food contamination and human chemical exposure. Some chemicals in these materials are known to cause adverse effects, but many are poorly characterized for their potential toxicological hazards making risk assessment a challenge. The aim of the project...

  7. Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA

    Science.gov (United States)

    Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D.

    2007-01-01

    The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 ??g/L. Concentrations of individual compounds ranged from about 18 to compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.

  8. Synthesis, microwave spectrum, and dipole moment of allenylisocyanide (H2C═C═CHNC), a compound of potential astrochemical interest.

    Science.gov (United States)

    Møllendal, Harald; Samdal, Svein; Matrane, Abdellatif; Guillemin, Jean-Claude

    2011-07-14

    An improved synthesis of a compound of potential astrochemical interest, allenylisocyanide (H(2)C═C═CHNC), is reported together with its microwave spectrum, which has been investigated in the 8-120 GHz spectral range to facilitate a potential identification in interstellar space. The spectra of the ground vibrational state and of five vibrationally excited states belonging to three different vibrational modes have been assigned for the parent species. A total of 658 transitions with a maximum value of J = 71 were assigned for the ground state and accurate values obtained for the rotational and quartic centrifugal distortion constants. The spectra of five heavy-atom ((13)C and (15)N) isotopologues were also assigned. The dipole moment was determined to be μ(a) = 11.93(16) × 10(-30) C m, μ(b) = 4.393(44) × 10(-30) C m, and μ(tot) = 12.71(16) × 10(-30) C m. The spectroscopic work has been augmented by theoretical calculations at the CCSD/cc-pVTZ and B3LYP/cc-pVTZ levels of theory. The theoretical calculations are generally in good agreement with the experimental results.

  9. Bioactive compounds, antioxidant potential, and hepatoprotective activity of sea cucumber (Holothuria atra) against thioacetamide intoxication in rats.

    Science.gov (United States)

    Esmat, Amr Y; Said, Mahmoud M; Soliman, Amel A; El-Masry, Khaled S H; Badiea, Elham Abdel

    2013-01-01

    The identification of the active phenolic compounds in the mixed extract of sea cucumber (Holothuria atra) body wall by high-performance liquid chromatography and an assessment of its hepatoprotective activity against thioacetamide-induced liver fibrosis in rats. Female Swiss albino rats were divided into four groups: normal controls; oral administration of a sea cucumber mixed extract (14.4 mg/kg of body weight) on days 2, 4, and 6 weekly for 8 consecutive weeks; intoxication with thioacetamide (200 mg/kg of body weight, intraperitoneally) on days 2 and 6 weekly for 8 wk; and oral administration of a sea cucumber extract and then intoxication with thioacetamide 2 h later for 8 wk. High-performance liquid chromatographic analysis of the sea cucumber mixed extract revealed the presence of some phenolic components, such as chlorogenic acid, pyrogallol, rutin, coumaric acid, catechin, and ascorbic acid. In vitro studies have shown that the extract has a high scavenging activity for the nitric oxide radical, a moderate iron-chelating activity, and a weak inhibitory effect of lipid peroxidation. The subchronic oral administration of sea cucumber extract to the rats did not show any toxic side effects but increased hepatic superoxide dismutase and glutathione peroxidase activities. The coadministration of sea cucumber extract and thioacetamide (protection modality) normalized serum direct bilirubin, alanine and aspartate aminotransferases, hepatic malondialdehyde, and hydroxyproline concentrations and antioxidant enzyme activities. In addition, the histologic examination of liver sections from the protection group that were stained with hematoxylin and eosin showed substantial attenuation of the degenerative cellular changes and regressions in liver fibrosis and necrosis induced by the thioacetamide intoxication. Sea cucumber mixed extract contains physiologically active phenolic compounds with antioxidant activity, which afforded a potential hepatoprotective activity

  10. Organotypic Culture of Breast Tumor Explants as a Multicellular System for the Screening of Natural Compounds with Antineoplastic Potential

    Directory of Open Access Journals (Sweden)

    Irma Edith Carranza-Torres

    2015-01-01

    Full Text Available Breast cancer is the leading cause of death in women worldwide. The search for novel compounds with antitumor activity, with less adverse effects and higher efficacy, and the development of methods to evaluate their toxicity is an area of ​​intense research. In this study we implemented the preparation and culture of breast tumor explants, which were obtained from precision-cut breast tumor slices. In order to validate the model we are proposing to screen antineoplastic effect of natural compounds, we selected caffeic acid, ursolic acid, and rosmarinic acid. Using the Krumdieck tissue slicer, precision-cut tissue slices were prepared from breast cancer samples; from these slices, 4 mm explants were obtained and incubated with the selected compounds. Viability was assessed by Alamar Blue assay, LDH release, and histopathological criteria. Results showed that the viability of the explants cultured in the presence of paclitaxel (positive control decreased significantly (P<0.05; however, tumor samples responded differently to each compound. When the explants were coincubated with paclitaxel and compounds, a synergic effect was observed. This study shows that ex vivo culture of breast cancer explants offers a suitable alternative model for evaluating natural or synthetic compounds with antitumor properties within the complex microenvironment of the tumor.

  11. Novel synthetic organic compounds inspired from antifeedant marine alkaloids as potent bacterial biofilm inhibitors.

    Science.gov (United States)

    Rane, Rajesh A; Karpoormath, Rajshekhar; Naphade, Shital S; Bangalore, Pavankumar; Shaikh, Mahamadhanif; Hampannavar, Girish

    2015-08-01

    In this paper, we have reported seventeen novel synthetic organic compounds derived from marine bromopyrrole alkaloids, exhibiting potential inhibition of biofilm produced by Gram-positive bacteria. Compound 5f with minimumbiofilm inhibitory concentration(MBIC) of 0.39, 0.78 and 3.125 μg/mL against MSSA, MRSA and SE respectively, emerged as promising anti-biofilm lead compounds. In addition, compounds 5b, 5c, 5d, 5e, 5f, 5h, 5i and 5j revealed equal potency as that of the standard drug Vancomycin (MBIC = 3.125 μg/mL) against Streptococcus epidermidis. Notably, most of the synthesized compounds displayed better potency than Vancomycin indicating their potential as inhibitors of bacterial biofilm. The cell viability assay for the most active hybrid confirms its anti-virulence properties which need to be further researched. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Large nondipole correlation effects near atomic photoionization thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Y.; Felfli, Z.; Msezane, A.Z. [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, Georgia 30314 (United States); Amusia, M.Y. [The Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Amusia, M.Y. [A. F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russia); Baltenkov, A.S. [Arifov Institute of Electronics, Akademgorodok, 700143 Tashkent, Republic of (Uzbekistan)

    1999-04-01

    The parameter that determines the nondipole correction to the angular distribution is calculated for Ar 1s and 3s subshells in the Hartree-Fock (HF) approximation and taking account of the multielectron correlations, using the random-phase approximation with exchange. In the photoelectron energy range 0{endash}100 eV the parameter, which for {ital s} subshells is nonzero at threshold, is found for Ar 3s to be strongly affected by multielectron correlations. Results are also presented for He and Be in the HF approximation. thinsp {copyright} {ital 1999} {ital The American Physical Society}

  13. S-omega carboxamidinoalkyl isothiurea compounds. VI. Radioprotective testing on E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Minkova, M; Pantev, T [Nauchno-Izsledovatelski Inst. po Radiologiya i Radiatsionna Khigiena, Sofia (Bulgaria)

    1975-01-01

    The radioprotective effect of eight newly synthesized potential radioprotectors from the group of the S-omega carboxamidinoalkyl isothiourea compounds is studied. The protective activity of these compounds is evaluated according to the ability of E. coli B to form colonies. Exponential culture of this strain were exposed to 20, 40, 60, 80, 100, and 120 kR of gamma rays (Cobalt 60) in the presence of the tested compounds administered in experimentally established nontoxic concentrations 15 minutes before irradiation. Five of the eight compounds tested showed radioprotective effect which was more prominent at the higher doses. As a result of this, cell survival was increased by one order.

  14. MICROBIAL DEGRADATION OF NITROGEN, OXYGEN AND SULFUR HETEROCYCLIC COMPOUNDS UNDER ANAEROBIC CONDITIONS: STUDIES WITH AQUIFER SAMPLES

    Science.gov (United States)

    The potential for anaerobic biodegradation of 12 heterocyclic model compounds was studied. Nine of the model compounds were biotransformed in aquifer slurries under sulfate-reducing or methanogenic conditions. The nitrogen and oxygen heterocyclic compounds were more susceptible t...

  15. Telluro amino acids-synthesis, characterization and properties of a new and potentially useful class of compounds

    International Nuclear Information System (INIS)

    Knapp, F.F. Jr.; Ambrose, K.R.; Callahan, A.P.

    1978-01-01

    The Te-123m nuclide emits 159 keV photons suggesting that agents labeled with this nuclide would be attractive candidates for tissue imaging. Amino acids labeled with Te-123m are of particular interest since some of these compounds would be isosteric with the sulfur analogs and might behave similarly in vivo. Such agents could possibly be useful for pancreatic imaging and for other biomedical applications. The goal of this investigation was to develop a general chemical method for the preparation of telluro amino acids. Attempts by other workers to prepare such compounds by microbiological methods have been unsuccessful. Since telluro amino acids were unknown prior to our studies we attempted the synthesis of a representative member of this class of compounds by several routes. Two general approaches were considered which involved either the introduction of an (organo telluro) reagent into a substrate that contained the protected -CH(NH 2 )COOH moiety or introduction of the reagent into a substrate that could subsequently be converted to the α-amino acid after the coupling step

  16. Plant-associated bacterial degradation of toxic organic compounds in soil.

    LENUS (Irish Health Repository)

    McGuinness, Martina

    2009-08-01

    A number of toxic synthetic organic compounds can contaminate environmental soil through either local (e.g., industrial) or diffuse (e.g., agricultural) contamination. Increased levels of these toxic organic compounds in the environment have been associated with human health risks including cancer. Plant-associated bacteria, such as endophytic bacteria (non-pathogenic bacteria that occur naturally in plants) and rhizospheric bacteria (bacteria that live on and near the roots of plants), have been shown to contribute to biodegradation of toxic organic compounds in contaminated soil and could have potential for improving phytoremediation. Endophytic and rhizospheric bacterial degradation of toxic organic compounds (either naturally occurring or genetically enhanced) in contaminated soil in the environment could have positive implications for human health worldwide and is the subject of this review.

  17. Effect of substrates and intermediate compounds on foaming in manure digestion systems

    DEFF Research Database (Denmark)

    Boe, Kanokwan; Kougias, Panagiotis; Pacheco, F.

    2012-01-01

    Manure contains several compounds that can potentially cause foaming during anaerobic digestion. Understanding the effect of substrates and intermediate compounds on foaming tendency and stability could facilitate strategies for foaming prevention and recovery of the process. In this study...... potential to create foam in a manure digester. Moreover, high organic loading of lipids and protein, and high concentrations of acetic and butyric acids also showed a strong tendency to create foaming during anaerobic digestion. Due to their great ability to stabilize foam, high organic loadings of Na...

  18. Quinolinic Carboxylic Acid Derivatives as Potential Multi-target Compounds for Neurodegeneration: Monoamine Oxidase and Cholinesterase Inhibition.

    Science.gov (United States)

    Khan, Nehal A; Khan, Imtiaz; Abid, Syed M A; Zaib, Sumera; Ibrar, Aliya; Andleeb, Hina; Hameed, Shahid; Iqbal, Jamshed

    2018-01-01

    Parkinson's disease (PD), a debilitating and progressive disorder, is among the most challenging and devastating neurodegenerative diseases predominantly affecting the people over 60 years of age. To confront PD, an advanced and operational strategy is to design single chemical functionality able to control more than one target instantaneously. In this endeavor, for the exploration of new and efficient inhibitors of Parkinson's disease, we synthesized a series of quinoline carboxylic acids (3a-j) and evaluated their in vitro monoamine oxidase and cholinesterase inhibitory activities. The molecular docking and in silico studies of the most potent inhibitors were performed to identify the probable binding modes in the active site of the monoamine oxidase enzymes. Moreover, molecular properties were calculated to evaluate the druglikeness of the compounds. The biological evaluation results revealed that the tested compounds were highly potent against monoamine oxidase (A & B), 3c targeted both the isoforms of MAO with IC50 values of 0.51 ± 0.12 and 0.51 ± 0.03 µM, respectively. The tested compounds also demonstrated high and completely selective inhibitory action against acetylcholinesterase (AChE) with IC50 values ranging from 4.36 to 89.24 µM. Among the examined derivatives, 3i was recognized as the most potent inhibitor of AChE with an IC50 value of 4.36 ± 0.12 ±µM. The compounds appear to be promising inhibitors and could be used for the future development of drugs targeting neurodegenerative disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Electrically evoked compound action potentials artefact rejection by independent component analysis: procedure automation.

    Science.gov (United States)

    Akhoun, Idrick; McKay, Colette; El-Deredy, Wael

    2015-01-15

    Independent-components-analysis (ICA) successfully separated electrically-evoked compound action potentials (ECAPs) from the stimulation artefact and noise (ECAP-ICA, Akhoun et al., 2013). This paper shows how to automate the ECAP-ICA artefact cancellation process. Raw-ECAPs without artefact rejection were consecutively recorded for each stimulation condition from at least 8 intra-cochlear electrodes. Firstly, amplifier-saturated recordings were discarded, and the data from different stimulus conditions (different current-levels) were concatenated temporally. The key aspect of the automation procedure was the sequential deductive source categorisation after ICA was applied with a restriction to 4 sources. The stereotypical aspect of the 4 sources enables their automatic classification as two artefact components, a noise and the sought ECAP based on theoretical and empirical considerations. The automatic procedure was tested using 8 cochlear implant (CI) users and one to four stimulus electrodes. The artefact and noise sources were successively identified and discarded, leaving the ECAP as the remaining source. The automated ECAP-ICA procedure successfully extracted the correct ECAPs compared to standard clinical forward masking paradigm in 22 out of 26 cases. ECAP-ICA does not require extracting the ECAP from a combination of distinct buffers as it is the case with regular methods. It is an alternative that does not have the possible bias of traditional artefact rejections such as alternate-polarity or forward-masking paradigms. The ECAP-ICA procedure bears clinical relevance, for example as the artefact rejection sub-module of automated ECAP-threshold detection techniques, which are common features of CI clinical fitting software. Copyright © 2014. Published by Elsevier B.V.

  20. Compounds from Lactobacillus plantarum culture supernatants with potential pro-healing and anti-pathogenic properties in skin chronic wounds.

    Science.gov (United States)

    Ramos, Alberto N; Sesto Cabral, Maria E; Arena, Mario E; Arrighi, Carlos F; Arroyo Aguilar, Abel A; Valdéz, Juan C

    2015-03-01

    It is necessary to advance the field of alternative treatments for chronic wounds that are financially accessible to the least economically developed countries. Previously we demonstrated that topical applications of Lactobacillus plantarum culture supernatants (LAPS) on human-infected chronic wounds reduce the pathogenic bioburden, the amount of necrotic tissue, and the wound area, as well as promote debridement, granulation tissue, and wound healing. To study LAPS chemically and biologically and to find potential molecules responsible for its pro-healing and anti-pathogenic properties in chronic wounds. (1) Chemical analysis: extracts were subjected to a column chromatography and the fractions obtained were studied by GCMS. (2) Quantification: dl-lactic acid (commercial kit), phenolic compounds (Folin-Ciocalteu), H2O2 (micro-titration), and cations (flame photometry). (3) Biological analysis: autoinducers type 2 (AI-2) (Vibrio harveyi BB170 bioassay), DNAase activity (Agar DNAase), and Pseudomonas aeruginosa biofilm inhibition (crystal violet technique). According to its biological activity, the most significant molecules found by GCMS were the following: antimicrobials (mevalonolactone, 5-methyl-hydantoine, benzoic acid, etc.); surfactants (di-palmitin, distearin, and 1,5-monolinolein); anesthetics (barbituric acid derivatives), and AI-2 precursors (4,5-dihydroxy-2,3-pentanedione and 2-methyl-2,3,3,4-tetrahydroxytetrahydrofurane). Concentrations measured (µg/mL): DL-lactic acid (11.71 ± 1.53) and H2O2 (36 ± 2.0); phenolic compounds (485.2 ± 15.20); sodium (370 ± 17); potassium 920 ± 24); calcium (20 ± 4); and magnesium (15 ± 3). DNAase from LAPS had activity on genomic DNA from PMNs and P. aeruginosa. The molecules and biological activities found in LAPS could explain the observed effects in human chronic wounds.

  1. Chemistry and Functionality of Bioactive Compounds Present in Persimmon

    Directory of Open Access Journals (Sweden)

    Shazia Yaqub

    2016-01-01

    Full Text Available Extensive research has related the consumption of persimmon with the reduced risk of various diseases and particularly highlighted the presence of bioactive phenolic compounds for their therapeutic properties. Major phenolic compounds present in persimmon are ferulic acid, p-coumaric acid, and gallic acid. β-Cryptoxanthin, lycopene, β-carotene, zeaxanthin, and lutein are important carotenoids having antioxidant potential. They are important to prevent oxidation of low-density lipoproteins, safeguard beta cells of the pancreas, and reduce cardiovascular diseases, cancer, diabetes mellitus, and damage caused by chronic alcohol consumption. In this paper, the chemistry and health benefits of bioactive compounds present in persimmon are reviewed to encourage impending applications and to facilitate further research activities.

  2. The Use of Plant Antimicrobial Compounds for Food Preservation

    Science.gov (United States)

    Hintz, Tana; Matthews, Karl K.

    2015-01-01

    Foodborne disease is a global issue with significant impact on human health. With the growing consumer demand for natural preservatives to replace chemical compounds, plant antimicrobial compounds must be thoroughly investigated for their potential to serve as biopreservatives. This review paper will focus on the plant-derived products as antimicrobial agents for use in food preservation and to control foodborne pathogens in foods. Structure, modes of action, stability, and resistance to these plant compounds will be discussed as well as their application in food industries and possible technologies by which they can be delivered. Benefits as well as challenges, such as the need for further research for implementation and governmental regulation, will be highlighted. PMID:26539472

  3. Selenium-containing indolyl compounds

    DEFF Research Database (Denmark)

    Casaril, Angela M; Ignasiak, Marta T; Chuang, Christine Y

    2017-01-01

    materials, including extracellular matrix (ECM) proteins, within the artery wall. Here we investigated the potential of selenium-containing indoles to afford protection against these oxidants, by determining rate constants (k) for their reaction, and quantifying the extent of damage on isolated ECM proteins......Tyr on HCAEC-ECM were also reduced. These data demonstrate that the novel selenium-containing compounds show high reactivity with oxidants and may modulate oxidative and nitrosative damage at sites of inflammation, contributing to a reduction in tissue dysfunction and atherogenesis....

  4. Parity violation in the compound nucleus

    International Nuclear Information System (INIS)

    Bowman, J.D.; Frankle, C.M.; Green, A.A.

    1994-01-01

    The status of parity violation in the compound nucleus is reviewed. The results of previous experimental results obtained by scattering polarized epithermal neutrons from heavy nuclei in the 3-p and 4-p p-wave strength function peaks are presented. Experimental techniques are presented. The extraction of the mean squared matrix element of the parity-violating interaction, M 2 , between compound-nuclear levels and the relationship of M 2 to the coupling strengths in the meson exchange weak nucleon-nucleon potential are discussed. The tendency of measured asymmetries to have a common sign and theoretical implications are discussed. New experimental results are presented that show that the common sign phenomenon is not universal, as theoretical models developed up to now would predict

  5. Compound nucleus effects in spin-spin cross sections

    International Nuclear Information System (INIS)

    Thompson, W.J.

    1976-01-01

    By comparison with recent data, it is shown that spin-spin cross sections for low-energy neutrons may be dominated by a simple compound-elastic level-density effect, independent of spin-spin terms in the nucleon-nucleus optical-model potential. (Auth.)

  6. Toxic organic compounds from energy production

    Energy Technology Data Exchange (ETDEWEB)

    Hites, R.A.

    1991-09-20

    The US Department of Energy's Office of Health and Environmental Research (OHER) has supported work in our laboratory since 1977. The general theme of this program has been the identification of potentially toxic organic compounds associated with various combustion effluents, following the fates of these compounds in the environment, and improving the analytical methodology for making these measurements. The projects currently investigation include: an improved sampler for semi-volatile compounds in the atmosphere; the wet and dry deposition of dioxins and furans from the atmosphere; the photodegradation and mobile sources of dioxins and furans; and the bioaccumulation of PAH by tree bark. These projects are all responsive to OHER's interest in the pathways and mechanisms by which energy-related agents move through and are modified by the atmosphere''. The projects on gas chromatographic and liquid chromatographic tandem mass spectrometry are both responsive to OHER's interest in new and more sensitive technologies for chemical measurements''. 35 refs., 9 figs.

  7. Hybrid Compounds Strategy in the Synthesis of Oleanolic Acid Skeleton-NSAID Derivatives

    Directory of Open Access Journals (Sweden)

    Anna Pawełczyk

    2016-04-01

    Full Text Available The current study focuses on the synthesis of several hybrid individuals combining a natural oleanolic acid skeleton and synthetic nonsteroidal anti-inflammatory drug moieties (NSAIDs. It studied structural modifications of the oleanolic acid structure by use of the direct reactivity of hydroxyl or hydroxyimino groups at position C-3 of the triterpenoid skeleton with the carboxylic function of anti-inflammatory drugs leading to new perspective compounds with high potential pharmacological activities. Novel ester- and iminoester-type derivatives of oleanolic unit with the different NSAIDs, such as ibuprofen, aspirin, naproxen, and ketoprofen, were obtained and characterized. Moreover, preliminary research of compounds obtaining structure stability under acidic conditions was examined and the PASS method of prediction of activity spectra for substances was used to estimate the potential biological activity of these compounds.

  8. Crystal field in rare-earth metals and intermetallic compounds

    International Nuclear Information System (INIS)

    Ray, D.K.

    1978-01-01

    Reasons for the success of the crystal-field model for the rare-earth metals and intermetallic compounds are discussed. A review of some of the available experimental results is made with emphasis on cubic intermetallic compounds. Various sources of the origin of the crystal field in these metals are discussed in the background of the recent APW picture of the conduction electrons. The importance of the non-spherical part of the muffin-tin potential on the single-ion anisotropy is stressed. (author)

  9. nfluence of reducing and oxidizing compounds and of the redox potential of the medium on the biomass of Scenedesmus quadricauda (Turp. Breb.

    Directory of Open Access Journals (Sweden)

    Stefan Gumiński

    2014-01-01

    Full Text Available The influence was investigated of several concentrations of the reducing agents: cysteine, glutathione, ascorbic acid, pyracatechol and of the oxidizing agents: KMnO4, K4Cr2O7 and H2O2 on the total dry weight increment and that of protein with reference to redox potential changes of the medium in Scenedesmus quadricauda cultures. The culture was run in a photothermostat. It was found that the reducing compounds had as a rule a stimulating influence under 24-h illumdnation, whereas the oxidilzing agents gave the same effect when a period of 7-h darkness was applied within 24 h.

  10. Identifying bioaccumulative halogenated organic compounds using a nontargeted analytical approach: seabirds as sentinels.

    Directory of Open Access Journals (Sweden)

    Christopher J Millow

    Full Text Available Persistent organic pollutants (POPs are typically monitored via targeted mass spectrometry, which potentially identifies only a fraction of the contaminants actually present in environmental samples. With new anthropogenic compounds continuously introduced to the environment, novel and proactive approaches that provide a comprehensive alternative to targeted methods are needed in order to more completely characterize the diversity of known and unknown compounds likely to cause adverse effects. Nontargeted mass spectrometry attempts to extensively screen for compounds, providing a feasible approach for identifying contaminants that warrant future monitoring. We employed a nontargeted analytical method using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS to characterize halogenated organic compounds (HOCs in California Black skimmer (Rynchops niger eggs. Our study identified 111 HOCs; 84 of these compounds were regularly detected via targeted approaches, while 27 were classified as typically unmonitored or unknown. Typically unmonitored compounds of note in bird eggs included tris(4-chlorophenylmethane (TCPM, tris(4-chlorophenylmethanol (TCPMOH, triclosan, permethrin, heptachloro-1'-methyl-1,2'-bipyrrole (MBP, as well as four halogenated unknown compounds that could not be identified through database searching or the literature. The presence of these compounds in Black skimmer eggs suggests they are persistent, bioaccumulative, potentially biomagnifying, and maternally transferring. Our results highlight the utility and importance of employing nontargeted analytical tools to assess true contaminant burdens in organisms, as well as to demonstrate the value in using environmental sentinels to proactively identify novel contaminants.

  11. Atmospheric emissions in metropolitan France: compounds related to the increase of the greenhouse effect

    International Nuclear Information System (INIS)

    2011-01-01

    This report presents and comments statistical data and indicators on emissions of compounds involved in the greenhouse effect: carbon dioxide (CO 2 ), methane (CH 4 ), nitrogen dioxide (NO 2 ), hydro-fluorocarbon compounds (HFCs), per-fluorocarbon compounds (PFCs), sulphur hexafluoride (SF 6 ). For these compounds, the report indicates and comments world and French emission data, their evolution, and the shares of different sectors and their evolutions. It also comments the evolution of the global warming potential (GWP)

  12. Sanskrit Compound Processor

    Science.gov (United States)

    Kumar, Anil; Mittal, Vipul; Kulkarni, Amba

    Sanskrit is very rich in compound formation. Typically a compound does not code the relation between its components explicitly. To understand the meaning of a compound, it is necessary to identify its components, discover the relations between them and finally generate a paraphrase of the compound. In this paper, we discuss the automatic segmentation and type identification of a compound using simple statistics that results from the manually annotated data.

  13. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network

    International Nuclear Information System (INIS)

    Calderón-Preciado, Diana; Matamoros, Víctor; Bayona, Josep M.

    2011-01-01

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L −1 and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (> 200 ng L −1 , on average). The estimated concentration of micropollutants in crops ranged from −1 , with the neutral compounds being the most abundant. Moreover, the predicted data obtained by fate models generally agreed with experimental data. Finally, human exposure to micropollutants through fruit and vegetable consumption was estimated to be 9.8 μg per person and week (Σ 27 contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers.

  14. Analysis of Riboflavin Compounds in the Rabbit Cornea In Vivo.

    Science.gov (United States)

    Hammer, Arthur; Rudaz, Serge; Guinchard, Sylvie; Kling, Sabine; Richoz, Olivier; Hafezi, Farhad

    2016-09-01

    To investigate the composition and concentration of individual riboflavin compounds in the corneal stroma in vivo after soaking with various commercially available riboflavin formulations. Experiments were performed in 26 rabbit corneas in vivo: 24 corneas were soaked with riboflavin formulations for 30 minutes or with 0.9% NaCl for control (n = 2). After treatment, corneas were excised and prepared for ultra-high-pressure liquid chromatography (UHPLC) analysis. Additionally, computational chemical analysis of riboflavin compounds and keratan sulfate were performed. The amount of riboflavin and riboflavin phosphate isomers in cornea decreased by a factor of 10 to 100, when compared to the amount in riboflavin formulations. In particular, we found an inverse relationship in the ratio of riboflavin to riboflavin phosphate isomer concentration between formulations and cornea. The electronegativity and ionization potential of riboflavin and phosphate isomers are different. The inverse relationship observed might be explained by a stronger electronegativity of the phosphate isomers, leading to a stronger repulsion by corneal proteoglycans. Indicating the individual concentration of riboflavin compounds in formulations is more representative than the total riboflavin concentration. Riboflavin formulations and CXL protocols might be improved considering the differences in diffusion and ionization potentials of the different riboflavin compounds.

  15. Volatile organic compounds in pesticide formulations: Methods to estimate ozone formation potential

    Science.gov (United States)

    Zeinali, Mazyar; McConnell, Laura L.; Hapeman, Cathleen J.; Nguyen, Anh; Schmidt, Walter F.; Howard, Cody J.

    2011-05-01

    The environmental fate and toxicity of active ingredients in pesticide formulations has been investigated for many decades, but relatively little research has been conducted on the fate of pesticide co-formulants or inerts. Some co-formulants are volatile organic compounds (VOCs) and can contribute to ground-level ozone pollution. Effective product assessment methods are required to reduce emissions of the most reactive VOCs. Six emulsifiable concentrate pesticide products were characterized for percent VOC by thermogravimetric analysis (TGA) and gas chromatography-mass spectrometry (GC-MS). TGA estimates exceeded GC-MS by 10-50% in all but one product, indicating that for some products a fraction of active ingredient is released during TGA or that VOC contribution was underestimated by GC-MS. VOC profiles were examined using TGA-Fourier transform infrared (FTIR) evolved gas analysis and were compared to GC-MS results. The TGA-FTIR method worked best for products with the simplest and most volatile formulations, but could be developed into an effective product screening tool. An ozone formation potential ( OFP) for each product was calculated using the chemical composition from GC-MS and published maximum incremental reactivity ( MIR) values. OFP values ranged from 0.1 to 3.1 g ozone g -1 product. A 24-h VOC emission simulation was developed for each product assuming a constant emission rate calculated from an equation relating maximum flux rate to vapor pressure. Results indicate 100% VOC loss for some products within a few hours, while other products containing less volatile components will remain in the field for several days after application. An alternate method to calculate a product OFP was investigated utilizing the fraction of the total mass of each chemical emitted at the end of the 24-h simulation. The ideal assessment approach will include: 1) unambiguous chemical composition information; 2) flexible simulation models to estimate emissions under

  16. Transformation of chlorinated compounds by methanogenic granular sludge

    NARCIS (Netherlands)

    Eekert, van M.H.A.

    1999-01-01

    Chlorinated compounds are an important group of contaminants often found in sediments, groundwater, soils, wastewaters, and off-gasses. Many of these pollutants are found on the EPA list of Priority Pollutants indicating their potential hazard for the environment. Initial degradation can

  17. Therapeutic Potentials of Microalgae in the Treatment of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Tosin A. Olasehinde

    2017-03-01

    Full Text Available Current research is geared towards the discovery of new compounds with strong neuroprotective potential and few or no side effects compared to synthetic drugs. This review focuses on the potentials of extracts and biologically active compounds derived from microalgal biomass for the treatment and management of Alzheimer’s disease (AD. Microalgal research has gained much attention recently due to its contribution to the production of renewable fuels and the ability of alga cells to produce several secondary metabolites such as carotenoids, polyphenols, sterols, polyunsaturated fatty acids and polysaccharides. These compounds exhibit several pharmacological activities and possess neuroprotective potential. The pathogenesis of Alzheimer’s disease (AD involves complex mechanisms that are associated with oxidative stress, cholinergic dysfunction, neuronal damage, protein misfolding and aggregation. The antioxidant, anticholinesterase activities as well as the inhibitory effects of some bioactive compounds from microalgae extracts on β-amyloid aggregation and neuronal death are discussed extensively. Phytochemical compounds from microalgae are used as pharmaceuticals, nutraceuticals and food supplements, and may possess neuroprotective potentials that are relevant to the management and/or treatment of AD.

  18. Bioactive Compounds Found in Brazilian Cerrado Fruits.

    Science.gov (United States)

    Bailão, Elisa Flávia Luiz Cardoso; Devilla, Ivano Alessandro; da Conceição, Edemilson Cardoso; Borges, Leonardo Luiz

    2015-10-09

    Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi), Dipteryx alata Vog. (baru), Eugenia dysenterica DC. (cagaita), Eugenia uniflora L. (pitanga), Genipa americana L. (jenipapo), Hancornia speciosa Gomes (mangaba), Mauritia flexuosa L.f. (buriti), Myrciaria cauliflora (DC) Berg (jabuticaba), Psidium guajava L. (goiaba), Psidium spp. (araçá), Solanum lycocarpum St. Hill (lobeira), Spondias mombin L. (cajá), Annona crassiflora Mart. (araticum), among others are reported here.

  19. Bioactive Compounds Found in Brazilian Cerrado Fruits

    Directory of Open Access Journals (Sweden)

    Elisa Flávia Luiz Cardoso Bailão

    2015-10-01

    Full Text Available Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi, Dipteryx alata Vog. (baru, Eugenia dysenterica DC. (cagaita, Eugenia uniflora L. (pitanga, Genipa americana L. (jenipapo, Hancornia speciosa Gomes (mangaba, Mauritia flexuosa L.f. (buriti, Myrciaria cauliflora (DC Berg (jabuticaba, Psidium guajava L. (goiaba, Psidium spp. (araçá, Solanum lycocarpum St. Hill (lobeira, Spondias mombin L. (cajá, Annona crassiflora Mart. (araticum, among others are reported here.

  20. Evaluation of Marijuana Compounds on Neuroimmune Endpoints in Experimental Autoimmune Encephalomyelitis.

    Science.gov (United States)

    Kaplan, Barbara L F

    2018-02-21

    Cannabinoid compounds refer to a group of more than 60 plant-derived compounds in Cannabis sativa, more commonly known as marijuana. Exposure to marijuana and cannabinoid compounds has been increasing due to increased societal acceptance for both recreational and possible medical use. Cannabinoid compounds suppress immune function, and while this could compromise one's ability to fight infections, immune suppression is the desired effect for therapies for autoimmune diseases. It is critical, therefore, to understand the effects and mechanisms by which cannabinoid compounds alter immune function, especially immune responses induced in autoimmune disease. Therefore, this unit will describe induction and assessment of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), and its potential alteration by cannabinoid compounds. The unit includes three approaches to induce EAE, two of which provide correlations to two forms of MS, and the third specifically addresses the role of autoreactive T cells in EAE. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  1. Design and reactivity of mono- and polymetallic complexes of low valent f-elements

    International Nuclear Information System (INIS)

    Camp, Clement

    2013-01-01

    Beyond its importance in nuclear industry the redox chemistry uranium is attracting increasing interest because complexes of low-valent uranium can promote unusual reductive chemistry through unusual reaction pathways, including attractive examples of CO, CO 2 , N 2 , arenes and azides activation in mild condition. Due to the unique coordination and bonding properties of uranium, its compounds could provide an attractive alternative to transition metals for the catalytic transformation of small molecules. However, metal-based multi-electron processes remain uncommon in uranium chemistry especially in comparison with the d-block metals, the chemistry of low-valent uranium being dominated by single-electron transfers. In this context, the first aim of this project was to investigate the association of low-valent uranium to a non-innocent ligand acting as an independent electron reservoir at a same molecule. Accordingly, we interrogated the use of highly p-delocalized Schiff bases ligands for supporting low-valent uranium chemistry. This led to the isolation of electron-rich complexes which are stabilized by storing electrons on the ligands through the formation of C-C bonds. Interestingly, these C-C bonds can be cleaved by oxidizing agents and the electrons released to participate in multi-electron redox reactions. This process was observed within different Schiff-base ligand scaffolds, allowing a tuning of the properties of the compounds. The second part of this work was dedicated to the synthesis of novel trivalent uranium complexes supported by siloxy ligands and the study of their redox reactivity and coordination properties. Novel dinuclear highly-reactive low-valent uranium assemblies were developed. The study of their limited stability revealed that these compounds are spontaneously decomposing through the cleavage of tBu groups from the supporting ligands resulting in the formation of U(IV) species. In parallel, a mononuclear trivalent uranium complex was

  2. Conversion of Azides into Diazo Compounds in Water

    Science.gov (United States)

    Chou, Ho-Hsuan; Raines, Ronald T.

    2013-01-01

    Diazo compounds are in widespread use in synthetic organic chemistry, but have untapped potential in chemical biology. We report on the design and optimization of a phosphinoester that mediates the efficient conversion of azides into diazo compounds in phosphate buffer at neutral pH and room temperature. High yields are maintained in the presence of common nucleophilic or electrophilic functional groups, and reaction progress can be monitored by colorimetry. As azido groups are easy to install and maintain in biopolymers or their ligands, this new mode of azide reactivity could have substantial utility in chemical biology. PMID:24053717

  3. Stability of bioactive compounds in butiá (Butia odorata) fruit pulp and nectar.

    Science.gov (United States)

    Hoffmann, Jessica Fernanda; Zandoná, Giovana Paula; Dos Santos, Priscila Silveira; Dallmann, Camila Müller; Madruga, Francine Bonemann; Rombaldi, Cesar Valmor; Chaves, Fábio Clasen

    2017-12-15

    Butia odorata is a palm tree native to southern Brazil whose fruit (known as butiá) and leaves are used to make many food products and crafts. Butiá contain several biologically active compounds with potential health benefits. However, processing conditions can alter quality attributes including bioactive compound content. This study evaluated the stability of bioactive compounds in butiá pulp upon pasteurization, during 12months of frozen storage, and in butiá nectar after a 3-month storage period. Pulp pasteurization resulted in a reduction in phenolic, flavonoid, carotenoid, and ascorbic acid contents. After a 12-month frozen storage period, flavonoid, phenolic, and ascorbic acid contents decreased while carotenoid content remained unaltered. Carotenoid, ascorbic acid, and phenolic contents were unaffected by the 3-month storage of butiá nectar; however, flavonoid content and antioxidant potential were reduced. Despite bioactive compound degradation upon heat treatment and storage, butiá nectar remained rich in phenolics, especially (-)-epicatechin, rutin, and (+)-catechin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    Science.gov (United States)

    Hui Wang; Mingyue Jiang; Shujun Li; Chung-Yun Hse; Chunde Jin; Fangli Sun; Zhuo Li

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and...

  5. Pitting Corrosion of Ni3(Si,Ti Intermetallic Compound at Various Chloride Concentrations

    Directory of Open Access Journals (Sweden)

    Gadang Priyotomo

    2013-10-01

    Full Text Available The pitting corrosion of Ni3(Si,Ti intermetallic compound was investigated as function of chloride concentration by using electrochemical method and scanning electron microscope in sodium chloride solutions at 293 K.  In addition, the pitting corrosion of type C276 alloy was also studied under the same experimental condition for comparison.  The pitting potential obtained for the intermetallic compound decreased with increasing chloride concentration.  The specific pitting potential and pitting potential of Ni3(Si,Ti were lower than those of C276 alloy, which means that the pitting corrosion resistance of C276 alloy was higher than that of Ni3(Si,Ti.

  6. Development and Characterization of Titanium Compound N anostructures

    Science.gov (United States)

    Zhou, Zhou

    The development and characterization of titanium compound nanostructures have been achieved, for potential applications in energy industry. Oil and gas, one of the traditional industry fields, observes accumulating demands on active implementations of nanotechnology, for the numerous advantages that nanomaterials can introduce to both product performances and field operations. By using chemical vapor deposition and liquid exfoliation, various titanium compound nanostructures have been synthesized through this project. Attractively, these two material fabrication methods have been recognized to be industrial friendly in terms of cost efficiency and productivity. The development of nanostructures, aiming at oil and gas field applications, presents novel solutions for existing issues, such as low durability of drilling tools, high friction in mechanical operations and ineffective heat dissipation. Titanium compound nanostructures, including titanium borides, nitrides and sulfides are therefore investigated for such applications as protective coating, lubrication and thermal management.

  7. Possible explosive compounds in the Savannah River Site waste tank farm facilities

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1992-01-01

    Based on a comparison of the known constituents in high-level nuclear waste stored at the Savannah River Site (SRS) and explosive compounds reported in the literature, only two classes of explosive compounds (metal NO x compounds and organic compounds) were identified as requiring further work to determine if they exist in the waste, and if so, in what quantities. Of the fourteen classes of explosive compounds identified as conceivably being present in tank farm operations, nine classes (metal fulminates, metal azides, halogen compounds, metal-amine complexes, nitrate/oxalate mixtures, metal oxalates, metal oxohalogenates, metal cyanides/cyanates, and peroxides) are not a hazard because these classes of compounds cannot be formed or accumulated in sufficient quantity, or they are not reactive at the conditions which exist in the tank farm facilities. Three of the classes (flammable gases, metal nitrides, and ammonia compounds and derivatives) are known to have the potential to build up to concentrations at which an observable reaction might occur. Controls have been in place for some time to limit the formation or control the concentration of these classes of compounds. A comprehensive list of conceivable explosive compounds is provided in Appendix 3

  8. Electrochemical reduction of nitroaromatic compounds by single sheet iron oxide coated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Zhi, E-mail: lizhi@plen.ku.dk [Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK–1871 Frederiksberg C (Denmark); Hansen, Hans Christian B. [Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK–1871 Frederiksberg C (Denmark); Bjerrum, Morten Jannik [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK–2100 København Ø (Denmark)

    2016-04-05

    Highlights: • Composite layers of single sheet iron oxides were coated on indium tin oxide electrodes. • Single sheet iron oxide is an electro-catalyst for reduction of nitroaromatic compounds in aqueous solution. • The reduction is well explained by a diffusion layer model. • The charge properties of the nitrophenols have an important influence on reduction. • Low-cost iron oxide based materials are promising electro-catalyst for water treatment. - Abstract: Nitroaromatic compounds are substantial hazard to the environment and to the supply of clean drinking water. We report here the successful reduction of nitroaromatic compounds by use of iron oxide coated electrodes, and demonstrate that single sheet iron oxides formed from layered iron(II)-iron(III) hydroxides have unusual electrocatalytic reactivity. Electrodes were produced by coating of single sheet iron oxides on indium tin oxide electrodes. A reduction current density of 10 to 30 μA cm{sup −2} was observed in stirred aqueous solution at pH 7 with concentrations of 25 to 400 μM of the nitroaromatic compound at a potential of −0.7 V vs. SHE. Fast mass transfer favors the initial reduction of the nitroaromatic compound which is well explained by a diffusion layer model. Reduction was found to comprise two consecutive reactions: a fast four-electron first-order reduction of the nitro-group to the hydroxylamine-intermediate (rate constant = 0.28 h{sup −1}) followed by a slower two-electron zero-order reduction resulting in the final amino product (rate constant = 6.9 μM h{sup −1}). The zero-order of the latter reduction was attributed to saturation of the electrode surface with hydroxylamine-intermediates which have a more negative half-wave potential than the parent compound. For reduction of nitroaromatic compounds, the SSI electrode is found superior to metal electrodes due to low cost and high stability, and superior to carbon-based electrodes in terms of high coulombic efficiency and

  9. Effects of estragole on the compound action potential of the rat sciatic nerve

    Directory of Open Access Journals (Sweden)

    J.H. Leal-Cardoso

    2004-08-01

    Full Text Available Estragole, a relatively nontoxic terpenoid ether, is an important constituent of many essential oils with widespread applications in folk medicine and aromatherapy and known to have potent local anesthetic activity. We investigated the effects of estragole on the compound action potential (CAP of the rat sciatic nerve. The experiments were carried out on sciatic nerves dissected from Wistar rats. Nerves, mounted in a moist chamber, were stimulated at a frequency of 0.2 Hz, with electric pulses of 50-100-µs duration at 10-20 V, and evoked CAP were monitored on an oscilloscope and recorded on a computer. CAP control parameters were: peak-to-peak amplitude (PPA, 9.9 ± 0.55 mV (N = 15, conduction velocity, 92.2 ± 4.36 m/s (N = 15, chronaxy, 45.6 ± 3.74 µs (N = 5, and rheobase, 3.9 ± 0.78 V (N = 5. Estragole induced a dose-dependent blockade of the CAP. At 0.6 mM, estragole had no demonstrable effect. At 2.0 and 6.0 mM estragole, PPA was significantly reduced at the end of 180-min exposure of the nerve to the drug to 85.6 ± 3.96 and 13.04 ± 1.80% of control, respectively. At 4.0 mM, estragole significantly altered PPA, conduction velocity, chronaxy, and rheobase (P <= 0.05, ANOVA; N = 5 to 49.3 ± 6.21 and 77.7 ± 3.84, 125.9 ± 10.43 and 116.7 ± 4.59%, of control, respectively. All of these effects developed slowly and were reversible upon a 300-min wash-out. The data show that estragole dose-dependently blocks nerve excitability.

  10. Laccase-mediator catalyzed conversion of model lignin compounds

    Science.gov (United States)

    Laccases play an important role in the biological breakdown of lignin and have great potential in the deconstruction of lignocellulosic feedstocks. We examined a variety of laccases, both commercially prepared and crude extracts, for their ability to oxidize three model lignol compounds (p-coumaryl...

  11. Evaluation of a screening system for obesogenic compounds: screening of endocrine disrupting compounds and evaluation of the PPAR dependency of the effect.

    Directory of Open Access Journals (Sweden)

    Anna Pereira-Fernandes

    Full Text Available Recently the environmental obesogen hypothesis has been formulated, proposing a role for endocrine disrupting compounds (EDCs in the development of obesity. To evaluate this hypothesis, a screening system for obesogenic compounds is urgently needed. In this study, we suggest a standardised protocol for obesogen screening based on the 3T3-L1 cell line, a well-characterised adipogenesis model, and direct fluorescent measurement using Nile red lipid staining technique. In a first phase, we characterised the assay using the acknowledged obesogens rosiglitazone and tributyltin. Based on the obtained dose-response curves for these model compounds, a lipid accumulation threshold value was calculated to ensure the biological relevance and reliability of statistically significant effects. This threshold based method was combined with the well described strictly standardized mean difference (SSMD method for classification of non-, weak- or strong obesogenic compounds. In the next step, a range of EDCs, used in personal and household care products (parabens, musks, phthalates and alkylphenol compounds, were tested to further evaluate the obesogenicity screening assay for its discriminative power and sensitivity. Additionally, the peroxisome proliferator activated receptor γ (PPARγ dependency of the positive compounds was evaluated using PPARγ activation and antagonist experiments. Our results showed the adipogenic potential of all tested parabens, several musks and phthalate compounds and bisphenol A (BPA. PPARγ activation was associated with adipogenesis for parabens, phthalates and BPA, however not required for obesogenic effects induced by Tonalide, indicating the role of other obesogenic mechanisms for this compound.

  12. Characterization of the apoptotic response induced by the cyanine dye D112: a potentially selective anti-cancer compound.

    Directory of Open Access Journals (Sweden)

    Ning Yang

    Full Text Available Chemotherapeutic drugs that are used in anti-cancer treatments often cause the death of both cancerous and noncancerous cells. This non-selective toxicity is the root cause of untoward side effects that limits the effectiveness of therapy. In order to improve chemotherapeutic options for cancer patients, there is a need to identify novel compounds with higher discrimination for cancer cells. In the past, methine dyes that increase the sensitivity of photographic emulsions have been investigated for anti-cancer properties. In the 1970's, Kodak Laboratories initiated a screen of approximately 7000 dye structural variants for selective toxicity. Among these, D112 was identified as a promising compound with elevated toxicity against a colon cancer cell line in comparison to a non-transformed cell line. Despite these results changing industry priorities led to a halt in further studies on D112. We decided to revive investigations on D112 and have further characterized D112-induced cellular toxicity. We identified that in response to D112 treatment, the T-cell leukemia cell line Jurkat showed caspase activation, mitochondrial depolarization, and phosphatidylserine externalization, all of which are hallmarks of apoptosis. Chemical inhibition of caspase enzymatic activity and blockade of the mitochondrial pathway through Bcl-2 expression inhibited D112-induced apoptosis. At lower concentrations, D112 induced growth arrest. To gain insight into the molecular mechanism of D112 induced mitochondrial dysfunction, we analyzed the intracellular localization of D112, and found that D112 associated with mitochondria. Interestingly, in the cell lines that we tested, D112 showed increased toxicity toward transformed versus non-transformed cells. Results from this work identify D112 as a potentially interesting molecule warranting further investigation.

  13. Cyclocurcumin, a curcumin derivative, exhibits immune-modulating ability and is a potential compound for the treatment of rheumatoid arthritis as predicted by the MM-PBSA method.

    Science.gov (United States)

    Fu, Min; Chen, Lihui; Zhang, Limin; Yu, Xiao; Yang, Qingrui

    2017-05-01

    The control and treatment of rheumatoid arthritis is a challenge in today's world. Therefore, the pursuit of natural disease-modifying antirheumatic drugs (DMRDs) remains a top priority in rheumatology. The present study focused on curcumin and its derivatives in the search for new DMRDs. We focused on prominent p38 mitogen-activated protein (MAP) kinase p38α which is a prime regulator of tumor necrosis factor-α (TNF-α), a key mediator of rheumatoid arthritis. In the present study, we used the X-ray crystallographic structure of p38α for molecular docking simulations and molecular dynamic simulations to study the binding modes of curcumin and its derivatives with the active site of p38α. The ATP-binding domain was used for evaluating curcumin and its derivatives. Molecular docking simulation results were used to select 4 out of 8 compounds. These 4 compounds were simulated using GROMACS molecular simulation platform; the results generated were subjected to molecular mechanics-Poisson Boltzmann surface area (MM-PBSA) calculations. The results showed cyclocurcumin as a potential natural compound for development of a potent DMRD. These data were further supported by inhibition of TNF-α release from lipopolysaccharide (LPS)-stimulated human macrophages following cyclocurcumin treatment.

  14. Potential use of bitter melon (Momordica charantia) derived compounds as antidiabetics: In silico and in vivo studies.

    Science.gov (United States)

    Elekofehinti, Olusola Olalekan; Ariyo, Esther Opeyemi; Akinjiyan, Moses Orimoloye; Olayeriju, Olanrewaju Sam; Lawal, Akeem Olalekan; Adanlawo, Isaac Gbadura; Rocha, Joao Batista Teixeira

    2018-05-12

    Momordica charantia (bitter lemon) belongs to the cucurbitaceae family which has been extensively used in traditional medicines for the cure of various ailments such as cancer and diabetes. The underlying mechanism of M. charantia to maintain glycemic control was investigated. GLP-1 and DPP-4 gene modulation by M. charantia (5-20% inclusion in rats diet) was investigated in vivo by RT-PCR and possible compounds responsible for diabetic action predicted through in silico approach. Phytochemicalss previously characterized from M. charantia were docked into glucacon like peptide-1 receptor (GLP-1r), dipeptidyl peptidase (DPP4) and Takeda-G-protein-receptor-5 (TGR5) predicted using Autodock Vina. The results of the in silico suggests momordicosides D (ligand for TGR5), cucurbitacin (ligand for GLP-1r) and charantin (ligand for DPP-4) as the major antidiabetic compounds in bitter lemon leaf. M. charantia increased the expression of GLP-1 by about 295.7% with concomitant decreased in expression of DPP-4 by 87.2% with 20% inclusion in rat's diet. This study suggests that the mechanism underlying the action of these compounds is through activation of TGR5 and GLP-1 receptor with concurrent inhibition of DPP4. This study confirmed the use of this plant in diabetes management and the possible bioactive compounds responsible for its antidiabetic property are charantin, cucurbitacin and momordicoside D and all belong to the class of saponins. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Luminescence of Ce doped oxygen crystalline compounds based on Hf and Ba

    CERN Document Server

    Borisevich, A E; Lecoq, P

    2003-01-01

    The luminescence properties of the Ce-doped hafnium and barium compounds have been investigated to determine their potential as heavy scintillation materials. Compounds have been prepared by solid state synthesis. All of them have shown a bright luminescence attributed to trivalent cerium. Emission bands are peaked in the 425-475nm spectral region at room temperature.

  16. Antifeedant compounds from three species of Apiaceae active against the field slug, Deroceras reticulatum (Muller).

    Science.gov (United States)

    Birkett, Michael A; Dodds, Catherine J; Henderson, Ian F; Leake, Lucy D; Pickett, John A; Selby, Martin J; Watson, Peter

    2004-03-01

    Extracts of volatiles from foliage of three plants in the Apiaceae, Conium maculatum L. (hemlock), Coriandrum sativum L. (coriander), and Petroselinum crispum Mill. (Nym.) (parsley), previously shown to exhibit antifeedant activity in assays with the field slug, Deroceras reticulatum (Muller) (Limacidae: Pulmonata), were studied further to identify the active components. Coupled gas chromatography-mass spectrometry (GC-MS) and neurophysiological assays using tentacle nerve preparations resulted in the identification of 11 active compounds from the three extracts. Wheat flour feeding bioassays were used to determine which of these compounds had the highest antifeedant activity. One of the most active compounds was the alkaloid gamma-coniceine, from C. maculatum. The role of potentially toxic alkaloids as semiochemicals and the potential for using such compounds as crop protection agents to prevent slug feeding damage is discussed.

  17. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network

    Energy Technology Data Exchange (ETDEWEB)

    Calderon-Preciado, Diana [IDAEA-CSIC, Jordi Girona, 18, E-08034 Barcelona (Spain); Matamoros, Victor, E-mail: victor.matamoros@udg.edu [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Bayona, Josep M. [IDAEA-CSIC, Jordi Girona, 18, E-08034 Barcelona (Spain)

    2011-12-15

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L{sup -1} and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (> 200 ng L{sup -1}, on average). The estimated concentration of micropollutants in crops ranged from < 1 to 7677 ng kg{sup -1}, with the neutral compounds being the most abundant. Moreover, the predicted data obtained by fate models generally agreed with experimental data. Finally, human exposure to micropollutants through fruit and vegetable consumption was estimated to be 9.8 {mu}g per person and week ({Sigma} 27 contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers.

  18. Nucleon-nucleon interaction in the quark-compound-bag model

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1982-01-01

    The NN potential is investigated in the framework of the quark-compound-bag model. The cluster decomposition of the total six-quark wave function are obtained. The resulting potential is nonlocal and energy dependent with coefficients which can be derived both phenomenologically and theoretically. Stringent conditions exist for those coefficients. As an example the NN potentials for the 3 S 1 and 1 S 0 states are presented. The properties of the wave functions are studied both in the configurational and momentum space

  19. Analysis and hit filtering of a very large library of compounds screened against Mycobacterium tuberculosis.

    Science.gov (United States)

    Ekins, Sean; Kaneko, Takushi; Lipinski, Christopher A; Bradford, Justin; Dole, Krishna; Spektor, Anna; Gregory, Kellan; Blondeau, David; Ernst, Sylvia; Yang, Jeremy; Goncharoff, Nicko; Hohman, Moses M; Bunin, Barry A

    2010-11-01

    There is an urgent need for new drugs against tuberculosis which annually claims 1.7-1.8 million lives. One approach to identify potential leads is to screen in vitro small molecules against Mycobacterium tuberculosis (Mtb). Until recently there was no central repository to collect information on compounds screened. Consequently, it has been difficult to analyze molecular properties of compounds that inhibit the growth of Mtb in vitro. We have collected data from publically available sources on over 300 000 small molecules deposited in the Collaborative Drug Discovery TB Database. A cheminformatics analysis on these compounds indicates that inhibitors of the growth of Mtb have statistically higher mean logP, rule of 5 alerts, while also having lower HBD count, atom count and lower PSA (ChemAxon descriptors), compared to compounds that are classed as inactive. Additionally, Bayesian models for selecting Mtb active compounds were evaluated with over 100 000 compounds and, they demonstrated 10 fold enrichment over random for the top ranked 600 compounds. This represents a promising approach for finding compounds active against Mtb in whole cells screened under the same in vitro conditions. Various sets of Mtb hit molecules were also examined by various filtering rules used widely in the pharmaceutical industry to identify compounds with potentially reactive moieties. We found differences between the number of compounds flagged by these rules in Mtb datasets, malaria hits, FDA approved drugs and antibiotics. Combining these approaches may enable selection of compounds with increased probability of inhibition of whole cell Mtb activity.

  20. Toxicity of essential oil compounds against Exorista sorbillans ...

    African Journals Online (AJOL)

    Essential oils of Ageratum conyzoides and Ocimum species are potential candidates for management of Exorista sorbillans (Wiedemann) (Diptera: Culicidae), a serious pest of silkworm. Considering that the pure compounds in essential oil may exhibit efficacy against the parasitoid, contact and topical toxicity of 22 essential ...

  1. Development of fluorescence imaging-based assay for screening cardioprotective compounds from medicinal plants.

    Science.gov (United States)

    Wang, Yi; Zhao, Xiaoping; Gao, Xiumei; Nie, Xiaojing; Yang, Yingxin; Fan, Xiaohui

    2011-09-19

    Medicinal plants have been widely recognized as a renewable resource for the discovery of novel leads and drug. In this study, an approach for screening and identification compounds with cardioprotective activity from medicinal plant extracts by cellular-fluorescence imaging technique was developed. It is a cell-based assay for measuring mitochondrial membrane potential changes in H9c2 cardiac muscle cells exposed to H(2)O(2) by using a fluorescence automatic microscopy screening platform. Rhodamine 123 was used as the fluorescent dye to indicate the change of mitochondrial membrane potential. The sensitivity and linear range of the proposed approach were evaluated and validated using vitamin C, an antioxidative compound. The method was applied to screen active components with potent cardioprotective effects from a traditional Chinese formula. The potential cardioprotective components were identified by liquid chromatography coupled with mass spectrometry (LC/MS). Moreover, the utility of the proposed approach was further validated by three compounds (salvianolic acid B, protocatechuic aldehyde, and tanshinone II A) identified from the formula which showed cardioprotective effects in a dose-dependent manner. These applications suggested that the proposed rapid and sensitive screening approach offers an efficient way to discover active components or compounds from medicinal plants. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Surveillance program on dioxin-like compounds in fatty food in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Suh Junghyuck; Choi Dongmi; Lee Eunju; Hong Mooki [Korea Food and Drug Administration, Seoul (Korea)

    2004-09-15

    Although dioxin-like compounds (PCDD/Fs and co-planar PCBs) are environmental contaminants mainly produced from municipal waste incineration, the main route of human intake of these are food. This is because these chemicals have strong tendencies to bioaccumulate in lipid-rich compartments of organisms because of their highly lipophilic property. The contamination levels of dioxin-like compounds depends on species. Species with a higher fat content may have higher contamination levels so that detectable levels are found in fatty food such as meat, eggs, dairy products and fishes. Therefore it is very important to measure the levels of dioxin-like compounds in food(especially fatty food) and to do the risk assessment. The aim of this study was to measure the levels of dioxin-like compounds of retail food in Korea and then assess the health risks potentially associated with the dioxin-like compounds intake.

  3. Interionic pair potentials and partial structure factors of compound ...

    Indian Academy of Sciences (India)

    Hiroike. Formulae are applied to NaSn (Na, Sn, NaSn, Na3Sn) which is considered as a ... for not only physicists but also chemists and engineers. This study is ... alizing Harrison's [18] approach of pair-wise potential between the metallic ions.

  4. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil.

    Science.gov (United States)

    Seshadri, B; Bolan, N S; Choppala, G; Kunhikrishnan, A; Sanderson, P; Wang, H; Currie, L D; Tsang, Daniel C W; Ok, Y S; Kim, G

    2017-10-01

    Shooting range soils contain mixed heavy metal contaminants including lead (Pb), cadmium (Cd), and zinc (Zn). Phosphate (P) compounds have been used to immobilize these metals, particularly Pb, thereby reducing their bioavailability. However, research on immobilization of Pb's co-contaminants showed the relative importance of soluble and insoluble P compounds, which is critical in evaluating the overall success of in situ stabilization practice in the sustainable remediation of mixed heavy metal contaminated soils. Soluble synthetic P fertilizer (diammonium phosphate; DAP) and reactive (Sechura; SPR) and unreactive (Christmas Island; CPR) natural phosphate rocks (PR) were tested for Cd, Pb and Zn immobilization and later their mobility and bioavailability in a shooting range soil. The addition of P compounds resulted in the immobilization of Cd, Pb and Zn by 1.56-76.2%, 3.21-83.56%, and 2.31-74.6%, respectively. The reactive SPR significantly reduced Cd, Pb and Zn leaching while soluble DAP increased their leachate concentrations. The SPR reduced the bioaccumulation of Cd, Pb and Zn in earthworms by 7.13-23.4% and 14.3-54.6% in comparison with earthworms in the DAP and control treatment, respectively. Bioaccessible Cd, Pb and Zn concentrations as determined using a simplified bioaccessibility extraction test showed higher long-term stability of P-immobilized Pb and Zn than Cd. The differential effect of P-induced immobilization between P compounds and metals is due to the variation in the solubility characteristics of P compounds and nature of metal phosphate compounds formed. Therefore, Pb and Zn immobilization by P compounds is an effective long-term remediation strategy for mixed heavy metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity

    Science.gov (United States)

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S.; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings. PMID:26347734

  6. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity.

    Science.gov (United States)

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings.

  7. Mangrove rare actinobacteria: Taxonomy, natural compound and discovery of bioactivity

    Directory of Open Access Journals (Sweden)

    Adzzie-Shazleen eAzman

    2015-08-01

    Full Text Available Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings.

  8. Novel long-chain compounds with both immunomodulatory and MenA inhibitory activities against Staphylococcus aureus and its biofilm.

    Science.gov (United States)

    Choi, Seoung-Ryoung; Frandsen, Joel; Narayanasamy, Prabagaran

    2017-01-10

    Menaquinone (MK) biosynthesis pathway is a potential target for evaluating antimicrobials in gram-positive bacteria. Here, 1,4-dihydroxy-2-naphthoate prenyltransferase (MenA) was targeted to reduce methicillin-resistant Staphylococcus aureus (MRSA) growth. MenA inhibiting, long chain-based compounds were designed, synthesized and evaluated against MRSA and menaquinone utilizing bacteria in aerobic conditions. The results showed that these bacteria were susceptible to most of the compounds. Menaquinone (MK-4) supplementation rescued MRSA growth, suggesting these compounds inhibit MK biosynthesis. 3a and 7c exhibited promising inhibitory activities with MICs ranging 1-8 μg/mL against MRSA strains. The compounds did not facilitate small colony variant formation. These compounds also inhibited the biofilm growth by MRSA at high concentration. Compounds 3a, 6b and 7c displayed a promising extracellular bactericidal activity against MRSA at concentrations equal to and four-fold less than their respective MICs. We also observed cytokines released from THP-1 macrophages treated with compounds 3a, 6b and 7c and found decreases in TNF-α and IL-6 release and increase in IL-1β. These data provide evidence that MenA inhibitors act as TNF-α and IL-6 inhibitors, raising the potential for development and application of these compounds as potential immunomodulatory agents.

  9. Determination of the phenolic content and antioxidant potential of crude extracts and isolated compounds from leaves of Cordia multispicata and Tournefortia bicolor.

    Science.gov (United States)

    Correia Da Silva, Thiago B; Souza, Vivian Karoline T; Da Silva, Ana Paula F; Lyra Lemos, Rosangela P; Conserva, Lucia M

    2010-01-01

    In this work, the total phenolic content and antioxidant activity of extracts and four flavonoids isolated from leaves of two Boraginaceae species (Cordia multispicata Cham. and Tournefortia bicolor Sw.) were evaluated using Folin-Ciocalteu reagent, DPPH free radical scavenging and inhibition of peroxidation of linoleic acid by FTC method. For comparison, ascorbic acid, alpha-tocopherol and BHT were used. In general, extracts from T. bicolor (68.8 +/- 0.001 to > 1000 mg/g) showed higher phenolic content than C. multispicata (66.1 +/- 0.009 to 231 +/- 0.07 mg/g), and also scavenged radicals (IC(50) 12.8 +/- 2.5 to 437 +/- 3.5 mg/L) and inhibited lipid peroxide formation (IC(50) 51.2 +/- 2.29 to 89 +/- 0.59 mg/L). For these extracts a good correlation between the phenolic content and antioxidant activity was observed, suggesting that T. bicolor is richer in phenolic compounds and that it could serve as a new source of natural antioxidants or nutraceuticals with potential applications. Chromatographic procedures monitored by antioxidant assays afforded seven compounds, which were identified by spectral analyses (IR, MS and 1D and 2D NMR) and comparison with reported data as being trans-phytol (1), taraxerol (2), 3,7,4'-trimethoxyflavone (3), 5,3'-dihydroxy-3,7,4'-trimethoxyflavone (4), quercetin (5), tiliroside (6), and rutin (7). Compounds (4-7) were also evaluated and were effective as DPPH quenching (IC(50) 7.7 +/- 3.6 to 79.3 +/- 3.4 mg/L) and as inhibition of lipid peroxidation (IC(50) 80.1 +/- 0.98 to 88.7 +/- 3.62 mg/L). This is the first report on the total phenolic content, radical-scavenging and antioxidant activities of these species.

  10. Antimalarial activity of compounds comprising a primary benzene sulfonamide fragment.

    Science.gov (United States)

    Andrews, Katherine T; Fisher, Gillian M; Sumanadasa, Subathdrage D M; Skinner-Adams, Tina; Moeker, Janina; Lopez, Marie; Poulsen, Sally-Ann

    2013-11-15

    Despite the urgent need for effective antimalarial drugs with novel modes of action no new chemical class of antimalarial drug has been approved for use since 1996. To address this, we have used a rational approach to investigate compounds comprising the primary benzene sulfonamide fragment as a potential new antimalarial chemotype. We report the in vitro activity against Plasmodium falciparum drug sensitive (3D7) and resistant (Dd2) parasites for a panel of fourteen primary benzene sulfonamide compounds. Our findings provide a platform to support the further evaluation of primary benzene sulfonamides as a new antimalarial chemotype, including the identification of the target of these compounds in the parasite. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Natural Compounds from Mexican Medicinal Plants as Potential Drug Leads for Anti-Tuberculosis Drugs

    Directory of Open Access Journals (Sweden)

    ROCIO GÓMEZ-CANSINO

    Full Text Available ABSTRACT In Mexican Traditional Medicine 187 plant species are used in the treatment of respiratory conditions that may be associated with tuberculosis. In this contribution, we review the ethnobotany, chemistry and pharmacology of 63 species whose extracts have been assayed for antimycobacterial activity in vitro. Among these, the most potent is Aristolochia brevipes (MIC= 12.5 µg/mL, followed by Aristolochia taliscana, Citrus sinensis, Chrysactinia mexicana, Persea americana, and Olea europaea (MIC 95%, 50 µg/mL include: Amphipterygium adstringens, Larrea divaricata, and Phoradendron robinsoni. Several active compounds have been identified, the most potent are: Licarin A (isolated from A. taliscana, and 9-amino-9-methoxy-3,4-dihydro-2H-benzo[h]-chromen-2-one (transformation product of 9-methoxytariacuripyrone isolated from Aristolochia brevipes, both with MIC= 3.125 µg/mL, that is 8-fold less potent than the reference drug Rifampicin (MIC= 0.5 µg/mL. Any of the compounds or extracts here reviewed has been studied in clinical trials or with animal models; however, these should be accomplished since several are active against strains resistant to common drugs.

  12. Electronic structure and properties of uranyl compounds. Problems of electron-donor conception

    International Nuclear Information System (INIS)

    Glebov, V.A.

    1982-01-01

    Comparison of the series of the ligand mutual substitution in the uranyl compounds with the ligand series of d-elements and with the uranyl ''covalent model'', is made. The data on ionization potentials of the ligand higher valent levels and on the structure of some uranyl nitrate compounds are considered. It is concluded that the mechanism of the ligand effect on the properties of uranyl grouping is more complex, than it is supposed in the traditional representations on the nature of electron-donor interactions in the uranyl compounds

  13. ambient volatile organic compounds pollution and ozone formation

    African Journals Online (AJOL)

    OLUMAYEDE

    2013-08-01

    Aug 1, 2013 ... Volatile organic compound (VOC) species react at different rate and exhibit differences in reactivity with respect to ozone formation in polluted urban atmosphere. To assess this, the variations pattern, reactivity relative to OH radical and ozone creation potential of ambient VOCs were investigated in field.

  14. Ring-opening of gamma-valerolactone with amino compounds

    NARCIS (Netherlands)

    Chalid, Mochamad; Heeres, Hero J.; Broekhuis, Antonius A.

    2012-01-01

    Diols obtained by the ring-opening of biomass-based gamma-valerolactone (GVL) are potentially valuable building blocks that can be used as precursors in the manufacture of green polymers and resins. We report here a study on the ring-opening of GVL through adding amine compounds. The reactivity of

  15. Cyanobacteria as a Source for Novel Anti-Leukemic Compounds.

    Science.gov (United States)

    Humisto, Anu; Herfindal, Lars; Jokela, Jouni; Karkman, Antti; Bjørnstad, Ronja; Choudhury, Romi R; Sivonen, Kaarina

    2016-01-01

    Cyanobacteria are an inspiring source of bioactive secondary metabolites. These bioactive agents are a diverse group of compounds which are varying in their bioactive targets, the mechanisms of action, and chemical structures. Cyanobacteria from various environments, especially marine benthic cyanobacteria, are found to be rich sources for the search for novel bioactive compounds. Several compounds with anticancer activities have been discovered from cyanobacteria and some of these have succeeded to enter the clinical trials. Varying anticancer agents are needed to overcome increasing challenges in cancer treatments. Different search methods are used to reveal anticancer compounds from natural products, but cell based methods are the most common. Cyanobacterial bioactive compounds as agents against acute myeloid leukemia are not well studied. Here we examined our new results combined with previous studies of anti-leukemic compounds from cyanobacteria with emphasis to reveal common features in strains producing such activity. We report that cyanobacteria harbor specific anti-leukemic compounds since several studied strains induced apoptosis against AML cells but were inactive against non-malignant cells like hepatocytes. We noted that particularly benthic strains from the Baltic Sea, such as Anabaena sp., were especially potential AML apoptosis inducers. Taken together, this review and re-analysis of data demonstrates the power of maintaining large culture collections for the search for novel bioactivities, and also how anti-AML activity in cyanobacteria can be revealed by relatively simple and low-cost assays.

  16. Removal of organic compounds from shale gas flowback water

    NARCIS (Netherlands)

    Butkovskyi, Andrii; Faber, Ann-Hélène; Wang, Yue; Grolle, Katja; Hofman-Caris, Roberta; Bruning, Harry; Van Wezel, Annemarie P.; Rijnaarts, Huub H M

    2018-01-01

    Ozonation, sorption to granular activated carbon and aerobic degradation were compared as potential treatment methods for removal of dissolved organic carbon (DOC) fractions and selected organic compounds from shale gas flowback water after pre-treatment in dissolved air flotation unit. Flowback

  17. Radical scavenging behavior of eriodictyol and fustin flavonoid compounds - A DFT study

    Science.gov (United States)

    Sadasivam, K.; Praveena, R.; Anbakzhakan, K.

    2018-05-01

    The density functional theory (DFT) protocol together with B3LYP/6-311G(d,p) level of theory has been utilized to explore and compare the structural features and molecular characteristics of two naturally occurring flavonoid compounds eriodictyol and fustin. The -OH bond dissociation energy (BDE) for all the radical species have been computed and interpreted in accordance with the radical scavenging activity. The ionization potential (IP) value of fustin flavonoid compound was found to be within the range of synthetic food additives. The polar nature and their capacity to polarise other atoms are established through the dipole moment analysis. Additionally, various parameters that are relevant to chemical potential such as electron affinity, hardness, softness, electro negativity and electrophilic index were calculated and analysed in the light of quercetin flavonoid compound in view of their antioxidant activity. The antioxidant capability of fustin is found to be superior to eriodictyol flavonoid.

  18. Organic compounds leached from fast pyrolysis mallee leaf and bark biochars.

    Science.gov (United States)

    Lievens, Caroline; Mourant, Daniel; Gunawan, Richard; Hu, Xun; Wang, Yi

    2015-11-01

    Characterization of organic compounds leached from biochars is essential in assessing the possible toxicity of the biochar to the soils' biota. In this study the nature of the leached organic compounds from Mallee biochars, produced from pyrolysis of Mallee leaf and bark in a fluidised-bed pyrolyser at 400 and 580°C was investigated. Light bio-oil compounds and aromatic organic compounds were investigated. The 'bio-oil like' light compounds from leaf and bark biochars 'surfaces were obtained after leaching the chars with a solvent, suitable to dissolve the respective bio-oils. GC/MS was implemented to investigate the leachates. Phenolics, which are potentially harmful toxins, were detected and their concentration shown to be dependent on the char's origin and the char production temperature. Further, to simulate biochars amendment to soils, the chars were leached with water. The water-leached aromatic compounds from leaf and bark biochars were characterized using UV-fluorescence spectroscopy. Those results suggested that biochars contain leachable compounds of which the nature and amount is dependent on the biomass feedstock, pyrolysis temperature and leaching time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Photodetachment from negative ions with ns2 subshells

    International Nuclear Information System (INIS)

    Ivanov, V.K.; Ipatov, A.N.; Krukovskaya, L.P.

    1997-01-01

    The theoretical study on multielectron effects in processes of electrons photodetachment from the Cu - and Cr - negative ions is carried out. The calculations were accomplished within the frames of the model, based on the approximation of random phases with exchange with simultaneous account for impact of the static polarization potential and the shell static rearrangement. The calculational results of photodetachment cross sections of the external 4s-electrons from Cu - and Cr - are presented and comparison with the available experimental data and the results of other calculations is carried out

  20. First-principles calculations of two cubic fluoropervskite compounds: RbFeF3 and RbNiF3

    Science.gov (United States)

    Mubarak, A. A.; Al-Omari, Saleh

    2015-05-01

    We present first-principles calculations of the structural, elastic, electronic, magnetic and optical properties for RbFeF3 and RbNiF3. The full-potential linear augmented plan wave (FP-LAPW) method within the density functional theory was utilized to perform the present calculations. We employed the generalized gradient approximation as exchange-correlation potential. It was found that the calculated analytical lattice parameters agree with previous studies. The analysis of elastic constants showed that the present compounds are elastically stable and anisotropic. Moreover, both compounds are classified as a ductile compound. The calculations of the band structure and density functional theory revealed that the RbFeF3 compound has a half-metallic behavior while the RbNiF3 compound has a semiconductor behavior with indirect (M-Γ) band gap. The ferromagnetic behavior was studied for both compounds. The optical properties were calculated for the radiation of up to 40 eV. A beneficial optics technology is predicted as revealed from the optical spectra.

  1. Comparative characterisation of two nitroreductases from Giardia lamblia as potential activators of nitro compounds

    Directory of Open Access Journals (Sweden)

    Joachim Müller

    2015-08-01

    Full Text Available Giardia lamblia is a protozoan parasite that causes giardiasis, a diarrhoeal disease affecting humans and various animal species. Nitro drugs such as the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are used for treatment of giardiasis. Nitroreductases such as GlNR1 and GlNR2 may play a role in activation or inactivation of these drugs. The aim of this work is to characterise these two enyzmes using functional assays. For respective analyses recombinant analogues from GlNR1 and GlNR2 were produced in Escherichia coli. E. coli expressing GlNR1 and GlNR2 alone or together were grown in the presence of nitro compounds. Furthermore, pull-down assays were performed using HA-tagged GlNR1 and GlNR2 as baits. As expected, E. coli expressing GlNR1 were more susceptible to metronidazole under aerobic and semi-aerobic and to nitazoxanide under semi-aerobic growth conditions whereas E. coli expressing GlNR2 were susceptible to neither drug. Interestingly, expression of both nitroreductases gave the same results as expression of GlNR2 alone. In functional assays, both nitroreductases had their strongest activities on the quinone menadione (vitamin K3 and FAD, but reduction of nitro compounds including the nitro drugs metronidazole and nitazoxanide was clearly detected. Full reduction of 7-nitrocoumarin to 7-aminocoumarin was preferentially achieved with GlNR2. Pull-down assays revealed that GlNR1 and GlNR2 interacted in vivo forming a multienzyme complex. These findings suggest that both nitroreductases are multifunctional. Their main biological role may reside in the reduction of vitamin K analogues and FAD. Activation by GlNR1 or inactivation by GlNR2 of nitro drugs may be the consequence of a secondary enzymatic activity either yielding (GlNR1 or eliminating (GlNR2 toxic intermediates after reduction of these compounds.

  2. High-performance liquid chromatographic method for guanylhydrazone compounds.

    Science.gov (United States)

    Cerami, C; Zhang, X; Ulrich, P; Bianchi, M; Tracey, K J; Berger, B J

    1996-01-12

    A high-performance liquid chromatographic method has been developed for a series of aromatic guanylhydrazones that have demonstrated therapeutic potential as anti-inflammatory agents. The compounds were separated using octadecyl or diisopropyloctyl reversed-phase columns, with an acetonitrile gradient in water containing heptane sulfonate, tetramethylammonium chloride, and phosphoric acid. The method was used to reliably quantify levels of analyte as low as 785 ng/ml, and the detector response was linear to at least 50 micrograms/ml using a 100 microliters injection volume. The assay system was used to determine the basic pharmacokinetics of a lead compound, CNI-1493, from serum concentrations following a single intravenous injection in rats.

  3. Mechanisms and Therapeutic Implications of Cell Death Induction by Indole Compounds

    International Nuclear Information System (INIS)

    Ahmad, Aamir; Sakr, Wael A.; Rahman, KM Wahidur

    2011-01-01

    Indole compounds, obtained from cruciferous vegetables, are well-known for their anti-cancer properties. In particular, indole-3-carbinol (I3C) and its dimeric product, 3,3′-diindolylmethane (DIM), have been widely investigated for their effectiveness against a number of human cancers in vitro as well as in vivo. These compounds are effective inducers of apoptosis and the accumulating evidence documenting their ability to modulate multiple cellular signaling pathways is a testimony to their pleiotropic behavior. Here we attempt to update current understanding on the various mechanisms that are responsible for the apoptosis-inducing effects by these compounds. The significance of apoptosis-induction as a desirable attribute of anti-cancer agents such as indole compounds cannot be overstated. However, an equally intriguing property of these compounds is their ability to sensitize cancer cells to standard chemotherapeutic agents. Such chemosensitizing effects of indole compounds can potentially have major clinical implications because these non-toxic compounds can reduce the toxicity and drug-resistance associated with available chemotherapies. Combinational therapy is increasingly being realized to be better than single agent therapy and, through this review article, we aim to provide a rationale behind combination of natural compounds such as indoles with conventional therapeutics

  4. Phosphorus sorption on marine carbonate sediment: phosphonate as model organic compounds.

    Science.gov (United States)

    Huang, Xiao-Lan; Zhang, Jia-Zhong

    2011-11-01

    Organophosphonate, characterized by the presence of a stable, covalent, carbon to phosphorus (C-P) bond, is a group of synthetic or biogenic organophosphorus compounds. The fate of these organic phosphorus compounds in the environment is not well studied. This study presents the first investigation on the sorption of phosphorus (P) in the presence of two model phosphonate compounds, 2-aminothylphosphonoic acid (2-AEP) and phosphonoformic acid (PFA), on marine carbonate sediments. In contrast to other organic P compounds, no significant inorganic phosphate exchange was observed in seawater. P was found to adsorb on the sediment only in the presence of PFA, not 2-AEP. This indicated that sorption of P from phosphonate on marine sediment was compound specific. Compared with inorganic phosphate sorption on the same sediments, P sorption from organic phosphorus is much less in the marine environment. Further study is needed to understand the potential role of the organophosphonate compounds in biogeochemical cycle of phosphorus in the environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. CG/MS quantitation of diamondoid compounds in crude oils and petroleum products

    International Nuclear Information System (INIS)

    Yang, C.; Wang, Z.D.; Hollebone, B.P.; Fingas, M.; Peng, X.; Landriault, M.

    2006-01-01

    Diamondoids are a class of saturated hydrocarbons that consist of 3-dimensionally fused cyclohexane rings. Diamondoid compounds in petroleum are the result of carbonium ion rearrangements of cyclic precursors on clay superacids in the source rock during oil generation. They are considered to be a problem due to their deposition during production of reservoir fluids and transportation of natural gas, gas condensates and light crude oils. At high concentrations, and with changes in pressure and temperature, diamondoid compounds can segregate out of reservoir fluids during production. Environmental scientists have considered fingerprinting the diamondoid hydrocarbons as a forensic method for oil spill studies. Since diamondoid compounds are thermodynamically stable, they have potential applications in oil-source correlation and differentiation for cases where traditional biomarker terpanes and steranes are absent because of environmental weathering or refining of petroleum products. Although there is increased awareness of possible use of diamondoid compounds for source identification, there is no systematic approach for using these compounds. Quantitative surveys of the abundances of diamondoids are not available. Therefore, this study developed a reliable analytical method for quantitative diamondoid analysis. Gas chromatography/mass spectrometry (GC/MS) was used to quantitatively determine diamondoid compounds (adamantane, diamantane and their alkylated homologues) in 14 fresh crude oils and 23 refined petroleum products, including light and mid-range distillate fuels, residual fuels and lubricating oils collected from different sources. Results were compared with 2 types of biomarker compounds in oil saturated hydrocarbon fractions. Several diagnostic ratios of diamondoids were developed based on their concentrations. Their potential use for forensic oil spill source identification was evaluated. 24 refs., 8 tabs., 4 figs

  6. Strategies for outcrossing and genetic manipulation of Drosophila compound autosome stocks.

    Science.gov (United States)

    Martins, T; Kotadia, S; Malmanche, N; Sunkel, C E; Sullivan, W

    2013-01-01

    Among all organisms, Drosophila melanogaster has the most extensive well-characterized collection of large-scale chromosome rearrangements. Compound chromosomes, rearrangements in which homologous chromosome arms share a centromere, have proven especially useful in genetic-based surveys of the entire genome. However, their potential has not been fully realized because compound autosome stocks are refractile to standard genetic manipulations: if outcrossed, they yield inviable aneuploid progeny. Here we describe two strategies, cold-shock and use of the bubR1 mutant alleles, to produce nullo gametes through nondisjunction. These gametes are complementary to the compound chromosome-bearing gametes and thus produce viable progeny. Using these techniques, we created a compound chromosome two C(2)EN stock bearing a red fluorescent protein-histone transgene, facilitating live analysis of these unusually long chromosomes.

  7. Nanodevices in nature: Electrochemical aspects

    International Nuclear Information System (INIS)

    Volkov, Alexander G.; Volkova-Gugeshashvili, Maya I.; Brown-McGauley, Courtney L.; Osei, Albert J.

    2007-01-01

    Electrochemical multielectron reactions in photosynthesis and respiration are evaluated by thermodynamic and kinetic analysis. Kharkats and Volkov [Yu.I. Kharkats, A.G. Volkov, Biochim. Biophys. Acta 891 (1987) 56] were the first to present proof that cytochrome c oxidase reduces molecular oxygen by synchronous multielectron mechanism without O 2 - intermediate formation. After this pioneering observation, it became clear that the first step of oxygen reduction is two-electron concerted process. The energy for the H + -pump of cytochrome oxidase is liberated when the third and fourth electrons are added in the last two steps of water formation independent of the reaction pathway. Electrochemical principles govern many biological properties of organisms, such as the generation of electric fields, and the conduction of fast excitation waves. These properties are supported by the function of a variety of natural nanodevices. Ionic channels, as natural nanodevices, control the plasma membrane potential, and the movement of ions across membranes; thereby, regulating various biological functions. Some voltage-gated ion channels work as plasma membrane nanopotentiostats. In plants, excitation waves are possible mechanisms for intercellular and intracellular communication in response to environmental changes. The role of electrified nanointerface of the plasma membrane in signal transduction is discussed as well

  8. Inhibition of nicotine-DNA adduct formation by polyphenolic compounds in vitro

    International Nuclear Information System (INIS)

    Cheng Yan; Wang Haifang; Sun Hongfang; Li Hongli

    2004-01-01

    Nicotine[3-(1-methyl-2-pyrrolidinyl)-pyridine], a major alkaloid in tobacco products, has proven to be a potential genotoxic compound. Some polyphenolic compounds can suppress the DNA adduction, and hence act as the potential inhibitors of carcinogenesis. In this study, the inhibitory effects of three polyphenolic compounds, curcumin (diferuloylmethane), resveratrol (trans-3, 5, 4-trihydroxystilbene) and tea polyphenols, on the nicotine-DNA adduction have been investigated in vitro using radiolabelled nicotine and liquid scintillation counting (LSC) technique. Also, the inhibition mechanism of these chemopreventive agents in regard to the activity of the biotransformation enzymes, including cytochrome P450 (CYP450), cytochrome b 5 (CYb 5 ) and glutathione S-transferase (GST), has been studied. The results demonstrated that these three polyphenols induced marked dose-dependent decrease in nicotine-DNA adducts as compared with the controls. The elimination rate of adducts reached above 46% at the highest dose for all the three agents with 51.6% for resveratrol. Correspondingly, three polyphenols all suppressed CYP450 and CYb 5 , whereas curcumin and resveratrol induced GST. The authors may arrive at a point that the three polyphenols are beneficial to prevent the nicotine adduct formation, and thus may be used to block the potential carcinogenesis induced by nicotine. (authors)

  9. ANTIBACTERIAL COMPOUNDS ACTIVITY OF MANGROVE LEAF EXTRACT RHIZOPHORA MUCRONATA ON AEROMONAS HYDROPHYLA

    Directory of Open Access Journals (Sweden)

    Panjaitan M.A.P.

    2018-01-01

    Full Text Available Pathogenic bacterial infections such as A.hydrophyla in fish cultivation are common problems. A.hydrophyla belongs to a group of bacteria resistant to more than one type of antibiotic. This study aims to determine the antibacterial activity of R.mucronata mangrove leaf extract and to identify potential antibacterial compounds. The research procedure includes extraction, compound refinement, phytochemical test, antibacterial activity test, and KBM-KHM Test. The results show that the antibacterial ability possessed by R.mucronata leaves crude extract increased after the extract was purified utilizing separating funnel. The lowest concentration of methanol fraction extract capable of inhibiting A.hydrophyla (KHM growth was at 8.25±0.39 ppm, while the lowest concentration of A.hydrophyla was 32.99±1.56 ppm. Bioactive compounds contained in methanol R.mucronata leaves extract are alkaloid compounds, flavonoids, and tannins. Out of the three compounds detected, antibacterial activity is thought to be derived from flavonoid and tannin compounds.

  10. Emerging role of phenolic compounds as natural food additives in fish and fish products.

    Science.gov (United States)

    Maqsood, Sajid; Benjakul, Soottawat; Shahidi, Fereidoon

    2013-01-01

    Chemical and microbiological deteriorations are principal causes of quality loss of fish and fish products during handling, processing, and storage. Development of rancid odor and unpleasant flavor, changes of color and texture as well as lowering nutritional value in fish can be prevented by appropriate use of additives. Due to the potential health hazards of synthetic additives, natural products, especially antioxidants and antimicrobial agents, have been intensively examined as safe alternatives to synthetic compounds. Polyphenols (PP) are the natural antioxidants prevalent in fruits, vegetables, beverages (tea, wine, juices), plants, seaweeds, and some herbs and show antioxidative and antimicrobial activities in different fish and fish products. The use of phenolic compounds also appears to be a good alternative for sulphiting agent for retarding melanosis in crustaceans. Phenolic compounds have also been successfully employed as the processing aid for texture modification of fish mince and surimi. Thus, plant polyphenolic compounds can serve as potential additives for preventing quality deterioration or to retain the quality of fish and fish products.

  11. In vitro Evaluation of Antioxidant Potential of Isolated Compounds and Various Extracts of Peel of Punica granatum L.

    Science.gov (United States)

    Jacob, Janani; Lakshmanapermalsamy, P; Illuri, Ramanaiah; Bhosle, Damaji; Sangli, Gopala Krishna; Mundkinajeddu, Deepak

    2018-01-01

    Punica granatum L. ( Lythraceae ) peel has been proven to exhibit widespread pharmacological application against multitude of diseases due to the presence of bioactive principles. The objective is to isolate the bioactive compounds from the pericarp of P. granatum and to evaluate the antioxidant activity of various extracts. Dried peel of P. granatum was extracted with aqueous acetone and chromatographed on Diaion HP-20. Enriched fractions were rechromatographed on Sephadex LH-20 and purified on preparative high-performance liquid chromatography to identify individual compounds. The dried peel was extracted with different solvents to evaluate the antioxidant activity of the extracts. On the chemical investigation, three compounds were isolated and characterized as punicalagin, 2,3-(S)-hexahydroxydiphenoyl-D-glucose, and punicalin, using various spectroscopic techniques. Results indicate that the isolated compounds have possessed antioxidant activity, and aqueous, methanol, and aqueous acetone extract showed significant scavenging of 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) radicals. In vitro antioxidant activity of Punica granatum extracts was evaluated by 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) assayDried peel of P. granatum was extracted with different solvents to evaluate the antioxidant activity of the extractsAqueous acetone extract was found to be most active and chromatographed further to afford punicalagin, 2,3-(S)-hexahydroxydiphenoyl-D-glucose, and punicalinThe presence of antioxidant properties of three compounds in the peel of P. granatum has been demonstrated. Abbreviations Used: HPLC: High-performance liquid chromatography; HHDP: Hexahydroxydiphenoyl; DPPH: 2,2-diphenyl-1-picrylhydrazyl; ABTS: 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid); UV: Ultraviolet; PDA: Photodiode array; LC: Liquid chromatography; NMR: Nuclear magnetic resonance; MHz

  12. Total phenolic compounds, antioxidant potential and α-glucosidase inhibition by Tunisian Euphorbia paralias L.

    Directory of Open Access Journals (Sweden)

    Malek Besbes Hlila

    2016-08-01

    Full Text Available Objective: To examine the potential antioxidant and anti-α-glucosidase inhibitory activities of Tunisian Euphorbia paralias L. leaves and stems extracts and their composition of total polyphenol and flavonoids. Methods: The different samples were tested for their antiradical activities by using 2, 2’- azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS and 1,1-diphenyl-2-picrylhydrazyl (DPPH assays. In α-glucosidase activity, α-glucosidase (0.3 IU/mL and substrate, 2500 µmol/ L p-nitrophenyl α-D-glucopyranoside were used; absorbance was registered at 405 nm. Results: The leaves acetonic extract exhibited the strongest α-glucosidase inhibition [IC50 = (0.0035 ± 0.001 µg/mL], which was 20-fold more active than the standard product (acarbose [IC50 = (0.07 ± 0.01 µg/mL]. Acetonic extract of the leaves exhibited the highest quantity of total phenolic [(95.54 ± 0.04 µg gallic acid equivalent/mg] and flavonoid [(55.16 ± 0.25 µg quercetin equivalent/mg]. The obtained findings presented also that this extract was detected with best antioxidant capacity [IC50 = (0.015 ± 0.01 µg/mL] against DPPH and a value of IC50 equal to (0.02 ± 0.01 µg/mL against ABTS. Positive relationship between polyphenolic content of the tested Euphorbia paralias L. leaves and stems extracts and its antioxidant activity (DPPH and ABTS was detected. Elevated positive linear correlation was got between ABTS and total phenolic (R2 = 0.751. Conclusions: The findings clearly demonstrate that the use of a polar solvent enables extraction of significant quantities of phenol compounds and flavonoids.

  13. Multielectron effects in atomic processes

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Chernysheva, L.V.

    1999-01-01

    One demonstrates a prominent role of electron collectivization in atoms and quasi-atomic formations. Paper discusses in detail the approximation of random phases with exchange enabling to take account of these effects. One points out the necessity to go outside the terms of the approximation when studying some processes via combination of the approximation with the theory of disturbances. The results of the recently conducted estimations of cross sections of photoionization of atomic iodine and of its positive and negative ions, Xe + single-electron photoionization, resonance-amplified emission of photons in electron collisions with atoms and quasi-atomic formations, non-dipole corrections to the angular distribution of photoelectrons, probabilities of two electron transitions where the whole amount of energy releases in the form of one photon, illustrate the role of the collective effects [ru

  14. Phenolic compounds and antioxidant activity of edible flowers

    Directory of Open Access Journals (Sweden)

    Marta Natalia Skrajda

    2017-08-01

    Full Text Available Introduction: Edible flowers has been used for thousands of years. They increase aesthetic appearance of food, but more often they are mentioned in connection with biologically active substances. The main ingredient of the flowers is water, which accounts for more than 80%. In small amounts, there are also proteins, fat, carbohydrates, fiber and minerals. Bioactive substances such as carotenoids and phenolic compounds determine the functional properties of edible flowers. Aim: The aim of this work was to characterize the phenolic compounds found in edible flowers and compare their antioxidant activity. Results: This review summarizes current knowledge about the usage of edible flowers for human nutrition. The work describes the antioxidant activity and phenolic compounds of some edible flowers. Based on literature data there is a significant difference both in content of phenolic compounds and antioxidant activity between edible flowers. These difference reaches up to 3075-fold in case of antioxidant potential. Among described edible flowers the most distinguishable are roses, peonies, osmanthus fragans and sambuco nero. Conclusions: Edible flowers are the new source of nutraceuticals due to nutritional and antioxidant values.

  15. Mechanisms of action of phenolic compounds in olive.

    Science.gov (United States)

    Rafehi, Haloom; Ververis, Katherine; Karagiannis, Tom C

    2012-06-01

    Olive oil, an oil rich in monounsaturated fatty acids (MUFCs) and minor constituents including phenolic compounds, is a major component of the Mediterranean diet. The potential health benefits of the Mediterranean diet were highlighted by the seminal Seven Countries Study, and more contemporary research has identified olive oil as a major element responsible for these effects. It is emerging that the phenolic compounds are the most likely candidates accounting for the cardioprotective and cancer preventative effects of extra virgin olive oil (EVOO). In particular, the phenolic compound, hydroxytyrosol has been identified as one of the most potent antioxidants found in olive oil. This review will briefly consider historical aspects of olive oil research and the biological properties of phenolic compounds in olive oil will be discussed. The focus of the discussion will be related to the mechanisms of action of hydroxytyrosol. Studies have demonstrated that hydroxytyrosol induces apoptosis and cell cycle arrest in cancer cells. Further, research has shown that hydroxytyrosol can prevent cardiovascular disease by reducing the expression of adhesion molecules on endothelial cells and preventing the oxidation of low-density lipoprotein (LDL). The molecular mechanisms accounting for these effects are reviewed.

  16. Bioprospecting for bioactives from seaweeds: potential, obstacles and alternatives

    Directory of Open Access Journals (Sweden)

    Renato C. Pereira

    2012-08-01

    Full Text Available Seaweeds are potential sources of high biotechnological interest due to production of a great diversity of compounds exhibiting a broad spectrum of biological activities. On the other hand, there is an urgent need for management options for a sustainable approach to the use of marine organisms as a source of bioactive compounds. This review discusses the bioprospection for bioactive seaweed compounds as pharmaceuticals and antifouling agents, encompassing their potential and possible obstacles and alternatives. In spite of their potential, research on pharmaceuticals and antifouling agents from seaweeds includes mainly the search for molecules that exhibit these biological activities, but lacks of consideration of fundamental and limiting aspects such as the development of alternatives to sustainable supply. However, for the complete development of pharmaceuticals and antifouling compounds in Brazil, marine bioprospection should be more comprehensive, associating the search for molecules with an analysis of their supply. In this way, it is possible to promote sustainable development and conservation of biodiversity, as well as to assert the economic development of Brazil.

  17. Bioprospecting for bioactives from seaweeds: potential, obstacles and alternatives

    Directory of Open Access Journals (Sweden)

    Renato C. Pereira

    2012-06-01

    Full Text Available Seaweeds are potential sources of high biotechnological interest due to production of a great diversity of compounds exhibiting a broad spectrum of biological activities. On the other hand, there is an urgent need for management options for a sustainable approach to the use of marine organisms as a source of bioactive compounds. This review discusses the bioprospection for bioactive seaweed compounds as pharmaceuticals and antifouling agents, encompassing their potential and possible obstacles and alternatives. In spite of their potential, research on pharmaceuticals and antifouling agents from seaweeds includes mainly the search for molecules that exhibit these biological activities, but lacks of consideration of fundamental and limiting aspects such as the development of alternatives to sustainable supply. However, for the complete development of pharmaceuticals and antifouling compounds in Brazil, marine bioprospection should be more comprehensive, associating the search for molecules with an analysis of their supply. In this way, it is possible to promote sustainable development and conservation of biodiversity, as well as to assert the economic development of Brazil.

  18. Rare earth-based quaternary Heusler compounds MCoVZ (M = Lu, Y; Z = Si, Ge with tunable band characteristics for potential spintronic applications

    Directory of Open Access Journals (Sweden)

    Xiaotian Wang

    2017-11-01

    Full Text Available Magnetic Heusler compounds (MHCs have recently attracted great attention since these types of material provide novel functionalities in spintronic and magneto-electronic devices. Among the MHCs, some compounds have been predicted to be spin-filter semiconductors [also called magnetic semiconductors (MSs], spin-gapless semiconductors (SGSs or half-metals (HMs. In this work, by means of first-principles calculations, it is demonstrated that rare earth-based equiatomic quaternary Heusler (EQH compounds with the formula MCoVZ (M = Lu, Y; Z = Si, Ge are new spin-filter semiconductors with total magnetic moments of 3 µB. Furthermore, under uniform strain, there are physical transitions from spin-filter semiconductor (MS → SGS → HM for EQH compounds with the formula LuCoVZ, and from HM → SGS → MS → SGS → HM for EQH compounds with the formula YCoVZ. Remarkably, for YCoVZ EQH compounds there are not only diverse physical transitions, but also different types of spin-gapless feature that can be observed with changing lattice constants. The structural stability of these four EQH compounds is also examined from the points of view of formation energy, cohesive energy and mechanical behaviour. This work is likely to inspire consideration of rare earth-based EQH compounds for application in future spintronic and magneto-electronic devices.

  19. Bioassay-Guided Isolated Compounds from Morinda officinalis Inhibit Alzheimer’s Disease Pathologies

    Directory of Open Access Journals (Sweden)

    Yoon Kyoung Lee

    2017-09-01

    Full Text Available Due to the side effects of synthetic drugs, the therapeutic potential of natural products for Alzheimer’s disease (AD has gained interest. Morinda officinalis has demonstrated inhibitory effects on geriatric diseases, such as bone loss and osteoporosis. However, although AD is a geriatric disease, M. officinalis has not been evaluated in an AD bioassay. Therefore, M. officinalis extracts and fractions were tested for AD-related activity, including inhibition of acetylcholinesterase (AChE, butyrylcholinesterase (BChE, β-site amyloid precursor protein cleaving enzyme 1 (BACE1, and advanced glycation end-product (AGE formation. A bioassay-guided approach led to isolation of 10 active compounds, eight anthraquinones (1–8, one coumarin (9, and one phytosterol (10, from n-hexane and ethyl acetate fractions of M. officinalis. The five anthraquinones (4–8 were stronger inhibitors of AChE than were other compounds. Compounds 3 and 9 were good inhibitors of BChE, and compounds 3 and 8 were good inhibitors of BACE1. Compounds 1–5 and 7–9 were more active than the positive control in inhibiting AGE formation. In addition, we first suggested a structure-activity relationship by which anthraquinones inhibit AChE and BACE1. Our findings demonstrate the preventive and therapeutic efficacy of M. officinalis for AD and its potential use as a natural alternative medicine.

  20. A fast and simple method for quantitative determination of fat-derived medium and low-volatile compounds in cheese

    NARCIS (Netherlands)

    Alewijn, M.; Sliwinski, E.L.; Wouters, J.T.M.

    2003-01-01

    Cheese flavour is a mixture of many (volatile) compounds, mostly formed during ripening. The current method was developed to qualify and quantify fat-derived compounds in cheese. Cheese samples were extracted with acetonitrile, which led to a concentrated solution of potential favour compounds,

  1. Ionization in elliptically polarized pulses: Multielectron polarization effects and asymmetry of photoelectron momentum distributions

    DEFF Research Database (Denmark)

    Shvetsov-Shilovskiy, Nikolay; Dimitrovski, Darko; Madsen, Lars Bojer

    2012-01-01

    In the tunneling regime we present a semiclassical model of above-threshold ionization with inclusion of the Stark shift of the initial state, the Coulomb potential, and a polarization induced dipole potential. The model is used for the investigation of the photoelectron momentum distributions...... in close to circularly polarized light, and it is validated by comparison with ab initio results and experiments. The momentum distributions are shown to be highly sensitive to the tunneling exit point, the Coulomb force, and the dipole potential from the induced dipole in the atomic core...

  2. Effect of training data size and noise level on support vector machines virtual screening of genotoxic compounds from large compound libraries.

    Science.gov (United States)

    Kumar, Pankaj; Ma, Xiaohua; Liu, Xianghui; Jia, Jia; Bucong, Han; Xue, Ying; Li, Ze Rong; Yang, Sheng Yong; Wei, Yu Quan; Chen, Yu Zong

    2011-05-01

    Various in vitro and in-silico methods have been used for drug genotoxicity tests, which show limited genotoxicity (GT+) and non-genotoxicity (GT-) identification rates. New methods and combinatorial approaches have been explored for enhanced collective identification capability. The rates of in-silco methods may be further improved by significantly diversified training data enriched by the large number of recently reported GT+ and GT- compounds, but a major concern is the increased noise levels arising from high false-positive rates of in vitro data. In this work, we evaluated the effect of training data size and noise level on the performance of support vector machines (SVM) method known to tolerate high noise levels in training data. Two SVMs of different diversity/noise levels were developed and tested. H-SVM trained by higher diversity higher noise data (GT+ in any in vivo or in vitro test) outperforms L-SVM trained by lower noise lower diversity data (GT+ in in vivo or Ames test only). H-SVM trained by 4,763 GT+ compounds reported before 2008 and 8,232 GT- compounds excluding clinical trial drugs correctly identified 81.6% of the 38 GT+ compounds reported since 2008, predicted 83.1% of the 2,008 clinical trial drugs as GT-, and 23.96% of 168 K MDDR and 27.23% of 17.86M PubChem compounds as GT+. These are comparable to the 43.1-51.9% GT+ and 75-93% GT- rates of existing in-silico methods, 58.8% GT+ and 79% GT- rates of Ames method, and the estimated percentages of 23% in vivo and 31-33% in vitro GT+ compounds in the "universe of chemicals". There is a substantial level of agreement between H-SVM and L-SVM predicted GT+ and GT- MDDR compounds and the prediction from TOPKAT. SVM showed good potential in identifying GT+ compounds from large compound libraries based on higher diversity and higher noise training data.

  3. Antiviral potential of a diterpenoid compound sugiol from Metasequoia glyptostroboides.

    Science.gov (United States)

    Bajpai, Vivek K; Kim, Na-Hyung; Kim, Kangmin; Kang, Sun Chul

    2016-05-01

    This research reports first time antiviral activity of sugiol, a diterpenoid isolated from Metasequoia glyptostroboides in terms of its ability to inhibit in vitro growth of H1N1 influenza virus. Antiviral potential of sugiol was evaluated through hcytopathogenic reduction assay using Madin-Darby canine kidney (MDCK) cell line. Sugiol (500 μg/ml) was found to exhibit considerable anti-cytopathic effect on MDCK cell line confirming its antiviral efficacy against H1N1 influenza virus. These findings strongly reinforce the suggestion that sugiol could be a candidate of choice in combinational regimen with potential antiviral efficacy.

  4. FTIR Analysis of Phenolic Compound as Pancreatic Lipase Inhibitor from Inoculated Aquilaria Malaccensis

    International Nuclear Information System (INIS)

    Nur Fahana Jamahseri; Miradatul Najwa Mohd Rodhi; Nur Hidayah Zulkarnain; Nursyuhada Che Husain; Ahmad Fakhri Syahmi Masruddin

    2014-01-01

    This research aimed to discover the potential of inoculated Aquilaria malaccensis extract as a new and safe lipase inhibitor. The phenolic compounds in this plant are expected to promote inhibitory activity towards pancreatic lipase enzyme. Inoculated Aquilaria malaccensis was selected for this research, wherein the parts of this species (bark and leaves) were extracted via hydro distillation process. The extracts of this plant which are hydrosol, oil, and leaves were analyzed for phyto chemical compound via Fourier Transform Infrared Spectroscopy (FTIR). FTIR analysis of the extracts of inoculated Aquilaria malccensis revealed the presence of hydroxyl functional group in both leaves and hydrosol extracts but absence in oil. This validate the presence of phenolic compound in hydrosol and leaves extract. Therefore, the leaves and hydrosol extracts have potential as an anti-obesity agent by inhibiting pancreatic lipase. (author)

  5. From Valeriana officinalis to cancer therapy: the success of a bio-sourced compound

    Directory of Open Access Journals (Sweden)

    Hamaidia, M.

    2016-01-01

    Full Text Available Introduction. Over the centuries, bio-sourced compounds isolated from plants, insects and microorganisms have been a potent source of drugs for the treatment of human diseases. Literature. Bio-sourced extracts offer a wide diversity of compounds with a large number of potentially beneficial effects in humans. Serendipity has frequently played a key role in the discovery of new medicines. The canonical discovery of penicillin required both chance and a prepared mind to understand and exploit its potential for the treatment of human infections. Nowadays, most anti-cancer drugs currently in clinical use were at least partly discovered by a "fortunate happenstance". Conclusions. In this review, we recapitulate the story of one of these compounds, 2-propylpentanoic acid, derived from the Valeriana officinalis flowering plant and its path to validation as a cancer treatment.

  6. Optimization of ultrasonic-assisted extraction of antioxidant compounds from Guava (Psidium guajava L.) leaves using response surface methodology.

    Science.gov (United States)

    Kong, Fansheng; Yu, Shujuan; Feng, Zeng; Wu, Xinlan

    2015-01-01

    To optimization of extraction of antioxidant compounds from guava (Psidium guajava L.) leaves and showed that the guava leaves are the potential source of antioxidant compounds. The bioactive polysaccharide compounds of guava leaves (P. guajava L.) were obtained using ultrasonic-assisted extraction. Extraction was carried out according to Box-Behnken central composite design, and independent variables were temperature (20-60°C), time (20-40 min) and power (200-350 W). The extraction process was optimized by using response surface methodology for the highest crude extraction yield of bioactive polysaccharide compounds. The optimal conditions were identified as 55°C, 30 min, and 240 W. 1,1-diphenyl-2-picryl-hydrazyl and hydroxyl free radical scavenging were conducted. The results of quantification showed that the guava leaves are the potential source of antioxidant compounds.

  7. Transmembrane transport of peptide type compounds: prospects for oral delivery

    Science.gov (United States)

    Lipka, E.; Crison, J.; Amidon, G. L.

    1996-01-01

    Synthesis and delivery of potential therapeutic peptides and peptidomimetic compounds has been the focus of intense research over the last 10 years. While it is widely recognized that numerous limitations apply to oral delivery of peptides, some of the limiting factors have been addressed and their mechanisms elucidated, which has lead to promising strategies. This article will briefly summarize the challenges, results and current approaches of oral peptide delivery and give some insight on future strategies. The barriers determining peptide bioavailability after oral administration are intestinal membrane permability, size limitations, intestinal and hepatic metabolism and in some cases solubility limitations. Poor membrane permeabilities of hydrophilic peptides might be overcome by structurally modifying the compounds, thus increasing their membrane partition characteristics and/or their affinity to carrier proteins. Another approach is the site-specific delivery of the peptide to the most permeable parts of the intestine. The current view on size limitation for oral drug delivery has neglected partition considerations. Recent studies suggest that compounds with a molecular weight up to 4000 might be significantly absorbed, assuming appropriate partition behavior and stability. Metabolism, probably the most significant factor in the absorption fate of peptides, might be controlled by coadministration of competitive enzyme inhibitors, structural modifications and administration of the compound as a well absorbed prodrug that is converted into the therapeutically active agent after its absorption. For some peptides poor solubility might present a limitation to oral absorption, an issue that has been addressed by mechanistically defining and therefore improving formulation parameters. Effective oral peptide delivery requires further development in understanding these complex mechanisms in order to maximize the therapeutic potential of this class of compounds.

  8. Synergy Maps: exploring compound combinations using network-based visualization.

    Science.gov (United States)

    Lewis, Richard; Guha, Rajarshi; Korcsmaros, Tamás; Bender, Andreas

    2015-01-01

    The phenomenon of super-additivity of biological response to compounds applied jointly, termed synergy, has the potential to provide many therapeutic benefits. Therefore, high throughput screening of compound combinations has recently received a great deal of attention. Large compound libraries and the feasibility of all-pairs screening can easily generate large, information-rich datasets. Previously, these datasets have been visualized using either a heat-map or a network approach-however these visualizations only partially represent the information encoded in the dataset. A new visualization technique for pairwise combination screening data, termed "Synergy Maps", is presented. In a Synergy Map, information about the synergistic interactions of compounds is integrated with information about their properties (chemical structure, physicochemical properties, bioactivity profiles) to produce a single visualization. As a result the relationships between compound and combination properties may be investigated simultaneously, and thus may afford insight into the synergy observed in the screen. An interactive web app implementation, available at http://richlewis42.github.io/synergy-maps, has been developed for public use, which may find use in navigating and filtering larger scale combination datasets. This tool is applied to a recent all-pairs dataset of anti-malarials, tested against Plasmodium falciparum, and a preliminary analysis is given as an example, illustrating the disproportionate synergism of histone deacetylase inhibitors previously described in literature, as well as suggesting new hypotheses for future investigation. Synergy Maps improve the state of the art in compound combination visualization, by simultaneously representing individual compound properties and their interactions. The web-based tool allows straightforward exploration of combination data, and easier identification of correlations between compound properties and interactions.

  9. Minor lipophilic compounds in edible insects

    OpenAIRE

    Monika Sabolová; Anna Adámková; Lenka Kouřimská; Diana Chrpová; Jan Pánek

    2016-01-01

    Contemporary society is faced with the question how to ensure suffiecient nutrition (quantity and quality) for rapidly growing population. One solution can be consumption of edible insect, which can have very good nutritional value (dietary energy, protein, fatty acids, fibers, dietary minerals and vitamins composition). Some edible insects species, which contains a relatively large amount of fat, can have a potential to be a „good" (interesting, new) source of minor lipophilic compound...

  10. Biodegradation of creosote compounds: Comparison of experiments at different scales

    DEFF Research Database (Denmark)

    Broholm, K.; Arvin, Erik

    2001-01-01

    of the pyrroles on the biodegradation of benzene, and the biodegradation of benzothiophene occurs only in the presence of a primary substrate. The experiments show that some biodegradation processes of organic compounds may be common to different microorganisms.......This paper compares the results of biodegradation experiments with creosote compounds performed at different scales. The experiments include field observations, field experiments, large-scale intact laboratory column experiments, model fracture experiments, and batch experiments. Most...... of the experiments were conducted with till or ground water from the field site at Ringe on the island of Funen. Although the experiments were conducted on different scales, they revealed that some phenomena-e.g., an extensive biodegradation potential of several of the creosote compounds, the inhibitory influence...

  11. Green chemistry approach to the synthesis of potentially bioactive aminobenzylated Mannich bases through active hydrogen compounds

    Directory of Open Access Journals (Sweden)

    S. L. VASOYA

    2005-10-01

    Full Text Available An efficient and high yield method for the synthesis of aminobenzylated Mannich bases is described. The synthesis occurs in aqueous medium at 0 ºC. The compounds show moderate antitubercular and antimicrobial activities.

  12. Photoprotective effect and acute oral systemic toxicity evaluation of the novel heterocyclic compound LQFM048.

    Science.gov (United States)

    Vinhal, Daniela C; de Ávila, Renato Ivan; Vieira, Marcelo S; Luzin, Rangel M; Quintino, Michelle P; Nunes, Liliane M; Ribeiro, Antonio Carlos Chaves; de Camargo, Henrique Santiago; Pinto, Angelo C; Dos Santos Júnior, Helvécio M; Chiari, Bruna G; Isaac, Vera; Valadares, Marize C; Martins, Tatiana Duque; Lião, Luciano M; de S Gil, Eric; Menegatti, Ricardo

    2016-08-01

    The new heterocyclic derivative LQFM048 (3) (2,4,6-tris ((E)-ethyl 2-cyano-3-(4-hydroxy-3-methoxyphenyl)acrylate)-1,3,5-triazine) was originally designed through the molecular hybridization strategy from Uvinul® T 150 (1) and (E)-ethyl 2-cyano-3-(4hydroxy-3-methoxyphenyl)acrylate (2) sunscreens, using green chemistry approach. This compound was obtained in global yields (80%) and showed an interesting redox potential. In addition, it is thermally stable up to temperatures around 250°C. It was observed that LQFM048 (3) showed a low degradation after 150min of sunlight exposure at 39°C, whereas the extreme radiation conditions induced a considerable photodegradation of the LQFM048 (3), especially when irradiated by VIS and VIS+UVA. During the determination of sun protection factor, LQFM048 (3) showed interesting results, specially as in association with other photoprotective compounds and commercial sunscreen. Additionally, the compound (3) did not promote cytotoxicity for 3T3 fibroblasts. Moreover, it was not able to trigger acute oral systemic toxicity in mice, being classified as a compound with low acute toxicity hazard (2.000mg/kg>LD50compound synthesized using green chemistry approach is promising showing potential to development of a new sunscreen product with advantage of presenting redox potential, indicating antioxidant properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Mesua beccariana (Clusiaceae, A Source of Potential Anti-cancer Lead Compounds in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Soek Sin Teh

    2012-09-01

    Full Text Available An investigation on biologically active secondary metabolites from the stem bark of Mesua beccariana was carried out. A new cyclodione, mesuadione (1, along with several known constituents which are beccamarin (2, 2,5-dihydroxy-1,3,4-trimethoxy anthraquinone (3, 4-methoxy-1,3,5-trihydroxyanthraquinone (4, betulinic acid (5 and stigmasterol (6 were obtained from this ongoing research. Structures of these compounds were elucidated by extensive spectroscopic methods, including 1D and 2D-NMR, GC-MS, IR and UV techniques. Preliminary tests of the in vitro cytotoxic activities of all the isolated metabolites against a panel of human cancer cell lines Raji (lymphoma, SNU-1 (gastric carcinoma, K562 (erythroleukemia cells, LS-174T (colorectal adenocarcinoma, HeLa (cervical cells, SK-MEL-28 (malignant melanoma cells, NCI-H23 (lung adenocarcinoma, IMR-32 (neuroblastoma and Hep-G2 (hepatocellular liver carcinoma were carried out using an MTT assay. Mesuadione (1, beccamarin (2, betulinic acid (5 and stigmasterol (6 displayed strong inhibition of Raji cell proliferation, while the proliferation rate of SK-MEL-28 and HeLa were strongly inhibited by stigmasterol (6 and beccamarin (2, indicating these secondary metabolites could be anti-cancer lead compounds in drug discovery.

  14. Diversity of Micromonospora strains from the deep Mediterranean Sea and their potential to produce bioactive compounds

    Directory of Open Access Journals (Sweden)

    Andrea Gärtner

    2016-06-01

    Full Text Available During studies on bacteria from the Eastern Mediterranean deep-sea, incubation under in situ conditions (salinity, temperature and pressure and heat treatment were used to selectively enrich representatives of Micromonospora. From sediments of the Ierapetra Basin (4400 m depth and the Herodotos Plain (2800 m depth, 21 isolates were identified as members of the genus Micromonospora. According to phylogenetic analysis of 16S rRNA gene sequences, the Micromonospora isolates could be assigned to 14 different phylotypes with an exclusion limit of ≥ 99.5% sequence similarity. They formed 7 phylogenetic clusters. Two of these clusters, which contain isolates obtained after enrichment under pressure incubation and phylogenetically are distinct from representative reference organism, could represent bacteria specifically adapted to the conditions in situ and to life in these deep-sea sediments. The majority of the Micromonospora isolates (90% contained at least one gene cluster for biosynthesis of secondary metabolites for non-ribosomal polypeptides and polyketides (polyketide synthases type I and type II. The determination of biological activities of culture extracts revealed that almost half of the strains produced substances inhibitory to the growth of Gram-positive bacteria. Chemical analyses of culture extracts demonstrated the presence of different metabolite profiles also in closely related strains. Therefore, deep-sea Micromonospora isolates are considered to have a large potential for the production of new antibiotic compounds.

  15. Potential of radioiodinated anti cancer compounds of natural origin for cancer therapy

    International Nuclear Information System (INIS)

    Pandey, U.; Bapat, K.; Samuel, G.; Venkatesh, M.; Sarma, H.D.

    2007-01-01

    Plumbagin and Quercetin are naturally occurring compounds which exhibit anti-cancerous activity. To evaluate the effect of radioiodination on cytotoxicity, both Plumbagin and Quercetin were radioiodinated with 125 I. 125 I-Plumbagin and 125 I-Quercetin could be prepared in moderate yields and good radiochemical purity and were characterized using reverse phase HPLC. In Swiss mice bearing fibrosarcoma, 125 I-Plumbagin showed a tumor uptake of ∼2.5%ID/g at 3 h p.i. and ∼0.5%ID/g at 24 h p.i on i.v. injection. When injected intratumorally, greater tumor uptake and retention was observed (∼20%ID/g at 3 h p.i. and ∼14%ID/g at 24 h p.i. respectively). (author)

  16. Oriented heavy ions and the choice of a cool compound nucleus reaction

    International Nuclear Information System (INIS)

    Aroumougame, R.; Gupta, R.K.

    1980-01-01

    Potential energy surfaces are calculated within the mechanism of fragmentation theory with a view to selecting the target-projectile combinations for producing new elements through cool compound nucleus formation. The orientation of the colliding nuclei is also included. It is shown that both the reaction partners of a cool compound nucleus, formed in either a central or a nearly central collision, should preferably be spherical and either nearly symmetric or extremely asymmetric. For reactions with deformed nuclei, it is suggested that polarised targets should be used. The calculations are illustrated for the compound nuclei 258 104 and 260 106. (author)

  17. Using Online Compound Interest Tools to Improve Financial Literacy

    Science.gov (United States)

    Hubbard, Edward; Matthews, Percival; Samek, Anya

    2016-01-01

    The widespread use of personal computing presents the opportunity to design educational materials that can be delivered online, potentially addressing low financial literacy. The authors developed and evaluated three different educational tools focusing on interest compounding. In the authors' laboratory experiment, individuals were randomized to…

  18. Multiparticle tunneling during field emission from YBa2Cu3Or-δ

    International Nuclear Information System (INIS)

    Fursej, G.N.; Kocheryzhenkov, A.V.; Maslov, V.I.; Smirnov, A.P.

    1988-01-01

    Electron tunneling to vaccuum from YBa 2 Cu 3 O r-δ metal ceramics is considered. The investigation is aimed at studying the quantity of elementary act and statistics of autoelectron emission (AE) which means act distribution according to their quantity. Multielectron AE acts from Y-Ba-Cu-O are detected for the first time within 4.2-300K interval. Observation of multiparticle acts at T>T c indicates, that AE multielectron character is not conditioned by superconducting state feature, but reflects the source properties of metal ceramics. It is shown that the relative share of pair tunneling reaches 10%, and the share of three-electron and four-electron acts is about 1% and 0.2% respectively

  19. First-principles calculations of two cubic fluoropervskite compounds: RbFeF3 and RbNiF3

    International Nuclear Information System (INIS)

    Mubarak, A.A.; Al-Omari, Saleh

    2015-01-01

    We present first-principles calculations of the structural, elastic, electronic, magnetic and optical properties for RbFeF 3 and RbNiF 3 . The full-potential linear augmented plan wave (FP-LAPW) method within the density functional theory was utilized to perform the present calculations. We employed the generalized gradient approximation as exchange-correlation potential. It was found that the calculated analytical lattice parameters agree with previous studies. The analysis of elastic constants showed that the present compounds are elastically stable and anisotropic. Moreover, both compounds are classified as a ductile compound. The calculations of the band structure and density functional theory revealed that the RbFeF 3 compound has a half-metallic behavior while the RbNiF 3 compound has a semiconductor behavior with indirect (M–Γ) band gap. The ferromagnetic behavior was studied for both compounds. The optical properties were calculated for the radiation of up to 40 eV. A beneficial optics technology is predicted as revealed from the optical spectra. - Highlights: • RbFeF 3 and RbNiCl 3 compounds are elastically stable. • RbFeF 3 and RbNiCl 3 compounds are classified as a ductile compound. • The RbFeF 3 compound has a half-metallic behavior while the RbNiF 3 compound has a semiconductor behavior. • The optical properties were calculated for the radiation of up to 40 eV

  20. Model for fusion and cool compound nucleus formation based on the fragmentation theory

    International Nuclear Information System (INIS)

    Malhotra, N.; Aroumougame, R.; Saroha, D.R.; Gupta, R.K.

    1986-01-01

    Collective potential energy surfaces are calculated in both the adiabatic and sudden approximations by using the asymmetric two-center shell model in the Strutinsky method. It is shown that fusion of two colliding heavy ions occurs by their crossing over of the adiabatic interaction barrier. The adiabatic scattering potentials present two barriers, whereas no barrier is shown to occur in sudden scattering potentials. The first barrier is obtained just past the saddle shape but is too low, such that a deep inelastic process is expected. The other, inner, barrier is high enough to let the system fall into the fusion well, whose excitation energy then determines whether a cool compound nucleus is produced or the fusion-fission process occurs. For a given compound nucleus, the excitation energy is found to be small for only a few target-projectile combinations, which increase as their mass asymmetry increases. Such target-projectile combinations which refer to a cool compound nucleus can be identified by a simple calculation of the fragmentation potential based on the ground state binding energies with Coulomb and proximity effects calculated at a constant relative separation of the two nuclei. Our calculations are made for the composite systems with 102 < or =Z < or =114

  1. Model for fusion and cool compound nucleus formation based on the fragmentation theory

    International Nuclear Information System (INIS)

    Malhotra, N.; Aroumougame, R.; Saroha, D.R.; Gupta, R.K.

    1985-07-01

    The collective potential energy surfaces are calculated in both the adiabatic and sudden approximations by using the asymmetric two centre shell model in Strutinsky method. It is shown that fusion of two colliding heavy ions occur by their crossing over of the adiabatic interaction barrier. The adiabatic scattering potentials present two barriers whereas no barrier is shown to occur in sudden scattering potentials. The first barrier is obtained just past the saddle shape but is too low, such that a deep inelastic process is expected. The other, inner, barrier is high enough to let the system fall into the fusion well, whose excitation energy then determine whether a cool compound nucleus is produced or the fusion-fission process occurs. For a given compound nucleus, the excitation energy is found to be small for only a few target-projectile combinations, which increase as their mass asymmetry increases. Such target-projectile combinations which refer to a cool compound nucleus, can be identified by a simple calculation of the fragmentation potential based on the ground state binding energies with Couloumb and proximity effects calculated at a constant relative separation of the two nuclei. Our calculations are made for the composite systems with 102<=Z<=114. (author)

  2. Early-Late Heterobimetallic Complexes Linked by Phosphinoamide Ligands. Tuning Redox Potentials and Small Molecule Activation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Christine M. [Brandeis Univ., Waltham, MA (United States)

    2015-08-01

    Recent attention in the chemical community has been focused on the energy efficient and environmentally benign conversion of abundant small molecules (CO2, H2O, etc.) to useful liquid fuels. This project addresses these goals by examining fundamental aspects of catalyst design to ultimately access small molecule activation processes under mild conditions. Specifically, Thomas and coworkers have targetted heterobimetallic complexes that feature metal centers with vastly different electronic properties, dictated both by their respective positions on the periodic table and their coordination environment. Unlike homobimetallic complexes featuring identical or similar metals, the bonds between metals in early/late heterobimetallics are more polarized, with the more electron-rich late metal center donating electron density to the more electron-deficient early metal center. While metal-metal bonds pose an interesting strategy for storing redox equivalents and stabilizing reactive metal fragments, the polar character of metal-metal bonds in heterobimetallic complexes renders these molecules ideally poised to react with small molecule substrates via cleavage of energy-rich single and double bonds. In addition, metal-metal interactions have been shown to dramatically affect redox potentials and promote multielectron redox activity, suggesting that metal-metal interactions may provide a mechanism to tune redox potentials and access substrate reduction/activation at mild overpotentials. This research project has provided a better fundamental understanding of how interactions between transition metals can be used as a strategy to promote and/or control chemical transformations related to the clean production of fuels. While this project focused on the study of homogeneous systems, it is anticipated that the broad conclusions drawn from these investigations will be applicable to heterogeneous catalysis as well, particularly on heterogeneous processes that occur at interfaces in

  3. Assessment of Inhibition of Ebola Virus Progeny Production by Antiviral Compounds.

    Science.gov (United States)

    Falzarano, Darryl

    2017-01-01

    Assessment of small molecule compounds against filoviruses, such as Ebola virus, has identified numerous compounds that appear to have antiviral activity and should presumably be further investigated in animal efficacy trials. However, despite the many compounds that are purported to have good antiviral activity in in vitro studies, there are few instances where any efficacy has been reported in nonhuman primate models. Many of the high-throughput screening assays use reporter systems that only recapitulate a portion of the virus life cycle, while other assays only assess antiviral activity at relatively early time points. Moreover, many assays do not assess virus progeny production. A more in-depth evaluation of small numbers of test compounds is useful to economize resources and to generate higher quality antiviral hits. Assessing virus progeny production as late as 5 days post-infection allows for the elimination of compounds that have initial antiviral effects that are not sustained or where the virus rapidly develops resistance. While this eliminates many potential lead compounds that may be worthy of further structure-activity relationship (SAR) development, it also quickly excludes compounds that in their current form are unlikely to be effective in animal models. In addition, the inclusion of multiple assays that assess both cell viability and cell cytotoxicity, via different mechanisms, provides a more thorough assessment to exclude compounds that are not direct-acting antivirals.

  4. Inhibition and kinetic studies of lignin degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds.

    Science.gov (United States)

    Surendran, Arthy; Siddiqui, Yasmeen; Saud, Halimi Mohd; Ali, Nusaibah Syd; Manickam, Sivakumar

    2018-05-22

    Lignolytic (Lignin degrading) enzyme, from oil palm pathogen Ganoderma boninense Pat. (Syn G. orbiforme (Ryvarden), is involved in the detoxification and the degradation of lignin in the oil palm and is the rate-limiting step in the infection process of this fungus. Active inhibition of lignin degrading enzymes secreted by G. boninense by various naturally occurring phenolic compounds and estimation of efficiency on pathogen suppression was aimed at. In our work, ten naturally occurring phenolic compounds were evaluated for their inhibitory potential towards the lignolytic enzymes of G.boninense. Additionally, the lignin degrading enzymes were characterised. Most of the peholic compounds exhibited an uncompetitive inhibition towards the lignin degrading enzymes. Benzoic acid was the superior inhibitor to the production of lignin degrading enzymes, when compared between the ten phenolic compounds. The inhibitory potential of the phenolic compounds toward the lignin degrading enzymes are higher than that of the conventional metal ion inhibitor. The lignin degrading enzymes were stable in a wide range of pH but were sensitive to higher to temperature. The study demonstrated the inhibitor potential of ten naturally occurring phenolic compounds toward the lignin degrading enzymes of G. boninense with different efficacies. The study has shed a light towards a new management strategy to control BSR in oil palm. It serves as replacement for the existing chemical control. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Potential of LC Coupled to Fluorescence Detection in Food Metabolomics: Determination of Phenolic Compounds in Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Romina P. Monasterio

    2016-09-01

    Full Text Available A powerful chromatographic method coupled to a fluorescence detector was developed to determine the phenolic compounds present in virgin olive oil (VOO, with the aim to propose an appropriate alternative to liquid chromatography-mass spectrometry. An excitation wavelength of 285 nm was selected and four different emission wavelengths (316, 328, 350 and 450 nm were simultaneously recorded, working therefore on “multi-emission” detection mode. With the use of commercially available standards and other standards obtained by semipreparative high performance liquid chromatography, it was possible to identify simple phenols, lignans, several complex phenols, and other phenolic compounds present in the matrix under study. A total of 26 phenolic compounds belonging to different chemical families were identified (23 of them were susceptible of being quantified. The proposed methodology provided detection and quantification limits within the ranges of 0.004–7.143 μg·mL−1 and 0.013–23.810 μg·mL−1, respectively. As far as the repeatability is concerned, the relative standard deviation values were below 0.43% for retention time, and 9.05% for peak area. The developed methodology was applied for the determination of phenolic compounds in ten VOOs, both monovarietals and blends. Secoiridoids were the most abundant fraction in all the samples, followed by simple phenolic alcohols, lignans, flavonoids, and phenolic acids (being the abundance order of the latter chemical classes logically depending on the variety and origin of the VOOs.

  6. Control of malodorous hydrogen sulfide compounds using microbial fuel cell.

    Science.gov (United States)

    Eaktasang, Numfon; Min, Hyeong-Sik; Kang, Christina; Kim, Han S

    2013-10-01

    In this study, a microbial fuel cell (MFC) was used to control malodorous hydrogen sulfide compounds generated from domestic wastewaters. The electricity production demonstrated a distinct pattern of a two-step increase during 170 h of system run: the first maximum current density was 118.6 ± 7.2 mA m⁻² followed by a rebound of current density increase, reaching the second maximum of 176.8 ± 9.4 mA m⁻². The behaviors of the redox potential and the sulfate level in the anode compartment indicated that the microbial production of hydrogen sulfide compounds was suppressed in the first stage, and the hydrogen sulfide compounds generated from the system were removed effectively as a result of their electrochemical oxidation, which contributed to the additional electricity production in the second stage. This was also directly supported by sulfur deposits formed on the anode surface, which was confirmed by analyses on those solids using a scanning electron microscope equipped with energy dispersive X-ray spectroscopy as well as an elemental analyzer. To this end, the overall reduction efficiencies for HS⁻ and H₂S(g) were as high as 67.5 and 96.4 %, respectively. The correlations among current density, redox potential, and sulfate level supported the idea that the electricity signal generated in the MFC can be utilized as a potential indicator of malodor control for the domestic wastewater system.

  7. Identification of phytochemical compounds in Calophyllum inophyllum leaves

    Directory of Open Access Journals (Sweden)

    David Febrilliant Susanto

    2017-09-01

    Conclusions: C. inophyllum leaves may be used as a good source of fiber. It was found that C. inophyllum leaves have the potential as herbal drugs due to their phytochemical content. The separation, isolation, and purification of bioactive compounds from this methanolic crude extract and their biological activity are under further investigation.

  8. Single-layer dispersions of transition metal dichalcogenides in the synthesis of intercalation compounds

    International Nuclear Information System (INIS)

    Golub, Alexander S; Zubavichus, Yan V; Slovokhotov, Yurii L; Novikov, Yurii N

    2003-01-01

    Chemical methods for the exfoliation of transition metal dichalcogenides in a liquid medium to give single-layer dispersions containing quasi-two-dimensional layers of these compounds are surveyed. Data on the structure of dispersions and their use in the synthesis of various types of heterolayered intercalation compounds are discussed and described systematically. Structural features, the electronic structure and the physicochemical properties of the resulting intercalation compounds are considered. The potential of this method of synthesis is compared with that of traditional solid-state methods for the intercalation of layered crystals.

  9. Potential aromatic compounds as markers to differentiate between Tuber melanosporum and Tuber indicum truffles.

    Science.gov (United States)

    Culleré, Laura; Ferreira, Vicente; Venturini, María E; Marco, Pedro; Blanco, Domingo

    2013-11-01

    The Tuber indicum (Chinese truffle) and Tuber melanosporum (Black truffle) species are morphologically very similar but their aromas are very different. The black truffle aroma is much more intense and complex, and it is consequently appreciated more gastronomically. This work tries to determine whether the differences between the aromatic compounds of both species are sufficiently significant so as to apply them to fraud detection. An olfactometric evaluation (GC-O) of T. indicum was carried out for the first time. Eight important odorants were identified. In order of aromatic significance, these were: 1-octen-3-one and 1-octen-3-ol, followed by two ethyl esters (ethyl isobutyrate and ethyl 2-methylbutyrate), 3-methyl-1-butanol, isopropyl acetate, and finally the two sulfides dimethyldisulfide (DMDS) and dimethylsulfide (DMS). A comparison of this aromatic profile with that of T. melanosporum revealed the following differences: T. indicum stood out for the significant aromatic contribution of 1-octen-3-one and 1-octen-3-ol (with modified frequencies (MF%) of 82% and 69%, respectively), while in the case of T. melanosporum both had modified frequencies of less than 30%. Ethyl isobutyrate, ethyl 2-methylbutyrate and isopropyl acetate were also significantly higher, while DMS and DMDS had low MF (30-40%) compared to T. melanosporum (>70%). The volatile profiles of both species were also studied by means of headspace solid-phase microextraction (HS-SPME-GC-MS). This showed that the family of C8 compounds (3-octanone, octanal, 1-octen-3-one, 3-octanol and 1-octen-3-ol) is present in T. indicum at much higher levels. The presence of 1-octen-3-ol was higher by a factor of about 100, while 1-octen-3-one was detected in T. indicum only (there was no chromatographic signal in T. melanosporum). As well as showing the greatest chromatographic differences, these two compounds were also the most powerful from the aromatic viewpoint in the T. indicum olfactometry. Therefore

  10. Health-promoting compounds in cape gooseberry (Physalis peruviana L.)

    NARCIS (Netherlands)

    Olivares-Tenorio, Mary Luz; Dekker, Matthijs; Verkerk, Ruud; Boekel, van Tiny

    2016-01-01

    Background The fruit of Physalis peruviana L., known as Cape Gooseberry (CG) is a source of a variety of compounds with potential health benefits. Therefore, CG has been subject of scientific and commercial interest. Scope and approach This review paper evaluates changes of such health-promoting

  11. Herbal Therapies for Type 2 Diabetes Mellitus: Chemistry, Biology, and Potential Application of Selected Plants and Compounds

    Directory of Open Access Journals (Sweden)

    Cicero L. T. Chang

    2013-01-01

    Full Text Available Diabetes mellitus has been recognized since antiquity. It currently affects as many as 285 million people worldwide and results in heavy personal and national economic burdens. Considerable progress has been made in orthodox antidiabetic drugs. However, new remedies are still in great demand because of the limited efficacy and undesirable side effects of current orthodox drugs. Nature is an extraordinary source of antidiabetic medicines. To date, more than 1200 flowering plants have been claimed to have antidiabetic properties. Among them, one-third have been scientifically studied and documented in around 460 publications. In this review, we select and discuss blood glucose-lowering medicinal herbs that have the ability to modulate one or more of the pathways that regulate insulin resistance, β-cell function, GLP-1 homeostasis, and glucose (reabsorption. Emphasis is placed on phytochemistry, anti-diabetic bioactivities, and likely mechanism(s. Recent progress in the understanding of the biological actions, mechanisms, and therapeutic potential of compounds and extracts of plant origin in type 2 diabetes is summarized. This review provides a source of up-to-date information for further basic and clinical research into herbal therapy for type 2 diabetes. Emerging views on therapeutic strategies for type 2 diabetes are also discussed.

  12. Characterization of the thermolysis products of Nafion membrane: A potential source of perfluorinated compounds in the environment

    Science.gov (United States)

    Feng, Mingbao; Qu, Ruijuan; Wei, Zhongbo; Wang, Liansheng; Sun, Ping; Wang, Zunyao

    2015-05-01

    The thermal decomposition of Nafion N117 membrane, a typical perfluorosulfonic acid membrane that is widely used in various chemical technologies, was investigated in this study. Structural identification of thermolysis products in water and methanol was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS). The fluoride release was studied using an ion-chromatography system, and the membrane thermal stability was characterized by thermogravimetric analysis. Notably, several types of perfluorinated compounds (PFCs) including perfluorocarboxylic acids were detected and identified. Based on these data, a thermolysis mechanism was proposed involving cleavage of both the polymer backbone and its side chains by attack of radical species. This is the first systematic report on the thermolysis products of Nafion by simulating its high-temperature operation and disposal process via incineration. The results of this study indicate that Nafion is a potential environmental source of PFCs, which have attracted growing interest and concern in recent years. Additionally, this study provides an analytical justification of the LC/ESI-MS/MS method for characterizing the degradation products of polymer electrolyte membranes. These identifications can substantially facilitate an understanding of their decomposition mechanisms and offer insight into the proper utilization and effective management on these membranes.

  13. Large Scale Screening of Ethnomedicinal Plants for Identification of Potential Antibacterial Compounds

    Directory of Open Access Journals (Sweden)

    Sujogya Kumar Panda

    2016-03-01

    activity. The species listed here were shown to have anti-infective activity against both Gram-positive and Gram-negative bacteria. These results may serve as a guide for selecting plant species that could yield the highest probability of finding promising compounds responsible for the antibacterial activities against a broad spectrum of bacterial species. Further investigation of the phytochemicals from these plants will help to identify the lead compounds for drug discovery.

  14. Large Scale Screening of Ethnomedicinal Plants for Identification of Potential Antibacterial Compounds.

    Science.gov (United States)

    Panda, Sujogya Kumar; Mohanta, Yugal Kishore; Padhi, Laxmipriya; Park, Young-Hwan; Mohanta, Tapan Kumar; Bae, Hanhong

    2016-03-14

    listed here were shown to have anti-infective activity against both Gram-positive and Gram-negative bacteria. These results may serve as a guide for selecting plant species that could yield the highest probability of finding promising compounds responsible for the antibacterial activities against a broad spectrum of bacterial species. Further investigation of the phytochemicals from these plants will help to identify the lead compounds for drug discovery.

  15. Toxicology of alkylmercury compounds.

    Science.gov (United States)

    Aschner, Michael; Onishchenko, Natalia; Ceccatelli, Sandra

    2010-01-01

    Methylmercury is a global pollutant and potent neurotoxin whose abundance in the food chain mandates additional studies on the consequences and mechanisms of its toxicity to the central nervous system. Formulation of our new hypotheses was predicated on our appreciation for (a) the remarkable affinity of mercurials for the anionic form of sulfhydryl (-SH) groups, and (b) the essential role of thiols in protein biochemistry. The present chapter addresses pathways to human exposure of various mercury compounds, highlighting their neurotoxicity and potential involvement in neurotoxic injury and neurodegenerative changes, both in the developing and senescent brain. Mechanisms that trigger these effects are discussed in detail.

  16. Rethinking the theoretical description of photoluminescence in compound semiconductors

    Science.gov (United States)

    Valkovskii, V.; Jandieri, K.; Gebhard, F.; Baranovskii, S. D.

    2018-02-01

    Semiconductor compounds, such as Ga(NAsP)/GaP or GaAsBi/GaAs, are in the focus of intensive research due to their unique features for optoelectronic devices. The optical spectra of compound semiconductors are strongly influenced by the random scattering potentials caused by compositional and structural disorder. The disorder potential is responsible for the red-shift (Stokes shift) of the photoluminescence (PL) peak and for the inhomogeneous broadening of the PL spectra. So far, the anomalous broadening of the PL spectra in Ga(NAsP)/GaP has been explained assuming two coexisting length scales of disorder. However, this interpretation appears in contradiction to the recently observed dependence of the PL linewidth on the excitation intensity. We suggest an alternative approach that describes the PL characteristics in the framework of a model with a single length scale of disorder. The price is the assumption of two types of localized states with different, temperature-dependent non-radiative recombination rates.

  17. Drug Repurposing Screening Identifies Novel Compounds That Effectively Inhibit Toxoplasma gondii Growth

    Science.gov (United States)

    Dittmar, Ashley J.; Drozda, Allison A.

    2016-01-01

    ABSTRACT The urgent need to develop new antimicrobial therapies has spawned the development of repurposing screens in which well-studied drugs and other types of compounds are tested for potential off-label uses. As a proof-of-principle screen to identify compounds effective against Toxoplasma gondii, we screened a collection of 1,120 compounds for the ability to significantly reduce Toxoplasma replication. A total of 94 compounds blocked parasite replication with 50% inhibitory concentrations of parasite invasion and replication but did so independently of inhibition of dopamine or other neurotransmitter receptor signaling. Tamoxifen, which is an established inhibitor of the estrogen receptor, also reduced parasite invasion and replication. Even though Toxoplasma can activate the estrogen receptor, tamoxifen inhibits parasite growth independently of this transcription factor. Tamoxifen is also a potent inducer of autophagy, and we find that the drug stimulates recruitment of the autophagy marker light chain 3-green fluorescent protein onto the membrane of the vacuolar compartment in which the parasite resides and replicates. In contrast to other antiparasitic drugs, including pimozide, tamoxifen treatment of infected cells leads to a time-dependent elimination of intracellular parasites. Taken together, these data suggest that tamoxifen restricts Toxoplasma growth by inducing xenophagy or autophagic destruction of this obligate intracellular parasite. IMPORTANCE There is an urgent need to develop new therapies to treat microbial infections, and the repurposing of well-characterized compounds is emerging as one approach to achieving this goal. Using the protozoan parasite Toxoplasma gondii, we screened a library of 1,120 compounds and identified several compounds with significant antiparasitic activities. Among these were pimozide and tamoxifen, which are well-characterized drugs prescribed to treat patients with psychiatric disorders and breast cancer

  18. Evasion of anti-growth signaling: a key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds

    Science.gov (United States)

    Amin, A.R.M. Ruhul; Karpowicz, Phillip A.; Carey, Thomas E.; Arbiser, Jack; Nahta, Rita; Chen, Zhuo G.; Dong, Jin-Tang; Kucuk, Omer; Khan, Gazala N.; Huang, Gloria S.; Mi, Shijun; Lee, Ho-Young; Reichrath, Joerg; Honoki, Kanya; Georgakilas, Alexandros G.; Amedei, Amedeo; Amin, Amr; Helferich, Bill; Boosani, Chandra S.; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I.; Azmi, Asfar S.; Keith, W Nicol; Bhakta, Dipita; Halicka, Dorota; Niccolai, Elena; Fujii, Hiromasa; Aquilano, Katia; Ashraf, S. Salman; Nowsheen, Somaira; Yang, Xujuan; Bilsland, Alan; Shin, Dong M.

    2015-01-01

    The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting. PMID:25749195

  19. Polycarbonyl(quinonyl) organic compounds as cathode materials for sustainable lithium ion batteries

    International Nuclear Information System (INIS)

    Zeng, Ronghua; Xing, Lidan; Qiu, Yongcai; Wang, Yating; Huang, Wenna; Li, Weishan; Yang, Shihe

    2014-01-01

    Highlights: • Quinonyl compounds containing –OH groups are reported as cathode of sustainable Li-ion battery. • Lithiation potential of these compounds is positively correlated to -OH group number on them. • These compounds exhibit a discharge plateau of 3 V and deliver a capacity of over 180 mAh g -1 at 20 mA g -1 . - Abstract: Suitably designed organic compounds are promising renewable electrode materials for lithium ion batteries (LIBs) with minimal environmental impacts and no CO 2 release. Herein we report a series of polycarbonyl organic compounds with different number of hydroxyl groups, which can be obtained from renewable plants, as cathode materials for LIBs. Density functional theory (DFT) calculations based on the natural bond orbital (NBO) reveal a positive correlation between the reduction potentials and the number of hydroxyl groups, which is borne out experimentally. Anthraquinone (AQ) with three or four -OH groups has the structural advantages for improving the discharge plateaus. Mechanistic studies show that AQ containing neighbouring carbonyl groups and hydroxyl groups facilitates the formation of six or five-membered rings with lithium ion. Charge/discharge tests show that AQ, 1,5-DHAQ, 1,2,7-THAQ, and 1,2,5,8-THAQ can achieve initial discharge capacities of 215, 190, 186 and 180 mAh g -1 at a current density of 20 mA g -1 , corresponding to 84%, 85%, 89% and 91% of their theoretical capacities, respectively

  20. Prediction of human population responses to toxic compounds by a collaborative competition.

    Science.gov (United States)

    Eduati, Federica; Mangravite, Lara M; Wang, Tao; Tang, Hao; Bare, J Christopher; Huang, Ruili; Norman, Thea; Kellen, Mike; Menden, Michael P; Yang, Jichen; Zhan, Xiaowei; Zhong, Rui; Xiao, Guanghua; Xia, Menghang; Abdo, Nour; Kosyk, Oksana; Friend, Stephen; Dearry, Allen; Simeonov, Anton; Tice, Raymond R; Rusyn, Ivan; Wright, Fred A; Stolovitzky, Gustavo; Xie, Yang; Saez-Rodriguez, Julio

    2015-09-01

    The ability to computationally predict the effects of toxic compounds on humans could help address the deficiencies of current chemical safety testing. Here, we report the results from a community-based DREAM challenge to predict toxicities of environmental compounds with potential adverse health effects for human populations. We measured the cytotoxicity of 156 compounds in 884 lymphoblastoid cell lines for which genotype and transcriptional data are available as part of the Tox21 1000 Genomes Project. The challenge participants developed algorithms to predict interindividual variability of toxic response from genomic profiles and population-level cytotoxicity data from structural attributes of the compounds. 179 submitted predictions were evaluated against an experimental data set to which participants were blinded. Individual cytotoxicity predictions were better than random, with modest correlations (Pearson's r < 0.28), consistent with complex trait genomic prediction. In contrast, predictions of population-level response to different compounds were higher (r < 0.66). The results highlight the possibility of predicting health risks associated with unknown compounds, although risk estimation accuracy remains suboptimal.

  1. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds

    Science.gov (United States)

    Mounet, Nicolas; Gibertini, Marco; Schwaller, Philippe; Campi, Davide; Merkys, Andrius; Marrazzo, Antimo; Sohier, Thibault; Castelli, Ivano Eligio; Cepellotti, Andrea; Pizzi, Giovanni; Marzari, Nicola

    2018-02-01

    Two-dimensional (2D) materials have emerged as promising candidates for next-generation electronic and optoelectronic applications. Yet, only a few dozen 2D materials have been successfully synthesized or exfoliated. Here, we search for 2D materials that can be easily exfoliated from their parent compounds. Starting from 108,423 unique, experimentally known 3D compounds, we identify a subset of 5,619 compounds that appear layered according to robust geometric and bonding criteria. High-throughput calculations using van der Waals density functional theory, validated against experimental structural data and calculated random phase approximation binding energies, further allowed the identification of 1,825 compounds that are either easily or potentially exfoliable. In particular, the subset of 1,036 easily exfoliable cases provides novel structural prototypes and simple ternary compounds as well as a large portfolio of materials to search from for optimal properties. For a subset of 258 compounds, we explore vibrational, electronic, magnetic and topological properties, identifying 56 ferromagnetic and antiferromagnetic systems, including half-metals and half-semiconductors.

  2. A study on superoxide dismutase activity of some model compounds.

    Science.gov (United States)

    Liao, Z; Liu, W; Liu, J; Jiang, Y; Shi, J; Liu, C

    1994-08-15

    The synthesis and characteristics of a binuclear ligand N,N,N',N'-tetrakis (2'-benzimidazolyl methyl)-1,4-diethylene amino glycol ether (EGTB) and its series of coordination compounds containing copper(II), iron(III), and manganese(II) with and without exogenous bridging ligand which was imidazolate ion (Im-), bipyridine (bpy), or 1,10-phenanthroline (phen) are reported. Depending on the redox potentials by cyclic voltammetry, the coordination compounds can act as catalysts for the dismutation of superoxide radicals (O2-). The detection of the rate constant of the reaction of superoxide ion with nitroblue tetrazolium (NBT) which is inhibited by superoxide dismutase (SOD) and its model compounds of the EGTB system has been performed by a modified illumination method. The rate constants kQ of the catalytic dismutation have been obtained.

  3. Cyclooxygenase inhibitory compounds from Gymnosporia heterophylla aerial parts.

    Science.gov (United States)

    Ochieng, Charles O; Opiyo, Sylvia A; Mureka, Edward W; Ishola, Ismail O

    2017-06-01

    Gymnosporia heterophylla (Celastraceae) is an African medicinal plants used to treat painful and inflammatory diseases with partial scientific validation. Solvent extractions followed by repeated chromatographic purification of the G. heterophylla aerial parts led to the isolation of one new β-dihydroagarofuran sesquiterpene alkaloid (1), and two triterpenes (2-3). In addition, eight known compounds including one β-dihydroagarofuran sesquiterpene alkaloid (4), and six triterpenes (5-10) were isolated. All structures were determined through extensive analysis of the NMR an MS data as well as by comparison with literature data. These compounds were evaluated for the anti-inflammatory activities against COX-1 and -2 inhibitory potentials. Most of the compound isolated showed non selective COX inhibitions except for 3-Acetoxy-1β-hydroxyLupe-20(29)-ene (5), Lup-20(29)-ene-1β,3β-diol (6) which showed COX-2 selective inhibition at 0.54 (1.85), and 0.45 (2.22) IC 50 , in mM (Selective Index), respectively. The results confirmed the presence of anti-inflammatory compounds in G. heterophylla which are important indicators for development of complementary medicine for inflammatory reactions; however, few could be useful as selective COX-2 inhibitor. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Ionisation detectors as monitors of toxic compounds in air

    International Nuclear Information System (INIS)

    Leonhardt, J.W.

    1994-01-01

    Beta particles cause ionisation in gas mixtures. The ions produced provide information on the concentration and identity of trace compounds in ambient air. Modern ionisation detectors use ion mobilities to monitor toxic compounds. Chemical solvent, phosphororganic compounds, PCB and many other toxins can be detected using ion mobility detectors (IMD) in the ppb range or lower. Ion mobility detectors have large potential in industry and research because of their sensitivity, specificity, fast response and relatively low cost. Portable devices and fixed installations are possible. The paper discusses the following topics: (1) ionisation sources in IMD: 63 Ni, 3 H, photoionization and corona discharge, (2) basic principles of ion production, (3) ion collection in IMD, (4) design, gas supply, automatic identification and quantification of IMD data, and (5) selected applications. Advantages and problems with this new type of nuclear analytical instrument are also discussed. (author). 2 refs., 9 figs., 3 tabs

  5. Antibacterial compounds from marine Vibrionaceae isolated on a global expedition

    DEFF Research Database (Denmark)

    Wietz, Matthias; Månsson, Maria; Gotfredsen, Charlotte Held

    2010-01-01

    known antibiotics as being responsible for the antibacterial activity; andrimid (from V. coralliilyticus) and holomycin (from P. halotolerans). Despite the isolation of already known antibiotics, our findings show that marine Vibrionaceae are a resource of antibacterial compounds and may have potential...

  6. Secondary organic aerosol formation from a large number of reactive man-made organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Derwent, Richard G., E-mail: r.derwent@btopenworld.com [rdscientific, Newbury, Berkshire (United Kingdom); Jenkin, Michael E. [Atmospheric Chemistry Services, Okehampton, Devon (United Kingdom); Utembe, Steven R.; Shallcross, Dudley E. [School of Chemistry, University of Bristol, Bristol (United Kingdom); Murrells, Tim P.; Passant, Neil R. [AEA Environment and Energy, Harwell International Business Centre, Oxon (United Kingdom)

    2010-07-15

    A photochemical trajectory model has been used to examine the relative propensities of a wide variety of volatile organic compounds (VOCs) emitted by human activities to form secondary organic aerosol (SOA) under one set of highly idealised conditions representing northwest Europe. This study applied a detailed speciated VOC emission inventory and the Master Chemical Mechanism version 3.1 (MCM v3.1) gas phase chemistry, coupled with an optimised representation of gas-aerosol absorptive partitioning of 365 oxygenated chemical reaction product species. In all, SOA formation was estimated from the atmospheric oxidation of 113 emitted VOCs. A number of aromatic compounds, together with some alkanes and terpenes, showed significant propensities to form SOA. When these propensities were folded into a detailed speciated emission inventory, 15 organic compounds together accounted for 97% of the SOA formation potential of UK man made VOC emissions and 30 emission source categories accounted for 87% of this potential. After road transport and the chemical industry, SOA formation was dominated by the solvents sector which accounted for 28% of the SOA formation potential.

  7. Special Heusler compounds for spintronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Balke, B.

    2007-07-01

    This work emphasizes the potential of Heusler compounds in a wide range of spintronic applications. Using electronic structure calculations it is possible to design compounds for specific applications. Examples for GMR and TMR applications, for spin injection into semiconductors, and for spin torque transfer applications will be shown. After a detailed introduction about spintronics and related materials chapter 5 reports about the investigation of new half-metallic compounds where the Fermi energy is tuned in the middle of the gap to result in more stable compounds for GMR and TMR applications. The bulk properties of the quaternary Heusler alloy Co{sub 2}Mn{sub 1-x}Fe{sub x}Si with the Fe concentration ranging from x=0 to 1 are reported and the results suggest that the best candidate for applications may be found at an iron concentration of about 50%. Due to the effect that in the Co{sub 2}Mn{sub 1-x}Fe{sub x}Si series the transition metal carrying the localized moment is exchanged and this might lead to unexpected effects on the magnetic properties if the samples are not completely homogeneous chapter 6 reports about the optimization of the Heusler compounds for GMR and TMR applications. The structural and magnetic properties of the quaternary Heusler alloy Co{sub 2}FeAl{sub 1-x}Si{sub x} with varying Si concentration are reported. From the combination of experimental (better order for high Si content) and theoretical findings (robust gap at x=0.5) it is concluded that a compound with an intermediate Si concentration close to x=0.5-0.7 would be best suited for spintronic applications, especially for GMR and TMR applications. In chapter 7 the detailed investigation of compounds for spin injection into semiconductors is reported. It is shown that the diluted magnetic semiconductors based on CoTiSb with a very low lattice mismatch among each other are interesting materials for spintronics applications like Spin-LEDs or other spin injection devices. Chapter 8 refers

  8. The formation of lithium diarylargentates from arylsilver compounds and the corresponding aryllithium compounds

    NARCIS (Netherlands)

    Blenkers, J.; Hofstee, H.K.; Boersma, J.; Kerk, G.J.M. van der

    1979-01-01

    Diarylsilverlithium compounds of the type Ar2AgLi are formed by treating arylsilver compounds with the corresponding aryllithium compounds. Cryoscopy in benzene shows that the Ar2AgLi compounds are associated into dimers. NMR spectroscopic data indicate that only one type of aryl group is present in

  9. Antibacterial and DNA cleavage activity of carbonyl functionalized N-heterocyclic carbene-silver(I) and selenium compounds

    Science.gov (United States)

    Haque, Rosenani A.; Iqbal, Muhammad Adnan; Mohamad, Faisal; Razali, Mohd R.

    2018-03-01

    The article describes syntheses and characterizations of carbonyl functionalized benzimidazolium salts, I-IV. While salts I-III are unstable at room temperature, salt IV remained stable and was further utilised to form N-heterocyclic carbene (NHC) compounds of silver(I), V and VI, and selenium compound, VII respectively. Compounds IV-VII were tested for their antibacterial potential against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Salt IV shows a very low inhibition potential (minimum inhibitory concentration, MIC 500 μg/mL) compared to the respective silver(I)-NHC, V and VI (MIC 31.25 μg/mL against both, E. coli and S. aureus) and selenium compound, VII (MIC 125 μg/mL against E. coli and 62.50 μg/mL against S. aureus). In DNA cleavage abilities, all the test compounds cleave DNA in which the VII cleaves the DNA at the faster rate. Meanwhile, the silver(I)-NHC complexes V and VI act at the same mode and pattern of DNA cleavage while VII is similar to IV.

  10. Evolution of interstellar organic compounds under asteroidal hydrothermal conditions

    Science.gov (United States)

    Vinogradoff, V.; Bernard, S.; Le Guillou, C.; Remusat, L.

    2018-05-01

    Carbonaceous chondrites (CC) contain a diversity of organic compounds. No definitive evidence for a genetic relationship between these complex organic molecules and the simple organic molecules detected in the interstellar medium (ISM) has yet been reported. One of the many difficulties arises from the transformations of organic compounds during accretion and hydrothermal alteration on asteroids. Here, we report results of hydrothermal alteration experiments conducted on a common constituent of interstellar ice analogs, Hexamethylenetetramine (HMT - C6H12N4). We submitted HMT to asteroidal hydrothermal conditions at 150 °C, for various durations (up to 31 days) and under alkaline pH. Organic products were characterized by gas chromatography mass spectrometry, infrared spectroscopy and synchrotron-based X-ray absorption near edge structure spectroscopy. Results show that, within a few days, HMT has evolved into (1) a very diverse suite of soluble compounds dominated by N-bearing aromatic compounds (> 150 species after 31 days), including for instance formamide, pyridine, pyrrole and their polymers (2) an aromatic and N-rich insoluble material that forms after only 7 days of experiment and then remains stable through time. The reaction pathways leading to the soluble compounds likely include HMT dissociation, formose and Maillard-type reactions, e.g. reactions of sugar derivatives with amines. The present study demonstrates that, if interstellar organic compounds such as HMT had been accreted by chondrite parent bodies, they would have undergone chemical transformations during hydrothermal alteration, potentially leading to the formation of high molecular weight insoluble organic molecules. Some of the diversity of soluble and insoluble organic compounds found in CC may thus result from asteroidal hydrothermal alteration.

  11. Diversity of compounds in femoral secretions of Galápagos iguanas (genera: Amblyrhynchus and Conolophus, and their potential role in sexual communication in lek-mating marine iguanas (Amblyrhynchus cristatus

    Directory of Open Access Journals (Sweden)

    Alejandro Ibáñez

    2017-08-01

    Full Text Available Background Chemical signals are widely used in the animal kingdom, enabling communication in various social contexts, including mate selection and the establishment of dominance. Femoral glands, which produce and release waxy secretions into the environment, are organs of central importance in lizard chemical communication. The Galápagos marine iguana (Amblyrhynchus cristatus is a squamate reptile with a lek-mating system. Although the lekking behaviour of marine iguanas has been well-studied, their potential for sexual communication via chemical cues has not yet been investigated. Here we describe the diversity of the lipophilic fraction of males’ femoral gland secretions among 11 island populations of marine iguanas, and compare it with the composition of its sister species, the Galápagos land iguana (Conolophus subcristatus. We also conducted behavioural observations in marine iguana territorial males in order to explore the possible function of these substances in the context of male dominance in leks. Methods Femoral secretions were analysed by gas chromatography coupled to mass spectrometry (GC–MS, and chromatography with a flame ionisation detector (GC-FID in order to characterise the lipophilic composition. To understand the potential role of femoral secretions in marine iguana intraspecific communication, territorial males were sampled for their femoral glands and monitored to record their head bob rate—a territorial display behaviour in males—as well as the number of females present in their leks. Results We found that the gland secretions were composed of ten saturated and unsaturated carboxylic acids ranging in chain length between C16 and C24, as well as three sterols. Cholesterol was the main compound found. Intriguingly, land iguanas have a higher diversity of lipophilic compounds, with structural group of lipids (i.e. aldehydes entirely absent in marine iguanas; overall the chemical signals of both species were strongly

  12. Diversity of compounds in femoral secretions of Galápagos iguanas (genera: Amblyrhynchus and Conolophus), and their potential role in sexual communication in lek-mating marine iguanas (Amblyrhynchus cristatus).

    Science.gov (United States)

    Ibáñez, Alejandro; Menke, Markus; Quezada, Galo; Jiménez-Uzcátegui, Gustavo; Schulz, Stefan; Steinfartz, Sebastian

    2017-01-01

    Chemical signals are widely used in the animal kingdom, enabling communication in various social contexts, including mate selection and the establishment of dominance. Femoral glands, which produce and release waxy secretions into the environment, are organs of central importance in lizard chemical communication. The Galápagos marine iguana ( Amblyrhynchus cristatus ) is a squamate reptile with a lek-mating system. Although the lekking behaviour of marine iguanas has been well-studied, their potential for sexual communication via chemical cues has not yet been investigated. Here we describe the diversity of the lipophilic fraction of males' femoral gland secretions among 11 island populations of marine iguanas, and compare it with the composition of its sister species, the Galápagos land iguana ( Conolophus subcristatus ). We also conducted behavioural observations in marine iguana territorial males in order to explore the possible function of these substances in the context of male dominance in leks. Femoral secretions were analysed by gas chromatography coupled to mass spectrometry (GC-MS), and chromatography with a flame ionisation detector (GC-FID) in order to characterise the lipophilic composition. To understand the potential role of femoral secretions in marine iguana intraspecific communication, territorial males were sampled for their femoral glands and monitored to record their head bob rate-a territorial display behaviour in males-as well as the number of females present in their leks. We found that the gland secretions were composed of ten saturated and unsaturated carboxylic acids ranging in chain length between C 16 and C 24 , as well as three sterols. Cholesterol was the main compound found. Intriguingly, land iguanas have a higher diversity of lipophilic compounds, with structural group of lipids (i.e. aldehydes) entirely absent in marine iguanas; overall the chemical signals of both species were strongly differentiated. Lipid profiles also

  13. Performance audits and laboratory comparisons for SCOS97-NARSTO measurements of speciated volatile organic compounds

    Science.gov (United States)

    Fujita, Eric M.; Harshfield, Gregory; Sheetz, Laurence

    Performance audits and laboratory comparisons were conducted as part of the quality assurance program for the 1997 Southern California Ozone Study (SCOS97-NARSTO) to document potential measurement biases among laboratories measuring speciated nonmethane hydrocarbons (NMHC), carbonyl compounds, halogenated compounds, and biogenic hydrocarbons. The results show that measurements of volatile organic compounds (VOC) made during SCOS97-NARSTO are generally consistent with specified data quality objectives. The hydrocarbon comparison involved nine laboratories and consisted of two sets of collocated ambient samples. The coefficients of variation among laboratories for the sum of the 55 PAM target compounds and total NMHC ranged from ±5 to 15 percent for ambient samples from Los Angeles and Azusa. Abundant hydrocarbons are consistently identified by all laboratories, but discrepancies occur for olefins greater than C 4 and for hydrocarbons greater than C 8. Laboratory comparisons for halogenated compounds and biogenic hydrocarbons consisted of both concurrent ambient sampling by different laboratories and round-robin analysis of ambient samples. The coefficients of variation among participating laboratories were about 10-20 percent. Performance audits were conducted for measurement of carbonyl compounds involving sampling from a standard mixture of carbonyl compounds. The values reported by most of the laboratories were within 10-20 percent of those of the reference laboratory. Results of field measurement comparisons showed larger variations among the laboratories ranging from 20 to 40 percent for C 1-C 3 carbonyl compounds. The greater variations observed in the field measurement comparison may reflect potential sampling artifacts, which the performance audits did not address.

  14. Prevention of Marine Biofouling Using the Natural Allelopathic Compound Batatasin-III and Synthetic Analogues.

    Science.gov (United States)

    Moodie, Lindon W K; Trepos, Rozenn; Cervin, Gunnar; Bråthen, Kari Anne; Lindgård, Bente; Reiersen, Rigmor; Cahill, Patrick; Pavia, Henrik; Hellio, Claire; Svenson, Johan

    2017-07-28

    The current study reports the first comprehensive evaluation of a class of allelopathic terrestrial natural products as antifoulants in a marine setting. To investigate the antifouling potential of the natural dihydrostilbene scaffold, a library of 22 synthetic dihydrostilbenes with varying substitution patterns, many of which occur naturally in terrestrial plants, were prepared and assessed for their antifouling capacity. The compounds were evaluated in an extensive screen against 16 fouling marine organisms. The dihydrostilbene scaffold was shown to possess powerful general antifouling effects against both marine microfoulers and macrofoulers with inhibitory activities at low concentrations. The species of microalgae examined displayed a particular sensitivity toward the evaluated compounds at low ng/mL concentrations. It was shown that several of the natural and synthetic compounds exerted their repelling activities via nontoxic and reversible mechanisms. The activities of the most active compounds such as 3,5-dimethoxybibenzyl (5), 3,4-dimethoxybibenzyl (9), and 3-hydroxy-3',4,5'-trimethoxybibenzyl (20) were comparable to the commercial antifouling booster biocide Sea-nine, which was employed as a positive control. The investigation of terrestrial allelopathic natural products to counter marine fouling represents a novel strategy for the design of "green" antifouling technologies, and these compounds offer a potential alternative to traditional biocidal antifoulants.

  15. Compound Structure-Independent Activity Prediction in High-Dimensional Target Space.

    Science.gov (United States)

    Balfer, Jenny; Hu, Ye; Bajorath, Jürgen

    2014-08-01

    Profiling of compound libraries against arrays of targets has become an important approach in pharmaceutical research. The prediction of multi-target compound activities also represents an attractive task for machine learning with potential for drug discovery applications. Herein, we have explored activity prediction in high-dimensional target space. Different types of models were derived to predict multi-target activities. The models included naïve Bayesian (NB) and support vector machine (SVM) classifiers based upon compound structure information and NB models derived on the basis of activity profiles, without considering compound structure. Because the latter approach can be applied to incomplete training data and principally depends on the feature independence assumption, SVM modeling was not applicable in this case. Furthermore, iterative hybrid NB models making use of both activity profiles and compound structure information were built. In high-dimensional target space, NB models utilizing activity profile data were found to yield more accurate activity predictions than structure-based NB and SVM models or hybrid models. An in-depth analysis of activity profile-based models revealed the presence of correlation effects across different targets and rationalized prediction accuracy. Taken together, the results indicate that activity profile information can be effectively used to predict the activity of test compounds against novel targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Compound edaravone alleviates lipopolysaccharide (LPS)-induced acute lung injury in mice.

    Science.gov (United States)

    Zhang, Zhengping; Luo, Zhaowen; Bi, Aijing; Yang, Weidong; An, Wenji; Dong, Xiaoliang; Chen, Rong; Yang, Shibao; Tang, Huifang; Han, Xiaodong; Luo, Lan

    2017-09-15

    Acute lung injury (ALI) represents an unmet medical need with an urgency to develop effective pharmacotherapies. Compound edaravone, a combination of edaravone and borneol, has been developed for treatment of ischemia stroke in clinical phase III study. The purpose of the present study is to investigate the anti-inflammatory effect of compound edaravone on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and the therapeutic efficacy on LPS-induced ALI in mice. Edaravone and compound edaravone concentration-dependently decreased LPS-induced interleukin-6 (IL-6) production and cyclooxygenase-2 (COX-2) expression in RAW264.7 cells. The efficiency of compound edaravone was stronger than edaravone alone. In the animal study, compound edaravone was injected intravenously to mice after intratracheal instillation of LPS. It remarkably alleviated LPS-induced lung injury including pulmonary histological abnormalities, polymorphonuclear leukocyte (PMN) infiltration and extravasation. Further study demonstrated that compound edaravone suppressed LPS-induced TNF-α and IL-6 increase in mouse serum and bronchoalveolar lavage (BAL) fluid, and inhibited LPS-induced nuclear factor-κB (NF-κB) activation and COX-2 expression in mice lung tissues. Importantly, our findings demonstrated that the compound edaravone showed a stronger protective effect against mouse ALI than edaravone alone, which suggested the synergies between edaravone and borneol. In conclusion, compound edaravone could be a potential novel therapeutic drug for ALI treatment and borneol might produce a synergism with edaravone. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Semiconducting III-V compounds

    CERN Document Server

    Hilsum, C; Henisch, Heinz R

    1961-01-01

    Semiconducting III-V Compounds deals with the properties of III-V compounds as a family of semiconducting crystals and relates these compounds to the monatomic semiconductors silicon and germanium. Emphasis is placed on physical processes that are peculiar to III-V compounds, particularly those that combine boron, aluminum, gallium, and indium with phosphorus, arsenic, and antimony (for example, indium antimonide, indium arsenide, gallium antimonide, and gallium arsenide).Comprised of eight chapters, this book begins with an assessment of the crystal structure and binding of III-V compounds, f

  18. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network.

    Science.gov (United States)

    Calderón-Preciado, Diana; Matamoros, Víctor; Bayona, Josep M

    2011-12-15

    Emerging contaminants have received much attention in recent years due to their presence in surface waters, but little attention has been paid to their occurrence in agricultural irrigation waters. This study investigated the occurrence of these compounds in an agricultural irrigation network in northeastern Spain and, for the first time, using two plant uptake models, estimated the concentration of selected micropollutants in crops. The concentration of micropollutants in agricultural irrigation waters ranged from 10 to 5130 ng L(-1) and exhibited some attenuation over the course of the irrigation network. Bromoform, chloroform, diclofenac, caffeine, ibuprofen, naproxen, methyl dihydrojasmonate, galaxolide, butylated hydroxytoluene, and butylated hydroxyanisole were the most abundant contaminants (>200 ng L(-1), on average). The estimated concentration of micropollutants in crops ranged from contaminants detected). Further studies are needed to determine the health implications that the presence of these compounds in fruit and vegetables may have for consumers. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Exploring Anti-Bacterial Compounds against Intracellular Legionella

    Science.gov (United States)

    Harrison, Christopher F.; Kicka, Sébastien; Trofimov, Valentin; Berschl, Kathrin; Ouertatani-Sakouhi, Hajer; Ackermann, Nikolaus; Hedberg, Christian; Cosson, Pierre; Soldati, Thierry; Hilbi, Hubert

    2013-01-01

    Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an ‘accidental’ human pathogen and cause a severe pneumonia known as Legionnaires’ disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoeba castellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target. PMID:24058631

  20. Exploring anti-bacterial compounds against intracellular Legionella.

    Directory of Open Access Journals (Sweden)

    Christopher F Harrison

    Full Text Available Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an 'accidental' human pathogen and cause a severe pneumonia known as Legionnaires' disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoebacastellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target.

  1. Legume bioactive compounds: influence of rhizobial inoculation

    Directory of Open Access Journals (Sweden)

    Luis R. Silva

    2017-04-01

    Full Text Available Legumes consumption has been recognized as beneficial for human health, due to their content in proteins, fiber, minerals and vitamins, and their cultivation as beneficial for sustainable agriculture due to their ability to fix atmospheric nitrogen in symbiosis with soil bacteria known as rhizobia. The inoculation with these baceria induces metabolic changes in the plant, from which the more studied to date are the increases in the nitrogen and protein contents, and has been exploited in agriculture to improve the crop yield of several legumes. Nevertheless, legumes also contain several bioactive compounds such as polysaccharides, bioactive peptides, isoflavones and other phenolic compounds, carotenoids, tocopherols and fatty acids, which makes them functional foods included into the nutraceutical products. Therefore, the study of the effect of the rhizobial inoculation in the legume bioactive compounds content is gaining interest in the last decade. Several works reported that the inoculation of different genera and species of rhizobia in several grain legumes, such as soybean, cowpea, chickpea, faba bean or peanut, produced increases in the antioxidant potential and in the content of some bioactive compounds, such as phenolics, flavonoids, organic acids, proteins and fatty acids. Therefore, the rhizobial inoculation is a good tool to enhance the yield and quality of legumes and further studies on this field will allow us to have plant probiotic bacteria that promote the plant growth of legumes improving their functionality.

  2. From the Test Tube to the Treatment Room: Fundamentals of Boron-containing Compounds and their Relevance to Dermatology.

    Science.gov (United States)

    Del Rosso, James Q; Plattner, Jacob J

    2014-02-01

    The development of new drug classes and novel molecules that are brought to the marketplace has been a formidable challenge, especially for dermatologic drugs. The relative absence of new classes of antimicrobial agents is also readily apparent. Several barriers account for slow drug development, including regulatory changes, added study requirements, commercial pressures to bring drugs to market quickly by developing new generations of established compounds, and the greater potential for failure and higher financial risk when researching new drug classes. In addition, the return on investment is usually much lower with dermatologic drugs as compared to the potential revenue from "blockbuster" drugs for cardiovascular or gastrointestinal disease, hypercholesterolemia, and mood disorders. Nevertheless, some researchers are investigating new therapeutic platforms, one of which is boron-containing compounds. Boron-containing compounds offer a wide variety of potential applications in dermatology due to their unique physical and chemical properties, with several in formal phases of development. Tavaborole, a benzoxaborole compound, has been submitted to the United States Food and Drug Administration for approval for treatment of onychomycosis. This article provides a thorough overview of the history of boron-based compounds in medicine, their scientific rationale, physiochemical and pharmacologic properties, and modes of actions including therapeutic targets. A section dedicated to boron-based compounds in development for treatment of various skin disorders is also included.

  3. Potential Inhibitors for Isocitrate Lyase of Mycobacterium tuberculosis and Non-M. tuberculosis: A Summary

    Directory of Open Access Journals (Sweden)

    Yie-Vern Lee

    2015-01-01

    Full Text Available Isocitrate lyase (ICL is the first enzyme involved in glyoxylate cycle. Many plants and microorganisms are relying on glyoxylate cycle enzymes to survive upon downregulation of tricarboxylic acid cycle (TCA cycle, especially Mycobacterium tuberculosis (MTB. In fact, ICL is a potential drug target for MTB in dormancy. With the urge for new antitubercular drug to overcome tuberculosis treat such as multidrug resistant strain and HIV-coinfection, the pace of drug discovery has to be increased. There are many approaches to discovering potential inhibitor for MTB ICL and we hereby review the updated list of them. The potential inhibitors can be either a natural compound or synthetic compound. Moreover, these compounds are not necessary to be discovered only from MTB ICL, as it can also be discovered by a non-MTB ICL. Our review is categorized into four sections, namely, (a MTB ICL with natural compounds; (b MTB ICL with synthetic compounds; (c non-MTB ICL with natural compounds; and (d non-MTB ICL with synthetic compounds. Each of the approaches is capable of overcoming different challenges of inhibitor discovery. We hope that this paper will benefit the discovery of better inhibitor for ICL.

  4. In-situ Characterization and Mapping of Iron Compounds in Alzheimer's Tissue

    International Nuclear Information System (INIS)

    Collingwood, J.F.; Mikhaylova, A.; Davidson, M.; Batich, C.; Streit, W.J.; Terry, J.; Dobson, J.

    2005-01-01

    There is a well-established link between iron overload in the brain and pathology associated with neurodegeneration in a variety of disorders such as Alzheimer's (AD), Parkinson's (PD) and Huntington's (HD) diseases. This association was first discovered in AD by Goodman in 1953, where, in addition to abnormally high concentrations of iron in autopsy brain tissue, iron has also been shown to accumulate at sites of brain pathology such as senile plaques. However, since this discovery, progress in understanding the origin, role and nature of iron compounds associated with neurodegeneration has been slow. Here we report, for the first time, the location and characterization of iron compounds in human AD brain tissue sections. Iron fluorescence was mapped over a frontal-lobe tissue section from an Alzheimer's patient, and anomalous iron concentrations were identified using synchrotron X-ray absorption techniques at 5 (micro)m spatial resolution. Concentrations of ferritin and magnetite, a magnetic iron oxide potentially indicating disrupted brain-iron metabolism, were evident. These results demonstrate a practical means of correlating iron compounds and disease pathology in-situ and have clear implications for disease pathogenesis and potential therapies.

  5. Bark as potential source of chemical substances for industry: analysis of content of selected phenolic compounds

    Czech Academy of Sciences Publication Activity Database

    Maršík, Petr; Kotyza, Jan; Rezek, Jan; Vaněk, Tomáš

    -, č. 1 (2013), s. 4-9 ISSN 1804-0195 R&D Projects: GA MŠk(CZ) OC10026 Institutional research plan: CEZ:AV0Z50380511 Keywords : bark * extraction * phenolic compounds Subject RIV: EI - Biotechnology ; Bionics http://www. waste forum.cz/cisla/WF_1_2013.pdf#page=4

  6. Release of organic nitrogen compounds from Kerogen via catalytic hydropyrolysis

    Directory of Open Access Journals (Sweden)

    Bennett B

    2000-12-01

    Full Text Available High hydrogen pressure pyrolysis (hydropyrolysis was performed on samples of solvent extracted Kimmeridge Clay Formation source rock with a maturity equivalent to ca. 0.35% vitrinite reflectance. We describe the types and distributions of organic nitrogen compounds in the pyrolysis products (hydropyrolysates using GC-MS. Compounds identified included alkyl-substituted indoles, carbazoles, benzocarbazoles, quinolines and benzoquinolines. The distributions of the isomers of methylcarbazoles, C2-alkylcarbazoles and benzocarbazoles in the hydropyrolysates were compared to a typical North Sea oil. The hydropyrolysates compared to the North Sea oil, showed increased contributions from alkylcarbazole isomers where the nitrogen group is "exposed" (no alkyl substituents adjacent to the nitrogen functionality and appreciable levels of benzo[b]carbazole relative to benzo[a]- and benzo[c]carbazoles. Hydropyrolysis is found to be an ideal technique for liberating appreciable quantities of heterocyclic organic nitrogen compounds from geomacromolecules. The products released from the immature Kimmeridge Clay are thought to represent a potential source of nitrogen compounds in the bound phase (kerogen able to contribute to the free bitumen phase during catagenesis.

  7. Synergistic and alkaline stability studies of mixtures of simulated high level waste sludge with selected energetic compounds

    International Nuclear Information System (INIS)

    Fondeur, F.F.

    2000-01-01

    This study examined the stability of mercury oxalate and mercury fulminate in alkaline sludge simulating Savannah River Site waste. These compounds represent two classes of energetic compounds previously speculated as potential components in sludge stored without a supernatant liquid

  8. Depletion of compounds from thin oil films in seawater

    International Nuclear Information System (INIS)

    Brakstad, O.G.; Faksness, L.G.; Melbye, A.G.

    2002-01-01

    When oil is spilled on water, the oil compounds distribute between droplets and water-soluble phases in the water column. Some small organic acids, phenols, BTEX, and aromatic compounds will dissolve completely, but larger polycyclic aromatic hydrocarbons (PAH) and alkanes will remain in the droplet fraction. The biodegradation of droplets occurs at the oil-water interface. A method for immobilizing the oil films onto hydrophobic surfaces was developed in order to obtain a stable oil surface during the biodegradation period. A test system was also established to determine the depletion of oil compounds from the oil phase, including both abiotic and biotic processes. Three North Sea oils were used in the study. Two were paraffinic oils rich in n-alkanes and aromatic compounds, and one was asphalthenic which was richer in branched alkanes and PAH. The biodegradation period was 2 months at 13 degrees C. Samples from the water and thin film on the fabric was analyzed for carbon 10 and carbon 36 by gas chromatography-flame ionization detection. Semi-volatile organic compounds were analyzed using gas chromatography-mass spectrometry. Results indicated that the depletion process for alkanes was completely caused by biodegradation, while aromatic compounds were depleted by abiotic dissolution as well as by biodegradation. The system has potential for determining oil depletion processes under controlled surface-to-volume conditions, such as thin oil films and dispersed oil droplets. In addition, the system can be used to determine the depletion process in flow-through systems. 13 refs., 3 tabs., 9 figs

  9. Selenium-75-labelled foliate compounds

    International Nuclear Information System (INIS)

    1974-01-01

    A saturation method to analyze a foliate is presented; it uses competitive reaction of the compound to be measured and of a radioactive-labelled version of this compound with a reagent specific to this compound present in insufficient quantity to combine with the whole of the compound and its labelled version, separation of the bound compound from its non-bound homologue and measurement of the radioactivity concentration in the bound compound, the non-bound compound or both. The radioactive isotope used in the labelled foliate is selenium 75 [fr

  10. Levels of endocrine disrupting compounds in South China Sea.

    Science.gov (United States)

    Zhang, Li-Peng; Wang, Xin-Hong; Ya, Miao-Lei; Wu, Yu-Ling; Li, Yong-Yu; Zhang, Zu-lin

    2014-08-30

    The occurrence of estrogens in the aquatic environment has become a major concern worldwide because of their strong endocrine disrupting potency. In this study, concentrations of four estrogenic compounds, estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), estriol (E3) were determined with liquid chromatography-tandem mass spectrometry analyses in surface water from South China Sea, and distributions and potential risks of their estrogenic activity were assessed. The estrogenic compounds E1, E2 and E3 were detected in most of the samples, with their concentrations up to 11.16, 3.71 and 21.63 ng L(-1). However, EE2 was only detected in 3 samples. Causality analysis, EEQ values from chemical analysis identified E2 as the main responsible compounds. Based on the EEQ values in the surface water, high estrogenic risks were in the coastal water, and low estrogenic risks in the open sea. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Compound words prompt arbitrary semantic associations in conceptual memory

    Directory of Open Access Journals (Sweden)

    Bastien eBoutonnet

    2014-03-01

    Full Text Available Linguistic relativity theory has received empirical support in domains such as colour perception and object categorisation. It is unknown however, whether relations between words idiosyncratic to language impact nonverbal representations and conceptualisations. For instance, would one consider the concepts of horse and sea as related were it not for the existence of the compound seahorse? Here, we investigated such arbitrary conceptual relationships using a non-linguistic picture relatedness task in participants undergoing event-related brain potential recordings. Picture pairs arbitrarily related because of a compound and presented in the compound order elicited N400 amplitudes similar to unrelated pairs. Surprisingly, however, pictures presented in the reverse order (as in the sequence horse – sea reduced N400 amplitudes significantly, demonstrating the existence of a link in memory between these two concepts otherwise unrelated. These results break new ground in the domain of linguistic relativity by revealing predicted semantic associations driven by lexical relations intrinsic to language.

  12. Anti-proliferative, Cytotoxic and NF-ĸB Inhibitory Properties of Spiro(Lactone-Cyclohexanone) Compounds in Human Leukemia.

    Science.gov (United States)

    Bouhenna, Mustapha M; Orlikova, Barbora; Talhi, Oualid; Schram, Ben; Pinto, Diana C G A; Taibi, Nadia; Bachari, Khaldoun; Diederich, Marc; Silva, Artur M S; Mameri, Nabil

    2017-09-01

    NF-ĸB affects most aspects of cellular physiology. Deregulation of NF-ĸB signaling is associated with inflammatory diseases and cancer. In this study, we evaluated the cytotoxic and NF-ĸB inhibition potential of new spiro(lactone-cyclohexanone) compounds in two different human leukemia cell lines (U937 and K562). The anti-proliferative effects of the spiro(lactone-cyclohexanone) compounds on human K562 and U937 cell lines was evaluated by trypan blue staining, as well as their involvement in NF-kB regulation were analyzed by luciferase reporter gene assay, Caspase-3/7 activities were evaluated to analyze apoptosis induction. Both spiro(coumarin-cyclohexanone) 4 and spiro(6- methyllactone-cyclohexanone) 9 down-regulated cancer cell viability and proliferation. Compound 4 inhibited TNF-α-induced NF-ĸB activation in a dose-dependent manner and induced caspase-dependent apoptosis in both leukemia cell lines. Results show that compound 4 and compound 9 have potential as anti-cancer agents. In addition, compound 4 exerted NF-kB inhibition activity in leukemia cancer cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. The polyphasic description of a Desmodesmus spp. isolate with the potential of bioactive compounds production

    Directory of Open Access Journals (Sweden)

    El Semary, NA.

    2011-01-01

    Full Text Available A polyphasic approach was applied to describe a colony-forming Desmodesmus species collected from the Nile River, Maadi area, Helwan district, Egypt. The isolate grows best at moderate temperature and relatively high light intensity. The phenotypic features revealed the presence of both unicellular and colonial forms of the isolate and the latter form was either 2-4 celled. Cells were 4-6 mm ± 0.5 at their widest point and 11-15 mm ± 0.48 in their length with spiny projections that encircled the cells. Cells were heavily-granulated and enclosed within common mucilaginous sheath. Colonial forms were developed through production of daughter cells within mother cell. Molecular analysis using 18S rRNA gene showed some similarity to its nearest relative (Desmodesmus communis whereas the phylogenetic analyses clustered it together with other Desmodesmus spp. and away from Scenedesmus spp. from the database. However, the use of ITS-2 as a phylotaxonomic marker proved to be more resolving and confirmed the generic identity of the isolate as Desmodesmus spp. The fatty acid composition revealed the presence of saturated palmitic fatty acid as the most abundant component followed by monounsaturated palmitoleic acid whereas the polyunsaturated fatty acids were in relatively low abundance. The palmitoleic acid in particular is suggested to be involved in active defense mechanism. The phytochemical screening revealed the presence of alkaloids and saponins and absence of tannins. Fractions of methanolic extracts showed antimicrobial activities against pathogenic bacterial strains including multi-drug resistant ones. This study documents the presence of this strain in the River Nile and highlights its biotechnological potential as a source of bioactive compounds.

  14. Developmental impairment of compound action potential in the optic nerve of myelin mutant taiep rats.

    Science.gov (United States)

    Roncagliolo, Manuel; Schlageter, Carol; León, Claudia; Couve, Eduardo; Bonansco, Christian; Eguibar, José R

    2006-01-05

    The taiep rat is a myelin mutant with an initial hypomyelination, followed by a progressive demyelination of the CNS. The neurological correlates start with tremor, followed by ataxia, immobility episodes, epilepsy and paralysis. The optic nerve, an easily-isolable central tract fully myelinated by oligodendrocytes, is a suitable preparation to evaluate the developmental impairment of central myelin. We examined the ontogenic development of optic nerve compound action potentials (CAP) throughout the first 6 months of life of control and taiep rats. Control optic nerves (ON) develop CAPs characterized by three waves. Along the first month, the CAPs of taiep rats showed a delayed maturation, with lower amplitudes and longer latencies than controls; at P30, the conduction velocity has only a third of the normal value. Later, as demyelination proceeds, the conduction velocity of taiep ONs begins to decrease and CAPs undergo a gradual temporal dispersion. CAPs of control and taiep showed differences in their pharmacological sensitivity to TEA and 4-AP, two voltage dependent K+ channel-blockers. As compared with TEA, 4-AP induced a significant increase of the amplitudes and a remarkable broadening of CAPs. After P20, unlike controls, the greater sensitivity to 4-AP exhibited by taiep ONs correlates with the detachment and retraction of paranodal loops suggesting that potassium conductances could regulate the excitability as demyelination of CNS axons progresses. It is concluded that the taiep rat, a long-lived mutant, provides a useful model to study the consequences of partial demyelination and the mechanisms by which glial cells regulate the molecular organization and excitability of axonal membranes during development and disease.

  15. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating.

    Science.gov (United States)

    Eglinton, T I; Aluwihare, L I; Bauer, J E; Druffel, E R; McNichol, A P

    1996-03-01

    This paper describes the application of a novel, practical approach for isolation of individual compounds from complex organic matrices for natural abundance radiocarbon measurement. This is achieved through the use of automated preparative capillary gas chromatography (PCGC) to separate and recover sufficient quantities of individual target compounds for (14)C analysis by accelerator mass spectrometry (AMS). We developed and tested this approach using a suite of samples (plant lipids, petroleums) whose ages spanned the (14)C time scale and which contained a variety of compound types (fatty acids, sterols, hydrocarbons). Comparison of individual compound and bulk radiocarbon signatures for the isotopically homogeneous samples studied revealed that Δ(14)C values generally agreed well (±10%). Background contamination was assessed at each stage of the isolation procedure, and incomplete solvent removal prior to combustion was the only significant source of additional carbon. Isotope fractionation was addressed through compound-specific stable carbon isotopic analyses. Fractionation of isotopes during isolation of individual compounds was minimal (radiocarbon measurements. The addition of carbon accompanying derivatization of functionalized compounds (e.g., fatty acids and sterols) prior to chromatographic separation represents a further source of potential error. This contribution can be removed using a simple isotopic mass balance approach. Based on these preliminary results, the PCGC-based approach holds promise for accurately determining (14)C ages on compounds specific to a given source within complex, heterogeneous samples.

  16. Large reversible magnetostrictive effect of MnCoSi-based compounds prepared by high-magnetic-field solidification

    Science.gov (United States)

    Hu, Q. B.; Hu, Y.; Zhang, S.; Tang, W.; He, X. J.; Li, Z.; Cao, Q. Q.; Wang, D. H.; Du, Y. W.

    2018-01-01

    The MnCoSi compound is a potential magnetostriction material since the magnetic field can drive a metamagnetic transition from an antiferromagnetic phase to a high magnetization phase in it, which accompanies a large lattice distortion. However, a large driving magnetic field, magnetic hysteresis, and poor mechanical properties seriously hinder its application for magnetostriction. By substituting Fe for Mn and introducing vacancies of the Mn element, textured and dense Mn0.97Fe0.03CoSi and Mn0.88CoSi compounds are prepared through a high-magnetic-field solidification approach. As a result, large room-temperature and reversible magnetostriction effects are observed in these compounds at a low magnetic field. The origin of this large magnetostriction effect and potential applications are discussed.

  17. Antifungal chemical compounds identified using a C. elegans pathogenicity assay.

    Directory of Open Access Journals (Sweden)

    Julia Breger

    2007-02-01

    Full Text Available There is an urgent need for the development of new antifungal agents. A facile in vivo model that evaluates libraries of chemical compounds could solve some of the main obstacles in current antifungal discovery. We show that Candida albicans, as well as other Candida species, are ingested by Caenorhabditis elegans and establish a persistent lethal infection in the C. elegans intestinal track. Importantly, key components of Candida pathogenesis in mammals, such as filament formation, are also involved in nematode killing. We devised a Candida-mediated C. elegans assay that allows high-throughput in vivo screening of chemical libraries for antifungal activities, while synchronously screening against toxic compounds. The assay is performed in liquid media using standard 96-well plate technology and allows the study of C. albicans in non-planktonic form. A screen of 1,266 compounds with known pharmaceutical activities identified 15 (approximately 1.2% that prolonged survival of C. albicans-infected nematodes and inhibited in vivo filamentation of C. albicans. Two compounds identified in the screen, caffeic acid phenethyl ester, a major active component of honeybee propolis, and the fluoroquinolone agent enoxacin exhibited antifungal activity in a murine model of candidiasis. The whole-animal C. elegans assay may help to study the molecular basis of C. albicans pathogenesis and identify antifungal compounds that most likely would not be identified by in vitro screens that target fungal growth. Compounds identified in the screen that affect the virulence of Candida in vivo can potentially be used as "probe compounds" and may have antifungal activity against other fungi.

  18. Potential role of non-antibiotics (helper compounds) in the treatment of multidrug-resistant Gram-negative infections

    DEFF Research Database (Denmark)

    Martins, Marta; Dastidar, Sujata G; Fanning, Seamus

    2008-01-01

    that have been shown to be efflux pump inhibitors (EPIs) and which, if used as 'helper compounds' in combination with antibiotics to which the organism is initially resistant, may produce the required cure. Although not all of the EPIs may serve a helper role owing to their toxicity, they may nevertheless...

  19. Fast fission phenomenon, deep inelastic reactions and compound nucleus formation described within a dynamical macroscopic model

    International Nuclear Information System (INIS)

    Gregoire, C.; Ngo, C.; Remaud, B.

    1982-01-01

    We present a dynamical model to describe dissipative heavy ion reactions. It treats explicitly the relative motion of the two ions, the mass asymmetry of the system and the projection of the isospin of each ion. The deformations, which are induced during the collision, are simulated with a time-dependent interaction potential. This is done by a time-dependent transition between a sudden interaction potential in the entrance channel and an adiabatic potential in the exit channel. The model allows us to compute the compound-nucleus cross section and multidifferential cross-sections for deep inelastic reactions. In addition, for some systems, and under certain conditions which are discussed in detail, a new dissipative heavy ion collision appears: fast-fission phenomenon which has intermediate properties between deep inelastic and compound nucleus reactions. The calculated properties concerning fast fission are compared with experimental results and reproduce some of those which could not be understood as belonging to deep inelastic or compound-nucleus reactions. (orig.)

  20. Anticancer and cytotoxic compounds from seashells of the Persian Gulf

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2009-12-01

    Full Text Available Background: Pre-clinical studies for isolation and purification of marine compounds continued at an active pace since the last decade. Today, more than 60% of the anticancer drugs commercially available are of naturally origin thus the sea is a very favorable bed for the discovery of novel anticancer agents. Methods: A total of known 611 seashells species in the Persian Gulf were investigated for synonymy in OBIS database. Then, all the species, including their synonymy were searched in PubMed databse to find their isolated bioactive agents. Results: From 611 known seashells in the Persian Gulf, 172 genera/species had bioactive compounds. Anticancer agents were isolated and purified for 8 genera. These compounds had various structures they were polypeptide, polysaccharide, glycoprotein, alkaloid, cerebroside, and cembranoid which had different mechanism of actions including induction of apoptosis, destroying the skeletal structures of the cells, immune bioactivity and inhibition of topoisomerase I. Spisulosine is the only anticancer agent which is currently under clinical trial. Conclusions: Although, the known seashells from the Persian Gulf have potential anticancer and cytotoxic compounds but a very few investigations had been reported. Further investigations for isolation and purification on bioactive compounds from seashells of the Persian Gulf is recommended.

  1. All-Fullerene-Based Cells for Nonaqueous Redox Flow Batteries.

    Science.gov (United States)

    Friedl, Jochen; Lebedeva, Maria A; Porfyrakis, Kyriakos; Stimming, Ulrich; Chamberlain, Thomas W

    2018-01-10

    Redox flow batteries have the potential to revolutionize our use of intermittent sustainable energy sources such as solar and wind power by storing the energy in liquid electrolytes. Our concept study utilizes a novel electrolyte system, exploiting derivatized fullerenes as both anolyte and catholyte species in a series of battery cells, including a symmetric, single species system which alleviates the common problem of membrane crossover. The prototype multielectron system, utilizing molecular based charge carriers, made from inexpensive, abundant, and sustainable materials, principally, C and Fe, demonstrates remarkable current and energy densities and promising long-term cycling stability.

  2. Pineapple peel wastes as a potential source of antioxidant compounds

    Science.gov (United States)

    Saraswaty, V.; Risdian, C.; Primadona, I.; Andriyani, R.; Andayani, D. G. S.; Mozef, T.

    2017-03-01

    Indonesia is a large pineapple (Ananas comosus) producing country. Food industries in Indonesia processed this fruit for new products and further resulted wastes of which cause an environmental problems. Approximately, one pineapple fruit total weight is 400 gr of which 60 g is of peel wastes. In order to reduce such pineapple peel wastes (PPW), processing to a valuable product using an environmentally friendly technique is indispensable. PPW contained phenolic compound, ferulic acid, and vitamin A and C as antioxidant. This study aimed to PPW using ethanol and water as well as to analyze its chemical properties. Both dried and fresh PPW were extracted using mixtures of ethanol and water with various concentrations ranging from 15 to 95% (v/v) at room temperature for 24 h. The chemical properties, such as antioxidant activity, total phenolic content (Gallic acid equivalent/GAE), and total sugar content were determined. The results showed that the range of Inhibition Concentration (IC)50 value as antioxidant activity of extracts from dried and fresh PPW were in the range of 0.8±0.05 to 1.3±0.09 mg.mL-1 and 0.25±0.01 to 0.59±0.01 mg.mL-1, respectively, with the highest antioxidant activity was in water extract. The highest of total phenolic content of 0.9 mg.g-1 GAE, was also found in water extract.

  3. Screening plant derived dietary phenolic compounds for bioactivity related to cardiovascular disease.

    Science.gov (United States)

    Croft, Kevin D; Yamashita, Yoko; O'Donoghue, Helen; Shirasaya, Daishi; Ward, Natalie C; Ashida, Hitoshi

    2018-04-01

    The potential health benefits of phenolic acids found in food and beverages has been suggested from a number of large population studies. However, the mechanism of how these compounds may exert biological effects is less well established. It is also now recognised that many complex polyphenols in the diet are metabolised to simple phenolic acids which can be taken up in the circulation. In this paper a number of selected phenolic compounds have been tested for their bioactivity in two cell culture models. The expression and activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells and the uptake of glucose in muscle cells. Our data indicate that while none of the compounds tested had a significant effect on eNOS expression or activation in endothelial cells, several of the compounds increased glucose uptake in muscle cells. These compounds also enhanced the translocation of the glucose transporter GLUT4 to the plasma membrane, which may explain the observed increase in cellular glucose uptake. These results indicate that simple cell culture models may be useful to help understand the bioactivity of phenolic compounds in relation to cardiovascular protection. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Aerobic biodegradation of organotin compounds in activated sludge batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stasinakis, Athanasios S. [Department of Environmental Studies, Water and Air Quality Laboratory, University of the Aegean, University Hill, Mytilene 81 100 (Greece)]. E-mail: astas@env.aegean.gr; Thomaidis, Nikolaos S. [Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Athens 157 71 (Greece); Nikolaou, Anastasia [Department of Environmental Studies, Water and Air Quality Laboratory, University of the Aegean, University Hill, Mytilene 81 100 (Greece); Kantifes, Andreas [Department of Environmental Studies, Water and Air Quality Laboratory, University of the Aegean, University Hill, Mytilene 81 100 (Greece)

    2005-04-01

    The biodegradation behavior of four organotin (OT) compounds, namely tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT) and triphenyltin (TPhT), was studied in lab-scale activated sludge batch reactors. The activated sludge was spiked with the OT compounds at a level of 100 {mu}g l{sup -1} as Sn. Determination of the OT compounds by GC-FPD after ethylation in the dissolved and particulate phase revealed that 24 h after the start of the experiments, almost the total of OT compounds has been removed from the dissolved phase and is associated with the suspended solids. Calculation of mass balance in batch reactors showed that OT compounds biodegradation was performed via a sequential dealkylation process. Removals due to biodegradation were differentiated according to the parent compound. In experiments with non-acclimatized biomass, a percentage of 27.1, 8.3, 73.8 and 51.3 was still present as TBT, DBT, MBT and TPhT, respectively, at the end of the experiment (18th day). Half-lives (t{sub 1/2}) of 10.2 and 5.1 days were calculated for TBT and DBT, respectively, whereas apparent t{sub 1/2} values could not be determined for MBT and TPhT (t{sub 1/2} > 18 days). The capacity of activated sludge to biodegrade OT compounds in the absence of supplemental substrate indicated that these compounds can be metabolized as single sources of carbon and energy in activated sludge systems. Excluding TBT, the presence of low concentrations of supplemental substrate did not affect the biodegradation potential of activated sludge. The acclimatization of biomass on OT compounds enhanced significantly biodegradation, resulting in significant decreases of half-lives of OT compounds. As a result in the presence of acclimatized biomass, half-lives of 1.4, 3.6, 9.8 and 5.0 days were calculated for TBT, DBT, MBT and TPhT, respectively. - The fate of organotins is assessed in activated sludge systems.

  5. Aerobic biodegradation of organotin compounds in activated sludge batch reactors

    International Nuclear Information System (INIS)

    Stasinakis, Athanasios S.; Thomaidis, Nikolaos S.; Nikolaou, Anastasia; Kantifes, Andreas

    2005-01-01

    The biodegradation behavior of four organotin (OT) compounds, namely tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT) and triphenyltin (TPhT), was studied in lab-scale activated sludge batch reactors. The activated sludge was spiked with the OT compounds at a level of 100 μg l -1 as Sn. Determination of the OT compounds by GC-FPD after ethylation in the dissolved and particulate phase revealed that 24 h after the start of the experiments, almost the total of OT compounds has been removed from the dissolved phase and is associated with the suspended solids. Calculation of mass balance in batch reactors showed that OT compounds biodegradation was performed via a sequential dealkylation process. Removals due to biodegradation were differentiated according to the parent compound. In experiments with non-acclimatized biomass, a percentage of 27.1, 8.3, 73.8 and 51.3 was still present as TBT, DBT, MBT and TPhT, respectively, at the end of the experiment (18th day). Half-lives (t 1/2 ) of 10.2 and 5.1 days were calculated for TBT and DBT, respectively, whereas apparent t 1/2 values could not be determined for MBT and TPhT (t 1/2 > 18 days). The capacity of activated sludge to biodegrade OT compounds in the absence of supplemental substrate indicated that these compounds can be metabolized as single sources of carbon and energy in activated sludge systems. Excluding TBT, the presence of low concentrations of supplemental substrate did not affect the biodegradation potential of activated sludge. The acclimatization of biomass on OT compounds enhanced significantly biodegradation, resulting in significant decreases of half-lives of OT compounds. As a result in the presence of acclimatized biomass, half-lives of 1.4, 3.6, 9.8 and 5.0 days were calculated for TBT, DBT, MBT and TPhT, respectively. - The fate of organotins is assessed in activated sludge systems

  6. Rubber compounding and processing

    CSIR Research Space (South Africa)

    John, MJ

    2014-06-01

    Full Text Available This chapter presents an overview on the compounding and processing techniques of natural rubber compounds. The introductory portion deals with different types of rubbers and principles of rubber compounding. The primary and secondary fillers used...

  7. Diversity, nutritional composition and medicinal potential of Indian ...

    African Journals Online (AJOL)

    The present review aims to update the current status of mushrooms diversity in India with their nutritional and medicinal potential as well as ethnomedicinal uses for different future prospects in pharmaceutical application. Keywords: Mushroom diversity, nutritional value, therapeutic potential, bioactive compound

  8. Multi-angle compound imaging

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Sillesen, Henrik

    1998-01-01

    This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared to conve......This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared...... to conventional B-mode imaging MACI offers better defined tissue boundaries and lower variance of the speckle pattern, resulting in an image with reduced random variations. Design and implementation of a compound imaging system is described, images of rubber tubes and porcine aorta are shown and effects...... on visualization are discussed. The speckle reduction is analyzed numerically and the results are found to be in excellent agreement with existing theory. An investigation of detectability of low-contrast lesions shows significant improvements compared to conventional imaging. Finally, possibilities for improving...

  9. Acute liver failure following recreational use of psychotropic "head shop" compounds.

    Science.gov (United States)

    Fröhlich, S; Lambe, E; O'Dea, J

    2011-03-01

    The recreational use of the so-called "legal-highs" has been in both the medical and political arena over the last year as a result of the appearance of "head shops" in many towns in Ireland. These shops specialized in selling new psychotropic compounds that circumvented established drug legislation. Little is known about the potentially harmful effects of these substances but case reports suggest a plethora of harmful psychological and physical effects. Our case describes for the first time acute liver failure associated with the ingestion of two of these amphetamine type compounds.

  10. Compositions of volatile organic compounds emitted from melted virgin and waste plastic pellets.

    Science.gov (United States)

    Yamashita, Kyoko; Yamamoto, Naomichi; Mizukoshi, Atsushi; Noguchi, Miyuki; Ni, Yueyong; Yanagisawa, Yukio

    2009-03-01

    To characterize potential air pollution issues related to recycling facilities of waste plastics, volatile organic compounds (VOCs) emitted from melted virgin and waste plastics pellets were analyzed. In this study, laboratory experiments were performed to melt virgin and waste plastic pellets under various temperatures (150, 200, and 250 degrees C) and atmospheres (air and nitrogen [N2]). In the study presented here, low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS) and the recycled waste plastic pellets were used. The VOCs generated from each plastic pellets were collected by Tenax/Carboxen adsorbent tubes and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). The result showed the higher temperatures generated larger amounts of total VOCs (TVOCs). The VOCs emitted from the virgin plastic pellets likely originated from polymer degradation. Smaller TVOC emissions were observed in N2 atmosphere than in air atmosphere. In particular, larger amounts of the oxygenated compounds, which are generally hazardous and malodorous, were detected in air than in N2. In addition to the compounds originating from polymer degradation, the compounds originating from the plastic additives were also detected from LDPE and PS. Furthermore, various species of VOCs likely originating from contaminant inseparate polyvinyl chloride (PVC), food residues, cleaning agents, degreasers, and so on were detected from the waste plastic. Thus, melting waste plastics, as is conducted in recycling facilities, might generate larger amounts of potentially toxic compounds than producing virgin plastics.

  11. Chemical compounds from anthropogenic environment and immune evasion mechanisms: potential interactions

    Science.gov (United States)

    Kravchenko, Julia; Corsini, Emanuela; Williams, Marc A.; Decker, William; Manjili, Masoud H.; Otsuki, Takemi; Singh, Neetu; Al-Mulla, Faha; Al-Temaimi, Rabeah; Amedei, Amedeo; Colacci, Anna Maria; Vaccari, Monica; Mondello, Chiara; Scovassi, A. Ivana; Raju, Jayadev; Hamid, Roslida A.; Memeo, Lorenzo; Forte, Stefano; Roy, Rabindra; Woodrick, Jordan; Salem, Hosni K.; Ryan, Elizabeth P.; Brown, Dustin G.; Lowe, Leroy; Lyerly, H.Kim

    2015-01-01

    An increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple chemicals target the same gene(s) or pathway(s), is a challenge. We reviewed common environmental chemicals and discussed their potential effects on immunosurveillance. Our overarching objective was to review related signaling pathways influencing immune surveillance such as the pathways involving PI3K/Akt, chemokines, TGF-β, FAK, IGF-1, HIF-1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1 could individually or collectively impact immunosurveillance. A number of chemicals that are common in the anthropogenic environment such as fungicides (maneb, fluoxastrobin and pyroclostrobin), herbicides (atrazine), insecticides (pyridaben and azamethiphos), the components of personal care products (triclosan and bisphenol A) and diethylhexylphthalate with pathways critical to tumor immunosurveillance. At this time, these chemicals are not recognized as human carcinogens; however, it is known that they these chemicalscan simultaneously persist in the environment and appear to have some potential interfere with the host immune response, therefore potentially contributing to promotion interacting with of immune evasion mechanisms, and promoting subsequent tumor growth and progression. PMID:26002081

  12. The study of new complex compounds of Ni (II) and Co (II) with N- hydroxy-succinimide and their potential applications as sensors

    Science.gov (United States)

    Sibiescu, Doina; Tutulea, Mihaela-Dana; Mîţă, Carmen; Stan, Corneliu; Roţca, Ioan; Vizitiu, Mihaela

    2010-11-01

    In this paper, the study of obtaining new coordination compounds of Ni (II) and Co(II) using as ligand, N-hydroxy-succinimide, was presented. Also, the stability constants of these compounds in aqueous medium were determined. The obtaining conditions and the stability of the new compounds were accomplished in aqueous solutions using characteristic methods for coordination compounds: pH-metry, conductometry and UV-VIS absorption spectroscopy. The combination ratios and the stability constants were determined with methods characteristic for studies in solutions. From experimental data resulted that the combination ratio of central metallic atoms with the ligand N-hydroxy-succinimide was: 1:1 and respectively 1:2. In the experiments were used salts of NiCl2.6H2O and CoCl2.6H2O. The optimal domain of pH stability of the studied compounds is limited between 5.74 - 5.86 for Co- N-hydroxy-succinimide (for molar ratio 1:1 and 1:2) and respectively 5.69 - 5.87 for Ni-N-hydroxysuccinimide( for molar ratio 1:1 and 1:2, too). It is important to mention that these compounds were used with very good results in determination of wastewaters from textile, metallurgical, chemical and food industry. Complexion reactions with this ligand are very sensitive for the cations in this paper mentioned. Therefore it is used most often with success in analytical chemistry and also it is posibil to use as sensors. The new complex compounds has electronics transitions at λ = 517 nm for both complexes Co-N-hydroxy-succinimide at molar ratio 1:1 and 1:2 and also at the same λ = 397nm for Ni-N-hydroxysuccinimide at molar ratio 1:1 and 1:2. These complexes compounds was separated and recrystallized from aqueous solution. From the spectrophotometric data it was determined the type and the nature of the electronics transitions by Dq parameters.

  13. Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs.

    Science.gov (United States)

    Lin, Chun-Yuan; Wang, Chung-Hung; Hung, Che-Lun; Lin, Yu-Shiang

    2015-01-01

    Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n (2)), where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC). The intrinsic time complexity of MCC problem is O(k (2) n (2)) with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results.

  14. In vitro and in vivo evaluation of potential aluminum chelators.

    Science.gov (United States)

    Graff, L; Muller, G; Burnel, D

    1995-10-01

    The potential for aluminium (Al) chelation by different compounds was determined using 2 in vitro techniques. The formation of stable complexes with Al in an aqueous solution was evaluated using pulse polarography. This technique allowed the influence of temperature and calcium (Ca) to be studied for each compound. Certain compounds (EDDHA, HAES, citric acid and HBED) showed great chelation in the absence of Ca2+ at a temperature of 37 +/- 1 C. An ultrafiltration technique combined with Al determination by atomic emission spectroscopy allowed the efficiency of different substances to complex Al that were previously bound to serum proteins to be estimated. The kinetics of chelation and minimum efficient concentration have been determined for all products studied. EDDHA had chelation potential similar to DFO. The real efficacies of the compounds were studied in vivo to compare the effectiveness of repeated administrations of the best chelating agents (EDDHA, DFO, HAES and tartaric acid) on the distribution and excretion of Al after repeated i.p. administrations to rats. Intraperitoneal EDDHA significantly increased urinary metal (Al, Ca, Cu, Fe and Zn) excretion. These excretions may be correlated to a renal toxic potential property.

  15. Image-based compound profiling reveals a dual inhibitor of tyrosine kinase and microtubule polymerization.

    Science.gov (United States)

    Tanabe, Kenji

    2016-04-27

    Small-molecule compounds are widely used as biological research tools and therapeutic drugs. Therefore, uncovering novel targets of these compounds should provide insights that are valuable in both basic and clinical studies. I developed a method for image-based compound profiling by quantitating the effects of compounds on signal transduction and vesicle trafficking of epidermal growth factor receptor (EGFR). Using six signal transduction molecules and two markers of vesicle trafficking, 570 image features were obtained and subjected to multivariate analysis. Fourteen compounds that affected EGFR or its pathways were classified into four clusters, based on their phenotypic features. Surprisingly, one EGFR inhibitor (CAS 879127-07-8) was classified into the same cluster as nocodazole, a microtubule depolymerizer. In fact, this compound directly depolymerized microtubules. These results indicate that CAS 879127-07-8 could be used as a chemical probe to investigate both the EGFR pathway and microtubule dynamics. The image-based multivariate analysis developed herein has potential as a powerful tool for discovering unexpected drug properties.

  16. Mathematical modeling of the mixing zone for getting bimetallic compound

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Stanislav L. [Institute of Applied Mechanics, Ural Branch, Izhevsk (Russian Federation)

    2011-07-01

    A mathematical model of the formation of atomic bonds in metals and alloys, based on the electrostatic interaction between the outer electron shells of atoms of chemical elements. Key words: mathematical model, the interatomic bonds, the electron shell of atoms, the potential, the electron density, bimetallic compound.

  17. Formation of Haloacetonitriles, Haloacetamides, and Nitrogenous Heterocyclic Byproducts by Chloramination of Phenolic Compounds.

    Science.gov (United States)

    Nihemaiti, Maolida; Le Roux, Julien; Hoppe-Jones, Christiane; Reckhow, David A; Croué, Jean-Philippe

    2017-01-03

    The potential formation of nitrogenous disinfection byproducts (N-DBPs) was investigated from the chloramination of nitrogenous and non-nitrogenous aromatic compounds. All molecules led to the formation of known N-DBPs (e.g., dichloroacetonitrile, dichloroacetamide) with various production yields. Resorcinol, a major precursor of chloroform, also formed di/trichloroacetonitrile, di/trichloroacetamide, and haloacetic acids, indicating that it is a precursor of both N-DBPs and carbonaceous DBPs (C-DBPs) upon chloramination. More detailed experiments were conducted on resorcinol to understand N-DBPs formation mechanisms and to identify reaction intermediates. Based on the accurate mass from high resolution Quadrupole Time-of-Flight GC-MS (GC-QTOF) and fragmentation patterns from electronic impact and positive chemical ionization modes, several products were tentatively identified as nitrogenous heterocyclic compounds (e.g., 3-chloro-5-hydroxy-1H-pyrrole-2-one with dichloromethyl group, 3-chloro-2,5-pyrroledione). These products were structurally similar to the heterocyclic compounds formed during chlorination, such as the highly mutagenic MX (3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone) or halogenated pyrroles. To our knowledge, this is the first time that the formation of halogenated nitrogenous heterocyclic compounds is reported from chloramination process. The formation of these nitrogenous byproducts during chloramination might be of concern considering their potential toxicity.

  18. Marijuana Compounds: A Nonconventional Approach to Parkinson’s Disease Therapy

    Directory of Open Access Journals (Sweden)

    Mariana Babayeva

    2016-01-01

    Full Text Available Parkinson’s disease (PD, a neurodegenerative disorder, is the second most common neurological illness in United States. Neurologically, it is characterized by the selective degeneration of a unique population of cells, the nigrostriatal dopamine neurons. The current treatment is symptomatic and mainly involves replacement of dopamine deficiency. This therapy improves only motor symptoms of Parkinson’s disease and is associated with a number of adverse effects including dyskinesia. Therefore, there is unmet need for more comprehensive approach in the management of PD. Cannabis and related compounds have created significant research interest as a promising therapy in neurodegenerative and movement disorders. In this review we examine the potential benefits of medical marijuana and related compounds in the treatment of both motor and nonmotor symptoms as well as in slowing the progression of the disease. The potential for cannabis to enhance the quality of life of Parkinson’s patients is explored.

  19. Solid lipid nanoparticles as oral delivery systems of phenolic compounds: Overcoming pharmacokinetic limitations for nutraceutical applications.

    Science.gov (United States)

    Nunes, Sara; Madureira, Ana Raquel; Campos, Débora; Sarmento, Bruno; Gomes, Ana Maria; Pintado, Manuela; Reis, Flávio

    2017-06-13

    Drug delivery systems, accompanied by nanoparticle technology, have recently emerged as prominent solutions to improve the pharmacokinetic properties, namely bioavailability, of therapeutic and nutraceutical agents. Solid lipid nanoparticles (SLNs) have received much attention from researchers due to their potential to protect or improve drug properties. SLNs have been reported to be an alternative system to traditional carriers, such as emulsions, liposomes, and polymeric nanoparticles. Phenolic compounds are widespread in plant-derived foodstuffs and therefore abundant in our diet. Over the last decades, phenolic compounds have received considerable attention due to several health promoting properties, mostly related to their antioxidant activity, which can have important implications for health. However, most of these compounds have been associated with poor bioavailability being poorly absorbed, rapidly metabolized and eliminated, which compromises its biological and pharmacological benefits. This paper provides a systematic review of the use of SLNs as oral delivery systems of phenolic compounds, in order to overcome pharmacokinetic limitations of these compounds and improved nutraceutical potential. In vitro studies, as well as works describing topical and oral treatments will be revisited and discussed. The classification, synthesis, and clinical application of these nanomaterials will be also considered in this review article.

  20. Phenolic Molding Compounds

    Science.gov (United States)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  1. Fullerenes and endohedrals as “big atoms”

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya., E-mail: amusia@vms.huji.ac.il

    2013-03-12

    Highlights: ► Response of multi-electron atoms to radiation is determined by correlation effects. ► The response of fullerenes and endohedrals is characterized by strong resonances. ► Most important are confinement and Giant endohedral resonances. ► Fullerene is described as a zero-thickness polarizable shell. ► Electron exchange can play a very important role in inner shell ionization. - Abstract: We present the main features of the electronic structure of the heavy atoms that is best of all seen in photoionization. We acknowledge how important was and still is investigation of the interaction between atoms and low- and high frequency lasers with big intensity. We discuss the fullerenes and endohedrals as big atoms concentrating upon their most prominent features revealed in photoionization. Namely, we discuss reflection of photoelectron wave by the static potential that mimics the fullerenes electron shell and modification of the incoming photon beam under the action of the polarizable fullerenes shell. Both effects are clearly reflected in the photoionization cross-section. We discuss the possible features of interaction between laser field of both low and high frequency and high intensity upon fullerenes and endohedrals. We envisage prominent effects of multi-electron ionization and photon emission, including high-energy photons. We emphasize the important role that can be played by electron exchange in these processes.

  2. Fullerenes and endohedrals as “big atoms”

    International Nuclear Information System (INIS)

    Amusia, M.Ya.

    2013-01-01

    Highlights: ► Response of multi-electron atoms to radiation is determined by correlation effects. ► The response of fullerenes and endohedrals is characterized by strong resonances. ► Most important are confinement and Giant endohedral resonances. ► Fullerene is described as a zero-thickness polarizable shell. ► Electron exchange can play a very important role in inner shell ionization. - Abstract: We present the main features of the electronic structure of the heavy atoms that is best of all seen in photoionization. We acknowledge how important was and still is investigation of the interaction between atoms and low- and high frequency lasers with big intensity. We discuss the fullerenes and endohedrals as big atoms concentrating upon their most prominent features revealed in photoionization. Namely, we discuss reflection of photoelectron wave by the static potential that mimics the fullerenes electron shell and modification of the incoming photon beam under the action of the polarizable fullerenes shell. Both effects are clearly reflected in the photoionization cross-section. We discuss the possible features of interaction between laser field of both low and high frequency and high intensity upon fullerenes and endohedrals. We envisage prominent effects of multi-electron ionization and photon emission, including high-energy photons. We emphasize the important role that can be played by electron exchange in these processes

  3. Nomenclature on an inorganic compound

    International Nuclear Information System (INIS)

    1998-10-01

    This book contains eleven chapters : which mention nomenclature of an inorganic compound with introduction and general principle on nomenclature of compound. It gives the description of grammar for nomenclature such as brackets, diagonal line, asterisk, and affix, element, atom and groups of atom, chemical formula, naming by stoichiometry, solid, neutral molecule compound, ion, a substituent, radical and name of salt, oxo acid and anion on introduction and definition of oxo acid, coordination compound like symbol of stereochemistry , boron and hydrogen compound and related compound.

  4. Screening for potential anti-infective agents towards Burkholderia pseudomallei infection

    Science.gov (United States)

    Eng, Su Anne; Nathan, Sheila

    2014-09-01

    The established treatment for melioidosis is antibiotic therapy. However, a constant threat to this form of treatment is resistance development of the causative agent, Burkholderia pseudomallei, towards antibiotics. One option to circumvent this threat of antibiotic resistance is to search for new alternative anti-infectives which target the host innate immune system and/or bacterial virulence. In this study, 29 synthetic compounds were evaluated for their potential to increase the lifespan of an infected host. The nematode Caenorhabditis elegans was adopted as the infection model as its innate immune pathways are homologous to humans. Screens were performed in a liquid-based survival assay containing infected worms exposed to individual compounds and survival of untreated and compound-treated worms were compared. A primary screen identified nine synthetic compounds that extended the lifespan of B. pseudomallei-infected worms. Subsequently, a disc diffusion test was performed on these selected compounds to delineate compounds into those that enhanced the survival of worms via antimicrobial activity i.e. reducing the number of infecting bacteria, or into those that did not target pathogen viability. Out of the nine hits selected, two demonstrated antimicrobial effects on B. pseudomallei. Therefore, the findings from this study suggest that the other seven identified compounds are potential anti-infectives which could protect a host against B. pseudomallei infection without developing the risk of drug resistance.

  5. Continuous extraction of phenolic compounds from pomegranate peel using high voltage electrical discharge.

    Science.gov (United States)

    Xi, Jun; He, Lang; Yan, Liang-Gong

    2017-09-01

    Pomegranate peel, a waste generated from fruit processing industry, is a potential source of phenolic compounds that are known for their anti-oxidative properties. In this study, a continuous high voltage electrical discharge (HVED) extraction system was for the first time designed and optimized for phenolic compounds from pomegranate peel. The optimal conditions for HVED were: flow rate of materials 12mL/min, electrodes gap distance 3.1mm (corresponding to 29kV/cm of electric field intensity) and liquid to solid ratio 35mL/g. Under these conditions, the experimental yield of phenolic compounds was 196.7±6.4mg/g, which closely agreed with the predicted value (199.83mg/g). Compared with the warm water maceration, HVED method possessed higher efficiency for the extraction of phenolic compounds. The results demonstrated that HVED technique could be a very effective method for continuous extraction of natural compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Anti-trypanosomal activities and structural chemical properties of selected compound classes.

    Science.gov (United States)

    Ponte-Sucre, Alicia; Bruhn, Heike; Schirmeister, Tanja; Cecil, Alexander; Albert, Christian R; Buechold, Christian; Tischer, Maximilian; Schlesinger, Susanne; Goebel, Tim; Fuß, Antje; Mathein, Daniela; Merget, Benjamin; Sotriffer, Christoph A; Stich, August; Krohne, Georg; Engstler, Markus; Bringmann, Gerhard; Holzgrabe, Ulrike

    2015-02-01

    Potent compounds do not necessarily make the best drugs in the market. Consequently, with the aim to describe tools that may be fundamental for refining the screening of candidates for animal and preclinical studies and further development, molecules of different structural classes synthesized within the frame of a broad screening platform were evaluated for their trypanocidal activities, cytotoxicities against murine macrophages J774.1 and selectivity indices, as well as for their ligand efficiencies and structural chemical properties. To advance into their modes of action, we also describe the morphological and ultrastructural changes exerted by selected members of each compound class on the parasite Trypanosoma brucei. Our data suggest that the potential organelles targeted are either the flagellar pocket (compound 77, N-Arylpyridinium salt; 15, amino acid derivative with piperazine moieties), the endoplasmic reticulum membrane systems (37, bisquaternary bisnaphthalimide; 77, N-Arylpyridinium salt; 68, piperidine derivative), or mitochondria and kinetoplasts (88, N-Arylpyridinium salt; 68, piperidine derivative). Amino acid derivatives with fumaric acid and piperazine moieties (4, 15) weakly inhibiting cysteine proteases seem to preferentially target acidic compartments. Our results suggest that ligand efficiency indices may be helpful to learn about the relationship between potency and chemical characteristics of the compounds. Interestingly, the correlations found between the physico-chemical parameters of the selected compounds and those of commercial molecules that target specific organelles indicate that our rationale might be helpful to drive compound design toward high activities and acceptable pharmacokinetic properties for all compound families.

  7. A small-molecule compound inhibits a collagen-specific molecular chaperone and could represent a potential remedy for fibrosis.

    Science.gov (United States)

    Ito, Shinya; Ogawa, Koji; Takeuchi, Koh; Takagi, Motoki; Yoshida, Masahito; Hirokawa, Takatsugu; Hirayama, Shoshiro; Shin-Ya, Kazuo; Shimada, Ichio; Doi, Takayuki; Goshima, Naoki; Natsume, Tohru; Nagata, Kazuhiro

    2017-12-08

    Fibrosis can disrupt tissue structure and integrity and impair organ function. Fibrosis is characterized by abnormal collagen accumulation in the extracellular matrix. Pharmacological inhibition of collagen secretion therefore represents a promising strategy for the management of fibrotic disorders, such as liver and lung fibrosis. Hsp47 is an endoplasmic reticulum (ER)-resident collagen-specific molecular chaperone essential for correct folding of procollagen in the ER. Genetic deletion of Hsp47 or inhibition of its interaction with procollagen interferes with procollagen triple helix production, which vastly reduces procollagen secretion from fibroblasts. Thus, Hsp47 could be a potential and promising target for the management of fibrosis. In this study, we screened small-molecule compounds that inhibit the interaction of Hsp47 with collagen from chemical libraries using surface plasmon resonance (BIAcore), and we found a molecule AK778 and its cleavage product Col003 competitively inhibited the interaction and caused the inhibition of collagen secretion by destabilizing the collagen triple helix. Structural information obtained with NMR analysis revealed that Col003 competitively binds to the collagen-binding site on Hsp47. We propose that these structural insights could provide a basis for designing more effective therapeutic drugs for managing fibrosis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Zebrafish embryos as a screen for DNA methylation modifications after compound exposure

    Energy Technology Data Exchange (ETDEWEB)

    Bouwmeester, Manon C.; Ruiter, Sander; Lommelaars, Tobias; Sippel, Josefine; Hodemaekers, Hennie M. [Center for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Brandhof, Evert-Jan van den [Center for Environmental Quality, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Pennings, Jeroen L.A. [Center for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands); Kamstra, Jorke H. [Institute for Environmental Studies (IVM), VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Jelinek, Jaroslav [Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA (United States); Issa, Jean-Pierre J. [Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA (United States); Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Legler, Juliette [Institute for Environmental Studies (IVM), VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Ven, Leo T.M. van der, E-mail: leo.van.der.ven@rivm.nl [Center for Health Protection, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven (Netherlands)

    2016-01-15

    Modified epigenetic programming early in life is proposed to underlie the development of an adverse adult phenotype, known as the Developmental Origins of Health and Disease (DOHaD) concept. Several environmental contaminants have been implicated as modifying factors of the developing epigenome. This underlines the need to investigate this newly recognized toxicological risk and systematically screen for the epigenome modifying potential of compounds. In this study, we examined the applicability of the zebrafish embryo as a screening model for DNA methylation modifications. Embryos were exposed from 0 to 72 h post fertilization (hpf) to bisphenol-A (BPA), diethylstilbestrol, 17α-ethynylestradiol, nickel, cadmium, tributyltin, arsenite, perfluoroctanoic acid, valproic acid, flusilazole, 5-azacytidine (5AC) in subtoxic concentrations. Both global and site-specific methylation was examined. Global methylation was only affected by 5AC. Genome wide locus-specific analysis was performed for BPA exposed embryos using Digital Restriction Enzyme Analysis of Methylation (DREAM), which showed minimal wide scale effects on the genome, whereas potential informative markers were not confirmed by pyrosequencing. Site-specific methylation was examined in the promoter regions of three selected genes vasa, vtg1 and cyp19a2, of which vasa (ddx4) was the most responsive. This analysis distinguished estrogenic compounds from metals by direction and sensitivity of the effect compared to embryotoxicity. In conclusion, the zebrafish embryo is a potential screening tool to examine DNA methylation modifications after xenobiotic exposure. The next step is to examine the adult phenotype of exposed embryos and to analyze molecular mechanisms that potentially link epigenetic effects and altered phenotypes, to support the DOHaD hypothesis. - Highlights: • Compound induced effects on DNA methylation in zebrafish embryos • Global methylation not an informative biomarker • Minimal genome

  9. Zebrafish embryos as a screen for DNA methylation modifications after compound exposure

    International Nuclear Information System (INIS)

    Bouwmeester, Manon C.; Ruiter, Sander; Lommelaars, Tobias; Sippel, Josefine; Hodemaekers, Hennie M.; Brandhof, Evert-Jan van den; Pennings, Jeroen L.A.; Kamstra, Jorke H.; Jelinek, Jaroslav; Issa, Jean-Pierre J.; Legler, Juliette; Ven, Leo T.M. van der

    2016-01-01

    Modified epigenetic programming early in life is proposed to underlie the development of an adverse adult phenotype, known as the Developmental Origins of Health and Disease (DOHaD) concept. Several environmental contaminants have been implicated as modifying factors of the developing epigenome. This underlines the need to investigate this newly recognized toxicological risk and systematically screen for the epigenome modifying potential of compounds. In this study, we examined the applicability of the zebrafish embryo as a screening model for DNA methylation modifications. Embryos were exposed from 0 to 72 h post fertilization (hpf) to bisphenol-A (BPA), diethylstilbestrol, 17α-ethynylestradiol, nickel, cadmium, tributyltin, arsenite, perfluoroctanoic acid, valproic acid, flusilazole, 5-azacytidine (5AC) in subtoxic concentrations. Both global and site-specific methylation was examined. Global methylation was only affected by 5AC. Genome wide locus-specific analysis was performed for BPA exposed embryos using Digital Restriction Enzyme Analysis of Methylation (DREAM), which showed minimal wide scale effects on the genome, whereas potential informative markers were not confirmed by pyrosequencing. Site-specific methylation was examined in the promoter regions of three selected genes vasa, vtg1 and cyp19a2, of which vasa (ddx4) was the most responsive. This analysis distinguished estrogenic compounds from metals by direction and sensitivity of the effect compared to embryotoxicity. In conclusion, the zebrafish embryo is a potential screening tool to examine DNA methylation modifications after xenobiotic exposure. The next step is to examine the adult phenotype of exposed embryos and to analyze molecular mechanisms that potentially link epigenetic effects and altered phenotypes, to support the DOHaD hypothesis. - Highlights: • Compound induced effects on DNA methylation in zebrafish embryos • Global methylation not an informative biomarker • Minimal genome

  10. Modulation of leptin resistance by food compounds.

    Science.gov (United States)

    Aragonès, Gerard; Ardid-Ruiz, Andrea; Ibars, Maria; Suárez, Manuel; Bladé, Cinta

    2016-08-01

    Leptin is mainly secreted by white adipose tissue and regulates energy homeostasis by inhibiting food intake and stimulating energy expenditure through its action in neuronal circuits in the brain, particularly in the hypothalamus. However, hyperleptinemia coexists with the loss of responsiveness to leptin in common obese conditions. This phenomenon has been defined as leptin resistance and the restoration of leptin sensitivity is considered to be a useful strategy to treat obesity. This review summarizes the existing literature on potentially valuable nutrients and food components to reverse leptin resistance. Notably, several food compounds, such as teasaponins, resveratrol, celastrol, caffeine, and taurine among others, are able to restore the leptin signaling in neurons by overexpressing anorexigenic peptides (proopiomelanocortin) and/or repressing orexigenic peptides (neuropeptide Y/agouti-related peptide), thus decreasing food intake. Additionally, some nutrients, such as vitamins A and D, can improve leptin transport through the blood-brain barrier. Therefore, food components can improve leptin resistance by acting at different levels of the leptin pathway; moreover, some compounds are able to target more than one feature of leptin resistance. However, systematic studies are necessary to define the actual effectiveness of each compound. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Chemical compounds from anthropogenic environment and immune evasion mechanisms: potential interactions.

    Science.gov (United States)

    Kravchenko, Julia; Corsini, Emanuela; Williams, Marc A; Decker, William; Manjili, Masoud H; Otsuki, Takemi; Singh, Neetu; Al-Mulla, Faha; Al-Temaimi, Rabeah; Amedei, Amedeo; Colacci, Anna Maria; Vaccari, Monica; Mondello, Chiara; Scovassi, A Ivana; Raju, Jayadev; Hamid, Roslida A; Memeo, Lorenzo; Forte, Stefano; Roy, Rabindra; Woodrick, Jordan; Salem, Hosni K; Ryan, Elizabeth P; Brown, Dustin G; Bisson, William H; Lowe, Leroy; Lyerly, H Kim

    2015-06-01

    An increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple chemicals target the same gene(s) or pathway(s), is a challenge. We reviewed common environmental chemicals and discussed their potential effects on immunosurveillance. Our overarching objective was to review related signaling pathways influencing immune surveillance such as the pathways involving PI3K/Akt, chemokines, TGF-β, FAK, IGF-1, HIF-1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1 could individually or collectively impact immunosurveillance. A number of chemicals that are common in the anthropogenic environment such as fungicides (maneb, fluoxastrobin and pyroclostrobin), herbicides (atrazine), insecticides (pyridaben and azamethiphos), the components of personal care products (triclosan and bisphenol A) and diethylhexylphthalate with pathways critical to tumor immunosurveillance. At this time, these chemicals are not recognized as human carcinogens; however, it is known that they these chemicalscan simultaneously persist in the environment and appear to have some potential interfere with the host immune response, therefore potentially contributing to promotion interacting with of immune evasion mechanisms, and promoting subsequent tumor growth and progression. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Novel collection method for volatile organic compounds (VOCs) from dogs

    Science.gov (United States)

    Host derived chemical cues are an important aspect of arthropod attraction to potential hosts. Host cues that act over longer distances include CO2, heat, and water vapor, while cues such as volatile organic compounds (VOCs) act over closer distances. Domestic dogs are important hosts for disease cy...

  13. Occurrence, production, and export of lipophilic compounds by hydrocarbonoclastic marine bacteria and their potential use to produce bulk chemicals from hydrocarbons.

    Science.gov (United States)

    Manilla-Pérez, Efraín; Lange, Alvin Brian; Hetzler, Stephan; Steinbüchel, Alexander

    2010-05-01

    Petroleum (or crude oil) is a complex mixture of hydrocarbons. Annually, millions of tons of crude petroleum oil enter the marine environment from either natural or anthropogenic sources. Hydrocarbon-degrading bacteria (HDB) are able to assimilate and metabolize hydrocarbons present in petroleum. Crude oil pollution constitutes a temporary condition of carbon excess coupled to a limited availability of nitrogen that prompts marine oil-degrading bacteria to accumulate storage compounds. Storage lipid compounds such as polyhydroxyalkanoates (PHAs), triacylglycerols (TAGs), or wax esters (WEs) constitute the main accumulated lipophilic substances by bacteria under such unbalanced growth conditions. The importance of these compounds as end-products or precursors to produce interesting biotechnologically relevant chemicals has already been recognized. In this review, we analyze the occurrence and accumulation of lipid storage in marine hydrocarbonoclastic bacteria. We further discuss briefly the production and export of lipophilic compounds by bacteria belonging to the Alcanivorax genus, which became a model strain of an unusual group of obligate hydrocarbonoclastic bacteria (OHCB) and discuss the possibility to produce neutral lipids using A. borkumensis SK2.

  14. Characterization of Cochlear, Vestibular and Cochlear-Vestibular Electrically Evoked Compound Action Potentials in Patients with a Vestibulo-Cochlear Implant

    Directory of Open Access Journals (Sweden)

    T. A. K. Nguyen

    2017-11-01

    Full Text Available The peripheral vestibular system is critical for the execution of activities of daily life as it provides movement and orientation information to motor and sensory systems. Patients with bilateral vestibular hypofunction experience a significant decrease in quality of life and have currently no viable treatment option. Vestibular implants could eventually restore vestibular function. Most vestibular implant prototypes to date are modified cochlear implants to fast-track development. These use various objective measurements, such as the electrically evoked compound action potential (eCAP, to supplement behavioral information. We investigated whether eCAPs could be recorded in patients with a vestibulo-cochlear implant. Specifically, eCAPs were successfully recorded for cochlear and vestibular setups, as well as for mixed cochlear-vestibular setups. Similarities and slight differences were found for the recordings of the three setups. These findings demonstrated the feasibility of eCAP recording with a vestibulo-cochlear implant. They could be used in the short term to reduce current spread and avoid activation of non-targeted neurons. More research is warranted to better understand the neural origin of vestibular eCAPs and to utilize them for clinical applications.

  15. Potential influence of organic compounds on the transport of radionuclides from a geologic repository. Assessment of effectiveness of geologic isolation systems

    Energy Technology Data Exchange (ETDEWEB)

    Silviera, D.J.

    1981-03-01

    This study identifies organic compounds that may be present in a repository and outlines plausible interactions and mechanisms that may influence the forms and chemical behavior of these compounds. A review of the literature indicates that large quantities of organic radioactive wastes are generated by the nuclear industry and if placed in a repository could increase or decrease the leach rate and sorption characteristics of waste radionuclides. The association of radionuclides with organic matter can render the nuclides soluble or insoluble depending on the particular nuclide and such parameters as the pH, Eh, and temperature of the hydrogeologic system as well as the properties of the organic compounds themselves. 44 references.

  16. Potential influence of organic compounds on the transport of radionuclides from a geologic repository. Assessment of effectiveness of geologic isolation systems

    International Nuclear Information System (INIS)

    Silviera, D.J.

    1981-03-01

    This study identifies organic compounds that may be present in a repository and outlines plausible interactions and mechanisms that may influence the forms and chemical behavior of these compounds. A review of the literature indicates that large quantities of organic radioactive wastes are generated by the nuclear industry and if placed in a repository could increase or decrease the leach rate and sorption characteristics of waste radionuclides. The association of radionuclides with organic matter can render the nuclides soluble or insoluble depending on the particular nuclide and such parameters as the pH, Eh, and temperature of the hydrogeologic system as well as the properties of the organic compounds themselves. 44 references

  17. Qualitative comparison of active compounds between red and green Mariposa Christia Vespertillonis leaves extracts

    Science.gov (United States)

    Osman, M. S.; Ghani, Z. A.; Ismail, N. F.; Razak, N. A. A.; Jaapar, J.; Ariff, M. A. M.

    2017-09-01

    At present time, Mariposa Christia Vespertillonis (MCV) leave has become popular for its anti-cancer and thus is used widely among the traditional medicine in Malaysia. There are several types of MCV plants and the one that is currently well-known for traditional medicine in Malaysia is the green MCV (GMCV). Red MCV (RMCV) is another type of MCV plant which can also be found easily in Malaysia. In this study, the active compounds for GMCV and RMCV will be compared and analyzed by using Liquid Chromatography - Mass Spectrometry (LC-MS). The active compounds will be extracted from the MCV leaves by using Supercritical Fluid Extraction (SFE). The findings of this study indicates the global yield of the MCV oils is 31 mg/g while the compound identification indicates the presence of anti-cancer, anti-inflammatory and beneficial phytochemicals. This work is an explorative study to reveal the potential of MCV to be extracted using SFE method as potential therapeutic plants for the traditional medicine in Malaysia.

  18. Classical descriptions of the electron trajectories in the He atom

    International Nuclear Information System (INIS)

    Miko, A.; Toekesi, K.

    2006-01-01

    Complete text of publication follows. The classical-trajectory Monte Carlo method (CTMC) treats the atomic systems as small solar-systems, where the electrons are moving around the nucleus in properly chosen Kepler-orbits. It is also well known that the multi-electron classical atomic systems are instable due to the autoionization through electron-electron interactions. Therefore most of the classical descriptions use the so called independent particle approach, i.e. they neclect the electron-electron interactions. In the quasiclassical trajectory Monte Carlo method (QCTMC) appears a qualitative improvement of the classical description of the multi-electron atoms namely the electron-electron interaction is entirely taken into account by the help of the extra potentials providing the validations of the Pauli exclusion principle and the Heisenberg uncertainty principle. The extra potentials ensure that the multi electron atoms are stable even if all electron-electron interactions are taken into account. The extra potentials - representing the constrains - can be written in the following form [1] V τ -2 f(τp; ξ); where f is the monotonic decreasing function of the relative distance τ and momentum p and ξ is the constant characterized the given atomic state. Figure 1. shows the typical electron trajectories in the helium atom. The calculations were carried out using CTMC model when the electron-electron interaction is neglected (Fig. 1a). In this case the He atom is stable and the electron orbits are closed. However, when the electron-electron interaction is taken into account in the CTMC model the electron trajectories in the He atom show chaotic behavior and after a few cycles autoionization occurs (Fig. 1b). In the QCTMC model the electron trajectories are also closed and stable (Fig. 1c). (author)

  19. Identification of a New Antibacterial Sulfur Compound from Raphanus sativus Seeds

    Directory of Open Access Journals (Sweden)

    Jeries Jadoun

    2016-01-01

    Full Text Available Raphanus sativus L. (radish, a member of Brassicaceae, is widely used in traditional medicine in various cultures for treatment of several diseases and disorders associated with microbial infections. The antibacterial activity of the different plant parts has been mainly attributed to several isothiocyanate (ITC compounds. However, the low correlation between the ITC content and antibacterial activity suggests the involvement of other unknown compounds. The objective of this study was to investigate the antibacterial potential of red radish seeds and identify the active compounds. A crude ethanol seed extract was prepared and its antibacterial activity was tested against five medically important bacteria. The ethanol extract significantly inhibited the growth of all tested strains. However, the inhibitory effect was more pronounced against Streptococcus pyogenes and Escherichia coli. Bioassay-guided fractionation of the ethanol extract followed by HPLC, 1H-NMR, 13C-NMR, 15N-NMR, and HMBC analysis revealed that the active fraction consisted of a single new compound identified as [5-methylsulfinyl-1-(4-methylsulfinyl-but-3-enyl-pent-4-enylidene]-sulfamic acid, which consisted of two identical sulfur side chains similar to those found in ITCs. The minimal inhibitory concentration values of the isolated compound were in the range of 0.5–1 mg/mL. These results further highlight the role of radish as a rich source of antibacterial compounds.

  20. The normal and inverse magnetocaloric effect in RCu2 (R=Tb, Dy, Ho, Er) compounds

    International Nuclear Information System (INIS)

    Zheng, X.Q.; Xu, Z.Y.; Zhang, B.; Hu, F.X.; Shen, B.G.

    2017-01-01

    Orthorhombic polycrystalline RCu 2 (R=Tb, Dy, Ho and Er) compounds were synthesized and the magnetic properties and magnetocaloric effect (MCE) were investigated in detail. All of the RCu 2 compounds are antiferromagnetic (AFM) ordered. As temperature increases, RCu 2 compounds undergo an AFM to AFM transition at T t and an AFM to paramagnetic (PM) transition at T N . Besides of the normal MCE around T N , large inverse MCE around T t was found in TbCu 2 compound. Under a field change of 0–7 T, the maximal value of inverse MCE is even larger than the value of normal MCE around T N for TbCu 2 compound. Considering of the normal and inverse MCE, TbCu 2 shows the largest refrigerant capacity among the RCu 2 (R=Tb, Dy, Ho and Er) compounds indicating its potential applications in low temperature multistage refrigeration. - Highlights: • Large inverse magnetocaloric effect is observed in TbCu 2 compound. • The AFM to AFM transition is observed in RCu 2 (R=Tb, Dy, Ho, Er) compounds. • The MCE performance of TbCu 2 compound is evaluated in a more comprehensively way.