WorldWideScience

Sample records for compound-specific stable isotopes

  1. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    1982-09-01

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  2. Optimizing sample pretreatment for compound-specific stable carbon isotopic analysis of amino sugars in marine sediment

    Science.gov (United States)

    Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.

    2014-09-01

    Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.

  3. Characterization of phenols biodegradation by compound specific stable isotope analysis

    Science.gov (United States)

    Wei, Xi; Gilevska, Tetyana; Wenzig, Felix; Hans, Richnow; Vogt, Carsten

    2015-04-01

    -cresol degradation and 2.2±0.3‰ for m-cresol degradation, respectively. The carbon isotope fractionation patterns of phenol degradation differed more profoundly. Oxygen-dependent monooxygenation of phenol by A.calcoaceticus as the initial reaction yielded ƐC values of -1.5±0.02‰. In contrast, the anaerobic degradation initiated by ATP-dependent carboxylation performed by Thauera aromatia DSM 6984, produced no detectable fractionation (ƐC 0±0.1‰). D. cetonica showed a slight inverse carbon isotope fractionation (ƐC 0.4±0.1‰). In conclusion, a validated method for compound specific stable isotope analysis was developed for phenolic compounds, and the first data set of carbon enrichment factors upon the biodegradation of phenol and cresols with different activation mechanisms has been obtained in the present study. Carbon isotope fractionation analysis is a potentially powerful tool to monitor phenolic compounds degradation in the environment.

  4. Microbial degradation of alpha-cypermethrin in soil by compound-specific stable isotope analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zemin [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Shen, Xiaoli [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Environmental Engineering, Quzhou University, Quzhou 324000 (China); Zhang, Xi-Chang [Laboratory for Teaching in Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Liu, Weiping [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Fangxing, E-mail: fxyang@zju.edu.cn [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Effect-Directed Analysis, Helmholtz Center for Environmental Research – UFZ, Leipzig 04318 (Germany)

    2015-09-15

    Highlights: • Alpha-cypermethrin (α-CP) can be degraded by microorganisms in soil. • Biodegradation of α-CP resulted in carbon isotope fractionation. • A relationship was found between carbon isotope ratios and concentrations of α-CP. • An enrichment factor ϵ of α-CP was determined as −1.87‰. • CSIA is applicable to assess biodegradation of α-CP. - Abstract: To assess microbial degradation of alpha-cypermethrin in soil, attenuation of alpha-cypermethrin was investigated by compound-specific stable isotope analysis. The variations of the residual concentrations and stable carbon isotope ratios of alpha-cypermethrin were detected in unsterilized and sterilized soils spiked with alpha-cypermethrin. After an 80 days’ incubation, the concentrations of alpha-cypermethrin decreased to 0.47 and 3.41 mg/kg in the unsterilized soils spiked with 2 and 10 mg/kg, while those decreased to 1.43 and 6.61 mg/kg in the sterilized soils. Meanwhile, the carbon isotope ratios shifted to −29.14 ± 0.22‰ and −29.86 ± 0.33‰ in the unsterilized soils spiked with 2 and 10 mg/kg, respectively. The results revealed that microbial degradation contributed to the attenuation of alpha-cypermethrin and induced the carbon isotope fractionation. In order to quantitatively assess microbial degradation, a relationship between carbon isotope ratios and residual concentrations of alpha-cypermethrin was established according to Rayleigh equation. An enrichment factor, ϵ = −1.87‰ was obtained, which can be employed to assess microbial degradation of alpha-cypermethrin. The significant carbon isotope fractionation during microbial degradation suggests that CSIA is a proper approach to qualitatively detect and quantitatively assess the biodegradation during attenuation process of alpha-cypermethrin in the field.

  5. Separation of polybrominated diphenyl ethers in fish for compound-specific stable carbon isotope analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yan-Hong [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing, 100049 (China); Luo, Xiao-Jun, E-mail: luoxiaoj@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chen, Hua-Shan; Wu, Jiang-Ping; Chen, She-Jun; Mai, Bi-Xian [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2012-05-15

    A separation and isotopic analysis method was developed to accurately measure the stable carbon isotope ratios of polybrominated diphenyl ethers (PBDEs) with three to six substituted bromine atoms in fish samples. Sample extracts were treated with concentrated sulfuric acid to remove lipids, purified using complex silica gel column chromatography, and finally processed using alumina/silica (Al/Si) gel column chromatography. The purities of extracts were verified by gas chromatography and mass spectrometry (GC-MS) in the full-scan mode. The average recoveries of all compounds across the purification method were between 60% and 110%, with the exception of BDE-154. The stable carbon isotopic compositions of PBDEs can be measured with a standard deviation of less than 0.5 Per-Mille-Sign . No significant isotopic fraction was found during the purification of the main PBDE congeners. A significant change in the stable carbon isotope ratio of BDE-47 was observed in fish carcasses compared to the original isotopic signatures, implying that PBDE stable carbon isotopic compositions can be used to trace the biotransformation of PBDEs in biota. - Highlights: Black-Right-Pointing-Pointer A method for the purification of PBDEs for CSIA was developed. Black-Right-Pointing-Pointer The {delta}{sup 13}C of PBDE congeners can be measured with a standard deviation of less than 0.5 Per-Mille-Sign . Black-Right-Pointing-Pointer Common carp were exposed to a PBDE mixture to investigate debromination. Black-Right-Pointing-Pointer Ratios of the {delta}{sup 13}C values can be used to trace the debromination of PBDE in fish.

  6. Sediment Origin Determination in the Sub-Catchment of Mistelbach (Austria) using Fatty Acids Biomarkers and Compound-Specific Stable Isotope Techniques

    International Nuclear Information System (INIS)

    Mabit, L.; Chen, X.; Resch, C.; Toloza, A.; Meusburger, K.; Alewell, C.; Gibbs, M.; Klik, A.; Eder, A.; Strauss, P.

    2016-01-01

    Compound-specific stable isotope (CSSI) signatures of inherent soil organic biomarkers allow discriminating and apportioning the source of soil contribution from different land uses. Plant communities label the soil where they grow by exuding organic biomarkers. Although all plants produce the same biomarkers, the stable isotopic signature of those biomarkers is different for each plant species. For agri-environmental investigations, the CSSI technique is based on the measurement of carbon-13 ( 13 C) natural abundance signatures of specific organic compounds such as natural fatty acids (FAs) in the soil. By linking fingerprints of land use to the sediment in deposition zones, this approach has been shown to be a useful technique for determining the source of eroded soil and thereby identifying areas prone to soil degradation. The authors have used this innovative technique to investigate a 3 hectares sub-catchment of Mistelbach situated 60 km north of Vienna. Using the 137 Cs technique, Mabit et al. (2009) reported a local maximum sedimentation rate reaching 20 to 50 t ha -1 yr -1 in the lowest part of this Austrian catchment. To test the ability of the CSSI technique to discriminate different sediment sources of these deposited sediments, representative soil samples from four main agricultural fields of the site were analyzed

  7. The CSSIAR v.1.00 Software: A new tool based on SIAR to assess soil redistribution using Compound Specific Stable Isotopes

    Directory of Open Access Journals (Sweden)

    de los Santos-Villalobos Sergio

    2017-01-01

    Full Text Available Soil erosion is one of the biggest challenges for food production around the world. Many techniques have been used to evaluate and mitigate soil degradation. Nowadays isotopic techniques are becoming a powerful tool to assess soil apportionment. One of the innovative techniques used is the Compound Specific Stable Isotopes (CSSI analysis, which has been used to track down sediments and specify their sources by the isotopic signature of δ13C in specific fatty acids. The application of this technique on soil apportionment has been recently developed, however there is a lack of user-friendly Software for data processing and interpretation. The aim of this article is to introduce a new open source tool for working with data sets generated by the use of the CSSI technique to assess soil apportionment, called the CSSIARv1.00 Software

  8. The CSSIAR v.1.00 Software: A new tool based on SIAR to assess soil redistribution using Compound Specific Stable Isotopes

    Science.gov (United States)

    Sergio, de los Santos-Villalobos; Claudio, Bravo-Linares; dos Anjos Roberto, Meigikos; Renan, Cardoso; Max, Gibbs; Andrew, Swales; Lionel, Mabit; Gerd, Dercon

    Soil erosion is one of the biggest challenges for food production around the world. Many techniques have been used to evaluate and mitigate soil degradation. Nowadays isotopic techniques are becoming a powerful tool to assess soil apportionment. One of the innovative techniques used is the Compound Specific Stable Isotopes (CSSI) analysis, which has been used to track down sediments and specify their sources by the isotopic signature of δ13 C in specific fatty acids. The application of this technique on soil apportionment has been recently developed, however there is a lack of user-friendly Software for data processing and interpretation. The aim of this article is to introduce a new open source tool for working with data sets generated by the use of the CSSI technique to assess soil apportionment, called the CSSIARv1.00 Software

  9. Compound specific stable isotopes as probes for distinguishing the sources of biomolecules in terrestrial and extraterrestrial materials

    Science.gov (United States)

    Engel, M. H.; Macko, S. A.

    2003-04-01

    Life on Earth consists of orderly arrangements of several key types of organic compounds (amino acids, sugars, fatty acids, nucleic bases) that are the building blocks of proteins, carbohydrates, lipids and nucleotides. Subsequent to death, macromolecules are commonly broken down to their molecular constituents or other similar scale components. Thus, in ancient terrestrial and extraterrestrial materials, it is far more likely to expect the presence of simple compounds such as amino acids rather than the proteins from which they were possibly derived. Given that amino acids, for example, are common components of all extinct and extant organisms, the challenge has been to develop methods for distinguishing their sources. Stable isotopes are powerful probes for determining the origins of organic matter. Amino acid constituents of all organisms on Earth exhibit characteristic stable isotope compositions owing to fractionations associated with their biosynthesis. These fractionations are distinct from those observed for amino acids formed by abiotic processes. Thus it should be possible to use isotopes as probes for determining whether amino acids in ancient rocks on Earth are biotic or abiotic, based on their relative isotopic compositions. Also, owing to differences in the isotope compositions of precursors, amino acids in extraterrestrial materials such as carbonaceous meteorites are moderately to substantially enriched in the heavy isotopes of C, N and H relative to terrestrial amino acids. Assuming that the isotope compositions of the gaseous components of, for example, the Martian atmosphere were distinct from Earth at such time when organic molecules may have formed, it should be possible to distinguish these components from terrestrial contaminants by determining their isotope compositions and/or those of their respective enantiomers. Also, if life as we know it existed on another planet such as Mars, fractionations characteristic of biosynthesis should be

  10. Complementing approaches to demonstrate chlorinated solvent biodegradation in a complex pollution plume: mass balance, PCR and compound-specific stable isotope analysis.

    OpenAIRE

    Courbet Christelle; Rivière Agnès; Jeannottat Simon; Rinaldi Sandro; Hunkeler Daniel; Bendjoudi Hocine; De Marsily Ghislain

    2011-01-01

    This work describes the use of different complementing methods (mass balance polymerase chain reaction assays and compound specific stable isotope analysis) to demonstrate the existence and effectiveness of biodegradation of chlorinated solvents in an alluvial aquifer. The solvent contaminated site is an old chemical factory located in an alluvial plain in France. As most of the chlorinated contaminants currently found in the groundwater at this site were produced by local industries at vario...

  11. A Paleoevaporation Proxy Using Compound Specific Stable Isotope Measurements from Peatland Biomarkers

    Science.gov (United States)

    Wang, J.; Nichols, J. E.; Huang, Y.

    2009-12-01

    It is important to understand how evaporation from wetlands changes with climate. To do this, we have developed a paleoevaporation proxy for use in ombrotrophic peatland sediments. Using compound specific hydrogen isotopic ratios of vascular plant and Sphagnum biomarkers, we can quantitatively reconstruct past changes in evaporation. The contrast in H isotopic ratios of water available to living Sphagnum and water in the acrotelm can be used to estimate “f”—the fraction of water remaining after evaporation. Vascular plant leaf waxes record H isotopic ratios of precipitation which is little affected by evaporation, whereas the Sphagnum biomarker, C23 n-alkane, records H isotopic ratios of the water inside its cells and between its leaves, which is strongly affected by evaporation at the bog surface. Evaporation changes can then be calculated with the H-isotopic ratios of the two types of biomarkers. We calibrated the apparent fractionation of D/H ratios from source water to C23 n-alkane with lab-grown Sphagnum. We also present several reconstructions of paleoevaporation from peatlands throughout eastern North America. By comparison with overall hydrologic balance, we are able to understand the varying role of evaporation in the hydrologic system in both time and space.

  12. Stable Isotope Fractionation Caused by Glycyl Radical Enzymes during Bacterial Degradation of Aromatic Compounds

    Science.gov (United States)

    Morasch, Barbara; Richnow, Hans H.; Vieth, Andrea; Schink, Bernhard; Meckenstock, Rainer U.

    2004-01-01

    Stable isotope fractionation was studied during the degradation of m-xylene, o-xylene, m-cresol, and p-cresol with two pure cultures of sulfate-reducing bacteria. Degradation of all four compounds is initiated by a fumarate addition reaction by a glycyl radical enzyme, analogous to the well-studied benzylsuccinate synthase reaction in toluene degradation. The extent of stable carbon isotope fractionation caused by these radical-type reactions was between enrichment factors (ɛ) of −1.5 and −3.9‰, which is in the same order of magnitude as data provided before for anaerobic toluene degradation. Based on our results, an analysis of isotope fractionation should be applicable for the evaluation of in situ bioremediation of all contaminants degraded by glycyl radical enzyme mechanisms that are smaller than 14 carbon atoms. In order to compare carbon isotope fractionations upon the degradation of various substrates whose numbers of carbon atoms differ, intrinsic ɛ (ɛintrinsic) were calculated. A comparison of ɛintrinsic at the single carbon atoms of the molecule where the benzylsuccinate synthase reaction took place with compound-specific ɛ elucidated that both varied on average to the same extent. Despite variations during the degradation of different substrates, the range of ɛ found for glycyl radical reactions was reasonably narrow to propose that rough estimates of biodegradation in situ might be given by using an average ɛ if no fractionation factor is available for single compounds. PMID:15128554

  13. Compound-Specific Isotopic Analysis of Meteoritic Amino Acids as a Tool for Evaluating Potential Formation Pathways

    Science.gov (United States)

    Elsila, Jamie E.; Burton, Aaron S.; Callahan, Michael C.; Charnley, Steven B.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Measurements of stable hydrogen, carbon, and nitrogen isotopic ratios (delta D, delta C-13, delta N-15) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may point towards the most likely of these proposed pathways. The technique of gas chromatography coupled with mass spectrometry and isotope ratio mass spectrometry provides compound-specific structural and isotopic information from a single splitless injection, enhancing the amount of information gained from small amounts of precious samples such as carbonaceous chondrites. We have applied this technique to measure the compound-specific C, N, and H isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites. We are using these measurements to evaluate predictions of expected isotopic enrichments from potential formation pathways and environments, leading to a better understanding of the origin of these compounds.

  14. Assessing the functional diversity of herbivorous reef fishes using a compound-specific stable isotope approach

    KAUST Repository

    Tietbohl, Matthew

    2016-12-01

    Herbivorous coral reef fishes play an important role in helping to structure their environment directly by consuming algae and indirectly by promoting coral health and growth. These fishes are generally separated into three broad groups: browsers, grazers, and excavators/scrapers, with these groupings often thought to have a fixed general function and all fishes within a group thought to have similar ecological roles. This categorization assumes a high level of functional redundancy within herbivorous fishes. However, recent evidence questions the use of this broad classification scheme, and posits that there may actually be more resource partitioning within these functional groupings. Here, I use a compound-specific stable isotope approach (CSIA) to show there appears to be a greater diversity of functional roles than previously assumed within broad functional groups. The δ13C signatures from essential amino acids of reef end-members (coral, macroalgae, detritus, and phytoplankton) and fish muscle were analyzed to investigate differences in resource use between fishes. Most end-members displayed clear isotopic differences, and most fishes within functional groups were dissimilar in their isotopic signature, implying differences in the resources they target. No grazers closely resembled each other isotopically, implying a much lower level of functional redundancy within this group; scraping parrotfish were also distinct from excavating parrotfish and to a lesser degree distinct between scrapers. This study highlights the potential of CSIA to help distinguish fine-scale ecological differences within other groups of reef organisms as well. These results question the utility of lumping nominally herbivorous fishes into broad groups with assumed similar roles. Given the apparent functional differences between nominally herbivorous reef fishes, it is important for managers to incorporate the diversity of functional roles these fish play.

  15. Assessing the functional diversity of herbivorous reef fishes using a compound-specific stable isotope approach

    KAUST Repository

    Tietbohl, Matthew

    2016-01-01

    Herbivorous coral reef fishes play an important role in helping to structure their environment directly by consuming algae and indirectly by promoting coral health and growth. These fishes are generally separated into three broad groups: browsers, grazers, and excavators/scrapers, with these groupings often thought to have a fixed general function and all fishes within a group thought to have similar ecological roles. This categorization assumes a high level of functional redundancy within herbivorous fishes. However, recent evidence questions the use of this broad classification scheme, and posits that there may actually be more resource partitioning within these functional groupings. Here, I use a compound-specific stable isotope approach (CSIA) to show there appears to be a greater diversity of functional roles than previously assumed within broad functional groups. The δ13C signatures from essential amino acids of reef end-members (coral, macroalgae, detritus, and phytoplankton) and fish muscle were analyzed to investigate differences in resource use between fishes. Most end-members displayed clear isotopic differences, and most fishes within functional groups were dissimilar in their isotopic signature, implying differences in the resources they target. No grazers closely resembled each other isotopically, implying a much lower level of functional redundancy within this group; scraping parrotfish were also distinct from excavating parrotfish and to a lesser degree distinct between scrapers. This study highlights the potential of CSIA to help distinguish fine-scale ecological differences within other groups of reef organisms as well. These results question the utility of lumping nominally herbivorous fishes into broad groups with assumed similar roles. Given the apparent functional differences between nominally herbivorous reef fishes, it is important for managers to incorporate the diversity of functional roles these fish play.

  16. Isotopically modified compounds

    International Nuclear Information System (INIS)

    Kuruc, J.

    2009-01-01

    In this chapter the nomenclature of isotopically modified compounds in Slovak language is described. This chapter consists of following parts: (1) Isotopically substituted compounds; (2) Specifically isotopically labelled compounds; (3) Selectively isotopically labelled compounds; (4) Non-selectively isotopically labelled compounds; (5) Isotopically deficient compounds.

  17. Uses of stable isotopes

    International Nuclear Information System (INIS)

    Axente, Damian

    1998-01-01

    The most important fields of stable isotope use with examples are presented. These are: 1. Isotope dilution analysis: trace analysis, measurements of volumes and masses; 2. Stable isotopes as tracers: transport phenomena, environmental studies, agricultural research, authentication of products and objects, archaeometry, studies of reaction mechanisms, structure and function determination of complex biological entities, studies of metabolism, breath test for diagnostic; 3. Isotope equilibrium effects: measurement of equilibrium effects, investigation of equilibrium conditions, mechanism of drug action, study of natural processes, water cycle, temperature measurements; 4. Stable isotope for advanced nuclear reactors: uranium nitride with 15 N as nuclear fuel, 157 Gd for reactor control. In spite of some difficulties of stable isotope use, particularly related to the analytical techniques, which are slow and expensive, the number of papers reporting on this subject is steadily growing as well as the number of scientific meetings organized by International Isotope Section and IAEA, Gordon Conferences, and regional meeting in Germany, France, etc. Stable isotope application development on large scale is determined by improving their production technologies as well as those of labeled compound and the analytical techniques. (author)

  18. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    International Nuclear Information System (INIS)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database

  19. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J.; Cross, T.A.; Unkefer, C.J. [eds.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database.

  20. A protocol for pressurized liquid extraction and processing methods to isolate modern and ancient bone cholesterol for compound-specific stable isotope analysis.

    Science.gov (United States)

    Laffey, Ann O; Krigbaum, John; Zimmerman, Andrew R

    2017-02-15

    Bone lipid compound-specific isotope analysis (CSIA) and bone collagen and apatite stable isotope ratio analysis are important sources of ecological and paleodietary information. Pressurized liquid extraction (PLE) is quicker and utilizes less solvent than traditional methods of lipid extraction such as soxhlet and ultrasonication. This study facilitates dietary analysis by optimizing and testing a standardized methodology for PLE of bone cholesterol. Modern and archaeological bones were extracted by PLE using varied temperatures, solvent solutions, and sample weights. The efficiency of PLE was assessed via quantification of cholesterol yields. Stable isotopic ratio integrity was evaluated by comparing isotopic signatures (δ 13 C and δ 18 O values) of cholesterol derived from whole bone, bone collagen and bone apatite. Gas chromatography/mass spectrometry (GC/MS) and gas chromatography isotope ratio mass spectrometry (GC/IRMS) were conducted on purified collagen and lipid extracts to assess isotopic responses to PLE. Lipid yield was optimized at two PLE extraction cycles of 75 °C using dichloromethane/methanol (2:1 v/v) as a solvent with 0.25-0.75 g bone sample. Following lipid extraction, saponification combined with the derivatization of the neutral fraction using trimethylsilylation yielded nearly twice the cholesterol of non-saponified or non-derivatized samples. It was also found that lipids extracted from purified bone collagen and apatite could be used for cholesterol CSIA. There was no difference in the bulk δ 13 C values of collagen extracted from bone with or without lipid. However, there was a significant depletion in 18 O of bone apatite due to lipid presence or processing. These results should assist sample selection and provide an effective, alternative extraction method for bone cholesterol that may be used for isotopic and paleodietary analysis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Compound-specific radiocarbon analysis - Analytical challenges and applications

    Science.gov (United States)

    Mollenhauer, G.; Rethemeyer, J.

    2009-01-01

    Within the last decades, techniques have become available that allow measurement of isotopic compositions of individual organic compounds (compound-specific isotope measurements). Most often the carbon isotopic composition of these compounds is studied, including stable carbon (δ13C) and radiocarbon (Δ14C) measurements. While compound-specific stable carbon isotope measurements are fairly simple, and well-established techniques are widely available, radiocarbon analysis of specific organic compounds is a more challenging method. Analytical challenges include difficulty obtaining adequate quantities of sample, tedious and complicated laboratory separations, the lack of authentic standards for measuring realistic processing blanks, and large uncertainties in values of Δ14C at small sample sizes. The challenges associated with sample preparation for compound-specific Δ14C measurements will be discussed in this contribution. Several years of compound-specific radiocarbon analysis have revealed that in most natural samples, purified organic compounds consist of heterogeneous mixtures of the same compound. These mixtures could derive from multiple sources, each having a different initial reservoir age but mixed in the same terminal reservoir, from a single source but mixed after deposition, or from a prokaryotic organism using variable carbon sources including mobilization of ancient carbon. These processes not only represent challenges to the interpretation of compound-specific radiocarbon data, but provide unique tools for the understanding of biogeochemical and sedimentological processes influencing the preserved organic geochemical records in marine sediments. We will discuss some examples where compound-specific radiocarbon analysis has provided new insights for the understanding of carbon source utilization and carbon cycling.

  2. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach.

    Science.gov (United States)

    McMahon, Kelton W; Thorrold, Simon R; Houghton, Leah A; Berumen, Michael L

    2016-03-01

    Coral reefs support spectacularly productive and diverse communities in tropical and sub-tropical waters throughout the world's oceans. Debate continues, however, on the degree to which reef biomass is supported by new water column production, benthic primary production, and recycled detrital carbon (C). We coupled compound-specific stable C isotope ratio (δ(13)C) analyses with Bayesian mixing models to quantify C flow from primary producers to coral reef fishes across multiple feeding guilds and trophic positions in the Red Sea. Analyses of reef fishes with putative diets composed primarily of zooplankton (Amblyglyphidodon indicus), benthic macroalgae (Stegastes nigricans), reef-associated detritus (Ctenochaetus striatus), and coral tissue (Chaetodon trifascialis) confirmed that δ(13)C values of essential amino acids from all baseline C sources were both isotopically diagnostic and accurately recorded in consumer tissues. While all four source end-members contributed to the production of coral reef fishes in our study, a single-source end-member often dominated dietary C assimilation of a given species, even for highly mobile, generalist top predators. Microbially reworked detritus was an important secondary C source for most species. Seascape configuration played an important role in structuring resource utilization patterns. For instance, Lutjanus ehrenbergii showed a significant shift from a benthic macroalgal food web on shelf reefs (71 ± 13 % of dietary C) to a phytoplankton-based food web (72 ± 11 %) on oceanic reefs. Our work provides insights into the roles that diverse C sources play in the structure and function of coral reef ecosystems and illustrates a powerful fingerprinting method to develop and test nutritional frameworks for understanding resource utilization.

  3. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach

    KAUST Repository

    McMahon, Kelton

    2015-11-21

    Coral reefs support spectacularly productive and diverse communities in tropical and sub-tropical waters throughout the world’s oceans. Debate continues, however, on the degree to which reef biomass is supported by new water column production, benthic primary production, and recycled detrital carbon (C). We coupled compound-specific stable C isotope ratio (δ13C) analyses with Bayesian mixing models to quantify C flow from primary producers to coral reef fishes across multiple feeding guilds and trophic positions in the Red Sea. Analyses of reef fishes with putative diets composed primarily of zooplankton (Amblyglyphidodon indicus), benthic macroalgae (Stegastes nigricans), reef-associated detritus (Ctenochaetus striatus), and coral tissue (Chaetodon trifascialis) confirmed that δ13C values of essential amino acids from all baseline C sources were both isotopically diagnostic and accurately recorded in consumer tissues. While all four source end-members contributed to the production of coral reef fishes in our study, a single-source end-member often dominated dietary C assimilation of a given species, even for highly mobile, generalist top predators. Microbially reworked detritus was an important secondary C source for most species. Seascape configuration played an important role in structuring resource utilization patterns. For instance, Lutjanus ehrenbergii showed a significant shift from a benthic macroalgal food web on shelf reefs (71 ± 13 % of dietary C) to a phytoplankton-based food web (72 ± 11 %) on oceanic reefs. Our work provides insights into the roles that diverse C sources play in the structure and function of coral reef ecosystems and illustrates a powerful fingerprinting method to develop and test nutritional frameworks for understanding resource utilization.

  4. Trends in the use of stable isotopes in biochemistry and pharmacology

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.; Walker, T.E.

    1977-01-01

    Recent trends in the use of the stable isotopes 13 C, 15 N and 18 O in biochemistry and pharmacology are reviewed with emphasis on the studies that have employed nuclear magnetic resonance (nmr) spectroscopy and mass spectrometry as analytical techniques. Pharmacological studies with drugs and other compounds labelled with stable isotopes have developed in parallel with the rapid progress in the enhancement of sensitivity and selectivity of gas chromatography - mass spectrometric analyses, and have been directed largely to an evaluation of pharmako-kinetics and drug metabolic pathways. In these studies, illustrated with selected samples, isotopically labelled compounds have been used to advantage as internal standards for the mass spectrometric analyses and as in vivo tracers for metabolites. In the broader discipline of biochemistry, stable isotopes and isotopically labelled compounds have been used increasingly in conjuction with both nmr spectroscopy and mass spectrometry in tracer and structural studies. The more recent trends in the use of stable isotopes in these biochemical studies are discussed in the context of the improvements in analytical techniques. Specific examples will be drawn from investigations of the biosynthesis of natural products by micro-organisms; the protein, fat and carbohydrate fluxes in humans; and the structure and function of enzymes, membranes and other macro-molecular assemblages. The potential for the future development of stable isotopes in biochemistry and pharmacology are considered briefly, together with some of the problems that must be solved if their considerable potential is to be realized. (author)

  5. Application of compound specific 13C isotope investigations of chlorinated hydrocarbons in contaminated groundwaters

    International Nuclear Information System (INIS)

    Osenbrueck, K.; Heidinger, M.; Voropaev, A.; Ertl, S.; Eichinger, L.

    2002-01-01

    Full text: Chlorinated hydrocarbons are one of the most common pollutants found in groundwater. Due to complex contamination situations with overlapping contamination plumes the assessment of the organic contaminants requires the installation of expensive observation wells and high analytical effort. Here the determination of the stable isotope ratio 13 C/ 12 C of the organic compounds offers a promising and efficient tool to investigate the origin and the biodegradation characteristics of the chlorinated hydrocarbons in groundwater. The application of the method is based on characteristic isotope fingerprints, differing in chlorinated solvents. This isotope fingerprint is derived from different production pathways and is not influenced by transport or by retardation processes in the underground. Due to the fact, that two different contaminations can easily be distinguished by isotope ratios, an improved distinction of spatially and temporally different contamination plumes might be possible. In course of biologically mediated degradation processes a shift of the isotope ratios between the precursor and the product can frequently be observed, such as with denitrification or sulfate reduction processes. The isotope fractionation is due to a preferential reaction of the bonds formed by the lighter isotopes and leads to a progressive enrichment of the heavy isotopes in the precursor while the product becomes depleted in the heavy isotopes. Biological degradation of the highly chlorinated hydrocarbons is due to a co-metabolic dechlorinisation. Tetrachloroethene (PCE) for example degrades under anoxic conditions via trichloroethene (TCE) to cis-1,2-dichloroethene (cDCE). Subsequent degradation to vinyl chloride (VC) and ethene may appear under aerobic as well as reducing environments depending on the site specific conditions. In several laboratory studies it has been shown, that biodegradation of the chlorinated hydrocarbons is accompanied by an isotope fractionation of

  6. Novel proxies for reconstructing paleohydrology from ombrotrophic peatlands: biomarker and compound-specific H and C stable isotope ratios

    Science.gov (United States)

    Wang, J.; Nichols, J. E.; Huang, Y.

    2008-12-01

    Ombrotrophic peatlands are excellent archives for paleohydrologic information because they are hydrologically isolated from their surroundings. However, quantitative proxies for deciphering peatland archives are lacking. Here, we present development and application of novel organic geochemical methods for quantitative reconstruction of paleohydrology from the ombrotrophic sediments, and comparison of organic geochemical data with conventional paleoecological proxies. Application of these methods to the sediments of several North American and European peatlands has revealed significant changes in the hydroclimate throughout the Holocene. The plant assemblage living at the surface of the peatland is tightly controlled by surface moisture. Under wet conditions, Sphagnum mosses, with no active mechanism for drawing water from below the surface of the peatland, are dominant. During dry conditions, vascular plants are more productive relative to Sphagnum. A ratio of the abundance of two biomarkers representing Sphagnum and vascular plants sensitively records changes in hydrologic balance (Nichols et al., 2006, Org. Geochem. 37, 1505-1513). We have further developed stable isotope models to compute climate parameters from compound-specific H and C isotope ratios of biomarkers to create a more comprehensive climate reconstruction. Vascular plant leaf waxes carry the D/H ratio signature of precipitation that is little affected by evaporation, whereas the Sphagnum biomarker records isotopic ratios of the water at the peatland surface, which is strongly enriched by evaporation. Evaporation amount can be calculated using the differences between D/H ratios of the two types of biomarkers. C isotope ratios of Sphagnum biomarkers can also be used to quantify surface wetness. Methanotrophic bacteria live symbiotically with Sphagnum, providing isotopically light carbon for photosynthesis. These bacteria are more active when the Sphagnum is wet, thus providing more 13C-depleted CO2

  7. Degradation of sulfamethoxazole using ozone and chlorine dioxide - Compound-specific stable isotope analysis, transformation product analysis and mechanistic aspects.

    Science.gov (United States)

    Willach, Sarah; Lutze, Holger V; Eckey, Kevin; Löppenberg, Katja; Lüling, Michelle; Terhalle, Jens; Wolbert, Jens-Benjamin; Jochmann, Maik A; Karst, Uwe; Schmidt, Torsten C

    2017-10-01

    The sulfonamide antibiotic sulfamethoxazole (SMX) is a widely detected micropollutant in surface and groundwaters. Oxidative treatment with e.g. ozone or chlorine dioxide is regularly applied for disinfection purposes at the same time exhibiting a high potential for removal of micropollutants. Especially for nitrogen containing compounds such as SMX, the related reaction mechanisms are largely unknown. In this study, we systematically investigated reaction stoichiometry, product formation and reaction mechanisms in reactions of SMX with ozone and chlorine dioxide. To this end, the neutral and anionic SMX species, which may occur at typical pH-values of water treatment were studied. Two moles of chlorine dioxide and approximately three moles of ozone were consumed per mole SMX degraded. Oxidation of SMX with ozone and chlorine dioxide leads in both cases to six major transformation products (TPs) as revealed by high-resolution mass spectrometry (HRMS). Tentatively formulated TP structures from other studies could partly be confirmed by compound-specific stable isotope analysis (CSIA). However, for one TP, a hydroxylated SMX, it was not possible by HRMS alone to identify whether hydroxylation occurred at the aromatic ring, as suggested in literature before, or at the anilinic nitrogen. By means of CSIA and an analytical standard it was possible to identify sulfamethoxazole hydroxylamine unequivocally as one of the TPs of the reaction of SMX with ozone as well as with chlorine dioxide. H-abstraction and electron transfer at the anilinic nitrogen are suggested as likely initial reactions of ozone and chlorine dioxide, respectively, leading to its formation. Oxidation of anionic SMX with ozone did not show any significant isotopic fractionation whereas the other reactions studied resulted in a significant carbon isotope fractionation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Evaluation of the performance of high temperature conversion reactors for compound-specific oxygen stable isotope analysis.

    Science.gov (United States)

    Hitzfeld, Kristina L; Gehre, Matthias; Richnow, Hans-Hermann

    2017-05-01

    In this study conversion conditions for oxygen gas chromatography high temperature conversion (HTC) isotope ratio mass spectrometry (IRMS) are characterised using qualitative mass spectrometry (IonTrap). It is shown that physical and chemical properties of a given reactor design impact HTC and thus the ability to accurately measure oxygen isotope ratios. Commercially available and custom-built tube-in-tube reactors were used to elucidate (i) by-product formation (carbon dioxide, water, small organic molecules), (ii) 2nd sources of oxygen (leakage, metal oxides, ceramic material), and (iii) required reactor conditions (conditioning, reduction, stability). The suitability of the available HTC approach for compound-specific isotope analysis of oxygen in volatile organic molecules like methyl tert-butyl ether is assessed. Main problems impeding accurate analysis are non-quantitative HTC and significant carbon dioxide by-product formation. An evaluation strategy combining mass spectrometric analysis of HTC products and IRMS 18 O/ 16 O monitoring for future method development is proposed.

  9. Cooperation of CMEA member states in the field of the manufacture and use of stable isotopes and compounds thus labelled

    International Nuclear Information System (INIS)

    Ertel, G.; Ewald, G.

    1977-01-01

    The contribution presents a survey of scientific-technical cooperation of CMEA member states in the field of stable isotopes, it deals with the specialization of stable isotope production and compounds thus labelled, and gives the prospects for further development of this cooperation. (HK) [de

  10. Stable-isotope analysis: a neglected tool for placing parasites in food webs.

    Science.gov (United States)

    Sabadel, A J M; Stumbo, A D; MacLeod, C D

    2018-02-28

    Parasites are often overlooked in the construction of food webs, despite their ubiquitous presence in almost every type of ecosystem. Researchers who do recognize their importance often struggle to include parasites using classical food-web theory, mainly due to the parasites' multiple hosts and life stages. A novel approach using compound-specific stable-isotope analysis promises to provide considerable insight into the energetic exchanges of parasite and host, which may solve some of the issues inherent in incorporating parasites using a classical approach. Understanding the role of parasites within food webs, and tracing the associated biomass transfers, are crucial to constructing new models that will expand our knowledge of food webs. This mini-review focuses on stable-isotope studies published in the past decade, and introduces compound-specific stable-isotope analysis as a powerful, but underutilized, newly developed tool that may answer many unresolved questions regarding the role of parasites in food webs.

  11. Monitoring of the aerobe biodegradation of chlorinated organic solvents by stable isotope analysis

    Science.gov (United States)

    Horváth, Anikó; Futó, István; Palcsu, László

    2014-05-01

    Our chemical-biological basic research aims to eliminate chlorinated environmental contaminants from aquifers around industrial areas in the frame of research program supported by the European Social Fund (TÁMOP-4.2.2.A-11/1/KONV-2012-0043). The most careful and simplest way includes the in situ biodegradation with the help of cultured and compound specific strains. Numerous members of Pseudomonas bacteria are famous about function of bioremediation. They can metabolism the environmental hazardous chemicals like gas oils, dyes, and organic solvents. Our research based on the Pseudomonas putida F1 strain, because its ability to degrade halogenated hydrocarbons such as trichloroethylene. Several methods were investigated to estimate the rate of biodegradation, such as the measurement of the concentration of the pollutant along the contamination pathway, the microcosm's studies or the compound specific stable isotope analysis. In this area in the Transcarpathian basin we are pioneers in the stable isotope monitoring of biodegradation. The main goal is to find stable isotope fractionation factors by stable isotope analysis, which can help us to estimate the rate and effectiveness of the biodegradation. The subsequent research period includes the investigation of the method, testing its feasibility and adaptation in the environment. Last but not least, the research gives an opportunity to identify the producer of the contaminant based on the stable isotope composition of the contaminant.

  12. Origin of Xylitol in Chewing Gum: A Compound-Specific Isotope Technique for the Differentiation of Corn- and Wood-Based Xylitol by LC-IRMS.

    Science.gov (United States)

    Köster, Daniel; Wolbert, Jens-Benjamin; Schulte, Marcel S; Jochmann, Maik A; Schmidt, Torsten C

    2018-02-28

    The sugar replacement compound xylitol has gained increasing attention because of its use in many commercial food products, dental-hygiene articles, and pharmaceuticals. It can be classified by the origin of the raw material used for its production. The traditional "birch xylitol" is considered a premium product, in contrast to xylitol produced from agriculture byproducts such as corn husks or sugar-cane straw. Bulk stable-isotope analysis (BSIA) and compound-specific stable-isotope analysis (CSIA) by liquid-chromatography isotope-ratio mass spectrometry (LC-IRMS) of chewing-gum extracts were used to determine the δ 13 C isotope signatures for xylitol. These were applied to elucidate the original plant type the xylitol was produced from on the basis of differences in isotope-fractionation processes of photosynthetic CO 2 fixation. For the LC-IRMS analysis, an organic-solvent-free extraction protocol and HPLC method for the separation of xylitol from different artificial sweeteners and sugar-replacement compounds was successfully developed and applied to the analysis of 21 samples of chewing gum, from which 18 could be clearly related to the raw-material plant class.

  13. A versatile method for simultaneous stable carbon isotope analysis of DNA and RNA nucleotides by liquid chromatography/isotope ratio mass spectrometry

    NARCIS (Netherlands)

    Moerdijk-Poortvliet, T.C.W.; Brasser, J.; de Ruiter, G.; Houtekamer, M.; Bolhuis, H.; Stal, L.J.; Boschker, H.T.S.

    2014-01-01

    RATIONALELiquid chromatography/isotope ratio mass spectrometry (LC/IRMS) is currently the most accurate and precise technique for the measurement of compound-specific stable carbon isotope ratios (C-13/C-12) in biological metabolites, at their natural abundance. However, until now this technique

  14. Apportioning sources of organic matter in streambed sediments: An integrated molecular and compound-specific stable isotope approach

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Richard J., E-mail: Richard.J.Cooper@uea.ac.uk [School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ (United Kingdom); Pedentchouk, Nikolai; Hiscock, Kevin M.; Disdle, Paul [School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ (United Kingdom); Krueger, Tobias [IRI THESys, Humboldt University, 10099 Berlin (Germany); Rawlins, Barry G. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom)

    2015-07-01

    We present a novel application for quantitatively apportioning sources of organic matter in streambed sediments via a coupled molecular and compound-specific isotope analysis (CSIA) of long-chain leaf wax n-alkane biomarkers using a Bayesian mixing model. Leaf wax extracts of 13 plant species were collected from across two environments (aquatic and terrestrial) and four plant functional types (trees, herbaceous perennials, and C{sub 3} and C{sub 4} graminoids) from the agricultural River Wensum catchment, UK. Seven isotopic (δ{sup 13}C{sub 27}, δ{sup 13}C{sub 29}, δ{sup 13}C{sub 31}, δ{sup 13}C{sub 27–31}, δ{sup 2}H{sub 27}, δ{sup 2}H{sub 29}, and δ{sup 2}H{sub 27–29}) and two n-alkane ratio (average chain length (ACL), carbon preference index (CPI)) fingerprints were derived, which successfully differentiated 93% of individual plant specimens by plant functional type. The δ{sup 2}H values were the strongest discriminators of plants originating from different functional groups, with trees (δ{sup 2}H{sub 27–29} = − 208‰ to − 164‰) and C{sub 3} graminoids (δ{sup 2}H{sub 27–29} = − 259‰ to − 221‰) providing the largest contrasts. The δ{sup 13}C values provided strong discrimination between C{sub 3} (δ{sup 13}C{sub 27–31} = − 37.5‰ to − 33.8‰) and C{sub 4} (δ{sup 13}C{sub 27–31} = − 23.5‰ to − 23.1‰) plants, but neither δ{sup 13}C nor δ{sup 2}H values could uniquely differentiate aquatic and terrestrial species, emphasizing a stronger plant physiological/biochemical rather than environmental control over isotopic differences. ACL and CPI complemented isotopic discrimination, with significantly longer chain lengths recorded for trees and terrestrial plants compared with herbaceous perennials and aquatic species, respectively. Application of a comprehensive Bayesian mixing model for 18 streambed sediments collected between September 2013 and March 2014 revealed considerable temporal variability in the

  15. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  16. Applications of compound-specific carbon isotope ratios in organic contaminant studies

    International Nuclear Information System (INIS)

    Aravena, R.; Hunkeler, D.; Bloom, Y.; Frape, S.K.; Butler, B.; Edwards, E.; Cox, E.

    1999-01-01

    In this paper results are presented on the application of compound-specific isotope ratios measurements to assess biodegradation of chlorinated solvents, in particularly on microbial dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE). Analytical aspects and isotope data from laboratory and field studies are discussed. The analytical tests showed that both headspace and SPME techniques provide accurate δ 13 C values with a similar precision for a wide range of chlorinated solvents. However, the SPME method is generally more sensitive. The microcosm experiments show that a significant isotopic fractionation occurs during dechlorination of PCE and TCE to ethene. The largest fractionation factors are observed in the steps DCE-VC and VC-Ethene. In general, the δ 13 C of each dechlorination product was always more negative than the δ 13 C of the corresponding precursor. In addition, the δ 13 C values of each compound increased with time. A similar pattern was observed for dechlorination of PCE at a field site. These results show that compound-specific carbon isotope ratios technology is a very sensitive tool for evaluation of natural attenuation of chlorinated solvents in groundwater. (author)

  17. Metabolic studies in man using stable isotopes

    International Nuclear Information System (INIS)

    Faust, H.; Jung, K.; Krumbiegel, P.

    1993-01-01

    In this project, stable isotope compounds and stable isotope pharmaceuticals were used (with emphasis on the application of 15 N) to study several aspects of nitrogen metabolism in man. Of the many methods available, the 15 N stable isotope tracer technique holds a special position because the methodology for application and nitrogen isotope analysis is proven and reliable. Valid routine methods using 15 N analysis by emission spectrometry have been demonstrated. Several methods for the preparation of biological material were developed during our participation in the Coordinated Research Programme. In these studies, direct procedures (i.e. use of diluted urine as a samples without chemical preparation) or rapid isolation methods were favoured. Within the scope of the Analytical Quality Control Service (AQCS) enriched stable isotope reference materials for medical and biological studies were prepared and are now available through the International Atomic Energy Agency. The materials are of special importance as the increasing application of stable isotopes as tracers in medical, biological and agricultural studies has focused interest on reliable measurements of biological material of different origin. 24 refs

  18. Use of Shark Dental Protein to Estimate Trophic Position via Amino Acid Compound-Specific Isotope Analysis

    Science.gov (United States)

    Hayes, M.; Herbert, G.; Ellis, G.

    2017-12-01

    The diets of apex predators such as sharks are expected to change in response to overfishing of their mesopredator prey, but pre-anthropogenic baselines necessary to test for such changes are lacking. Stable isotope analysis (SIA) of soft tissues is commonly used to study diets in animals based on the bioaccumulation of heavier isotopes of carbon and nitrogen with increasing trophic level. In specimens representing pre-anthropogenic baselines, however, a modified SIA approach is needed to deal with taphonomic challenges, such as loss of soft tissues or selective loss of less stable amino acids (AAs) in other sources of organic compounds (e.g., teeth or bone) which can alter bulk isotope values. These challenges can be overcome with a compound-specific isotope analysis of individual AAs (AA-CSIA), but this first requires a thorough understanding of trophic enrichment factors for individual AAs within biomineralized tissues. In this study, we compare dental and muscle proteins of individual sharks via AA-CSIA to determine how trophic position is recorded within teeth and whether that information differs from that obtained from soft tissues. If skeletal organics reliably record information about shark ecology, then archaeological and perhaps paleontological specimens can be used to investigate pre-anthropogenic ecosystems. Preliminary experiments show that the commonly used glutamic acid/phenylalanine AA pairing may not be useful for establishing trophic position from dental proteins, but that estimated trophic position determined from alternate AA pairs are comparable to those from muscle tissue within the same species.

  19. Sulfur Isotope Exchange between S-35 Labeled Inorganic Sulfur-Compounds in Anoxic Marine-Sediments

    DEFF Research Database (Denmark)

    FOSSING, H.; THODEANDERSEN, S.; JØRGENSEN, BB

    1992-01-01

    of isotope exchange, specific radioactivities of the reduced sulfur pools were poorly defined and could not be used to calculate their rates of formation. Such isotope exchange reactions between the reduced inorganic sulfur compounds will affect the stable isotope distribution and are expected to decrease...

  20. Existing and emerging technologies for measuring stable isotope labelled retinol in biological samples: isotope dilution analysis of body retinol stores.

    Science.gov (United States)

    Preston, Tom

    2014-01-01

    This paper discusses some of the recent improvements in instrumentation used for stable isotope tracer measurements in the context of measuring retinol stores, in vivo. Tracer costs, together with concerns that larger tracer doses may perturb the parameter under study, demand that ever more sensitive mass spectrometric techniques are developed. GCMS is the most widely used technique. It has high sensitivity in terms of sample amount and uses high resolution GC, yet its ability to detect low isotope ratios is limited by background noise. LCMSMS may become more accessible for tracer studies. Its ability to measure low level stable isotope tracers may prove superior to GCMS, but it is isotope ratio MS (IRMS) that has been designed specifically for low level stable isotope analysis through accurate analysis of tracer:tracee ratios (the tracee being the unlabelled species). Compound-specific isotope analysis, where GC is interfaced to IRMS, is gaining popularity. Here, individual 13C-labelled compounds are separated by GC, combusted to CO2 and transferred on-line for ratiometric analysis by IRMS at the ppm level. However, commercially-available 13C-labelled retinol tracers are 2 - 4 times more expensive than deuterated tracers. For 2H-labelled compounds, GC-pyrolysis-IRMS has now become more generally available as an operating mode on the same IRMS instrument. Here, individual compounds are separated by GC and pyrolysed to H2 at high temperature for analysis by IRMS. It is predicted that GC-pyrolysis-IRMS will facilitate low level tracer procedures to measure body retinol stores, as has been accomplished in the case of fatty acids and amino acids. Sample size requirements for GC-P-IRMS may exceed those of GCMS, but this paper discusses sample preparation procedures and predicts improvements, particularly in the efficiency of sample introduction.

  1. Stable isotopes - separation and application

    International Nuclear Information System (INIS)

    Lockhart, I.M.

    1980-01-01

    In this review, methods used for the separation of stable isotopes ( 12 C, 13 C, 14 N, 15 N, 16 O, 17 O, 18 O, 34 S) will be described. The synthesis of labelled compounds, techniques for detection and assay, and areas of application will also be discussed. Particular attention will be paid to the isotopes of carbon, nitrogen, and oxygen; to date, sulphur isotopes have only assumed a minor role. The field of deuterium chemistry is too extensive for adequate treatment; it will therefore be essentially excluded. (author)

  2. Advisory group meeting on stable isotope labelled compounds in biomedical studies

    International Nuclear Information System (INIS)

    Vera Ruiz, H.; Parr, R.M.

    1985-11-01

    The programme of the meeting was restricted to topics involving applications of stable isotopes of the lighter elements (H, C, N, O). The current status of stable isotope techniques and applications in nutritional and biomedical studies, the applicability of these techniques in developing countries and the IAEA's future programmes on this topic were discussed

  3. Branched GDGTs in Lacustrine Environments: Tracing Allochthonous and Autochthonous Sources Using Compound-Specific Stable Carbon Isotope Analysis

    Science.gov (United States)

    Weber, Y.; S Sinninghe Damsté, J.; Lehmann, M. F.; Niemann, H.; Schubert, C. J.

    2015-12-01

    allochthonous (i.e., soil) source. Our data demonstrate the great potential of compound-specific C isotope analysis to constrain the origin of brGDGTs in lake sediments, possibly allowing the identification of freshwater environments that are particularly suited for brGDGT-based paleoenvironmental reconstructions.

  4. Sources of variability in fatty acid (FA) biomarkers in the application of compound-specific stable isotopes (CSSIs) to soil and sediment fingerprinting and tracing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Reiffarth, D.G., E-mail: Dominic.Reiffarth@unbc.ca [Natural Resources and Environmental Studies Program, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9 (Canada); Petticrew, E.L., E-mail: Ellen.Petticrew@unbc.ca [Geography Program and Quesnel River Research Centre, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9 (Canada); Owens, P.N., E-mail: Philip.Owens@unbc.ca [Environmental Science Program and Quesnel River Research Centre, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9 (Canada); Lobb, D.A., E-mail: David.Lobb@umanitoba.ca [Watershed Systems Research Program, University of Manitoba, 13 Freedman Crescent, Winnipeg, MB R3T 2N2 (Canada)

    2016-09-15

    Determining soil redistribution and sediment budgets in watersheds is often challenging. One of the methods for making such determinations employs soil and sediment fingerprinting techniques, using sediment properties such as geochemistry, fallout radionuclides, and mineral magnetism. These methods greatly improve the estimation of erosion and deposition within a watershed, but are limited when determining land use-based soil and sediment movement. Recently, compound-specific stable isotopes (CSSIs), which employ fatty acids naturally occurring in the vegetative cover of soils, offer the possibility of refining fingerprinting techniques based on land use, complementing other methods that are currently in use. The CSSI method has been met with some success; however, challenges still remain with respect to scale and resolution due to a potentially large degree of biological, environmental and analytical uncertainty. By better understanding the source of tracers used in CSSI work and the inherent biochemical variability in those tracers, improvement in sample design and tracer selection is possible. Furthermore, an understanding of environmental and analytical factors affecting the CSSI signal will lead to refinement of the approach and the ability to generate more robust data. This review focuses on sources of biological, environmental and analytical variability in applying CSSI to soil and sediment fingerprinting, and presents recommendations based on past work and current research in this area for improving the CSSI technique. A recommendation, based on current information available in the literature, is to use very-long chain saturated fatty acids and to avoid the use of the ubiquitous saturated fatty acids, C{sub 16} and C{sub 18}. - Highlights: • Compound-specific stable isotopes (CSSIs) of carbon may be used as soil tracers. • The variables affecting CSSI data are: biological, environmental and analytical. • Understanding sources of variability will lead

  5. Sources of variability in fatty acid (FA) biomarkers in the application of compound-specific stable isotopes (CSSIs) to soil and sediment fingerprinting and tracing: A review

    International Nuclear Information System (INIS)

    Reiffarth, D.G.; Petticrew, E.L.; Owens, P.N.; Lobb, D.A.

    2016-01-01

    Determining soil redistribution and sediment budgets in watersheds is often challenging. One of the methods for making such determinations employs soil and sediment fingerprinting techniques, using sediment properties such as geochemistry, fallout radionuclides, and mineral magnetism. These methods greatly improve the estimation of erosion and deposition within a watershed, but are limited when determining land use-based soil and sediment movement. Recently, compound-specific stable isotopes (CSSIs), which employ fatty acids naturally occurring in the vegetative cover of soils, offer the possibility of refining fingerprinting techniques based on land use, complementing other methods that are currently in use. The CSSI method has been met with some success; however, challenges still remain with respect to scale and resolution due to a potentially large degree of biological, environmental and analytical uncertainty. By better understanding the source of tracers used in CSSI work and the inherent biochemical variability in those tracers, improvement in sample design and tracer selection is possible. Furthermore, an understanding of environmental and analytical factors affecting the CSSI signal will lead to refinement of the approach and the ability to generate more robust data. This review focuses on sources of biological, environmental and analytical variability in applying CSSI to soil and sediment fingerprinting, and presents recommendations based on past work and current research in this area for improving the CSSI technique. A recommendation, based on current information available in the literature, is to use very-long chain saturated fatty acids and to avoid the use of the ubiquitous saturated fatty acids, C 16 and C 18 . - Highlights: • Compound-specific stable isotopes (CSSIs) of carbon may be used as soil tracers. • The variables affecting CSSI data are: biological, environmental and analytical. • Understanding sources of variability will lead to more

  6. Source characterization using compound composition and stable carbon isotope ratio of PAHs in sediments from lakes, harbor, and shipping waterway

    International Nuclear Information System (INIS)

    Kim, Moonkoo; Kennicutt, Mahlon C.; Qian, Yaorong

    2008-01-01

    Molecular compositions and compound specific stable carbon isotope ratios of polycyclic aromatic hydrocarbons (PAH) isolated from sediments were used to characterize possible sources of contamination at an urban lake, a harbor, a shipping waterway, and a relatively undisturbed remote lake in the northwest United States. Total PAH concentrations in urban lake sediments ranged from 66.0 to 16,500 μg g -1 dry wt. with an average of 2600 μg g -1 , which is ∼ 50, 100, and 400 times higher on average than PAH in harbor (48 μg g -1 on average), shipping waterway (26 μg g -1 ), and remote lake (7 μg g -1 ) sediments, respectively. The PAH distribution patterns, methyl phenanthrene/phenanthrene ratios, and a pyrogenic index at the sites suggest a pyrogenic origin for PAHs. Source characterization using principal component analysis and various molecular indices including C2-dibenzothiophenes/C2-phenanthrenes, C3-dibenzothiophenes/C3-phenanthrenes, and C2-chrysenes/C2-phenanthrenes ratios, was able to differentiate PAH deposited in sediments from the four sites. The uniqueness of the source of the sediment PAHs from urban lake was also illustrated by compound specific stable carbon isotope analysis. It was concluded that urban lake sediments are accumulating PAH from sources that are unique from contamination detected at nearby sites in the same watershed

  7. Triple-element compound-specific stable isotope analysis of 1,2-dichloroethane for characterization of the underlying dehalogenation reaction in two Dehalococcoides mccartyi strains.

    Science.gov (United States)

    Franke, Steffi; Lihl, Christina; Renpenning, Julian; Elsner, Martin; Nijenhuis, Ivonne

    2017-12-01

    Chlorinated ethanes belong to the most common groundwater and soil contaminants. Of these, 1,2-dichloroethane (1,2-DCA) is a man-made, persistent and toxic contaminant, released due to improper waste treatment at versatile production sites. This study investigated the anaerobic transformation of 1,2-DCA by Dehalococcoides mccartyi strain 195 and strain BTF08 using triple-element compound-specific stable isotope analysis of carbon, chlorine and hydrogen for the first time. Isotope fractionation patterns for carbon (εCBTF08 = -28.4 ± 3.7‰; εC195 = -30.9 ± 3.6‰) and chlorine (εClBTF08 = -4.6 ± 0.7‰; εCl195 = -4.2 ± 0.5‰) within both investigated D. mccartyi strains, as well as the dual-element analysis (ΛBTF08 = 6.9 ± 1.2; Λ195 = 7.1 ± 0.2), supported identical reaction mechanisms for dehalogenation of 1,2-DCA. Hydrogen isotope fractionation analysis revealed dihaloelimination as prevalent reaction mechanism. Vinyl chloride as major intermediate could be excluded by performing the experiment in deuterated aqueous media. Furthermore, evaluation of the derived apparent kinetic isotope effects (AKIECBTF08 = 1.029/AKIEC195 = 1.031; AKIEClBTF08 = 1.005/AKIECl195 = 1.004) pointed towards simultaneous abstraction of both involved chlorine-substituents in a concerted matter. It was shown that D. mccartyi strain BTF08 and strain 195 are capable of complete, direct dihaloelimination of 1,2-DCA to ethene. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Trophodynamics and functional feeding groups of North Sea fauna: a combined stable isotope and fatty acid approach

    NARCIS (Netherlands)

    Kürten, B.; Frutos, I.; Struck, U.; Painting, S.J.; Polunin, N.V.C.; Middelburg, J.J.

    The trophodynamics of pelagic and benthic animals of the North Sea, North Atlantic shelf, were assessed using stable isotope analysis (SIA) of natural abundance carbon and nitrogen isotopes, lipid fingerprinting and compound-specific SIA (CSIA) of phospholipid-derived fatty acids (PLFAs).

  9. Trophodynamics and functional feeding groups of North Sea fauna: a combined stable isotope and fatty acid approach

    NARCIS (Netherlands)

    Kürten, B.; Frutos, I.; Struck, U.; Painting, S.J.; Polunin, N.V.C.; Middelburg, J.J.

    2013-01-01

    The trophodynamics of pelagic and benthic animals of the North Sea, North Atlantic shelf, were assessed using stable isotope analysis (SIA) of natural abundance carbon and nitrogen isotopes, lipid fingerprinting and compound-specific SIA (CSIA) of phospholipid-derived fatty acids (PLFAs).

  10. Compound-specific chlorine isotope ratios of TCE, PCE and DCE isomers by direct injection using CF-IRMS

    International Nuclear Information System (INIS)

    Shouakar-Stash, Orfan; Drimmie, Robert J.; Zhang Min; Frape, Shaun K.

    2006-01-01

    produced during ion bombardment in the mass spectrometer, there is no need to convert chlorinated ethenes to methyl chloride. As a result, this technique greatly enhances the efficiency for isotopic analysis by eliminating procedures for pre-concentration, off-line separation and sample preparation. In addition, it also reduces the potential for isotopic fractionation introduced during these procedures. Compound-specific Cl stable isotope analysis can be used as a tool to study the sources of organic contaminants in groundwater and their behaviour in the subsurface environments. It may also assist in understanding processes such as transport, mixing, and degradation reactions

  11. Biomedical research applications of electromagnetically separated enriched stable isotopes

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1982-01-01

    The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosotope production, labeled compounds, and potential radiopharmaceuticals; (2) nutrition, food science, and pharmacology; (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and Moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and non-radioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Priorities and summaries are based on statements in the references and from answers to a survey conducted in the fall of 1981. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for 26 Mg, 43 Ca, 70 Zn, 76 Se, 78 Se, 102 Pd, 111 Cd, 113 Cd, and 190 Os. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments

  12. Molecular and stable carbon isotopic characterization of PAH contaminants at McMurdo Station, Antarctica

    International Nuclear Information System (INIS)

    Kim, Moonkoo . E-mail moonkoo.kim@wmich.edu; Kennicutt, Mahlon C.; Qian Yaorong

    2006-01-01

    The molecular and stable carbon isotopic compositions of contaminant polycyclic aromatic hydrocarbons (PAHs) at McMurdo Station, Antarctica were analyzed in samples collected from land and sub-tidal area. PAHs in the study areas were characterized by high amounts of naphthalene and alkylated naphthalenes from petroleum products introduced by human activities in the area. Principal component analysis (PCA) of PAH composition data identified multiple sources of PAH contamination in the study area. Compositional assignments of origins were confirmed using compound specific stable carbon isotopic analysis

  13. The use of stable isotopes in medicinal chemistry

    International Nuclear Information System (INIS)

    Halliday, D.; Thompson, G.N.

    1988-01-01

    Stable isotopes have been employed increasingly as tracers over the last decade both to provide the clinician with the opportunity to broaden, in a quantitative manner, discrete areas of diagnosis and research, and the clinical chemist with definitive methodology for specific analyte analysis. These non-radioactive 'heavy' isotopes contain one or more extra neutrons in the nucleus compared with their more abundant 'lighter' analogues. Impetus in the application of stable isotopes for in vivo studies has come from an increased awareness of the possible harmful effects in the use of radionuclides, and a realisation of several positive advantages conferred by the use of stable isotopes in their own right - certain elements of clinical importance (especially nitrogen) lack a useable radio-nuclide equivalent; use of a 'cocktail' of stable isotopes permits a range of studies to be performed in the same patient simultaneously and, within specific constraints, serial studies can be performed in the same patients. (author)

  14. Development of new technology for the use of stable isotopic tracers in the study of human health and disease

    International Nuclear Information System (INIS)

    Hacyey, D.L.; Klein, P.D.; Szczepanik, P.A.; Niu, W.; Stellaard, F.; Tserng, K.Y.

    1977-01-01

    This program has five major aspects: first, the development of analytical instrumentation of requisite sensitivity, stability, and simplicity to conduct stable isotope measurements in a routine manner; second, the development of appropriately labeled compounds for metabolic investigations, initially through custom syntheses but eventually through commercial sources; third, development of analytical methodology to isolate, purify, and determine the isotopic content of specific organic compounds reflecting metabolic processes or disease states; fourth, collaborative development of clinical applications and testing on a routine basis, through a network of clinical centers around the country; and finally, the collection and dissemination of stable isotope information on an international scale through survey publications and conferences

  15. Functional connectivity of coral reef fishes in a tropical seascape assessed by compound-specific stable isotope analyses

    KAUST Repository

    McMahon, Kelton W.

    2011-01-01

    The ecological integrity of tropical habitats, including mangroves, seagrass beds and coral reefs, is coming under increasing pressure from human activities. Many coral reef fish species are thought to use mangroves and seagrass beds as juvenile nurseries before migrating to coral reefs as adults. Identifying essential habitats and preserving functional linkages among these habitats is likely necessary to promote ecosystem health and sustainable fisheries on coral reefs. This necessitates quantitative assessment of functional connectivity among essential habitats at the seascape level. This thesis presents the development and first application of a method for tracking fish migration using amino acid (AA) δ13C analysis in otoliths. In a controlled feeding experiment with fish reared on isotopically distinct diets, we showed that essential AAs exhibited minimal trophic fractionation between consumer and diet, providing a δ13C record of the baseline isoscape. We explored the potential for geochemical signatures in otoliths of snapper to act as natural tags of residency in seagrass beds, mangroves and coral reefs in the Red Sea, Caribbean Sea and Eastern Pacific Ocean. The δ13C values of otolith essential AAs varied as a function of habitat type and provided a better tracer of residence in juvenile nursery habitats than conventional bulk stable isotope analyses (SIA). Using our otolith AA SIA approach, we quantified the relative contribution of coastal wetlands and reef habitats to Lutjanus ehrenbergii populations on coastal, shelf and oceanic coral reefs in the Red Sea. L. ehrenbergii made significant ontogenetic migrations, traveling more than 30 km from juvenile nurseries to coral reefs and across deep open water. Coastal wetlands were important nurseries for L. ehrenbergii; however, there was significant plasticity in L. ehrenbergii juvenile habitat requirements. Seascape configuration played an important role in determining the functional connectivity of L

  16. An analytical system for the measurement of stable hydrogen isotopes in ambient volatile organic compounds

    Science.gov (United States)

    Meisehen, T.; Bühler, F.; Koppmann, R.; Krebsbach, M.

    2015-10-01

    Stable isotope measurements in atmospheric volatile organic compounds (VOCs) are an excellent tool to analyse chemical and dynamical processes in the atmosphere. While up to now isotope studies of VOCs in ambient air have mainly focussed on carbon isotopes, we herein present a new measurement system to investigate hydrogen isotope ratios in atmospheric VOCs. This system, consisting of a gas chromatography pyrolysis isotope ratio mass spectrometer (GC-P-IRMS) and a pre-concentration system, was thoroughly characterised using a VOC test mixture. A precision of better than 9 ‰ (in δ 2H) is achieved for n-pentane, 2-methyl-1,3-butadiene (isoprene), n-heptane, 4-methyl-pentane-2-one (4-methyl-2-pentanone), methylbenzene (toluene), n-octane, ethylbenzene, m/p-xylene and 1,2,4-trimethylbenzene. A comparison with independent measurements via elemental analysis shows an accuracy of better than 9 ‰ for n-pentane, n-heptane, 4-methyl-2-pentanone, toluene and n-octane. Above a minimum required pre-concentrated compound mass the obtained δ 2H values are constant within the standard deviations. In addition, a remarkable influence of the pyrolysis process on the isotope ratios is found and discussed. Reliable measurements are only possible if the ceramic tube used for the pyrolysis is sufficiently conditioned, i.e. the inner surface is covered with a carbon layer. It is essential to verify this conditioning regularly and to renew it if required. Furthermore, influences of a necessary H3+ correction and the pyrolysis temperature on the isotope ratios are discussed. Finally, the applicability to measure hydrogen isotope ratios in VOCs at ambient levels is demonstrated with measurements of outside air on 5 different days in February and March 2015. The measured hydrogen isotope ratios range from -136 to -105 ‰ forn-pentane, from -86 to -63 ‰ for toluene, from -39 to -15 ‰ for ethylbenzene, from -99 to -68 ‰ for m/p-xylene and from -45 to -34 ‰ for o-xylene.

  17. Compound-Specific Isotope Analysis of Diesel Fuels in a Forensic Investigation

    Science.gov (United States)

    Muhammad, Syahidah; Frew, Russell; Hayman, Alan

    2015-02-01

    Compound-specific isotope analysis (CSIA) offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ13C and δ2H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin i.e. the very subtle differences in isotopic values between the samples.

  18. Compound-Specific Isotope Analysis of Diesel Fuels in a Forensic Investigation

    Directory of Open Access Journals (Sweden)

    Syahidah Akmal Muhammad

    2015-02-01

    Full Text Available Compound-specific isotope analysis (CSIA offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ13C and δ2H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin i.e. the very subtle differences in isotopic values between the samples.

  19. Compound-specific isotope analysis of diesel fuels in a forensic investigation.

    Science.gov (United States)

    Muhammad, Syahidah A; Frew, Russell D; Hayman, Alan R

    2015-01-01

    Compound-specific isotope analysis (CSIA) offers great potential as a tool to provide chemical evidence in a forensic investigation. Many attempts to trace environmental oil spills were successful where isotopic values were particularly distinct. However, difficulties arise when a large data set is analyzed and the isotopic differences between samples are subtle. In the present study, discrimination of diesel oils involved in a diesel theft case was carried out to infer the relatedness of the samples to potential source samples. This discriminatory analysis used a suite of hydrocarbon diagnostic indices, alkanes, to generate carbon and hydrogen isotopic data of the compositions of the compounds which were then processed using multivariate statistical analyses to infer the relatedness of the data set. The results from this analysis were put into context by comparing the data with the δ(13)C and δ(2)H of alkanes in commercial diesel samples obtained from various locations in the South Island of New Zealand. Based on the isotopic character of the alkanes, it is suggested that diesel fuels involved in the diesel theft case were distinguishable. This manuscript shows that CSIA when used in tandem with multivariate statistical analysis provide a defensible means to differentiate and source-apportion qualitatively similar oils at the molecular level. This approach was able to overcome confounding challenges posed by the near single-point source of origin, i.e., the very subtle differences in isotopic values between the samples.

  20. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  1. Stable carbon isotope fractionation during the biodegradation of lambda-cyhalothrin.

    Science.gov (United States)

    Shen, Xiaoli; Xu, Zemin; Zhang, Xichang; Yang, Fangxing

    2015-11-01

    In this study, the microbial degradation of lambda-cyhalothrin in soil was investigated using compound-specific stable isotope analysis. The results revealed that lambda-cyhalothrin was biodegraded in soil under laboratory conditions. The half-lives of lambda-cyhalothrin were determined to be 49 and 161 days in non-sterile and sterile soils spiked with 2mg/kg lambda-cyhalothrin and 84 and 154 days in non-sterile and sterile soils spiked with 10mg/kg lambda-cyhalothrin, respectively. The biodegradation of lambda-cyhalothrin resulted in carbon isotope fractionation, which shifted from -29.0‰ to -26.5‰ in soil spiked with 2mg/kg lambda-cyhalothrin, and to -27.5‰ with 10mg/kg lambda-cyhalothrin. A relationship was established between the stable carbon isotope fraction and the residual concentrations of lambda-cyhalothrin by the Rayleigh equation in which the carbon isotope enrichment factor ε of the microbial degradation of lambda-cyhalothrin in the soil was calculated as -2.53‰. This study provides an approach to quantitatively evaluate the biodegradation of lambda-cyhalothrin in soil in field studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Using stable isotope analysis to discriminate gasoline on the basis of its origin.

    Science.gov (United States)

    Heo, Su-Young; Shin, Woo-Jin; Lee, Sin-Woo; Bong, Yeon-Sik; Lee, Kwang-Sik

    2012-03-15

    Leakage of gasoline and diesel from underground tanks has led to a severe environmental problem in many countries. Tracing the production origin of gasoline and diesel is required to enable the development of dispute resolution and appropriate remediation strategies for the oil-contaminated sites. We investigated the bulk and compound-specific isotopic compositions of gasoline produced by four oil companies in South Korea: S-Oil, SK, GS and Hyundai. The relative abundance of several compounds in gasoline was determined by the peak height of the major ion (m/z 44). The δ(13)C(Bulk) and δD(Bulk) values of gasoline produced by S-Oil were significantly different from those of SK, GS and Hyundai. In particular, the compound-specific isotopic value (δ(13)C(CSIA)) of methyl tert-butyl ether (MTBE) in S-Oil gasoline was significantly lower than that of gasoline produced by other oil companies. The abundance of several compounds in gasoline, such as n-pentane, MTBE, n-hexane, toluene, ethylbenzene and o-xylene, differed widely among gasoline from different oil companies. This study shows that gasoline can be forensically discriminated according to the oil company responsible for its manufacture using stable isotope analysis combined with multivariate statistical analysis. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Stable isotope studies

    International Nuclear Information System (INIS)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  4. High Relative Abundance of Biofuel Sourced Ethanol in Precipitation in the US and Brazil Determined Using Compound Specific Stable Carbon Isotopes

    Science.gov (United States)

    Shimizu, M. S.; Felix, J. D. D.; Casas, M.; Avery, G. B., Jr.; Kieber, R. J.; Mead, R. N.; Willey, J. D.; Lane, C.

    2017-12-01

    Ethanol biofuel production and consumption have increased exponentially over the last two decades to help reduce greenhouse gas emissions. Currently, 85% of global ethanol production and consumption occurs in the US and Brazil. Increasing biofuel ethanol usage in these two countries enhances emissions of uncombusted ethanol to the atmosphere contributing to poor air quality. Although measurements of ethanol in the air and the precipitation reveal elevated ethanol concentrations in densely populated cities, other sources such as natural vegetation can contribute to emission to the atmosphere. Previous modeling studies indicated up to 12% of atmospheric ethanol is from anthropogenic emissions. Only one gas phase study in southern Florida attempted to constrain the two sources through direct isotopic measurements. The current study used a stable carbon isotope method to constrain sources of ethanol in rainwater from the US and Brazil. A method was developed using solid phase microextraction (SPME) with subsequent analysis by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Stable carbon isotope signatures (δ13C) of vehicle ethanol emission sources for both the US (-9.8‰) and Brazil (-12.7‰) represented C4 plants as feedstock (corn and sugarcane) for biofuel production. An isotope mixing model using biofuel from vehicles (C4 plants) and biogenic (C3 plants) end-members was implemented to estimate ethanol source apportionment in the rain. We found that stable carbon isotope ratio of ethanol in the rain ranged between -22.6‰ and -12.7‰. Our results suggest that the contribution of biofuel to atmospheric ethanol can be higher than previously estimated. As biofuel usage increasing globally, it is essential to determine the relative abundance of anthropogenic ethanol in other areas of the world.

  5. Amino acid compositions in heated carbonaceous chondrites and their compound-specific nitrogen isotopic ratios

    Science.gov (United States)

    Chan, Queenie Hoi Shan; Chikaraishi, Yoshito; Takano, Yoshinori; Ogawa, Nanako O.; Ohkouchi, Naohiko

    2016-01-01

    A novel method has been developed for compound-specific nitrogen isotope compositions with an achiral column which was previously shown to offer high precision for nitrogen isotopic analysis. We applied the method to determine the amino acid contents and stable nitrogen isotopic compositions of individual amino acids from the thermally metamorphosed (above 500 °C) Antarctic carbonaceous chondrites Ivuna-like (CI)1 (or CI-like) Yamato (Y) 980115 and Ornans-like (CO)3.5 Allan Hills (ALH) A77003 with the use of gas chromatography/combustion/isotope ratio mass spectrometry. ALHA77003 was deprived of amino acids due to its extended thermal alteration history. Amino acids were unambiguously identified in Y-980115, and the δ15N values of selected amino acids (glycine +144.8 ‰; α-alanine +121.2 ‰) are clearly extraterrestrial. Y-980115 has experienced an extended period of aqueous alteration as indicated by the presence of hydrous mineral phases. It has also been exposed to at least one post-hydration short-lived thermal metamorphism. Glycine and alanine were possibly produced shortly after the accretion event of the asteroid parent body during the course of an extensive aqueous alteration event and have abstained from the short-term post-aqueous alteration heating due to the heterogeneity of the parent body composition and porosity. These carbonaceous chondrite samples are good analogs that offer important insights into the target asteroid Ryugu of the Hayabusa-2 mission, which is a C-type asteroid likely composed of heterogeneous materials including hydrated and dehydrated minerals.

  6. Position-specific isotope modeling of organic micropollutants transformations through different reaction pathways

    Science.gov (United States)

    Jin, Biao; Rolle, Massimo

    2016-04-01

    Organic compounds are produced in vast quantities for industrial and agricultural use, as well as for human and animal healthcare [1]. These chemicals and their metabolites are frequently detected at trace levels in fresh water environments where they undergo degradation via different reaction pathways. Compound specific stable isotope analysis (CSIA) is a valuable tool to identify such degradation pathways in different environmental systems. Recent advances in analytical techniques have promoted the fast development and implementation of multi-element CSIA. However, quantitative frameworks to evaluate multi-element stable isotope data and incorporating mechanistic information on the degradation processes [2,3] are still lacking. In this study we propose a mechanism-based modeling approach to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. We validate the proposed approach with the concentration and multi-element isotope data of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model precisely captures the dual element isotope trends characteristic of different reaction pathways and their range of variation consistent with observed multi-element (C, N) bulk isotope fractionation. The proposed approach can also be used as a tool to explore transformation pathways in scenarios for which position-specific isotope data are not yet available. [1] Schwarzenbach, R.P., Egli, T., Hofstetter, T.B., von Gunten, U., Wehrli, B., 2010. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. doi:10.1146/annurev-environ-100809-125342. [2] Jin, B., Haderlein, S.B., Rolle, M

  7. Stable isotope tracers and exercise physiology: past, present and future.

    Science.gov (United States)

    Wilkinson, Daniel J; Brook, Matthew S; Smith, Kenneth; Atherton, Philip J

    2017-05-01

    Stable isotope tracers have been invaluable assets in physiological research for over 80 years. The application of substrate-specific stable isotope tracers has permitted exquisite insight into amino acid, fatty-acid and carbohydrate metabolic regulation (i.e. incorporation, flux, and oxidation, in a tissue-specific and whole-body fashion) in health, disease and response to acute and chronic exercise. Yet, despite many breakthroughs, there are limitations to 'substrate-specific' stable isotope tracers, which limit physiological insight, e.g. the need for intravenous infusions and restriction to short-term studies (hours) in controlled laboratory settings. In recent years significant interest has developed in alternative stable isotope tracer techniques that overcome these limitations, in particular deuterium oxide (D 2 O or heavy water). The unique properties of this tracer mean that through oral administration, the turnover and flux through a number of different substrates (muscle proteins, lipids, glucose, DNA (satellite cells)) can be monitored simultaneously and flexibly (hours/weeks/months) without the need for restrictive experimental control. This makes it uniquely suited for the study of 'real world' human exercise physiology (amongst many other applications). Moreover, using D 2 O permits evaluation of turnover of plasma and muscle proteins (e.g. dynamic proteomics) in addition to metabolomics (e.g. fluxomics) to seek molecular underpinnings, e.g. of exercise adaptation. Here, we provide insight into the role of stable isotope tracers, from substrate-specific to novel D 2 O approaches, in facilitating our understanding of metabolism. Further novel potential applications of stable isotope tracers are also discussed in the context of integration with the snowballing field of 'omic' technologies. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  8. Protein-based stable isotope probing.

    Science.gov (United States)

    Jehmlich, Nico; Schmidt, Frank; Taubert, Martin; Seifert, Jana; Bastida, Felipe; von Bergen, Martin; Richnow, Hans-Hermann; Vogt, Carsten

    2010-12-01

    We describe a stable isotope probing (SIP) technique that was developed to link microbe-specific metabolic function to phylogenetic information. Carbon ((13)C)- or nitrogen ((15)N)-labeled substrates (typically with >98% heavy label) were used in cultivation experiments and the heavy isotope incorporation into proteins (protein-SIP) on growth was determined. The amount of incorporation provides a measure for assimilation of a substrate, and the sequence information from peptide analysis obtained by mass spectrometry delivers phylogenetic information about the microorganisms responsible for the metabolism of the particular substrate. In this article, we provide guidelines for incubating microbial cultures with labeled substrates and a protocol for protein-SIP. The protocol guides readers through the proteomics pipeline, including protein extraction, gel-free and gel-based protein separation, the subsequent mass spectrometric analysis of peptides and the calculation of the incorporation of stable isotopes into peptides. Extraction of proteins and the mass fingerprint measurements of unlabeled and labeled fractions can be performed in 2-3 d.

  9. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes

    Science.gov (United States)

    Hayes, J. M.; Freeman, K. H.; Popp, B. N.; Hoham, C. H.

    1990-01-01

    Patterns of isotopic fractionation in biogeochemical processes are reviewed and it is suggested that isotopic fractionations will be small when substrates are large. If so, isotopic compositions of biomarkers will reflect those of their biosynthetic precursors. This prediction is tested by consideration of results of analyses of geoporphyrins and geolipids from the Greenhorn Formation (Cretaceous, Western Interior Seaway of North America) and the Messel Shale (Eocene, lacustrine, southern Germany). It is shown (i) that isotopic compositions of porphyrins that are related to a common source, but which have been altered structurally, cluster tightly and (ii) that isotopic differences between geolipids and porphyrins related to a common source are equal to those observed in modern biosynthetic products. Both of these observations are consistent with preservation of biologically controlled isotopic compositions during diagenesis. Isotopic compositions of individual compounds can thus be interpreted in terms of biogeochemical processes in ancient depositional environments. In the Cretaceous samples, isotopic compositions of n-alkanes are covariant with those of total organic carbon, while delta values for pristane and phytane are covariant with those of porphyrins. In this unit representing an open marine environment, the preserved acyclic polyisoprenoids apparently derive mainly from primary material, while the extractable, n-alkanes derive mainly from lower levels of the food chain. In the Messel Shale, isotopic compositions of individual biomarkers range from -20.9 to -73.4% vs PDB. Isotopic compositions of specific compounds can be interpreted in terms of origin from methylotrophic, chemautotrophic, and chemolithotrophic microorganisms as well as from primary producers that lived in the water column and sediments of this ancient lake.

  10. Development of Stable Isotope Technology

    International Nuclear Information System (INIS)

    Jeong, Do Young; Kim, Cheol Jung; Han, Jae Min

    2009-03-01

    KAERI has obtained an advanced technology with singular originality for laser stable isotope separation. Objectives for this project are to get production technology of Tl-203 stable isotope used for medical application and are to establish the foundation of the pilot system, while we are taking aim at 'Laser Isotope Separation Technology to make resistance to the nuclear proliferation'. And we will contribute to ensuring a nuclear transparency in the world society by taking part in a practical group of NSG and being collaboration with various international groups related to stable isotope separation technology

  11. Calcium stable isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark

    2016-08-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  12. Calcium stable isotope geochemistry

    International Nuclear Information System (INIS)

    Gausonne, Nikolaus; Schmitt, Anne-Desiree; Heuser, Alexander; Wombacher, Frank; Dietzel, Martin; Tipper, Edward; Schiller, Martin

    2016-01-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  13. DNA stable-isotope probing (DNA-SIP).

    Science.gov (United States)

    Dunford, Eric A; Neufeld, Josh D

    2010-08-02

    DNA stable-isotope probing (DNA-SIP) is a powerful technique for identifying active microorganisms that assimilate particular carbon substrates and nutrients into cellular biomass. As such, this cultivation-independent technique has been an important methodology for assigning metabolic function to the diverse communities inhabiting a wide range of terrestrial and aquatic environments. Following the incubation of an environmental sample with stable-isotope labelled compounds, extracted nucleic acid is subjected to density gradient ultracentrifugation and subsequent gradient fractionation to separate nucleic acids of differing densities. Purification of DNA from cesium chloride retrieves labelled and unlabelled DNA for subsequent molecular characterization (e.g. fingerprinting, microarrays, clone libraries, metagenomics). This JoVE video protocol provides visual step-by-step explanations of the protocol for density gradient ultracentrifugation, gradient fractionation and recovery of labelled DNA. The protocol also includes sample SIP data and highlights important tips and cautions that must be considered to ensure a successful DNA-SIP analysis.

  14. Stable isotope 15N-urea and clinical research in nephrology

    International Nuclear Information System (INIS)

    Sugino, Nobuhiro; Arai, Junko; Akimoto, Mitsuko; Miwa, Toichiro; Takuma, Takehide

    1990-01-01

    Stable isotope 15 N-compound, 15 N-urea, is useful marker to investigate nitrogen metabolism in clinical nephrology, particularly in chronic renal failure or dialysis. 15 N-urea incorporation into plasma albumin in addition to plasma 15 N disappearance was studied in 6 patients with endstage chronic renal failure. As a result, only minor fraction of administered 15 N-urea was incorporated into albumin in this study. In addition, it was also confirmed that high energy diet may promote protein synthesis through 15 N incorporation to plasma amino acids, such as alanine, in these patients with low protein meal. Therefore, administration of 15 N-compound to human subjects may contribute to provide us the important informations on nitrogen metabolism. For instance, urea kinetics are described in the endstage chronic renal failure in this review. However, less expensive 15 N-compounds should be provided and more simple but accurate measurement of 15 N activity should be developed for the further clinical application of the stable isotope. (author)

  15. Stable carbon isotope fractionation during the biodegradation of lambda-cyhalothrin

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xiaoli [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Environmental Engineering, Quzhou University, Quzhou 324000 (China); Xu, Zemin [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhang, Xichang [Laboratory for Teaching in Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Fangxing, E-mail: fxyang@zju.edu.cn [MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research — UFZ, Leipzig 04318 (Germany)

    2015-11-01

    In this study, the microbial degradation of lambda-cyhalothrin in soil was investigated using compound-specific stable isotope analysis. The results revealed that lambda-cyhalothrin was biodegraded in soil under laboratory conditions. The half-lives of lambda-cyhalothrin were determined to be 49 and 161 days in non-sterile and sterile soils spiked with 2 mg/kg lambda-cyhalothrin and 84 and 154 days in non-sterile and sterile soils spiked with 10 mg/kg lambda-cyhalothrin, respectively. The biodegradation of lambda-cyhalothrin resulted in carbon isotope fractionation, which shifted from − 29.0‰ to − 26.5‰ in soil spiked with 2 mg/kg lambda-cyhalothrin, and to − 27.5‰ with 10 mg/kg lambda-cyhalothrin. A relationship was established between the stable carbon isotope fraction and the residual concentrations of lambda-cyhalothrin by the Rayleigh equation in which the carbon isotope enrichment factor ε of the microbial degradation of lambda-cyhalothrin in the soil was calculated as − 2.53‰. This study provides an approach to quantitatively evaluate the biodegradation of lambda-cyhalothrin in soil in field studies. - Highlights: • Abiotic and biotic degradation of lambda-cyhalothrin were observed in soil. • Biodegradation of lambda-cyhalothrin was evaluated by CSIA. • Biodegradation of lambda-cyhalothrin leads to carbon isotope fractionation. • An enrichment factor ε of lambda-cyhalothrin was determined as − 2.53‰.

  16. Stable carbon isotope fractionation during the biodegradation of lambda-cyhalothrin

    International Nuclear Information System (INIS)

    Shen, Xiaoli; Xu, Zemin; Zhang, Xichang; Yang, Fangxing

    2015-01-01

    In this study, the microbial degradation of lambda-cyhalothrin in soil was investigated using compound-specific stable isotope analysis. The results revealed that lambda-cyhalothrin was biodegraded in soil under laboratory conditions. The half-lives of lambda-cyhalothrin were determined to be 49 and 161 days in non-sterile and sterile soils spiked with 2 mg/kg lambda-cyhalothrin and 84 and 154 days in non-sterile and sterile soils spiked with 10 mg/kg lambda-cyhalothrin, respectively. The biodegradation of lambda-cyhalothrin resulted in carbon isotope fractionation, which shifted from − 29.0‰ to − 26.5‰ in soil spiked with 2 mg/kg lambda-cyhalothrin, and to − 27.5‰ with 10 mg/kg lambda-cyhalothrin. A relationship was established between the stable carbon isotope fraction and the residual concentrations of lambda-cyhalothrin by the Rayleigh equation in which the carbon isotope enrichment factor ε of the microbial degradation of lambda-cyhalothrin in the soil was calculated as − 2.53‰. This study provides an approach to quantitatively evaluate the biodegradation of lambda-cyhalothrin in soil in field studies. - Highlights: • Abiotic and biotic degradation of lambda-cyhalothrin were observed in soil. • Biodegradation of lambda-cyhalothrin was evaluated by CSIA. • Biodegradation of lambda-cyhalothrin leads to carbon isotope fractionation. • An enrichment factor ε of lambda-cyhalothrin was determined as − 2.53‰

  17. Stable isotopes

    International Nuclear Information System (INIS)

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  18. Pico-CSIA: Picomolar Scale Compound-Specific Isotope Analyses

    Science.gov (United States)

    Baczynski, A. A.; Polissar, P. J.; Juchelka, D.; Schwieters, J. B.; Hilkert, A.; Freeman, K. H.

    2016-12-01

    The basic approach to analyzing molecular isotopes has remained largely unchanged since the late 1990s. Conventional compound-specific isotope analyses (CSIA) are conducted using capillary gas chromatography (GC), a combustion interface, and an isotope-ratio mass spectrometer (IRMS). Commercially available GC-IRMS systems are comprised of components with inner diameters ≥0.25 mm and employ helium flow rates of 1-4 mL/min. These flow rates are an order of magnitude larger than what the IRMS can accept. Consequently, ≥90% of the sample is lost through the open split, and 1-10s of nanomoles of carbon are required for analysis. These sample requirements are prohibitive for many biomarkers, which are often present in picomolar concentrations. We utilize the resolving power and low flows of narrow-bore capillary GC to improve the sensitivity of CSIA. Narrow bore capillary columns (<0.25 mm ID) allow low helium flow rates of ≤0.5mL/min for more efficient sample transfer to the ion source of the IRMS while maintaining the high linear flow rates necessary to preserve narrow peak widths ( 250 ms). The IRMS has been fitted with collector amplifiers configured to 25 ms response times for rapid data acquisition across narrow peaks. Previous authors (e.g., Sacks et al., 2007) successfully demonstrated improved sensitivity afforded by narrow-bore GC columns. They reported an accuracy and precision of 1.4‰ for peaks with an average width at half maximum of 720 ms for 100 picomoles of carbon on column. Our method builds on their advances and further reduces peak widths ( 600 ms) and the amount of sample lost prior to isotopic analysis. Preliminary experiments with 100 picomoles of carbon on column show an accuracy and standard deviation <1‰. With further improvement, we hope to demonstrate robust isotopic analysis of 10s of picomoles of carbon, more than 2 orders of magnitude lower than commercial systems. The pico-CSIA method affords high-precision isotopic analyses for

  19. Compound-Specific Carbon, Nitrogen, and Hydrogen Isotopic Ratios for Amino Acids in CM and CR Chondrites and their use in Evaluating Potential Formation Pathways

    Science.gov (United States)

    Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Stable hydrogen, carbon, and nitrogen isotopic ratios (oD, 013C, and olSN) of organic compounds can revcal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1I2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CRZ Graves Nunataks (GRA) 95229, CRZ Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing ODC and increasing oD with increasing carbon number in the aH, (l-NH2 amino acids that correspond to predictions made for formation via Streckercyanohydrin synthesis. We also observe light ODC signatures for -alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ro-amino acids). Higher deuterium enrichments are observed in amethyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than CM chondrites, reflecting different parent-body chemistry.

  20. Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism

    Science.gov (United States)

    2016-01-01

    Over a century ago, Frederick Soddy provided the first evidence for the existence of isotopes; elements that occupy the same position in the periodic table are essentially chemically identical but differ in mass due to a different number of neutrons within the atomic nucleus. Allied to the discovery of isotopes was the development of some of the first forms of mass spectrometers, driven forward by the Nobel laureates JJ Thomson and FW Aston, enabling the accurate separation, identification, and quantification of the relative abundance of these isotopes. As a result, within a few years, the number of known isotopes both stable and radioactive had greatly increased and there are now over 300 stable or radioisotopes presently known. Unknown at the time, however, was the potential utility of these isotopes within biological disciplines, it was soon discovered that these stable isotopes, particularly those of carbon (13C), nitrogen (15N), oxygen (18O), and hydrogen (2H) could be chemically introduced into organic compounds, such as fatty acids, amino acids, and sugars, and used to “trace” the metabolic fate of these compounds within biological systems. From this important breakthrough, the age of the isotope tracer was born. Over the following 80 yrs, stable isotopes would become a vital tool in not only the biological sciences, but also areas as diverse as forensics, geology, and art. This progress has been almost exclusively driven through the development of new and innovative mass spectrometry equipment from IRMS to GC‐MS to LC‐MS, which has allowed for the accurate quantitation of isotopic abundance within samples of complex matrices. This historical review details the development of stable isotope tracers as metabolic tools, with particular reference to their use in monitoring protein metabolism, highlighting the unique array of tools that are now available for the investigation of protein metabolism in vivo at a whole body down to a single protein level

  1. Development and validation of an universal interface for compound-specific stable isotope analysis of chlorine (37Cl/35Cl) by GC-high-temperature conversion (HTC)-MS/IRMS.

    Science.gov (United States)

    Renpenning, Julian; Hitzfeld, Kristina L; Gilevska, Tetyana; Nijenhuis, Ivonne; Gehre, Matthias; Richnow, Hans-Hermann

    2015-03-03

    A universal application of compound-specific isotope analysis of chlorine was thus far limited by the availability of suitable analysis techniques. In this study, gas chromatography in combination with a high-temperature conversion interface (GC-HTC), converting organic chlorine in the presence of H2 to gaseous HCl, was coupled to a dual-detection system, combining an ion trap mass spectrometer (MS) and isotope-ratio mass spectrometer (IRMS). The combination of the MS/IRMS detection enabled a detailed characterization, optimization, and online monitoring of the high-temperature conversion process via ion trap MS as well as a simultaneous chlorine isotope analysis by the IRMS. Using GC-HTC-MS/IRMS, chlorine isotope analysis at optimized conversion conditions resulted in very accurate isotope values (δ(37)Cl(SMOC)) for measured reference material with known isotope composition, including chlorinated ethylene, chloromethane, hexachlorocyclohexane, and trichloroacetic acids methyl ester. Respective detection limits were determined to be <15 nmol Cl on column with achieved precision of <0.3‰.

  2. Using compound-specific isotope analysis to assess the degradation of chloroacetanilide herbicides in lab-scale wetlands.

    Science.gov (United States)

    Elsayed, O F; Maillard, E; Vuilleumier, S; Nijenhuis, I; Richnow, H H; Imfeld, G

    2014-03-01

    Compound-specific isotope analysis (CSIA) is a promising tool to study the environmental fate of a wide range of contaminants including pesticides. In this study, a novel CSIA method was developed to analyse the stable carbon isotope signatures of widely used chloroacetanilide herbicides. The developed method was applied in combination with herbicide concentration and hydrochemical analyses to investigate in situ biodegradation of metolachlor, acetochlor and alachlor during their transport in lab-scale wetlands. Two distinct redox zones were identified in the wetlands. Oxic conditions prevailed close to the inlet of the four wetlands (oxygen concentration of 212±24μM), and anoxic conditions (oxygen concentrations of 28±41μM) prevailed towards the outlet, where dissipation of herbicides mainly occurred. Removal of acetochlor and alachlor from inlet to outlet of wetlands was 56% and 51%, whereas metolachlor was more persistent (23% of load dissipation). CSIA of chloroacetanilides at the inlet and outlet of the wetlands revealed carbon isotope fractionation of alachlor (εbulk=-2.0±0.3‰) and acetochlor (εbulk=-3.4±0.5‰), indicating that biodegradation contributes to the dissipation of both herbicides. This study is a first step towards the application of CSIA to evaluate the transport and degradation of chloroacetanilide herbicides in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Improved Sensitivity of Spectroscopic Quantification of Stable Isotope Content Using Capillary Absorption Spectroscopy

    Science.gov (United States)

    Moran, J.; Wilcox Freeburg, E.; Kriesel, J.; Linley, T. J.; Kelly, J.; Coleman, M. L.; Christensen, L. E.; Vance, S.

    2016-12-01

    Spectroscopy-based platforms have recently risen to the forefront for making stable isotope measurements of methane, carbon dioxide, water, or other analytes. These spectroscopy systems can be relatively straightforward to operate (versus a mass spectrometry platform), largely relieve the analyst of mass interference artifacts, and many can be used in the field. Despite these significant advantages, however, existing spectroscopy techniques suffer from a lack of measurement sensitivity that can ultimately limit select applications including spatially resolved and compound-specific measurements. Here we present a capillary absorption spectroscopy (CAS) system that is designed to mitigate sensitivity issues in spectroscopy-based stable isotope evaluation. The system uses mid-wave infrared excitation generated from a continuous wave quantum cascade laser. Importantly, the sample `chamber' is a flexible capillary with a total volume of less than one cc. Proprietary coatings on the internal surface of the fiber improve optical performance, guiding the light to a detector and facilitating high levels of interaction between the laser beam and gaseous analytes. We present data demonstrating that a tapered hollow fiber cell, with an internal diameter that broadens toward the detector, reduces optical feedback to further improve measurement sensitivity. Sensitivity of current hollow fiber / CAS systems enable measurements of only 10's of picomoles CO2 while theoretical improvements should enable measurements of as little as 10's of femtomoles. Continued optimization of sample introduction and improvements to optical feedback are being explored. Software is being designed to provide rapid integration of data and generation of processed isotope measurements using a graphical user interface. Taken together, the sensitivity improvements of the CAS system under development could, when coupled to a laser ablation sampling device, enable up to 2 µm spatial resolution (roughly the

  4. Stable isotope analysis in primatology: a critical review.

    Science.gov (United States)

    Sandberg, Paul A; Loudon, James E; Sponheimer, Matt

    2012-11-01

    Stable isotope analysis has become an important tool in ecology over the last 25 years. A wealth of ecological information is stored in animal tissues in the relative abundances of the stable isotopes of several elements, particularly carbon and nitrogen, because these isotopes navigate through ecological processes in predictable ways. Stable carbon and nitrogen isotopes have been measured in most primate taxonomic groups and have yielded information about dietary content, dietary variability, and habitat use. Stable isotopes have recently proven useful for addressing more fine-grained questions about niche dynamics and anthropogenic effects on feeding ecology. Here, we discuss stable carbon and nitrogen isotope systematics and critically review the published stable carbon and nitrogen isotope data for modern primates with a focus on the problems and prospects for future stable isotope applications in primatology. © 2012 Wiley Periodicals, Inc.

  5. Stereoselective synthesis of stable-isotope-labeled amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States); Lodwig, S.N. [Centralia College, WA (United States)

    1994-12-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the {alpha}-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids.

  6. Stereoselective synthesis of stable-isotope-labeled amino acids

    International Nuclear Information System (INIS)

    Unkefer, C.J.; Martinez, R.A.; Silks, L.A. III; Lodwig, S.N.

    1994-01-01

    For magnetic resonance and vibrational spectroscopies to reach their full potential, they must be used in combination with sophisticated site-specific stable isotope labeling of biological macromolecules. Labeled amino acids are required for the study of the structure and function of enzymes and proteins. Because there are 20 common amino acids, each with its own distinguishing chemistry, they remain a synthetic challenge. The Oppolzer chiral auxiliary provides a general tool with which to approach the synthesis of labeled amino acids. By using the Oppolzer auxiliary, amino acids can be constructed from several small molecules, which is ideal for stable isotope labeling. In addition to directing the stereochemistry at the α-carbon, the camphorsultam can be used for stereo-specific isotope labeling at prochiral centers in amino acids. By using the camphorsultam auxiliary we have the potential to synthesize virtually any isotopomer of all of the common amino acids

  7. French days on stable isotopes

    International Nuclear Information System (INIS)

    2000-01-01

    These first French days on stable isotopes took place in parallel with the 1. French days of environmental chemistry. Both conferences had common plenary sessions. The conference covers all aspects of the use of stable isotopes in the following domains: medicine, biology, environment, tracer techniques, agronomy, food industry, geology, petroleum geochemistry, cosmo-geochemistry, archaeology, bio-geochemistry, hydrology, climatology, nuclear and particle physics, astrophysics, isotope separations etc.. Abstracts available on CD-Rom only. (J.S.)

  8. Forensic Stable Isotope Biogeochemistry

    Science.gov (United States)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  9. Complementing approaches to demonstrate chlorinated solvent biodegradation in a complex pollution plume: Mass balance, PCR and compound-specific stable isotope analysis

    Science.gov (United States)

    Courbet, Christelle; Rivière, Agnès; Jeannottat, Simon; Rinaldi, Sandro; Hunkeler, Daniel; Bendjoudi, Hocine; de Marsily, Ghislain

    2011-11-01

    This work describes the use of different complementing methods (mass balance, polymerase chain reaction assays and compound-specific stable isotope analysis) to demonstrate the existence and effectiveness of biodegradation of chlorinated solvents in an alluvial aquifer. The solvent-contaminated site is an old chemical factory located in an alluvial plain in France. As most of the chlorinated contaminants currently found in the groundwater at this site were produced by local industries at various times in the past, it is not enough to analyze chlorinated solvent concentrations along a flow path to convincingly demonstrate biodegradation. Moreover, only a few data were initially available to characterize the geochemical conditions at this site, which were apparently complex at the source zone due to (i) the presence of a steady oxygen supply to the groundwater by irrigation canal losses and river infiltration and (ii) an alkaline pH higher than 10 due to former underground lime disposal. A demonstration of the existence of biodegradation processes was however required by the regulatory authority within a timeframe that did not allow a full geochemical characterization of such a complex site. Thus a combination of different fast methods was used to obtain a proof of the biodegradation occurrence. First, a mass balance analysis was performed which revealed the existence of a strong natural attenuation process (biodegradation, volatilization or dilution), despite the huge uncertainty on these calculations. Second, a good agreement was found between carbon isotopic measurements and PCR assays (based on 16S RNA gene sequences and functional genes), which clearly indicated reductive dechlorination of different hydrocarbons (Tetrachloroethene—PCE-, Trichloroethene—TCE-, 1,2- cisDichloroethene— cis-1,2-DCE-, 1,2- transDichloroethene— trans-1,2-DCE-, 1,1-Dichloroethene—1,1-DCE-, and Vinyl Chloride—VC) to ethene. According to these carbon isotope measurements

  10. New Organic Stable Isotope Reference Materials for Distribution through the USGS and the IAEA

    Science.gov (United States)

    Schimmelmann, Arndt; Qi, Haiping

    2014-05-01

    The widespread adoption of relative stable isotope-ratio measurements in organic matter by diverse scientific disciplines is at odds with the dearth of international organic stable isotopic reference materials (RMs). Only two of the few carbon (C) and nitrogen (N) organic RMs, namely L-glutamic acids USGS40 and USGS41 [1], both available from the U.S. Geological Survey (USGS) and the International Atomic Energy Agency (IAEA), provide an isotopically contrasting pair of organic RMs to enable essential 2-point calibrations for δ-scale normalization [2, 3]. The supply of hydrogen (H) organic RMs is even more limited. Numerous stable isotope laboratories have resorted to questionable practices, for example by using 'CO2, N2, and H2 reference gas pulses' for isotopic calibrations, which violates the principle of identical treatment of sample and standard (i.e., organic unknowns should be calibrated directly against chemically similar organic RMs) [4], or by using only 1 anchor instead of 2 for scale calibration. The absence of international organic RMs frequently serves as an excuse for indefensible calibrations. In 2011, the U.S. National Science Foundation (NSF) funded an initiative of 10 laboratories from 7 countries to jointly develop much needed new organic RMs for future distribution by the USGS and the IAEA. The selection of targeted RMs attempts to cover various common compound classes of broad technical and scientific interest. We had to accept compromises to approach the ideal of high chemical stability, lack of toxicity, and low price of raw materials. Hazardous gases and flammable liquids were avoided in order to facilitate international shipping of future RMs. With the exception of polyethylene and vacuum pump oil, all organic RMs are individual, chemically-pure substances, which can be used for compound-specific isotopic measurements in conjunction with liquid and gas chromatographic interfaces. The compounds listed below are under isotopic calibration by

  11. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1984-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56

  12. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1982-01-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for nondestructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Material Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56

  13. A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site

    Science.gov (United States)

    Nijenhuis, Ivonne; Schmidt, Marie; Pellegatti, Eleonora; Paramatti, Enrico; Richnow, Hans Hermann; Gargini, Alessandro

    2013-10-01

    The stable carbon isotope composition of chlorinated aliphatic compounds such as chlorinated methanes, ethanes and ethenes was examined as an intrinsic fingerprint for apportionment of sources. A complex field site located in Ferrara (Italy), with more than 50 years history of use of chlorinated aliphatic compounds, was investigated in order to assess contamination sources. Several contamination plumes were found in a complex alluvial sandy multi-aquifer system close to the river Po; sources are represented by uncontained former industrial and municipal dump sites as well as by spills at industrial areas. The carbon stable isotope signature allowed distinguishing 2 major sources of contaminants. One source of chlorinated aliphatic contaminants was strongly depleted in 13C (-40‰ which is commonly observed in recent production of chlorinated solvents. The degradation processes in the plumes could be traced interpreting the isotope enrichment and depletion of parent and daughter compounds, respectively. We demonstrate that, under specific production conditions, namely when highly chlorinated ethenes are produced as by-product during chloromethanes production, 13C depleted fingerprinting of contaminants can be obtained and this can be used to track sources and address the responsible party of the pollution in urban areas.

  14. Stable isotope mass spectrometry in petroleum exploration

    International Nuclear Information System (INIS)

    Mathur, Manju

    1997-01-01

    The stable isotope mass spectrometry plays an important role to evaluate the stable isotopic composition of hydrocarbons. The isotopic ratios of certain elements in petroleum samples reflect certain characteristics which are useful for petroleum exploration

  15. Simulation of dual carbon-bromine stable isotope fractionation during 1,2-dibromoethane degradation.

    Science.gov (United States)

    Jin, Biao; Nijenhuis, Ivonne; Rolle, Massimo

    2018-06-01

    We performed a model-based investigation to simultaneously predict the evolution of concentration, as well as stable carbon and bromine isotope fractionation during 1,2-dibromoethane (EDB, ethylene dibromide) transformation in a closed system. The modelling approach considers bond-cleavage mechanisms during different reactions and allows evaluating dual carbon-bromine isotopic signals for chemical and biotic reactions, including aerobic and anaerobic biological transformation, dibromoelimination by Zn(0) and alkaline hydrolysis. The proposed model allowed us to accurately simulate the evolution of concentrations and isotope data observed in a previous laboratory study and to successfully identify different reaction pathways. Furthermore, we illustrated the model capabilities in degradation scenarios involving complex reaction systems. Specifically, we examined (i) the case of sequential multistep transformation of EDB and the isotopic evolution of the parent compound, the intermediate and the reaction product and (ii) the case of parallel competing abiotic pathways of EDB transformation in alkaline solution.

  16. Stable isotope sup 15 N-urea and clinical research in nephrology

    Energy Technology Data Exchange (ETDEWEB)

    Sugino, Nobuhiro; Arai, Junko; Akimoto, Mitsuko; Miwa, Toichiro; Takuma, Takehide (Tokyo Women' s Medical Coll. (Japan))

    1990-08-01

    Stable isotope {sup 15}N-compound, {sup 15}N-urea, is useful marker to investigate nitrogen metabolism in clinical nephrology, particularly in chronic renal failure or dialysis. {sup 15}N-urea incorporation into plasma albumin in addition to plasma {sup 15}N disappearance was studied in 6 patients with endstage chronic renal failure. As a result, only minor fraction of administered {sup 15}N-urea was incorporated into albumin in this study. In addition, it was also confirmed that high energy diet may promote protein synthesis through {sup 15}N incorporation to plasma amino acids, such as alanine, in these patients with low protein meal. Therefore, administration of {sup 15}N-compound to human subjects may contribute to provide us the important informations on nitrogen metabolism. For instance, urea kinetics are described in the endstage chronic renal failure in this review. However, less expensive {sup 15}N-compounds should be provided and more simple but accurate measurement of {sup 15}N activity should be developed for the further clinical application of the stable isotope. (author).

  17. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1980-12-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing

  18. Penguin Proxies: Deciphering Millennial-Scale Antarctic Ecosystem Change using Amino Acid Stable Isotope Analysis.

    Science.gov (United States)

    Michelson, C.; McMahon, K.; Emslie, S. D.; Patterson, W. P.; McCarthy, M. D.; Polito, M. J.

    2017-12-01

    The Southern Ocean ecosystem is undergoing rapid environmental change due to ongoing and historic anthropogenic impacts such as climate change and marine mammal harvesting. These disturbances may have cascading effects through the Antarctic food webs, resulting in profound shifts in the sources and cycling of organic matter supporting higher-trophic organisms, such as penguins. For example, bulk stable isotope analyses of modern and ancient preserved penguin tissues suggest variations in penguin feeding ecology throughout the Holocene with dramatic isotopic shifts in the last 200 years. However, it is not clear whether these isotopic shifts resulted from changes at the base of the food web, dietary shifts in penguins, or some combination of both factors. Newly developed compound-specific stable nitrogen isotope analysis of individual amino acids (CSIA-AA) may provide a powerful new tool to tease apart these confounding variables. Stable nitrogen isotope values of trophic amino acids (e.g., glutamic acid) increase substantially with each trophic transfer in the food web, while source amino acid (e.g., phenylalanine) stable nitrogen isotope values remain relatively unchanged and reflect ecosystem baselines. As such, we can use this CSIA-AA approach to decipher between baseline and dietary shifts in penguins over time from modern and ancient eggshells of Pygoscelis penguins in the Antarctic Peninsula and the Ross Sea regions of Antarctica. In order to accurately apply this CSIA-AA approach, we first characterized the trophic fractionation factors of individual amino acids between diet and penguin consumers in a long-term controlled penguin feeding experiment. We then applied these values to modern and ancient eggshells from the Antarctic Peninsula and Ross Sea to evaluate shifts in penguin trophic dynamics as a function of climate and anthropogenic interaction throughout much of the Holocene. This work develops a cutting edge new molecular geochemistry approach

  19. Stable Isotope Group 1982 progress report

    International Nuclear Information System (INIS)

    Stewart, M.K.

    1983-06-01

    The work of the Stable Isotope Group of the Institute of Nuclear Sciences during 1982, in the fields of isotope geology, isotope hydrology, geochronology, isotope biology and mass spectrometer instrumentation, is described

  20. Metabolism of Seriola lalandi during Starvation as Revealed by Fatty Acid Analysis and Compound-Specific Analysis of Stable Isotopes within Amino Acids.

    Directory of Open Access Journals (Sweden)

    Fernando Barreto-Curiel

    Full Text Available Fish starvation is defined as food deprivation for a long period of time, such that physiological processes become confined to basal metabolism. Starvation provides insights in physiological processes without interference from unknown factors in digestion and nutrient absorption occurring in fed state. Juveniles of amberjack Seriola lalandi were isotopically equilibrated to a formulated diet for 60 days. One treatment consisted of fish that continued to be fed and fish in the other treatment were not fed for 35 days. The isotopic signatures prior to the beginning of and after the starvation period, for fish in the starvation and control treatments, were analysed for lipid content, fatty acid composition and isotopic analysis of bulk (EA-IRMS and of amino acids (compound specific isotope analysis, CSIA. There were three replicates for the starvation group. Fatty acid content in muscle and liver tissue before and after starvation was determined to calculate percent change. Results showed that crude lipid was the most used source of energy in most cases; the PUFAs and LC-PUFAs were highly conserved. According to the protein signature in bulk (δ15N and per amino acid (δ13C and δ15N, in muscle tissue, protein synthesis did not appear to occur substantially during starvation, whereas in liver, increases in δ13C and δ15N indicate that protein turnover occurred, probably for metabolic routing to energy-yielding processes. As a result, isotopic values of δ15N in muscle tissue do not change, whereas CSIA net change occurred in the liver tissue. During the study period of 35 days, muscle protein was largely conserved, being neither replenished from amino acid pools in the plasma and liver nor catabolized.

  1. Evaluation of ethyl tert-butyl ether biodegradation in a contaminated aquifer by compound-specific isotope analysis and in situ microcosms

    Energy Technology Data Exchange (ETDEWEB)

    Bombach, Petra, E-mail: petra.bombach@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Isodetect GmbH Leipzig, Deutscher Platz 5b, D-04103 Leipzig (Germany); Nägele, Norbert [Kuvier the Biotech Company S.L., Ctra. N-I, p.k. 234–P.E. INBISA 23" a, E-09001 Burgos (Spain); Rosell, Mònica [UFZ – Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristallografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), C/Martí i Franquès s/n, 08028 Barcelona (Spain); Richnow, Hans H. [UFZ – Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstrasse 15, D-04318 Leipzig (Germany); Fischer, Anko [Isodetect GmbH Leipzig, Deutscher Platz 5b, D-04103 Leipzig (Germany)

    2015-04-09

    Highlights: • In situ biodegradation of ETBE was investigated in a fuel contaminated aquifer. • Degradation was studied by CSIA and in situ microcosms in combination with TLFA-SIP. • ETBE was degraded when ETBE was the main groundwater contaminant. • ETBE was also degraded in the presence of BTEX and MTBE. • Hydrochemical analysis indicated aerobic and anaerobic ETBE biodegradation. - Abstract: Ethyl tert-butyl ether (ETBE) is an upcoming groundwater pollutant in Europe whose environmental fate has been less investigated, thus far. In the present study, we investigated the in situ biodegradation of ETBE in a fuel-contaminated aquifer using compound-specific stable isotope analysis (CSIA), and in situ microcosms in combination with total lipid fatty acid (TLFA)-stable isotope probing (SIP). In a first field investigation, CSIA revealed insignificant carbon isotope fractionation, but low hydrogen isotope fractionation of up to +14‰ along the prevailing anoxic ETBE plume suggesting biodegradation of ETBE. Ten months later, oxygen injection was conducted to enhance the biodegradation of petroleum hydrocarbons (PH) at the field site. Within the framework of this remediation measure, in situ microcosms loaded with [{sup 13}C{sub 6}]-ETBE (BACTRAP{sup ®}s) were exposed for 119 days in selected groundwater wells to assess the biodegradation of ETBE by TLFA-SIP under the following conditions: (i) ETBE as main contaminant; (ii) ETBE as main contaminant subjected to oxygen injection; (iii) ETBE plus other PH; (iv) ETBE plus other PH subjected to oxygen injection. Under all conditions investigated, significant {sup 13}C-incorporation into microbial total lipid fatty acids extracted from the in situ microcosms was found, providing clear evidence of ETBE biodegradation.

  2. Evaluation of ethyl tert-butyl ether biodegradation in a contaminated aquifer by compound-specific isotope analysis and in situ microcosms

    International Nuclear Information System (INIS)

    Bombach, Petra; a, E-09001 Burgos (Spain))" data-affiliation=" (Kuvier the Biotech Company S.L., Ctra. N-I, p.k. 234–P.E. INBISA 23a, E-09001 Burgos (Spain))" >Nägele, Norbert; Rosell, Mònica; Richnow, Hans H.; Fischer, Anko

    2015-01-01

    Highlights: • In situ biodegradation of ETBE was investigated in a fuel contaminated aquifer. • Degradation was studied by CSIA and in situ microcosms in combination with TLFA-SIP. • ETBE was degraded when ETBE was the main groundwater contaminant. • ETBE was also degraded in the presence of BTEX and MTBE. • Hydrochemical analysis indicated aerobic and anaerobic ETBE biodegradation. - Abstract: Ethyl tert-butyl ether (ETBE) is an upcoming groundwater pollutant in Europe whose environmental fate has been less investigated, thus far. In the present study, we investigated the in situ biodegradation of ETBE in a fuel-contaminated aquifer using compound-specific stable isotope analysis (CSIA), and in situ microcosms in combination with total lipid fatty acid (TLFA)-stable isotope probing (SIP). In a first field investigation, CSIA revealed insignificant carbon isotope fractionation, but low hydrogen isotope fractionation of up to +14‰ along the prevailing anoxic ETBE plume suggesting biodegradation of ETBE. Ten months later, oxygen injection was conducted to enhance the biodegradation of petroleum hydrocarbons (PH) at the field site. Within the framework of this remediation measure, in situ microcosms loaded with [ 13 C 6 ]-ETBE (BACTRAP ® s) were exposed for 119 days in selected groundwater wells to assess the biodegradation of ETBE by TLFA-SIP under the following conditions: (i) ETBE as main contaminant; (ii) ETBE as main contaminant subjected to oxygen injection; (iii) ETBE plus other PH; (iv) ETBE plus other PH subjected to oxygen injection. Under all conditions investigated, significant 13 C-incorporation into microbial total lipid fatty acids extracted from the in situ microcosms was found, providing clear evidence of ETBE biodegradation

  3. Stable Isotope Group 1983 progress report

    International Nuclear Information System (INIS)

    Stewart, M.K.

    1984-06-01

    The work of the Stable Isotope Group of the Institute of Nuclear Sciences in the fields of isotope geology, isotope hydrology, geochronology, isotope biology and related fields, and mass spectrometer instrumentation, during 1983, is described

  4. Stable isotopes in Lithuanian bioarcheological material

    Science.gov (United States)

    Skipityte, Raminta; Jankauskas, Rimantas; Remeikis, Vidmantas

    2015-04-01

    Investigation of bioarcheological material of ancient human populations allows us to understand the subsistence behavior associated with various adaptations to the environment. Feeding habits are essential to the survival and growth of ancient populations. Stable isotope analysis is accepted tool in paleodiet (Schutkowski et al, 1999) and paleoenvironmental (Zernitskaya et al, 2014) studies. However, stable isotopes can be useful not only in investigating human feeding habits but also in describing social and cultural structure of the past populations (Le Huray and Schutkowski, 2005). Only few stable isotope investigations have been performed before in Lithuanian region suggesting a quite uniform diet between males and females and protein intake from freshwater fish and animal protein. Previously, stable isotope analysis has only been used to study a Stone Age population however, more recently studies have been conducted on Iron Age and Late medieval samples (Jacobs et al, 2009). Anyway, there was a need for more precise examination. Stable isotope analysis were performed on human bone collagen and apatite samples in this study. Data represented various ages (from 5-7th cent. to 18th cent.). Stable carbon and nitrogen isotope analysis on medieval populations indicated that individuals in studied sites in Lithuania were almost exclusively consuming C3 plants, C3 fed terrestrial animals, and some freshwater resources. Current investigation demonstrated social differences between elites and country people and is promising in paleodietary and daily life reconstruction. Acknowledgement I thank prof. dr. G. Grupe, Director of the Anthropological and Palaeoanatomical State Collection in Munich for providing the opportunity to work in her laboratory. The part of this work was funded by DAAD. Antanaitis-Jacobs, Indre, et al. "Diet in early Lithuanian prehistory and the new stable isotope evidence." Archaeologia Baltica 12 (2009): 12-30. Le Huray, Jonathan D., and Holger

  5. Analytical pyrolysis and stable isotope analyses reveal past environmental changes in coralloid speleothems from Easter Island (Chile).

    Science.gov (United States)

    Miller, Ana Z; De la Rosa, José M; Jiménez-Morillo, Nicasio T; Pereira, Manuel F C; González-Pérez, José A; Calaforra, José M; Saiz-Jimenez, Cesareo

    2016-08-26

    This study comprises an innovative approach based on the combination of chromatography (analytical pyrolysis and pyrolysis compound-specific isotope analysis (Py-CSIA)), light stable isotopes, microscopy and mineralogy analyses to characterize the internal layering of coralloid speleothems from the Ana Heva lava tube in Easter Island (Chile). This multidisciplinary proxy showed that the speleothems consist of banded siliceous materials of low crystallinity with different mineralogical compositions and a significant contribution of organic carbon. Opal-A constitutes the outermost grey layer of the coralloids, whereas calcite and amorphous Mg hydrate silicate are the major components of the inner whitish and honey-brown layers, respectively. The differences found in the mineralogical, elemental, molecular and isotopic composition of these distinct coloured layers are related to environmental changes during speleothem development. Stable isotopes and analytical pyrolysis suggested alterations in the water regime, pointing to wetter conditions during the formation of the Ca-rich layer and a possible increase in the amount of water dripping into the cave. The trend observed for δ(15)N values suggested an increase in the average temperature over time, which is consistent with the so-called climate warming during the Holocene. The pyrolysis compound-specific isotope analysis of each speleothem layer showed a similar trend with the bulk δ(13)C values pointing to the appropriateness of direct Py-CSIA in paleoenvironmental studies. The δ(13)C values for n-alkanes reinforced the occurrence of a drastic environmental change, indicating that the outermost Opal layer was developed under drier and more arid environmental conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Analysis of stable isotope assisted metabolomics data acquired by GC-MS

    International Nuclear Information System (INIS)

    Wei, Xiaoli; Shi, Biyun; Koo, Imhoi; Yin, Xinmin; Lorkiewicz, Pawel; Suhail, Hamid; Rattan, Ramandeep; Giri, Shailendra; McClain, Craig J.

    2017-01-01

    Stable isotope assisted metabolomics (SIAM) measures the abundance levels of metabolites in a particular pathway using stable isotope tracers (e.g., 13 C, 18 O and/or 15 N). We report a method termed signature ion approach for analysis of SIAM data acquired on a GC-MS system equipped with an electron ionization (EI) ion source. The signature ion is a fragment ion in EI mass spectrum of a derivatized metabolite that contains all atoms of the underivatized metabolite, except the hydrogen atoms lost during derivatization. In this approach, GC-MS data of metabolite standards were used to recognize the signature ion from the EI mass spectra acquired from stable isotope labeled samples, and a linear regression model was used to deconvolute the intensity of overlapping isotopologues. A mixture score function was also employed for cross-sample chromatographic peak list alignment to recognize the chromatographic peaks generated by the same metabolite in different samples, by simultaneously evaluating the similarity of retention time and EI mass spectrum of two chromatographic peaks. Analysis of a mixture of 16 13 C-labeled and 16 unlabeled amino acids showed that the signature ion approach accurately identified and quantified all isotopologues. Analysis of polar metabolite extracts from cells respectively fed with uniform 13 C-glucose and 13 C-glutamine further demonstrated that this method can also be used to analyze the complex data acquired from biological samples. - Highlights: • A signature ion approach is developed for analysis of stable isotope GC-MS data. • GC-MS data of compound standards are used for selection of the signature ion. • Linear regression model is used to deconvolute the overlapping isotopologue peaks. • The developed method was tested by known compounds and biological samples.

  7. Stable isotopes and biomarkers in microbial ecology

    NARCIS (Netherlands)

    Boschker, H.T.S.; Middelburg, J.J.

    2002-01-01

    The use of biomarkers in combination with stable isotope analysis is a new approach in microbial ecology and a number of papers on a variety of subjects have appeared. We will first discuss the techniques for analysing stable isotopes in biomarkers, primarily gas chromatography-combustion-isotope

  8. Application of Stable Isotope in Detection of Veterinary Drug Residues

    International Nuclear Information System (INIS)

    Wang Wei; Liu Zhanfeng; Du Xiaoning

    2010-01-01

    In recent years, there has happened a series of significant food safety events worldwide, which lower down consumers' confidence in food safety, and they are taking increasing care about the sources of their foods. The safety problem of animal-origin foods has become a global topic for discussion. Therefore, it is a pressing task to establish a precise, sensitive and reliable method for analyzing veterinary drug residue. An introduction of the present status regarding veterinary drug residue analysis was made in the paper, and it briefly summarized the limit of detection (LOD) and quantification (LOQ) which could be reached in veterinary drug residue analysis by isotopic internal standard method domestically and abroad. The paper also made a review of the progress in applied research of stable isotope labeled compound in veterinary drug residue analysis of, such as, antibiotic medicines, furans and sulfonamides. The paper elucidated the great importance of the application of stable isotopes in the sane development of China's food safety system. (authors)

  9. The application of compound-specific isotope analysis of fatty acids for traceability of sea cucumber (Apostichopus japonicus) in the coastal areas of China.

    Science.gov (United States)

    Liu, Yu; Zhang, Xufeng; Li, Ying; Wang, Haixia

    2017-11-01

    Geographical origin traceability is an important issue for controlling the quality of seafood and safeguarding the interest of consumers. In the present study, a new method of compound-specific isotope analysis (CSIA) of fatty acids was established to evaluate its applicability in establishing the origin traceability of Apostichopus japonicus in the coastal areas of China. Moreover, principal component analysis (PCA) and discriminant analysis (DA) were applied to distinguish between the origins of A. japonicus. The results show that the stable carbon isotope compositions of fatty acids of A. japonicus significantly differ in terms of both season and origin. They also indicate that the stable carbon isotope composition of fatty acids could effectively discriminate between the origins of A. japonicus, except for between Changhai Island and Zhangzi Island in the spring of 2016 because of geographical proximity or the similarity of food sources. The fatty acids that have the highest contribution to identifying the geographical origins of A. japonicus are C22:6n-3, C16:1n-7, C20:5n-3, C18:0 and C23:1n-9, when considering the fatty acid contents, the stable carbon isotope composition of fatty acids and the results of the PCA and DA. We conclude that CSIA of fatty acids, combined with multivariate statistical analysis such as PCA and DA, may be an effective tool for establishing the traceability of A. japonicus in the coastal areas of China. The relevant conclusions of the present study provide a new method for determining the traceability of seafood or other food products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Gas chromatographic isolation technique for compound-specific radiocarbon analysis

    International Nuclear Information System (INIS)

    Uchida, M.; Kumamoto, Y.; Shibata, Y.; Yoneda, M.; Morita, M.; Kawamura, K.

    2002-01-01

    Full text: We present here a gas chromatographic isolation technique for the compound-specific radiocarbon analysis of biomarkers from the marine sediments. The biomarkers of fatty acids, hydrocarbon and sterols were isolated with enough amount for radiocarbon analysis using a preparative capillary gas chromatograph (PCGC) system. The PCGC systems used here is composed of an HP 6890 GC with FID, a cooled injection system (CIS, Gerstel, Germany), a zero-dead-volume effluent splitter, and a cryogenic preparative collection device (PFC, Gerstel). For AMS analysis, we need to separate and recover sufficient quantity of target individual compounds (>50 μgC). Yields of target compounds from C 14 n-alkanes to C 40 to C 30 n-alkanes and approximately that of 80% for higher molecular weights compounds more than C 30 n-alkanes. Compound specific radiocarbon analysis of organic compounds, as well as compound-specific stable isotope analysis, provide valuable information on the origins and carbon cycling in marine system. Above PCGC conditions, we applied compound-specific radiocarbon analysis to the marine sediments from western north Pacific, which showed the possibility of a useful chronology tool for estimating the age of sediment using organic matter in paleoceanographic study, in the area where enough amounts of planktonic foraminifera for radiocarbon analysis by accelerator mass spectrometry (AMS) are difficult to obtain due to dissolution of calcium carbonate. (author)

  11. Stable isotope enrichment: Current and future potential

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.S.

    1992-01-01

    Oak Ridge National Laboratory (ORNL) operates the Isotope Enrichment Facility for the purpose of providing enriched stable isotopes, selected radioactive isotopes (including the actinides), and isotope-related materials and services for use in various research applications. ORNL is responsible for isotope enrichment and the distribution of approximately 225 nongaseous stable isotopes from 50 multi-isotopic elements. Many enriched isotope products are of prime importance in the fabrication of nuclear targets and the subsequent production of special radionuclides. State-of-the-art techniques to achieve special isotopic, chemical, and physical requirements are performed at ORNL This report describes the status and capabilities of the Isotope Enrichment Facility and the Isotope Research Materials Laboratory as well as emphasizing potential advancements in enrichment capabilities

  12. Stable isotope enrichment - current and future potential

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.S.

    1993-01-01

    Oak Ridge National Laboratory (ORNL) operates the Isotope Enrichment Facility for the purpose of providing enriched stable isotopes, selected radioactive isotopes (including the actinides), and isotope-related materials and services for use in various research applications. ORNL is responsible for isotope enrichment and the distribution of approximately 225 nongaseous stable isotopes from 50 multi-isotopic elements. Many enriched isotope products are of prime importance in the fabrication of nuclear targets and the subsequent production of special radionuclides. State-of-the-art techniques to achieve special isotopic, chemical, and physical requirements are performed at ORNL. This report describes the status and capabilities of the Isotope Enrichment Facility and the Isotope Research Materials Laboratory as well as emphasizing potential advancements in enrichment capabilities. (orig.)

  13. Development of stable isotope manufacturing in Russia

    International Nuclear Information System (INIS)

    Pokidychev, A.; Pokidycheva, M.

    1999-01-01

    For the past 25 years, Russia has relied heavily on the electromagnetic separation process for the production of middle and heavy mass stable isotopes. The separation of most light isotopes had been centered in Georgia which, after the collapse of the USSR, left Russia without this capability. In the mid-1970s, development of centrifuge technology for the separation of stable isotopes was begun. Alternative techniques such as laser separation, physical-chemical methods, and ion cyclotron resonance have also been investigated. Economic considerations have played a major role in the development and current status of the stable isotope enrichment capabilities of Russia

  14. Development of O-18 stable isotope separation technology using membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Woo; Kim, Taek Soo; Choi, Hwa Rim; Park, Sung Hee; Lee, Ki Tae; Chang, Dae Shik

    2006-06-15

    The ultimate goal of this investigation is to develop the separation technology for O-18 oxygen stable isotope used in a cyclotron as a target for production of radioisotope F-18. F-18 is a base material for synthesis of [F-18]FDG radio-pharmaceutical, which is one of the most important tumor diagnostic agent used in PET (Positron Emission Tomography). More specifically, this investigation is focused on three categories as follow, 1) development of the membrane distillation isotope separation process to re-enrich O-18 stable isotope whose isotopic concentration is reduced after used in a cyclotron, 2) development of organic impurity purification technology to remove acetone, methanol, ethanol, and acetonitrile contained in a used cyclotron O-18 enriched target water, and 3) development of a laser absorption spectroscopic system for analyzing oxygen isotopic concentration in water.

  15. Pharmaceuticals labelled with stable isotopes

    International Nuclear Information System (INIS)

    Krumbiegel, P.

    1986-11-01

    The relatively new field of pharmaceuticals labelled with stable isotopes is reviewed. Scientific, juridical, and ethical questions are discussed concerning the application of these pharmaceuticals in human medicine. 13 C, 15 N, and 2 H are the stable isotopes mainly utilized in metabolic function tests. Methodical contributions are given to the application of 2 H, 13 C, and 15 N pharmaceuticals showing new aspects and different states of development in the field under discussion. (author)

  16. Fractionation of hydrogen, oxygen and carbon isotopes in n-alkanes and cellulose of three Sphagnum species

    NARCIS (Netherlands)

    Brader, A.V.; Winden, J.F.; Bohncke, S.J.P.; Beets, C.J.; Reichart, G.-J.; De Leeuw, J.W.

    2010-01-01

    Compound-specific isotope measurements of organic compounds are increasingly important in palaeoclimate reconstruction. Searching for more accurate peat-based palaeoenvironmental proxies, compound-specific fractionation of stable C, H and O isotopes of organic compounds synthesized by Sphagnum were

  17. Applications of stable isotopes in agriculture

    International Nuclear Information System (INIS)

    Koren'kov, D.A.; Faust, Kh.

    1977-01-01

    The stable isotope 15 N has become widely used in agricultural studies. With it one can determine the true uptake of fertilizer and soil nitrogen by different crops as a function of their particular biological characteristics. Under field conditions, the extent of fertilizer nitrogen uptake by plants does not as a rule exceed 50%, being less for winter cereals and significantly more for perennial grasses. Applied fertilizer nitrogen, by intensifying the mobilization processes, increases the mobility of soil nitrogen. As a result, the accessibility of soil nitrogen to plants increases, and there is a greater chance of its being lost through washing-out. A considerable fraction of fertilizer nitrogen (on average 20-30%) becomes fixed in the soil in compounds which are not easily hydrolized and hence not readily available to plants. Nitrogen fixed in fulvic acids and non-specific compounds is the most mobile and can be used by plants. Fertilizer nitrogen in the soil undergoes various changes, as a result of which some is lost in the form of gaseous compounds. A certain amount of fertilizer nitrogen may become lost through washing-out. On the basis of 15 N investigations, it is possible to find ways of increasing the effectiveness of nitrogenous fertilizers and reducing nitrogen losses - for example, fertilizer application closer to the beginning of the period of active utilization of nutrients by plants, selection of more efficient fertilizer forms and the use of nitrification inhibitors. The wider employment of 15 N in agricultural studies should become possible through the use of cheaper compounds depleted or slightly enriched in 15 N. (author)

  18. pH-dependent equilibrium isotope fractionation associated with the compound specific nitrogen and carbon isotope analysis of substituted anilines by SPME-GC/IRMS.

    Science.gov (United States)

    Skarpeli-Liati, Marita; Turgeon, Aurora; Garr, Ashley N; Arnold, William A; Cramer, Christopher J; Hofstetter, Thomas B

    2011-03-01

    Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry (GC/IRMS) was used to elucidate the effects of N-atom protonation on the analysis of N and C isotope signatures of selected aromatic amines. Precise and accurate isotope ratios were measured using polydimethylsiloxane/divinylbenzene (PDMS/DVB) as the SPME fiber material at solution pH-values that exceeded the pK(a) of the substituted aniline's conjugate acid by two pH-units. Deviations of δ(15)N and δ(13)C-values from reference measurements by elemental analyzer IRMS were small (IRMS. Under these conditions, the detection limits for accurate isotope ratio measurements were between 0.64 and 2.1 mg L(-1) for δ(15)N and between 0.13 and 0.54 mg L(-1) for δ(13)C, respectively. Substantial inverse N isotope fractionation was observed by SPME-GC/IRMS as the fraction of protonated species increased with decreasing pH leading to deviations of -20‰ while the corresponding δ(13)C-values were largely invariant. From isotope ratio analysis at different solution pHs and theoretical calculations by density functional theory, we derived equilibrium isotope effects, EIEs, pertinent to aromatic amine protonation of 0.980 and 1.001 for N and C, respectively, which were very similar for all compounds investigated. Our work shows that N-atom protonation can compromise accurate compound-specific N isotope analysis of aromatic amines.

  19. Analysis of growth and tissue replacement rates by stable sulfur isotope turnover.

    Science.gov (United States)

    Arneson, L. S.; Macko, S. A.; Macavoy, S. E.

    2003-12-01

    Stable isotope analysis has become a powerful tool to study animal ecology. Analysis of stable isotope ratios of elements such as carbon, nitrogen, sulfur, hydrogen, oxygen and others have been used to trace migratory routes, reconstruct dietary sources and determine the physiological condition of individual animals. The isotopes most commonly used are carbon, due to differential carbon fractionation in C3 and C4 plants, and nitrogen, due to the approximately 3% enrichment in 15N per trophic level. Although all cells express sulfur-containing compounds, such as cysteine, methionine, and coenzyme A, the turnover rate of sulfur in tissues has not been examined in most studies, owing to the difficulty in determining the δ 34S signature. In this study, we have assessed the rate of sulfur isotopic turnover in mouse tissues following a diet change from terrestrial (7%) to marine (19%) source. Turnover models reflecting both growth rate and metabolic tissue replacement will be developed for blood, liver, fat and muscle tissues.

  20. Fingerprinting TCE in a bedrock aquifer using compound-specific isotope analysis.

    Science.gov (United States)

    Lojkasek-Lima, Paulo; Aravena, Ramon; Parker, Beth L; Cherry, John A

    2012-01-01

    A dual isotope approach based on compound-specific isotope analysis (CSIA) of carbon (C) and chlorine (Cl) was used to identify sources of persistent trichloroethylene (TCE) that caused the shut-down in 1994 of a municipal well in an extensive fractured dolostone aquifer beneath Guelph, Ontario. Several nearby industrial properties have known subsurface TCE contamination; however, only one has created a comprehensive monitoring network in the bedrock. The impacted municipal well and many monitoring wells were sampled for volatile organic compounds (VOCs), inorganic parameters, and CSIA. A wide range in isotope values was observed at the study site. The TCE varies between -35.6‰ and -21.8‰ and from 1.6‰ to 3.2‰ for δ(13) C and δ(37) Cl, respectively. In case of cis-1,2-dichloroethene, the isotope values range between -36.3‰ and -18.9‰ and from 2.4‰ to 4.7‰ for δ(13) C and δ(37) Cl, respectively. The dual isotope approach represented by a plot of δ(13) C vs. δ(37) Cl shows the municipal well samples grouped in a domain clearly separate from all other samples from the property with the comprehensive well network. The CSIA results collected under non-pumping and short-term pumping conditions thus indicate that this particular property, which has been studied intensively for several years, is not a substantial contributor of the TCE presently in the municipal well under non-pumping conditions. This case study demonstrates that CSIA signatures would have been useful much earlier in the quest to examine sources of the TCE in the municipal well if bedrock monitoring wells had been located at several depths beneath each of the potential TCE-contributing properties. Moreover, the CSIA results show that microbial reductive dechlorination of TCE occurs in some parts of the bedrock aquifer. At this site, the use of CSIA for C and Cl in combination with analyses of VOC and redox parameters proved to be important due to the complexity introduced by

  1. First use of a compound-specific stable isotope (CSSI) technique to trace sediment transport in upland forest catchments of Chile.

    Science.gov (United States)

    Bravo-Linares, Claudio; Schuller, Paulina; Castillo, Alejandra; Ovando-Fuentealba, Luis; Muñoz-Arcos, Enrique; Alarcón, Oscar; de Los Santos-Villalobos, Sergio; Cardoso, Renan; Muniz, Marcelo; Meigikos Dos Anjos, Roberto; Bustamante-Ortega, Ramón; Dercon, Gerd

    2018-03-15

    Land degradation is a problem affecting the sustainability of commercial forest plantations. The identification of critical areas prone to erosion can assist this activity to better target soil conservation efforts. Here we present the first use of the carbon-13 signatures of fatty acids (C14 to C24) in soil samples for spatial and temporal tracing of sediment transport in river bodies of upland commercial forest catchments in Chile. This compound-specific stable isotope (CSSI) technique was tested as a fingerprinting approach to determine the degree of soil erosion in pre-harvested forest catchments with surface areas ranging from 12 to 40ha. For soil apportionment a mixing model based on a Bayesian inference framework was used (CSSIAR v.2.0). Approximately four potential sediment sources were used for the calculations of all of the selected catchments. Unpaved forestry roads were shown to be the main source of sediment deposited at the outlet of the catchments (30-75%). Furthermore, sampling along the stream channel demonstrated that sediments were mainly comprised of sediment coming from the unpaved roads in the upper part of the catchments (74-98%). From this it was possible to identify the location and type of primary land use contributing to the sediment delivered at the outlet of the catchments. The derived information will allow management to focus efforts to control or mitigate soil erosion by improving the runoff features of the forest roads. The use of this CSSI technique has a high potential to help forestry managers and decision makers to evaluate and mitigate sources of soil erosion in upland forest catchments. It is important to highlight that this technique can also be a good complement to other soil erosion assessment and geological fingerprinting techniques, especially when attempting to quantify (sediment loads) and differentiate which type of land use most contributes to sediment accumulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Stable-Isotope Mass Spectrometry-Based Metabolic Footprinting Approach to Analyze Exudates from Phytoplankton

    Directory of Open Access Journals (Sweden)

    Mark R. Viant

    2013-10-01

    Full Text Available Phytoplankton exudates play an important role in pelagic ecology and biogeochemical cycles of elements. Exuded compounds fuel the microbial food web and often encompass bioactive secondary metabolites like sex pheromones, allelochemicals, antibiotics, or feeding attractants that mediate biological interactions. Despite this importance, little is known about the bioactive compounds present in phytoplankton exudates. We report a stable-isotope metabolic footprinting method to characterise exudates from aquatic autotrophs. Exudates from 13C-enriched alga were concentrated by solid phase extraction and analysed by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. We used the harmful algal bloom forming dinoflagellate Alexandrium tamarense to prove the method. An algorithm was developed to automatically pinpoint just those metabolites with highly 13C-enriched isotope signatures, allowing us to discover algal exudates from the complex seawater background. The stable-isotope pattern (SIP of the detected metabolites then allowed for more accurate assignment to an empirical formula, a critical first step in their identification. This automated workflow provides an effective way to explore the chemical nature of the solutes exuded from phytoplankton cells and will facilitate the discovery of novel dissolved bioactive compounds.

  3. Compound-Specific Isotope Analyses to Assess TCE Biodegradation in a Fractured Dolomitic Aquifer.

    Science.gov (United States)

    Clark, Justin A; Stotler, Randy L; Frape, Shaun K; Illman, Walter A

    2017-01-01

    The potential for trichloroethene (TCE) biodegradation in a fractured dolomite aquifer at a former chemical disposal site in Smithville, Ontario, Canada, is assessed using chemical analysis and TCE and cis-DCE compound-specific isotope analysis of carbon and chlorine collected over a 16-month period. Groundwater redox conditions change from suboxic to much more reducing environments within and around the plume, indicating that oxidation of organic contaminants and degradation products is occurring at the study site. TCE and cis-DCE were observed in 13 of 14 wells sampled. VC, ethene, and/or ethane were also observed in ten wells, indicating that partial/full dechlorination has occurred. Chlorine isotopic values (δ 37 Cl) range between 1.39 to 4.69‰ SMOC for TCE, and 3.57 to 13.86‰ SMOC for cis-DCE. Carbon isotopic values range between -28.9 and -20.7‰ VPDB for TCE, and -26.5 and -11.8‰ VPDB for cis-DCE. In most wells, isotopic values remained steady over the 15-month study. Isotopic enrichment from TCE to cis-DCE varied between 0 and 13‰ for carbon and 1 and 4‰ for chlorine. Calculated chlorine-carbon isotopic enrichment ratios (ϵ Cl /ϵ C ) were 0.18 for TCE and 0.69 for cis-DCE. Combined, isotopic and chemical data indicate very little dechlorination is occurring near the source zone, but suggest bacterially mediated degradation is occurring closer to the edges of the plume. © 2016, National Ground Water Association.

  4. Combining position-specific 13C labeling with compound-specific isotope analysis: first steps towards soil fluxomics

    Science.gov (United States)

    Dippold, Michaela; Kuzyakov, Yakov

    2015-04-01

    Understanding the soil organic matter (SOM) dynamics is one of the most important challenges in soil science. Transformation of low molecular weight organic substances (LMWOS) is a key step in biogeochemical cycles because 1) all high molecular substances pass this stage during their decomposition and 2) only LMWOS will be taken up by microorganisms. Previous studies on LMWOS were focused on determining net fluxes through the LMWOS pool, but they rarely identified transformations. As LMWOS are the preferred C and energy source for microorganisms, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the biochemical pathways and its controlling factors. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools. Up to now, studies on LMWOS were nearly exclusively based on uniformly labeled organic substances i.e. all C atoms in the molecules were labeled with 13C or 14C. However, this classical approach did not allow the differentiation between use of intact initial substances in any process, or whether they were transformed to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of LMWOS and quantification of 13CO2 and 13C in bulk soil enabled following the basic metabolic pathways of soil microorganisms. However, only the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites allowed 1) tracing specific anabolic pathways in diverse microbial communities in soils and 2) identification of specific pathways of individual functional microbial groups. So, these are the prerequisites for soil fluxomics. Our studies combining position-specific labeled glucose with amino

  5. Applications of stable isotopes in clinical pharmacology

    NARCIS (Netherlands)

    Schellekens, Reinout C A; Stellaard, Frans; Woerdenbag, Herman J; Frijlink, Henderik W; Kosterink, Jos G W

    2011-01-01

    This review aims to present an overview of the application of stable isotope technology in clinical pharmacology. Three main categories of stable isotope technology can be distinguished in clinical pharmacology. Firstly, it is applied in the assessment of drug pharmacology to determine the

  6. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1986-08-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high-abundance, naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56. All requests for the loan of samples should be submitted with a summary of the purpose of the loan to: Iotope Distribution Office, Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831. Requests from non-DOE contractors and from foreign institutions require DOE approval

  7. What climate information is recorded in stable isotope ratios of wood lignin methoxyl groups?

    Science.gov (United States)

    Greule, Markus; Keppler, Frank

    2010-05-01

    The stable isotope composition of the bioelements C, O, H and N in plant organic matter is known to be a very powerful for various environmental impacts. Particularly tree rings are suitable for this analysis because they exhibit a "climate archive" with a yearly or even biannual resolution. One of the most determined wood compounds is cellulose which amongst others is used to reconstruct the temperature due to measurement of stable hydrogen and oxygen isotopes. Therefore cellulose is converted into cellulose nitrate to eliminate the exchangeable hydroxyl hydrogen or equilibration methods are used. However, a general problem associated with the determination of the stable hydrogen values of marker compounds for the study of climate and environmental conditions is the isolation of the pure compound for analysis by isotope ratio mass spectrometry. Exploitation of components of wood as markers, in particular, has been restricted by the very labour intensive and time consuming preparation of samples (e.g. cellulose nitrate). An alternative way to record climate information from tree rings was recently proposed by Keppler et al. (2007) who measured the stable hydrogen values of methoxyl groups in wood. Lignin methoxyl groups are considered to be stable, i.e. the hydrogen atoms of the methoxyl moiety do not exchange with those of plant water during ongoing metabolic reactions in the plant. Thus the initial deuterium content of the methoxyl groups of lignin in woody tissue at formation is retained throughout the lifetime of the tree and in preserved tissue. The methoxyl content of lignin in wood is usually determined by the Zeisel method (Zeisel, 1885) - the reaction between methyl ethers and hydroiodic acid to form methyl iodide. Exploiting this reaction for the measurement of stable hydrogen values of lignin methoxyl groups ensures that during the entire analytical procedure the isotope signal is preserved since no isotopic exchange occurs between the methyl groups and

  8. Discrimination factors of carbon and nitrogen stable isotopes in meerkat feces

    Directory of Open Access Journals (Sweden)

    Shaena Montanari

    2017-06-01

    Full Text Available Stable isotope analysis of feces can provide a non-invasive method for tracking the dietary habits of nearly any mammalian species. While fecal samples are often collected for macroscopic and genetic study, stable isotope analysis can also be applied to expand the knowledge of species-specific dietary ecology. It is somewhat unclear how digestion changes the isotope ratios of animals’ diets, so more controlled diet studies are needed. To date, most diet-to-feces controlled stable isotope experiments have been performed on herbivores, so in this study I analyzed the carbon and nitrogen stable isotope ratios in the diet and feces of the meerkat (Suricata suricatta, a small omnivorous mammal. The carbon trophic discrimination factor between diet and feces (Δ13Cfeces is calculated to be 0.1 ± 1.5‰, which is not significantly different from zero, and in turn, not different than the dietary input. On the other hand, the nitrogen trophic discrimination factor (Δ15Nfeces is 1.5 ± 1.1‰, which is significantly different from zero, meaning it is different than the average dietary input. Based on data generated in this experiment and a review of the published literature, carbon isotopes of feces characterize diet, while nitrogen isotope ratios of feces are consistently higher than dietary inputs, meaning a discrimination factor needs to be taken into account. The carbon and nitrogen stable isotope values of feces are an excellent snapshot of diet that can be used in concert with other analytical methods to better understand ecology, diets, and habitat use of mammals.

  9. Stable isotope ratio measurements in hydrogen, nitrogen, and oxygen using Raman scattering

    International Nuclear Information System (INIS)

    Harney, R.C.; Bloom, S.D.; Milanovich, F.P.

    1975-01-01

    A method for measuring stable isotope ratios using laser Raman scattering was developed which may prove of significant utility and benefit in stable isotope tracer studies. Crude isotope ratio measurements obtained with a low-power laser indicate that with current technology it should be possible to construct an isotope ratio measurement system using laser Raman scattering that is capable of performing 0.1 percent accuracy isotope ratio measurements of 16 O/ 18 O in natural abundance oxygen gas or 14 N/ 15 N in natural abundance nitrogen gas in times less than two minutes per sample. Theory pertinent to the technique, designs of specific isotope ratio spectrometer systems, and data relating to isotope ratio measurements in hydrogen, nitrogen, and oxygen are presented. In addition, the current status of several studies utilizing this technique is discussed. (auth)

  10. Congener-specific accumulation and trophic transfer of polychlorinated biphenyls in spider crab food webs revealed by stable isotope analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, N. [IFREMER, DCN-BE, Technopole Brest-Iroise, Pointe du Diable, 29280 Plouzane (France); LPTC-UMR 5472 CNRS, Universite de Bordeaux 1, 351 cours de la Liberation, 33400 Talence (France)], E-mail: bodin.nathalie@caramail.com; Le Loc' h, F. [IRD, UR 070 RAP, Centre de Recherche Halieutique, Avenue Jean Monnet, B.P. 171, 34203 Sete Cedex (France); Caisey, X.; Le Guellec, A.-M.; Abarnou, A.; Loizeau, V. [IFREMER, DCN-BE, Technopole Brest-Iroise, Pointe du Diable, 29280 Plouzane (France); Latrouite, D. [IFREMER, DCB-STH, Technopole Brest-Iroise, Pointe du Diable, 29280 Plouzane (France)

    2008-01-15

    Polychlorobiphenyls (PCB) and stable isotopes ({delta}{sup 15}N and {delta}{sup 13}C) were analyzed in the spider crab (Maja brachydactyla) food web from the Iroise Sea (Western Brittany) and the Seine Bay (Eastern English Channel). PCB concentrations were all significantly higher in organisms from the Seine Bay than those from the Iroise Sea. PCB patterns were strongly related to the feeding mode of the species, and increased influence of higher chlorinated congeners was highlighted with trophic position of the organisms. PCB concentrations (lipid normalized) were significantly related to the isotopically derived trophic level (TL) in spider crab food webs. The highest trophic magnification factors (TMFs) were calculated for the congeners with 2,4,5-substitution, and were lower in the Seine Bay compared to the Iroise Sea. The confrontation of PCB and TL data also revealed biotransformation capacity of decapod crustaceans for specific congeners based on structure-activity relations. - The influence of feeding mode and trophic position on the fate of PCBs in spider crab food webs is discussed by using a stable isotopic approach.

  11. Compound-specific nitrogen isotope analysis of D-alanine, L-alanine, and valine: application of diastereomer separation to delta15N and microbial peptidoglycan studies.

    Science.gov (United States)

    Takano, Yoshinori; Chikaraishi, Yoshito; Ogawa, Nanako O; Kitazato, Hiroshi; Ohkouchi, Naohiko

    2009-01-01

    We have developed an analytical method to determine the compound-specific nitrogen isotope compositions of individual amino acid enantiomers using gas chromatography/combustion/isotope ratio mass spectrometry. A novel derivatization of amino acid diastereomers by optically active (R)-(-)-2-butanol or (S)-(+)-2-butanol offers two advantages for nitrogen isotope analysis. First, chromatographic chiral separation can be achieved without the use of chiral stationary-phase columns. Second, the elution order of these compounds on the chromatogram can be switched by a designated esterification reaction. We applied the method to the compound-specific nitrogen isotope analysis of D- and L-alanine in a peptidoglycan derived from the cell walls of cultured bacteria (Firmicutes and Actinobacteria; Enterococcus faecalis, Staphylococcus aureus, Staphylococcus staphylolyticus, Lactobacillus acidophilus, Bacillus subtilis, Micrococcus luteus, and Streptomyces sp.), natural whole bacterial cells (Bacillus subtilis var. natto), (pseudo)-peptidoglycan from archaea (Methanobacterium sp.), and cell wall from eukaryota (Saccharomyces cerevisiae). We observed statistically significant differences in nitrogen isotopic compositions; e.g., delta15N ( per thousand vs air) in Staphylococcus staphylolyticus for d-alanine (19.2 +/- 0.5 per thousand, n = 4) and L-alanine (21.3 +/- 0.8 per thousand, n = 4) and in Bacillus subtilis for D-alanine (6.2 +/- 0.2 per thousand, n = 3) and L-alanine (8.2 +/- 0.4 per thousand, n = 3). These results suggest that enzymatic reaction pathways, including the alanine racemase reaction, produce a nitrogen isotopic difference in amino acid enantiomers, resulting in 15N-depleted D-alanine. This method is expected to facilitate compound-specific nitrogen isotope studies of amino acid stereoisomers.

  12. Development of stable isotope dilution assays for the quantitation of Amadori compounds in foods.

    Science.gov (United States)

    Meitinger, Michael; Hartmann, Sandra; Schieberle, Peter

    2014-06-04

    During thermal processing of foods, reducing carbohydrates and amino acids may form 1-amino-1-desoxyketoses named Amadori rearrangement products after the Italian chemist Mario Amadori. Although these compounds are transient intermediates of the Maillard reaction, they are often used as suitable markers to measure the extent of a thermal food processing, such as for spray-dried milk or dried fruits. Several methods are already available in the literature for their quantitation, but measurements are often done with external calibration without addressing losses during the workup procedure. To cope with this challenge, stable isotope dilution assays in combination with LC-MS/MS were developed for the glucose-derived Amadori products of the seven amino acids valine, leucine, isoleucine, phenylalanine, tyrosine, methionine, and histidine using the respective synthesized [(13)C6]-labeled isotopologues as internal standards. The quantitation of the analytes added to a model matrix showed a very good sensitivity with the lowest limits of detection for the Amadori compound of phenylalanine of 0.1 μg/kg starch and 0.2 μg/kg oil, respectively. Also, the standard deviation measured in, for example, wheat beer was only ±2% for this analyte. Application of the method to several foods showed the highest concentrations of the Amadori product of valine in unroasted cocoa (342 mg/kg) as well as in dried bell pepper (3460 mg/kg). In agreement with literature data, drying of foods led to the formation of Amadori products, whereas they were degraded during roasting of, for example, coffee or cocoa. The study presents for the first time results on concentrations of the Amadori compounds of tyrosine and histidine in foods.

  13. Stable isotope views on ecosystem function: challenging or challenged?

    Science.gov (United States)

    Resco, Víctor; Querejeta, José I; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-06-23

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Ubeda, 18-22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes.

  14. The stable isotope fingerprinting technique for agricultural pesticide

    Science.gov (United States)

    Suto, N.; Kawashima, H.

    2014-12-01

    The compound specific isotope analysis (CSIA) is nowadays an important and powerful tool in geochemical, environmental, and forensics field. In particular, the stable isotope ratio of pesticide is applied to biological process and reaction in the soil and distribution channel as forensics science. The aim of this study is to measure the stable isotope ratios of pesticide using various analytical methodologies, GC/IRMS, EA/IRMS, and LC/IRMS under high accuracy and precision. Therefore, these methods seemed to be important knowledge as geological field. In particular case, we present the method to measure carbon isotope ratio of nine malathion emulsion pesticides using GC/IRMS with cryo-focusing system to identify the source. In December 2013, food poisoning occurred after eating frozen dumplings (i.e., pizza and chicken nuggets) in Japan. There was a very high concentration, maximum value 15,000ppm, of malathion (diethyl (dimethoxythiophosphorylthio) succinate) in products. This incident was caused by an employee of process, and threatened the food safety. We analyzed the δ13C of malathion ranged from -30.63‰ to -29.54‰ (S.D. 0.10‰), the differences less than 1.0‰. All malathion emulsion sold in Japan are imported from Cheminova India Lat., Denmark to Sumitomo Chemical Co. Ltd., Japan. After that, Japanese each manufacture buy from Sumitomo Chemical Co. Ltd. And blended malathion and organic solvent (ethylbenzene and xylene). Therefore, ethylbenzene and xylene may be important tool as source identification. We measured the δ13C of ethylbenzene and m-,p-xylene, too. As the results, the δ13C of ethylbenzene and m-,p-xylene ranged from -28.20‰ to -20.84‰ (S.D. 0.16‰), -28.69‰ to -25.15‰ (S.D. 0.13‰), respectively. The δ13C of ethylbenzene and m-,p-xylene can be identified manufacture, although the δ13C of malathion indicated same value. In addition, we measured five pesticides (acephate, acetamiprid, glufosinate, glyphosate, and oxamyl) using

  15. Application of heavy stable isotopes in forensic isotope geochemistry: A review

    International Nuclear Information System (INIS)

    Aggarwal, Jugdeep; Habicht-Mauche, Judith; Juarez, Chelsey

    2008-01-01

    Light stable isotopes have been used for many years to characterize the source and transport of materials. More recently heavy isotope systems such as Sr, Nd and Pb have been added to this list in order to aid source identification. With the advent of multiple collector ICP-MS, the range of isotopic tools now available has increased considerably, however, until the isotope systematics of these new non-traditional isotope systems have become better understood, they will not be as useful in characterizing material source and transportation. Applications using heavy metal stable isotopes (mostly traditional heavy isotopes) have reached most avenues in science, including earth sciences, archaeology, anthropology, animal physiology, ecology and toxicology. This field will continue to grow as new applications are developed and techniques become simpler and quicker. This paper provides a review of how this field has grown and presents two new applications using Pb and Sr isotopes in glazes to determine the source of ore used in glazes, and using Sr isotopes to determine the origin of undocumented deceased Mexican border crossers

  16. Application of heavy stable isotopes in forensic isotope geochemistry: A review

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Jugdeep [W.M. Keck Isotope Laboratory, Department of Earth Sciences, University of California, Santa Cruz, CA 95064 (United States)], E-mail: jaggarwal@pmc.ucsc.edu; Habicht-Mauche, Judith; Juarez, Chelsey [Department of Anthropology, University of California, Santa Cruz, CA 95064 (United States)

    2008-09-15

    Light stable isotopes have been used for many years to characterize the source and transport of materials. More recently heavy isotope systems such as Sr, Nd and Pb have been added to this list in order to aid source identification. With the advent of multiple collector ICP-MS, the range of isotopic tools now available has increased considerably, however, until the isotope systematics of these new non-traditional isotope systems have become better understood, they will not be as useful in characterizing material source and transportation. Applications using heavy metal stable isotopes (mostly traditional heavy isotopes) have reached most avenues in science, including earth sciences, archaeology, anthropology, animal physiology, ecology and toxicology. This field will continue to grow as new applications are developed and techniques become simpler and quicker. This paper provides a review of how this field has grown and presents two new applications using Pb and Sr isotopes in glazes to determine the source of ore used in glazes, and using Sr isotopes to determine the origin of undocumented deceased Mexican border crossers.

  17. Applications of stable isotope analysis in mammalian ecology.

    Science.gov (United States)

    Walter, W David; Kurle, Carolyn M; Hopkins, John B

    2014-01-01

    In this editorial, we provide a brief introduction and summarize the 10 research articles included in this Special Issue on Applications of stable isotope analysis in mammalian ecology. The first three articles report correction and discrimination factors that can be used to more accurately estimate the diets of extinct and extant mammals using stable isotope analysis. The remaining seven applied research articles use stable isotope analysis to address a variety of wildlife conservation and management questions from the oceans to the mountains.

  18. Monitoring biodegradation of hydrocarbons by stable isotope fractionation

    Science.gov (United States)

    Dorer, Conrad; Fischer, Anko; Herrmann, Steffi; Richnow, Hans-Hermann; Vogt, Carsten

    2010-05-01

    In the last decade, several studies have demonstrated that stable isotope tools are highly applicable for monitoring anaerobic biodegradation processes. An important methodological approach is to characterize distinct degradation pathways with respect to the specific mechanism of C-H-bond cleavage and to quantify the extent of biodegradation by compound specific isotope analysis (CSIA). Here, enrichment factors (ɛbulk) needed for a CSIA field site approach must be determined in laboratory reference experiments. Recent research results from different laboratories have shown that single ɛbulk values for similar degradation pathways can be highly variable; thus, the use of two-dimensional compound specific isotope analysis (2D-CSIA) has been encouraged for characterizing biodegradation pathways more precisely. 2D-CSIA for hydrocarbons can be expressed by the slope of the linear regression for hydrogen versus carbon discrimination known as lambda ≈ ɛHbulk/ɛCbulk. We determined the carbon and hydrogen isotope fractionation for the biodegradation of benzene, toluene and xylenes by various reference cultures. Specific enzymatic reactions initiating different biodegradation pathways could be distinguished by 2D-CSIA. For the aerobic di- and monohydroxylation of the benzene ring, lambda values always lower than 9 were observed. Enrichment cultures degrading benzene anaerobically produced significant different values: lambda values between 8-19 were oberved for nitrate-reducing consortia, whereas sulfate-reducing and methanogenic consortia showed always lambda values greater than 20 [1,2]. The observed variations suggest that (i) aerobic benzene biodegradation can be distinguished from anaerobic biodegradation, and (ii) that more than a single mechanism seems to exist for the activation of benzene under anoxic conditions. lambda values for anaerobic toluene degradation initiated by the enzyme benzylsuccinate synthase (BSS) ranged from 4 to 41, tested with strains using

  19. Table of specific activities of selected isotopes

    International Nuclear Information System (INIS)

    Shipley, G.

    The bulk of this publication consists of a table of the half-lives, decay modes, and specific activities of isotopes selected for their particular interest to the Environmental Health and Safety Department, LBL. The specific activities were calculated with a PDP 9/15 computer. Also included in the report is a table of stable isotopes, the Th and U decay chains, a chart of the nuclides for elements 101 through 106, the heavy element region of the periodic table, and a specific activity monograph. 5 figures, 2 tables

  20. Stable isotopes and the environment

    International Nuclear Information System (INIS)

    Krouse, H.R.

    1990-01-01

    Whereas traditionally, stable isotope research has been directed towards resource exploration and development, it is finding more frequent applications in helping to assess the impacts of resource utilization upon ecosystems. Among the many pursuits, two themes are evident: tracing the transport and conversions of pollutants in the environment and better understanding of the interplay among environmental receptors, e.g. food web studies. Stable isotope data are used primarily to identify the presence of pollutants in the environment and with a few exceptions, the consequence of their presence must be assessed by other techniques. Increasing attention has been given to the isotopic composition of humans with many potential applications in areas such as paleodiets, medicine, and criminology. In this brief overview examples are used from the Pacific Rim to illustrate the above concepts. 26 refs., 1 tab., 3 figs

  1. Problems and prospects in future applications of stable isotopes in the life sciences and medicine

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.; Unkefer, C.J.; Walker, T.E.

    1982-01-01

    In the last decade, there has been a resurgence of interest in the use of stable isotopes of carbon, oxygen, and nitrogen in the life sciences and medicine fueled by the increased availability of the isotopes and isotopically labeled compounds and of instruments for their detection. Accelerated development of 13 C, 15 N, and 17 18 O can be expected in the future for studies of drug bioavailability, nutrition and body protein economy, viability of organs for transplant, and for non-invasive tests of metabolic diseases and dysfunctions. These accelerated developments depend on continued improvements in nmr and ms instrumentation and in methods for the synthesis of isotopically labeled compounds. The main part of this paper explores the possibilities of biosynthesis for the selective enrichment of natural products, especially amino acids, with 13 C

  2. Enriching stable isotopes: Alternative use for Urenco technology

    International Nuclear Information System (INIS)

    Rakhorst, H.; de Jong, P.G.T.; Dawson, P.D.

    1996-01-01

    The International Urenco Group utilizes a technologically advanced centrifuge process to enrich uranium in the fissionable isotope 235 U. The group operates plants in the United Kingdom, the Netherlands, and Germany and currently holds a 10% share of the multibillion dollar world enrichment market. In the early 1990s, Urenco embarked on a strategy of building on the company's uniquely advanced centrifuge process and laser isotope separation (LIS) experience to enrich nonradioactive isotopes colloquially known as stable isotopes. This paper summarizes the present status of Urenco's stable isotopes business

  3. Stable isotope views on ecosystem function: challenging or challenged?

    Science.gov (United States)

    Resco, Víctor; Querejeta, José I.; Ogle, Kiona; Voltas, Jordi; Sebastià, Maria-Teresa; Serrano-Ortiz, Penélope; Linares, Juan C.; Moreno-Gutiérrez, Cristina; Herrero, Asier; Carreira, José A.; Torres-Cañabate, Patricia; Valladares, Fernando

    2010-01-01

    Stable isotopes and their potential for detecting various and complex ecosystem processes are attracting an increasing number of scientists. Progress is challenging, particularly under global change scenarios, but some established views have been challenged. The IX meeting of the Spanish Association of Terrestrial Ecology (AAET, Úbeda, 18–22 October 2009) hosted a symposium on the ecology of stable isotopes where the linear mixing model approach of partitioning sinks and sources of carbon and water fluxes within an ecosystem was challenged, and new applications of stable isotopes for the study of plant interactions were evaluated. Discussion was also centred on the need for networks that monitor ecological processes using stable isotopes and key ideas for fostering future research with isotopes. PMID:20015858

  4. Effects of euthanasia method on stable-carbon and stable-nitrogen isotope analysis for an ectothermic vertebrate.

    Science.gov (United States)

    Atwood, Meredith A

    2013-04-30

    Stable isotope analysis is a critical tool for understanding ecological food webs; however, results can be sensitive to sample preparation methods. To limit the possibility of sample contamination, freezing is commonly used to euthanize invertebrates and preserve non-lethal samples from vertebrates. For destructive sampling of vertebrates, more humane euthanasia methods are preferred to freezing and it is essential to evaluate how these euthanasia methods affect stable isotope results. Stable isotope ratios and elemental composition of carbon and nitrogen were used to evaluate whether the euthanasia method compromised the integrity of the sample for analysis. Specifically, the stable isotope and C:N ratios were compared for larval wood frogs (Rana sylvatica  =  Lithobates sylvaticus), an ectothermic vertebrate, that had been euthanized by freezing with four different humane euthanasia methods: CO2, benzocaine, MS-222 (tricaine methanesulfonate), and 70% ethanol. The euthanasia method was not related to the δ(13)C or δ(15)N values and the comparisons revealed no differences between freezing and any of the other treatments. However, there were slight (non-significant) differences in the isotope ratios of benzocaine and CO2 when each was compared with freezing. The elemental composition was altered by the euthanasia method employed. The percentage nitrogen was higher in CO2 treatments than in freezing, and similar (non-significant) trends were seen for ethanol treatments relative to freezing. The resulting C:N ratios were higher for benzocaine treatments than for both CO2 and ethanol. Similar (non-significant) trends suggested that the C:N ratios were also higher for animals euthanized by freezing than for both CO2 and ethanol euthanasia methods. The euthanasia method had a larger effect on elemental composition than stable isotope ratios. The percentage nitrogen and the subsequent C:N ratios were most affected by the CO2 and ethanol euthanasia methods, whereas

  5. Stable isotope composition of human fingernails from Slovakia

    International Nuclear Information System (INIS)

    Grolmusová, Zuzana; Rapčanová, Anna; Michalko, Juraj; Čech, Peter; Veis, Pavel

    2014-01-01

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ 13 C and δ 15 N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in 13 C and 15 N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ 13 C and δ 15 N values. These data were compared to previously published δ 13 C and δ 15 N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking. - Highlights: • This study deals with stable isotope analyses of fingernails from Slovak volunteers. • δ 13 C and δ 15 N values of vegetarian and omnivore fingernails were compared. • Influence of sex, diet and smoking was studied

  6. Compound- and position-specific carbon isotopic signatures of abiogenic hydrocarbons from on-land serpentinite-hosted Hakuba Happo hot spring in Japan

    Science.gov (United States)

    Suda, Konomi; Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro; Ueno, Yuichiro

    2017-06-01

    It has been proposed that serpentinite-hosted hydrothermal/hot spring systems played a significant role in the origin and early evolution of life on early Earth because abiogenic synthesis of organic compounds may accompany serpentinization. However, production mechanisms for apparently abiogenic hydrocarbons that have been observed in the ongoing serpentinizing systems are still poorly constrained. We report a new geochemical study of hydrocarbons in an on-land serpentinite-hosted hot spring in Hakuba Happo, Japan. We have conducted both compound-specific and position-specific carbon isotopic analyses of the observed C1 to C5 hydrocarbons. A positive linear relationship between the δ13C values and the inverse carbon number is found in C1 to C5 straight-chain alkanes in the Happo sample. This isotopic trend is consistent with a simple polymerization model developed in this study. Our model assumes that, for any particular alkane, all of the subsequently added carbons have the same isotopic composition, and those are depleted in 13C with respect to the first carbon in the growing carbon chain. The fit of this model suggests that Happo alkanes can be produced via polymerization from methane with a constant kinetic isotopic fractionation of -8.9 ± 1.0‰. A similar carbon isotopic relationship among alkanes has been observed in some serpentinite-hosted seafloor hydrothermal systems, indicating that the same process is responsible for the abiological hydrocarbon in general serpentinization fields, not only in the Hakuba Happo hot spring. Moreover, our model is also applicable to other potentially abiogenic natural gases and experimentally synthesized hydrocarbon products. For the first time, the intramolecular 13C composition of propane from a natural sample derived from a serpentinite-hosted system was determined. The intramolecular 13C distribution in propane shows the important potential to identify different polymerization mechanisms that cannot be discriminated

  7. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology.

    Science.gov (United States)

    von Bergen, Martin; Jehmlich, Nico; Taubert, Martin; Vogt, Carsten; Bastida, Felipe; Herbst, Florian-Alexander; Schmidt, Frank; Richnow, Hans-Hermann; Seifert, Jana

    2013-10-01

    The recent development of metaproteomics has enabled the direct identification and quantification of expressed proteins from microbial communities in situ, without the need for microbial enrichment. This became possible by (1) significant increases in quality and quantity of metagenome data and by improvements of (2) accuracy and (3) sensitivity of modern mass spectrometers (MS). The identification of physiologically relevant enzymes can help to understand the role of specific species within a community or an ecological niche. Beside identification, relative and absolute quantitation is also crucial. We will review label-free and label-based methods of quantitation in MS-based proteome analysis and the contribution of quantitative proteome data to microbial ecology. Additionally, approaches of protein-based stable isotope probing (protein-SIP) for deciphering community structures are reviewed. Information on the species-specific metabolic activity can be obtained when substrates or nutrients are labeled with stable isotopes in a protein-SIP approach. The stable isotopes ((13)C, (15)N, (36)S) are incorporated into proteins and the rate of incorporation can be used for assessing the metabolic activity of the corresponding species. We will focus on the relevance of the metabolic and phylogenetic information retrieved with protein-SIP studies and for detecting and quantifying the carbon flux within microbial consortia. Furthermore, the combination of protein-SIP with established tools in microbial ecology such as other stable isotope probing techniques are discussed.

  8. Gas phase thermal diffusion of stable isotopes

    International Nuclear Information System (INIS)

    Eck, C.F.

    1979-01-01

    The separation of stable isotopes at Mound Facility is reviewed from a historical perspective. The historical development of thermal diffusion from a laboratory process to a separation facility that handles all the noble gases is described. In addition, elementary thermal diffusion theory and elementary cascade theory are presented along with a brief review of the uses of stable isotopes

  9. Applications of stable isotope tracers to air pollution problems

    International Nuclear Information System (INIS)

    Kelly, W.R.

    1985-01-01

    One of the fundamental environmental problems facing the United States is how to effect acid rain abatement in the northeast United States and southeastern Canada in a cost effective manner. There are several key scientific questions that must be addressed in order to design an effective strategy. These questions include the following: (1) where do pollutants from a specified source area go., (2) what chemical transformations occur during transport., and (3) where and how are these pollutants deposited. One approach to address these questions is the use of enriched stable isotopes as intentional tracers of aerosol and sulfur emissions. Isotopic tracers can determine the location and pathways of pollutants in the environment and trace pollutants back to their original source. For an element with n isotopes, it is possible to intentionally tag n-2 sources. (For example, Nd, which has seven isotopes, could be used to tag 5 different aerosol sources). To trace sulfur compounds, the two minor isotopes of sulfur, 33 S and 36 S, could be used. Methods developed at NBS using high precision mass spectrometry permits the detection of the small changes in isotopic composition brought about by the intentional tagging at a source. This may make possible the identification of a source at a particular sampling site

  10. Recent research activities and future subjects on stable- and radio-isotopes of chlorine in environment

    International Nuclear Information System (INIS)

    Kushita, Kouhei

    2001-12-01

    This report reviews the recent studies on the stable- and radio-isotopes of chlorine from a viewpoint of environmental science, partly including historic references on this element. First, general properties, occurrence, and utilization of chlorine are described. Secondly, current status and research works on chlorine-compounds, which attract special attention in recent years as environmentally hazardous materials, are reported. Thirdly, research works on stable chlorine isotopes, 35 Cl and 37 Cl, are described with a focus laid on the newly-developed techniques; isotopic ratio mass spectrometry (IRMS) and thermal ionization mass spectrometry (TIMS). Fourthly, recent research works on chlorine radioisotopes, 36 Cl etc., are described, focusing on the development of accelerator mass spectrometry (AMS) and its application to geochemistry and others. Finally, taking account of the above-mentioned recent works on Cl isotopes, possible future research subjects are discussed. (author)

  11. Recent research activities and future subjects on stable- and radio-isotopes of chlorine in environment

    Energy Technology Data Exchange (ETDEWEB)

    Kushita, Kouhei [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report reviews the recent studies on the stable- and radio-isotopes of chlorine from a viewpoint of environmental science, partly including historic references on this element. First, general properties, occurrence, and utilization of chlorine are described. Secondly, current status and research works on chlorine-compounds, which attract special attention in recent years as environmentally hazardous materials, are reported. Thirdly, research works on stable chlorine isotopes, {sup 35}Cl and {sup 37}Cl, are described with a focus laid on the newly-developed techniques; isotopic ratio mass spectrometry (IRMS) and thermal ionization mass spectrometry (TIMS). Fourthly, recent research works on chlorine radioisotopes, {sup 36}Cl etc., are described, focusing on the development of accelerator mass spectrometry (AMS) and its application to geochemistry and others. Finally, taking account of the above-mentioned recent works on Cl isotopes, possible future research subjects are discussed. (author)

  12. Expeditious syntheses of stable and radioactive isotope-labeled anticonvulsant agent, JNJ-26990990, and its metabolites.

    Science.gov (United States)

    Lin, Ronghui; Weaner, Larry E; Hoerr, David C; Salter, Rhys; Gong, Yong

    2013-01-01

    Syntheses of stable and radioactive isotope-labeled anticonvulsant agent, JNJ-26990990, that is, N-(benzo[b]thien-3-ylmethyl)-sulfamide and its metabolites are described. [(13)C(15)N]Benzo[b]thiophene-3-carbonitrile was first prepared by coupling of 3-bromo-benzo[b]thiophene with [(13)C(15)N]-copper cyanide. The resultant [(13)C(15)N]benzo[b]thiophene-3-carbonitrile was reduced with lithium aluminum deuteride to give [(13)CD2(15)N]benzo[b]thiophen-3-yl-methylamine; which was then coupled with sulfamide to afford [(13)CD2(15)N]-N-(benzo[b]thien-3-ylmethyl)-sulfamide, the stable isotope-labeled compound with four stable isotope atoms. Direct oxidation of [(13)CD2(15)N]-N-(benzo[b]thien-3-ylmethyl)-sulfamide with hydrogen peroxide and peracetic acid gave the stable isotope-labeled sulfoxide and sulfone metabolites. On the other hand, radioactive (14)C-labeled N-(benzo[b]thien-3-ylmethyl)-sulfamide was prepared conveniently by sequential coupling of 3-bromo-benzo[b]thiophene with [(14)C]-copper cyanide, reduction of the carbonitrile to carboxaldehyde, and reductive amination with sulfamide. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Stable isotope separation by thermal diffusion

    International Nuclear Information System (INIS)

    Vasaru, Gheorghe

    2001-01-01

    Thermal diffusion in both gaseous and liquid phase has been subject of extensive experimental and theoretical investigations, especially after the invention of K. Clusius and G. Dickel of the thermal diffusion column, sixty three years ago. This paper gives a brief overview of the most important research and developments performed during the time at the National Institute for Research and Development for Isotopic and Molecular Technology (ITIM) at Cluj - Napoca, Romania in the field of separation of stable isotopes by thermal diffusion. An retrospective analysis of the research and results concerning isotope separation by thermal diffusion entails the following conclusions: - thermal diffusion is an adequate method for hydrogen isotope separation (deuterium and tritium) and for noble gas isotope separation (He, Ne, Ar, Kr, Xe); - thermal diffusion is attractive also for 13 C enrichment using methane as raw material for separation, when annual yields of up to 100 g are envisaged; - lately, the thermal diffusion appears to be chosen as a final enrichment step for 17 O. An obvious advantage of this method is its non-specificity, i.e. the implied equipment can be utilized for isotope separation of other chemical elements too. Having in view the low investment costs for thermal diffusion cascades the method appears economically attractive for obtaining low-scale, laboratory isotope production. The paper has the following content: 1. The principle of method; 2. The method's application; 3. Research in the field of thermal diffusion at ITIM; 4. Thermal diffusion cascades for N, C, Ne, Ar and Kr isotope separation; 5. Conclusion

  14. Natural Hg isotopic composition of different Hg compounds in mammal tissues as a proxy for in vivo breakdown of toxic methylmercury.

    Science.gov (United States)

    Perrot, Vincent; Masbou, Jeremy; Pastukhov, Mikhail V; Epov, Vladimir N; Point, David; Bérail, Sylvain; Becker, Paul R; Sonke, Jeroen E; Amouroux, David

    2016-02-01

    In the last decade, specific attention has been paid to total mercury (HgT) stable isotopic composition, especially in natural samples such as aquatic organisms, due to its potential to track the cycle of this toxic element in the environment. Here, we investigated Hg Compound Specific stable Isotopic Composition (CSIC) of natural inorganic Hg (iHg) and methylmercury (MMHg) in various tissues of aquatic mammals (Beluga whale from the Arctic marine environment and seals from the freshwater lake Baikal, Russia). In seals' organs the variation in mass dependent fractionation (MDF, δ(202)Hg) for total Hg was significantly correlated to the respective fraction of iHg and MMHg compounds, with MMHg being enriched by ∼ 3‰ in heavier isotopes relative to iHg. On the other hand, we observe insignificant variation in Hg mass independent isotope fractionation (MIF, Δ(199)Hg) among iHg and MMHg in all organs for the same mammal species and MMHg in prey items. MIF signatures suggest that both MMHg and iHg in aquatic mammals have the same origin (i.e., MMHg from food), and are representative of Hg photochemistry in the water column of the mammal ecosystem. MDF signatures of Hg compounds indicate that MMHg is demethylated in vivo before being stored in the muscle, and the iHg formed is stored in the liver, and to a lesser extent in the kidney, before excretion. Thus, Hg CSIC analysis in mammals can be a powerful tool for tracing the metabolic response to Hg exposure.

  15. Stable water isotope patterns in a climate change hotspot: the isotope hydrology framework of Corsica (western Mediterranean).

    Science.gov (United States)

    van Geldern, Robert; Kuhlemann, Joachim; Schiebel, Ralf; Taubald, Heinrich; Barth, Johannes A C

    2014-06-01

    The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (δP) with values of-8.6(± 0.2) ‰ for δ(18)O and-58(± 2) ‰ for δ(2)H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of-0.17(± 0.02) ‰ per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.

  16. Stable isotope composition of human fingernails from Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Grolmusová, Zuzana, E-mail: zuzana.grolmusova@geology.sk [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia); Rapčanová, Anna [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); Michalko, Juraj; Čech, Peter [State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia); Veis, Pavel [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia)

    2014-10-15

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ{sup 13}C and δ{sup 15}N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in {sup 13}C and {sup 15}N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ{sup 13}C and δ{sup 15}N values. These data were compared to previously published δ{sup 13}C and δ{sup 15}N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking. - Highlights: • This study deals with stable isotope analyses of fingernails from Slovak volunteers. • δ{sup 13}C and δ{sup 15}N values of vegetarian and omnivore fingernails were compared. • Influence of sex, diet and smoking was studied.

  17. Enantioselective stable isotope analysis (ESIA) — A new concept to evaluate the environmental fate of chiral organic contaminants

    International Nuclear Information System (INIS)

    Badea, Silviu-Laurentiu; Danet, Andrei-Florin

    2015-01-01

    Since 2011, the enantiospecific stable carbon isotope analysis (ESIA) has emerged as an innovative technique to assess the environmental fate of chiral emerging compounds by combining in one experimental technique both compound specific isotope analysis (CSIA) and enantioselective analysis. To date, the ESIA was applied for four classes of compounds: α-hexachlorocyclohexane (α-HCH), polar herbicides (phenoxy acids), synthetic polycyclic musk galaxolide (HHCB), and phenoxyalkanoic methyl herbicides. From an analytical point of view there are factors that are hindering the application of ESIA methods for the field samples: (i.e. amounts of target analyte, matrix effects, GC resolution) and overcoming these factors is challenging. While ESIA was shown as a mature technique for the first three abovementioned class of compounds, no isotope analysis of individual enantiomers could be performed for phenoxyalkanoic methyl herbicides. With respect to field studies, one study showed that ESIA might be a promising tool to distinguish between biotic and abiotic transformation pathways of chiral organic contaminants and even to differentiate between their aerobic and anaerobic biotransformation pathways. The development of ESIA methods for new chiral emerging contaminants in combination with development of multi-element isotope analysis will contribute to a better characterization of transformation pathways of chiral organic contaminants. - Highlights: • ESIA is an innovative technique to assess the environmental fate of chiral pollutants • Overcoming the analytical limitations of ESIA is challenging • Development of ESIA methods for new chiral emerging contaminants is needed

  18. Enantioselective stable isotope analysis (ESIA) — A new concept to evaluate the environmental fate of chiral organic contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Badea, Silviu-Laurentiu, E-mail: badeasilviu@gmail.com [Department of Chemistry, Umeå University, SE-901 87 Umeå (Sweden); Danet, Andrei-Florin [Department of Analytical Chemistry, University of Bucharest, Faculty of Chemistry, 90-92 Panduri Str., Bucharest 050657 (Romania)

    2015-05-01

    Since 2011, the enantiospecific stable carbon isotope analysis (ESIA) has emerged as an innovative technique to assess the environmental fate of chiral emerging compounds by combining in one experimental technique both compound specific isotope analysis (CSIA) and enantioselective analysis. To date, the ESIA was applied for four classes of compounds: α-hexachlorocyclohexane (α-HCH), polar herbicides (phenoxy acids), synthetic polycyclic musk galaxolide (HHCB), and phenoxyalkanoic methyl herbicides. From an analytical point of view there are factors that are hindering the application of ESIA methods for the field samples: (i.e. amounts of target analyte, matrix effects, GC resolution) and overcoming these factors is challenging. While ESIA was shown as a mature technique for the first three abovementioned class of compounds, no isotope analysis of individual enantiomers could be performed for phenoxyalkanoic methyl herbicides. With respect to field studies, one study showed that ESIA might be a promising tool to distinguish between biotic and abiotic transformation pathways of chiral organic contaminants and even to differentiate between their aerobic and anaerobic biotransformation pathways. The development of ESIA methods for new chiral emerging contaminants in combination with development of multi-element isotope analysis will contribute to a better characterization of transformation pathways of chiral organic contaminants. - Highlights: • ESIA is an innovative technique to assess the environmental fate of chiral pollutants • Overcoming the analytical limitations of ESIA is challenging • Development of ESIA methods for new chiral emerging contaminants is needed.

  19. An attempt to characterize certain organic and mineral substances by their stable isotope composition

    International Nuclear Information System (INIS)

    Bricout, J.; Fontes, J.C.; Letolle, R.; Mariotti, A.; Merlivat, L.

    1975-01-01

    The determination of the relative abundance of various stable isotopes - deuterium, oxygen-18, carbon-13, nitrogen-15, sulphur-34 - can be used to characterize the origin of a water body and of an organic or mineral substance in the environment. This results from the discovery that isotopic fractioning by living organisms occurs. The stable isotope composition of any substance reflects, at least partly, the various stages of its formation. A number of examples supporting this hypothesis are given. The passage of water through plants, or alcoholic fermentation, substantially modifies the stable isotope composition of water. The assimilation of atmospheric carbon dioxide involves a reduction in the carbon-13 content which varies depending on the enzymatic mechanism of photosynthesis. The enzymatic reactions that cause the biosynthesis of various organic substances in higher plants are accompanied by partial exclusion of deuterium, an exclusion which is greater or smaller depending on the biosynthesis pathway followed. The bacterial reduction of sulphur compounds involves a high rate of isotopic fractioning. As a result, industrial sulphates obtained by oxidation of reduced sulphur associated with hydrocarbon deposits are depleted in 34 S in comparison with natural sulphates. Similarly, the authors have observed that nitrates produced by the plant biological cycle are rich in nitrogen-15 compared to synthesized nitrates

  20. Tracing the link between plant volatile organic compound emissions and CO2 fluxes and by stable isotopes

    Science.gov (United States)

    Werner, Christiane; Wegener, Frederik; Jardine, Kolby

    2015-04-01

    The vegetation exerts a large influence on the atmosphere through the emission of volatile organic compounds (VOCs) and the emission and uptake of the greenhouse gas CO2. Despite the enormous importance, processes controlling plant carbon allocation into primary and secondary metabolism, such as photosynthetic carbon uptake, respiratory CO2 emission and VOC synthesis, remains unclear. Moreover, vegetation-atmosphere CO2 exchange is associated with a large isotopic imprint due to photosynthetic carbon isotope discrimination and 13C-fractionation during respiratory CO2 release1. The latter has been proposed to be related to carbon partitioning in the metabolic branching points of the respiratory pathways and secondary metabolism, which are linked via a number of interfaces including the central metabolite pyruvate. Notably, it is a known substrate in a large array of secondary pathways leading to the biosynthesis of many volatile organic compounds (VOCs), such as volatile isoprenoids, oxygenated VOCs, aromatics, fatty acid oxidation products, which can be emitted by plants. Here we investigate the linkage between VOC emissions, CO2 fluxes and associated isotope effects based on simultaneous real-time measurements of stable carbon isotope composition of branch respired CO2 (CRDS) and VOC fluxes (PTR-MS). We utilized positionally specific 13C-labeled pyruvate branch feeding experiments in the mediterranean shrub (Halimium halimifolium) to trace the partitioning of C1, C2, and C3 carbon atoms of pyruvate into VOCs versus CO2 emissions in the light and in the dark. In the light, we found high emission rates of a large array of VOC including volatile isoprenoids, oxygenated VOCs, green leaf volatiles, aromatics, sulfides, and nitrogen containing VOCs. These observations suggest that in the light, H. halimifolium dedicates a high carbon flux through secondary biosynthetic pathways including the pyruvate dehydrogenase bypass, mevalonic acid, MEP/DOXP, shikimic acid, and

  1. Stable isotopes as tracers for radionuclides

    International Nuclear Information System (INIS)

    Giussani, A.; Bartolo, D. de; Cantone, M.C.; Zilker, T.; Greim, H.; Roth, P.; Werner, E.

    2000-01-01

    The assessment of internal dose after incorporation of radionuclides requires as input data the knowledge of the uptake into the systemic circulation, the distribution and retention in selected organs, the excretion pathways. Realistic biokinetic models are needed for reliable estimates, correct interpretation of bioassay measurements, appropriate decision-making in radiological emergencies. For many radionuclides, however, the biokinetic models currently recommended are often generic, with very few specific parameters, due to the lack of experimental human data. The use of stable isotopes as tracers enables to determine important biokinetic parameters such as the fractional uptake, the clearance from the transfer compartment, the excretion patterns under experimentally controlled conditions. The subjects investigated are not exposed to any radiation risk, so this technique enables to obtain biokinetic information also for sensitive groups of the population, such as children or pregnant women, and to determine age- and gender-specific model parameters. Sophisticated analytical method, able to discriminate and quantitate different isotopes of the same element in complex matrices such as biological fluids, have to be purposely developed and optimized. Activation analysis and mass spectrometry are the most proper techniques of choice. Experiments were conducted with molybdenum, tellurium, ruthenium and zirconium. Activation analysis with protons, thermal ionization mass spectrometry and inductively coupled mass spectrometry were employed for the determination of stable isotopes of these elements in blood plasma and urine samples. Several deviations from the predictions of the ICRP models were observed. For example, modifications to the current model for molybdenum have been suggested on the basis of these results. The dose coefficients to the target regions calculated with this proposed model are even of one order of magnitude different than the ICRP estimates

  2. Functional connectivity of coral reef fishes in a tropical seascape assessed by compound-specific stable isotope analyses

    KAUST Repository

    McMahon, Kelton W.

    2011-01-01

    . The compound-specific SIA approach presented in this thesis will be particularly valuable for tracking the movement of species and life-stages not amenable to conventional tagging techniques. This thesis provides quantitative scientific support for establishing

  3. The status of applying stable isotope in the studies of environmental science

    International Nuclear Information System (INIS)

    Bai Zhipeng; Zhang Liwen; Zhu Tan; Feng Yinchang

    2007-01-01

    The stable isotope composition is characteristic in the pollution source, and it is relatively fixed in the process of transferring and reaction. At present the precise analysis result of stable isotope ratio can be obtained easily. So the stable isotopes can be applied to the pollution affair arbitration and source study. The concept and analytical method of stable isotopes are introduced. The research status of the stable isotopes in the field of environmental science and the isotope fractionation is reviewed. (authors)

  4. Stable isotope labeling strategy based on coding theory

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Takuma; Koshiba, Seizo; Yokoyama, Jun; Kigawa, Takanori, E-mail: kigawa@riken.jp [RIKEN Quantitative Biology Center (QBiC), Laboratory for Biomolecular Structure and Dynamics (Japan)

    2015-10-15

    We describe a strategy for stable isotope-aided protein nuclear magnetic resonance (NMR) analysis, called stable isotope encoding. The basic idea of this strategy is that amino-acid selective labeling can be considered as “encoding and decoding” processes, in which the information of amino acid type is encoded by the stable isotope labeling ratio of the corresponding residue and it is decoded by analyzing NMR spectra. According to the idea, the strategy can diminish the required number of labelled samples by increasing information content per sample, enabling discrimination of 19 kinds of non-proline amino acids with only three labeled samples. The idea also enables this strategy to combine with information technologies, such as error detection by check digit, to improve the robustness of analyses with low quality data. Stable isotope encoding will facilitate NMR analyses of proteins under non-ideal conditions, such as those in large complex systems, with low-solubility, and in living cells.

  5. Stable isotope labeling strategy based on coding theory

    International Nuclear Information System (INIS)

    Kasai, Takuma; Koshiba, Seizo; Yokoyama, Jun; Kigawa, Takanori

    2015-01-01

    We describe a strategy for stable isotope-aided protein nuclear magnetic resonance (NMR) analysis, called stable isotope encoding. The basic idea of this strategy is that amino-acid selective labeling can be considered as “encoding and decoding” processes, in which the information of amino acid type is encoded by the stable isotope labeling ratio of the corresponding residue and it is decoded by analyzing NMR spectra. According to the idea, the strategy can diminish the required number of labelled samples by increasing information content per sample, enabling discrimination of 19 kinds of non-proline amino acids with only three labeled samples. The idea also enables this strategy to combine with information technologies, such as error detection by check digit, to improve the robustness of analyses with low quality data. Stable isotope encoding will facilitate NMR analyses of proteins under non-ideal conditions, such as those in large complex systems, with low-solubility, and in living cells

  6. Application of Stable Isotope Signatures in Food Traceability

    International Nuclear Information System (INIS)

    Nazaratul Ashifa Abdullah Salim; Roslanzairi Mostapha; Zainon Othman

    2016-01-01

    Stable isotope analysis has widely been used to trace the origin of organic materials in various fields, such as geochemistry, biochemistry, archaeology and petroleum. In past a decade, it has also become an important tool for food traceability study. The globalisation of food markets and the relative ease which food commodities are transported through and between countries and continents means that consumers are increasingly concerned about the origin of the foods they eat. The natural abundance of stable isotope variation such as carbon, nitrogen, hydrogen and oxygen are used as geographic tracers or marker to determine the geographic origin of fruits, crop, vegetables and food products from animal. The isotopic compositions of plant materials reflect various factors such as isotopic compositions of source materials and their assimilation processes as well as growth environments. This paper will discuss on stable carbon and nitrogen isotopic compositions in rice that been determined by Isotope Ratio Mass Spectrometry, advantages, limitations and potential of other analysis applications that can be incorporated in food traceability system. (author)

  7. Compound-specific isotope analysis of light elements using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) and its application to geochemistry

    International Nuclear Information System (INIS)

    Naraoka, Hiroshi; Yamada, Keita; Matsumoto, Kohei; Ishiwatari, Ryoshi

    1997-01-01

    Compound-specific isotope analysis has been developed recently using gas chromatography/combustion/mass spectrometry (GC/C/IRMS). This paper summarizes principles and progress of GC/C/IRMS, and reviews recent some important works using this new method. GC/C/IRMS is a novel tool for (1) biomarker analysis in sediments and living matter, (2) paleoenvironment analysis including reconstruction of ancient biogeochemical processes, (3) geochemical cycle study of organic compounds in a terrestrial-marine system, (4) evaluation of maturity and diagenesis of organic matter including petroleum formation, (5) ecological analysis, (6) evaluation of anthropologenic pollution in environment, (7) detection of extraterrestrial organic compounds and the formation mechanism study, (8) tracer studies in environment. (author)

  8. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2014-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author)

  9. Stable isotope geochemistry: definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2015-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author).

  10. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2016-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author).

  11. Stable isotope customer list and summary of shipments:

    International Nuclear Information System (INIS)

    Tracy, J.G.

    1988-03-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The information is divided into four sections: alphabetical lists of domestic and foreign customers;alphabetical lists of isotopes and services;alphabetical lists of states and countries;tabulation of the shipments, quantities, and dollars for each isotope and dollars for services divided into domestic, foreign, and DOE project categories. During FY 1987 sales of stable isotope products and services were made to 272 differnt customers, of whom 159 were domestic and 113 were foreign, representing 18 different foreign countries. The total revenue was $3,785,609 of which 12.3% was from sales to DOE project customers, 60.4% was from sales to other domestic customers, and 27.3% was from sales to foreign customers. this represented sales of 189 different stable isotopes plus associated services and was a 16.5% increase over FY 1986

  12. Metabolic flux analysis of the phenylpropanoid pathway in wound-healing potato tuber tissue using stable isotope-labeled tracer and LC-MS spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Fumio; Morino, Keiko; Miyashita, Masahiro; Miyagawa, Hisashi [Kyoto Univ. (Japan). Department of Agriculture

    2003-05-01

    The metabolic flux of two phenylpropanoid metabolites, N-p-coumaroyloctopamine (p-CO) and chlorogenic acid (CGA), in the wound-healing potato tuber tissue was quantitatively analyzed by a newly developed method based upon the tracer experiment using stable isotope-labeled compounds and LC-MS. Tuber disks were treated with aqueous solution of L-phenyl-d{sub 5}-alanine, and the change in the ratio of stable isotope-labeled compound to non-labeled (isotope abundance) was monitored for p-CO and CGA in the tissue extract by LC-MS. The time-dependent change in the isotope abundance of each metabolite was fitted to an equation that was derived from the formation and conversion kinetics of each compound. Good correlations were obtained between the observed and calculated isotope abundances for both p-CO and CGA. The rates of p-CO formation and conversion (i.e. fluxes) were 1.15 and 0.96 nmol (g FW){sup -1}h{sup -1}, respectively, and for CGA, the rates 4.63 and 0.42 nmol (g FW){sup -1}h{sup -1}, respectively. This analysis enabled a direct comparison of the biosynthetic activity between these two compounds. (author)

  13. [Fractionation of hydrogen stable isotopes in the human body].

    Science.gov (United States)

    Siniak, Iu E; Grigor'ev, A I; Skuratov, V M; Ivanova, S M; Pokrovskiĭ, B G

    2006-01-01

    Fractionation of hydrogen stable isotopes was studied in 9 human subjects in a chamber with normal air pressure imitating a space cabin. Mass-spectrometry of isotopes in blood, urine, saliva, and potable water evidenced increases in the contents of heavy H isotope (deuterium) in the body liquids as compared with water. These results support one of the theories according to which the human organism eliminates heavy stable isotopes of biogenous chemical elements.

  14. Measurement of loss rates of organic compounds in snow using in situ experiments and isotopically labelled compounds

    Directory of Open Access Journals (Sweden)

    Erika von Schneidemesser

    2012-07-01

    Full Text Available Organic molecular marker compounds are widely used to identify emissions from anthropogenic and biogenic air pollution sources in atmospheric samples and in deposition. Specific organic compounds have been detected in polar regions, but their fate after deposition to snow is poorly characterized. Within this context, a series of exposure experiments were carried out to observe the post-depositional processing of organic compounds under real-world conditions in snow on the surface of the Greenland Ice Sheet, at the Summit research station. Snow was prepared from water spiked with isotopically labelled organic compounds, representative of typical molecular marker compounds emitted from anthropogenic activities. Reaction rate constants and reaction order were determined based on a decrease in concentration to a stable, non-zero, threshold concentration. Fluoranthene-d10, docosane-d46, hexadecanoic acid-d31, docosanoic acid-d43 and azelaic acid-d14 were estimated to have first order loss rates within surface snow with reaction rate constants of 0.068, 0.040, 0.070, 0.067 and 0.047 h−1, respectively. No loss of heptadecane-d36 was observed. Overall, these results suggest that organic contaminants are archived in polar snow, although significant post-depositional losses of specific organic compounds occur. This has implications for the environmental fate of organic contaminants, as well as for ice-core studies that seek to use organic molecular markers to infer past atmospheric loadings, and source emissions.

  15. Tellurium stable isotope fractionation in chondritic meteorites and some terrestrial samples

    Science.gov (United States)

    Fehr, Manuela A.; Hammond, Samantha J.; Parkinson, Ian J.

    2018-02-01

    New methodologies employing a 125Te-128Te double-spike were developed and applied to obtain high precision mass-dependent tellurium stable isotope data for chondritic meteorites and some terrestrial samples by multiple-collector inductively coupled plasma mass spectrometry. Analyses of standard solutions produce Te stable isotope data with a long-term reproducibility (2SD) of 0.064‰ for δ130/125Te. Carbonaceous and enstatite chondrites display a range in δ130/125Te of 0.9‰ (0.2‰ amu-1) in their Te stable isotope signature, whereas ordinary chondrites present larger Te stable isotope fractionation, in particular for unequilibrated ordinary chondrites, with an overall variation of 6.3‰ for δ130/125Te (1.3‰ amu-1). Tellurium stable isotope variations in ordinary chondrites display no correlation with Te contents or metamorphic grade. The large Te stable isotope fractionation in ordinary chondrites is likely caused by evaporation and condensation processes during metamorphism in the meteorite parent bodies, as has been suggested for other moderately and highly volatile elements displaying similar isotope fractionation. Alternatively, they might represent a nebular signature or could have been produced during chondrule formation. Enstatite chondrites display slightly more negative δ130/125Te compared to carbonaceous chondrites and equilibrated ordinary chondrites. Small differences in the Te stable isotope composition are also present within carbonaceous chondrites and increase in the order CV-CO-CM-CI. These Te isotope variations within carbonaceous chondrites may be due to mixing of components that have distinct Te isotope signatures reflecting Te stable isotope fractionation in the early solar system or on the parent bodies and potentially small so-far unresolvable nucleosynthetic isotope anomalies of up to 0.27‰. The Te stable isotope data of carbonaceous and enstatite chondrites displays a general correlation with the oxidation state and hence might

  16. Stable isotope ratio mass spectrometry in forensic science and food adulteration research

    International Nuclear Information System (INIS)

    Kumar, B.

    2009-01-01

    Stable Isotope Ratio Mass Spectrometry (SIRMS) is an established technique for the determination of origin of geological, biological, chemical and physio-chemical samples/materials. With the development of highly precise mass spectrometers, the stable isotope ratio determination of hydrogen, carbon, nitrogen and oxygen have gained considerable interest in the fields of forensic science and food authentication. Natural variations in the isotopic composition of lighter elements occur due to fractionation effects, resulting in the finger printing of specific isotope ratio values that are characteristic of the origin, purity, and manufacturing processes of the products and their constituents. Forensic science uses scientific and technical methods to investigate traceable evidence of criminal acts. Stable isotope ratio mass spectrometry has been applied to numerous aspects of the forensic science. The analysis of explosives such as ammonium nitrate, gun powder and tri-nitro-toluene (TNT), cases of murder, armed robbery, drug smuggling, terrorism, arson and hit and run traffic accidents are a few of them. The main types of geological evidences in such cases are mud, soil, rocks, sand, gravel, dust particles, biological materials, organic particles and anthropogenic components. Stable isotopes are used as tools to corroborate and confirm the evidential leads in the investigation of such crimes. The variation in natural abundances of carbon and nitrogen and their isotopic ratios δ 13 C and δ 15 N can identify links between items found at crime scene with those of suspect. The paper discusses the applications of SIRMS in the field of forensic science and food adulteration research

  17. Climatic and physiological controls on the stable isotope composition of modern and ancient Cupressaceae

    Science.gov (United States)

    Zinniker, D.; Tipple, B.; Pagani, M.

    2007-12-01

    Unique and abundant secondary metabolites found in waxes and resins of the Callitroid, Cupressoid, and Taxodioid clades of the Cupressaceae family can be identified and quantified in complex mixtures of sedimentary organic compounds. This unusual feature makes it possible to study relatively simple (taxon-specific) isotope systems back in time across the broad array of environments in which these conifers are found. Work on these systems can potentially provide both robust paleoenvironmental proxies (i.e. for source water δD and growing season relative humidity) and quantitative probes into the ecophysiology of these plants in modern and ancient environments. Our research focuses on three genera representing environmental end-members of Cupressaceae - Juniperus, Thuja, and Chamaecyparis - (1) across geographic and environmental gradients in the field, and (2) in specific Holocene and late Pleistocene environmental records. The latter research focuses on peat cores from New England and Oregon and fossil packrat middens from the southwestern United States. Modern transects highlight the sensitivity of Cupressaceae to climatic variables. These include both variables during growth (relative humidity, soil moisture, etc.) and variables affecting seasonal and diurnal growth rates (temperature, winter precipitation, insolation, microhabitat, etc.). Work on ancient records has demonstrated the sensitivity of these unique taxon-specific archives to both subtle and dramatic climate shifts during the Pleistocene and Holocene. This work will result in an improved understanding of climatic and physiological controls on the stable isotopic composition of modern and ancient Cupressaceae - and by extension, other arborescent gymnosperms and C3 plants - providing a framework for understanding more complexly sourced organic inputs to sediments, coals, and petroleum prior to the advent of C4 plants. This research also has direct implications for stratigraphic stable isotope studies

  18. Measuring volatile organic compounds and stable isotopes emitted from trees and soils of the Biosphere 2 Rainforest

    Science.gov (United States)

    Meraz, J. C.; Meredith, L. K.; Van Haren, J. L. M.; Volkmann, T. H. M.

    2017-12-01

    Rainforest trees and soils play an important role in volatile organic compound (VOC) emissions. It is known that many rainforest tree species emit these organic compounds, such as terpenes, which can have an impact on the atmosphere and can be indicative of their metabolic functions. Some VOCs also absorb infrared radiation at wavelengths at which water isotopes are measured with laser spectrometers. Normal concentrations are not high enough for ambient sampling, but increased concentrations resulting from soil and plant samples extracted using equilibrium methods affect observed isotope ratios. There is thus a need to characterize volatile emissions from soil and plant samples, and to develop better methods to account for VOC interference during water isotope measurements. In this study, we collected soil and leaf samples from plants of the Biosphere 2 Rainforest Biome, a mesocosm system created to stimulate natural tropical rainforest habitats . Volatile concentrations were measured using a Gasmet DX4015 FTIR analyzer and a custom sampling system with sulfur hexafluoride (SF6) used as a tracer gas to test for leakage, and a commercial laser spectrometer was used for isotopic analysis. We determined that the different types of tree species emit different kinds of VOCs, such as isoprenes, alcohols, and aldehydes, that will potentially have to be accounted for. This study will help build the understanding of which organic compounds are emitted and develop new methods to test for water isotopes and gas fluxes in clear and precise measures. Such measures can help characterize the functioning of environmental systems such as the Biosphere 2 Rainforest Biome.

  19. Authenticity of aroma components Enantiomeric separation and compound specific stable isotope analysis

    DEFF Research Database (Denmark)

    Hansen, Anne-Mette Sølvbjerg

    of both enantiomers contrary to natural aromas where often only one of the enantiomers will be in excess. Consequently, if equal amounts of enantiomers are detected in a food product labelled “Natural” it could be an indication of adulteration. Artificial aroma compounds often have very different ratios......The word “authenticity” is increasingly used in the marketing of food products. A product can be marketed claiming its authenticity such as containing only natural ingredients or originating from a special location produced using local traditional production methods. Within the area of food...... ingredients a problem with authenticity of aroma compounds has occurred, because natural aromas are wholly or partly replaced with synthetic ones. This is a large economic problem, since natural aromas are often more expensive than artificial ones. Furthermore, the European Union has legal requirements...

  20. A Computational Drug Metabolite Detection Using the Stable Isotopic Mass-Shift Filtering with High Resolution Mass Spectrometry in Pioglitazone and Flurbiprofen

    Directory of Open Access Journals (Sweden)

    Yohei Miyamoto

    2013-09-01

    Full Text Available The identification of metabolites in drug discovery is important. At present, radioisotopes and mass spectrometry are both widely used. However, rapid and comprehensive identification is still laborious and difficult. In this study, we developed new analytical software and employed a stable isotope as a tool to identify drug metabolites using mass spectrometry. A deuterium-labeled compound and non-labeled compound were both metabolized in human liver microsomes and analyzed by liquid chromatography/time-of-flight mass spectrometry (LC-TOF-MS. We computationally aligned two different MS data sets and filtered ions having a specific mass-shift equal to masses of labeled isotopes between those data using our own software. For pioglitazone and flurbiprofen, eight and four metabolites, respectively, were identified with calculations of mass and formulas and chemical structural fragmentation analysis. With high resolution MS, the approach became more accurate. The approach detected two unexpected metabolites in pioglitazone, i.e., the hydroxypropanamide form and the aldehyde hydrolysis form, which other approaches such as metabolite-biotransformation list matching and mass defect filtering could not detect. We demonstrated that the approach using computational alignment and stable isotopic mass-shift filtering has the ability to identify drug metabolites and is useful in drug discovery.

  1. Russian ElectroKhimPribor integrated plant - producer and supplier of enriched stable isotopes

    International Nuclear Information System (INIS)

    Tatarinov, A.N.; Polyakov, L.A.

    1997-01-01

    Russian ElectroKhimPribor Integrated Plant, as well as ORNL, is a leading production which manufactures and supplied to the world market such specific products as stable isotopes. More than 200 isotopes of 44 elements can be obtained at its electromagnetic separator. Changes being underway for a few last years in Russia affected production and distribution of stable isotopes. There arose a necessity in a new approach to handling work in this field so as to create favourable conditions for both producers and customers. As a result, positive changes in calutron operation at ElectroKhimPribor has been reached; quality management system covering all stages of production has been set up; large and attractive stock of isotopes has been created; prospective scientific isotope-based developments are taken into account when planning separation F campaigns; executing the contracts is guaranteed; business philosophy has been changed to meet maximum of customer needs. For more than forty years ElectroKhimPribor have had no claim from customers as to quality of products or implementing contracts. Supplying enriched stable isotopes virtually to all the world's leading customers, ElectroKhimPribor cooperates successfully with Canadian company Trace Science since 1996

  2. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2009-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeolimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteroic waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 56 refs., 11 figs., 2 tabs.

  3. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2012-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 89 refs., 12 figs., 2 tabs.

  4. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2008-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeolimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteroic waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 56 refs., 11 figs., 2 tabs

  5. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2009-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeolimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteroic waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 56 refs., 11 figs., 2 tabs

  6. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2013-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: 1. Thermometry: Formation temperatures of rock and mineral systems are determined on the basis of temperature-dependent fractionations of the isotopic ratios between two or more cogenetic phases. 2. Tracers: Reservoirs like the ocean, the mantle, meteoric waters and organic matter have distinct stable isotope signatures that can be used to trace the origin of rocks, fluids, contaminants etc. 3. Reaction mechanism: Distinctions can be made between diffusion and recrystallization, open and closed systems and bacterial and thermogenic processes. 4. Chemostratigraphy: Abrupt changes (excursions) in the stable isotope ratios of ocean sediments and certain terrestrial materials can be used as stratigraphic markers. (author). 91 refs., 12 figs., 2 tabs.

  7. Climatic signals in multiple highly resolved stable isotope records from Greenland

    DEFF Research Database (Denmark)

    Vinther, Bo Møllesøe; Dahl-Jensen, Dorthe; Johnsen, Sigfus Johann

    2010-01-01

    are found to correspond better with winter stable isotope data than with summer or annual average stable isotope data it is suggested that a strong local Greenland temperature signal can be extracted from the winter stable isotope data even on centennial to millennial time scales. Udgivelsesdato: Feb....

  8. Strontium stable isotope behaviour accompanying basalt weathering

    Science.gov (United States)

    Burton, K. W.; Parkinson, I. J.; Gíslason, S. G. R.

    2016-12-01

    The strontium (Sr) stable isotope composition of rivers is strongly controlled by the balance of carbonate to silicate weathering (Krabbenhöft et al. 2010; Pearce et al. 2015). However, rivers draining silicate catchments possess distinctly heavier Sr stable isotope values than their bedrock compositions, pointing to significant fractionation during weathering. Some have argued for preferential release of heavy Sr from primary phases during chemical weathering, others for the formation of secondary weathering minerals that incorporate light isotopes. This study presents high-precision double-spike Sr stable isotope data for soils, rivers, ground waters and estuarine waters from Iceland, reflecting both natural weathering and societal impacts on those environments. The bedrock in Iceland is dominantly basaltic, d88/86Sr ≈ +0.27, extending to lighter values for rhyolites. Geothermal waters range from basaltic Sr stable compositions to those akin to seawater. Soil pore waters reflect a balance of input from primary mineral weathering, precipitation and litter recycling and removal into secondary phases and vegetation. Rivers and ground waters possess a wide range of d88/86Sr compositions from +0.101 to +0.858. Elemental and isotope data indicate that this fractionation primarily results from the formation or dissolution of secondary zeolite (d88/86Sr ≈ +0.10), but also carbonate (d88/86Sr ≈ +0.22) and sometimes anhydrite (d88/86Sr ≈ -0.73), driving the residual waters to heavier or lighter values, respectively. Estuarine waters largely reflect mixing with seawater, but are also be affected by adsorption onto particulates, again driving water to heavy values. Overall, these data indicate that the stability and nature of secondary weathering phases, exerts a strong control on the Sr stable isotope composition of silicate rivers. [1] Krabbenhöft et al. (2010) Geochim. Cosmochim. Acta 74, 4097-4109. [2] Pearce et al. (2015) Geochim. Cosmochim. Acta 157, 125-146.

  9. Pyrolysis compound specific isotopic analysis (δ13C and δD Py-CSIA) of soil organic matter size fractions under four vegetation covers.

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Almendros, Gonzalo; De la Rosa, José M.; González-Pérez, José A.

    2015-04-01

    A chemical characterization of soil organic matter (SOM) under different ground cover from a Mediterranean climate (Doñana National Park, Andalusia, Spain) is approached using bulk δ15N, δ13C, δ18O and δD isotopic analysis (C/TC-IRMS) and δ13C and δD pyrolysis compound specific isotopic analysis (Py-CSIA: Py-GC-C/TC-IRMS). Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: studied from each soil. A complete conventional analytical pyrolysis (Py-GC/MS) of these samples have been studied in detail (Jiménez-Morillo et al., 2015). Bulk isotopic analysis of stable light elements (δ15N, δ13C, δ18O and δD) revealed particular isotopic signatures showing differences related with the main vegetation cover and the different soil size fraction. All samples had a carbon isotopic signature between -26 and -29 ‰, which indicated that the organic matter in the two fractions of each soil sample derived from C3-type plants. The bulk δD isotopic signature in whole soil sample indicate a lower deuterium fractionation occurs in SOM under arboreal than under no-arboreal vegetation, this can be caused by the occurrence of a higher water evaporation rate under bush vegetation and/or to differences due to leaf morphology as previously described (Leaney et al., 1985). A δ15N vs. δ18O chart may provide some clues about N origin in the soil and particularly about the original source of nitrates (Kendall et al., 1996). In in all sample and size fractions our values are in the chart area corresponding to NO3 in precipitation, with lighter δ18O (c. 20 ‰) values compatible with fertilizers may be from adjacent crops. In addition we were able to assign δ13C and δD values for a number of specific SOM

  10. Stable Isotope Analyses of water and Aqueous Solutions by Conventional Dual-inlet Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Horita, Juske [ORNL; Kendall, C. [U.S. Geological Survey, Menlo Park, CA

    2004-01-01

    The foundation of various analytical methods for the stable isotope composition of water and other aqueous samples (natural abundance, {sup 1}H : {sup 2}H (D) = 99.985 : 0.015 atom%, and {sup 16}O : {sup 17}O : {sup 18}O = 99.762 : 0.038 : 0.200 atom%) was established during the Manhatten Project in the U.S.A., when large amounts of heavy water were produced for nuclear reactors (see Kirshenbaum, 1951, for a detailed account). From early on, there was great interest in the oxygen and hydrogen isotopic compositions of water, because they are the ideal tracers of water sources and reactions. The increased analytical precisions made possible by the subsequent development of modern gas-source isotope-ratio mass spectrometers with dual-inlets and multi-collectors, have caused the proliferation of new analytical methods and applications for the oxygen and hydrogen isotopic compositions of water. These stable isotopes have found wide applications in basic as well as applied sciences (chemistry, geology, hydrology, biology, medical sciences, and food sciences). This is because water is ubiquitous, is an essential and predominant ingredient of living organisms, and is perhaps the most reactive compound in the Earth.

  11. Stable isotope deltas: Tiny, yet robust signatures in nature

    Science.gov (United States)

    Brand, Willi A.; Coplen, Tyler B.

    2012-01-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg

  12. A stable-isotope mass spectrometry-based metabolic footprinting approach to analyze exudates from phytoplankton

    DEFF Research Database (Denmark)

    Weber, Ralf J. M.; Selander, Erik; Sommer, Ulf

    2013-01-01

    Phytoplankton exudates play an important role in pelagic ecology and biogeochemical cycles of elements. Exuded compounds fuel the microbial food web and often encompass bioactive secondary metabolites like sex pheromones, allelochemicals, antibiotics, or feeding attractants that mediate biological...... interactions. Despite this importance, little is known about the bioactive compounds present in phytoplankton exudates. We report a stable-isotope metabolic footprinting method to characterise exudates from aquatic autotrophs. Exudates from 13C-enriched alga were concentrated by solid phase extraction...

  13. Multivariate Stable Isotope Analysis to Determine Linkages between Benzocaine Seizures

    Science.gov (United States)

    Kemp, H. F.; Meier-Augenstein, W.; Collins, M.; Salouros, H.; Cunningham, A.; Harrison, M.

    2012-04-01

    In July 2010, a woman was jailed for nine years in the UK after the prosecution successfully argued that attempting to import a cutting agent was proof of involvement in a conspiracy to supply Cocaine. That landmark ruling provided law enforcement agencies with much greater scope to tackle those involved in this aspect of the drug trade, specifically targeting those importing the likes of benzocaine or lidocaine. Huge quantities of these compounds are imported into the UK and between May and August 2010, four shipments of Benzocaine amounting to more then 4 tons had been seized as part of Operation Kitley, a joint initiative between the UK Border Agency and the Serious Organised Crime Agency (SOCA). By diluting cocaine, traffickers can make it go a lot further for very little cost, leading to huge profits. In recent years, dealers have moved away from inert substances, like sugar and baby milk powder, in favour of active pharmaceutical ingredients (APIs), including anaesthetics like Benzocaine and Lidocaine. Both these mimic the numbing effect of cocaine, and resemble it closely in colour, texture and some chemical behaviours, making it easier to conceal the fact that the drug has been diluted. API cutting agents have helped traffickers to maintain steady supplies in the face of successful interdiction and even expand the market in the UK, particularly to young people aged from their mid teens to early twenties. From importation to street-level, the purity of the drug can be reduced up to a factor of 80 and street level cocaine can have a cocaine content as low as 1%. In view of the increasing use of Benzocaine as cutting agent for Cocaine, a study was carried out to investigate if 2H, 13C, 15N and 18O stable isotope signatures could be used in conjunction with multivariate chemometric data analysis to determine potential linkage between benzocaine exhibits seized from different locations or individuals to assist with investigation and prosecution of drug

  14. Investigating Pathways of Nutrient and Energy Flows Through Aquatic Food Webs Using Stable Isotopes of Carbon and Nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hadwen, W. L.; Bunn, S. E. [Australian Rivers Institute, Griffith School of Environment, Griffith University, Nathan Campus, Brisbane, Queensland (Australia)

    2013-05-15

    Carbon and nitrogen stable isotopes can provide valuable insights into pathways of nutrient and energy flows in aquatic ecosystems. Carbon stable isotopes are principally used to trace pathways of organic matter transfer through aquatic food webs, particularly with regard to identifying the dominant sources of nutrition for aquatic biota. Stable isotopes of carbon have been widely used to answer one of the most pressing questions in aquatic food web ecology - to what degree do in-stream (autochthonous) and riparian (allochthonous) sources of energy fuel riverine food webs? In conjunction with carbon stable isotopes, nitrogen stable isotopes have been used to determine the trophic position of consumers and to identify the number of trophic levels in aquatic food webs. More recently, stable nitrogen isotopes have been recommended as indicators of anthropogenic disturbances. Specifically, agricultural land uses and/or sewage effluent discharge have been shown to significantly increase {delta}{sup 15}N signatures in primary producers and higher order consumers in freshwater, estuarine and marine environments. Together, carbon and nitrogen stable isotopes can be used to examine natural food web functions as well as the degree to which human modifications to catchments and aquatic environments can influence aquatic ecosystem function. (author)

  15. Factors controlling stable isotope composition of European precipitation

    International Nuclear Information System (INIS)

    Rozanski, K.; Sonntag, C.; Muennich, K.O.

    1982-01-01

    The seasonal and spatial variations of stable isotope ratios in present day European precipitation are simulated with a simple multibox model of the mean west-east horizontal transport of the atmospheric water vapour across the European continent. Isotope fractionation during the formation of precipitation leads to an increasing depletion of heavy isotopes in the residual air moisture as it moves towards the centre of the continent. This isotopic depletion is partly compensated, particularly in summer, by evapotranspiration, which is assumed to transfer soil water into the atmosphere without isotope fractionation. The model estimates are based on horizontal water vapour flux data, varying seasonally between 88 and 130 kg m -1 s -1 for the Atlantic coast region, and on the monthly precipitation, evapotranspiration and surface air temperature data available for various locations in Europe. Both continental and seasonal temperature effects observed in the stable isotope composition of European precipitation are fairly well reproduced by the model. The calculations show that the isotopic composition of local precipitation is primarily controlled by regional scale processes, i.e. by the water vapour transport patterns into the continent, and by the average precipitation-evapotranspiration history of the air masses precipitating at a given place. Local parameters such as the surface and/or cloud base temperature or the amount of precipitation modify the isotope ratios only slightly. Implications of the model predictions for the interpretation of stable isotope ratios in earlier periods as they are preserved in ice cores and in groundwater are also discussed. (Auth.)

  16. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2005-01-01

    In 1936, Alfred Nier produced the first precise measurement of isotope abundance ratios and his design still remains the basis of stable isotope mass spectrometry. With this gift from the physicists for routine measurement of isotope ratios, earth scientists began to explore the natural variations of isotopes. Thus began a new era in geoscience research with the hydrological cycle and marine palaeoclimatic research being the first topics to be investigated. Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. (author). 52 refs., 11 figs., 2 tabs

  17. Tracing fresh assimilates through Larix decidua exposed to elevated CO₂ and soil warming at the alpine treeline using compound-specific stable isotope analysis.

    Science.gov (United States)

    Streit, Kathrin; Rinne, Katja T; Hagedorn, Frank; Dawes, Melissa A; Saurer, Matthias; Hoch, Günter; Werner, Roland A; Buchmann, Nina; Siegwolf, Rolf T W

    2013-02-01

    How will carbon source-sink relations of 35-yr-old larch trees (Larix decidua) at the alpine treeline respond to changes in atmospheric CO(2) and climate? We evaluated the effects of previously elevated CO(2) concentrations (9 yr, 580 ppm, ended the previous season) and ongoing soil warming (4 yr, + 4°C). Larch branches were pulse labeled (50 at% (13)CO(2)) in July 2010 to trace fresh assimilates through tissues (buds, needles, bark and wood) and non-structural carbon compounds (NCC; starch, lipids, individual sugars) using compound-specific isotope analysis. Nine years of elevated CO(2) did not lead to increased NCC concentrations, nor did soil warming increase NCC transfer velocities. By contrast, we found slower transfer velocities and higher NCC concentrations than reported in the literature for lowland larch. As a result of low dilution with older carbon, sucrose and glucose showed the highest maximum (13)C labels, whereas labels were lower for starch, lipids and pinitol. Label residence times in needles were shorter for sucrose and starch (c. 2 d) than for glucose (c. 6 d). Although our treatments showed no persistent effect on larch carbon relations, low temperature at high altitudes clearly induced a limitation of sink activities (growth, respiration, root exudation), expressed in slower carbon transfer and higher NCC concentrations. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  18. Stable isotope geochemistry. 3. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Hoefs, J.

    1987-01-01

    Stable Isotope Geochemistry is an authoritative book comprising theoretical and experimental principles; surveying important fractionation mechanisms affecting the most important elements; discussing the natural variations of geologically important reservoirs. This updated 3rd edition, with a completely rewritten and extended main part, contains two new chapters on stable isotope composition of mantle material and on changes of the ocean during the geological past. (orig.)

  19. Stable isotope analysis

    International Nuclear Information System (INIS)

    Tibari, Elghali; Taous, Fouad; Marah, Hamid

    2014-01-01

    This report presents results related to stable isotopes analysis carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 127 samples. These results demonstrate that Oxygen-18 and Deuterium in water analysis were performed by infrared Laser spectroscopy using a LGR / DLT-100 with Autosampler. Also, the results are expressed in δ values (‰) relative to V-SMOW to ± 0.3 ‰ for oxygen-18 and ± 1 ‰ for deuterium.

  20. Compound specific radiocarbon content of lignin oxidation products from the Altamaha river and Coastal Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Culp, Randy, E-mail: rculp@uga.edu [Center for Applied Isotope Studies, University of Georgia, Athens, Georgia (United States)

    2013-01-15

    Compound-specific isotope analysis (CSIA) is a powerful tool in organic geochemistry by providing detailed information about an individual organic compound's history with regard to its source and process of formation. Most CSIA involves measurement of the stable isotope ratio of carbon ({sup 13}C/{sup 12}C) and hydrogen (D/H) following separation by gas or liquid chromatography. New applications are being developed using compound-specific radiocarbon ({sup 14}C) content for delineating age of materials, rates of decomposition and residence time in various environments. This paper details the isotopic work on specific lignin monomers derived from terrestrial plants transported and deposited within the Altamaha River, estuary and off-shore Georgia in the Atlantic Ocean. By using gas chromatographic separation and identification of selected lignin oxidation products (LOP), the harvesting of these compounds using preparative fraction collection, and measurement of their {sup 14}C content using accelerator mass spectrometry, details of the age and presence of specific biomarkers unique to a given terrestrial source are revealed. Radiocarbon ages determined from water-column particulate organic carbon and sediment LOPs indicate a range of ages from modern to well over 5,000 years for the former and latter respectively. Transport mechanisms and particle size associations on mineral grains may play a significant role in {sup 14}C distribution in estuary and near-shore coastal environments. This data indicates higher than modern {sup 14}C activities in large particle-size sediment fractions in contrast to older LOP {sup 14}C ages found associated with the same coarse grain sediments. Individual LOP ages substantiate older terrestrial materials persist in the off-shore environment even though in the presence of modern marine {sup 14}C sources.

  1. Use of stable isotopes in human nutrition in Senegal

    International Nuclear Information System (INIS)

    2016-01-01

    In Senegal, the Laboratory of Nutrition of the Department of Animal Biology of the Faculty of Science and Technology of UCAD has been using stable isotopic techniques for nearly twenty years. Stable isotopes were applied to different target populations to measure milk production, exclusive breastfeeding, body composition, micronutrient bioavailability and total energy expenditure.The application of stable isotopic techniques in nutrition has contributed to advocacy for exclusive breastfeeding for up to 6 months in Senegal. It enabled government decision-makers to obtain essential information on the quality of foods needed for optimal effect during pregnancy and for infant growth and the results were reflected in the national policy on micronutrient supplementation.

  2. Application of stable isotopes in ecological research : it's all elemental

    International Nuclear Information System (INIS)

    Rogers, K.M.

    2005-01-01

    Stable isotopes have been used traditionally in the physical sciences, primarily in geochemistry, sedimentology, and oceanography. Increasingly, however, stable isotopes are also being used in the biological sciences. Application of stable isotopes in ecological studies can provide new and innovative ways of examining a host of topics of fundamental importance to biologists. These topics include, among others, feeding ecology and food webs, nutrient flow and assimilation, habitat use, migration patterns, and distribution and discrimination of species subpopulations. Furthermore, ecological research with isotopes can be applied at many levels (i.e. tissue and organ, whole animal, population, community, and ecosystem). (author). 38 refs., 2 figs

  3. Labelled compounds. (Pt. B)

    International Nuclear Information System (INIS)

    Buncel, E.; Jones, J.R.

    1991-01-01

    Since the end of World War II there has been a tremendous increase in the number of compounds that have been synthesized with radioactive or stable isotopes. They have found application in many diverse fields, so much so, that hardly a single area in pure and applied science has not benefited. Not surprisingly it has been reflected in appearance of related publications. The early proceedings of the Symposia on Advances in Trace Methodology were soon followed by various Euratom sponsored meetings in which methods of preparing and storing labelled compounds featured prominently. In due course a resurgence of interest in stable isotopes, brought about by their greater availability (also lower cost) and partly by development of new techniques such as gas chromatography - mass spectrometry (gc-ms), led to the publication of proceedings of several successful conferences. More recently conferences dealing with the synthesis and applications of isotopes and isotopically labelled compounds have been established on a regular basis. In addition to the proceedings of conferences and journal publications individuals left their mark by producing definitive texts, usually on specific nuclides. Only the classic two volume publication of Murray and Williams (Organic syntheses with isotopes, New York 1985), now over 30 years old and out of print, attempted to do justice to several nuclides. With the large amount of work that has been undertaken since then it seems unlikely that an updated edition could be produced. The alternative strategy was to ask scientists currently active to review specific areas and this is the approach adopted in the present series of monographs. In this way it is intended to cover the broad advances that have been made in the synthesis and applications of isotopes and isotopically labelled compounds in the physical and biomedical sciences. (author). refs.; figs.; tabs

  4. Utilization of stable isotopes in medicine

    International Nuclear Information System (INIS)

    1980-11-01

    The ten lectures given at this round table are presented together with a discussion. Five lectures, relating to studies in which deuterium oxide was employed as a tracer of body water, dealt with pulmonary water measurements in man and animals, the total water pool in adipose subjects, and liquid compartments in children undergoing hemodyalisis. The heavy water is analysed by infrared spectrometry and a new double spectrodoser is described. Two studies using 13 C as tracer, described the diagnosis of liver troubles and diabetes respectively. A general review of the perspectives of the application of stable isotopes in clinical medicine is followed by a comparison of the use of stable and radioactive isotopes in France [fr

  5. Recent developments and future directions for stable isotope applications in nutrition research. Report of a consultants meeting

    International Nuclear Information System (INIS)

    2001-01-01

    The International Atomic Energy Agency (IAEA) at its Headquarters in Vienna convened a consultants meeting to provide the Agency with an overview of the current status of isotopic techniques in nutritional science with respect to both methodology and applications. The main objectives were: To assess the practice of stable isotope methodologies in human nutrition research; To explore high quality stable isotope spikes for use in humans; To standardise the mathematical approaches to evaluate mass spectrometric data when using stable isotope labels within metabolic studies; To identify new strategies for improving sensitivity of nutrition monitoring techniques for use in projects in nutrition. This exercise was conducted to also identify strengths and weaknesses of methodologies currently used in IAEA funded research (CRPs and Technical Cooperation Projects) and to see how they can be improved for the general user, and to provide a basis for the assessment of outcomes delivered by collaborating laboratories in IAEA funded studies. The consultants reviewed the methods relating to the measurement of energy expenditure and noted that the analytical methodologies had changed substantially and that there was further refinement to data fitting and the calculation of uncertainties. They also felt that a repeat of a comparison of laboratory performances with a dilution series similar to the one carried out earlier should be performed for quality control. Other methods using labelled isotopes 13 C and 2 H were also discussed. The meeting noted that it was IAEA's intention to support the development of compound specific reference materials for 2 H, 13 C, 15 N and 18 O. Contrary to light isotope techniques where attempts have been made in the past towards standardization, in particular by IAEA and Stable Isotopes in Gastroenterology and Nutrition (SIGN) harmonization of techniques between laboratories is unsatisfactory for the minerals and trace elements. It was decided that

  6. Recent developments and future directions for stable isotope applications in nutrition research. Report of a consultants meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The International Atomic Energy Agency (IAEA) at its Headquarters in Vienna convened a consultants meeting to provide the Agency with an overview of the current status of isotopic techniques in nutritional science with respect to both methodology and applications. The main objectives were: To assess the practice of stable isotope methodologies in human nutrition research; To explore high quality stable isotope spikes for use in humans; To standardise the mathematical approaches to evaluate mass spectrometric data when using stable isotope labels within metabolic studies; To identify new strategies for improving sensitivity of nutrition monitoring techniques for use in projects in nutrition. This exercise was conducted to also identify strengths and weaknesses of methodologies currently used in IAEA funded research (CRPs and Technical Cooperation Projects) and to see how they can be improved for the general user, and to provide a basis for the assessment of outcomes delivered by collaborating laboratories in IAEA funded studies. The consultants reviewed the methods relating to the measurement of energy expenditure and noted that the analytical methodologies had changed substantially and that there was further refinement to data fitting and the calculation of uncertainties. They also felt that a repeat of a comparison of laboratory performances with a dilution series similar to the one carried out earlier should be performed for quality control. Other methods using labelled isotopes {sup 13}C and {sup 2}H were also discussed. The meeting noted that it was IAEA's intention to support the development of compound specific reference materials for {sup 2}H, {sup 13}C, {sup 15}N and {sup 18}O. Contrary to light isotope techniques where attempts have been made in the past towards standardization, in particular by IAEA and Stable Isotopes in Gastroenterology and Nutrition (SIGN) harmonization of techniques between laboratories is unsatisfactory for the minerals and trace

  7. High-precision mass spectrometric analysis using stable isotopes in studies of children

    NARCIS (Netherlands)

    Schierbeek, Henk; van den Akker, Chris H. P.; Fay, Laurent B.; van Goudoever, Johannes B.

    2012-01-01

    The use of stable isotopes combined with mass spectrometry (MS) provides insight into metabolic processes within the body. Herein, an overview on the relevance of stable isotope methodology in pediatric research is presented. Applications for the use of stable isotopes with MS cover carbohydrate,

  8. Geospatial modeling of plant stable isotope ratios - the development of isoscapes

    Science.gov (United States)

    West, J. B.; Ehleringer, J. R.; Hurley, J. M.; Cerling, T. E.

    2007-12-01

    Large-scale spatial variation in stable isotope ratios can yield critical insights into the spatio-temporal dynamics of biogeochemical cycles, animal movements, and shifts in climate, as well as anthropogenic activities such as commerce, resource utilization, and forensic investigation. Interpreting these signals requires that we understand and model the variation. We report progress in our development of plant stable isotope ratio landscapes (isoscapes). Our approach utilizes a GIS, gridded datasets, a range of modeling approaches, and spatially distributed observations. We synthesize findings from four studies to illustrate the general utility of the approach, its ability to represent observed spatio-temporal variability in plant stable isotope ratios, and also outline some specific areas of uncertainty. We also address two basic, but critical questions central to our ability to model plant stable isotope ratios using this approach: 1. Do the continuous precipitation isotope ratio grids represent reasonable proxies for plant source water?, and 2. Do continuous climate grids (as is or modified) represent a reasonable proxy for the climate experienced by plants? Plant components modeled include leaf water, grape water (extracted from wine), bulk leaf material ( Cannabis sativa; marijuana), and seed oil ( Ricinus communis; castor bean). Our approaches to modeling the isotope ratios of these components varied from highly sophisticated process models to simple one-step fractionation models to regression approaches. The leaf water isosocapes were produced using steady-state models of enrichment and continuous grids of annual average precipitation isotope ratios and climate. These were compared to other modeling efforts, as well as a relatively sparse, but geographically distributed dataset from the literature. The latitudinal distributions and global averages compared favorably to other modeling efforts and the observational data compared well to model predictions

  9. Compound-specific stable carbon isotopic composition of petroleum hydrocarbons as a tool for tracing the source of oil spills

    International Nuclear Information System (INIS)

    Li Yun; Xiong Yongqiang; Yang Wanying; Xie Yueliang; Li Siyuan; Sun Yongge

    2009-01-01

    With the increasing demand for and consumption of crude oils, oil spill accidents happen frequently during the transportation of crude oils and oil products, and the environmental hazard they pose has become increasingly serious in China. The exact identification of the source of spilled oil can act as forensic evidence in the investigation and handling of oil spill accidents. In this study, a weathering simulation experiment demonstrates that the mass loss of crude oils caused by short-term weathering mainly occurs within the first 24 h after a spill, and is dominated by the depletion of low-molecular weight hydrocarbons ( 18 n-alkanes). Short-term weathering has no significant effect on δ 13 C values of individual n-alkanes (C 12 -C 33 ), suggesting that a stable carbon isotope profile of n-alkanes can be a useful tool for tracing the source of an oil spill, particularly for weathered oils or those with a relatively low concentration or absence of sterane and terpane biomarkers

  10. Compound-Specific Isotope Analysis (CSIA Application for Source Apportionment and Natural Attenuation Assessment of Chlorinated Benzenes

    Directory of Open Access Journals (Sweden)

    Luca Alberti

    2017-11-01

    Full Text Available In light of the complex management of chlorobenzene (CB contaminated sites, at which a hydraulic barrier (HB for plumes containment is emplaced, compound-specific stable isotope analysis (CSIA has been applied for source apportionment, for investigating the relation between the upgradient and downgradient of the HB, and to target potential CB biodegradation processes. The isotope signature of all the components potentially involved in the degradation processes has been expressed using the concentration-weighted average δ13C of CBs + benzene (δ13Csum. Upgradient of the HB, the average δ13Csum of −25.6‰ and −29.4‰ were measured for plumes within the eastern and western sectors, respectively. Similar values were observed for the potential sources, with δ13Csum values of −26.5‰ for contaminated soils and −29.8‰ for the processing water pipeline in the eastern and western sectors, respectively, allowing for apportioning of these potential sources to the respective contaminant plumes. For the downgradient of the HB, similar CB concentrations but enriched δ13Csum values between −24.5‰ and −25.9‰ were measured. Moreover, contaminated soils showed a similar δ13Csum signature of −24.5‰, thus suggesting that the plumes likely originate from past activities located in the downgradient of the HB. Within the industrial property, significant δ13C enrichments were measured for 1,2,4-trichlorobenzene (TCB, 1,2-dichlorobenzene (DCB, 1,3-DCB, and 1,4-DCBs, thus suggesting an important role for anaerobic biodegradation. Further degradation of monochlorobenzene (MCB and benzene was also demonstrated. CSIA was confirmed to be an effective approach for site characterization, revealing the proper functioning of the HB and demonstrating the important role of natural attenuation processes in reducing the contamination upgradient of the HB.

  11. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs

    Science.gov (United States)

    Schoenberg, Ronny; Merdian, Alexandra; Holmden, Chris; Kleinhanns, Ilka C.; Haßler, Kathrin; Wille, Martin; Reitter, Elmar

    2016-06-01

    The depletion of chromium in Earth's mantle (∼2700 ppm) in comparison to chondrites (∼4400 ppm) indicates significant incorporation of chromium into the core during our planet's metal-silicate differentiation, assuming that there was no significant escape of the moderately volatile element chromium during the accretionary phase of Earth. Stable Cr isotope compositions - expressed as the ‰-difference in 53Cr/52Cr from the terrestrial reference material SRM979 (δ53/52CrSRM979 values) - of planetary silicate reservoirs might thus yield information about the conditions of planetary metal segregation processes when compared to chondrites. The stable Cr isotopic compositions of 7 carbonaceous chondrites, 11 ordinary chondrites, 5 HED achondrites and 2 martian meteorites determined by a double spike MC-ICP-MS method are within uncertainties indistinguishable from each other and from the previously determined δ53/52CrSRM979 value of -0.124 ± 0.101‰ for the igneous silicate Earth. Extensive quality tests support the accuracy of the stable Cr isotope determinations of various meteorites and terrestrial silicates reported here. The uniformity in stable Cr isotope compositions of samples from planetary silicate mantles and undifferentiated meteorites indicates that metal-silicate differentiation of Earth, Mars and the HED parent body did not cause measurable stable Cr isotope fractionation between these two reservoirs. Our results also imply that the accretionary disc, at least in the inner solar system, was homogeneous in its stable Cr isotopic composition and that potential volatility loss of chromium during accretion of the terrestrial planets was not accompanied by measurable stable isotopic fractionation. Small but reproducible variations in δ53/52CrSRM979 values of terrestrial magmatic rocks point to natural stable Cr isotope variations within Earth's silicate reservoirs. Further and more detailed studies are required to investigate whether silicate

  12. Stable isotope analysis of Dacryoconarid carbonate microfossils: a new tool for Devonian oxygen and carbon isotope stratigraphy.

    Science.gov (United States)

    Frappier, Amy Benoit; Lindemann, Richard H; Frappier, Brian R

    2015-04-30

    Dacryoconarids are extinct marine zooplankton known from abundant, globally distributed calcite microfossils in the Devonian, but their shell stable isotope composition has not been previously explored. Devonian stable isotope stratigraphy is currently limited to less common invertebrates or bulk rock analyses of uncertain provenance. As with Cenozoic planktonic foraminifera, isotopic analysis of dacryoconarid shells could facilitate higher-resolution, geographically widespread stable isotope records of paleoenvironmental change, including marine hypoxia events, climate changes, and biocrises. We explored the use of Dacryoconarid isotope stratigraphy as a viable method in interpreting paleoenvironments. We applied an established method for determining stable isotope ratios (δ(13) C, δ(18) O values) of small carbonate microfossils to very well-preserved dacryoconarid shells. We analyzed individual calcite shells representing five common genera using a Kiel carbonate device coupled to a MAT 253 isotope ratio mass spectrometer. Calcite shell δ(13) C and δ(18) O values were compared by taxonomic group, rock unit, and locality. Single dacryoconarid calcite shells are suitable for stable isotope analysis using a Kiel-IRMS setup. The dacryoconarid shell δ(13) C values (-4.7 to 2.3‰) and δ(18) O values (-10.3 to -4.8‰) were consistent across taxa, independent of shell size or part, but varied systematically through time. Lower fossil δ(18) O values were associated with warmer water temperature and more variable δ(13) C values were associated with major bioevents. Dacryoconarid δ(13) C and δ(18) O values differed from bulk rock carbonate values. Dacryoconarid individual microfossil δ(13) C and δ(18) O values are highly sensitive to paleoenvironmental changes, thus providing a promising avenue for stable isotope chemostratigraphy to better resolve regional to global paleoceanographic changes throughout the upper Silurian to the upper Devonian. Our results

  13. A theory of stable-isotope dilution mass spectrometry

    International Nuclear Information System (INIS)

    Pickup, J.F.; McPherson, C.K.

    1977-01-01

    In order to perform quantitative analysis using stable isotope dilution with mass spectrometry, an equation is derived which describes the relationship between the relative proportions of natural and labelled material and measured isotope ratios

  14. Stable isotope customer list and summary of shipments: FY 1975

    International Nuclear Information System (INIS)

    Davis, W.C.

    1975-10-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The information is divided into four sections: an alphabetical list of domestic and foreign customers, showing the stable isotopes purchased during the fiscal year; an alphabetical list of isotopes, cross-referenced to customer numbers and divided into domestic and foreign categories; an alphabetical list of states and countries, cross-referenced to customer numbers and indicating geographical concentrations of isotope users; and a tabulation of the shipments, quantities, and dollars for domestic, foreign, and project categories for each isotope, with the totals for loaned isotopes shown at the end of the table. (auth)

  15. Great isotope effects in compounding of sodium isotopes by macrocyclic polyether

    International Nuclear Information System (INIS)

    Knoechel, A.; Wilken, R.D.

    1978-01-01

    Isotope effects appear in the compounding of the two sodium isotopes 24 Na + and 22 Na + with macrocyclic polyethers, whose value was determined for the 13 best known polyethers. A radiometric process was used for determining the different half life periods of the nuclides used. To separate the compound and non-compound types, these were distributed between water and chloroform. The isotope ratio in the chloroform phase was compared with the output isotope ratio and the separation facfor determined from this. When using crown ethers, there was enrichment of 24 Na + by a significant amount (large crown ether) up to 3.1 +- 0.4% for 18 crown 6. The remarkably high results can be correlated by Biegeleisen's theory with other chemical conditions. There is a report on the first results of transferring these conditions to the H + /T + system. (orig.) [de

  16. Compound specific radiocarbon content of lignin oxidation products from the Altamaha river and Coastal Georgia

    International Nuclear Information System (INIS)

    Culp, Randy

    2013-01-01

    Compound-specific isotope analysis (CSIA) is a powerful tool in organic geochemistry by providing detailed information about an individual organic compound’s history with regard to its source and process of formation. Most CSIA involves measurement of the stable isotope ratio of carbon ( 13 C/ 12 C) and hydrogen (D/H) following separation by gas or liquid chromatography. New applications are being developed using compound-specific radiocarbon ( 14 C) content for delineating age of materials, rates of decomposition and residence time in various environments. This paper details the isotopic work on specific lignin monomers derived from terrestrial plants transported and deposited within the Altamaha River, estuary and off-shore Georgia in the Atlantic Ocean. By using gas chromatographic separation and identification of selected lignin oxidation products (LOP), the harvesting of these compounds using preparative fraction collection, and measurement of their 14 C content using accelerator mass spectrometry, details of the age and presence of specific biomarkers unique to a given terrestrial source are revealed. Radiocarbon ages determined from water-column particulate organic carbon and sediment LOPs indicate a range of ages from modern to well over 5,000 years for the former and latter respectively. Transport mechanisms and particle size associations on mineral grains may play a significant role in 14 C distribution in estuary and near-shore coastal environments. This data indicates higher than modern 14 C activities in large particle-size sediment fractions in contrast to older LOP 14 C ages found associated with the same coarse grain sediments. Individual LOP ages substantiate older terrestrial materials persist in the off-shore environment even though in the presence of modern marine 14 C sources.

  17. Stable Oxygen-18 and Deuterium Isotopes

    DEFF Research Database (Denmark)

    Müller, Sascha

    The application of stable Oxygen-18 (18O) and Deuterium (2H) isotopes, as a tracer for fluxes between different compartments of the water cycle was subject of the present PhD-thesis. During a three year period, temporal data from a wide range of water cycle constituents was collected from...... the Skjern River catchment, Denmark. The presented applications focused on studying the isotopic 'input signal' to the hydrosphere in the form of precipitation, the isotopic 'output signal' with its related dynamic processes at a coastal saltwater-freshwater interface (groundwater isotopes) and the temporal...... development within a given lowland headwater catchment (stream water isotopes). Based on our investigations on the precipitation isotopic composition a local meteoric water line (LMWL) was constructed and expressed as: δ2H=7.4 δ18O + 5.36‰. Moreover, we showed that under maritime temperature climate influence...

  18. Stable isotope separation in calutrons: Forty years of production and distribution

    International Nuclear Information System (INIS)

    Bell, W.A.; Tracy, J.G.

    1987-11-01

    The stable isotope separation program, established in 1945, has operated continually to provide enriched stable isotopes and selected radioactive isotopes, including the actinides, for use in research, medicine, and industrial applications. This report summarizes the first forty years of effort in the production and distribution of stable isotopes. Evolution of the program along with the research and development, chemical processing, and production efforts are highlighted. A total of 3.86 million separator hours has been utilized to separate 235 isotopes of 56 elements. Relative effort expended toward processing each of these elements is shown. Collection rates (mg/separator h), which vary by a factor of 20,000 from the highest to the lowest ( 205 Tl to 46 Ca), and the attainable isotopic purity for each isotope are presented. Policies related to isotope pricing, isotope distribution, and support for the enrichment program are discussed. Changes in government funding, coupled with large variations in sales revenue, have resulted in 7-fold perturbations in production levels

  19. Authenticity and traceability of vanilla flavors by analysis of stable isotopes of carbon and hydrogen.

    Science.gov (United States)

    Hansen, Anne-Mette Sølvbjerg; Fromberg, Arvid; Frandsen, Henrik Lauritz

    2014-10-22

    Authenticity and traceability of vanilla flavors were investigated using gas chromatography-isotope ratio mass spectrometry (GC-IRMS). Vanilla flavors produced by chemical synthesis (n = 2), fermentation (n = 1), and extracted from two different species of the vanilla orchid (n = 79) were analyzed. The authenticity of the flavor compound vanillin was evaluated on the basis of measurements of ratios of carbon stable isotopes (δ(13)C). It was found that results of δ(13)C for vanillin extracted from Vanilla planifolia and Vanilla tahitensis were significantly different (t test) and that it was possible to differentiate these two groups of natural vanillin from vanillin produced otherwise. Vanilla flavors were also analyzed for ratios of hydrogen stable isotopes (δ(2)H). A graphic representation of δ(13)C versus δ(2)H revealed that vanillin extracted from pods grown in adjacent geographic origins grouped together. Accordingly, values of δ(13)C and δ(2)H can be used for studies of authenticity and traceability of vanilla flavors.

  20. Stable isotope customer list and summary of shipments: FY 1984

    International Nuclear Information System (INIS)

    Tracy, J.G.

    1984-12-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The information is divided into four sections: (1) alphabetical list of domestic and foreign customers, showing the stable isotopes purchased during the fiscal year; (2) alphabetical list of isotopes, cross-referenced to customer numbers and divided into domestic and foreign categories; (3) alphabetical list of states and countries, cross-referenced to customer numbers and indicating geographical concentrations of isotope users; and (4) tabulation of the shipments, quantities, and dollars for domestic, foreign, and project categories for each isotope

  1. Stable isotope customer list and summary of shipments - FY 1983

    International Nuclear Information System (INIS)

    Davis, W.C.

    1983-12-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The information is divided into four sections: (1) alphabetical list of domestic and foreign customers, showing the stable isotopes purchased during the fiscal year; (2) alphabetical list of isotopes, cross-referenced to customer numbers and divided into domestic and foreign categories; (3) alphabetical list of states and countries, cross-referenced to customer numbers and indicating geographical concentrations of isotope users; and (4) tabulation of the shipments, quantities, and dollars for domestic, foreign, and project categories for each isotope

  2. Stable-carbon isotope variability in tree foliage and wood

    International Nuclear Information System (INIS)

    Leavitt, S.W.; Long, A.

    1986-01-01

    This study documents variation of stable-carbon isotope ratios ( 13 C/ 12 C) in trees of genera Juniperus and Pinus under field conditions. Results are from cellulose analysis on leaves, twigs, and wood from a number of localities in the southwestern US. Substantial variability, typically 1-3%, exists among leaves, within wood (radially, vertically, circumferentially), and between individuals at a site. These results may help guide sampling in tracer-type studies with stable-carbon isotope ratios and aid in the interpretation of isotopic results from such studies

  3. Application of Stable Isotope Signatures in Food Traceability

    International Nuclear Information System (INIS)

    Nazaratul Ashifa Abdullah Salim; Roslanzairi Mostapha; Zainon Othman; Nor Afiqah Harun; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman; Md Suhaimi Elias; Salmah Moosa

    2015-01-01

    Stable isotope analysis has widely been used to trace the origin of organic materials in various fields, such as geochemistry, biochemistry, archaeology and petroleum. In past a decade, it has also become an important tool for food traceability study. The globalization of food markets and the relative ease with which food commodities are transported through and between countries and continents, means that consumers are increasingly concerned about the origin of the foods they eat. The natural abundance isotope variation such as carbon, nitrogen, hydrogen and oxygen are use as geographic tracers or marker to determine the geographic origin of fruits, crop, vegetables and food products from animal. The isotopic compositions of plant materials reflect various factors such as isotopic compositions of source materials and their assimilation processes as well as growth environments. This paper will discuss on stable carbon and nitrogen isotopic compositions in rice, advantages, limitations and potential of other analysis applications that can be incorporated in food traceability system. (author)

  4. Platinum stable isotope ratio measurements by double-spike multiple collector ICPMS

    DEFF Research Database (Denmark)

    Creech, John; Baker, Joel; Handler, Monica

    2013-01-01

    We present a new technique for the precise determination of platinum (Pt) stable isotope ratios by multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS) using two different Pt double-spikes ( Pt-Pt and Pt-Pt). Results are expressed relative to the IRMM-010 Pt isotope standard......) can be obtained on Pt stable isotope ratios with either double-spike. Elemental doping tests reveal that double-spike corrected Pt stable isotope ratios are insensitive to the presence of relatively high (up to 10%) levels of matrix elements, although the Pt-Pt double-spike is affected by an isobaric...... = 7.308%) results in a redefined Pt atomic weight of 195.08395 ± 0.00068. Using our technique we have measured small, reproducible and statistically significant offsets in Pt stable isotope ratios between different Pt element standards and the IRMM-010 standard, which potentially indicates...

  5. New approaches for stable isotope ratio measurements. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    2001-10-01

    This report includes a summary of discussions at the meeting and contributions on isotope applications in a range of specific biogeochemical fields using the new analytical techniques. It is expected to serve as a useful reference for researchers and laboratory managers who plan to develop or apply state-of-the-art stable isotope techniques. Individual contributions contained in this book have been indexed separately

  6. New approaches for stable isotope ratio measurements. Proceedings of an advisory group meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    This report includes a summary of discussions at the meeting and contributions on isotope applications in a range of specific biogeochemical fields using the new analytical techniques. It is expected to serve as a useful reference for researchers and laboratory managers who plan to develop or apply state-of-the-art stable isotope techniques. Individual contributions contained in this book have been indexed separately.

  7. Research trend survey on the stable isotope utilization technology; Antei doitai no riyo gijutsu ni kansuru kenkyu doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report reviews the activities and the trends in the area of the stable isotope use attracting attention recently. In the medicine and clinical treatment sector, the remarkable trends are the extension of {sup 13}C use. The breath test and the magnetic resonance spectroscopy (MRS) diagnosis have been developed as inspection methods. It is noted that investigation has been initiated on the magnetic resonance imaging (MRI) using {sup 3}He and {sup 129}Xe for the lung imaging. In the organic chemistry and biochemistry sector, the stable isotopes are used for analyzing the structures of complicated natural compounds and materials relating to life science and for analyzing the chemical reaction mechanism of organic compounds. In the nuclear energy sector, {sup 10}B and {sup 7}Li have been used as neutron absorption materials and pH neutralizing reagent, respectively. In the analysis and measurement sector, the process of isotopic dilution is used for the environmental analysis of trace elements including harmful substances. Among various separation methods of isotopes, well studied uranium enrichment processes and deuterium separation processes are described. Separation of {sup 15}N by ion exchange resin method and plasma ion cyclotron resonance (ICR) isotope separation have been studied, recently. 133 refs., 53 figs., 7 tabs.

  8. Application of enriched stable isotopes as tracers in biological systems

    DEFF Research Database (Denmark)

    Stürup, Stefan; Hansen, Helle Rüsz; Gammelgaard, Bente

    2008-01-01

    The application of enriched stable isotopes of minerals and trace elements as tracers in biological systems is a rapidly growing research field that benefits from the many new developments in inorganic mass spectrometric instrumentation, primarily within inductively coupled plasma mass spectrometry...... (ICP-MS) instrumentation, such as reaction/collision cell ICP-MS and multicollector ICP-MS with improved isotope ratio measurement and interference removal capabilities. Adaptation and refinement of radioisotope tracer experiment methodologies for enriched stable isotope experiments......, and the development of new methodologies coupled with more advanced compartmental and mathematical models for the distribution of elements in living organisms has enabled a broader use of enriched stable isotope experiments in the biological sciences. This review discusses the current and future uses of enriched...

  9. Applications of stable isotopes of 2H, 13C and 15N to clinical problems

    International Nuclear Information System (INIS)

    Klein, P.D.; Szczepanik, P.A.; Hachey, D.L.

    1974-01-01

    The function of the Argonne Program is to provide synthetic, analytical instrumental capability in a core facility for the clinical investigator who needs to use 2 H, 13 C, or 15 N labelled compounds for metabolic or clinical research on pregnant women, newborn infants, young children, or for mass screening. To carry out such application development, there were six stages which were recurrent steps in every application. Five fundamental strategies should be adopted to establish the use of stable isotopes in clinical work. The instrument required for measurements was a combined gas chromatograph-mass spectrometer, and its use was schematically illustrated. Some of the successful experiences with compounds labelled by stable isotopes, such as deuterium labelled chenodeoxycholic acid, and respective 13 C and 15 N-labelled glycine were described. Deutrium labelled bile acid enabled easy and safe determination of the size of the bile acid pool and the replacement rate, providing clearer diagnoses for cholestatic liver disease and gallstones. 13 C and 15 N labelled compounds were used in clinical studies, of children with genetic disorders of amino acid metabolism, i.e., non ketotic hyperflycinemia, B 12 -responsive methyl malonic acidemia, and Lesch-Nyhan syndrome. 15 N-labelled glycine was also studied in a child with Lesch-Nyhan syndrome. (Mukohata, S.)

  10. Multiple stable isotope fronts during non-isothermal fluid flow

    Science.gov (United States)

    Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas

    2018-02-01

    Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may

  11. Assessing microbial degradation of o-xylene at field-scale from the reduction in mass flow rate combined with compound-specific isotope analyses

    Science.gov (United States)

    Peter, A.; Steinbach, A.; Liedl, R.; Ptak, T.; Michaelis, W.; Teutsch, G.

    2004-07-01

    In recent years, natural attenuation (NA) has evolved into a possible remediation alternative, especially in the case of BTEX spills. In order to be approved by the regulators, biodegradation needs to be demonstrated which requires efficient site investigation and monitoring tools. Three methods—the Integral Groundwater Investigation method, the compound-specific isotope analysis (CSIA) and a newly developed combination of both—were used in this work to quantify at field scale the biodegradation of o-xylene at a former gasworks site which is heavily contaminated with BTEX and PAHs. First, the Integral Groundwater Investigation method [Schwarz, R., Ptak, T., Holder, T., Teutsch, G., 1998. Groundwater risk assessment at contaminated sites: a new investigation approach. In: Herbert, M. and Kovar, K. (Editors), GQ'98 Groundwater Quality: Remediation and Protection. IAHS Publication 250, pp. 68-71; COH 4 (2000) 170] was applied, which allows the determination of mass flow rates of o-xylene by integral pumping tests. Concentration time series obtained during pumping at two wells were used to calculate inversely contaminant mass flow rates at the two control planes that are defined by the diameter of the maximum isochrone. A reactive transport model was used within a Monte Carlo approach to identify biodegradation as the dominant process for reduction in the contaminant mass flow rate between the two consecutive control planes. Secondly, compound-specific carbon isotope analyses of o-xylene were performed on the basis of point-scale samples from the same two wells. The Rayleigh equation was used to quantify the degree of biodegradation that occurred between the wells. Thirdly, a combination of the Integral Groundwater Investigation method and the compound-specific isotope analysis was developed and applied. It comprises isotope measurements during the integral pumping tests and the evaluation of δ13C time series by an inversion algorithm to obtain spatially

  12. A field-deployable compound-specific isotope analyzer based on quantum cascade laser and hollow waveguide

    Science.gov (United States)

    Wu, Sheng; Deev, Andrei

    2013-01-01

    A field deployable Compound Specific Isotope Analyzer (CSIA) coupled with capillary chromatogrpahy based on Quantum Cascade (QC) lasers and Hollow Waveguide (HWG) with precision and chemical resolution matching mature Mass Spectroscopy has been achieved in our laboratory. The system could realize 0.3 per mil accuracy for 12C/13C for a Gas Chromatography (GC) peak lasting as short as 5 seconds with carbon molar concentration in the GC peak less than 0.5%. Spectroscopic advantages of HWG when working with QC lasers, i.e. single mode transmission, noiseless measurement and small sample volume, are compared with traditional free space and multipass spectroscopy methods.

  13. Trophic position of coexisting krill species: a stable isotope approach

    DEFF Research Database (Denmark)

    Agersted, Mette Dalgaard; Bode, Antonio; Nielsen, Torkel Gissel

    2014-01-01

    Four krill species with overlapping functional biology coexist in Greenland waters. Here, we used stable isotopes to investigate and discuss their trophic role and mode of coexistence. Bulk carbon (δ13C) and nitrogen (δ15N) stable isotope analyses of Thysanoessa longicaudata, T. inermis, T. raschii...

  14. Realistic Fasting Does Not Affect Stable Isotope Levels of a Metabolically Efficient Salamander

    Science.gov (United States)

    Stable isotopes are commonly used to examine various aspects of animal ecology. The use of stable isotopes generally proceeds under the implicit assumption that resource use is the only factor driving variation in stable isotope levels; however, a wealth of studies demonstrate a...

  15. Stable isotope-guided analysis of biomagnification profiles of arsenic species in a tropical mangrove ecosystem

    International Nuclear Information System (INIS)

    Tu, Nguyen Phuc Cam; Agusa, Tetsuro; Ha, Nguyen Ngoc; Tuyen, Bui Cach; Tanabe, Shinsuke; Takeuchi, Ichiro

    2011-01-01

    We performed stable carbon and nitrogen-guided analyses of biomagnification profiles of arsenic (As) species, including total As, lipid-soluble As, eight water-soluble As compounds (arsenobetaine (AB), arsenocholine (AC), tetramethylarsonium ion (TETRA), trimethylarsine oxide (TMAO), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), arsenate (As[V]), and arsenite (As[III])), and non-extracted As in a tropical mangrove ecosystem in the Ba Ria Vung Tau, South Vietnam. Arsenobetaine was the predominant As species (65-96% of water-soluble As). Simple linear regression slopes of log-transformed concentrations of total As, As fractions or individual As compounds on stable nitrogen isotopic ratio (δ 15 N) values are regarded as indices of biomagnification. In this ecosystem, lipid-soluble As (slope, 0.130) and AB (slope, 0.108) were significantly biomagnified through the food web; total As and other water-soluble As compounds were not. To our knowledge, this is one of the first reports on biomagnification profiles of As compounds from a tropical mangrove ecosystem.

  16. Enhanced understanding of ectoparasite: host trophic linkages on coral reefs through stable isotope analysis

    Science.gov (United States)

    Demopoulos, Amanda W. J.; Sikkel, Paul C.

    2015-01-01

    Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi) and permanently parasitic cymothoids (Anilocra). To further track the transfer of fish-derived carbon (energy) from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni) for at least 1 month. Parasitic isopods had δ13C and δ15N values similar to their host, comparable with results from the small number of other host–parasite studies that have employed stable isotopes. Adult gnathiids were enriched in 15N and depleted in13C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ13C values consistent with their food source and enriched in 15N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically.

  17. Enhanced understanding of ectoparasite–host trophic linkages on coral reefs through stable isotope analysis

    Directory of Open Access Journals (Sweden)

    Amanda W.J. Demopoulos

    2015-04-01

    Full Text Available Parasitism, although the most common type of ecological interaction, is usually ignored in food web models and studies of trophic connectivity. Stable isotope analysis is widely used in assessing the flow of energy in ecological communities and thus is a potentially valuable tool in understanding the cryptic trophic relationships mediated by parasites. In an effort to assess the utility of stable isotope analysis in understanding the role of parasites in complex coral-reef trophic systems, we performed stable isotope analysis on three common Caribbean reef fish hosts and two kinds of ectoparasitic isopods: temporarily parasitic gnathiids (Gnathia marleyi and permanently parasitic cymothoids (Anilocra. To further track the transfer of fish-derived carbon (energy from parasites to parasite consumers, gnathiids from host fish were also fed to captive Pederson shrimp (Ancylomenes pedersoni for at least 1 month. Parasitic isopods had δ13C and δ15N values similar to their host, comparable with results from the small number of other host–parasite studies that have employed stable isotopes. Adult gnathiids were enriched in 15N and depleted in 13C relative to juvenile gnathiids, providing insights into the potential isotopic fractionation associated with blood-meal assimilation and subsequent metamorphosis. Gnathiid-fed Pedersen shrimp also had δ13C values consistent with their food source and enriched in 15N as predicted due to trophic fractionation. These results further indicate that stable isotopes can be an effective tool in deciphering cryptic feeding relationships involving parasites and their consumers, and the role of parasites and cleaners in carbon transfer in coral-reef ecosystems specifically.

  18. Leaf water stable isotopes and water transport outside the xylem.

    Science.gov (United States)

    Barbour, M M; Farquhar, G D; Buckley, T N

    2017-06-01

    How water moves through leaves, and where the phase change from liquid to vapour occurs within leaves, remain largely mysterious. Some time ago, we suggested that the stable isotope composition of leaf water may contain information on transport pathways beyond the xylem, through differences in the development of gradients in enrichment within the various pathways. Subsequent testing of this suggestion provided ambiguous results and even questioned the existence of gradients in enrichment within the mesophyll. In this review, we bring together recent theoretical developments in understanding leaf water transport pathways and stable isotope theory to map a path for future work into understanding pathways of water transport and leaf water stable isotope composition. We emphasize the need for a spatially, anatomically and isotopically explicit model of leaf water transport. © 2016 John Wiley & Sons Ltd.

  19. Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis.

    Science.gov (United States)

    Budge, S M; Wooller, M J; Springer, A M; Iverson, S J; McRoy, C P; Divoky, G J

    2008-08-01

    Global warming and the loss of sea ice threaten to alter patterns of productivity in arctic marine ecosystems because of a likely decline in primary productivity by sea ice algae. Estimates of the contribution of ice algae to total primary production range widely, from just 3 to >50%, and the importance of ice algae to higher trophic levels remains unknown. To help answer this question, we investigated a novel approach to food web studies by combining the two established methods of stable isotope analysis and fatty acid (FA) analysis--we determined the C isotopic composition of individual diatom FA and traced these biomarkers in consumers. Samples were collected near Barrow, Alaska and included ice algae, pelagic phytoplankton, zooplankton, fish, seabirds, pinnipeds and cetaceans. Ice algae and pelagic phytoplankton had distinctive overall FA signatures and clear differences in delta(13)C for two specific diatom FA biomarkers: 16:4n-1 (-24.0+/-2.4 and -30.7+/-0.8 per thousand, respectively) and 20:5n-3 (-18.3+/-2.0 and -26.9+/-0.7 per thousand, respectively). Nearly all delta(13)C values of these two FA in consumers fell between the two stable isotopic end members. A mass balance equation indicated that FA material derived from ice algae, compared to pelagic diatoms, averaged 71% (44-107%) in consumers based on delta(13)C values of 16:4n-1, but only 24% (0-61%) based on 20:5n-3. Our estimates derived from 16:4n-1, which is produced only by diatoms, probably best represented the contribution of ice algae relative to pelagic diatoms. However, many types of algae produce 20:5n-3, so the lower value derived from it likely represented a more realistic estimate of the proportion of ice algae material relative to all other types of phytoplankton. These preliminary results demonstrate the potential value of compound-specific isotope analysis of marine lipids to trace C flow through marine food webs and provide a foundation for future work.

  20. Stable isotope discrimination factors and between-tissue isotope comparisons for bone and skin from captive and wild green sea turtles (Chelonia mydas).

    Science.gov (United States)

    Turner Tomaszewicz, Calandra N; Seminoff, Jeffrey A; Price, Mike; Kurle, Carolyn M

    2017-11-30

    The ecological application of stable isotope analysis (SIA) relies on taxa- and tissue-specific stable carbon (Δ 13 C) and nitrogen (Δ 15 N) isotope discrimination factors, determined with captive animals reared on known diets for sufficient time to reflect dietary isotope ratios. However, captive studies often prohibit lethal sampling, are difficult with endangered species, and reflect conditions not experienced in the wild. We overcame these constraints and determined the Δ 13 C and Δ 15 N values for skin and cortical bone from green sea turtles (Chelonia mydas) that died in captivity and evaluated the utility of a mathematical approach to predict discrimination factors. Using stable carbon (δ 13 C values) and nitrogen (δ 15 N values) isotope ratios from captive and wild turtles, we established relationships between bone stable isotope (SI) ratios and those from skin, a non-lethally sampled tissue, to facilitate comparisons of SI ratios among studies using multiple tissues. The mean (±SD) Δ 13 C and Δ 15 N values (‰) between skin and bone from captive turtles and their diet (non-lipid-extracted) were 2.3 ± 0.3 and 4.1 ± 0.4 and 2.1 ± 0.6 and 5.1 ± 1.1, respectively. The mathematically predicted Δ 13 C and Δ 15 N values were similar (to within 1‰) to the experimentally derived values. The mean δ 15 N values from bone were higher than those from skin for captive (+1.0 ± 0.9‰) and wild (+0.8 ± 1.0‰) turtles; the mean δ 13 C values from bone were lower than those from skin for wild turtles (-0.6 ± 0.9‰), but the same as for captive turtles. We used linear regression equations to describe bone vs skin relationships and create bone-to-skin isotope conversion equations. For sea turtles, we provide the first (a) bone-diet SI discrimination factors, (b) comparison of SI ratios from individual-specific bone and skin, and (c) evaluation of the application of a mathematical approach to predict stable isotope discrimination factors. Our approach

  1. Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 2. Animal products.

    Science.gov (United States)

    Inácio, Caio T; Chalk, Phillip M

    2017-01-02

    In this review, we examine the variation in stable isotope signatures of the lighter elements (δ 2 H, δ 13 C, δ 15 N, δ 18 O, and δ 34 S) of tissues and excreta of domesticated animals, the factors affecting the isotopic composition of animal tissues, and whether stable isotopes may be used to differentiate organic and conventional modes of animal husbandry. The main factors affecting the δ 13 C signatures of livestock are the C3/C4 composition of the diet, the relative digestibility of the diet components, metabolic turnover, tissue and compound specificity, growth rate, and animal age. δ 15 N signatures of sheep and cattle products have been related mainly to diet signatures, which are quite variable among farms and between years. Although few data exist, a minor influence in δ 15 N signatures of animal products was attributed to N losses at the farm level, whereas stocking rate showed divergent findings. Correlations between mode of production and δ 2 H and δ 18 O have not been established, and only in one case of an animal product was δ 34 S a satisfactory marker for mode of production. While many data exist on diet-tissue isotopic discrimination values among domesticated animals, there is a paucity of data that allow a direct and statistically verifiable comparison of the differences in the isotopic signatures of organically and conventionally grown animal products. The few comparisons are confined to beef, milk, and egg yolk, with no data for swine or lamb products. δ 13 C appears to be the most promising isotopic marker to differentiate organic and conventional production systems when maize (C4) is present in the conventional animal diet. However, δ 13 C may be unsuitable under tropical conditions, where C4 grasses are abundant, and where grass-based husbandry is predominant in both conventional and organic systems. Presently, there is no universal analytical method that can be applied to differentiate organic and conventional animal products.

  2. Stable-isotope-labeled carbohydrates and nucleosides: Synthesis and applications in chemistry and biology

    Energy Technology Data Exchange (ETDEWEB)

    Serianni, A.S. [Univ. of Notre Dame, IN (United States)

    1994-12-01

    Carbohydrates play important roles in many key biochemical processes in living cells. For example, they are metabolized to produce energy, mediate cell-cell recognition, and play an indirect role (as constituents of DNA and RNA) in DNA replication, RNA transcription, and protein synthesis. These roles, and others of comparable biochemical significance, have been studied to varying extends with the use of stable isotopically labeled molecules, usually in conjunction with NMR spectroscopy and/or mass spectrometry. For example, carbohydrate metabolism has been monitored in vitro and in vivo with the use of isotopically labeled compounds. Molecular aspects of cell-cell recognition, mediated by cell-surface glycoproteins and glycolipids, have been probed through NMR studies of isotopically labeled oligosaccharides. More recently, the solution behavior of DNA and RNA has been examined through the use of labeled oligonucleotides. In all of these pursuits, the effort and expense to prepare labeled molecules, both of which can be substantial, are more than offset by the wealth of information derived from these studies. This information often cannot be accessed, or can be accessed only with great difficulty, using natural (unlabeled) compounds.

  3. Stable-isotope-labeled carbohydrates and nucleosides: Synthesis and applications in chemistry and biology

    International Nuclear Information System (INIS)

    Serianni, A.S.

    1994-01-01

    Carbohydrates play important roles in many key biochemical processes in living cells. For example, they are metabolized to produce energy, mediate cell-cell recognition, and play an indirect role (as constituents of DNA and RNA) in DNA replication, RNA transcription, and protein synthesis. These roles, and others of comparable biochemical significance, have been studied to varying extends with the use of stable isotopically labeled molecules, usually in conjunction with NMR spectroscopy and/or mass spectrometry. For example, carbohydrate metabolism has been monitored in vitro and in vivo with the use of isotopically labeled compounds. Molecular aspects of cell-cell recognition, mediated by cell-surface glycoproteins and glycolipids, have been probed through NMR studies of isotopically labeled oligosaccharides. More recently, the solution behavior of DNA and RNA has been examined through the use of labeled oligonucleotides. In all of these pursuits, the effort and expense to prepare labeled molecules, both of which can be substantial, are more than offset by the wealth of information derived from these studies. This information often cannot be accessed, or can be accessed only with great difficulty, using natural (unlabeled) compounds

  4. Recent applications of stable isotopes in environmental medicine in germany

    International Nuclear Information System (INIS)

    Krumbiegel, P.; Herbarth, O.

    2000-01-01

    In the last few years, a new quality in the application of stable isotopes became manifest. It is the establishment of stable isotopes as a tool in medical routine diagnosis - a novel field of nuclear medicine - and in environmental-medical epidemiological surveys. Owing to missing suitable radioactive isotopes of the bio elements carbon and nitrogen and because of ethical problems in the human use of some radionuclides, the stable isotopes 13 C and 1% N play a key role in this new field. A review is given about four new stable isotope-aided methods for in vivo organ function test. Three of them were developed in Leipzig, germany, and one in houston/Texas. We have validated the tests and then introduced into medical and environmental routine diagnostic use: ( 15 N Methacetin and ( 13 C) methacetin liver function tests to characterize the detoxification capacity of the human liver; ( 15 N) Urea and ( 13 C) urea tests to detect the colonization of the human stomach by the bacterium helicobacter pylori. This bacterium is, as known, responsible for gastritis and ulcer of the gastrointestinal tract. The transmission ways of H. Pylori are under investigation world-wide

  5. Titanium stable isotope investigation of magmatic processes on the Earth and Moon

    Science.gov (United States)

    Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.

    2016-09-01

    We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.

  6. Manual for the Use of Stable Isotopes in Entomology

    International Nuclear Information System (INIS)

    2009-06-01

    result of problem driven inquisitiveness and technological advances, and are framed by the social and political environment. Although the external environment may mould the technological path, a technology will only become obsolete if there are viable substitution products or methods. Stable isotope methods are a substitute for many radionuclide methods. The progress made in stable isotope science over the past twenty years is a direct result of the interplay of the above factors. Stable isotopes are omnipresent in the environment and pose no health or environmental risks. Advances in isotope ratio mass spectrometry in terms of detection, accuracy and automation have broadened experimental possibilities immensely over the past twenty years. It was recognised that there was significant potential for answering many of the entomologist?s biological and ecological questions using stable isotopes, an expertise the Soil Science Unit of the FAO/IAEA Agriculture and Biotechnology Laboratory in Seibersdorf had long fostered; therefore collaboration with the Entomology Unit at the same Laboratory was established. A number of collaborative experiments were carried and subsequently published. It was soon recognised that stable isotopes have tremendous potential in entomological research and although there were numerous studies using stable isotopes in ecology, their use in entomology per se was limited. Thus it was felt that a publication was required to make stable isotope techniques more widely known among entomologists. This manual will attempt to provide an introduction to the use of stable isotopes in entomological research. It will strive to communicate the basic principles and techniques of stable isotope science and provide a springboard for further interest and research in this area

  7. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    OpenAIRE

    Hannah B Vander Zanden; David X Soto; Gabriel J Bowen; Keith A Hobson; Keith A Hobson

    2016-01-01

    The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applicat...

  8. Expanding the Isotopic Toolbox: Applications of Hydrogen and Oxygen Stable Isotope Ratios to Food Web Studies

    OpenAIRE

    Vander Zanden, Hannah B.; Soto, David X.; Bowen, Gabriel J.; Hobson, Keith A.

    2016-01-01

    The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applicatio...

  9. Stable isotope probing to study functional components of complex microbial ecosystems.

    Science.gov (United States)

    Mazard, Sophie; Schäfer, Hendrik

    2014-01-01

    This protocol presents a method of dissecting the DNA or RNA of key organisms involved in a specific biochemical process within a complex ecosystem. Stable isotope probing (SIP) allows the labelling and separation of nucleic acids from community members that are involved in important biochemical transformations, yet are often not the most numerically abundant members of a community. This pure culture-independent technique circumvents limitations of traditional microbial isolation techniques or data mining from large-scale whole-community metagenomic studies to tease out the identities and genomic repertoires of microorganisms participating in biological nutrient cycles. SIP experiments can be applied to virtually any ecosystem and biochemical pathway under investigation provided a suitable stable isotope substrate is available. This versatile methodology allows a wide range of analyses to be performed, from fatty-acid analyses, community structure and ecology studies, and targeted metagenomics involving nucleic acid sequencing. SIP experiments provide an effective alternative to large-scale whole-community metagenomic studies by specifically targeting the organisms or biochemical transformations of interest, thereby reducing the sequencing effort and time-consuming bioinformatics analyses of large datasets.

  10. [Progress in stable isotope labeled quantitative proteomics methods].

    Science.gov (United States)

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2013-06-01

    Quantitative proteomics is an important research field in post-genomics era. There are two strategies for proteome quantification: label-free methods and stable isotope labeling methods which have become the most important strategy for quantitative proteomics at present. In the past few years, a number of quantitative methods have been developed, which support the fast development in biology research. In this work, we discuss the progress in the stable isotope labeling methods for quantitative proteomics including relative and absolute quantitative proteomics, and then give our opinions on the outlook of proteome quantification methods.

  11. The synthesis of tritium, carbon-14 and stable isotope labelled selective estrogen receptor degraders.

    Science.gov (United States)

    Bragg, Ryan A; Bushby, Nick; Ericsson, Cecilia; Kingston, Lee P; Ji, Hailong; Elmore, Charles S

    2016-09-01

    As part of a Medicinal Chemistry program aimed at developing an orally bioavailable selective estrogen receptor degrader, a number of tritium, carbon-14, and stable isotope labelled (E)-3-[4-(2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-yl)phenyl]prop-2-enoic acids were required. This paper discusses 5 synthetic approaches to this compound class. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Holocene Paleohydrological Changes in Northern Michigan: Interpretations of Biomarker Distributions and Compound Specific Stable Isotope Analysis from Peatlands

    Science.gov (United States)

    Nichols, J. E.; Booth, R. K.; Jackson, S. T.; Pendall, E. G.; Huang, Y.

    2006-12-01

    Sediments of ombrotrophic peatlands are excellent archives for reconstructing past changes in precipitation/evaporation (P/E) balance. Multiproxy analysis of these sediments is critical for better understanding of climatic events experienced by these highly sensitive systems, as each proxy may respond to different climate parameters. In this study, we use distributions of n-alkanes and δD of Sphagnum biomarkers to interpret paleohydrology from sediments of Irwin Smith Bog, northern Michigan. We then integrate these data with pollen data and testate amoebae-inferred water table depth. Sphagnum moss is the dominant peat former in ombrotrophic bogs, but vascular plants become abundant when water tables are drawn down. Thus, the abundance of Sphagnum relative to vascular plants is indicative of peatland hydrology. The n-alkanes produced by Sphagnum differ from vascular plants in the relative abundance of the different homologues, with the former having excess amounts of shorter chain C23 n-alkane. We use several measures (compound ratios, PCA) to show changes in then-alkane distributions in the sediments, and thus changes in the peatland plant community. Our data provide high- resolution, quantitative paleohydrological records for the study region that are consistent with other records. We also show that the relative abundance of a newly identified Sphagnum biomarker, 2-heptacosanone, can be used to reconstruct changing plant communities. Because ombrotrophic systems lose water by evaporation, drier/warmer conditions cause hydrogen isotopic enrichment of bog water and Sphagnum biomarkers. We measured the δD of C23 n-alkane and 2-heptacosanone to provide additional paleoclimate information. Our multiproxy approach allows us to better understand the climate changes during key intervals of the Holocene. For example, a sharp decrease in the abundance of Tsuga canadensis (hemlock) pollen has been previously identified in records from many places throughout eastern North

  13. Biomedical applications of mass spectrometry. Clinical uses of stable isotopes

    International Nuclear Information System (INIS)

    Krahmer, U.I.; McCloskey, J.A.

    1978-01-01

    The review covers typical or important examples of stable isotope usage in clinical fields during the period since the last triennial mass spectrometry conference in 1973. Items are included which involve uses of stable isotopes in human or clinically oriented studies, including measurements carried out on materials of human origin. 163 references. (U.K.)

  14. Melting point of high-purity germanium stable isotopes

    Science.gov (United States)

    Gavva, V. A.; Bulanov, A. D.; Kut'in, A. M.; Plekhovich, A. D.; Churbanov, M. F.

    2018-05-01

    The melting point (Tm) of germanium stable isotopes 72Ge, 73Ge, 74Ge, 76Ge was determined by differential scanning calorimetry. With the increase in atomic mass of isotope the decrease in Tm is observed. The decrease was equal to 0.15 °C per the unit of atomic mass which qualitatively agrees with the value calculated by Lindemann formula accounting for the effect of "isotopic compression" of elementary cell.

  15. Improved constraints on in situ rates and on quantification of complete chloroethene degradation from stable carbon isotope mass balances in groundwater plumes

    Science.gov (United States)

    Höhener, Patrick; Elsner, Martin; Eisenmann, Heinrich; Atteia, Olivier

    2015-11-01

    Spills of chloroethenes (CEs) at industrial and urban sites can create groundwater plumes in which tetrachloro- and trichloroethene sequentially degrade to dichloroethenes, vinyl chloride (VC) and ethene, or ethane under reducing conditions. For detoxification, degradation must go beyond VC. Assessments based on ethene and ethane, however, are difficult because these products are volatile, may stem from alternative sources, can be further transformed and are not always monitored. To alternatively quantify degradation beyond VC, stable carbon isotope mass balances have been proposed where concentration-weighted CE isotope ratios are summed up and compared to the original source isotope ratio. Reported assessments, however, have provided not satisfactorily quantified results entailing greatly differing upper and lower estimates. This work proposes an integrative approach to better constrain the extent of total chloroethene degradation in groundwater samples. It is based on fitting of measured concentration and compound-specific stable carbon isotope data to an analytical reactive transport equation simulating steady-state plumes in two dimensions using an EXCEL spreadsheet. The fitting also yields estimates of degradation rates, of source width and of dispersivities. The approach is validated using two synthetic benchmark cases where the true extent of degradation is well known, and using data from two real field cases from literature.

  16. The use of stable isotopes as minerals tracers in human nutrition research

    International Nuclear Information System (INIS)

    Sajet, A. S.

    2007-01-01

    The idea of using stable isotopes as tracers in metabolic studies of vital systems started when it was noted that stable isotopes have the ability to unite with biomolecules.The article aims to review the methods used to measure quantities of tracer in doses given to donors orally or via intravenous injection, determinants of detection and their estimation as well as the use of mass spectrometer and other devices to measure different stable isotopes. In fact, the use of stable isotopes in nutrition research is an essential technique in order to understand many of the processes related to minerals absorption and the human body composition of water, fat and bones, transportation of food components within the body and estimation of the ages of red blood cells. It is possible to use the secretion of stable isotopes taken by injection to determine the paths of excretion or estimate self-retaining material by the intestine. The stable isotope technology helps to know the mechanics of minerals absorption and excretion in the body. It was possible to find out metabolic reactions of metals using mathematical models based on the measurement of tracers amount in biological fluids in order to know the absorbance situation of metals in the body.

  17. Biosynthetic effects on the stable carbon isotopic compositions of agal lipids: Implications for deciphering the carbon isotopic biomarker record

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Klein Breteler, W.C.M.; Blokker, P.; Schogt, N.; Rijpstra, W.I.C.; Grice, K.; Baas, M.

    1998-01-01

    Thirteen species of algae covering an extensive range of classes were cultured and stable carbon isotopic compositions of their lipids were analysed in order to assess carbon isotopic fractionation effects during their biosynthesis. The fatty acids were found to have similar stable carbon isotopic

  18. What can Fe stable isotopes tell us about magmas?

    DEFF Research Database (Denmark)

    Stausberg, Niklas

    the differentiation of magmas from the perspective of Fe stable isotopes, integrated with petrology, by studying igneous rocks and their constituent phases (minerals and glasses) from the Bushveld Complex, South Africa, Thingmuli, Iceland, Pantelleria, Italy, and the Bishop Tuff, USA. The findings are interpreted......The majority of the Earth’s crust is formed by magmas, and understanding their production and differentiation is important to interpret the geologic rock record. A powerful tool to investigate magmatic processes is the distribution of the stable isotopes of the major redox-sensitive element...... in magmas, Fe. Fe isotope compositions of magmatic rocks exhibit systematic differences, where the heaviest compositions are found in rhyolites and granites. Understanding of these systematics is complicated by a lack of constraints on Fe isotope fractionation among minerals and liquids under magmatic...

  19. Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients.

    Science.gov (United States)

    Lueders, Tillmann; Manefield, Mike; Friedrich, Michael W

    2004-01-01

    Stable isotope probing (SIP) of nucleic acids allows the detection and identification of active members of natural microbial populations that are involved in the assimilation of an isotopically labelled compound into nucleic acids. SIP is based on the separation of isotopically labelled DNA or rRNA by isopycnic density gradient centrifugation. We have developed a highly sensitive protocol for the detection of 'light' and 'heavy' nucleic acids in fractions of centrifugation gradients. It involves the fluorometric quantification of total DNA or rRNA, and the quantification of either 16S rRNA genes or 16S rRNA in gradient fractions by real-time PCR with domain-specific primers. Using this approach, we found that fully 13C-labelled DNA or rRNA of Methylobacterium extorquens was quantitatively resolved from unlabelled DNA or rRNA of Methanosarcina barkeri by cesium chloride or cesium trifluoroacetate density gradient centrifugation respectively. However, a constant low background of unspecific nucleic acids was detected in all DNA or rRNA gradient fractions, which is important for the interpretation of environmental SIP results. Consequently, quantitative analysis of gradient fractions provides a higher precision and finer resolution for retrieval of isotopically enriched nucleic acids than possible using ethidium bromide or gradient fractionation combined with fingerprinting analyses. This is a prerequisite for the fine-scale tracing of microbial populations metabolizing 13C-labelled compounds in natural ecosystems.

  20. Applications of C and N stable isotopes to ecological and environmental studies in seagrass ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Lepoint, Gilles [Centre MARE, Laboratoire d' Oceanologie, Institut de Chimie, B6, Universite de Liege, B-4000 Liege (Belgium)]. E-mail: g.lepoint@ulg.ac.be; Dauby, Patrick [Centre MARE, Laboratoire d' Oceanologie, Institut de Chimie, B6, Universite de Liege, B-4000 Liege (Belgium); Institut Royal des Sciences Naturelles de Belgique, rue Vautier, B1000 Brussels (Belgium); Gobert, Sylvie [Centre MARE, Laboratoire d' Oceanologie, Institut de Chimie, B6, Universite de Liege, B-4000 Liege (Belgium)

    2004-12-01

    Stable isotopes of carbon and nitrogen are increasingly used in marine ecosystems, for ecological and environmental studies. Here, we examine some applications of stable isotopes as ecological integrators or tracers in seagrass ecosystem studies. We focus on both the use of natural isotope abundance as food web integrators or environmental tracers and on the use of stable isotopes as experimental tools. As ecosystem integrators, stable isotopes have helped to elucidate the general structure of trophic webs in temperate, Mediterranean and tropical seagrass ecosystems. As environmental tracers, stable isotopes have proven their utility in sewage impact measuring and mapping. However, to make such environmental studies more comprehensible, future works on understanding of basic reasons for variations of N and C stable isotopes in seagrasses should be encouraged. At least, as experimental tracers, stable isotopes allow the study of many aspects of N and C cycles at the scale of a plant or at the scale of the seagrass ecosystem.

  1. Discrimination of ginseng cultivation regions using light stable isotope analysis.

    Science.gov (United States)

    Kim, Kiwook; Song, Joo-Hyun; Heo, Sang-Cheol; Lee, Jin-Hee; Jung, In-Woo; Min, Ji-Sook

    2015-10-01

    Korean ginseng is considered to be a precious health food in Asia. Today, thieves frequently compromise ginseng farms by pervasive theft. Thus, studies regarding the characteristics of ginseng according to growth region are required in order to deter ginseng thieves and prevent theft. In this study, 6 regions were selected on the basis of Korea regional criteria (si, gun, gu), and two ginseng-farms were randomly selected from each of the 6 regions. Then 4-6 samples of ginseng were acquired from each ginseng farm. The stable isotopic compositions of H, O, C, and N of the collected ginseng samples were analyzed. As a result, differences in the hydrogen isotope ratios could be used to distinguish regional differences, and differences in the nitrogen isotope ratios yielded characteristic information regarding the farms from which the samples were obtained. Thus, stable isotope values could be used to differentiate samples according to regional differences. Therefore, stable isotope analysis serves as a powerful tool to discriminate the regional origin of Korean ginseng samples from across Korea. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Contribution of stable isotopes to the study of pharmacokinetics of magnesium salts; Apport des isotopes stables a l'etude de la pharmacocinetique de sels de magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Benech, H

    1999-05-28

    The use of stable isotopes as labels is becoming an attractive tool for the study of magnesium behavior in humans. It has been used two stable isotopes of magnesium, {sup 25}Mg and {sup 26}Mg, to measure the absolute bioavailability of a pharmaceutical form of magnesium. (N.C.)

  3. Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry

    Science.gov (United States)

    Steinhauser, Matthew L.; Lechene, Claude P.

    2014-01-01

    Multi-isotope imaging mass spectrometry (MIMS) is the quantitative imaging of stable isotope labels in cells with a new type of secondary ion mass spectrometer (NanoSIMS). The power of the methodology is attributable to (i) the immense advantage of using non-toxic stable isotope labels, (ii) high resolution imaging that approaches the resolution of usual transmission electron microscopy and (iii) the precise quantification of label down to 1 part-per-million and spanning several orders of magnitude. Here we review the basic elements of MIMS and describe new applications of MIMS to the quantitative study of metabolic processes including protein and nucleic acid synthesis in model organisms ranging from microbes to humans. PMID:23660233

  4. Study of variations of stable isotopes in precipitation: case of Antananarivo

    International Nuclear Information System (INIS)

    Randrianarivola, M.

    2014-01-01

    The isotopic signature of precipitation is the input signal in any study of hydrological cycle. The scientific objective of this work is to better understand the isotopic variations in precipitation and identify their processes. We used the network of measurement GNIP (Global Network of Isotopes in Precipitation) in which data is acquired by the International Atomic Energy Agency through isotope hydrology laboratory at INSTN-Madagascar. Analyzes stable isotopes ( 18O and 2 H), were performed at a monthly time step. We were able to confirm the relative importance of different mechanisms governing the isotopic composition of precipitation. The spatial distribution of abundance ratios of Antananarivo rain is in fact dictated by the temperature which follow indirectly from the effects of altitude and seasonal variations. At the monthly scale, local meteoric water line δ 2 H versus δ 18 O shows the specificity of Antananarivo (deuterium excess of 17.5‰ ). Additionally, seasonal variations in precipitation is related to the temperature such that in summer (d=15‰) and winter (d=18‰) [fr

  5. Stable isotope methodology and its application to nutrition and gastroenterology

    International Nuclear Information System (INIS)

    Klein, P.D.; Hachey, D.L.; Wong, W.W.; Abrams, S.A.

    1993-01-01

    This report describes the activities of the Stable Isotope Laboratory in its function as a core resource facility for stable isotope applications in human nutrition research. Three aspects are covered: Training of visitors, assessment of new instrumentation, and development of new methodology. The research achievements of the laboratory are indicated in the publications that appeared during this period. (author). 23 refs

  6. petrography, compositional characteristics and stable isotope ...

    African Journals Online (AJOL)

    PROF EKWUEME

    Subsurface samples of the predominantly carbonate Ewekoro Formation, obtained from Ibese core hole within the Dahomey basin were used in this study. Investigations entail petrographic, elemental composition as well as stable isotopes (carbon and oxygen) geochemistry in order to deduce the different microfacies and ...

  7. Stable isotope analysis indicates a lack of inter- and intra-specific dietary redundancy among ecologically important coral reef fishes

    Science.gov (United States)

    Plass-Johnson, J. G.; McQuaid, C. D.; Hill, J. M.

    2013-06-01

    Parrotfish are critical consumers on coral reefs, mediating the balance between algae and corals, and are often categorised into three functional groups based on adult morphology and feeding behaviour. We used stable isotope analysis (δ13C, δ15N) to investigate size-related ontogenetic dietary changes in multiple species of parrotfish on coral reefs around Zanzibar. We compared signatures among species and functional groups (scrapers, excavators and browsers) as well as ontogenetic stages (immature, initial and terminal phase) within species. Stable isotope analysis suggests that ontogenetic dietary shifts occurred in seven of the nine species examined; larger individuals had enriched δ13C values, with no relationship between size and δ15N. The relationship between fish length and δ13C signature was maintained when species were categorised as scrapers and excavators, but was more pronounced for scrapers than excavators, indicating stronger ontogenetic changes. Isotopic mixing models classified the initial phase of both the most abundant excavator ( Chlorurus sordidus) as a scraper and the immature stage of the scraper Scarus ghobban (the largest species) as an excavator, indicating that diet relates to size rather than taxonomy. The results indicate that parrotfish may show similar intra-group changes in diet with length, but that their trophic ecology is more complex than suggested by morphology alone. Stable isotope analyses indicate that feeding ecology may differ among species within functional groups, and according to ontogenetic stage within a species.

  8. Fractionation of Stable Isotopes in Atmospheric Aerosol Reactions

    DEFF Research Database (Denmark)

    Meusinger, Carl

    -independent) fractionation processes of stable isotopes of C, N, O and S in order to investigate three different systems related to aerosols: 1. Post-depositional processes of nitrate in snow that obscure nitrate ice core records 2. Formation and aging of secondary organic aerosol generated by ozonolysis of X...... reactions and undergo complex chemical and physical changes during their lifetimes. In order to assess processes that form and alter aerosols, information provided by stable isotopes can be used to help constrain estimates on the strength of aerosol sources and sinks. This thesis studies (mass...... as required. The kndings provide important results for the studies' respective felds, including a description of the isotopic fractionation and quantum yield of nitrate photolysis in snow, equilibrium fractionation in secondary organic aerosol and fractionation constants of different oxidation pathways of SO2....

  9. Reconstructing hydroclimatic variations using compound-specific hydrogen isotope analysis of biomarkers from a maar lake in the Central Highlands, Vietnam

    Science.gov (United States)

    Doiron, Kelsey; Stevens, Lora; Sauer, Peter

    2017-04-01

    Monsoonal variation in Southeast Asia affects a significant portion of the global population, but knowledge regarding response of the monsoon system to changing boundary conditions is limited. The paleoclimatic tool of compound-specific isotope analysis(CSIA) provides the ability to reconstruct past precipitation using a diverse set of biomarkers preserved in the sedimentary record. Limited proxies in tropical southeast Asia and difficult site access have led to a deficit in paleoclimate records. Ia M'He (14˚ 10'45" N, 107˚ 52' E) is a shallow volcanic crater (maar) lake, approximately 57 ha, located in the Central Highlands of Vietnam. Precipitation in the Central Highlands is sensitive to reorganizations of major climatic features, such as the migration of the ITCZ and the coupled Indo-Asian monsoon, ENSO and related shifts in the Pacific Walker Circulation and typhoon frequency. To examine this complex behavior, this pilot study aims to provide a 500-year record of effective moisture inferred from CSIA of hydrogen isotopes on biomarkers. Carbon/nitrogen ratios and carbon isotope ratios indicate that bulk organic matter is a combination of algae and C3 vegetation, offering the potential to use compound-specific hydrogen isotopes of aquatic and terrestrial organic matter in tandem. Preliminary analysis of the core shows dominant alkane chain lengths of C27 and C29, associated with terrestrial plant leaf waxes. The hydrogen isotope ratios of the plant wax components provide a proxy for paleo precipitation in a region where rainfall and droughts heavily influence population dynamics and create social discord. The CSIA record is expected to correlate with records from northern Vietnam, the South China Sea and Indonesia, with greater precipitation during the Little Ice Age. The degree to which evaporative modification of lake water (i.e., seasonal drying) occurs will be estimated by comparing the terrestrial CSIA values indicative of meteoric water with aquatic CSIA

  10. Variations in the stable isotope ratios of specific aromatic and aliphatic hydrocarbons from coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    McRae, C.; Snape, C.E.; Fallick, A.E. [University of Strathclyde, Glasgow (United Kingdom). Dept. of Pure and Applied Chemistry

    1998-07-01

    To establish the scope for applying gas chromatography-isotope ratio mass spectrometry ({sup {delta}-13}C GC-IRMS) to molecular recognition problems in coal utilisation, {sup 13}C/{sup 12}C isotope ratios were determined for n-alkanes and polycyclic aromatic hydrocarbons (PAHs) as a function of coal rank and process conditions. Six coals ranging from a lignite to a low volatile bituminous coal were subjected to chloroform extraction, fixed-bed pyrolysis under hydrogen pressure (hydropyrolysis) and fluidised-bed (flash) pyrolysis. No significant variations in the stable isotope ratios of n-alkanes were evident as a function of either rank or conversion regime. In contrast, the isotope ratios of PAHs show large variations with those for hydropyrolysis (-23 to -25 parts per thousand) being similar to the bulk values of the initial coals and being isotopically heavier (less negative) than their fluidised-bed pyrolysis counterparts by 2-3 parts per thousand. However, the PAHs from fluidised-bed pyrolysis, which resemble closely those obtained from high temperature coal carbonization, are still heavier (by 2-3 parts per thousand) than those from diesel particulates and coal gasification and combustion residues. This provides a firm basis for the source apportionment of airborne PAHs in the proximity of coking plants, particularly with no major variations in the PAH isotope ratios being found as a function of rank.

  11. Stable isotopes of authigenic minerals in variably-saturated fractured tuff

    International Nuclear Information System (INIS)

    Weber, D.S.; Evans, D.D.

    1988-11-01

    Identifying stable isotope variation and mineralogical changes in fractured rock may help establish the history of climatic and geomorphological processes that might affect the isolation properties of a waste repository site. This study examines the use of the stable isotope ratios of oxygen ( 18 O/ 16 O) and carbon ( 13 C/ 12 C) in authigenic minerals as hydrogeochemical tools tracing low-temperature rock-water interaction in variably-saturated fractured stuff. Isotopic compositions of fracture-filling and rock matrix minerals in the Apache Leap tuff, near Superior, Arizona were concordant with geothermal temperatures and in equilibrium with water isotopically similar to present-day meteoric water and groundwater. Oxygen and carbon isotope ratios of fracture-filling, in unsaturated fractured tuff, displayed an isotopic gradient believed to result from near-surface isotopic enrichment due to evaporation rather than the effects of rock-water interaction. Oxygen isotope ratios of rock matrix opal samples exhibited an isotopic gradient believed to result from, leaching and reprecipitation of silica at depth. Methods and results can be used to further define primary flowpaths and the movement of water in variably-saturated fractured rock. 71 refs., 23 figs., 3 tabs

  12. Stable isotopes of authigenic minerals in variably-saturated fractured tuff

    Energy Technology Data Exchange (ETDEWEB)

    Weber, D.S.; Evans, D.D.

    1988-11-01

    Identifying stable isotope variation and mineralogical changes in fractured rock may help establish the history of climatic and geomorphological processes that might affect the isolation properties of a waste repository site. This study examines the use of the stable isotope ratios of oxygen ({sup 18}O/{sup 16}O) and carbon ({sup 13}C/{sup 12}C) in authigenic minerals as hydrogeochemical tools tracing low-temperature rock-water interaction in variably-saturated fractured stuff. Isotopic compositions of fracture-filling and rock matrix minerals in the Apache Leap tuff, near Superior, Arizona were concordant with geothermal temperatures and in equilibrium with water isotopically similar to present-day meteoric water and groundwater. Oxygen and carbon isotope ratios of fracture-filling, in unsaturated fractured tuff, displayed an isotopic gradient believed to result from near-surface isotopic enrichment due to evaporation rather than the effects of rock-water interaction. Oxygen isotope ratios of rock matrix opal samples exhibited an isotopic gradient believed to result from, leaching and reprecipitation of silica at depth. Methods and results can be used to further define primary flowpaths and the movement of water in variably-saturated fractured rock. 71 refs., 23 figs., 3 tabs.

  13. Reference and intercomparison materials for stable isotopes of light elements. Proceedings of a consultants meeting held in Vienna, 1-3 December 1993

    International Nuclear Information System (INIS)

    1995-09-01

    The stable isotope composition of elements varies in natural compounds as a consequence of the slightly different physico-chemical behaviour of isotopes. The possibility of measuring the stable isotope relative variations with high precision, using mass spectrometry, promoted the rise of new fields of research in geochemistry and hydrology and, more recently, in environmental studies. The steady growth of these investigations and of their practical applications has emphasized the need for high quality isotopic standards and intercomparison samples, with well determined isotopic composition, for the intercalibration of analytical techniques and results among laboratories. The organization of the Consultants Meeting on Stable Isotope Standards and Intercomparison Materials held in Vienna from 1 to 3 December 1993, the fifth of this type (the previous meetings took place in 1966, 1976, 1983 and 1985), called for a review and a discussion of the characteristics, quality and availability of the existing standards and intercalibration materials, and for an assessment of needs for new materials, in view of recent developments and applications. A large part of the discussions was devoted to the new materials prepared for sulphur isotope analysis and the analytical requirements for highly precise isotopic analysis of CO 2 . The papers presented at the meeting are assembled in this volume. Refs, figs and tabs

  14. Reference and intercomparison materials for stable isotopes of light elements. Proceedings of a consultants meeting held in Vienna, 1-3 December 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The stable isotope composition of elements varies in natural compounds as a consequence of the slightly different physico-chemical behaviour of isotopes. The possibility of measuring the stable isotope relative variations with high precision, using mass spectrometry, promoted the rise of new fields of research in geochemistry and hydrology and, more recently, in environmental studies. The steady growth of these investigations and of their practical applications has emphasized the need for high quality isotopic standards and intercomparison samples, with well determined isotopic composition, for the intercalibration of analytical techniques and results among laboratories. The organization of the Consultants Meeting on Stable Isotope Standards and Intercomparison Materials held in Vienna from 1 to 3 December 1993, the fifth of this type (the previous meetings took place in 1966, 1976, 1983 and 1985), called for a review and a discussion of the characteristics, quality and availability of the existing standards and intercalibration materials, and for an assessment of needs for new materials, in view of recent developments and applications. A large part of the discussions was devoted to the new materials prepared for sulphur isotope analysis and the analytical requirements for highly precise isotopic analysis of CO{sub 2}. The papers presented at the meeting are assembled in this volume. Refs, figs and tabs.

  15. Isotope and chemical tracers in groundwater hydrology

    International Nuclear Information System (INIS)

    Kendall, C.; Stewart, M.K.; Morgenstern, U.; Trompetter, V.

    1999-01-01

    The course sessions cover: session 1, Fundamentals of stable and radioactive isotopes; session 2, Stable oxygen and hydrogen isotopes in hydrology: background, examples, sampling strategy; session 3, Catchment studies using oxygen and hydrogen isotopes: background - the hydrologic water balance, evapotranspiration - the lion's share, runoff generation - new water/old water fractions, groundwater recharge - the crumbs; session 4, Isotopes in catchment hydrology: survey of applications, future developments; session 5, Applications of tritium in hydrology: background and measurement, interpretation, examples; session 6, Case studies using mixing models: Hutt Valley groundwater system, an extended mixing model for simulating tracer transport in the unsaturated zone; session 7, Groundwater dating using CFC concentrations: background, sampling and measurement, use and applications; session 8, Groundwater dating with carbon-14: background, sampling and measurement, use and applications; session 9, NZ case studies: Tauranga warm springs, North Canterbury Plains groundwater; session 10, Stable carbon and nitrogen isotopes: background and examples, biological applications of C-N-S isotopes; session 11, New developments in isotope hydrology: gas isotopes, compound specific applications, age dating of sediments etc; session 12, NZ case studies: North Canterbury Plains groundwater (continued), Waimea Plains groundwater. (author). refs., figs

  16. HTSSIP: An R package for analysis of high throughput sequencing data from nucleic acid stable isotope probing (SIP experiments.

    Directory of Open Access Journals (Sweden)

    Nicholas D Youngblut

    Full Text Available Combining high throughput sequencing with stable isotope probing (HTS-SIP is a powerful method for mapping in situ metabolic processes to thousands of microbial taxa. However, accurately mapping metabolic processes to taxa is complex and challenging. Multiple HTS-SIP data analysis methods have been developed, including high-resolution stable isotope probing (HR-SIP, multi-window high-resolution stable isotope probing (MW-HR-SIP, quantitative stable isotope probing (qSIP, and ΔBD. Currently, there is no publicly available software designed specifically for analyzing HTS-SIP data. To address this shortfall, we have developed the HTSSIP R package, an open-source, cross-platform toolset for conducting HTS-SIP analyses in a straightforward and easily reproducible manner. The HTSSIP package, along with full documentation and examples, is available from CRAN at https://cran.r-project.org/web/packages/HTSSIP/index.html and Github at https://github.com/buckleylab/HTSSIP.

  17. Defining a stable water isotope framework for isotope hydrology application in a large trans-boundary watershed (Russian Federation/Ukraine).

    Science.gov (United States)

    Vystavna, Yuliya; Diadin, Dmytro; Huneau, Frédéric

    2018-05-01

    Stable isotopes of hydrogen ( 2 H) and oxygen ( 18 O) of the water molecule were used to assess the relationship between precipitation, surface water and groundwater in a large Russia/Ukraine trans-boundary river basin. Precipitation was sampled from November 2013 to February 2015, and surface water and groundwater were sampled during high and low flow in 2014. A local meteoric water line was defined for the Ukrainian part of the basin. The isotopic seasonality in precipitation was evident with depletion in heavy isotopes in November-March and an enrichment in April-October, indicating continental and temperature effects. Surface water was enriched in stable water isotopes from upstream to downstream sites due to progressive evaporation. Stable water isotopes in groundwater indicated that recharge occurs mainly during winter and spring. A one-year data set is probably not sufficient to report the seasonality of groundwater recharge, but this survey can be used to identify the stable water isotopes framework in a weakly gauged basin for further hydrological and geochemical studies.

  18. Contribution of stable isotopes to the study of pharmacokinetics of magnesium salts; Apport des isotopes stables a l'etude de la pharmacocinetique de sels de magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Benech, H

    1999-05-28

    The use of stable isotopes as labels is becoming an attractive tool for the study of magnesium behavior in humans. It has been used two stable isotopes of magnesium, {sup 25}Mg and {sup 26}Mg, to measure the absolute bioavailability of a pharmaceutical form of magnesium. (N.C.)

  19. Chemisorption of organic iodine compounds forming from fission isotopes of radioactive iodine

    International Nuclear Information System (INIS)

    Tot, G.; Galina, F.; Zel'd, E.

    1977-01-01

    Studied is ethyl iodine adsorption, labelled by iodine 131, on palladium black and on aluminium oxide activized by palladium. The desorption of adsorbed iodine in the temperature range of 20-600 deg C by the mass spectroscopy and thermal gravimetric methods was investigated. At the ethyl iodine and palladium interaction the bond between carbon and iodine in the ethyl iodine molecule breaks down and extracting iodine reacts with palladium, forming a stable compound at high temperatures. Desorption of adsorbed iodine is insignificant up to the temperatures of 250-300 deg C. Thus, sorbents, containing palladium, may be successfully applied for iodine absorption from the organic iodine compounds. These compounds spontaneously appear from the iodine fragment ratio isotopes during their interaction with some environmental organic impurities

  20. Progress in stable isotope analysis and new possibilities of clinical investigations

    International Nuclear Information System (INIS)

    Roth, E.

    1989-01-01

    The use of stable isotopes in medicine rests on three possibilities offered by labelling: identification of an element, a molecule, or a fragment of a molecule along its biological pathway; quantification of biological pools by isotopic dilution; measurement of metabolization rates, and more generally of clearances. Whenever a corporal function experiences a disregulation reflected either by changes in metabolic activity or modifications of the importance of pools of certain molecules, the possibility exists of making use of isotopes in diagnosis. Examples of practical applications of stable isotopes are given and analytical problems that had to be solved are underlined

  1. Use of stable isotopes in agriculture

    International Nuclear Information System (INIS)

    Ali, F. K.

    2011-01-01

    Scientific research is considered to be one of the most important steps to achieve sustainable agriculture development. This paper is focused on the role of stable isotopes and their applications in agriculture for plant and animal production, and to study the relationship between soil, plant, air, water, nutrients and agricultural pests. Symbiotic N 2 fixation and efficient use of chemical and organic N fertilizers using 15 N were reported. Factors affecting 13 C values and application of carbon isotope discrimination to physiological and eco-physiological studies and selection of genotypes with improved water-use efficiency and drought tolerance and the recent progress in this field are reviewed. Moreover, the use of carbon isotope compositions in monitoring environmental changes and its various applications in food technology, animal production and entomology are discussed. (author)

  2. Protein Stable Isotope Fingerprinting (P-SIF): Multidimensional Protein Chromatography Coupled to Stable Isotope-Ratio Mass Spectrometry

    Science.gov (United States)

    Pearson, A.; Bovee, R. J.; Mohr, W.; Tang, T.

    2012-12-01

    As metagenomics increases our insight into microbial community diversity and metabolic potential, new approaches are required to determine the biogeochemical expression of this potential within ecosystems. Because stable isotopic analysis of the major bioactive elements (C, N) has been used historically to map flows of substrates and energy among macroscopic food webs, similar principles may apply to microbes. To address this challenge, we have developed a new analytical approach called Protein Stable Isotope Fingerprinting (P-SIF). P-SIF generates natural stable isotopic fingerprints of microbial individual or community proteomes. The main advantage of P-SIF is the potential to bridge the gap between diversity and function, thereby providing a window into the "black box" of environmental microbiology and helping to decipher the roles of uncultivated species. Our method implements a three-way, orthogonal scheme to separate mixtures of whole proteins into subfractions dominated by single or closely-related proteins. Protein extracts first are isoelectrically focused in a gel-free technique that yields 12 fractions separated over a gradient of pH 3-10. Each fraction then is separated by size-exclusion chromatography into 20 pools, ranging from >100kD to ~10kD. Finally, each of these pools is subjected to HPLC and collected in 40 time-slices based on protein hydrophobicity. Theoretical calculation reveals that the true chromatographic resolution of the total scheme is 5000, somewhat less than the 9600 resulting fractions. High-yielding fractions are subjected to δ13C analysis by spooling-wire microcombustion irMS (SWiM-irMS) optimized for samples containing 1-5 nmol carbon. Here we will present the method, results for a variety of pure cultures, and preliminary data for a sample of mixed environmental proteins. The data show the promise of this method for unraveling the metabolic complexity hidden within microbial communities.

  3. Advances in primate stable isotope ecology-Achievements and future prospects.

    Science.gov (United States)

    Crowley, Brooke E; Reitsema, Laurie J; Oelze, Vicky M; Sponheimer, Matt

    2016-10-01

    Stable isotope biogeochemistry has been used to investigate foraging ecology in non-human primates for nearly 30 years. Whereas early studies focused on diet, more recently, isotopic analysis has been used to address a diversity of ecological questions ranging from niche partitioning to nutritional status to variability in life history traits. With this increasing array of applications, stable isotope analysis stands to make major contributions to our understanding of primate behavior and biology. Most notably, isotopic data provide novel insights into primate feeding behaviors that may not otherwise be detectable. This special issue brings together some of the recent advances in this relatively new field. In this introduction to the special issue, we review the state of isotopic applications in primatology and its origins and describe some developing methodological issues, including techniques for analyzing different tissue types, statistical approaches, and isotopic baselines. We then discuss the future directions we envision for the field of primate isotope ecology. Am. J. Primatol. 78:995-1003, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  4. Stable isotopic variation in tropical forest plants for applications in primatology.

    Science.gov (United States)

    Blumenthal, Scott A; Rothman, Jessica M; Chritz, Kendra L; Cerling, Thure E

    2016-10-01

    Stable isotope analysis is a promising tool for investigating primate ecology although nuanced ecological applications remain challenging, in part due to the complex nature of isotopic variability in plant-animal systems. The aim of this study is to investigate sources of carbon and nitrogen isotopic variation at the base of primate food webs that reflect aspects of primate ecology. The majority of primates inhabit tropical forest ecosystems, which are dominated by C3 vegetation. We used stable isotope ratios in plants from Kibale National Park, Uganda, a well-studied closed-canopy tropical forest, to investigate sources of isotopic variation among C3 plants related to canopy stratification, leaf age, and plant part. Unpredictably, our results demonstrate that vertical stratification within the canopy does not explain carbon or nitrogen isotopic variation in leaves. Leaf age can be a significant source of isotopic variation, although the direction and magnitude of this difference is not consistent across tree species. Some plant parts are clearly differentiated in carbon and nitrogen isotopic composition, particularly leaves compared to non-photosynthetic parts such as reproductive parts and woody stem parts. Overall, variation in the isotopic composition of floral communities, plant species, and plant parts demonstrates that stable isotope studies must include analysis of local plant species and parts consumed by the primates under study from within the study area. Am. J. Primatol. 78:1041-1054, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. Application of stable isotopes to hydrogeology in coal mine

    International Nuclear Information System (INIS)

    Duan Qi; Duan Yucheng

    1988-01-01

    Stable isotopes including Oxygen-18 and Deuterium have been applied to investigation of hydrogeology in main coal mines. By determination of stable isotopic composition of hydrogen and oxygen together with water analysis, the following studies have been developed: Identification of the hydrogeochemical characteristics of the groundwater from varied aquifers; Analysis of the hydraulic relationship between varied aquifers; Interpretation of the probable recharge source of mine water. The research results mentioned above reveal that: 1. The groundwater from main aquifers at coal mines in north China is of meteoric origin, which is recharged from hilly area surrounding the coal mine. Its isotopic composition differs slightly from that of the local precipitation. 2. There is a mutual hydraulic relationship between the Ordovician and Quarternary aquifers, so the difference of isotopic composition is very small. 3. By way of the variation of isotopic composition of groundwater from coal-bearing strata, we can infer the hydraulic relationship extent between overlaid alluvial layer and underlaid Ordovician limestone. (author). 9 refs, 6 figs, 8 tabs

  6. Compound-specific nitrogen and carbon isotope analysis of nitroaromatic compounds in aqueous samples using solid-phase microextraction coupled to GC/IRMS.

    Science.gov (United States)

    Berg, Michael; Bolotin, Jakov; Hofstetter, Thomas B

    2007-03-15

    Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry was used to determine the delta15N and delta13C signatures of selected nitroaromatic contaminants such as the explosive 2,4,6-trinitrotoluene (TNT) for derivation of isotopic enrichment factors of contaminant transformation. Parameters for efficient extraction of nitroaromatic compounds (NACs) and substituted anilines from water samples were evaluated by SPME-GC/MS. delta13C signatures determined by SPME-GC/IRMS and elemental analyzer IRMS (EA-IRMS) were in good agreement, generally within +/-0.7 per thousand, except for 2,4-dinitrotoluene (2,4-DNT) and TNT, which showed slight deviations (IRMS were between 73 and 780 microg L-1 and correlated with the extraction efficiencies of the compounds determined by SPME-GC/MS. Nitrogen isotope measurements by SPME-GC/IRMS were of similar precision (standard deviations IRMS within +/-1.3 per thousand (+2.5 per thousand for TNT), but no systematic trend was found for the deviations. LODs of delta15N measurements ranged from 1.6 to 9.6 mg L-1 for nitrotoluenes, chlorinated NACs and DNTs (22 mg L-1 for TNT). The SPME-GC/IRMS method is well suited for the determination of isotopic enrichment factors of various NAC transformation processes and provides so far unexplored possibilities to elucidate behavior and degradation mechanisms of nitroaromatic contaminants in soils and groundwaters.

  7. Amino acid specific stable nitrogen isotope values in avian tissues: Insights from captive American kestrels and wild herring gulls

    Science.gov (United States)

    Hebert, Craig E.; Popp, B.N.; Fernie, K.J.; Ka'apu-Lyons, C.; Rattner, Barnett A.; Wallsgrove, N.

    2016-01-01

    Through laboratory and field studies, the utility of amino acid compound-specific nitrogen isotope analysis (AA-CSIA) in avian studies is investigated. Captive American kestrels (Falco sparverius) were fed an isotopically characterized diet and patterns in δ15N values of amino acids (AAs) were compared to those in their tissues (muscle and red blood cells) and food. Based upon nitrogen isotope discrimination between diet and kestrel tissues, AAs could mostly be categorized as source AAs (retaining baseline δ15N values) and trophic AAs (showing 15N enrichment). Trophic discrimination factors based upon the source (phenylalanine, Phe) and trophic (glutamic acid, Glu) AAs were 4.1 (muscle) and 5.4 (red blood cells), lower than those reported for metazoan invertebrates. In a field study involving omnivorous herring gulls (Larus argentatus smithsonianus), egg AA isotopic patterns largely retained those observed in the laying female’s tissues (muscle, red blood cells, and liver). Realistic estimates of gull trophic position were obtained using bird Glu and Phe δ15N values combined with β values (difference in Glu and Phe δ15N in primary producers) for aquatic and terrestrial food webs. Egg fatty acids were used to weight β values for proportions of aquatic and terrestrial food in gull diets. This novel approach can be applied to generalist species that feed across ecosystem boundaries.

  8. Species-specific isotopic fractionation of mercury during methylation by bacteria

    International Nuclear Information System (INIS)

    Rodriguez-Gonzalez, P.; Epov, V.N.; Bridou, R.; Tessier, E.; Monperrus, M.; Guyoneaud, R.; Amouroux, D.

    2009-01-01

    Full text: The environmental reactivity of Hg is extremely dependent on its chemical form. In fact, Hg bioaccumulation is due to the greater trophic transfer efficiency of methylmercury which is formed as a result of biotic or abiotic transformations caused by specific redox gradients and bacterial activity. The study of stable isotope biogeochemistry of Hg may provide a powerful tool to track and understand its cycle and pathways in the environment. This work presents the measurement of species-specific Hg isotopic composition by GC-MCICPMS during Hg methylation experiments using cultures of pure bacterial strains incubated with Hg (II) standard NIST 3133. (author)

  9. Stable Isotope Group 1984 progress report

    International Nuclear Information System (INIS)

    Lyon, G.L.

    1985-04-01

    The work of the group in 1984 is described and includes studies in isotope geology, isotope hydrology, geochronology, isotope biology and mass spectrometer instrumentation. Geothermal studies have decreased compared to other years, but major data summaries were made for Wairakei and Ngawha. The hydrology of Whakarewarewa and Rotorua is being elucidated using water isotopes. Models of the subsurface flows at Kawerau and Ngawha are being made to relate fluid to mineral isotope compositions. A study of the δ 13 C and δ 34 S compositions of New Zealand oils has been started. Groups of oils of related origin are being defined, and compositions will be compared with those of potential source rocks. A method was developed for isotope analysis of sulphur in rocks. The isotopic composition of water is being used to identify and characterise groundwater aquifers in the Wairarapa and at Poverty Bay. Stable carbon isotopes have been used to identify food sources for invertebrates, and to show biochemical pathways in lactation by cows. The geochronology group is involved in major studies in Antarctica, using U-Pb, Rb-Sr and K-Ar methods. Rocks from North Victoria Land, Marie Byrd Land and the USARP mountains are being compared with possible correlatives in New Zealand and Argentina. Strontium isotope data is being applied to the origin of magmas in several regions of New Zealand. The K-Ar data is being stored on computer files. Fission track measurements are being applied to unravel uplift histories in Westland and Taranaki

  10. Seasonal Cyclicity in Trace Elements and Stable Isotopes of Modern Horse Enamel.

    Science.gov (United States)

    de Winter, Niels J; Snoeck, Christophe; Claeys, Philippe

    2016-01-01

    The study of stable isotopes in fossil bioapatite has yielded useful results and has shown that bioapatites are able to faithfully record paleo-environmental and paleo-climatic parameters from archeological to geological timescales. In an effort to establish new proxies for the study of bioapatites, intra-tooth records of enamel carbonate stable isotope ratios from a modern horse are compared with trace element profiles measured using laboratory micro X-Ray Fluorescence scanning. Using known patterns of tooth eruption and the relationship between stable oxygen isotopes and local temperature seasonality, an age model is constructed that links records from six cheek upper right teeth from the second premolar to the third molar. When plotted on this age model, the trace element ratios from horse tooth enamel show a seasonal pattern with a small shift in phase compared to stable oxygen isotope ratios. While stable oxygen and carbon isotopes in tooth enamel are forced respectively by the state of the hydrological cycle and the animal's diet, we argue that the seasonal signal in trace elements reflects seasonal changes in dust intake and diet of the animal. The latter explanation is in agreement with seasonal changes observed in carbon isotopes of the same teeth. This external forcing of trace element composition in mammal tooth enamel implies that trace element ratios may be used as proxies for seasonal changes in paleo-environment and paleo-diet.

  11. Stable isotope dimethyl labelling for quantitative proteomics and beyond

    Science.gov (United States)

    Hsu, Jue-Liang; Chen, Shu-Hui

    2016-01-01

    Stable-isotope reductive dimethylation, a cost-effective, simple, robust, reliable and easy-to- multiplex labelling method, is widely applied to quantitative proteomics using liquid chromatography-mass spectrometry. This review focuses on biological applications of stable-isotope dimethyl labelling for a large-scale comparative analysis of protein expression and post-translational modifications based on its unique properties of the labelling chemistry. Some other applications of the labelling method for sample preparation and mass spectrometry-based protein identification and characterization are also summarized. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644970

  12. Stable isotope measurements of atmospheric CO2

    International Nuclear Information System (INIS)

    White, J.W.C.; Ferretti, D.F.; Vaughn, B.H.; Francey, R.J.; Allison, C.E.

    2002-01-01

    The measurement of stable carbon isotope ratios of atmospheric carbon dioxide, δ 13 CO 2 are useful for partitioning surface-atmospheric fluxes into terrestrial and oceanic components. δC 18 OO also has potential for segregating photosynthetic and respiratory fluxes in terrestrial ecosystems. Here we describe in detail the techniques for making these measurements. The primary challenge for all of the techniques used to measure isotopes of atmospheric CO 2 is to achieve acceptable accuracy and precision and to maintain them over the decades needed to observe carbon cycle variability. The keys to success such an approach are diligent intercalibrations of laboratories from around the world, as well as the use of multiple techniques such as dual inlet and GC-IRMS and the intercomparison of such measurements. We focus here on two laboratories, the Stable Isotope Lab at the Institute for Arctic and Alpine Research (INSTAAR) at the University of Colorado is described and the Commonwealth Scientific and Industrial Research Organisation - Atmospheric Research (CSIRO). Different approaches exist at other laboratories (e.g. programs operated by Scripps Institution of Oceanography (SIO) and The Center for Atmospheric and Oceanic Studies, Toboku University (TU)) however these are not discussed here. Finally, we also discuss the recently developed Gas Chromatography - Isotope Ratio Mass Spectrometry (GC-IRMS) technique which holds significant promise for measuring ultra-small samples of gas with good precision. (author)

  13. Beyond diet reconstruction: stable isotope applications to human physiology, health, and nutrition.

    Science.gov (United States)

    Reitsema, Laurie J

    2013-01-01

    Analysis of stable carbon and nitrogen isotopes from soft or mineralized tissues is a direct and widely-used technique for modeling diets. In addition to its continued role in paleodiet analysis, stable isotope analysis is now contributing to studies of physiology, disease, and nutrition in archaeological and living human populations. In humans and other animals, dietary uptake and distribution of carbon and nitrogen among mineralized and soft tissue is carried out with varying efficiency due to factors of internal biology. Human pathophysiologies may lead to pathology-influenced isotopic fractionation that can be exploited to understand not just skeletal health and diet, but physiological health and nutrition. This study reviews examples from human biology, non-human animal ecology, biomedicine, and bioarchaeology demonstrating how stable isotope analyses are usefully applied to the study of physiological adaptation and adaptability. Suggestions are made for future directions in applying stable isotope analysis to the study of nutritional stress, disease, and growth and development in living and past human populations. Copyright © 2013 Wiley Periodicals, Inc.

  14. Stable platinum isotope measurements in presolar nanodiamonds by TEAMS

    International Nuclear Information System (INIS)

    Wallner, A.; Melber, K.; Merchel, S.; Ott, U.; Forstner, O.; Golser, R.; Kutschera, W.; Priller, A.; Steier, P.

    2013-01-01

    Nanodiamonds are stardust grains commonly found in primitive meteorites. They survived the formation of the solar system and kept their own individuality. Measurements of trace-element isotopic signatures in these grains will help understanding heavy element nucleosynthesis in massive stars and dust formation from their ejecta. We have continued previous attempts to search for stable Pt isotope anomalies in nanodiamonds via trace element accelerator mass spectrometry (TEAMS). The installation of a new injector beam line at the VERA facility allowed studying low traces of stable elements in different materials. Moreover, recent experiments showed that VERA provides the required measurement precision together with a low Pt machine background. Here, we observed for the first time an indication for enhancements of 198 Pt/ 195 Pt isotope ratios in two diamond residues prepared by different chemical separation techniques from the Allende meteorite. Variations in other isotopic ratios were within analytical uncertainty, and no anomaly was identified in a third diamond fraction.

  15. Stable platinum isotope measurements in presolar nanodiamonds by TEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Wallner, A., E-mail: anton.wallner@univie.ac.at [University of Vienna, Faculty of Physics, VERA Laboratory, Waehringer Strasse 17, A-1090 Vienna (Austria); Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra (Australia); Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights (Australia); Melber, K. [University of Vienna, Faculty of Physics, VERA Laboratory, Waehringer Strasse 17, A-1090 Vienna (Austria); Merchel, S. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01314 Dresden (Germany); Ott, U. [Max-Planck-Institut fuer Chemie, Joh.-J.-Becherweg 27, D-55128 Mainz (Germany); Forstner, O.; Golser, R.; Kutschera, W.; Priller, A.; Steier, P. [University of Vienna, Faculty of Physics, VERA Laboratory, Waehringer Strasse 17, A-1090 Vienna (Austria)

    2013-01-15

    Nanodiamonds are stardust grains commonly found in primitive meteorites. They survived the formation of the solar system and kept their own individuality. Measurements of trace-element isotopic signatures in these grains will help understanding heavy element nucleosynthesis in massive stars and dust formation from their ejecta. We have continued previous attempts to search for stable Pt isotope anomalies in nanodiamonds via trace element accelerator mass spectrometry (TEAMS). The installation of a new injector beam line at the VERA facility allowed studying low traces of stable elements in different materials. Moreover, recent experiments showed that VERA provides the required measurement precision together with a low Pt machine background. Here, we observed for the first time an indication for enhancements of {sup 198}Pt/{sup 195}Pt isotope ratios in two diamond residues prepared by different chemical separation techniques from the Allende meteorite. Variations in other isotopic ratios were within analytical uncertainty, and no anomaly was identified in a third diamond fraction.

  16. An estimation of Central Iberian Peninsula atmospheric δ13C and water δD in the Upper Cretaceous using pyrolysis compound specific isotopic analysis (Py-CSIA) of a fossil conifer.

    Science.gov (United States)

    González-Pérez, José A.; Jiménez-Morillo, Nicasio T.; De la Rosa, José M.; Almendros, Gonzalo; González-Vila, Francisco J.

    2015-04-01

    Frenelopsis is a frequently found genus of the Cretaceous floras adapted to dry, saline and in general to environmental conditions marked by severe water stress [1]. Stable isotope analysis of fossil organic materials can be used to infer palaeoenvironmental variables helpful to reconstruct plant paleohabitats [2]. In this study stable isotope analysis of organic fossil remains (FR) and humic fractions (FA, HA and humin) of Frenelopsis oligiostomata are studied in bulk (C, H, O, N IRMS) and in specific compounds released by pyrolysis (C, H, Py-CSIA). Well preserved F. oligiostomata fossils were handpicked from a limestone included in compacted marls from Upper Cretaceous (Senonian c. 72 Mya) in Guadalix de la Sierra (Madrid, Spain) [3]. The fossils were decarbonated with 6M HCl. Humic substances were extracted from finely ground fossil remains (FR) by successive treatments with 0.1M Na4P2O7 + NaOH [4]. The extract was acidified resulting into insoluble HA and soluble FA fractions. The HA and FA were purified as in [5] and [6] respectively. Bulk stable isotopic analysis (δ13C, δD, δ18O, δ15N IRMS) was done in an elemental micro-analyser coupled to a continuous flow Delta V Advantage isotope ratio mass spectrometer (IRMS). Pyrolysis compound specific isotopic analysis Py-CSIA (δ13C, δD): was done by coupling a double-shot pyrolyzer to a chromatograph connected to an IRMS. Structural features of specific peaks were inferred by comparing/matching mass spectra from conventional Py-GC/MS (data not shown) with Py-GC/IRMS chromatograms obtained using the same chromatographic conditions. Bulk C isotopic signature found for FR (-20.5±0.02 ‰) was in accordance with previous studies [2, 7-9]. This heavy isotopic δ13C signature indicates a depleted stomatal conductance and paleoenvironmental growth conditions of water and salt stress. This is in line with the morphological and depositional characteristics [3] confirming that F. oligostomata was adapted to highly xeric

  17. Experimental investigation of concentration and stable isotopes signals during organic contaminants back diffusion

    DEFF Research Database (Denmark)

    Jin, Biao; Nika, Chrysanthi-Elisabeth; Rolle, Massimo

    2017-01-01

    -dichloroethene (cis-DCE) as model contaminant and we investigated its back diffusion from an impermeable source into a permeable saturated layer, in which advection-dominated flow conditions were established. We used concentration and stable chlorine isotope measurements to investigate the plumes originated by cis...... and stable isotope gradients in the flow-through setup. In particular, steep concentration and stable isotope gradients were observed at the outlet. Lateral isotope gradients corresponding to chlorine isotope fractionation up to 20‰ were induced by cis-DCE back diffusion and subsequent advection......-dominated transport in all flow-through experiments. A numerical modeling approach, tracking individually all chlorine isotopologues, based on the accurate parameterization of local dispersion, as well as on the values of aqueous diffusion coefficients and diffusion-induced isotope fractionation from a previous study...

  18. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Aaron, W.S.; Tracy, J.G.; Collins, E.D.

    1997-01-01

    The Oak Ridge national laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 y. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations to be conducted at the isotope enrichment facility (IEF)fwill be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; ISO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capablities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies. (orig.)

  19. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    Science.gov (United States)

    Scott Aaron, W.; Tracy, Joe G.; Collins, Emory D.

    1997-02-01

    The Oak Ridge National Laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 y. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations to be conducted at the Isotope Enrichment Facility (IEF) will be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; ISO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capablities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies.

  20. Status of stable isotope enrichment, products, and services at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Aaron, W.S.; Tracy, J.G.; Collins, E.D.

    1996-01-01

    The Oak Ridge National Laboratory (ORNL) has been supplying enriched stable and radioactive isotopes to the research, medical, and industrial communities for over 50 years. Very significant changes have occurred in this effort over the past several years, and, while many of these changes have had a negative impact on the availability of enriched isotopes, more recent developments are actually improving the situation for both the users and the producers of enriched isotopes. ORNL is still a major producer and distributor of radioisotopes, but future isotope enrichment operations conducted at the Isotope Enrichment Facility (IEF) will be limited to stable isotopes. Among the positive changes in the enriched stable isotope area are a well-functioning, long-term contract program, which offers stability and pricing advantages; the resumption of calutron operations; the adoption of prorated conversion charges, which greatly improves the pricing of isotopes to small users; SIO 9002 registration of the IEF's quality management system; and a much more customer-oriented business philosophy. Efforts are also being made to restore and improve upon the extensive chemical and physical form processing capabilities that once existed in the enriched stable isotope program. Innovative ideas are being pursued in both technical and administrative areas to encourage the beneficial use of enriched stable isotopes and the development of related technologies

  1. Changes in algal stable isotopes following nutrient and peat amendments in oil sands aquatic reclamation

    International Nuclear Information System (INIS)

    Farwell, A.; Chen, H.; Boutsivongskad, M.; Dixon, D.

    2010-01-01

    The processing of oil sands in Alberta generates large volumes of processed material that must be reclaimed. Processed water and solids (PW/S) contain higher levels of naturally occurring compounds such as naphthenic acids (NAs) and polycyclic aromatic compounds (PACs). Organic carbon and nitrogen are some of the constituents in PW/S that may provide nutrient sources for aquatic reclamation sites as they develop into viable ecosystems. This study was conducted to assess the modifying factors that may affect the stable carbon and nitrogen isotope values of primary production in oil sands aquatic reclamation. Both field-based microcosm studies and laboratory studies were used to evaluate the changes in the growth and stable isotope values of phytoplankton, periphyton and/or filamentous algae along gradients of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), nitrogen and phosphorus. Various types of reclamation substrates were used in the study, including various combinations of sand, mature fine tailings, peat and process water. Results showed different levels of growth depending on both the water and substrate type. Typically, periphyton from oil sands reclamation sites were more enriched in 15N than the reference site. Periphyton from one site known as the MP site was more enriched in 13C than periphyton from another site know as the Shallow Wetland South Ditch (SWSD). However, periphyton in the demonstration pond (DP) was more 13C depleted than the reference site. Findings from this study indicate that carbon isotopes are influenced by other factors, such as nutrients.

  2. Biomarkers and their stable isotopes in Cenozoic sediments above the Chicxulub impact crater

    Science.gov (United States)

    Grice, K.; Schaefer, B.; Coolen, M.; Greenwood, P. F.; Scarlett, A. G.; Freeman, K.; Lyons, S. L.

    2017-12-01

    The most widely accepted hypothesis for the cause of the End-Cretaceous mass extinction (K/Pg event) 66 Ma ago is the impact of an extra-terrestrial body, which produced the 200 km wide Chicxulub impact structure. This event led to an extinction of 75% of all species on Earth. The massive extinction in the terrestrial realm is partly attributed to the intense heat pulse, the widespread wild fires caused by the impact and the ensuing darkness, as dust and sulfate aerosols blocked out the sun leading to photosynthesis shut off and productivity collapse in both the terrestrial and marine realms. The marine realm may additionally have experienced ocean acidification resulting in mass extinction of plankton (foraminifera and coccolithophorids) and marine reptiles. Samples from the Cenozoic marine sediments including the Paleocene-Eocene Thermal Maximum (PETM) have been extracted for hydrocarbons and analysed to investigate the molecular and isotopic organic record of biotic and environmental change after the K/Pg boundary event. Specific biomarker-precursor relationship has been established by the direct correlation of sedimentary biomarkers with the biochemicals (e.g. lipids) of extant biological systems. The structural characterisation of biomarkers as well as their stable isotopic compositions (C, H and N) are used to evaluate the source(s) of organic matter (OM) and to reconstruct paleoenvironmental depositional conditions. Throughout the Cenozoic sediments (including the PETM) the biomarker distribution suggests a variation in the source of organic matter from terrestrial to marine. Furthermore, the presence of sulfurised biomarkers indicates euxinic environmental conditions at the time of deposition. Biomarker distributions indicative of green sulfur bacteria reveal persistent photic zone euxinic conditions at several intervals in the Cenozoic. Further compound specific isotope analyses will provide insights into the long-term biogeochemical cycling of C, H and S

  3. Heavy element stable isotope ratios. Analytical approaches and applications

    International Nuclear Information System (INIS)

    Tanimizu, Masaharu; Sohrin, Yoshiki; Hirata, Takafumi

    2013-01-01

    Continuous developments in inorganic mass spectrometry techniques, including a combination of an inductively coupled plasma ion source and a magnetic sector-based mass spectrometer equipped with a multiple-collector array, have revolutionized the precision of isotope ratio measurements, and applications of inorganic mass spectrometry for biochemistry, geochemistry, and marine chemistry are beginning to appear on the horizon. Series of pioneering studies have revealed that natural stable isotope fractionations of many elements heavier than S (e.g., Fe, Cu, Zn, Sr, Ce, Nd, Mo, Cd, W, Tl, and U) are common on Earth, and it had been widely recognized that most physicochemical reactions or biochemical processes induce mass-dependent isotope fractionation. The variations in isotope ratios of the heavy elements can provide new insights into past and present biochemical and geochemical processes. To achieve this, the analytical community is actively solving problems such as spectral interference, mass discrimination drift, chemical separation and purification, and reduction of the contamination of analytes. This article describes data calibration and standardization protocols to allow interlaboratory comparisons or to maintain traceability of data, and basic principles of isotope fractionation in nature, together with high-selectivity and high-yield chemical separation and purification techniques for stable isotope studies.

  4. Late Glacial Tropical Savannas in Sundaland Inferred From Stable Carbon Isotope Records of Cave Guano

    Science.gov (United States)

    Wurster, C. M.; Bird, M. I.; Bull, I.; Dungait, J.; Bryant, C. L.; Ertunç, T.; Hunt, C.; Lewis, H. A.; Paz, V.

    2008-12-01

    During the Last Glacial Period (LGP), reduced global sea level exposed the continental shelf south of Thailand to Sumatra, Java, and Borneo to form the contiguous continent of Sundaland. However, the type and extent of vegetation that existed on much of this exposed landmass during the LGP remains speculative. Extensive bird and bat guano deposits in caves throughout this region span beyond 40,000 yr BP, and contain a wealth of untapped stratigraphic palaeoenvironmental information. Stable carbon isotope ratios of insectivorous bird and bat guano contain a reliable record of the animal's diet and, through non-specific insect predation, reflect the relative abundance of major physiological pathways in plants. Various physiological pathways of carbon fixation in plants yield differing stable carbon isotope ratios. Stable carbon isotope values of C3 plants are lower than C4 vegetation due to different enzymatic discriminations of the heavy isotope through the carbon fixing pathways. In tropical locales, grasses nearly always follow the C4 photosynthetic pathway, whereas tropical rainforest uses C3 photosynthesis, providing a proxy for vegetation and therefore climate change in the past. Here we discuss four guano stable-isotope records, based on insect cuticle and n-alkane analysis, supplemented by pollen analysis. All sites suggest a C3 dominated ecosystem for the Holocene, consistent with the wet tropical forest vegetation present at all locations. Two sites from Palawan Island, Philippines, record stable carbon isotope values of guano that document a drastic change from C3 (forest) to C4 (savanna) dominated ecosystems during the Last Glacial Maximum (LGM). A third location, at Niah Great Cave, Malaysia, indicates C3-dominant vegetation throughout the record, but does display variation in stable carbon isotope values likely linked to humidity changes. A fourth location, Batu Caves in Peninsular Malaysia, also indicates open vegetation during the LGM. Vegetation

  5. Development of an enantiomer-specific stable carbon isotope analysis (ESIA) method for assessing the fate of α-hexachlorocyclo-hexane in the environment.

    Science.gov (United States)

    Badea, Silviu-Laurentiu; Vogt, Carsten; Gehre, Matthias; Fischer, Anko; Danet, Andrei-Florin; Richnow, Hans-Hermann

    2011-05-30

    α-Hexachlorocyclohexane (α-HCH) is the only chiral isomer of the eight 1,2,3,4,5,6-HCHs and we have developed an enantiomer-specific stable carbon isotope analysis (ESIA) method for the evaluation of its fate in the environment. The carbon isotope ratios of the α-HCH enantiomers were determined for a commercially available α-HCH sample using a gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) system equipped with a chiral column. The GC-C-IRMS measurements revealed δ-values of -32.5 ± 0.8‰ and -32.3 ± 0.5‰ for (-) α-HCH and (+) α-HCH, respectively. The isotope ratio of bulk α-HCH was estimated to be -32.4 ± 0.6‰ which was in accordance with the δ-values obtained by GC-C-IRMS (-32.7 ± 0.2‰) and elemental analyzer-isotope ratio mass spectrometry (EA-IRMS) of the bulk α-HCH (-32.1 ± 0.1‰). The similarity of the isotope ratio measurements of bulk α-HCH by EA-IRMS and GC-C-IRMS indicates the accuracy of the chiral GC-C-IRMS method. The linearity of the α-HCH ESIA method shows that carbon isotope ratios can be obtained for a signal size above 100 mV. The ESIA measurements exhibited standard deviations (2σ) that were mostly IRMS method, the isotope compositions of individual enantiomers in biodegradation experiments of α-HCH with Clostridium pasteurianum and samples from a contaminated field site were determined. The isotopic compositions of the α-HCH enantiomers show a range of enantiomeric and isotope patterns, suggesting that enantiomeric and isotope fractionation can serve as an indicator for biodegradation and source characterization of α-HCH in the environment. Copyright © 2011 John Wiley & Sons, Ltd.

  6. High-sensitivity stable-isotope probing by a quantitative terminal restriction fragment length polymorphism protocol.

    Science.gov (United States)

    Andeer, Peter; Strand, Stuart E; Stahl, David A

    2012-01-01

    Stable-isotope probing (SIP) has proved a valuable cultivation-independent tool for linking specific microbial populations to selected functions in various natural and engineered systems. However, application of SIP to microbial populations with relatively minor buoyant density increases, such as populations that utilize compounds as a nitrogen source, results in reduced resolution of labeled populations. We therefore developed a tandem quantitative PCR (qPCR)-TRFLP (terminal restriction fragment length polymorphism) protocol that improves resolution of detection by quantifying specific taxonomic groups in gradient fractions. This method combines well-controlled amplification with TRFLP analysis to quantify relative taxon abundance in amplicon pools of FAM-labeled PCR products, using the intercalating dye EvaGreen to monitor amplification. Method accuracy was evaluated using mixtures of cloned 16S rRNA genes, DNA extracted from low- and high-G+C bacterial isolates (Escherichia coli, Rhodococcus, Variovorax, and Microbacterium), and DNA from soil microcosms amended with known amounts of genomic DNA from bacterial isolates. Improved resolution of minor shifts in buoyant density relative to TRFLP analysis alone was confirmed using well-controlled SIP analyses.

  7. Contribution of stable isotopes to the study of pharmacokinetics of magnesium salts

    International Nuclear Information System (INIS)

    Benech, H.

    1999-01-01

    The use of stable isotopes as labels is becoming an attractive tool for the study of magnesium behavior in humans. It has been used two stable isotopes of magnesium, 25 Mg and 26 Mg, to measure the absolute bioavailability of a pharmaceutical form of magnesium. (N.C.)

  8. Identification of chlorinated solvents degradation zones in clay till by high resolution chemical, microbial and compound specific isotope analysis

    DEFF Research Database (Denmark)

    Damgaard, Ida; Bjerg, Poul Løgstrup; Bælum, Jacob

    2013-01-01

    subsampling of the clay till cores. The study demonstrates that an integrated approach combining chemical analysis, molecular microbial tools and compound specific isotope analysis (CSIA) was required in order to document biotic and abiotic degradations in the clay till system. © 2013 Elsevier B.V.......The degradation of chlorinated ethenes and ethanes in clay till was investigated at a contaminated site (Vadsby, Denmark) by high resolution sampling of intact cores combined with groundwater sampling. Over decades of contamination, bioactive zones with degradation of trichloroethene (TCE) and 1...

  9. Stable isotopes in mid-ocean ridge hydrothermal systems: Interactions between fluids, minerals, and organisms

    Science.gov (United States)

    Shanks, W. C., III; Böhlke, J. K.; Seal, R. R., II

    Studies of abundance variations of light stable isotopes in nature have had a tremendous impact on all aspects of geochemistry since the development, in 1947, of a gas source isotope ratio mass spectrometer capable of measuring small variations in stable isotope ratios [Nier, 1947] Stable isotope geochemistry is now a mature field, as witnessed by the proliferation of commercially available mass spectrometers installed at virtually every major academic, government, and private-sector research geochemistry laboratory. A recent search of a literature database revealed over 3,000 articles that utilized stable isotope geochemistry over the last 20 years. Nonetheless, many exciting new technical developments are leading to exciting new discoveries and applications. In particular, micro analytical techniques involving new generations of laser- and ion-microprobes are revolutionizing the types of analyses that can be done on spot sizes as small as a few tens of micrometers [Shanks and Criss, 1989]. New generations of conventional gas source and thermal ionization mass spectrometers, with high levels of automation and increased sensitivity and precision, are allowing analyses of large numbers of samples, like those needed for stable isotope stratigraphy in marine sediments, and are enabling the development and application of new isotopic systems.

  10. Seasonal Cyclicity in Trace Elements and Stable Isotopes of Modern Horse Enamel.

    Directory of Open Access Journals (Sweden)

    Niels J de Winter

    Full Text Available The study of stable isotopes in fossil bioapatite has yielded useful results and has shown that bioapatites are able to faithfully record paleo-environmental and paleo-climatic parameters from archeological to geological timescales. In an effort to establish new proxies for the study of bioapatites, intra-tooth records of enamel carbonate stable isotope ratios from a modern horse are compared with trace element profiles measured using laboratory micro X-Ray Fluorescence scanning. Using known patterns of tooth eruption and the relationship between stable oxygen isotopes and local temperature seasonality, an age model is constructed that links records from six cheek upper right teeth from the second premolar to the third molar. When plotted on this age model, the trace element ratios from horse tooth enamel show a seasonal pattern with a small shift in phase compared to stable oxygen isotope ratios. While stable oxygen and carbon isotopes in tooth enamel are forced respectively by the state of the hydrological cycle and the animal's diet, we argue that the seasonal signal in trace elements reflects seasonal changes in dust intake and diet of the animal. The latter explanation is in agreement with seasonal changes observed in carbon isotopes of the same teeth. This external forcing of trace element composition in mammal tooth enamel implies that trace element ratios may be used as proxies for seasonal changes in paleo-environment and paleo-diet.

  11. The Global Network of Isotopes in Rivers (GNIR): Integration of Stable Water Isotopes in Riverine Research and Management

    International Nuclear Information System (INIS)

    Halder, J.; Terzer, S.; Wassenaar, L.; Araguas, L.; Aggarwal, P.

    2015-01-01

    Rivers play a crucial role in the global water cycle as watershed-integrating hydrological conduits for returning terrestrial precipitation, runoff, surface and groundwater, as well as melting snow and ice back to the world’s oceans. The IAEA Global Network of Isotopes in Rivers (GNIR) is the coherent extension of the IAEA Global Network for Isotopes in Precipitation (GNIP) and aims to fill the informational data gaps between rainfall and river discharge. Whereas the GNIP has been surveying the stable hydrogen and oxygen isotopes, and tritium composition in precipitation, the objective of GNIR is to accumulate and disseminate riverine isotope data. We introduce the new global database of riverine water isotopes and evaluate its current long-term data holdings with the objective to improve the application of water isotopes and to inform water managers and researchers. An evaluation of current GNIR database holdings confirmed that seasonal variations of the stable water isotope composition in rivers are closely coupled to precipitation and snow-melt water run-off on a global scale. Rivers could be clustered on the basis of seasonal variations in their isotope composition and latitude. Results showed furthermore, that there were periodic phases within each of these groupings and additional modelling exercises allowed a priori prediction of the seasonal variability as well as the isotopic composition of stable water isotopes in rivers. This predictive capacity will help to improve existing and new sampling strategies, help to validate and interpret riverine isotope data, and identify important catchment processes. Hence, the IAEA promulgates and supports longterm hydrological isotope observation networks and the application of isotope studies complementary with conventional hydrological, water quality, and ecological studies. (author)

  12. Investigating differences in light stable isotopes between Thai jasmine rice and Sungyod rice

    Science.gov (United States)

    Kukusamude, C.; Kongsri, S.

    2017-10-01

    We report the differences in light stable isotopes between two kinds of Thai rice (Thai jasmine and Sungyod rice). Thai jasmine rice and Sungyod rice were cultivated in the northeast and the south of Thailand. Light isotopes including 13C, 15N and 18O of Thai jasmine rice and Sungyod rice samples were carried out using isotope ratio mass spectrometry (IRMS). Thai jasmine rice (Khao Dawk Mali 105) was cultivated from Thung Kula Rong Hai area, whereas Sungyod rice was cultivated from Phathalung province. Hypothesis testing of difference of each isotope between Thai jasmine rice and Sungyod rice was also studied. The study was the feasibility test whether the light stable isotopes can be the variables to identify Thai jasmine rice and Sungyod rice. The result shows that there was difference in the isotope patterns of Thai jasmine rice and Sungyod rice. Our results may provide the useful information in term of stable isotope profiles of Thai rice.

  13. Integrating stomach content and stable isotope analyses to quantify the diets of pygoscelid penguins.

    Directory of Open Access Journals (Sweden)

    Michael J Polito

    Full Text Available Stomach content analysis (SCA and more recently stable isotope analysis (SIA integrated with isotopic mixing models have become common methods for dietary studies and provide insight into the foraging ecology of seabirds. However, both methods have drawbacks and biases that may result in difficulties in quantifying inter-annual and species-specific differences in diets. We used these two methods to simultaneously quantify the chick-rearing diet of Chinstrap (Pygoscelis antarctica and Gentoo (P. papua penguins and highlight methods of integrating SCA data to increase accuracy of diet composition estimates using SIA. SCA biomass estimates were highly variable and underestimated the importance of soft-bodied prey such as fish. Two-source, isotopic mixing model predictions were less variable and identified inter-annual and species-specific differences in the relative amounts of fish and krill in penguin diets not readily apparent using SCA. In contrast, multi-source isotopic mixing models had difficulty estimating the dietary contribution of fish species occupying similar trophic levels without refinement using SCA-derived otolith data. Overall, our ability to track inter-annual and species-specific differences in penguin diets using SIA was enhanced by integrating SCA data to isotopic mixing modes in three ways: 1 selecting appropriate prey sources, 2 weighting combinations of isotopically similar prey in two-source mixing models and 3 refining predicted contributions of isotopically similar prey in multi-source models.

  14. Stable isotope fractionation during bacterial sulfate reduction is controlled by reoxidation of intermediates

    Science.gov (United States)

    Mangalo, Muna; Meckenstock, Rainer U.; Stichler, Willibald; Einsiedl, Florian

    2007-09-01

    Bacterial sulfate reduction is one of the most important respiration processes in anoxic habitats and is often assessed by analyzing the results of stable isotope fractionation. However, stable isotope fractionation is supposed to be influenced by the reduction rate and other parameters, such as temperature. We studied here the mechanistic basics of observed differences in stable isotope fractionation during bacterial sulfate reduction. Batch experiments with four sulfate-reducing strains ( Desulfovibrio desulfuricans, Desulfobacca acetoxidans, Desulfonatronovibrio hydrogenovorans, and strain TRM1) were performed. These microorganisms metabolize different carbon sources (lactate, acetate, formate, and toluene) and showed broad variations in their sulfur isotope enrichment factors. We performed a series of experiments on isotope exchange of 18O between residual sulfate and ambient water. Batch experiments were conducted with 18O-enriched (δ 18O water = +700‰) and depleted water (δ 18O water = -40‰), respectively, and the stable 18O isotope shift in the residual sulfate was followed. For Desulfovibrio desulfuricans and Desulfonatronovibrio hydrogenovorans, which are both characterized by low sulfur isotope fractionation ( ɛS > -13.2‰), δ 18O values in the remaining sulfate increased by only 50‰ during growth when 18O-enriched water was used for the growth medium. In contrast, with Desulfobacca acetoxidans and strain TRM1 ( ɛS factor ( ɛS exchange with water during sulfate reduction. However, this neither takes place in the sulfate itself nor during formation of APS (adenosine-5'-phosphosulfate), but rather in intermediates of the sulfate reduction pathway. These may in turn be partially reoxidized to form sulfate. This reoxidation leads to an incorporation of oxygen from water into the "recycled" sulfate changing the overall 18O isotopic composition of the remaining sulfate fraction. Our study shows that such incorporation of 18O is correlated with the

  15. Use of the natural abundance of stable isotopes in animal physiology

    International Nuclear Information System (INIS)

    Koyama, Takeo

    1987-01-01

    Recent studies on the natural abundance (δ-value) of stable isotopes in animals are reviewed. The δ 13 C value of livestock varies among different portions of the body and depending on living conditions, etc. Typically, however, it is about 1 percent larger than that of the feed used. The value of δ 15 N of the blood, milk and droppings is reported to be larger than that of the feed while that of urine is smaller with the decrease showing changes through the day. Natural δ 13 C and δ 15 N of animals are known to vary among the various organs and tissues. Investigations on cattle and two types musseks have shown that δ 13 C and δ 15 N have no significant relations with their age. The isotopic ratio of stable isotopes in animals is largely dependent on that of the feed used. Study results are cited on the changes in isotopic ratio of carbon and nitrogen along the digestion process of ruminants. Discussion is made on the causes for the changes in isotopic ratio during the metabolic process. Measurement of natural abundance of stable isotopes can be used as a tool for determining the eating habits of ungulate animals raised on grazing lands. (Nogami, K.)

  16. Separation of compounds differing in isotopic composition

    International Nuclear Information System (INIS)

    Sievers, R.E.; Brooks, J.J.

    1975-01-01

    Compounds differing in isotopic composition are separated by introducing a mixture of the compounds into a chromatographic column containing a lanthanide chelate as a stationary phase and eluting from the column a fraction that is at least enriched with one of the compounds of the mixture. (U.S.)

  17. Emerging techniques in vegetable oil analysis using stable isotope ratio mass spectrometry

    Directory of Open Access Journals (Sweden)

    Rhodes, Christopher

    2002-03-01

    Full Text Available As the practice of vegetable oil adulteration becomes more sophisticated, the possibility to subvert detection using established techniques such as capillary gas chromatography is increasing. One of the most powerful techniques to be used in food authenticity studies is stable isotope ratio mass spectrometry (SIRMS which utilises differences in the natural abundance of the stable isotopes of the ‘light’ bio-elements hydrogen, nitrogen, carbon, oxygen and sulfur to detect food fraud. SIRMS has found application in the authentication of a wide range of foodstuffs, including fruit juices, wines, spirits, honey and to detect the adulteration of flavour compounds with synthetic analogues. This papers reviews the current state-of-the-art for the authentication of vegetable oils using SIRMS and highlights emergent techniques such as compound- and position specific-isotope mass spectrometry. These latter developments offer the potential to provide more rapid and improved detection of the economic adulteration of vegetable oils.A medida que la práctica de la adulteración de aceites vegetales se hace más sofisticada, las posibilidades de evitar la detección utilizando técnicas tradicionales como la cromatografía de gases en columna capilar aumentan. Una de las técnicas más poderosas que más se utilizan en los estudios de autentificación de alimentos es la espectrometría de masas de relaciones isotópicas, que utiliza diferencias en la abundancia natural de isótopos estables de elementos ligeros biológicos hidrógeno, nitrógeno, carbón, oxigeno y azufre para detectar fraude en los alimentos. La espectrometría de masas de relaciones isotópicas ha encontrado aplicación en la autentificación de una amplia gama de alimentos, incluyendo zumos de frutas, vinos, bebidas alcohólicas de alta graduación, miel, y en la detección de la adulteración de los compuestos aromáticos con sus análogos de origen sintético. Este trabajo

  18. Position-specific isotope modeling of organic micropollutants transformation through different reaction pathways

    International Nuclear Information System (INIS)

    Jin, Biao; Rolle, Massimo

    2016-01-01

    The degradation of organic micropollutants occurs via different reaction pathways. Compound specific isotope analysis is a valuable tool to identify such degradation pathways in different environmental systems. We propose a mechanism-based modeling approach that provides a quantitative framework to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. To demonstrate specific features of the modeling approach, we simulated the degradation of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model accurately reproduces the multi-element isotope data observed in previous experimental studies. Furthermore, it precisely captures the dual element isotope trends characteristic of different reaction pathways as well as their range of variation consistent with observed bulk isotope fractionation. It was also possible to directly validate the model capability to predict the evolution of position-specific isotope ratios with available experimental data. Therefore, the approach is useful both for a mechanism-based evaluation of experimental results and as a tool to explore transformation pathways in scenarios for which position-specific isotope data are not yet available. - Highlights: • Mechanism-based, position-specific isotope modeling of micropollutants degradation. • Simultaneous description of concentration and primary and secondary isotope effects. • Key features of the model are demonstrated with three illustrative examples. • Model as a tool to explore reaction mechanisms and to design experiments. - We propose a modeling approach incorporating mechanistic information and

  19. Bulk and compound-specific isotope analysis of long-chain n-alkanes from a 85,000 year sediment core from Lake Peten Petén Itzá, Guatemala

    Science.gov (United States)

    Mays, J.; Brenner, M.; Curtis, J. H.; Curtis, K.; Hodell, D. A.; Correa-Metrio, A.; Escobar, J.; Dutton, A. L.; Zimmerman, A. R.; Guilderson, T. P.

    2013-12-01

    Sediment core PI-6 from Lake Petén Itzá, Guatemala possesses an 85-ka record of climate from lowland Central America. Variations in sediment lithology suggest large, abrupt changes in precipitation during the last glacial and deglacial periods, and into the early Holocene. Study of cores from nearby Lake Quexil demonstrated the utility of using the carbon isotopic composition of leaf wax n-alkanes to infer changes in terrestrial vegetation (Huang et al. 2001). Forty-nine samples were taken from composite Petén Itzá core PI-6 to measure carbon isotopes of bulk organic carbon and long-chain n alkanes. Changes in δ13C values indicate shifts in the relative proportion of C3 to C4 biomass. The record shows largest δ13C variations are associated with Heinrich Events. Carbon isotope values in sediments deposited during the Last Glacial Maximum (LGM) indicate moderate precipitation and little rainfall fluctuation. The deglacial was a period of pronounced climate variability, e.g. the Bölling-Allerod and Younger Dryas. Arid times of the deglacial were inferred from samples with the greatest δ13C values in organic matter, reflecting the largest proportion of C4 plants. Such inferences are supported by stable isotope measurements on ostracod shells and analysis of pollen from the same sample depths in core PI-6. Carbon stable isotope measures on bulk organic carbon and n alkane compounds show similar trends throughout the record and the C:N ratio of Petén Itzá sediments indicates a predominantly allochthonous source for bulk organic matter. Hence, isotope measures on bulk organic carbon (δ13CTOC) in sediments from this lake are sufficient to infer climate-driven shifts in vegetation, making n-alkane extraction and isotope analysis superfluous.

  20. Theory of the isotope effect in superconducting compounds

    International Nuclear Information System (INIS)

    Culetto, F.J.; Rainer, D.

    1978-05-01

    We present a theoretical analysis of the isotope effect on the superconducting transition temperature. Our method is to calculate via formal perturbation theory the response of the transition temperature to small changes of the masses of the various constituents of the compound. We discuss the relation between the isotope effect and various more fundamental parameters in strong coupling superconductors. As illustrative examples, we consider the systems Pd-H(D) alloys and the binary Chevrel phase superconductor Mo 6 Se 8 , and show that analysis of the isotope effect can yield useful information concerning interaction mechanisms in these compounds. (orig.)

  1. The production of stable isotopes in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Urgel, M; Iglesias, J; Casas, J; Saviron, J M; Quintanilla, M

    1965-07-01

    The activities developed in the field of the production of stable isotopes by means of ion-exchange chromatography and thermal diffusion techniques are reported. The first method was used to study the separation of the nitrogen and boron isotopes, whereby the separation factor was determined by the break through method. Values ranging from 1,028 to 1,022 were obtained for the separation factor of nitrogen by using ammonium hydroxide solutions while the corresponding values as obtained for boron amounted to 1,035-1,027 using boric acid solutions. Using ammonium chloride or acetate and sodium borate, respectively, resulted in the obtention of values for the separation factor approaching unity. The isotopic separation has been carried out according to the method of development by displacement. The separation of the isotopes of the noble gases, oxygen, nitrogen and carbon has been accomplished resorting to the method of thermal diffusion. (Author) 16 refs.

  2. Novel Stable Isotope Methods for Assessing Changes in Seasonality of Precipitation from Sediments of Ombrotrophic Peatlands

    Science.gov (United States)

    Nichols, J. E.; Booth, R. K.; Jackson, S. T.; Pendall, E. G.; Walcott, M.; Bradley, R.; Pilcher, J.; Huang, Y.

    2007-12-01

    The seasonality of precipitation is a key but often elusive climate parameter in paleoclimate reconstructions. Sediments from ombrotrophic peatlands are excellent archives of past changes in precipitation/evaporation balance. Here we show that these peatland sediments can also be used to assess changes in the seasonality of precipitation. We have recently determined that distributions of Sphagnum and vascular plant biomarkers sensitively record changes in hydrologic balance (Nichols et al., 2006, Org. Geochem. 37, 1505-1513), but biomarker distributions alone do not offer detailed information for the changes in seasonal precipitation. In this study, we combine biomarker and compound-specific H and C isotope ratios to create a more comprehensive picture of the changing climate affecting these sensitive ombrotrophic systems. We present here two sets of downcore data from sites in Arctic Europe as well as Eastern North America. Basic paleohydrology is established using a ratio of Sphagnum to vascular plant biomarkers (C23 and C29 n-alkanes, respectively. We further describe paleohydrology using novel stable isotope proxies based on δD and δ13C measurements of Sphagnum and vascular plant biomarkers. Because Sphagnum has no vascular system and loses water directly by evaporation, Sphagnum biomarkers enriched in deuterium indicate an evaporative growing season (summer). Vascular plants use their root systems to take up water stored within the peatland, so deuterium-depleted vascular plant biomarkers should indicate increased winter recharge of the peatland. A methanotrophic symbiont living inside the Sphagnum's hyaline (water-holding) cells is more active when the Sphagnum is wet and therefore provides more 13C depleted (methane- derived) carbon dioxide for biomass production when the growing season is less evaporative. Hence, 13C depleted Sphagnum biomarkers indicate increased methanotrophy and therefore a wetter summer. We corroborate our stable isotope proxies by

  3. Separation of compounds differing in isotopic composition

    International Nuclear Information System (INIS)

    Sievers, R.E.; Brooks, J.J.

    1976-01-01

    Compounds differing in isotopic composition are separated by introducing a mixture of the compounds into a chromatographic column containing a lanthanide chelate as a stationary phase and eluting from the column a fraction which is at least enriched with one of the compounds of the mixture. 17 claims, no drawings

  4. Stable strontium isotopic ratios from archaeological organic remains from the Thorsberg peat bog

    DEFF Research Database (Denmark)

    Nosch, Marie-Louise Bech; von Carnap-Bornheim, Claus; Grupe, Gisela

    2007-01-01

    Pilot study analysing stable strontium isotopic ratios from Iron Age textile and leather finds from the Thorsberg peat bog.......Pilot study analysing stable strontium isotopic ratios from Iron Age textile and leather finds from the Thorsberg peat bog....

  5. Simultaneous speciation of mercury and butyltin compounds in natural waters and snow by propylation and species-specific isotope dilution mass spectrometry analysis

    Energy Technology Data Exchange (ETDEWEB)

    Monperrus, M.; Tessier, E.; Veschambre, S.; Amouroux, D.; Donard, O. [Universite de Pau et des Pays de L' Adour, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, CNRS UMR 5034, Helioparc, Pau (France)

    2005-02-01

    A robust method has been developed for simultaneous determination of mercury and butyltin compounds in aqueous samples. This method is capable of providing accurate results for analyte concentrations in the picogram per liter to nanogram per liter range. The simultaneous determination of the mercury and tin compounds is achieved by species-specific isotope dilution, derivatization, and gas chromatography-inductively coupled plasma mass spectrometer (GC-ICP-MS). In derivatization by ethylation and propylation, reaction conditions such as pH and the effect of chloride were carefully studied. Ethylation was found to be more sensitive to matrix effects, especially for mercury compounds. Propylation was thus the preferred derivatization method for simultaneous determination of organomercury and organotin compounds in environmental samples. The analytical method is highly accurate and precise, with RSD values of 1 and 3% for analyte concentrations in the picogram per liter to nanogram per liter range. By use of cleaning procedures and SIDMS blank measurements, detection limits in the range 10-60 pg L{sup -1} were achieved; these are suitable for determination of background levels of these contaminants in environmental samples. This was demonstrated by using the method for analysis of real snow and seawater samples. This work illustrates the great advantage of species-specific isotope dilution for the validation of an analytical speciation method - the possibility of overcoming species transformations and non-quantitative recovery. Analysis time is saved by use of the simultaneous method, because of the use of a single sample-preparation procedure and one analysis. (orig.)

  6. Insights into Wilson's Warbler migration from analyses of hydrogen stable-isotope ratios

    Science.gov (United States)

    Jeffrey F. Kelly; Viorel Atudorei; Zachary D. Sharp; Deborah M. Finch

    2002-01-01

    Our ability to link the breeding locations of individual passerines to migration stopover sites and wintering locations is limited. Stable isotopes of hydrogen contained in bird feathers have recently shown potential in this regard. We measured hydrogen stable-isotope ratios (deltaD) of feathers from breeding, migrating, and wintering Wilson's Warblers. Analyses...

  7. Stable carbon isotope analysis (δ13C values) of polybrominated diphenyl ethers and their UV-transformation products

    International Nuclear Information System (INIS)

    Rosenfelder, Natalie; Bendig, Paul; Vetter, Walter

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) are frequently detected in food and environmental samples. We used compound specific isotope analysis to determine the δ 13 C values of individual PBDEs in two technical mixtures. Within the same technical product (DE-71 or DE-79), BDE congeners were the more depleted in 13 C the higher brominated they were. In contrast, the products of light-induced hydrodebromination of BDE 47 and technical DE-79 were more enriched in 13 C because of more stable bonds between 13 C and bromine. As a result, the δ 13 C values of the irradiated solution progressed diametrically compared to those of the technical synthesis. The ratio of the δ 13 C values of BDE 47 to BDE 99 and of BDE 99 to BDE 153 are thus suggested as indicators to distinguish native technical products from transformation products. Ratios 1) is typical of transformation products. - Highlights: → δ 13 C values of PBDEs were determined by means of compound specific isotope analysis. → PBDEs in technical mixtures were the more depleted in 13 C the higher they were brominated. → Solutions of individual PBDEs and technical PBDE mixtures were irradiated by UV light. → δ 13 C values of irradiated PBDEs and technical PBDEs progressed diametrically. → Ratios of the δ 13 C values were used to distinguish native from transformed PBDEs. - Diametrically progressing δ 13 C values in technical mixtures and UV-transformation products of DE-79 may be useful for source appointment of PBDEs in environmental samples

  8. Stable Isotope Identification of Nitrogen Sources for United ...

    Science.gov (United States)

    We used natural abundance stable isotope data to evaluate nitrogen sources to U.S. west coast estuaries. We collected δ15N of macroalgae data and supplemented this with available data from the literature for estuaries from Mexico to Alaska. Stable isotope ratios of green macroalgae were compared to δ15N of dissolved inorganic nitrogen of oceanic and watershed end members. There was a latitudinal gradient in δ15N of macroalgae with southern estuaries being 7 per mil heavier than northern estuaries. Gradients in isotope data were compared to nitrogen sources estimated by the USGS using the SPARROW model. In California estuaries, the elevation of isotope data appeared to be related to anthropogenic nitrogen sources. In Oregon systems, the nitrogen levels of streams flowing into the estuaries are related to forest cover, rather than to developed land classes. In addition, the δ15N of macroalgae suggested that the ocean and nitrogen-fixing trees in the watersheds were the dominant nitrogen sources. There was also a strong gradient in δ15N of macroalgae with heavier sites located near the estuary mouth. In some Oregon estuaries, there was an elevation an elevation of δ15N above marine end members in the vicinity of wastewater treatment facility discharge locations, suggesting isotopes may be useful for distinguishing inputs along an estuarine gradient. Nutrients are the leading cause of water quality impairments in the United States, and as a result too

  9. Patterns in Stable Isotope Values of Nitrogen and Carbon in ...

    Science.gov (United States)

    Stable isotope measurements of nitrogen and carbon (15N, 13ddC) are often used to characterize estuarine, nearshore, and open ocean ecosystems. Reliable information about the spatial distribution of base-level stable isotope values, often represented by primary producers, is critical to interpreting values in these ecosystems. While base-level isotope data are generally readily available for estuaries, nearshore coastal waters, and the open ocean, the continental shelf is less studied. To address this, and as a first step toward developing a surrogate for base-level isotopic signature in this region, we collected surface and deep water samples from the United States’ eastern continental shelf in the Western Atlantic Ocean, from the Gulf of Maine to Cape Hatteras, periodically between 2000 and 2013. During the study, particulate matter 15dN values ranged from 0.8 to 17.4‰, and 13dC values from −26.4 to −15.6‰over the region. We used spatial autocorrelation analysis and random forest modeling to examine the spatial trends and potential environmental drivers of the stable isotope values. We observed general trends toward lower values for both nitrogen and carbon isotopes at the seaward edge of the shelf. Conversely, higher 15dN and 13dC values were observed on the landward edge of the shelf, in particular in the southern portion of the sampling area. Across all sites, the magnitude of the difference between the 15dN of subsurface and surface particulate m

  10. Tracking ENSO with tropical trees: Progress in stable isotope dendroclimatology

    Science.gov (United States)

    Evans, M. N.; Poussart, P. F.; Saleska, S. R.; Schrag, D. P.

    2002-12-01

    The terrestrial tropics remain an important gap in the growing proxy network used to characterize past ENSO behavior. Here we describe a strategy for development of proxy estimates of paleo-ENSO, via proxy rainfall estimates derived from stable isotope (δ18O) measurements made on tropical trees. The approach applies a new model of oxygen isotopic composition of alpha-cellulose (Roden et al., 2000), a rapid method for cellulose extraction from raw wood (Brendel et al., 2000), and continuous flow isotope ratio mass spectrometry (Brand, 1996) to develop proxy chronological, rainfall and growth rate estimates from tropical trees, even those lacking annual rings. The promise and pitfalls of the approach are illustrated in pilot datasets from the US, Costa Rica, Brazil, and Peru, which show isotopic cycles of 4-6 per mil, and interannual anomalies of up to 8 per mil. Together with the mature ENSO proxies (corals, extratropical tree-rings, varved sediments, and ice cores), replicated and well-dated stable isotope chronologies from tropical trees may eventually improve our understanding of ENSO history over the past several hundred years.

  11. Stable isotope signatures of gases liberated from fluid inclusions in bedrock at Olkiluoto

    International Nuclear Information System (INIS)

    Eichinger, F.; Meier, D.; Haemmerli, J.; Diamond, L.

    2010-12-01

    Fluid inclusions in quartzes of the Olkiluoto bedrock contain gaseous N 2 , CO 2 , H 2 , CH 4 , and higher hydrocarbons in varying proportions. Stable carbon and hydrogen isotope signatures of the gas phases give valuable information on their origin and the formation conditions. In previous studies, a method to liberate and quantify the gases trapped in fluid inclusions was developed. It allowed determining the carbon isotope signatures of liberated CO 2 , CH 4 and higher hydrocarbons (HHC), but no hydrogen isotope data were acquired. The method was advanced and, in this study, also stable hydrogen isotopes of CH 4 and H 2 liberated from fluid inclusions could be analysed. The stable carbon signatures of methane and higher hydrocarbons, as well as the hydrogen isotope signatures of methane indicate a predominant thermogenic provenance for those gases. (orig.)

  12. The use of trace element data to complement stable isotope methods in the characterization of grape musts

    International Nuclear Information System (INIS)

    Day, M.P.; Zhang, B.L.; Martin, G.J.

    1994-01-01

    Objective physico-chemical methods for the characterization of agricultural produce are important ways of providing impartial information on the composition and origin of food products. Of those techniques successful in this area, stable isotope analyses and especially Site Specific Natural Isotope Fractionation studied by nuclear magnetic resonance (SNIF-NMR) are among the most noteworthy. The use of this technique allows the determination of geographical origin of a variety of finished and raw materials in the food industry. The current capabilities of this technique in the wine industry allow the general area of production to be determined. Trace element concentrations have been analyzed for five regions of France (1989 vintage) in order to improve the accuracy of the SNIF-NMR method. When used in conjunction with stable isotope ratios, the elements Zn, Ca, Sr, and Mg increase the overall classification from 78% (with isotope data only) to 89%. (author)

  13. Using stable isotopes of nitrogen and carbon to study seabird ecology: applications in the Mediterranean seabird community

    Directory of Open Access Journals (Sweden)

    Manuela G. Forero

    2003-07-01

    Full Text Available The application of the stable isotope technique to ecological studies is becoming increasingly widespread. In the case of seabirds, stable isotopes of nitrogen and carbon have been mainly used as dietary tracers. This approach relieson the fact that food web isotopic signatures are reflected in the tissues of the consumer. In addition to the study of trophic ecology, stable isotopes have been used to track the movement of seabirds across isotopic gradients, as individuals moving between isotopically distinct foodwebs can carry with them information on the location of previous feeding areas. Studies applying the stable isotope methodology to the study of seabird ecology show a clear evolution from broad and descriptive approaches to detailed and individual-based analyses. The purpose of this article is to show the different fields of application of stable isotopes to the study of the seabird ecology. Finally, we illustrate the utility of this technique by considering the particularities of the Mediterranean seabird community, suggesting different ecological questions and conservation problems that could be addressed by using the stable isotope approach in this community.

  14. Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules.

    Science.gov (United States)

    Liu, Rui; Zhang, Shixi; Wei, Chao; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong

    2016-05-17

    The unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a "mission impossible". Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start? A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area

  15. Stable isotopic composition of East African lake waters

    International Nuclear Information System (INIS)

    Odada, E.O.

    2001-01-01

    The investigation of stable isotopic composition of East African lake waters was conducted by scientists from the Department of Geology, University of Nairobi, as part of the International Decade for the East African Lakes (IDEAL) project and in close collaboration with the scientists from Large Lakes Observatory of the University of Minnesota and the Isotope Hydrology Laboratory of the IAEA in Vienna. The Research Contract was part of the IAEA Co-ordinated Research Programme on Isotope Techniques in Lake Dynamics Investigations, and was sponsored by the Agency. Water and grab sediment samples were obtained from East African Lakes during the month of January and February 1994 and July/August 1995. Water samples were analysed for oxygen and deuterium isotopic composition at the IAEA Laboratories in Vienna, Austria. In this final paper we report the results of the study of oxygen and deuterium isotopic composition from the East African lake waters. (author)

  16. IsoBank – Stable isotope ecology in the age of ‘Big Data’

    Science.gov (United States)

    Stable isotopes ratios provide valuable information to fish biologists working in a diverse range of fields: e.g. ecologists, population biologists and fishery managers. Ecologists take advantage of stable isotope ratios to provide information on the diet and migration history of consumers or when a...

  17. Stable isotope utilization for research on human nutrition

    International Nuclear Information System (INIS)

    Desjeux, J.F.

    1994-01-01

    In the framework of nutritional molecule metabolism research, this paper presents the various stable isotopes used as labels for biological molecules, the reasons for their application in human nutritional study (mainly because of their non toxicity) and the various analysis methods (isotope ratio mass spectrometry, coupled gaseous chromatography and mass spectrometry, nuclear magnetic resonance). Several application examples in nutrition research are then discussed: metabolic conversion measurement for a molecule into its different metabolites, energetic losses. 23 refs

  18. Evaluation of the key aroma compounds in beef and pork vegetable gravies a la chef by stable isotope dilution assays and aroma recombination experiments.

    Science.gov (United States)

    Christlbauer, Monika; Schieberle, Peter

    2011-12-28

    Although the aroma compounds of meat processed as such have been studied previously, data on complete homemade dishes containing beef and pork meat were scarcely studied. Recently, 38 odor-active compounds were characterized in beef and pork vegetable gravies using GC-olfactometry. In the present investigation, the most odor-active compounds were quantitated in a freshly prepared stewed beef vegetable gravy (BVG) as well as a stewed pork vegetable gravy (PVG) by means of stable isotope dilution assays. Calculation of odor activity values (OAVs; ratio of concentration to odor threshold) revealed 3-mercapto-2-methylpentan-1-ol, (E,E)-2,4-decadienal, (E,Z)-2,6-nonadienal, (E)-2-decenal, (E)-2-undecanal, and 3-hydroxy-4,5-dimethyl-2(5H)-furanone as the most potent odorants in both gravies. However, significantly different OAVs were found for 12-methyltridecanal, which was much higher in the BVG, whereas (E,Z)-2,4-decadienal showed a clearly higher OAV in the PVG. Aroma recombination experiments performed on the basis of the actual concentrations of the odorants in both gravies revealed a good similarity of the aromas of both model mixtures containing all odorants with OAVs > 1 with those of the original gravies.

  19. Study on the metabolism of physiological amounts of Cr(III) intragastrical administration in normal rats using activable enriched stable isotope Cr-50 compound as a tracer

    International Nuclear Information System (INIS)

    Feng, W.Y.; Ding, W.J.; Qian, Q.F.; Chai, Z.F.

    1998-01-01

    In order to study the metabolism of physiological amounts of 51 Cr (10μg/100 g of body wt.) intragastrically administered in rats, the activable enriched stable isotope Cr-50 compound Cr 2 O 3 was used as a tracer. The absorption and distribution of 51 Cr(III) in rats with time were studied. Significant 51 Cr contents were found in all the organs and tissues of interest. The kidney, liver and bone contain higher amounts of 51 Cr than others. The fact that specific activities of 51 Cr are notably high in kidney, bone, spleen and pancreas and decrease gradually with time suggests that there are tighter binding of chromium in these organs. The excretion of 51 Cr at various time intervals was also studied. Almost totally intragastrically administered dose was excreted in the feces. The increased urinary excretion of 51 Cr with time indicates that the urine-chromium is the metabolic derivative of organism. In view of the tissues distribution and excretion, it can be concluded that no more than 1% of the dose was absorbed from the gastrointestinal tract. (author)

  20. Tracing organic matter sources of estuarine tidal flat nematodes with stable carbon isotopes

    NARCIS (Netherlands)

    Moens, T.; Luyten, C.; Middelburg, J.J.; Herman, P.M.J.; Vincx, M.

    2002-01-01

    The present study explores the use of stable carbon isotopes to trace organic matter sources of intertidal nematodes in the Schelde estuary (SW Netherlands). Stable carbon isotope signatures of nematodes from a saltmarsh and 4 tidal flat stations were determined in spring and winter situations, and

  1. Compound-specific isotope analysis resolves the dietary origin of docosahexaenoic acid in the mouse brain.

    Science.gov (United States)

    Lacombe, R J Scott; Giuliano, Vanessa; Colombo, Stefanie M; Arts, Michael T; Bazinet, Richard P

    2017-10-01

    DHA (22:6n-3) may be derived from two dietary sources, preformed dietary DHA or through synthesis from α-linolenic acid (ALA; 18:3n-3). However, conventional methods cannot distinguish between DHA derived from either source without the use of costly labeled tracers. In the present study, we demonstrate the proof-of-concept that compound-specific isotope analysis (CSIA) by GC-isotope ratio mass spectrometry (IRMS) can differentiate between sources of brain DHA based on differences in natural 13 C enrichment. Mice were fed diets containing either purified ALA or DHA as the sole n-3 PUFA. Extracted lipids were analyzed by CSIA for natural abundance 13 C enrichment. Brain DHA from DHA-fed mice was significantly more enriched (-23.32‰ to -21.92‰) compared with mice on the ALA diet (-28.25‰ to -27.49‰). The measured 13 C enrichment of brain DHA closely resembled the dietary n-3 PUFA source, -21.86‰ and -28.22‰ for DHA and ALA, respectively. The dietary effect on DHA 13 C enrichment was similar in liver and blood fractions. Our results demonstrate the effectiveness of CSIA, at natural 13 C enrichment, to differentiate between the incorporation of preformed or synthesized DHA into the brain and other tissues without the need for tracers. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  2. Forensic Applications of Light-Element Stable Isotope Ratios of Ricinus communis Seeds and Ricin Preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, Helen W.; West, Jason B.; Ehleringer, James

    2013-01-01

    Seeds of the castor plant Ricinus communis, also known as castor beans, are of forensic interest because they are the source of the poison ricin. We have tested whether stable isotope ratios of castor seeds and ricin prepared by various methods can be used as a forensic signature. We collected over 300 castor seed samples from locations around the world and measured the C, N, O, and H stable isotope ratios of the whole seeds, oil, and three types of ricin preparations. Our results demonstrate that N isotope ratios can be used to correlate ricin prepared by any of these methods to source seeds. Further, stable isotope ratios distinguished >99% of crude and purified ricin protein samples in pair-wise comparison tests. Stable isotope ratios therefore constitute a valuable forensic signature for ricin preparations.

  3. Application of Stable Isotope-Assisted Metabolomics for Cell Metabolism Studies

    Science.gov (United States)

    You, Le; Zhang, Baichen; Tang, Yinjie J.

    2014-01-01

    The applications of stable isotopes in metabolomics have facilitated the study of cell metabolisms. Stable isotope-assisted metabolomics requires: (1) properly designed tracer experiments; (2) stringent sampling and quenching protocols to minimize isotopic alternations; (3) efficient metabolite separations; (4) high resolution mass spectrometry to resolve overlapping peaks and background noises; and (5) data analysis methods and databases to decipher isotopic clusters over a broad m/z range (mass-to-charge ratio). This paper overviews mass spectrometry based techniques for precise determination of metabolites and their isotopologues. It also discusses applications of isotopic approaches to track substrate utilization, identify unknown metabolites and their chemical formulas, measure metabolite concentrations, determine putative metabolic pathways, and investigate microbial community populations and their carbon assimilation patterns. In addition, 13C-metabolite fingerprinting and metabolic models can be integrated to quantify carbon fluxes (enzyme reaction rates). The fluxome, in combination with other “omics” analyses, may give systems-level insights into regulatory mechanisms underlying gene functions. More importantly, 13C-tracer experiments significantly improve the potential of low-resolution gas chromatography-mass spectrometry (GC-MS) for broad-scope metabolism studies. We foresee the isotope-assisted metabolomics to be an indispensable tool in industrial biotechnology, environmental microbiology, and medical research. PMID:24957020

  4. Metabolism and pharmacokinetic of cyclo-peptides and peptides. Use of radioelement and stable isotopes

    International Nuclear Information System (INIS)

    Aninat, C.

    2003-10-01

    More and more peptides and proteins are used in therapeutic. Three mainly techniques are used for pharmacokinetic and metabolism studies: immunoassay, radioactively labeled molecules and mass spectrometry. In the first part of this work, we have used uniformly labelled peptides (C-peptide and insulin) with stables ( 13 C, 15 N, and 13 C/ 15 N) or radioactive ( 14 C) isotopes to investigated these kind of studies. These works are based on isotope dilution mass spectrometry assay. In a second time we have investigated the metabolism of a particular cyclo-peptides families composed of two amino acids: the diketo-piperazine. These compounds are found in mammals and in microorganisms. There are not recognized by proteolytic enzymes. We have estimated if the main enzymes implicated in the metabolism of xenobiotics, the P450 cytochrome mono-oxygenases, were able to recognized them

  5. Stable hydrogen, oxygen and sulfur isotopes composition in different tissues of cattle

    International Nuclear Information System (INIS)

    Sun Fengmei; Shi Guangyu; Wang Huiwen; Yang Shuming

    2012-01-01

    In order to research on stable hydrogen, oxygen, sulfur isotopes composition in different tissues of cattle, as well as the breed, δ 2 H and δ 34 S values of different defatted muscle, cattle tail hair, blood, liver, also δ 2h and δ 18 O values of water from muscle were determined by isotope ratio mass spectrometry. The stable sulfur isotope composition was not affected by cattle variety, meanwhile the hydrogen was uncertain; the δ 2 H and δ 34 S values between different defatted muscle, blood, liver, cattle hair were significantly different, at the same time the δ 34 S and δ 2 H values between each tissue were not significantly correlated; the δ 2 H values were strongly correlated with the δ 18 O values of muscle water. The above results indicated that stable sulfur and hydrogen isotopes fractionation in the various tissues were discrepant, thus the proper tissue should be selected according to the purpose and object in the beef traceability. (authors)

  6. On the Effect of Planetary Stable Isotope Compositions on Growth and Survival of Terrestrial Organisms.

    Directory of Open Access Journals (Sweden)

    Xueshu Xie

    Full Text Available Isotopic compositions of reactants affect the rates of chemical and biochemical reactions. Usually it is assumed that heavy stable isotope enrichment leads to progressively slower reactions. Yet the effect of stable isotopes may be nonlinear, as exemplified by the "isotopic resonance" phenomenon. Since the isotopic compositions of other planets of Solar system, including Mars and Venus, are markedly different from terrestrial (e.g., deuterium content is ≈5 and ≈100 times higher, respectively, it is far from certain that terrestrial life will thrive in these isotopic conditions. Here we found that Martian deuterium content negatively affected survival of shrimp in semi-closed biosphere on a year-long time scale. Moreover, the bacterium Escherichia coli grows slower at Martian isotopic compositions and even slower at Venus's compositions. Thus, the biological impact of varying stable isotope compositions needs to be taken into account when planning interplanetary missions.

  7. Platinum stable isotopes in ferromanganese crust and nodules

    Science.gov (United States)

    Corcoran, Loretta; Seward, Terry; Handler, Monica R.

    2015-04-01

    Hydrogenetic ferromanganese (Fe-Mn) crust and nodules are slow-growing chemical sediments that form by direct precipitation from seawater, resulting in a record of changing seawater chemistry. These sediments are the primary sink for platinum in the modern oxic marine environment, hosting well-documented enrichments over other platinum-group elements (PGEs): the Pt anomaly [1]. Platinum is a non-bio-essential, highly siderophile, transition metal with six stable isotopes (190Pt, 192Pt, 194Pt, 195Pt, 196Pt, and 198Pt) with several oxidation states (Pt0, Pt2+ and Pt4+). Platinum is generally considered to exist in the hydrosphere as Pt2+ although its behaviour in the marine environment is poorly constrained, and Pt4+may also be present. Variations in ocean redox state, together with changes in source fluxes to the oceans, may therefore lead to small variations (Leaching experiments conducted on platinum rich terrestrial materials underwent platinum stable isotopic measurement as an analogue for the Pt isotopic fractionation associated with continental weathering. [1] Hodge, V.F. et al. (1985) Earth and Planetary Science Letters, 72, 158-162. [2] Creech, J. et al. (2013) Journal of Analytical Atomic Spectrometry, 28. 853-865.

  8. Application of stable isotopes and isotope pattern deconvolution-ICPMS to speciation of endogenous and exogenous Fe and Se in rats

    International Nuclear Information System (INIS)

    Gonzalez Iglesias, H.; Fernandez-Sanchez, M.L.; Garcia Alonso, J.I.; Lopez Sastre, J.B.; Sanz-Medel, A.

    2009-01-01

    Full text: Enriched stable isotopes are crucial to study essential trace element metabolism (e.g. Se, Fe) in biological systems. Measuring isotope ratios by ICPMS and using appropriate mathematical calculations, based on isotope pattern deconvolution (IPD) may provide quantitative data about endogenous and exogenous essential or toxic elements and their metabolism. In this work, IPD was applied to explore the feasibility of using two Se (or Fe) enriched stable isotopes, one as metabolic tracer and the other as quantitation tracer, to discriminate between the endogenous and supplemented Se (or Fe) species in rat fluids by collision cell ICPMS coupled to HPLC separation. (author)

  9. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating.

    Science.gov (United States)

    Eglinton, T I; Aluwihare, L I; Bauer, J E; Druffel, E R; McNichol, A P

    1996-03-01

    This paper describes the application of a novel, practical approach for isolation of individual compounds from complex organic matrices for natural abundance radiocarbon measurement. This is achieved through the use of automated preparative capillary gas chromatography (PCGC) to separate and recover sufficient quantities of individual target compounds for (14)C analysis by accelerator mass spectrometry (AMS). We developed and tested this approach using a suite of samples (plant lipids, petroleums) whose ages spanned the (14)C time scale and which contained a variety of compound types (fatty acids, sterols, hydrocarbons). Comparison of individual compound and bulk radiocarbon signatures for the isotopically homogeneous samples studied revealed that Δ(14)C values generally agreed well (±10%). Background contamination was assessed at each stage of the isolation procedure, and incomplete solvent removal prior to combustion was the only significant source of additional carbon. Isotope fractionation was addressed through compound-specific stable carbon isotopic analyses. Fractionation of isotopes during isolation of individual compounds was minimal (radiocarbon measurements. The addition of carbon accompanying derivatization of functionalized compounds (e.g., fatty acids and sterols) prior to chromatographic separation represents a further source of potential error. This contribution can be removed using a simple isotopic mass balance approach. Based on these preliminary results, the PCGC-based approach holds promise for accurately determining (14)C ages on compounds specific to a given source within complex, heterogeneous samples.

  10. Stable isotope hydrology. Deuterium and oxygen-18 in the water cycle

    International Nuclear Information System (INIS)

    Gat, J.R.; Gonfiantini, R.

    1981-01-01

    This monograph is mainly intended for hydrologists, hydrogeologists and geochemists who want to become acquainted, rapidly but in some detail, with the theoretical background of stable isotope fractionation in natural physico-chemical processes involving fresh water, with the isotopic differences actually encountered in natural waters and with their use for practical hydrological purposes. Throughout the monograph, and in particular in the last chapter, a series of examples are discussed, giving the results obtained with stable isotope techniques in current hydrological and hydrogeological investigations or, more generally, in water resources exploration and assessment. One chapter is also dedicated to the techniques for measuring D/H and 18 O/ 16 O ratios in water

  11. Shifts in rotifer life history in response to stable isotope enrichment: testing theories of isotope effects on organismal growth

    Science.gov (United States)

    2017-01-01

    In ecology, stable isotope labelling is commonly used for tracing material transfer in trophic interactions, nutrient budgets and biogeochemical processes. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism growth and metabolism. This assumption is, however, challenged by theoretical considerations and experimental studies on kinetic isotope effects in vivo. Here, I demonstrate profound changes in life histories of the rotifer Brachionus plicatilis fed 15N-enriched algae (0.4–5.0 at%); i.e. at the enrichment levels commonly used in ecological studies. These findings support theoretically predicted effects of heavy isotope enrichment on growth, metabolism and ageing in biological systems and underline the importance of accounting for such effects when using stable isotope labelling in experimental studies. PMID:28405367

  12. Stable isotope-resolved metabolomics and applications for drug development

    Science.gov (United States)

    Fan, Teresa W-M.; Lorkiewicz, Pawel; Sellers, Katherine; Moseley, Hunter N.B.; Higashi, Richard M.; Lane, Andrew N.

    2012-01-01

    Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), during the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly cancer. The metabolome is the functional readout of the genome, functional genome, and proteome; it is also an integral partner in molecular regulations for homeostasis. The interrogation of the metabolome, or metabolomics, is now being applied to numerous diseases, largely by metabolite profiling for biomarker discovery, but also in pharmacology and therapeutics. Recent advances in stable isotope tracer-based metabolomic approaches enable unambiguous tracking of individual atoms through compartmentalized metabolic networks directly in human subjects, which promises to decipher the complexity of the human metabolome at an unprecedented pace. This knowledge will revolutionize our understanding of complex human diseases, clinical diagnostics, as well as individualized therapeutics and drug response. In this review, we focus on the use of stable isotope tracers with metabolomics technologies for understanding metabolic network dynamics in both model systems and in clinical applications. Atom-resolved isotope tracing via the two major analytical platforms, NMR and MS, has the power to determine novel metabolic reprogramming in diseases, discover new drug targets, and facilitates ADME studies. We also illustrate new metabolic tracer-based imaging technologies, which enable direct visualization of metabolic processes in vivo. We further outline current practices and future requirements for biochemoinformatics development, which is an integral part of translating stable isotope-resolved metabolomics into clinical reality. PMID:22212615

  13. C, Cl and H compound-specific isotope analysis to assess natural versus Fe(0) barrier-induced degradation of chlorinated ethenes at a contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Audí-Miró, Carme, E-mail: carmeaudi@ub.edu [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona (Spain); Cretnik, Stefan [Institute of Groundwater Ecology, Helmholtz Zentrum München-National Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg (Germany); Torrentó, Clara; Rosell, Mònica [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona (Spain); Shouakar-Stash, Orfan [Department of Earth & Environmental Sciences, 200 University Ave. W, N2L 3G1 Waterloo, Ontario (Canada); Otero, Neus [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí Franquès s/n, 08028, Barcelona (Spain); Palau, Jordi [Université de Neuchâtel, CHYN - Centre d' Hydrogéologie, Rue Emile-Argand 11, CH-2000 Neuchâtel (Switzerland); and others

    2015-12-15

    Highlights: • {sup 13}C to evaluate natural chlorinated ethenes biodegradation. • {sup 13}C to evaluate the efficiency of a zero-valent iron-permeable reactive barrier. • {sup 13}C-{sup 37}Cl to discriminate biotic from abiotic degradation of cis-dichloroethene. • {sup 13}C-{sup 37}Cl-{sup 2}H of cis-DCE and TCE to elucidate different contaminant sources. - Abstract: Compound-specific isotopic analysis of multiple elements (C, Cl, H) was tested to better assess the effect of a zero-valent iron-permeable reactive barrier (ZVI-PRB) installation at a site contaminated with tetrachloroethene (PCE) and trichloroethene (TCE). The focus was on (1) using {sup 13}C to evaluate natural chlorinated ethene biodegradation and the ZVI-PRB efficiency; (2) using dual element {sup 13}C-{sup 37}Cl isotopic analysis to distinguish biotic from abiotic degradation of cis-dichloroethene (cis-DCE); and (3) using {sup 13}C-{sup 37}Cl-{sup 2}H isotopic analysis of cis-DCE and TCE to elucidate different contaminant sources. Both biodegradation and degradation by ZVI-PRB were indicated by the metabolites that were detected and the {sup 13}C data, with a quantitative estimate of the ZVI-PRB efficiency of less than 10% for PCE. Dual element {sup 13}C-{sup 37}Cl isotopic plots confirmed that biodegradation was the main process at the site including the ZVI-PRB area. Based on the carbon isotope data, approximately 45% and 71% of PCE and TCE, respectively, were estimated to be removed by biodegradation. {sup 2}H combined with {sup 13}C and {sup 37}Cl seems to have identified two discrete sources contributing to the contaminant plume, indicating the potential of δ{sup 2}H to discriminate whether a compound is of industrial origin, or whether a compound is formed as a daughter product during degradation.

  14. C, Cl and H compound-specific isotope analysis to assess natural versus Fe(0) barrier-induced degradation of chlorinated ethenes at a contaminated site

    International Nuclear Information System (INIS)

    Audí-Miró, Carme; Cretnik, Stefan; Torrentó, Clara; Rosell, Mònica; Shouakar-Stash, Orfan; Otero, Neus; Palau, Jordi

    2015-01-01

    Highlights: • 13 C to evaluate natural chlorinated ethenes biodegradation. • 13 C to evaluate the efficiency of a zero-valent iron-permeable reactive barrier. • 13 C- 37 Cl to discriminate biotic from abiotic degradation of cis-dichloroethene. • 13 C- 37 Cl- 2 H of cis-DCE and TCE to elucidate different contaminant sources. - Abstract: Compound-specific isotopic analysis of multiple elements (C, Cl, H) was tested to better assess the effect of a zero-valent iron-permeable reactive barrier (ZVI-PRB) installation at a site contaminated with tetrachloroethene (PCE) and trichloroethene (TCE). The focus was on (1) using 13 C to evaluate natural chlorinated ethene biodegradation and the ZVI-PRB efficiency; (2) using dual element 13 C- 37 Cl isotopic analysis to distinguish biotic from abiotic degradation of cis-dichloroethene (cis-DCE); and (3) using 13 C- 37 Cl- 2 H isotopic analysis of cis-DCE and TCE to elucidate different contaminant sources. Both biodegradation and degradation by ZVI-PRB were indicated by the metabolites that were detected and the 13 C data, with a quantitative estimate of the ZVI-PRB efficiency of less than 10% for PCE. Dual element 13 C- 37 Cl isotopic plots confirmed that biodegradation was the main process at the site including the ZVI-PRB area. Based on the carbon isotope data, approximately 45% and 71% of PCE and TCE, respectively, were estimated to be removed by biodegradation. 2 H combined with 13 C and 37 Cl seems to have identified two discrete sources contributing to the contaminant plume, indicating the potential of δ 2 H to discriminate whether a compound is of industrial origin, or whether a compound is formed as a daughter product during degradation.

  15. Diet-tissue stable isotope13C and Δ15N) discrimination factors for multiple tissues from terrestrial reptiles

    OpenAIRE

    Steinitz, R; Lemm, JM; Pasachnik, SA; Kurle, CM

    2016-01-01

    Copyright © 2015 John Wiley & Sons, Ltd. Rationale Stable isotope analysis is a powerful tool for reconstructing trophic interactions to better understand drivers of community ecology. Taxon-specific stable isotope discrimination factors contribute to the best use of this tool. We determined the first Δ 13 C and Δ 15 N values for Rock Iguanas (Cyclura spp.) to better understand isotopic fractionation and estimate wild reptile foraging ecology. Methods The Δ 13 C and Δ 15 N values between di...

  16. Monitoring in situ biodegradation of hydrocarbons by using stable carbon isotopes

    International Nuclear Information System (INIS)

    Aggarwal, P.K.; Hinchee, R.E.

    1991-01-01

    Spilled or leaked nonhalogenated petroleum hydrocarbons in the soil can generally be metabolized by indigenous, aerobic bacteria. In situ biological degradation of hydrocarbons may be accelerated by supplying inorganic nutrients and/or oxygen. Approaches to monitoring and verifying enhanced in situ biodegradation have included measurements of changes over time in the (a) concentration of hydrocarbons, (b) temperature, (c) number of hydrocarbon-degrading microorganisms, (d) ratio of fast-degrading hydrocarbons (e.g., pristanes or phytanes), and (e) metabolic intermediates. Measurements of oxygen consumption over time and elevated carbon dioxide concentrations in soil gas also have been used as indicators of hydrocarbon degradation. An alternative approach that may help substantiate biodegradation is to measure stable carbon isotope ratios in soil gas CO 2 . Stable carbon isotope ratio analysis is inexpensive and commercially available at many laboratories. Carbon dioxide produced by hydrocarbon degradation may be distinguished from that produced by other processes based on the carbon isotopic compositions characteristic of the source material and/or fractionation accompanying microbial metabolism. Here the authors demonstrate the applicability of the stable isotope technique for monitoring enhanced. aerobic biodegradation of hydrocarbons using data from three locations in the United States

  17. Organic synthesis with stable isotopes

    International Nuclear Information System (INIS)

    Daub, G.H.; Kerr, V.N.; Williams, D.L.; Whaley, T.W.

    1978-01-01

    Some general considerations concerning organic synthesis with stable isotopes are presented. Illustrative examples are described and discussed. The examples include DL-2-amino-3-methyl- 13 C-butanoic-3,4- 13 C 2 acid (DL-valine- 13 C 3 ); methyl oleate-1- 13 C; thymine-2,6- 13 C 2 ; 2-aminoethanesulfonic- 13 C acid (taurine- 13 C); D-glucose-6- 13 C; DL-2-amino-3-methylpentanoic-3,4- 13 C 2 acid (DL-isoleucine- 13 C 2 ); benzidine- 15 N 2 ; and 4-ethylsulfonyl-1-naphthalene-sulfonamide- 15 N

  18. Effects of Water Vapor on the Data Quality of the Stable Oxygen Isotopic Ratio of Atmospheric Carbon Dioxide

    Science.gov (United States)

    Evans, C. U.; White, J. W.; Vaughn, B.; Tans, P. P.; Pardo, L.

    2007-12-01

    The stable oxygen isotopic ratio of carbon dioxide can potentially track fundamental indicators of environmental change such as the balance between photosynthesis and respiration on regional to global scales. The Stable Isotope Laboratory (SIL) at the Institute of Arctic and Alpine Research (INSTAAR), University of Colorado at Boulder, has measured the stable isotopes of atmospheric carbon dioxide from more than 60 NOAA/Earth System Research Laboratory (ESRL) air flask-sampling sites since the early 1990s. If air is sampled without drying, oxygen can exchange between carbon dioxide and water in the flasks, entirely masking the desired signal. An attempt to investigate how water vapor is affecting the δ18O signal is accomplished by comparing the SIL measurements with specific humidity, calculated from the National Climatic Data Center (NCDC) global integrated surface hourly temperature and dew point database, at the time of sampling. Analysis of sites where samples have been collected initially without drying, and subsequently with a drying kit, in conjunction with the humidity data, has led to several conclusions. Samples that initially appear isotopically unaltered, in that their δ18O values are within the expected range, are being subtly influenced by the water vapor in the air. At Bermuda and other tropical to semi-tropical sites, the 'wet' sampling values have a seasonal cycle that is strongly anti-correlated to the specific humidity, while the 'dry' values have a seasonal cycle that is shifted earlier than the specific humidity cycle by 1-2 months. The latter phasing is expected given the seasonal phasing between climate over the ocean and land, while the former is consistent with a small, but measurable isotope exchange in the flasks. In addition, we note that there is a strong (r > 0.96) correlation between the average specific humidity and the percent of rejected samples for 'wet' sampling. This presents an opportunity for determining a threshold of

  19. The Stable Isotope Fractionation of Abiotic Reactions: A Benchmark in the Detection of Life

    Science.gov (United States)

    Summers, David P.

    2003-01-01

    One very important tool in the analysis of biogenic, and potentially biogenic, samples is the study of their stable isotope distributions. The isotope distribution of a sample depends on the process(es) that created it. One important application of the analysis of C & N stable isotope ratios has been in the determination of whether organic matter in a sample is of biological origin or was produced abiotically. For example, the delta C-13 of organic material found embedded in phosphate grains was cited as a critical part of the evidence for life in 3.8 billion year old samples. The importance of such analysis in establishing biogenicity was highlighted again by the role this issue played in the recent debate over the validity of what had been accepted as the Earth s earliest microfossils. These kinds of analysis imply a comparison with the fractionation that one would have seen if the organic material had been produced by alternative, abiotic, pathways. Could abiotic reactions account for the same level of fractionation? Additionally, since the fractionation can vary between different abiotic reactions, understanding their fractionations can be important in distinguishing what reactions may have been significant in the formation of different abiological samples (such as extraterrestrial samples). There is however, a scarcity of data on the fractionation of carbon and nitrogen by abiotic reactions. In order to interpret properly what the stable isotope ratios of samples tell us about their biotic or abiotic nature, more needs to be known about how abiotic reactions fractionate C and N. Carbon isotope fractionations have been studied for a few abiotic processes. These studies presumed the presence of a reducing atmosphere, focusing on reactions involving spark discharge, W photolysis of reducing gas mixtures, and cyanide polymerization in the presence of ammonia. They did find that the initial products showed a depletion in I3C with values in the range of a few per

  20. Stable-carbon isotope ratios for sourcing the nerve-agent precursor methylphosphonic dichloride and its products.

    Science.gov (United States)

    Moran, James J; Fraga, Carlos G; Nims, Megan K

    2018-08-15

    The ability to connect a chemical threat agent to a specific batch of a synthetic precursor can provide a fingerprint to contribute to effective forensic investigations. Stable isotope analysis can leverage intrinsic, natural isotopic variability within the molecules of a threat agent to unlock embedded chemical fingerprints in the material. Methylphosphonic dichloride (DC) is a chemical precursor to the nerve agent sarin. DC is converted to methylphosphonic difluoride (DF) as part of the sarin synthesis process. We used a suite of commercially available DC stocks to both evaluate the potential for δ 13 C analysis to be used as a fingerprinting tool in sarin-related investigations and to develop sample preparation techniques (using chemical hydrolysis) that can simplify isotopic analysis of DC and its synthetic products. We demonstrate that natural isotopic variability in DC results in at least three distinct, isotope-resolved clusters within the thirteen stocks we analyzed. Isotopic variability in the carbon feedstock (i.e., methanol) used for DC synthesis is likely inherited by the DC samples we measured. We demonstrate that the hydrolysis of DC and DF to methylphosphonic acid (MPA) can be used as a preparative step for isotopic analysis because the reaction does not impart a significant isotopic fractionation. MPA is more chemically stable, less toxic, and easier to handle than DC or DF. Further, the hydrolysis method we demonstrated can be applied to a suite of other precursors or to sarin itself, thereby providing a potentially valuable forensic tool. Copyright © 2018. Published by Elsevier B.V.

  1. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    Science.gov (United States)

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  2. Golan Heights Groundwater Systems: Separation By REE+Y And Stable Isotopes

    Science.gov (United States)

    Siebert, C.; Geyer, S.; Knoeller, K.; Roediger, T.; Weise, S.; Dulski, P.; Moeller, P.; Guttman, J.

    2008-12-01

    well waters, stable isotopes showed, that the main area of recharge is the elevated Hermon-Massif, with high annually precipitation amounts. The major element composition of fresh water well Alonei HaBashan 3, situated in the basaltic Upper Golan Heights, is defined by a pre-Neogenic limy aquifer and the contact to basalts. However, REY pattern refer to a calcareous infiltration area. Stable isotope signatures are lighter than in the recharge of comparable elevated Upper Galilee. Further to the south, in the Yarmouk gorge hot Mezar springs occur, which show stable isotope signatures even lighter than in water of Alonei Habshan 3. Both, REY pattern and hydrochemistry show infiltration into and contact to the Sr-rich limestone aquifer of the Mt. Scopus group. That adds up to an infiltration area some 50 km to the north, the nearest elevated area where carbonates crop out. Nearby Mezar, hot Hammat Gader springs occur, which show comparable isotopic signatures and hydrochemical composition. However, the REY-patterns indicate infiltration in basalts. By means of those three examples we could show, that the use of a combined hydrochemical and isotopic approach reveals complex and large-scale groundwater infiltration- and flow-systems much better than a focused view on a specific band of elements.

  3. The neodymium stable isotope composition of the silicate Earth and chondrites

    Science.gov (United States)

    McCoy-West, Alex J.; Millet, Marc-Alban; Burton, Kevin W.

    2017-12-01

    The non-chondritic neodymium (Nd) 142Nd/144Nd ratio of the silicate Earth potentially provides a key constraint on the accretion and early evolution of the Earth. Yet, it is debated whether this offset is due to the Earth being formed from material enriched in s-process Nd isotopes or results from an early differentiation process such as the segregation of a late sulfide matte during core formation, collisional erosion or a some combination of these processes. Neodymium stable isotopes are potentially sensitive to early sulfide segregation into Earth's core, a process that cannot be resolved using their radiogenic counterparts. This study presents the first comprehensive Nd stable isotope data for chondritic meteorites and terrestrial rocks. Stable Nd measurements were made using a double spike technique coupled with thermal ionisation mass spectrometry. All three of the major classes of chondritic meteorites, carbonaceous, enstatite and ordinary chondrites have broadly similar isotopic compositions allowing calculation of a chondritic mean of δ146/144Nd = -0.025 ± 0.025‰ (±2 s.d.; n = 39). Enstatite chondrites yield the most uniform stable isotope composition (Δ146/144Nd = 26 ppm), with considerably more variability observed within ordinary (Δ146/144Nd = 72 ppm) and carbonaceous meteorites (Δ146/144Nd = 143 ppm). Terrestrial weathering, nucleosynthetic variations and parent body thermal metamorphism appear to have little measurable effect on δ146/144Nd in chondrites. The small variations observed between ordinary chondrite groups most likely reflect inherited compositional differences between parent bodies, with the larger variations observed in carbonaceous chondrites being linked to varying modal proportions of calcium-aluminium rich inclusions. The terrestrial samples analysed here include rocks ranging from basaltic to rhyolitic in composition, MORB glasses and residual mantle lithologies. All of these terrestrial rocks possess a broadly similar Nd

  4. Magnesium stable isotope ecology using mammal tooth enamel

    Science.gov (United States)

    Martin, Jeremy E.; Vance, Derek; Balter, Vincent

    2015-01-01

    Geochemical inferences on ancient diet using bone and enamel apatite rely mainly on carbon isotope ratios (δ13C) and to a lesser extent on strontium/calcium (Sr/Ca) and barium/calcium (Ba/Ca) elemental ratios. Recent developments in nontraditional stable isotopes provide an unprecedented opportunity to use additional paleodietary proxies to disentangle complex diets such as omnivory. Of particular relevance for paleodietary reconstruction are metals present in large quantity in bone and enamel apatite, providing that biologically mediated fractionation processes are constrained. Calcium isotope ratios (δ44Ca) meet these criteria but exhibit complex ecological patterning. Stable magnesium isotope ratios (δ26Mg) also meet these criteria but a comprehensive understanding of its variability awaits new isotopic data. Here, 11 extant mammal species of known ecology from a single locality in equatorial Africa were sampled for tooth enamel and, together with vegetation and feces, analyzed for δ26Mg, δ13C, Sr/Ca, and Ba/Ca ratios. The results demonstrate that δ26Mg incorporated in tooth enamel becomes heavier from strict herbivores to omnivores/faunivores. Using data from experimentally raised sheep, we suggest that this 26Mg enrichment up the trophic chain is due to a 26Mg enrichment in muscle relative to bone. Notably, it is possible to distinguish omnivores from herbivores, using δ26Mg coupled to Ba/Ca ratios. The potential effects of metabolic and dietary changes on the enamel δ26Mg composition remain to be explored but, in the future, multiproxy approaches would permit a substantial refinement of dietary behaviors or enable accurate trophic reconstruction despite specimen-limited sampling, as is often the case for fossil assemblages.

  5. Production and use of stable isotopes in France

    International Nuclear Information System (INIS)

    Roth, E.; Letolle, R.

    1991-01-01

    This paper can not cover the field of production and use of stable isotopes in France exhaustively within six pages. We have chosen to concentrate on highlights of the subject and on recent work, and to give references for further reading. 26 refs

  6. Comparison of gas chromatography/isotope ratio mass spectrometry and liquid chromatography/isotope ratio mass spectrometry for carbon stable-isotope analysis of carbohydrates.

    Science.gov (United States)

    Moerdijk-Poortvliet, Tanja C W; Schierbeek, Henk; Houtekamer, Marco; van Engeland, Tom; Derrien, Delphine; Stal, Lucas J; Boschker, Henricus T S

    2015-07-15

    We compared gas chromatography/isotope ratio mass spectrometry (GC/IRMS) and liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) for the measurement of δ(13)C values in carbohydrates. Contrary to GC/IRMS, no derivatisation is needed for LC/IRMS analysis of carbohydrates. Hence, although LC/IRMS is expected to be more accurate and precise, no direct comparison has been reported. GC/IRMS with the aldonitrile penta-acetate (ANPA) derivatisation method was compared with LC/IRMS without derivatisation. A large number of glucose standards and a variety of natural samples were analysed for five neutral carbohydrates at natural abundance as well as at (13)C-enriched levels. Gas chromatography/chemical ionisation mass spectrometry (GC/CIMS) was applied to check for incomplete derivatisation of the carbohydrate, which would impair the accuracy of the GC/IRMS method. The LC/IRMS technique provided excellent precision (±0.08‰ and ±3.1‰ at natural abundance and enrichment levels, respectively) for the glucose standards and this technique proved to be superior to GC/IRMS (±0.62‰ and ±19.8‰ at natural abundance and enrichment levels, respectively). For GC/IRMS measurements the derivatisation correction and the conversion of carbohydrates into CO2 had a considerable effect on the measured δ(13)C values. However, we did not find any significant differences in the accuracy of the two techniques over the full range of natural δ(13)C abundances and (13)C-labelled glucose. The difference in the performance of GC/IRMS and LC/IRMS diminished when the δ(13)C values were measured in natural samples, because the chromatographic performance and background correction became critical factors, particularly for LC/IRMS. The derivatisation of carbohydrates for the GC/IRMS method was complete. Although both LC/IRMS and GC/IRMS are reliable techniques for compound-specific stable carbon isotope analysis of carbohydrates (provided that derivatisation is complete and the

  7. Compound-specific isotope records of late-quaternary environmental change in southeastern North Carolina

    Science.gov (United States)

    Lane, Chad S.; Taylor, Audrey K.; Spencer, Jessica; Jones, Kaylee B.

    2018-02-01

    Reconstructions of late Quaternary paleohydrology are rare from the U.S. Atlantic coastal plain (ACP). Here we present compound-specific hydrogen (δ2Halkane) and carbon (δ13Calkane) isotope analyses of terrestrially-derived n-alkanes from Jones Lake and Singletary Lake in eastern North Carolina spanning the last ∼50,000 years. Combined with pollen, charcoal, and bulk geochemical analyses, the δ2Halkane data indicate arid conditions during the late-Pleistocene, but differing edaphic conditions at the sites perhaps related to differing water table depths. The δ13Calkane data indicate a significant C4 plant component during the late Pleistocene, but other proxies indicate a sparsely-vegetated landscape. The Pleistocene-Holocene transition is marked by rapid fluctuations in δ2Halkane values that are similar to the patterns of Bølling Allerød and Younger Dryas isotope data from Greenland indicating sensitivity of the regional climate to short-lived, high-amplitude climatic events. The δ2Halkane data indicate a mesic early Holocene that supported colonization by Quercus-dominated ecosystems. Evidence of middle Holocene aridity in eastern Tennessee and western North Carolina contrasts with evidence of mesic conditions on the ACP, a geographic pattern similar to modern teleconnected precipitation responses to the Pacific Decadal Oscillation. A transition to Pinus-dominated ecosystems ∼5500 cal yr B.P. is accompanied by a large increase charcoal, but is not coincident with any large changes in δ2Halkane values, indicating that hydrologic change was likely not responsible for sustained late-Holocene dominance of Pinus. The lack of a change in middle Holocene hydrology and the spatiotemporally heterogeneous nature of the Quercus-Pinus transition on the ACP indicate prehistoric anthropogenic land management practices may represent the most parsimonious explanation for the regionally pervasive ecological change.

  8. Process chemistry related to hydrogen isotopes

    International Nuclear Information System (INIS)

    Iwasaki, Matae; Ogata, Yukio

    1991-01-01

    Hydrogen isotopes, that is, protium, deuterium and tritium, are all related deeply to energy in engineering region. Deuterium and tritium exist usually as water in extremely thin state. Accordingly, the improvement of the technology for separating these isotopes is a large engineering subject. Further, tritium is radioactive and its half-life period is 12.26 years, therefore, it is desirable to fix it in more stable form besides its confinement in the handling system. As the chemical forms of hydrogen, the molecular hydrogen with highest reactivity, metal hydride, carbon-hydrogen-halogen system compounds, various inorganic hydrides, most stable water and hydroxides are enumerated. The grasping of the behavior from reaction to stable state of these hydrogen compounds and the related materials is the base of process chemistry. The reaction of exchanging isotopes between water and hydrogen on solid catalyzers, the decomposition of ethane halide containing hydrogen, the behavior of water and hydroxides in silicates are reported. The isotope exchange between water and hydrogen is expected to be developed as the process of separating and concentrating hydrogen isotopes. (K.I.) 103 refs

  9. Availability of enriched stable isotopes: present status and future prospects

    International Nuclear Information System (INIS)

    Hoff, R.W.

    1986-01-01

    The Electromagnetic Isotope Enrichment Facility (EMIEF) is currently used to produce 225 enriched stable isotopes of 50 elements. Among these are included most of the known elements with stable isotopes except for the noble gases, certain light elements, monisotopic elements, etc. The EMIEF can also be used to produce enriched samples of radioactive species, most notably the isotopes of uranium and plutonium. These enriched materials are placed in either the Sales Inventory of in the Research Materials Collection (RMC). The materials in the Sales Inventory are for sale to anyone on a first come, first served basis. Prices in the most recent catalog range from $0.05/mg for 99.8% 140 Ce to $1,267/mg for 98.5% 176 Lu. The materials in the RMC are made available to US researchers (or groups that include a US investigator) on a loan basis for use in non-destructive experiments and applications. In addition, certain samples have been provided to European investigators for cross-section studies through the auspices of EURATOM and the European-American Nuclear Data Committee. The status of the enriched isotopes included in the Sales Inventory is tabulated where isotopes are listed that are either not available or are in insufficient quantity or quality to meet current requests, as of 6/30/86. These can be summarized in the following subcategories: isotopes with zero inventory (22), Isotopes of insufficient quantity (17), and isotopes with insufficient enrichment quality (10). Of these 49 species, the supplies of 10 will be replenished by the scheduled FY86 enrichments in process (isotopes of bromine, calcium, nickel, potassium, rubidium, and strontium). In Table 3 are listed isotopes where the current inventory is less than the average annual sales level for the past five years. There are 47 isotopes listed, representing 25 different elements. Thus, there exists considerable potential for a substantial increase in the number of isotopes with zero inventory

  10. Use of stable isotopes to monitor the natural attenuation of dicyclopentadiene

    International Nuclear Information System (INIS)

    Stehemier, L.G.; Cooke, L.; Hornett, R.; Aravena, R.

    2002-01-01

    Stable isotope fractionation is a method used to prove that residual hydrocarbons from an oil spill are being naturally attenuated in soil and groundwater. Hydrogen isotopes and carbon isotopes are the two isotopes that have been used to provide this evidence. Evaporation, adsorption and biodegradation are among the processes that can cause fractionation of isotopes. However, the largest fractionations take place during biodegradation because of the unidirectional characteristics of metabolism and the thermodynamic selectivity of enzymatic processes in biological systems. This paper presents the results of a monitored natural attenuation program for hydrocarbons in soil and groundwater at a chemical plant in Alberta where dicyclopentadiene (DCPD) was biodegraded. DCPD is a co-product from the cracking of ethane to ethylene. Piezometers were used to monitor the stable isotope fractionation of DCPD over a three year period. Evidence that DCPD was biodegrading was the fact that the change in carbon 13 was enriched 4.1 per cent in one study area during the monitoring period. The results are among the first definitive proof that DCPD biodegrades in the field. Analysis by gas chromatography-carbon-isotope ratio mass spectrometry is an essential technique for monitoring recalcitrant, low water-soluble hydrocarbons. 16 refs., 4 tabs., 3 figs

  11. Stable isotope reactive transport modeling in water-rock interactions during CO2 injection

    Science.gov (United States)

    Hidalgo, Juan J.; Lagneau, Vincent; Agrinier, Pierre

    2010-05-01

    Stable isotopes can be of great usefulness in the characterization and monitoring of CO2 sequestration sites. Stable isotopes can be used to track the migration of the CO2 plume and identify leakage sources. Moreover, they provide unique information about the chemical reactions that take place on the CO2-water-rock system. However, there is a lack of appropriate tools that help modelers to incorporate stable isotope information into the flow and transport models used in CO2 sequestration problems. In this work, we present a numerical tool for modeling the transport of stable isotopes in groundwater reactive systems. The code is an extension of the groundwater single-phase flow and reactive transport code HYTEC [2]. HYTEC's transport module was modified to include element isotopes as separate species. This way, it is able to track isotope composition of the system by computing the mixing between the background water and the injected solution accounting for the dependency of diffusion on the isotope mass. The chemical module and database have been expanded to included isotopic exchange with minerals and the isotope fractionation associated with chemical reactions and mineral dissolution or precipitation. The performance of the code is illustrated through a series of column synthetic models. The code is also used to model the aqueous phase CO2 injection test carried out at the Lamont-Doherty Earth Observatory site (Palisades, New York, USA) [1]. References [1] N. Assayag, J. Matter, M. Ader, D. Goldberg, and P. Agrinier. Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects. Chemical Geology, 265(1-2):227-235, July 2009. [2] Jan van der Lee, Laurent De Windt, Vincent Lagneau, and Patrick Goblet. Module-oriented modeling of reactive transport with HYTEC. Computers & Geosciences, 29(3):265-275, April 2003.

  12. Gas cleaning with hot char beds studied by stable isotopes

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Ahrenfeldt, Jesper; Ambus, Per

    2014-01-01

    The chemistry taking place in a high temperature char bed used for binding aromatic tar compounds has been studied in detail. 13C labelled tar compounds were used to trace the incorporation into the char bed using isotope ratio mass spectrometry (IRMS) and GC-MS. Furthermore, compounds labelled...

  13. A manual for a Laboratory Information Management System (LIMS) for light stable isotopes

    Science.gov (United States)

    Coplen, Tyler B.

    1998-01-01

    The reliability and accuracy of isotopic data can be improved by utilizing database software to (i) store information about samples, (ii) store the results of mass spectrometric isotope-ratio analyses of samples, (iii) calculate analytical results using standardized algorithms stored in a database, (iv) normalize stable isotopic data to international scales using isotopic reference materials, and (v) generate multi-sheet paper templates for convenient sample loading of automated mass-spectrometer sample preparation manifolds. Such a database program is presented herein. Major benefits of this system include (i) an increase in laboratory efficiency, (ii) reduction in the use of paper, (iii) reduction in workload due to the elimination or reduction of retyping of data by laboratory personnel, and (iv) decreased errors in data reported to sample submitters. Such a database provides a complete record of when and how often laboratory reference materials have been analyzed and provides a record of what correction factors have been used through time. It provides an audit trail for stable isotope laboratories. Since the original publication of the manual for LIMS for Light Stable Isotopes, the isotopes 3 H, 3 He, and 14 C, and the chlorofluorocarbons (CFCs), CFC-11, CFC-12, and CFC-113, have been added to this program.

  14. Transmutation of stable isotopes and deactivation of radioactive waste in growing biological systems

    International Nuclear Information System (INIS)

    Vysotskii, Vladimir I.; Kornilova, Alla A.

    2013-01-01

    Highlights: ► The phenomena of isotope transmutation in growing microbiological cultures were investigated. ► Transmutation in microbiological associations is 20 times more effective than in pure cultures. ► Transmutation of radioactive nuclei to stable isotopes in such associations was investigated. ► The most accelerated rate of Cs 137 to stable Ba 138 isotope transmutation was 310 days. ► “Microbiological deactivation” may be used for deactivation of Chernobyl and Fukushima areas. - Abstract: The report presents the results of qualifying examinations of stable and radioactive isotopes transmutation processes in growing microbiological cultures. It is shown that transmutation of stable isotopes during the process of growth of microbiological cultures, at optimal conditions in microbiological associations, is 20 times more effective than the same transmutation process in the form of “one-line” (pure) microbiological cultures. In the work, the process of direct, controlled decontamination of highly active intermediate lifetime and long-lived reactor isotopes (reactor waste) through the process of growing microbiological associations has been studied. In the control experiment (flask with active water but without microbiological associations), the “usual” law of nuclear decay applies, and the life-time of Cs 137 isotope was about 30 years. The most rapidly increasing decay rate, which occurred with a lifetime τ * ≈ 310 days (involving an increase in rate, and decrease in lifetime by a factor of 35 times) was observed in the presence of Ca salt in closed flask with active water contained Cs 137 solution and optimal microbiological association

  15. Using Stable Isotopes to Detect Land Use Change and Nitrogen Sources in Aquatic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, K. M. [National Isotope Center, GNS Science, Lower Hutt (New Zealand)

    2013-05-15

    Changing land use is one of the primary causes of increased sedimentation and nutrient levels in aquatic systems, resulting in contamination and reduction of biodiversity. Detecting and quantifying these inputs is the first step towards remediation, and enabling targeted reductions of transport processes into waterways from human impacted land surfaces. More recently, stable isotope analyses are being used as detection and quantification tools in aquatic environments. Carbon ({delta}{sup 13}C) and nitrogen ({delta}{sup 15}N) isotopes of sediments, as well as algae and invertebrates from aquatic systems can be used as proxies to record both short and long term environmental change. Excess nitrogen (or nitrogen-compounds) derived from urbanization, industry, forestry, farming and agriculture, increase the bioavailability of nitrogen to aquatic organisms, changing their natural {delta}15N isotopic signatures. Allochthonous (terrestrial) input from soil destabilization and human activity in surrounding catchments changes {delta}{sup 13}C isotopic compositions and increases the C:N ratio of sediments. Heavy metal and other organic pollutants can also be used to indicate urbanization and industrial contamination. The combined use of carbon and nitrogen isotopes, C:N ratios and heavy metals are powerful environmental monitoring tools, which are useful indicators of source and transport pathways of terrestrial derived material and anthropogenic pollutants into streams, rivers and estuaries. (author)

  16. Changes of stable isotopes carbon-13 and nitrogen-15 in different tissues of cattle

    International Nuclear Information System (INIS)

    Sun Fengmei; Yu Hongxia; Wu Wei; Yang Shuming

    2009-01-01

    Stable isotope analysis is a potential tool for tracing food origin. The stable carbon and nitrogen isotope composition in different tissues of two varieties of cattle under the same culture condition were investigated. δ 13 C and δ 15 N values of different defatted muscle and crude fat, cattle tail hair, blood, liver and feed were determined by isotope ratio mass spectrometry, and statistical analysis was carried out. The results showed that stable isotopes of carbon and nitrogen composition was not affected by cattle variety; the δ 13 C values between different defatted muscle, blood, liver and cattle hair were not significantly different, but δ 15 N value in the liver was much higher than other muscle and the δ 13 C values didn't show difference among all the crude fat samples. So these results indicated that isotope fractionation in the various tissue was discrepant. (authors)

  17. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Seminoff

    Full Text Available Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15N values of bulk skin, with distinct "low δ(15N" and "high δ(15N" groups. δ(15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation

  18. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids.

    Science.gov (United States)

    Seminoff, Jeffrey A; Benson, Scott R; Arthur, Karen E; Eguchi, Tomoharu; Dutton, Peter H; Tapilatu, Ricardo F; Popp, Brian N

    2012-01-01

    Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15)N values of bulk skin, with distinct "low δ(15)N" and "high δ(15)N" groups. δ(15)N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15)N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in

  19. Fractionation in position-specific isotope composition during vaporization of environmental pollutants measured with isotope ratio monitoring by 13C nuclear magnetic resonance spectrometry

    International Nuclear Information System (INIS)

    Julien, Maxime; Parinet, Julien; Nun, Pierrick; Bayle, Kevin; Höhener, Patrick; Robins, Richard J.; Remaud, Gérald S.

    2015-01-01

    Isotopic fractionation of pollutants in terrestrial or aqueous environments is a well-recognized means by which to track different processes during remediation. As a complement to the common practice of measuring the change in isotope ratio for the whole molecule using isotope ratio monitoring by mass spectrometry (irm-MS), position-specific isotope analysis (PSIA) can provide further information that can be exploited to investigate source and remediation of soil and water pollutants. Position-specific fractionation originates from either degradative or partitioning processes. We show that isotope ratio monitoring by 13 C NMR (irm- 13 C NMR) spectrometry can be effectively applied to methyl tert-butylether, toluene, ethanol and trichloroethene to obtain this position-specific data for partitioning. It is found that each compound exhibits characteristic position-specific isotope fractionation patterns, and that these are modulated by the type of evaporative process occurring. Such data should help refine models of how remediation is taking place, hence back-tracking to identify pollutant sources. - Highlights: • Position-Specific Isotope Analysis (PSIA) by 13 C NMR spectrometry. • PSIA on isotope fractionation during several vaporization processes. • PSIA for isotope profiling in environment pollutants. • Intramolecular 13 C reveal normal and inverse effects, bulk values being unchanged. - PSIA in pollutants during evaporation processes shows more detailed information for discerning the nature of the process involved than does bulk isotope measurements

  20. Stable isotopic analysis of fossil chironomids as an approach to environmental reconstruction: state of development and future challenges

    Directory of Open Access Journals (Sweden)

    Oliver Heiri

    2012-10-01

    Full Text Available Remains of chironomid larvae, especially their strongly sclerotized head capsules, can be found abundantly and well preserved in most lake sediment records. These remains mainly consist of chitin and proteins and, since their chemical composition does not seem to be strongly affected by decompositional processes, they can be used to develop palaeoenvironmental reconstructions based on their stable isotopic composition. Here we review available stable isotope studies based on fossil chironomids and indicate future research necessary to further develop this still relatively new research approach. Efforts to produce stable isotope records based on fossil chironomids have mainly examined the elements H, N, C, and O. They have focussed on (1 developing the methodology for preparing samples for isotopic analysis, (2 laboratory studies cultivating chironomid larvae under controlled conditions to determine the factors affecting their stable isotopic composition, (3 ecosystem-scale studies relating stable isotopic measurements of fossil chironomid assemblages to environmental conditions, and (4 developing first down-core records describing past changes in the stable isotopic composition of chironomid assemblages. These studies have shown that chemical sample pretreatment may affect the isotopic composition for some elements. Laboratory runs suggest that the diet of the larvae influences their stable isotopic composition for H, N, C and O, whereas stable isotopes in the ambient water also strongly influence their oxygen and to a lesser extent hydrogen isotopic composition. These experiments also indicate only minor offsets between the nitrogen and carbon isotopic composition of chironomid soft tissue and the fossilizing head capsules, whereas for hydrogen and oxygen this offset remains to be explored. Though few datasets have been published, the available ecosystem studies and developed down-core sediment records indicate that stable isotopes in

  1. Position-specific isotope modeling of organic micropollutants transformation through different reaction pathways

    DEFF Research Database (Denmark)

    Jin, Biao; Rolle, Massimo

    2016-01-01

    The degradation of organic micropollutants occurs via different reaction pathways. Compound specific isotope analysis is a valuable tool to identify such degradation pathways in different environmental systems. We propose a mechanism-based modeling approach that provides a quantitative framework ...

  2. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.; Wang, Lixin; Parkes, Stephen; Strauss, Josiah; McCabe, Matthew; Evans, Jason P.; Griffiths, Alan D.

    2015-01-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  3. Stable water isotope and surface heat flux simulation using ISOLSM: Evaluation against in-situ measurements

    KAUST Repository

    Cai, Mick Y.

    2015-04-01

    The stable isotopes of water are useful tracers of water sources and hydrological processes. Stable water isotope-enabled land surface modeling is a relatively new approach for characterizing the hydrological cycle, providing spatial and temporal variability for a number of hydrological processes. At the land surface, the integration of stable water isotopes with other meteorological measurements can assist in constraining surface heat flux estimates and discriminate between evaporation (E) and transpiration (T). However, research in this area has traditionally been limited by a lack of continuous in-situ isotopic observations. Here, the National Centre for Atmospheric Research stable isotope-enabled Land Surface Model (ISOLSM) is used to simulate the water and energy fluxes and stable water isotope variations. The model was run for a period of one month with meteorological data collected from a coastal sub-tropical site near Sydney, Australia. The modeled energy fluxes (latent heat and sensible heat) agreed reasonably well with eddy covariance observations, indicating that ISOLSM has the capacity to reproduce observed flux behavior. Comparison of modeled isotopic compositions of evapotranspiration (ET) against in-situ Fourier Transform Infrared spectroscopy (FTIR) measured bulk water vapor isotopic data (10. m above the ground), however, showed differences in magnitude and temporal patterns. The disparity is due to a small contribution from local ET fluxes to atmospheric boundary layer water vapor (~1% based on calculations using ideal gas law) relative to that advected from the ocean for this particular site. Using ISOLSM simulation, the ET was partitioned into E and T with 70% being T. We also identified that soil water from different soil layers affected T and E differently based on the simulated soil isotopic patterns, which reflects the internal working of ISOLSM. These results highlighted the capacity of using the isotope-enabled models to discriminate

  4. Assessing connectivity of estuarine fishes based on stable isotope ratio analysis

    Science.gov (United States)

    Herzka, Sharon Z.

    2005-07-01

    Assessing connectivity is fundamental to understanding the population dynamics of fishes. I propose that isotopic analyses can greatly contribute to studies of connectivity in estuarine fishes due to the high diversity of isotopic signatures found among estuarine habitats and the fact that variations in isotopic composition at the base of a food web are reflected in the tissues of consumers. Isotopic analysis can be used for identifying nursery habitats and estimating their contribution to adult populations. If movement to a new habitat is accompanied by a shift to foods of distinct isotopic composition, recent immigrants and residents can be distinguished based on their isotopic ratios. Movement patterns thus can be reconstructed based on information obtained from individuals. A key consideration is the rate of isotopic turnover, which determines the length of time that an immigrant to a given habitat will be distinguishable from a longtime resident. A literature survey indicated that few studies have measured turnover rates in fishes and that these have focused on larvae and juveniles. These studies reveal that biomass gain is the primary process driving turnover rates, while metabolic turnover is either minimal or undetectable. Using a simple dilution model and biomass-specific growth rates, I estimated that young fishes with fast growth rates will reflect the isotopic composition of a new diet within days or weeks. Older or slower-growing individuals may take years or never fully equilibrate. Future studies should evaluate the factors that influence turnover rates in fishes during various stages of the life cycle and in different tissues, as well as explore the potential for combining stable isotope and otolith microstructure analyses to examine the relationship between demographic parameters, movement and connectivity.

  5. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    Directory of Open Access Journals (Sweden)

    Cuong D. Tran

    2015-05-01

    Full Text Available It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease.

  6. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    Science.gov (United States)

    Tran, Cuong D.; Gopalsamy, Geetha L.; Mortimer, Elissa K.; Young, Graeme P.

    2015-01-01

    It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease. PMID:26035248

  7. Every apple has a voice: using stable isotopes to teach about food sourcing and the water cycle

    Science.gov (United States)

    Oerter, Erik; Malone, Molly; Putman, Annie; Drits-Esser, Dina; Stark, Louisa; Bowen, Gabriel

    2017-07-01

    Agricultural crops such as fruits take up irrigation and meteoric water and incorporate it into their tissue (fruit water) during growth, and the geographic origin of a fruit may be traced by comparing the H and O stable isotope composition (δ2H and δ18O values) of fruit water to the global geospatial distribution of H and O stable isotopes in precipitation. This connection between common fruits and the global water cycle provides an access point to connect with a variety of demographic groups to educate about isotope hydrology and the water cycle. Within the context of a 1-day outreach activity designed for a wide spectrum of participants (high school students, undergraduate students, high school science teachers) we developed introductory lecture materials, in-class participatory demonstrations of fruit water isotopic measurement in real time, and a computer lab exercise to couple actual fruit water isotope data with open-source online geospatial analysis software. We assessed learning outcomes with pre- and post-tests tied to learning objectives, as well as participant feedback surveys. Results indicate that this outreach activity provided effective lessons on the basics of stable isotope hydrology and the water cycle. However, the computer lab exercise needs to be more specifically tailored to the abilities of each participant group. This pilot study provides a foundation for further development of outreach materials that can effectively engage a range of participant groups in learning about the water cycle and the ways in which humans modify the water cycle through agricultural activity.

  8. Every apple has a voice: using stable isotopes to teach about food sourcing and the water cycle

    Directory of Open Access Journals (Sweden)

    E. Oerter

    2017-07-01

    Full Text Available Agricultural crops such as fruits take up irrigation and meteoric water and incorporate it into their tissue (fruit water during growth, and the geographic origin of a fruit may be traced by comparing the H and O stable isotope composition (δ2H and δ18O values of fruit water to the global geospatial distribution of H and O stable isotopes in precipitation. This connection between common fruits and the global water cycle provides an access point to connect with a variety of demographic groups to educate about isotope hydrology and the water cycle. Within the context of a 1-day outreach activity designed for a wide spectrum of participants (high school students, undergraduate students, high school science teachers we developed introductory lecture materials, in-class participatory demonstrations of fruit water isotopic measurement in real time, and a computer lab exercise to couple actual fruit water isotope data with open-source online geospatial analysis software. We assessed learning outcomes with pre- and post-tests tied to learning objectives, as well as participant feedback surveys. Results indicate that this outreach activity provided effective lessons on the basics of stable isotope hydrology and the water cycle. However, the computer lab exercise needs to be more specifically tailored to the abilities of each participant group. This pilot study provides a foundation for further development of outreach materials that can effectively engage a range of participant groups in learning about the water cycle and the ways in which humans modify the water cycle through agricultural activity.

  9. Progresses in the stable isotope studies of microbial processes associated with wetland methane production

    International Nuclear Information System (INIS)

    Li Qing; Lin Guanghui

    2013-01-01

    Methane emissions from wetlands play a key role in regulating global atmospheric methane concentration, so better understanding of microbial processes for the methane emission in wetlands is critical for developing process models and reducing uncertainty in global methane emission inventory. In this review, we describe basic microbial processes for wetland methane production and then demonstrate how stable isotope fractionation and stable isotope probing can be used to investigate the mechanisms underlying different methanogenic pathways and to quantify microbial species involved in wetland methane production. When applying stable isotope technique to calculate contributions of different pathways to the total methane production in various wetlands, the technical challenge is how to determine isotopic fractionation factors for the acetate derived methane production and carbon dioxide derived methane production. Although the application of stable isotope probing techniques to study the actual functions of different microbial organisms to methane production process is significantly superior to the traditional molecular biology method, the combination of these two technologies will be crucial for direct linking of the microbial community and functional structure with the corresponding metabolic functions, and provide new ideas for future studies. (authors)

  10. Recent developments in application of stable isotope analysis on agro-product authenticity and traceability.

    Science.gov (United States)

    Zhao, Yan; Zhang, Bin; Chen, Gang; Chen, Ailiang; Yang, Shuming; Ye, Zhihua

    2014-02-15

    With the globalisation of agro-product markets and convenient transportation of food across countries and continents, the potential for distribution of mis-labelled products increases accordingly, highlighting the need for measures to identify the origin of food. High quality food with identified geographic origin is a concern not only for consumers, but also for agriculture farmers, retailers and administrative authorities. Currently, stable isotope ratio analysis in combination with other chemical methods gradually becomes a promising approach for agro-product authenticity and traceability. In the last five years, a growing number of research papers have been published on tracing agro-products by stable isotope ratio analysis and techniques combining with other instruments. In these reports, the global variety of stable isotope compositions has been investigated, including light elements such as C, N, H, O and S, and heavy isotopes variation such as Sr and B. Several factors also have been considered, including the latitude, altitude, evaporation and climate conditions. In the present paper, an overview is provided on the authenticity and traceability of the agro-products from both animal and plant sources by stable isotope ratio analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Water stable isotopes: application to the water cycle and climate variations study

    International Nuclear Information System (INIS)

    Risi, C.

    2009-12-01

    The stable isotopic composition of water (H 2 16 , HDO, H 2 18 , H 2 17 ) is a promising tracer of the present day water cycle and past climates. While the isotopic composition recorded in polar ice core have long been used to reconstruct past temperatures, however, what controls the isotopic composition of the tropical precipitation is more complex. The goal of this thesis is thus to better understand the processes that affect the isotopic composition of tropical precipitation and atmospheric water, more particularly in the tropics. Since most of the tropical precipitation arises from atmospheric convection, and most isotopic archives are on land, we focus more particularly on the impact of convective and land surface processes. In turn, what can be learned about convection and land surface processes using isotopic measurements? Can they help constrain their representation in models? At the inter-annual to climate change scale, what information about the tropical climate variability is recorded in isotopic signals observed in archives? First, we investigate the influence of convection on water stable isotopes. We use both (1) numerical modeling, with a hierarchy of models (single column model, two-dimensional model of squall lines, general circulation model) and (2) data analysis, using isotopic data from rain collected in the Sahel during the African Monsoon Multidisciplinary Analysis campaign, at the event and intra-event scales. These studies highlight the strong impact of convection on the precipitation composition, and stress the importance of rain evaporation and convective or meso-scale subsidence in controlling the rain isotopic composition. Convection also plays an important role on isotopic profiles in the upper troposphere-lower stratosphere. Second, we study what information about climatic variability is recorded by water stable isotopes in precipitation. We analyze simulations of present day and past climates with LMDZ, and evaluate to what extent

  12. Development of uniformly stable isotope labeling system in higher plants for hetero-nuclear NMR experiments in vitro and in vivo

    International Nuclear Information System (INIS)

    Kikuchi, J.

    2005-01-01

    Full text: Novel methods for measurement of living systems are making new breakthroughs in life science. In the era of the metabolome (analysis of all measurable metabolites), a MS-based approach is considered to be the major technology, whereas a NMR-based method is recognized as minor technology due to its low sensitivity. Therefore, my laboratory is currently focusing to develop novel methodologies for an NMR-based metabolomics. This will be achieved by uniform stable isotope labeling of higher plants allowing application of multi-dimensional NMR experiments used in protein structure determination. Using these novel methods, I will analyze the dynamic molecular networks inside tissues. Especially, use of stable isotope labeling methods has enormous advantage for discrimination of incorporated or de novo synthesized compounds. Furthermore, potentiality of in vivo-NMR metabolomics will be discussed in the conference. (author)

  13. Diet-tissue stable isotope (Δ(13)C and Δ(15)N) discrimination factors for multiple tissues from terrestrial reptiles.

    Science.gov (United States)

    Steinitz, Ronnie; Lemm, Jeffrey M; Pasachnik, Stesha A; Kurle, Carolyn M

    2016-01-15

    Stable isotope analysis is a powerful tool for reconstructing trophic interactions to better understand drivers of community ecology. Taxon-specific stable isotope discrimination factors contribute to the best use of this tool. We determined the first Δ(13)C and Δ(15)N values for Rock Iguanas (Cyclura spp.) to better understand isotopic fractionation and estimate wild reptile foraging ecology. The Δ(13)C and Δ(15)N values between diet and skin, blood, and scat were determined from juvenile and adult iguanas held for 1 year on a known diet. We measured relationships between iguana discrimination factors and size/age and quantified effects of lipid extraction and acid treatment on stable isotope values from iguana tissues. Isotopic and elemental compositions were determined by Dumas combustion using an elemental analyzer coupled to an isotope ratio mass spectrometer using standards of known composition. The Δ(13)C and Δ(15)N values ranged from -2.5 to +6.5‰ and +2.2 to +7.5‰, respectively, with some differences among tissues and between juveniles and adults. The Δ(13)C values from blood and skin differed among species, but not the Δ(15)N values. The Δ(13)C values from blood and skin and Δ(15)N values from blood were positively correlated with size/age. The Δ(13)C values from scat were negatively correlated with size (not age). Treatment with HCl (scat) and lipid extraction (skin) did not affect the isotope values. These results should aid in the understanding of processes driving stable carbon and nitrogen isotope discrimination factors in reptiles. We provide estimates of Δ(13)C and Δ(15)N values and linear relationships between iguana size/age and discrimination factors for the best interpretation of wild reptile foraging ecology. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM2.5 from Beijing, China

    Science.gov (United States)

    Zhao, Wanyu; Kawamura, Kimitaka; Yue, Siyao; Wei, Lianfang; Ren, Hong; Yan, Yu; Kang, Mingjie; Li, Linjie; Ren, Lujie; Lai, Senchao; Li, Jie; Sun, Yele; Wang, Zifa; Fu, Pingqing

    2018-02-01

    This study investigates the seasonal variation, molecular distribution and stable carbon isotopic composition of diacids, oxocarboxylic acids and α-dicarbonyls to better understand the sources and formation processes of fine aerosols (PM2.5) in Beijing. The concentrations of total dicarboxylic acids varied from 110 to 2580 ng m-3, whereas oxoacids (9.50-353 ng m-3) and dicarbonyls (1.50-85.9 ng m-3) were less abundant. Oxalic acid was found to be the most abundant individual species, followed by succinic acid or occasionally by terephthalic acid (tPh), a plastic waste burning tracer. Ambient concentrations of phthalic acid (37.9 ± 27.3 ng m-3) and tPh (48.7 ± 51.1 ng m-3) were larger in winter than in other seasons, illustrating that fossil fuel combustion and plastic waste incineration contribute more to wintertime aerosols. The year-round mass concentration ratios of malonic acid to succinic acid (C3 / C4) were relatively low by comparison with those in other urban aerosols and remote marine aerosols. The values were less than or equal to unity in Beijing, implying that the degree of photochemical formation of diacids in Beijing is insignificant. Moreover, strong correlation coefficients of major oxocarboxylic acids and α-dicarbonyls with nss-K+ suggest that biomass burning contributes significantly to these organic acids and related precursors. The mean δ13C value of succinic acid is the highest among all species, with values of -17.1 ± 3.9 ‰ (winter) and -17.1 ± 2.0 ‰ (spring), while malonic acid is more enriched in 13C than others in autumn (-17.6 ± 4.6 ‰) and summer (-18.7 ± 4.0 ‰). The δ13C values of major species in Beijing aerosols are generally lower than those in the western North Pacific atmosphere, the downwind region, which indicates that stable carbon isotopic compositions of diacids depend on their precursor sources in Beijing. Therefore, our study demonstrates that in addition to photochemical oxidation, high abundances of diacids

  15. A guide for the laboratory information management system (LIMS) for light stable isotopes--Versions 7 and 8

    Science.gov (United States)

    Coplen, Tyler B.

    2000-01-01

    The reliability and accuracy of isotopic data can be improved by utilizing database software to (i) store information about samples, (ii) store the results of mass spectrometric isotope-ratio analyses of samples, (iii) calculate analytical results using standardized algorithms stored in a database, (iv) normalize stable isotopic data to international scales using isotopic reference materials, and (v) generate multi-sheet paper templates for convenient sample loading of automated mass-spectrometer sample preparation manifolds. Such a database program, the Laboratory Information Management System (LIMS) for Light Stable Isotopes, is presented herein. Major benefits of this system include (i) a dramatic improvement in quality assurance, (ii) an increase in laboratory efficiency, (iii) a reduction in workload due to the elimination or reduction of retyping of data by laboratory personnel, and (iv) a decrease in errors in data reported to sample submitters. Such a database provides a complete record of when and how often laboratory reference materials have been analyzed and provides a record of what correction factors have been used through time. It provides an audit trail for laboratories. LIMS for Light Stable Isotopes is available for both Microsoft Office 97 Professional and Microsoft Office 2000 Professional as versions 7 and 8, respectively. Both source code (mdb file) and precompiled executable files (mde) are available. Numerous improvements have been made for continuous flow isotopic analysis in this version (specifically 7.13 for Microsoft Access 97 and 8.13 for Microsoft Access 2000). It is much easier to import isotopic results from Finnigan ISODAT worksheets, even worksheets on which corrections for amount of sample (linearity corrections) have been added. The capability to determine blank corrections using isotope mass balance from analyses of elemental analyzer samples has been added. It is now possible to calculate and apply drift corrections to isotopic

  16. Tracking transformation processes of organic micropollutants in aquatic environments using multi-element isotope fractionation analysis

    International Nuclear Information System (INIS)

    Hofstetter, Thomas B.; Bolotin, Jakov; Skarpeli-Liati, Marita; Wijker, Reto; Kurt, Zohre; Nishino, Shirley F.; Spain, Jim C.

    2011-01-01

    The quantitative description of enzymatic or abiotic transformations of man-made organic micropollutants in rivers, lakes, and groundwaters is one of the major challenges associated with the risk assessment of water resource contamination. Compound-specific isotope analysis enables one to identify (bio)degradation pathways based on changes in the contaminants' stable isotope ratios even if multiple reactive and non-reactive processes cause concentrations to decrease. Here, we investigated how the magnitude and variability of isotope fractionation in some priority pollutants is determined by the kinetics and mechanisms of important enzymatic and abiotic redox reactions. For nitroaromatic compounds and substituted anilines, we illustrate that competing transformation pathways can be assessed via trends of N and C isotope signatures.

  17. Simultaneous determination of stable carbon, oxygen, and hydrogen isotopes in cellulose.

    Science.gov (United States)

    Loader, N J; Street-Perrott, F A; Daley, T J; Hughes, P D M; Kimak, A; Levanič, T; Mallon, G; Mauquoy, D; Robertson, I; Roland, T P; van Bellen, S; Ziehmer, M M; Leuenberger, M

    2015-01-06

    A technological development is described through which the stable carbon-, oxygen-, and nonexchangeable hydrogen-isotopic ratios (δ(13)C, δ(18)O, δ(2)H) are determined on a single carbohydrate (cellulose) sample with precision equivalent to conventional techniques (δ(13)C 0.15‰, δ(18)O 0.30‰, δ(2)H 3.0‰). This triple-isotope approach offers significant new research opportunities, most notably in physiology and medicine, isotope biogeochemistry, forensic science, and palaeoclimatology, when isotopic analysis of a common sample is desirable or when sample material is limited.

  18. The carbon isotopic compositions of individual compounds from ancient and modern depositional environments

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, K.H.

    1991-01-01

    This work examines factors influencing the isotopic compositions of individual compounds and, consequently, that of preserved sedimentary organic matter. Specifically, isotope effects associated with reactions resulting in the production and degradation of organic matter in the water column and reactions affecting preservation during diagenesis are considered in three projects. The first documents the preservation of the isotopic compositions of hydrocarbons altered by diagenetic reaction. Isotopic compositions of structurally-related polycyclic aromatic hydrocarbons (PAH) from the Messel Shale show little variation with increased unsaturation. The influence of environmental conditions on the isotopic composition of sedimentary organic carbon is documented by a comparison of the {delta}{sup 13}C of hydrocarbons in the marine Julia Creek Oil Shale and the lacustrine Condor Oil Shale. A model is proposed for identifying relative degrees of oxygenation and productivity within a paleoenvironment based on the observed {sup 13}C contents of biomarkers. Effects of processes proposed in the environmental model are documented by an examination of hydrocarbons from the waters and sediments of the Black Sea and of the Cariaco Trench. Sources of individual compounds are identified by comparison of their {sup 13}C content with that predicted for autotrophic biomass calculated from the concentration and {sup 13}C content of CO{sub 2}(aq) in the surface waters.

  19. Verification of Egg Farming Systems from The Netherlands and New Zealand Using Stable Isotopes.

    Science.gov (United States)

    Rogers, Karyne M; van Ruth, Saskia; Alewijn, Martin; Philips, Andy; Rogers, Pam

    2015-09-30

    Stable isotopes were used to develop authentication criteria of eggs laid under cage, barn, free range, and organic farming regimens from The Netherlands and New Zealand. A training set of commercial poultry feeds and egg albumen from 49 poultry farms across The Netherlands was used to determine the isotopic variability of organic and conventional feeds and to assess trophic effects of these corresponding feeds and barn, free range, and organic farming regimens on corresponding egg albumen. A further 52 brands of New Zealand eggs were sampled from supermarket shelves in 2008 (18), 2010 (30), and 2014 (4) to characterize and monitor changes in caged, barn, free range, and organic egg farming regimens. Stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes of 49 commercial poultry feeds and their corresponding egg albumens reveals that Dutch poultry are fed exclusively on a plant-based feed and that it is possible to discriminate between conventional and organic egg farming regimens in The Netherlands. Similarly, it is possible to discriminate between New Zealand organic and conventional egg farming regimens, although in the initial screening in 2008, results showed that some organic eggs had isotope values similar to those of conventional eggs, suggesting hens were not exclusively receiving an organic diet. Dutch and New Zealand egg regimens were shown to have a low isotopic correlation between both countries, because of different poultry feed compositions. In New Zealand, both conventional and organic egg whites have higher δ(15)N values than corresponding Dutch egg whites, due to the use of fishmeal or meat and bone meal (MBM), which is banned in European countries. This study suggests that stable isotopes (specifically nitrogen) show particular promise as a screening and authentication tool for organically farmed eggs. Criteria to assess truthfulness in labeling of organic eggs were developed, and we propose that Dutch organic egg whites should have a minimum

  20. Impact of contamination and pre-treatment on stable carbon and nitrogen isotopic composition of charred plant remains.

    Science.gov (United States)

    Vaiglova, Petra; Snoeck, Christophe; Nitsch, Erika; Bogaard, Amy; Lee-Thorp, Julia

    2014-12-15

    Stable isotope analysis of archaeological charred plants has become a useful tool for interpreting past agricultural practices and refining ancient dietary reconstruction. Charred material that lay buried in soil for millennia, however, is susceptible to various kinds of contamination, whose impact on the grain/seed isotopic composition is poorly understood. Pre-treatment protocols have been adapted in distinct forms from radiocarbon dating, but insufficient research has been carried out on evaluating their effectiveness and necessity for stable carbon and nitrogen isotope analysis. The effects of previously used pre-treatment protocols on the isotopic composition of archaeological and modern sets of samples were investigated. An archaeological sample was also artificially contaminated with carbonates, nitrates and humic acid and subjected to treatment aimed at removing the introduced contamination. The presence and removal of the contamination were investigated using Fourier transform infrared spectroscopy (FTIR) and δ(13)C and δ(15)N values. The results show a ca 1‰ decrease in the δ(15)N values of archaeological charred plant material caused by harsh acid treatments and ultra-sonication. This change is interpreted as being caused by mechanical distortion of the grains/seeds rather than by the removal of contamination. Furthermore, specific infrared peaks have been identified that can be used to detect the three types of contaminants studied. We argue that it is not necessary to try to remove humic acid contamination for stable isotope analysis. The advantages and disadvantages of crushing the grains/seeds before pre-treatment are discussed. We recommend the use of an acid-only procedure (0.5 M HCl for 30 min at 80 °C followed by three rinses in distilled water) for cleaning charred plant remains. This study fills an important gap in plant stable isotope research that will enable future researchers to evaluate potential sources of isotopic change and pre

  1. Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation

    Science.gov (United States)

    Uhlik, Ondrej; Leewis, Mary-Cathrine; Strejcek, Michal; Musilova, Lucie; Mackova, Martina; Leigh, Mary Beth; Macek, Tomas

    2012-01-01

    Microbial biodegradation and biotransformation reactions are essential to most bioremediation processes, yet the specific organisms, genes, and mechanisms involved are often not well understood. Stable isotope probing (SIP) enables researchers to directly link microbial metabolic capability to phylogenetic and metagenomic information within a community context by tracking isotopically labeled substances into phylogenetically and functionally informative biomarkers. SIP is thus applicable as a tool for the identification of active members of the microbial community and associated genes integral to the community functional potential, such as biodegradative processes. The rapid evolution of SIP over the last decade and integration with metagenomics provides researchers with a much deeper insight into potential biodegradative genes, processes, and applications, thereby enabling an improved mechanistic understanding that can facilitate advances in the field of bioremediation. PMID:23022353

  2. [Research progress on food sources and food web structure of wetlands based on stable isotopes].

    Science.gov (United States)

    Chen, Zhan Yan; Wu, Hai Tao; Wang, Yun Biao; Lyu, Xian Guo

    2017-07-18

    The trophic dynamics of wetland organisms is the basis of assessing wetland structure and function. Stable isotopes of carbon and nitrogen have been widely applied to identify trophic relationships in food source, food composition and food web transport in wetland ecosystem studies. This paper provided an overall review about the current methodology of isotope mixing model and trophic level in wetland ecosystems, and discussed the standards of trophic fractionation and baseline. Moreover, we characterized the typical food sources and isotopic compositions of wetland ecosystems, summarized the food sources in different trophic levels of herbivores, omnivores and carnivores based on stable isotopic analyses. We also discussed the limitations of stable isotopes in tra-cing food sources and in constructing food webs. Based on the current results, development trends and upcoming requirements, future studies should focus on sample treatment, conservation and trophic enrichment measurement in the wetland food web, as well as on combing a variety of methodologies including traditional stomach stuffing, molecular markers, and multiple isotopes.

  3. Inferring foliar water uptake using stable isotopes of water.

    Science.gov (United States)

    Goldsmith, Gregory R; Lehmann, Marco M; Cernusak, Lucas A; Arend, Matthias; Siegwolf, Rolf T W

    2017-08-01

    A growing number of studies have described the direct absorption of water into leaves, a phenomenon known as foliar water uptake. The resultant increase in the amount of water in the leaf can be important for plant function. Exposing leaves to isotopically enriched or depleted water sources has become a common method for establishing whether or not a plant is capable of carrying out foliar water uptake. However, a careful inspection of our understanding of the fluxes of water isotopes between leaves and the atmosphere under high humidity conditions shows that there can clearly be isotopic exchange between the two pools even in the absence of a change in the mass of water in the leaf. We provide experimental evidence that while leaf water isotope ratios may change following exposure to a fog event using water with a depleted oxygen isotope ratio, leaf mass only changes when leaves are experiencing a water deficit that creates a driving gradient for the uptake of water by the leaf. Studies that rely on stable isotopes of water as a means of studying plant water use, particularly with respect to foliar water uptake, must consider the effects of these isotopic exchange processes.

  4. Normalization Methods and Selection Strategies for Reference Materials in Stable Isotope Analyes. Review

    Energy Technology Data Exchange (ETDEWEB)

    Skrzypek, G. [West Australian Biogeochemistry Centre, John de Laeter Centre of Mass Spectrometry, School of Plant Biology, University of Western Australia, Crawley (Australia); Sadler, R. [School of Agricultural and Resource Economics, University of Western Australia, Crawley (Australia); Paul, D. [Department of Civil Engineering (Geosciences), Indian Institute of Technology Kanpur, Kanpur (India); Forizs, I. [Institute for Geochemical Research, Hungarian Academy of Sciences, Budapest (Hungary)

    2013-07-15

    Stable isotope ratio mass spectrometers are highly precise, but not accurate instruments. Therefore, results have to be normalized to one of the isotope scales (e.g., VSMOW, VPDB) based on well calibrated reference materials. The selection of reference materials, numbers of replicates, {delta}-values of these reference materials and normalization technique have been identified as crucial in determining the uncertainty associated with the final results. The most common normalization techniques and reference materials have been tested using both Monte Carlo simulations and laboratory experiments to investigate aspects of error propagation during the normalization of isotope data. The range of observed differences justifies the need to employ the same sets of standards worldwide for each element and each stable isotope analytical technique. (author)

  5. Lifetime Stable isotopes profiles in whale earplug: assessment of foraging and migrations in the Northern Hemisphere

    Science.gov (United States)

    Mansouri, F.; Crain, D.; Winfield, Z.; Trumble, S.; Usenko, S.

    2017-12-01

    Whale earplugs, historically used for aging, were used to reconstruct lifetime stable isotope profiles for carbon (δ13C) and nitrogen (δ15N) for individual whales by delaminating lamina within the earplug. These stable isotope profile, which provide Continuous lifetime records of feeding, foraging ecology, and migration, were determined for 20 individuals from 4 baleen species including fin, minke, humpback, and blue whales spanning more than a century (1869 - 2014) using stable isotope analysis. Approximately 1 mg tissue from each lamina (n=1200) was analyzed for carbon and nitrogen stable isotope using continuous flow isotope ratio mass spectrometer (CF-IRMS). This research using whale earplugs have combined age estimates with stable isotope measurements to reconstruct lifetime foraging profiles with a 6-month resolution, providing an unprecedented opportunity to assess periods and trends in dietary fluctuations as well as migration between different foraging area which have distinct isotope values. Trends with these profiles suggest long-term changing in migration, while annual variability highlights seasonal fasting and feeding. Isotopic ratios were also used to identify subpopulations of Atlantic fin whales, which enabled us to assign unidentified humpback and minke whales to the Atlantic or Pacific Oceans. This historical archive of data provides us an unprecedented tool to assess long term marine ecosystem and subsequently marine organism transition to alternate foraging area and shed light on the whale's population status in the Northern hemisphere.

  6. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients

    Science.gov (United States)

    Balter, Vincent; Nogueira da Costa, Andre; Paky Bondanese, Victor; Jaouen, Klervia; Lamboux, Aline; Sangrajrang, Suleeporn; Vincent, Nicolas; Fourel, François; Télouk, Philippe; Gigou, Michelle; Lécuyer, Christophe; Srivatanakul, Petcharin; Bréchot, Christian; Albarède, Francis; Hainaut, Pierre

    2015-01-01

    The widespread hypoxic conditions of the tumor microenvironment can impair the metabolism of bioessential elements such as copper and sulfur, notably by changing their redox state and, as a consequence, their ability to bind specific molecules. Because competing redox state is known to drive isotopic fractionation, we have used here the stable isotope compositions of copper (65Cu/63Cu) and sulfur (34S/32S) in the blood of patients with hepatocellular carcinoma (HCC) as a tool to explore the cancer-driven copper and sulfur imbalances. We report that copper is 63Cu-enriched by ∼0.4‰ and sulfur is 32S-enriched by ∼1.5‰ in the blood of patients compared with that of control subjects. As expected, HCC patients have more copper in red blood cells and serum compared with control subjects. However, the isotopic signature of this blood extra copper burden is not in favor of a dietary origin but rather suggests a reallocation in the body of copper bound to cysteine-rich proteins such as metallothioneins. The magnitude of the sulfur isotope effect is similar in red blood cells and serum of HCC patients, implying that sulfur fractionation is systemic. The 32S-enrichment of sulfur in the blood of HCC patients is compatible with the notion that sulfur partly originates from tumor-derived sulfides. The measurement of natural variations of stable isotope compositions, using techniques developed in the field of Earth sciences, can provide new means to detect and quantify cancer metabolic changes and provide insights into underlying mechanisms.

  7. Carbon and Hydrogen Stable Isotope Fractionation during Aerobic Bacterial Degradation of Aromatic Hydrocarbons†

    Science.gov (United States)

    Morasch, Barbara; Richnow, Hans H.; Schink, Bernhard; Vieth, Andrea; Meckenstock, Rainer U.

    2002-01-01

    13C/12C and D/H stable isotope fractionation during aerobic degradation was determined for Pseudomonas putida strain mt-2, Pseudomonas putida strain F1, Ralstonia pickettii strain PKO1, and Pseudomonas putida strain NCIB 9816 grown with toluene, xylenes, and naphthalene. Different types of initial reactions used by the respective bacterial strains could be linked with certain extents of stable isotope fractionation during substrate degradation. PMID:12324375

  8. Review: Current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS).

    Science.gov (United States)

    Godin, Jean-Philippe; McCullagh, James S O

    2011-10-30

    High-precision isotope analysis is recognized as an essential research tool in many fields of study. Until recently, continuous flow isotope ratio mass spectrometry (CF-IRMS) was available via an elemental analyzer or a gas chromatography inlet system for compound-specific analysis of light stable isotopes. In 2004, however, an interface that coupled liquid chromatography with IRMS (LC/IRMS) became commercially available for the first time. This brought the capability for new areas of application, in particular enabling compound-specific δ(13)C analysis of non-volatile, aqueous soluble, compounds from complex mixtures. The interface design brought with it several analytical constraints, however, in particular a lack of compatibility with certain types of chromatography as well as limited flow rates and mobile phase compositions. Routine LC/IRMS methods have, however, been established for measuring the δ(13)C isotopic ratios of underivatized individual compounds for application in archeology, nutrition and physiology, geochemistry, hydrology, soil science and food authenticity. Seven years after its introduction, we review the technical advances and constraints, methodological developments and new applications of liquid chromatography coupled to isotope ratio mass spectrometry. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Molecularly imprinted solid phase extraction using stable isotope labeled compounds as template and liquid chromatography-mass spectrometry for trace analysis of bisphenol A in water sample

    International Nuclear Information System (INIS)

    Kawaguchi, Migaku; Hayatsu, Yoshio; Nakata, Hisao; Ishii, Yumiko; Ito, Rie; Saito, Koichi; Nakazawa, Hiroyuki

    2005-01-01

    We have developed a molecularly imprinted polymer (MIP) using a stable isotope labeled compound as the template molecule and called it the ''isotope molecularly imprinted polymer'' (IMIP). In this study, bisphenol A (BPA) was used as the model compound. None imprinted polymer (NIP), MIP, dummy molecularly imprinted polymer (DMIP) and IMIP were prepared by the suspension polymerization method using without template, BPA, 4-tert-butylphenol (BP) and bisphenol A-d 16 (BPA-d 16 ), respectively. The polymers were subjected to molecularly imprinted solid phase extraction (MI-SPE), and the extracted samples were subjected to liquid chromatography-mass spectrometry (LC-MS). Although the leakage of BPA-d 16 from the IMIP was observed and that of BPA was not observed. The selectivity factors of MIP and IMIP for BPA were 4.45 and 4.43, respectively. Therefore, IMIP had the same molecular recognition ability as MIP. When MI-SPE with IMIP was used and followed by LC-MS in the analysis of river water sample, the detection limit of BPA was 1 ppt with high sensitivity. Moreover, the average recovery was higher than 99.8% (R.S.D.: 3.7%) by using bisphenol A- 13 C 12 (BPA- 13 C 12 ) as the surrogate standard. In addition, the IMIP were employed in MI-SPE of BPA in river water sample by LC-MS. The concentration of BPA in the river water sample was determined to be 32 pg ml -1 . We confirmed that it was possible to measure trace amounts of a target analyte by MI-SPE using IMIP

  10. Stable isotopes: essential tools in biological and medical research

    Energy Technology Data Exchange (ETDEWEB)

    Klein, P. D.; Hachey, D. L.; Kreek, M. J.; Schoeller, D. A.

    1977-01-01

    Recent developments in the use of the stable isotopes, /sup 13/C, /sup 15/N, /sup 17/O, and /sup 18/O, as tracers in research studies in the fields of biology, medicine, pharmacology, and agriculture are briefly reviewed. (CH)

  11. Insights into Mechanistic Models for Evaporation of Organic Liquids in the Environment Obtained by Position-Specific Carbon Isotope Analysis.

    Science.gov (United States)

    Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gérald S; Parinet, Julien; Höhener, Patrick

    2015-11-03

    Position-specific isotope effects (PSIEs) have been measured by isotope ratio monitoring (13)C nuclear magnetic resonance spectrometry during the evaporation of 10 liquids of different polarities under 4 evaporation modes (passive evaporation, air-vented evaporation, low pressure evaporation, distillation). The observed effects are used to assess the validity of the Craig-Gordon isotope model for organic liquids. For seven liquids the overall isotope effect (IE) includes a vapor-liquid contribution that is strongly position-specific in polar compounds but less so in apolar compounds and a diffusive IE that is not position-specific, except in the alcohols, ethanol and propan-1-ol. The diffusive IE is diminished under forced evaporation. The position-specific isotope pattern created by liquid-vapor IEs is manifest in five liquids, which have an air-side limitation for volatilization. For the alcohols, undefined processes in the liquid phase create additional PSIEs. Three other liquids with limitations on the liquid side have a lower, highly position-specific, bulk diffusive IE. It is concluded that evaporation of organic pollutants creates unique position-specific isotope patterns that may be used to assess the progress of remediation or natural attenuation of pollution and that the Craig-Gordon isotope model is valid for the volatilization of nonpolar organic liquids with air-side limitation of the volatilization rate.

  12. Inter-laboratory comparison of elemental analysis and gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS). Part I: delta13C measurements of selected compounds for the development of an isotopic Grob-test.

    Science.gov (United States)

    Serra, F; Janeiro, A; Calderone, G; Rojas, J M Moreno; Rhodes, C; Gonthier, L A; Martin, F; Lees, M; Mosandl, A; Sewenig, S; Hener, U; Henriques, B; Ramalho, L; Reniero, F; Teixeira, A J; Guillou, C

    2007-03-01

    This study was directed towards investigating suitable compounds to be used as stable isotope reference materials for gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) calibration. Several compounds were selected from those used in the 'Grob-test' mixture. Oxygen- and nitrogen-containing substances were added to these compounds to allow the mixture to be used as a possible multi-isotopic calibration tool for 2H/1H, 13C/12C, 15N/14N and 18O/16O ratio determinations. In this paper we present the results of delta13C measurements performed by the consortium of the five laboratories taking part in this inter-calibration exercise. All the compounds were individually assessed for homogeneity, short-term stability and long-term stability by means of EA-IRMS, as required by the bureau communitaire de reference (BCR) Guide for Production of Certified Reference Materials. The results were compared then with the GC-C-IRMS measurements using both polar and non-polar columns, and the final mixture of selected compounds underwent a further certification exercise assessing limits of accuracy and reproducibility under specified GC-C-IRMS conditions. Copyright 2007 John Wiley & Sons, Ltd.

  13. Stable isotope paleoaltimetry and the evolution of landscapes and life

    Science.gov (United States)

    Mulch, Andreas

    2016-01-01

    Reconstructing topography of our planet not only advances our knowledge of the geodynamic processes that shape the Earth's surface; equally important it adds a key element towards understanding long-term continental moisture transport, atmospheric circulation and the distribution of biomes and biodiversity. Stable isotope paleoaltimetry exploits systematic decreases in the oxygen (δ18O) or hydrogen (δD) isotopic composition of precipitation along a mountain front when the interaction of topography and advected moist air masses induces orographic precipitation. These changes in δ18O or δD can be recovered from the geologic record and recent geochemical and modeling advances allow a broad range of proxy materials to be evaluated. Over the last 10 yr stable isotope paleoaltimetry has witnessed rapidly expanding research activities and has produced a broad array of fascinating tectonic and geomorphologic studies many of which have concentrated on determining the elevation history of continental plateau regions. These single-site studies have greatly expanded what used to be very sparse global paleoaltimetric data. The challenge now lies in disentangling the surface uplift component from the impact of climate change on δ18O and δD in precipitation. The robustness of stable isotope paleoaltimetry can be enhanced when high-elevation δ18O or δD data are referenced against low-elevation sites that track climate-modulated sea level δ18O or δD of precipitation through time (' δ- δ approach'). Analysis of central Andean paleosols documents that differences in δ18O of soil carbonate between the Subandean foreland and the Bolivian Altiplano are small between 11 and 7 Ma but rise rapidly to ca. 2.9‰ after 7 Ma, corroborating the magnitude of late Miocene change in δ18O on the Altiplano. Future advances in stable isotope paleoaltimetry will greatly benefit from addressing four key challenges: (1) Identifying topographically-induced changes in atmospheric

  14. Protein labelling with stable isotopes: strategies

    International Nuclear Information System (INIS)

    Lirsac, P.N.; Gilles, N.; Jamin, N.; Toma, F.; Gabrielsen, O.; Boulain, J.C.; Menez, A.

    1994-01-01

    A protein labelling technique with stable isotopes has been developed at the CEA: a labelled complete medium has been developed, performing as well as the Luria medium, but differing from it because it contains not only free aminated acids and peptides, but also sugars (96% of D-glucopyrannose) and labelled nucleosides. These precursors are produced from a labelled photosynthetic micro-organisms biomass, obtained with micro-algae having incorporated carbon 13, nitrogen 15 and deuterium during their culture. Labelling costs are reduced. 1 fig., 1 tab., 3 refs

  15. Limnological controls on stable isotope records of late-holocene palaeoenvironment change in sw greenland: A paired lake study

    DEFF Research Database (Denmark)

    Olsen, Jesper; John Anderson, N.; Leng, M.J.

    2013-01-01

    Stable isotope records are increasingly being used in palaeoenvironmental studies of Arctic lakes. Here we compare stable isotope and elemental records (δ13C, δ15N, C/N) with high resolution XRF-derived geochemical and colour data from low Arctic lakes (SS1220 and SS85) in southwest Greenland. Lake...... SS1220 sediments are laminated gyttja whereas SS85 consist of homogeneous gyttja, both records cover the last c. 5000 years. d13C and carbon content suggest that organic matter in both lakes is predominantly autochthonous. The C/N variability, ranging between 11 and 15, is interpreted...... composition of lake sediments when there is a reasonable understanding of limnological processes, and records may be lake specific....

  16. Stable carbon isotope fractionation in pollen of Atlas cedar: first steps towards a new palaeoecological proxy for Northwest Africa

    Science.gov (United States)

    Bell, Benjamin; Fletcher, William; Ryan, Peter; Grant, Helen; Ilmen, Rachid

    2016-04-01

    Analysis of stable carbon isotopes can provide information on climate and the environmental conditions at different growth stages of the plant, both past and present. Carbon isotope discrimination in plant tissue is already well understood, and can be used as a drought stress indicator for semi-arid regions. Stable carbon isotope ratios measured directly on pollen provides the potential for the development of long-term environmental proxies (spanning thousands of years), as pollen is well preserved in the environment. Atlas Cedar (Cedrus atlantica Endl. Manetti ex Carrière), is an ideal test case to develop a pollen stable carbon isotope proxy. The tree grows across a wide altitudinal and climatic range and is extremely sensitive to moisture availability. The pollen is abundant, and easily identifiable to the species level in pollen analysis because different cedar species are geographically confined to different regions of the world. In 2015 we sampled 76 individual cedar trees across latitudinal, altitudinal and environmental gradients, highly focused on the Middle Atlas region of Morocco, with 25 additional samples from botanical gardens across Europe and the US to extend these gradients. Here, we report new stable carbon isotope data from pollen, leaf and stem wood from these samples with a view to assessing and quantifying species-specific fractionation effects associated with pollen production. The isotopic response of individual trees at local and wider geographical scales to altitude and climatic conditions is presented. This research forms part of an ongoing PhD project working to develop and calibrate a modern carbon isotope proxy in Atlas cedar pollen, which can ultimately be applied to fossil sequences and complement existing multi-proxy records (e.g. pollen analysis in lake sediments, tree-rings).

  17. Industrial scale production of stable isotopes employing the technique of plasma separation

    International Nuclear Information System (INIS)

    Stevenson, N.R.; Bigelow, T.S.; Tarallo, F.J.

    2003-01-01

    Calutrons, centrifuges, diffusion and distillation processes are some of the devices and techniques that have been employed to produce substantial quantities of enriched stable isotopes. Nevertheless, the availability of enriched isotopes in sufficient quantities for industrial applications remains very restricted. Industries such as those involved with medicine, semiconductors, nuclear fuel, propulsion, and national defense have identified the potential need for various enriched isotopes in large quantities. Economically producing most enriched (non-gaseous) isotopes in sufficient quantities has so far eluded commercial producers. The plasma separation process is a commercial technique now available for producing large quantities of a wide range of enriched isotopes. Until recently, this technique has mainly been explored with small-scale ('proof-of-principle') devices that have been built and operated at research institutes. The new Theragenics TM facility at Oak Ridge, TN houses the only existing commercial scale PSP system. This device, which successfully operated in the 1980's, has recently been re-commissioned and is planned to be used to produce a variety of isotopes. Progress and the capabilities of this device and it's potential for impacting the world's supply of stable isotopes in the future is summarized. This technique now holds promise of being able to open the door to allowing new and exciting applications of these isotopes in the future. (author)

  18. Stable isotope studies of nicotine kinetics and bioavailability

    International Nuclear Information System (INIS)

    Benowitz, N.L.; Jacob, P. III; Denaro, C.; Jenkins, R.

    1991-01-01

    The stable isotope-labeled compound 3',3'-dideuteronicotine was used to investigate the disposition kinetics of nicotine in smokers, the systemic absorption of nicotine from cigarette smoke, and the bioavailability of nicotine ingested as oral capsules. Blood levels of labeled nicotine could be measured for 9 hours after a 30-minute intravenous infusion. Analysis of disposition kinetics in 10 healthy men revealed a multiexponential decline after the end of an infusion, with an elimination half-life averaging 203 minutes. This half-life was longer than that previously reported, indicating the presence of a shallow elimination phase. Plasma clearance averaged 14.6 ml/min/kg. The average intake of nicotine per cigarette was 2.29 mg. A cigarette smoke-monitoring system that directly measured particulate matter in smoke was evaluated in these subjects. Total particulate matter, number of puffs on the cigarette, total puff volume, and time of puffing correlated with the intake of nicotine from smoking. The oral bioavailability of nicotine averaged 44%. This bioavailability is higher than expected based on the systemic clearance of nicotine and suggests that there may be significant extrahepatic metabolism of nicotine

  19. A free-air system for long-term stable carbon isotope labeling of adult forest trees

    Science.gov (United States)

    Stable carbon (C) isotopes, in particular employed in labeling experiments, are an ideal tool to broaden our understanding of C dynamics in trees and forest ecosystems. Here, we present a free-air exposure system, named isoFACE, designed for long-term stable C isotope labeling in...

  20. Using species-specific enriched stable isotopes to study the effect of fresh mercury inputs in soil-earthworm systems.

    Science.gov (United States)

    Álvarez, C Rodríguez; Jiménez-Moreno, M; Bernardo, F J Guzmán; Martín-Doimeadios, R C Rodríguez; Nevado, J J Berzas

    2018-01-01

    The fate of mercury (Hg) in the soil-earthworm system is still far from being fully understood, especially regarding recurrent and challenging questions about the importance of the reactivity of exogenous Hg species. Thus, to predict the potential effect of Hg inputs in terrestrial ecosystems, it is necessary to evaluate separately the reactivity of the endogenous and exogenous Hg species and, for this purpose, the use of enriched stable isotope tracers is a promising tool. In the present work, earthworms (Lumbricus terrestris) were exposed to historically Hg contaminated soils from the Almadén mining district, Spain. The soils were either non-spiked, which contain only endogenous or native Hg naturally occurring in the soil, or spiked with isotopically enriched inorganic Hg ( 199 IHg), representing exogenous or spiked Hg apart from the native one. The differential reactivity of endogenous and exogenous Hg in the soil conditioned the processes of methylation, mobilization, and assimilation of inorganic Hg by earthworms. Both endogenous and exogenous Hg species also behave distinctly regarding their bioaccumulation in earthworms, as suggested by the bioaccumulation factors, being the endogenous methylmercury (MeHg) the species more readily bioaccumulated by earthworms and in a higher extent. To the best of our knowledge, this work demonstrates for the first time the potential of enriched stable isotopes to study the effects of fresh Hg inputs in soil-earthworm systems. The findings of this work can be taken as a case study on the dynamics of Hg species in complex terrestrial systems and open a new door for future experiments. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Linking specific heterotrophic bacterial populations to bioreduction of uranium and nitrate using stable isotope probing in contaminated subsurface sediments

    International Nuclear Information System (INIS)

    Akob, Denise M.; Kerkhof, Lee; Kusel, Kirsten; Watson, David B.; Palumbo, Anthony Vito; Kostka, Joel

    2011-01-01

    Shifts in terminal electron-accepting processes during biostimulation of uranium-contaminated sediments were linked to the composition of stimulated microbial populations using DNA-based stable isotope probing. Nitrate reduction preceded U(VI) and Fe(III) reduction in [ 13 C]ethanol-amended microcosms. The predominant, active denitrifying microbial groups were identified as members of the Betaproteobacteria, whereas Actinobacteria dominated under metal-reducing conditions.

  2. Analysis of stable isotope data to estimate vitamin A body stores

    International Nuclear Information System (INIS)

    2008-06-01

    Vitamin A deficiency (VAD) is a serious public health problem in most developing countries. Because of the detrimental effects of vitamin A deficiency on human health, accurate assessment of vitamin A status is necessary to develop and evaluate intervention programmes. The IAEA is providing technical support to its Member States to use stable isotope dilution techniques to develop and evaluate programmes aimed at reducing vitamin A deficiency in populations. The stable isotope dilution technique, in contrast to other methods, have the potential to provide a quantitative estimate of vitamin A concentration across the continuum of status, from deficient to excess vitamin A body stores. In 2004 the IAEA, the United States Agency for International Development (USAID) and HarvestPlus initiated the Vitamin A Tracer Task Force, made up of international experts. HarvestPlus is a Global Challenge Program of the Consultative Group on International Agricultural Research (CGIAR). It is coordinated by the Centro Internacional de Agricultura Tropical (CIAT), a not-for-profit organization that conducts socially and environmentally progressive research aimed at reducing hunger and poverty and preserving natural resources in developing countries, located in Colombia, and the International Food Policy Research Institute (IFPRI), located in the United States of America and whose mission is to provide policy solutions aimed at reducing hunger and malnutrition in developing countries. The role of the Vitamin A Tracer Task Force was to prepare three complementary publications on the use of stable isotope dilution techniques to assess vitamin A body stores. The first publication entitled 'Appropriate Use of Vitamin A Tracer (Stable Isotope) Methodology' was published in 2004 by USAID/International Life Sciences Institute (ILSI) through the Micronutrient Global Leadership (MGL) project with co-sponsorship of IAEA and HarvestPlus. The second handbook is on 'Vitamin A Tracer Dilution

  3. Stable isotope sales: Mound Laboratory customer and shipment summaries, FY-1975

    International Nuclear Information System (INIS)

    Eck, C.F.

    1976-01-01

    A listing is given of Mound Laboratory's sales of stable isotopes of noble gases, carbon, oxygen, nitrogen, and sulfur for Fiscal Year 1975. Purchasers are listed alphabetically and are divided into domestic and foreign groups. A cross reference index by location is included for domestic customers. Cross reference listings by isotope purchased are included for all customers

  4. Stable isotope sales: Mound Facility customer and shipment summaries, FY 1981

    International Nuclear Information System (INIS)

    Ruwe, A.H. Jr.

    1982-01-01

    A listing is given of Mound Facility's sales of stable isotopes of noble gases, carbon, oxygen, nitrogen, chlorine, and sulfur for Fiscal Year 1981. Purchasers are listed alphabetically and are divided into domestic and foreign groups. A cross-reference index by location is included for domestic customers. Cross-reference listings by isotope purchased are included for all customers

  5. Stable isotope sales; Mound Facility customer and shipment summaries, FY 1977

    International Nuclear Information System (INIS)

    Ruwe, A.H. Jr.

    1978-01-01

    A listing is given of Mound Facility's sales of stable isotopes of noble gases, carbon, oxygen, nitrogen, chlorine, and sulfur for Fiscal Year 1977. Purchasers are listed alphabeticaly and are divided into domestic and foreign groups. A cross-reference index by location is included for domestic customers. Cross-reference listings by isotope purchased are included for all customers

  6. COMBINING SOURCES IN STABLE ISOTOPE MIXING MODELS: ALTERNATIVE METHODS

    Science.gov (United States)

    Stable isotope mixing models are often used to quantify source contributions to a mixture. Examples include pollution source identification; trophic web studies; analysis of water sources for soils, plants, or water bodies; and many others. A common problem is having too many s...

  7. Mass spectrometric measurement of hydrogen isotope fractionation for the reactions of chloromethane with OH and Cl

    Directory of Open Access Journals (Sweden)

    F. Keppler

    2018-05-01

    Full Text Available Chloromethane (CH3Cl is an important provider of chlorine to the stratosphere but detailed knowledge of its budget is missing. Stable isotope analysis is a potentially powerful tool to constrain CH3Cl flux estimates. The largest degree of isotope fractionation is expected to occur for deuterium in CH3Cl in the hydrogen abstraction reactions with its main sink reactant tropospheric OH and its minor sink reactant Cl atoms. We determined the isotope fractionation by stable hydrogen isotope analysis of the fraction of CH3Cl remaining after reaction with hydroxyl and chlorine radicals in a 3.5 m3 Teflon smog chamber at 293 ± 1 K. We measured the stable hydrogen isotope values of the unreacted CH3Cl using compound-specific thermal conversion isotope ratio mass spectrometry. The isotope fractionations of CH3Cl for the reactions with hydroxyl and chlorine radicals were found to be −264±45 and −280±11 ‰, respectively. For comparison, we performed similar experiments using methane (CH4 as the target compound with OH and obtained a fractionation constant of −205±6 ‰ which is in good agreement with values previously reported. The observed large kinetic isotope effects are helpful when employing isotopic analyses of CH3Cl in the atmosphere to improve our knowledge of its atmospheric budget.

  8. STABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE

    Directory of Open Access Journals (Sweden)

    Yurij K. Vasil’chuk

    2016-01-01

    Full Text Available The paper summarises stable-isotope research on massive ice in the Russian and North American Arctic, and includes the latest understanding of massive-ice formation. A new classification of massive-ice complexes is proposed, encompassing the range and variabilityof massive ice. It distinguishes two new categories of massive-ice complexes: homogeneousmassive-ice complexes have a similar structure, properties and genesis throughout, whereasheterogeneous massive-ice complexes vary spatially (in their structure and properties andgenetically within a locality and consist of two or more homogeneous massive-ice bodies.Analysis of pollen and spores in massive ice from Subarctic regions and from ice and snow cover of Arctic ice caps assists with interpretation of the origin of massive ice. Radiocarbon ages of massive ice and host sediments are considered together with isotope values of heavy oxygen and deuterium from massive ice plotted at a uniform scale in order to assist interpretation and correlation of the ice.

  9. NMR-based stable isotope resolved metabolomics in systems biochemistry

    International Nuclear Information System (INIS)

    Fan, Teresa W-M.; Lane, Andrew N.

    2011-01-01

    An important goal of metabolomics is to characterize the changes in metabolic networks in cells or various tissues of an organism in response to external perturbations or pathologies. The profiling of metabolites and their steady state concentrations does not directly provide information regarding the architecture and fluxes through metabolic networks. This requires tracer approaches. NMR is especially powerful as it can be used not only to identify and quantify metabolites in an unfractionated mixture such as biofluids or crude cell/tissue extracts, but also determine the positional isotopomer distributions of metabolites derived from a precursor enriched in stable isotopes such as 13 C and 15 N via metabolic transformations. In this article we demonstrate the application of a variety of 2-D NMR editing experiments to define the positional isotopomers of compounds present in polar and non-polar extracts of human lung cancer cells grown in either [U– 13 C]-glucose or [U– 13 C, 15 N]-glutamine as source tracers. The information provided by such experiments enabled unambiguous reconstruction of metabolic pathways, which is the foundation for further metabolic flux modeling.

  10. Carbon dioxide effects research and assessment program. Proceedings of the International Meeting on Stable Isotopes in Tree-Ring Research, New Paltz, New York, May 22-25, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Jacoby, G [ed.

    1980-12-01

    Information about the past and present concentrations of CO/sub 2/ in the atmosphere and variations in climate can be obtained from measurements of stable isotopes in tree rings; specifically carbon-13, oxygen-18 and deuterium. The analysis of these stable isotopes in tree rings is a relatively new and rapidly developing field. This proceedings volume contains most of the papers presented at the meeting. The first paper gives an overview of the status of carbon-13 research. Papers relating to carbon-13 are in section I and grouped separately from the contributions on carbon-14. Although the meeting was primarily concerned with stable isotopes, all carbon isotopic analysis may be helpful in understanding the carbon-13 record in tree rings. The papers on hydrogen and oxygen isotope studies are in sections II and III respectively. The remaining sections contain papers that consider more than one isotope at a time, general topics related to isotopes, atmospheric changes and tree growth, and methods of isotopic analysis.

  11. Stable Isotope Technique to Assess Intake of Human Milk in Breastfed Infants

    International Nuclear Information System (INIS)

    2014-01-01

    This publication was developed by an international group of experts as an integral part of the IAEA’s efforts to contribute to the transfer of technology and knowledge in nutrition. Its aim is to assist Member States in their efforts to combat malnutrition by facilitating the use of relevant nuclear techniques. The stable (non-radioactive) isotope technique has been developed to assess intake of human milk in breastfed infants. The practical application of the stable isotope technique, based on analysis of deuterium by Fourier transform infrared spectrometry (FTIR), is presented in this book

  12. 24-Hour protein, arginine and citrulline metabolism in fed critically ill children – a stable isotope tracer study

    Science.gov (United States)

    de Betue, Carlijn T.I.; Garcia Casal, Xiomara C.; van Waardenburg, Dick A.; Schexnayder, Stephen M.; Joosten, Koen F.M.; Deutz, Nicolaas E.P.; Engelen, Marielle P.K.J.

    2017-01-01

    Background & aims The reference method to study protein and arginine metabolism in critically ill children is measuring plasma amino acid appearances with stable isotopes during a short (4–8h) time period and extrapolate results to 24-hour. However, 24-hour measurements may be variable due to critical illness related factors and a circadian rhythm could be present. Since only short duration stable isotope studies in critically ill children have been conducted before, the aim of this study was to investigate 24-hour appearance of specific amino acids representing protein and arginine metabolism, with stable isotope techniques in continuously fed critically ill children. Methods In eight critically ill children, admitted to the pediatric (n=4) or cardiovascular (n=4) intensive care unit, aged 0–10 years, receiving continuous (par)enteral nutrition with protein intake 1.0–3.7 g/kg/day, a 24-hour stable isotope tracer protocol was carried out. L-[ring-2H5]-phenylalanine, L-[3,3-2H2]-tyrosine, L-[5,5,5-2H3]-leucine, L-[guanido-15N2]-arginine and L-[5-13C-3,3,4,4-2H4]-citrulline were infused intravenously and L-[15N]-phenylalanine and L-[1-13C]leucine enterally. Arterial blood was sampled every hour. Results Coefficients of variation, representing intra-individual variability, of the amino acid appearances of phenylalanine, tyrosine, leucine, arginine and citrulline were high, on average 14–19% for intravenous tracers and 23–26% for enteral tracers. No evident circadian rhythm was present. The pattern and overall 24-hour level of whole body protein balance differed per individual. Conclusions In continuously fed stable critically ill children, the amino acid appearances of phenylalanine, tyrosine, leucine, arginine and citrulline show high variability. This should be kept in mind when performing stable isotope studies in this population. There was no apparent circadian rhythm. PMID:28089618

  13. Feeding preferences of West Indian manatees in Florida, Belize, and Puerto Rico as indicated by stable isotope analysis

    Science.gov (United States)

    Alves-Stanley, Christy D.; Worthy, Graham A.J.; Bonde, Robert K.

    2010-01-01

    The endangered West Indian manatee Trichechus manatus has 2 recognized subspecies: the Florida T. m. latirostris and Antillean T. m. manatus manatee, both of which are found in freshwater, estuarine, and marine habitats. A better understanding of manatee feeding preferences and habitat use is essential to establish criteria on which conservation plans can be based. Skin from manatees in Florida, Belize, and Puerto Rico, as well as aquatic vegetation from their presumed diet, were analyzed for stable carbon and nitrogen isotope ratios. This is the first application of stable isotope analysis to Antillean manatees. Stable isotope ratios for aquatic vegetation differed by plant type (freshwater, estuarine, and marine), collection location, and in one instance, season. Carbon and nitrogen isotope ratios for manatee skin differed between collection location and in one instance, season, but did not differ between sex or age class. Signatures in the skin of manatees sampled in Belize and Puerto Rico indicated a diet composed primarily of seagrasses, whereas those of Florida manatees exhibited greater regional variation. Mixing model results indicated that manatees sampled from Crystal River and Homosassa Springs (Florida, USA) ate primarily freshwater vegetation, whereas manatees sampled from Big Bend Power Plant, Ten Thousand Islands, and Warm Mineral Springs (Florida) fed primarily on seagrasses. Possible diet-tissue discrimination values for 15N were estimated to range from 1.0 to 1.5 per mil. Stable isotope analysis can be used to interpret manatee feeding behavior over a long period of time, specifically the use of freshwater vegetation versus seagrasses, and can aid in identifying critical habitats and improving conservation efforts.

  14. Inferring the source of evaporated waters using stable H and O isotopes

    Science.gov (United States)

    Stable isotope ratios of H and O are widely used to identify the source of water, e.g., in aquifers, river runoff, soils, plant xylem, and plant-based beverages. In situations where the sampled water is partially evaporated, its isotope values will have evolved along an evaporati...

  15. Stable isotopes dissect aquatic food webs from the top to the bottom

    NARCIS (Netherlands)

    Middelburg, J.J.

    2014-01-01

    Stable isotopes have been used extensively to study food-web functioning, that is, the flow of energy and matter among organisms. Traditional food-web studies are based on the natural variability of isotopes and are limited to larger organisms that can be physically separated from their environment.

  16. The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin

    Science.gov (United States)

    Heuer, Verena B.; Pohlman, John W.; Torres, Marta E.; Elvert, Marcus; Hinrichs, Kai-Uwe

    2009-01-01

    Ocean drilling has revealed the existence of vast microbial populations in the deep subseafloor, but to date little is known about their metabolic activities. To better understand the biogeochemical processes in the deep biosphere, we investigate the stable carbon isotope chemistry of acetate and other carbon-bearing metabolites in sediment pore-waters. Acetate is a key metabolite in the cycling of carbon in anoxic sediments. Its stable carbon isotopic composition provides information on the metabolic processes dominating acetate turnover in situ. This study reports our findings for a methane-rich site at the northern Cascadia Margin (NE Pacific) where Expedition 311 of the Integrated Ocean Drilling Program (IODP) sampled the upper 190 m of sediment. At Site U1329, δ13C values of acetate span a wide range from −46.0‰ to −11.0‰ vs. VPDB and change systematically with sediment depth. In contrast, δ13C values of both the bulk dissolved organic carbon (DOC) (−21.6 ± 1.3‰ vs. VPDB) and the low-molecular-weight compound lactate (−20.9 ± 1.8‰ vs. VPDB) show little variability. These species are interpreted to represent the carbon isotopic composition of fermentation products. Relative to DOC, acetate is up to 23.1‰ depleted and up to 9.1‰ enriched in 13C. Broadly, 13C-depletions of acetate relative to DOC indicate flux of carbon from acetogenesis into the acetate pool while 13C-enrichments of pore-water acetate relative to DOC suggest consumption of acetate by acetoclastic methanogenesis. Isotopic relationships between acetate and lactate or DOC provide new information on the carbon flow and the presence and activity of specific functional microbial communities in distinct biogeochemical horizons of the sediment. In particular, they suggest that acetogenic CO2-reduction can coexist with methanogenic CO2-reduction, a notion contrary to the hypothesis that hydrogen levels are controlled by the thermodynamically most favorable electron

  17. An Investigation into the Relationship Between Distillate Yield and Stable Isotope Fractionation

    Science.gov (United States)

    Sowers, T.; Wagner, A. J.

    2016-12-01

    Recent breakthroughs in laser spectrometry have allowed for faster, more efficient analyses of stable isotopic ratios in water samples. Commercially available instruments from Los Gatos Research and Picarro allow users to quickly analyze a wide range of samples, from seawater to groundwater, with accurate isotope ratios of D/H to within ± 0.2 ‰ and 18O/16O to within ± 0.03 ‰. While these instruments have increased the efficiency of stable isotope laboratories, they come with some major limitations, such as not being able to analyze hypersaline waters. The Los Gatos Research Liquid Water Isotope Analyzer (LWIA) can accurately and consistently measure the stable isotope ratios in waters with salinities ranging from 0 to 4 grams per liter (0 to 40 parts per thousand). In order to analyze water samples with salinities greater than 4 grams per liter, however, it was necessary to develop a consistent method through which to reduce salinity while causing as little fractionation as possible. Using a consistent distillation method, predictable fractionation of δ 18O and δ 2 H values was found to occur. This fractionation occurs according to a linear relationship with respect to the percent yield of the water in the sample. Using this method, samples with high salinity can be analyzed using laser spectrometry instruments, thereby enabling laboratories with Los Gatos or Picarro instruments to analyze those samples in house without having to dilute them using labor-intensive in-house standards or expensive premade standards.

  18. Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey

    International Nuclear Information System (INIS)

    Cotte, J.F.; Casabianca, H.; Lheritier, J.; Perrucchietti, C.; Sanglar, C.; Waton, H.; Grenier-Loustalot, M.F.

    2007-01-01

    Honey samples were analyzed by stable carbon isotopic ratio analysis by mass spectrometry (SCIRA-MS) and site-specific natural isotopic fractionation measured by nuclear magnetic resonance (SNIF-NMR) to first determine their potentials for characterizing the substance and then to combat adulteration. Honey samples from several geographic and botanical origins were analyzed. The δ 13 C parameter was not significant for characterizing an origin, while the (D/H) I ratio could be used to differentiate certain single-flower varieties. Application of the official control method of adding a C 4 syrup (AOAC official method 998.12) to our authentic samples revealed anomalies resulting from SCIRA indices that were more negative than -1 per mille (permil). A filtration step was added to the experimental procedure and provided results that were compliant with Natural origin of our honey samples. In addition, spiking with a C 4 syrup could be detected starting at 9-10%. The use of SNIF-NMR is limited by the detection of a syrup spike starting only at 20%, which is far from satisfying

  19. Stable isotopic labeling-based quantitative targeted glycomics (i-QTaG).

    Science.gov (United States)

    Kim, Kyoung-Jin; Kim, Yoon-Woo; Kim, Yun-Gon; Park, Hae-Min; Jin, Jang Mi; Hwan Kim, Young; Yang, Yung-Hun; Kyu Lee, Jun; Chung, Junho; Lee, Sun-Gu; Saghatelian, Alan

    2015-01-01

    Mass spectrometry (MS) analysis combined with stable isotopic labeling is a promising method for the relative quantification of aberrant glycosylation in diseases and disorders. We developed a stable isotopic labeling-based quantitative targeted glycomics (i-QTaG) technique for the comparative and quantitative analysis of total N-glycans using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We established the analytical procedure with the chemical derivatizations (i.e., sialic acid neutralization and stable isotopic labeling) of N-glycans using a model glycoprotein (bovine fetuin). Moreover, the i-QTaG using MALDI-TOF MS was evaluated with various molar ratios (1:1, 1:2, 1:5) of (13) C6 /(12) C6 -2-aminobenzoic acid-labeled glycans from normal human serum. Finally, this method was applied to direct comparison of the total N-glycan profiles between normal human sera (n = 8) and prostate cancer patient sera (n = 17). The intensities of the N-glycan peaks from i-QTaG method showed a good linearity (R(2) > 0.99) with the amount of the bovine fetuin glycoproteins. The ratios of relative intensity between the isotopically 2-AA labeled N-glycans were close to the theoretical molar ratios (1:1, 1:2, 1:5). We also demonstrated that the up-regulation of the Lewis antigen (~82%) in sera from prostate cancer patients. In this proof-of-concept study, we demonstrated that the i-QTaG method, which enables to achieve a reliable comparative quantitation of total N-glycans via MALDI-TOF MS analysis, has the potential to diagnose and monitor alterations in glycosylation associated with disease states or biotherapeutics. © 2015 American Institute of Chemical Engineers.

  20. Isotopic Analysis of Fingernails as a USGS Open House Demonstration of the Use of Stable Isotopes in Foodweb Studies

    Science.gov (United States)

    Silva, S. R.; Kendall, C.; Young, M. B.; Choy, D.

    2011-12-01

    The USGS Isotope Tracers Project uses stable isotopes and tritium to add a unique dimension of chemical information to a wide range of environmental investigations. The use and application of isotopes is usually an unfamiliar and even esoteric topic to the general public. Therefore during three USGS open house events, as a public outreach effort, we demonstrated the use of stable isotopes by analyzing nitrogen and carbon isotopes from very small fragments of fingernail from willing participants. We titled the exhibit "You Are What You Eat". The results from all participants were plotted on a graph indicating the general influence of different food groups on the composition of body tissues as represented by fingernails. All participants were assigned a number and no personal-identification information was collected. A subset of participants provided us with an estimate of the number of days a week various foods were eaten and if they were vegetarians, vegans or non-vegetarians. Volunteers from our research group were on hand to explain and discuss fundamental concepts such as how foods attain their isotopic composition, the difference between C3 and C4 plants, the effects of assimilation, trophic enrichment, and the various uses of stable isotopes in environmental studies. The results of the fingernail analyses showed the variation of the range of isotopic compositions among about 400 people at each event, the distinct influence of C4 plants (mainly corn and cane sugar) on our carbon isotopic composition, and the isotopic differences between vegetarians and non vegetarians among other details (http://wwwrcamnl.wr.usgs.gov/isoig/projects/fingernails/). A poll of visitors attending the open house event in 2006 indicated that "You Are What You Eat" was among the most popular exhibits. Following the first two open house events we were contacted by a group of researchers from Brazil who had completed a very similar study. Our collaboration resulted in a publication in

  1. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer–chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS)

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B.; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A.; Schimmelmann, Arndt

    2017-01-01

    Rationale: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H2) is responsible for non-quantitative H2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer–Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems.

  2. Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM2.5 from Beijing, China

    Directory of Open Access Journals (Sweden)

    W. Zhao

    2018-02-01

    Full Text Available This study investigates the seasonal variation, molecular distribution and stable carbon isotopic composition of diacids, oxocarboxylic acids and α-dicarbonyls to better understand the sources and formation processes of fine aerosols (PM2.5 in Beijing. The concentrations of total dicarboxylic acids varied from 110 to 2580 ng m−3, whereas oxoacids (9.50–353 ng m−3 and dicarbonyls (1.50–85.9 ng m−3 were less abundant. Oxalic acid was found to be the most abundant individual species, followed by succinic acid or occasionally by terephthalic acid (tPh, a plastic waste burning tracer. Ambient concentrations of phthalic acid (37.9 ± 27.3 ng m−3 and tPh (48.7 ± 51.1 ng m−3 were larger in winter than in other seasons, illustrating that fossil fuel combustion and plastic waste incineration contribute more to wintertime aerosols. The year-round mass concentration ratios of malonic acid to succinic acid (C3 ∕ C4 were relatively low by comparison with those in other urban aerosols and remote marine aerosols. The values were less than or equal to unity in Beijing, implying that the degree of photochemical formation of diacids in Beijing is insignificant. Moreover, strong correlation coefficients of major oxocarboxylic acids and α-dicarbonyls with nss-K+ suggest that biomass burning contributes significantly to these organic acids and related precursors. The mean δ13C value of succinic acid is the highest among all species, with values of −17.1 ± 3.9 ‰ (winter and −17.1 ± 2.0 ‰ (spring, while malonic acid is more enriched in 13C than others in autumn (−17.6 ± 4.6 ‰ and summer (−18.7 ± 4.0 ‰. The δ13C values of major species in Beijing aerosols are generally lower than those in the western North Pacific atmosphere, the downwind region, which indicates that stable carbon isotopic compositions of diacids depend on their precursor sources in Beijing. Therefore, our

  3. Isotope products manufacture in Russia and its prospects

    International Nuclear Information System (INIS)

    Malyshev, S.V.; Okhotina, I.A.; Kalelin, E.A.; Krasnov, N.N.; Kuzin, V.V.; Malykh, J.A.; Makarovsky, S.B.

    1997-01-01

    At the present stage of the world economy development, stable and radioactive isotopes,preparations and products on their base are widely used in many fields of the national economy, medicine and scientific researches. The Russian Federation is one of the largest worldwide producers of a variety of nuclide products on the base of more than 350 isotopes, as follows: stable isotopes reactor, cyclotron, fission product radioactive isotopes, ion-radiation sources compounds, labelled with stable and radioactive isotopes, radionuclide short-lived isotope generators, radiopharmaceuticals, radionuclide light and heat sources; luminous paints on base of isotopes. The Russian Ministry for Atomic Energy coordinates activity for development and organization of manufacture and isotope products supply in Russia as well as for export. Within many years of isotope industry development, there have appeared some manufacturing centres in Russia, dealing with a variety of isotope products. The report presents the production potentialities of these centres and also an outlook on isotope production development in Russia in the next years

  4. Labelled compounds for agrochemical residue studies in developing countries

    International Nuclear Information System (INIS)

    1977-01-01

    Potential applications of stable and radioactive isotopic tracers for assessing undesirable contaminants in agriculture, fisheries and food are discussed as related to developing countries. Sources and types of residues are considered, and their local implications; also, the availability of suitably labelled compounds, including possible international cooperation to facilitate more centralized and economic preparation, and the distribution of labelled intermediates and compounds for use by local scientists. The provision of training courses and their syllabus are reviewed. Experience in the Joint FAO/IAEA chemical residue and pollution programme has indicated a need for longer-lived radioisotopically labelled pesticides (insecticides, acaricides, fungicides, herbicides, fumigants, etc.) for studying their behaviour. 15 N-, 13 C- or 2 H-labelled fertilizers and fertilizer additives such as nitrification inhibitors will shortly be needed, for studying the behaviour of fertilizer nitrogen residues, and their regulation and conservation, under conditions prevailing in the developing countries. Compounds labelled with stable isotopes are considered particularly valuable under field conditions. The report reviews the present situation and presents specific recommendations to the Directors General of FAO and IAEA

  5. Assessment of Bacterial Degradation of Aromatic Hydrocarbons in the Environment by Analysis of Stable Carbon Isotope Fractionation

    International Nuclear Information System (INIS)

    Meckenstock, Rainer U.; Morasch, Barbara; Kaestner, Matthias; Vieth, Andrea; Richnow, Hans Hermann

    2002-01-01

    13 C/ 12 C stable carbon isotope fractionation was used to assess biodegradation in contaminated aquifers with toluene as a model compound. Different strains of anaerobic bacteria (Thauera aromatica, Geobacter metallireducens, and the sulfate-reducing strain TRM1) showed consistent 13 C/ 12 C carbon isotope fractionation with fractionation factors between αC = 1.0017 and 1.0018. In contrast, three cultures of aerobic organisms, using different mono- and dioxygenase enzyme systems to initiate toluene degradation, showed variable isotope fractionation factors of αC = 1.0027 (Pseudomonasputida strain mt-2), αC = 1.0011 (Ralstonia picketii), andαC = 1.0004 (Pseudomonas putida strain F1). The great variability of isotope fractionation between different aerobic bacterial strains suggests that interpretation of isotope data in oxic habitats can only be qualitative. A soil column was run as a model system for contaminated aquifers with toluene as the carbon source and sulfate as the electron acceptor and samples were taken at different ports along the column. Microbial toluene degradation was calculated based on the 13 C/ 12 C isotope fractionation factors of the batch culture experiments together with the observed 13 C/ 12 C isotope shifts of the residual toluene fractions. The calculated percentage of biodegradation, B, correlated well with the decreasing toluene concentrations at the sampling ports and indicated the increasing extent of biodegradation along the column. The theoretical toluene concentrations as calculated based on the isotope values matched the measured concentrations at the different sampling ports indicating that the Rayleigh equation can be used to calculate biodegradation in quasi closed systems based on measured isotope shifts. A similar attempt was performed to assess toluene degradation in a contaminated, anoxic aquifer. A transect of groundwater wells was monitored along the main direction of the groundwater flow and revealed decreasing

  6. Carbon isotope analysis of n-alkanes in dust from the lower atmosphere over the eastern Atlantic

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schefuß, E.; Ratmeyer, V.; Stuut, J-B.W.; Jansen, J.H.F.

    2003-01-01

    Atmospheric dust samples collected along a transect off the West African coast have been investigated for their lipid content and compound-specific stable carbon isotope compositions. The saturated hydrocarbon fractions of the organic solvent extracts consist mainly of long-chain n-alkanes derived

  7. Stable bromine isotopic composition of methyl bromide released from plant matter

    Science.gov (United States)

    Horst, Axel; Holmstrand, Henry; Andersson, Per; Thornton, Brett F.; Wishkerman, Asher; Keppler, Frank; Gustafsson, Örjan

    2014-01-01

    Methyl bromide (CH3Br) emitted from plants constitutes a natural source of bromine to the atmosphere, and is a component in the currently unbalanced global CH3Br budget. In the stratosphere, CH3Br contributes to ozone loss processes. Studies of stable isotope composition may reduce uncertainties in the atmospheric CH3Br budget, but require well-constrained isotope fingerprints of the source end members. Here we report the first measurements of stable bromine isotopes (δ81Br) in CH3Br from abiotic plant emissions. Incubations of both KBr-fortified pectin, a ubiquitous cell-stabilizing macromolecule, and of a natural halophyte (Salicornia fruticosa), yielded an enrichment factor (ε) of -2.00 ± 0.23‰ (1σ, n = 8) for pectin and -1.82 ± 0.02‰ (1σ, n = 4) for Salicornia (the relative amount of the heavier 81Br was decreased in CH3Br compared to the substrate salt). For short incubations, and up to 10% consumption of the salt substrate, this isotope effect was similar for temperatures from 30 up to 300 °C. For longer incubations of up to 90 h at 180 °C the δ81Br values increased from -2‰ to 0‰ for pectin and to -1‰ for Salicornia. These δ81Br source signatures of CH3Br formation from plant matter combine with similar data for carbon isotopes to facilitate multidimensional isotope diagnostics of the CH3Br budget.

  8. Modification degrees at specific sites on heparan sulphate: an approach to measure chemical modifications on biological molecules with stable isotope labelling

    Science.gov (United States)

    Wu, Zhengliang L.; Lech, Miroslaw

    2005-01-01

    Chemical modification of biological molecules is a general mechanism for cellular regulation. A quantitative approach has been developed to measure the extent of modification on HS (heparan sulphates). Sulphation on HS by sulphotransferases leads to variable sulphation levels, which allows cells to tune their affinities to various extracellular proteins, including growth factors. With stable isotope labelling and HPLC-coupled MS, modification degrees at various O-sulphation sites could be determined. A bovine kidney HS sample was first saturated in vitro with 34S by an OST (O-sulphotransferase), then digested with nitrous acid and analysed with HPLC-coupled MS. The 34S-labelled oligosaccharides were identified based on their unique isotope clusters. The modification degrees at the sulphotransferase recognition sites were obtained by calculating the intensities of isotopic peaks in the isotope clusters. The modification degrees at 3-OST-1 and 6-OST-1 sites were examined in detail. This approach can also be used to study other types of chemical modifications on biological molecules. PMID:15743272

  9. Effect of Different Carbon Substrates on Nitrate Stable Isotope Fractionation During Microbial Denitrification

    DEFF Research Database (Denmark)

    Wunderlich, Anja; Meckenstock, Rainer; Einsiedl, Florian

    2012-01-01

    -labeled water and 18O-labeled nitrite were added to the microcosm experiments to study the effect of putative backward reactions of nitrite to nitrate on the stable isotope fractionation. We found no evidence for a reverse reaction. Significant variations of the stable isotope enrichment factor ε were observed......In batch experiments, we studied the isotope fractionation in N and O of dissolved nitrate during dentrification. Denitrifying strains Thauera aromatica and “Aromatoleum aromaticum strain EbN1” were grown under strictly anaerobic conditions with acetate, benzoate, and toluene as carbon sources. 18O...... of nitrate transport across the cell wall compared to the kinetics of the intracellular nitrate reduction step of microbial denitrification....

  10. Detecting intraannual dietary variability in wild mountain gorillas by stable isotope analysis of feces.

    Science.gov (United States)

    Blumenthal, Scott A; Chritz, Kendra L; Rothman, Jessica M; Cerling, Thure E

    2012-12-26

    We use stable isotope ratios in feces of wild mountain gorillas (Gorilla beringei) to test the hypothesis that diet shifts within a single year, as measured by dry mass intake, can be recovered. Isotopic separation of staple foods indicates that intraannual changes in the isotopic composition of feces reflect shifts in diet. Fruits are isotopically distinct compared with other staple foods, and peaks in fecal δ(13)C values are interpreted as periods of increased fruit feeding. Bayesian mixing model results demonstrate that, although the timing of these diet shifts match observational data, the modeled increase in proportional fruit feeding does not capture the full shift. Variation in the isotopic and nutritional composition of gorilla foods is largely independent, highlighting the difficulty for estimating nutritional intake with stable isotopes. Our results demonstrate the potential value of fecal sampling for quantifying short-term, intraindividual dietary variability in primates and other animals with high temporal resolution even when the diet is composed of C(3) plants.

  11. Study of chromium speciation in normal and diabetic rats by activable enriched stable isotope technique

    International Nuclear Information System (INIS)

    Feng, W.Y.; Qian, Q.F.; Ding, W.J.; Chai, Z.F.

    2000-01-01

    Chromium speciation was investigated in the liver cytosol, serum and urine of normal and diabetic rats after a single intravenous injection of enriched stable isotope 50 Cr tracer solution. Sephadex G-25 gel chromatography combined with instrumental neutron activation analysis was used to isolate and characterize protein-bound chromium in the above materials. The results indicate that Cr is mainly combined with a high-molecular-weight protein either in liver cytosol or serum. A low-molecular-weight, Cr-containing compound (LMWCr) was found in all the observed liver, serum and urine samples of both normal and diabetic rats. Chromium is excreted chiefly as LMWCr in urine. (author)

  12. Stable isotope geochemistry of the Tongonan geothermal system, Leyte, Philippines

    International Nuclear Information System (INIS)

    Hulston, J.R.; Stewart, M.K.

    1982-01-01

    Stable isotope and geochemical data on samples from natural features, shallow wells and deep wells collected over a number of years from the Tongonan area of Leyte have been evaluated. The variations in the isotopic compositions of the thermal waters are used to describe natural processes occurring within the system. The effect of the ''excess enthalpy'' of the deep wells on the isotope data is formulated. Water from the deep Tongonan wells shows an oxygen-18 shift of 5 per mille, which is larger than at Wairakei and Broadlands, probably in part because of the high temperatures at Tongonan. Recent measurements indicate that the deuterium shift is very much smaller than previously thought. Isotopic measurements of methane in the gases suggests differing flows from the Eastern and Central Philippine faults

  13. The synthesis of a tritium, carbon-14, and stable isotope-labeled cathepsin C inhibitors.

    Science.gov (United States)

    Allen, Paul; Bragg, Ryan A; Caffrey, Moya; Ericsson, Cecilia; Hickey, Michael J; Kingston, Lee P; Elmore, Charles S

    2017-02-01

    As part of a medicinal chemistry program aimed at developing a highly potent and selective cathepsin C inhibitor, tritium, carbon-14, and stable isotope-labeled materials were required. The synthesis of tritium-labeled methanesulfonate 5 was achieved via catalytic tritiolysis of a chloro precursor, albeit at a low radiochemical purity of 67%. Tritium-labeled AZD5248 was prepared via a 3-stage synthesis, utilizing amide-directed hydrogen isotope exchange. Carbon-14 and stable isotope-labeled AZD5248 were successfully prepared through modifications of the medicinal chemistry synthetic route, enabling the use of available labeled intermediates. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Evaluating the consequences of salmon nutrients for riparian organisms: Linking condition metrics to stable isotopes.

    Science.gov (United States)

    Vizza, Carmella; Sanderson, Beth L; Coe, Holly J; Chaloner, Dominic T

    2017-03-01

    Stable isotope ratios (δ 13 C and δ 15 N) have been used extensively to trace nutrients from Pacific salmon, but salmon transfer more than carbon and nitrogen to stream ecosystems, such as phosphorus, minerals, proteins, and lipids. To examine the importance of these nutrients, metrics other than isotopes need to be considered, particularly when so few studies have made direct links between these nutrients and how they affect riparian organisms. Our study specifically examined δ 13 C and δ 15 N of riparian organisms from salmon and non-salmon streams in Idaho, USA, at different distances from the streams, and examined whether the quality of riparian plants and the body condition of invertebrates varied with access to these nutrients. Overall, quality and condition metrics did not mirror stable isotope patterns. Most notably, all riparian organisms exhibited elevated δ 15 N in salmon streams, but also with proximity to both stream types suggesting that both salmon and landscape factors may affect δ 15 N. The amount of nitrogen incorporated from Pacific salmon was low for all organisms (1950s. In addition, our results support those of other studies that have cautioned that inferences from natural abundance isotope data, particularly in conjunction with mixing models for salmon-derived nutrient percentage estimates, may be confounded by biogeochemical transformations of nitrogen, physiological processes, and even historical legacies of nitrogen sources. Critically, studies should move beyond simply describing isotopic patterns to focusing on the consequences of salmon-derived nutrients by quantifying the condition and fitness of organisms putatively using those resources.

  15. Disentangling drought-induced variation in ecosystem and soil respiration using stable carbon isotopes.

    Science.gov (United States)

    Unger, Stephan; Máguas, Cristina; Pereira, João S; Aires, Luis M; David, Teresa S; Werner, Christiane

    2010-08-01

    Combining C flux measurements with information on their isotopic composition can yield a process-based understanding of ecosystem C dynamics. We studied the variations in both respiratory fluxes and their stable C isotopic compositions (delta(13)C) for all major components (trees, understory, roots and soil microorganisms) in a Mediterranean oak savannah during a period with increasing drought. We found large drought-induced and diurnal dynamics in isotopic compositions of soil, root and foliage respiration (delta(13)C(res)). Soil respiration was the largest contributor to ecosystem respiration (R (eco)), exhibiting a depleted isotopic signature and no marked variations with increasing drought, similar to ecosystem respired delta(13)CO(2), providing evidence for a stable C-source and minor influence of recent photosynthate from plants. Short-term and diurnal variations in delta(13)C(res) of foliage and roots (up to 8 and 4 per thousand, respectively) were in agreement with: (1) recent hypotheses on post-photosynthetic fractionation processes, (2) substrate changes with decreasing assimilation rates in combination with increased respiratory demand, and (3) decreased phosphoenolpyruvate carboxylase activity in drying roots, while altered photosynthetic discrimination was not responsible for the observed changes in delta(13)C(res). We applied a flux-based and an isotopic flux-based mass balance, yielding good agreement at the soil scale, while the isotopic mass balance at the ecosystem scale was not conserved. This was mainly caused by uncertainties in Keeling plot intercepts at the ecosystem scale due to small CO(2) gradients and large differences in delta(13)C(res) of the different component fluxes. Overall, stable isotopes provided valuable new insights into the drought-related variations of ecosystem C dynamics, encouraging future studies but also highlighting the need of improved methodology to disentangle short-term dynamics of isotopic composition of R (eco).

  16. Distinguishing feral and managed honeybees (Apis mellifera) using stable carbon isotopes

    OpenAIRE

    Anderson , Lucy; Dynes , Travis; Berry , Jennifer; Delaplane , Keith; McCormick , Lydia; Brosi , Berry

    2014-01-01

    International audience; The ability to distinguish feral and managed honeybees (Apis mellifera) has applications in studies of population genetics, parasite transmission, pollination, interspecific interactions, and bee breeding. We evaluated a diagnostic test based on theoretical differences in stable carbon isotope ratios generated by supplemental feeding. We evaluated (1) if carbon isotope ratios can distinguish feral and managed honeybees and (2) the temporal persistence of the signal aft...

  17. Diets of introduced predators using stable isotopes and stomach contents

    Science.gov (United States)

    Meckstroth, A.M.; Miles, A.K.; Chandra, S.

    2007-01-01

    In a study of predation on ground-nesting birds at South San Francisco Bay (South Bay), California, USA, we analyzed stomach contents and stable isotopes of carbon and nitrogen to identify commonly consumed prey. We obtained the stomach contents from 206 nonnative red foxes (Vulpes vulpes regalis) collected in the South Bay area and Monterey County during 1995-2001 and from 68 feral cats (Felis silvestris) from the South Bay area during 2001-2002. We determined prey identity, biomass, and frequency, described seasonal diet trends, and derived an Index of Relative Importance. Avian species were the most frequent prey we found in the stomachs of red foxes from South Bay (61%), whereas small rodents were most frequent for red foxes from Monterey County (62%). Small rodents were the most frequent prey we found in feral cats (63%). Carbon and nitrogen isotopic signatures for foxes supported stomach content findings. However, isotope results indicated that cats received a majority of their energy from a source other than rodents and outside the natural system, which differed from the stomach content analysis. We demonstrated the utility of both stable isotope and stomach content analyses to establish a more complete understanding of predators' diets. This information aids natural resource managers in planning and evaluating future predator-removal programs and increases our understanding of the impacts of nonnative foxes and cats on native species.

  18. A stable isotope-based approach to tropical dendroclimatology

    Science.gov (United States)

    Evans, Michael N.; Schrag, Daniel P.

    2004-08-01

    We describe a strategy for development of chronological control in tropical trees lacking demonstrably annual ring formation, using high resolution δ 18O measurements in tropical wood. The approach applies existing models of the oxygen isotopic composition of alpha-cellulose (Roden et al., 2000), a rapid method for cellulose extraction from raw wood (Brendel et al., 2000), and continuous flow isotope ratio mass spectrometry (Brenna et al., 1998) to develop proxy chronological, rainfall and growth rate estimates from tropical trees lacking visible annual ring structure. Consistent with model predictions, pilot datasets from the temperate US and Costa Rica having independent chronological control suggest that observed cyclic isotopic signatures of several permil (SMOW) represent the annual cycle of local rainfall and relative humidity. Additional data from a plantation tree of known age from ENSO-sensitive northwestern coastal Peru suggests that the 1997-8 ENSO warm phase event was recorded as an 8‰ anomaly in the δ 18O of α-cellulose. The results demonstrate reproducibility of the stable isotopic chronometer over decades, two different climatic zones, and three tropical tree genera, and point to future applications in paleoclimatology.

  19. Stable isotope ratios in hair and teeth reflect biologic rhythms.

    Directory of Open Access Journals (Sweden)

    Otto Appenzeller

    Full Text Available Biologic rhythms give insight into normal physiology and disease. They can be used as biomarkers for neuronal degenerations. We present a diverse data set to show that hair and teeth contain an extended record of biologic rhythms, and that analysis of these tissues could yield signals of neurodegenerations. We examined hair from mummified humans from South America, extinct mammals and modern animals and people, both healthy and diseased, and teeth of hominins. We also monitored heart-rate variability, a measure of a biologic rhythm, in some living subjects and analyzed it using power spectra. The samples were examined to determine variations in stable isotope ratios along the length of the hair and across growth-lines of the enamel in teeth. We found recurring circa-annual periods of slow and fast rhythms in hydrogen isotope ratios in hair and carbon and oxygen isotope ratios in teeth. The power spectra contained slow and fast frequency power, matching, in terms of normalized frequency, the spectra of heart rate variability found in our living subjects. Analysis of the power spectra of hydrogen isotope ratios in hair from a patient with neurodegeneration revealed the same spectral features seen in the patient's heart-rate variability. Our study shows that spectral analysis of stable isotope ratios in readily available tissues such as hair could become a powerful diagnostic tool when effective treatments and neuroprotective drugs for neurodegenerative diseases become available. It also suggests that similar analyses of archaeological specimens could give insight into the physiology of ancient people and animals.

  20. Radionuclides, stable isotopes, inorganic constituents, and organic compounds in water from selected wells and springs from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman Area, Idaho, 1995

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Williams, L.M.; Campbell, L.J.

    1996-09-01

    The US Geological Survey and the Idaho Department of Water Resources, in cooperation with the US Department of Energy, sampled 17 sites as part of a long-term project to monitor water quality of the Snake River Plain aquifer from the southern boundary of the Idaho National Engineering Laboratory to the Hagerman area. Water samples were collected and analyzed for selected radionuclides, stable isotopes, inorganic constituents, and organic compounds. The samples were collected from 11 irrigation wells, 2 domestic wells, 2 stock wells, 1 spring, and 1 public-supply well. Two quality assurance samples also were collected and analyzed. None of the radionuclide, inorganic constituents, or organic compound concentrations exceeded the established maximum contaminant levels for drinking water. Many of the radionuclide and inorganic constituent concentrations were greater than their respective reporting levels. All samples analyzed for dissolved organic carbon had concentrations that were greater than the minimum reporting level

  1. Gradual and stepwise pyrolyses of insoluble organic matter from the Murchison meteorite revealing chemical structure and isotopic distribution

    Science.gov (United States)

    Okumura, Fumiaki; Mimura, Koichi

    2011-11-01

    To study the detailed structural and isotopic heterogeneity of the insoluble organic matter (IOM) of the Murchison meteorite, we performed two types of pyrolytic experiments: gradual pyrolysis and stepwise pyrolysis. The pyrolysates from the IOM contained 5 specific organic groups: aliphatic hydrocarbons, aromatic hydrocarbons, sulfur-bearing compounds, nitrogen-bearing compounds, and oxygen-bearing compounds. The release temperatures and the compositions of these pyrolysates demonstrated that the IOM is composed of a thermally unstable part and a thermally stable part. The thermally unstable part mainly served as the linkage and substituent portion that bound the thermally stable part, which was dispersed throughout the IOM. The linkage and substituent portion consisted of aliphatic hydrocarbons from C 4 to C 8, aromatic hydrocarbons with up to 6 rings, sulfo and thiol groups (the main reservoirs of sulfur in the IOM), and carboxyl and hydroxyl groups (the main reservoirs of oxygen). However, the thermally stable part was composed of polycyclic aromatic hydrocarbons (PAHs) containing nitrogen heterocycles in the IOM. Isotopic data showed that the aliphatic and aromatic hydrocarbons in the linkage and substituent portion were rich in D and 13C, while the thermally stable part was deficient in D and 13C. The structural and isotopic features suggested that the IOM was formed by mixing sulfur- and oxygen-bearing compounds rich in D and 13C (e.g., polar compounds in the interstellar medium (ISM)) and nitrogen-bearing PAHs deficient in D and 13C (e.g., polymerized compounds in the ISM).

  2. Measurement of organic carbon stable isotope composition of different soil types by EA-IRMS system

    International Nuclear Information System (INIS)

    Qi Biao; Ding Lingling; Cui Jiehua; Wang Yanhong

    2009-01-01

    Element analyzer-isotope ratio mass spectrometers (EA-IRMS) is a rapid and precise method for measuring stable carbon isotope. Pure CO 2 reference gas was calibrated via international standard-Urea, and the δ 13 C us PDB value of pure CO 2 is (-29.523 ± 0.0181)%. Stability and linearity of the EA-IRMS system, precision of δ 13 C measurement for samples were tested through experimental comparison. Moreover, determination method of organic carbon stable isotope in soil was based on the system. The EA-IRMS system had well linearity when ion intensity ranged from 1.0 to 7.0V, and it excelled the total linearity when the ion intensity was from 1.5 to 5.0V, and the accurate result of δ 13 C for sample analysis could be obtained with precision of 0.015%. If carbon content in sample is more than 5μg, the requirement for analyzing accurate result of δ 13 C could be achieved. The organic carbon stable isotope was measured in 18 different types soil samples, the average natural abundance of 13 C was 1.082%, and the organic carbon stable isotope composition was significantly different among different type soils. (authors)

  3. Grasland Stable Isotope Flux Measurements: Three Isotopomers of Carbon Dioxide Measured by QCL Spectroscopy

    Science.gov (United States)

    Zeeman, M. J.; Tuzson, B.; Eugster, W.; Werner, R. A.; Buchmann, N.; Emmenegger, L.

    2007-12-01

    To improve our understanding of greenhouse gas dynamics of managed ecosystems such as grasslands, we not only need to investigate the effects of management (e.g., grass cuts) and weather events (e.g., rainy days) on carbon dioxide fluxes, but also need to increase the time resolution of our measurements. Thus, for the first time, we assessed respiration and assimilation fluxes with high time resolution (5Hz) stable isotope measurements at an intensively managed farmland in Switzerland (Chamau, 400m ASL). Two different methods were used to quantify fluxes of carbon dioxide and associated fluxes of stable carbon isotopes: (1) the flux gradient method, and (2) the eddy covariance method. During a week long intensive measurement campaign, we (1) measured mixing ratios of carbon dioxide isotopomers (12C16O2, 12C16O18O, 13C16O2) with a Quantum Cascade Laser (QCL, Aerodyne Inc.) spectroscope and (2) collected air samples for isotope analyses (13C/12C) and (18O/16O) of carbon dioxide by Isotope Ratio Mass Spectrometry (IRMS, Finnigan) every two hours, concurrently along a height profile (z = 0.05; 0.10; 0.31; 2.15m). In the following week, the QCL setup was used for closed-path eddy covariance flux measurement of the carbon dioxide isotopomers, with the air inlet located next to an open-path Infra Red Gas Analyzers (IRGA, LiCor 7500) used simultaneously for carbon dioxide measurements. During this second week, an area of grass inside the footprint was cut and harvested after several days. The first results of in-field continuous QCL measurements of carbon dioxide mixing ratios and their stable isotopic ratios show good agreement with IRGA measurements and isotope analysis of flask samples by IRMS. Thus, QCL spectroscopy is a very promising tool for stable isotope flux investigations.

  4. Stable isotope methods: The effect of gut contents on isotopic ratios of zooplankton

    Science.gov (United States)

    Hill, J. M.; McQuaid, C. D.

    2011-05-01

    In the past decade there has been an increased awareness of the potential for methodological bias resulting from multiple pre-analytical procedures in foodweb interpretations based on stable isotope techniques. In the case of small organisms, this includes the effect of gut contents on whole body signatures. Although gut contents may not reflect actual assimilation, their carbon and nitrogen values will be isotopically lighter than after the same material has been assimilated. The potential skewing of isotopic ratios in whole organism samples is especially important for aquatic environments as many studies involve trophic relationships among small zooplankton. This is particularly important in pelagic waters, where herbivorous zooplankton comprise small taxa. Hence this study investigated the effect of gut contents on the δ13C and δ15N ratios of three size classes of zooplankton (1.0-2.0, 2.0-4.0 and >4.0 mm) collected using bongo net tows in the tropical waters of the south-west Indian Ocean. Animals were collected at night, when they were likely to be feeding, sieved into size classes and separated into genera. We focused on Euphausia spp which dominated zooplankton biomass. Three treatment types were processed: bulk animals, bulk animals without guts and tail muscle from each size class at 10 bongo stations. The δ15N ratios were influenced by zooplankton size class, presumably reflecting ontogenetic changes in diet. ANOVA post hoc results and correlations in δ15N signatures among treatments suggest that gut contents may not affect overall nitrogen signatures of Euphausia spp., but that δ13C signatures may be significantly altered by their presence. Carbon interpretations however, were complicated by potential effects of variation in chitin, lipids and metabolism among tissues and the possibility of opportunistic omnivory. Consequently we advocate gut evacuation before sacrifice in euphausiids if specific tissue dissection is impractical and recommend

  5. Enhanced forensic discrimination of pollutants by position-specific isotope analysis using isotope ratio monitoring by (13)C nuclear magnetic resonance spectrometry.

    Science.gov (United States)

    Julien, Maxime; Nun, Pierrick; Höhener, Patrick; Parinet, Julien; Robins, Richard J; Remaud, Gérald S

    2016-01-15

    In forensic environmental investigations the main issue concerns the inference of the original source of the pollutant for determining the liable party. Isotope measurements in geochemistry, combined with complimentary techniques for contaminant identification, have contributed significantly to source determination at polluted sites. In this work we have determined the intramolecular (13)C profiles of several molecules well-known as pollutants. By giving additional analytical parameters, position-specific isotope analysis performed by isotope ratio monitoring by (13)C nuclear magnetic resonance (irm-(13)C NMR) spectrometry gives new information to help in answering the major question: what is the origin of the detected contaminant? We have shown that isotope profiling of the core of a molecule reveals both the raw materials and the process used in its manufacture. It also can reveal processes occurring between the contamination site 'source' and the sampling site. Thus, irm-(13)C NMR is shown to be a very good complement to compound-specific isotope analysis currently performed by mass spectrometry for assessing polluted sites involving substantial spills of pollutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Pollen-based reconstruction of Holocene climate variability in the Eifel region evaluated with stable isotopes

    Science.gov (United States)

    Kühl, Norbert; Moschen, Robert; Wagner, Stefanie

    2010-05-01

    Pollen as well as stable isotopes have great potential as climate proxy data. While variability in these proxy data is frequently assumed to reflect climate variability, other factors than climate, including human impact and statistical noise, can often not be excluded as primary cause for the observed variability. Multiproxy studies offer the opportunity to test different drivers by providing different lines of evidence for environmental change such as climate variability and human impact. In this multiproxy study we use pollen and peat humification to evaluate to which extent stable oxygen and carbon isotope series from the peat bog "Dürres Maar" reflect human impact rather than climate variability. For times before strong anthropogenic vegetation change, isotope series from Dürres Maar were used to validate quantitative reconstructions based on pollen. Our study site is the kettle hole peat bog "Dürres Maar" in the Eifel low mountain range, Germany (450m asl), which grew 12m during the last 10,000 years. Pollen was analysed with a sum of at least 1000 terrestrial pollen grains throughout the profile to minimize statistical effects on the reconstructions. A recently developed probabilistic indicator taxa method ("pdf-method") was used for the quantitative climate estimates (January and July temperature) based on pollen. For isotope analysis, attention was given to use monospecific Sphagnum leaves whenever possible, reducing the potential of a species effect and any potential artefact that can originate from selective degradation of different morphological parts of Sphagnum plants (Moschen et al., 2009). Pollen at "Dürres Maar" reflect the variable and partly strong human impact on vegetation during the last 4000 years. Stable isotope time series were apparently not influenced by human impact at this site. This highlights the potential of stable isotope investigations from peat for climatic interpretation, because stable isotope series from lacustrine

  7. Infrared Spectroscopy and Stable Isotope Geochemistry of Hydrous Silicate Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stolper, Edward

    2007-03-05

    The focus of this DOE-funded project has been the study of volatile components in magmas and the atmosphere. Over the twenty-one year period of this project, we have used experimental petrology and stable isotope geochemistry to study the behavior and properties of volatile components dissolved in silicate minerals and melts and glasses. More recently, we have also studied the concentration and isotopic composition of CO2 in the atmosphere, especially in relation to air quality issues in the Los Angeles basin.

  8. Kinetic isotope effects and aliphatic diazo-compounds

    International Nuclear Information System (INIS)

    Albery, W.J.; Conway, C.W.; Hall, J.A.

    1976-01-01

    Results are reported for the variation of the rate of decomposition of ethyl diazomalonate (EDM) and diazomalonate anions with pH and for the deuterium solvent isotope effect for EDM. The shape of the pH profile is explained by successive protonations of the anions. Ethyl diazoacetate is observed as an intermediate in the decomposition of EDM. The degree of proton transfer in the EDM transition state is deduced from the solvent isotope effect and the results together with those for other aliphatic diazo-compounds are discussed in terms of the Marcus theory. (author)

  9. Characteristics of stable carbon isotopic composition of shale gas

    Directory of Open Access Journals (Sweden)

    Zhenya Qu

    2016-04-01

    Full Text Available A type Ⅱ kerogen with low thermal maturity was adopted to perform hydrocarbon generation pyrolysis experiments in a vacuum (Micro-Scale Sealed Vessel system at the heating rates of 2 °C/h and 20 °C/h. The stable carbon isotopic compositions of gas hydrocarbons were measured to investigate their evolving characteristics and the possible reasons for isotope reversal. The δ13C values of methane became more negative with the increasing pyrolysis temperatures until it reached the lightest point, after which they became more positive. Meanwhile, the δ13C values of ethane and propane showed a positive trend with elevating pyrolysis temperatures. The carbon isotopic compositions of shale gasses were mainly determined by the type of parent organic matter, thermal evolutionary extent, and gas migration in shale systems. Our experiments and study proved that the isotope reversal shouldn't occur in a pure thermogenic gas reservoir, it must be involved with some other geochemical process/es; although mechanisms responsible for the reversal are still vague. Carbon isotopic composition of the Fayetteville and Barnett shale gas demonstrated that the isotope reversal was likely involved with water–gas reaction and Fischer-Tropsch synthesis during its generation.

  10. Role of stable isotope analyses in reconstructing past life-histories and the provenancing human skeletal remains: a review

    Directory of Open Access Journals (Sweden)

    Sehrawat Jagmahender Singh

    2017-09-01

    Full Text Available This article reviews the present scenario of use of stable isotopes (mainly δ13C, δ15N, δ18O, 87Sr to trace past life behaviours like breast feeding and weaning practices, the geographic origin, migration history, paleodiet and subsistence patterns of past populations from the chemical signatures of isotopes imprinted in human skeletal remains. This approach is based on the state that food-web isotopic signatures are seen in the human bones and teeth and such signatures can change parallely with a variety of biogeochemical processes. By measuring δ13C and δ15N isotopic values of subadult tissues of different ages, the level of breast milk ingestion at particular ages and the components of the complementary foods can be assessed. Strontium and oxygen isotopic analyses have been used for determining the geographic origins and reconstructing the way of life of past populations as these isotopes can map the isotopic outline of the area from where the person acquired water and food during initial lifetime. The isotopic values of strontium and oxygen values are considered specific to geographical areas and serve as reliable chemical signatures of migration history of past human populations (local or non-local to the site. Previous isotopic studies show that the subsistence patterns of the past human populations underwent extensive changes from nomadic to complete agricultural dependence strategies. The carbon and nitrogen isotopic values of local fauna of any archaeological site can be used to elucidate the prominence of freshwater resources in the diet of the past human populations found near the site. More extensive research covering isotopic descriptions of various prehistoric, historic and modern populations is needed to explore the role of stable isotope analysis for provenancing human skeletal remains and assessing human migration patterns/routes, geographic origins, paleodiet and subsistence practices of past populations.

  11. Stable isotope geochemistry : definitions, terminology, measurement and some applications

    International Nuclear Information System (INIS)

    Faure, K.

    2004-01-01

    Stable isotope measurements have been applied to many fundamental problems in geochemistry, petrology, and paleoclimatology, as well as related fields in archaeology, anthropology, physical chemistry, biology and forensic sciences. These applications can be broadly classified into four main types: thermometry, tracers, reaction mechanisms and chemostratigraphy. 52 refs., 11 figs., 2 tabs

  12. Stable isotope compositions of organic carbon and contents of ...

    African Journals Online (AJOL)

    The stable isotope compositions of organic carbon (OC), and contents of OC and nitrogen for four sediment cores recovered from lakes Makat (located in the Ngorongoro Crater), Ndutu and Masek (located in the Serengeti Plains) are used to document sources of organic matter (OM) and climatic changes in sub-arid ...

  13. Water vapor stable isotope observations from tropical Australia

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    The response of the tropical hydrological cycle to anthropogenically induced changes in radiative forcing is one of the largest discrepancies between climate models. Paleoclimate archives of the stable isotopic composition of precipitation in the tropics indicate a relationship with precipitation amount that could be exploited to study past hydroclimate and improve our knowledge of how this region responds to changes in climate forcing. Recently modelling studies of convective parameterizations fitted with water isotopes and remote sensing of water vapor isotopes in the tropics have illustrated uncertainty in the assumed relationship with rainfall amount. Therefore there is a need to collect water isotope data in the tropics that can be used to evaluate these models and help identify the relationships between the isotopic composition of meteoric waters and rainfall intensity. However, data in this region is almost non-existent. Here we present in-situ water vapor isotopic measurements and the HDO retrievals from the co-located Total Column Carbon Observing Network (TCCON) site at Darwin in Tropical Australia. The Darwin site is interestingly placed within the tropical western pacific region and is impacted upon by a clear monsoonal climate, and key climate cycles including ENSO and Madden Julian Oscillations. The analysis of the data illustrated relationships between water vapor isotopes and humidity which demonstrated the role of precipitation processes in the wet season and air mass mixing during the dry season. Further the wet season observations show complex relationships between humidity and isotopes. A simple Rayleigh distillation model was not obeyed, instead the importance of rainfall re-evaporation in generating the highly depleted signatures was demonstrated. These data potentially provide a useful tool for evaluating model parameterizations in monsoonal regions as they demonstrate relationships with precipitation processes that cannot be observed with

  14. Production of stable isotopes at Urenco. 10 years of progress

    International Nuclear Information System (INIS)

    Mol, C.A.; Rakhorst, H.

    2003-01-01

    In the last ten years, Urenco has built its spin-off activity of stable isotopes in a multi-million dollar business. It is a high quality, ISO certified, client oriented and profitable European business with further growth potential. (author)

  15. Characterization of the region and year of production of wines by stable isotopes and elemental analyses

    Directory of Open Access Journals (Sweden)

    M. Day

    1995-06-01

    Full Text Available Stable isotope and elemental analyses were applied to the study of wines produced from the Cabernet Franc vine variety cultivated during several years (1982 to 1990 on specific parts of the Saumur-Champigny vineyard dedicated to the « terroir » experiment of INRA. The purpose of this work was to describe the behaviour or 2H, 13C and 18O isotopes in the water and ethanol of wines in terms of the meteorological conditions (temperature, precipitation and insolation which govern vine growing. Since the « terroir » concept involves a synergy between the c1imate and the soil, the distribution of typical metallic elements was also determined by flame and electrothermal ionization atomic absorption. About twenty parcels, carefully described from the geological and pedological point of view were considered in this study which demonstrated the ability of Sr, Al and Rb to discriminate between wines from the same year but grown on adjacent parcels. The content in trace elements of the wines was also shown to be correlated with the geological nature of the soil. As far as stable isotopes are considered, it appears that the climate of the year of production of a given region has a drastic influence on the isotope ratios of water and ethanol of wines and good correlations way be computed between these parameters and temperature and precipitations. From a more basic aspect, it is also shown that the nature of the soil which governs, at least in a part, the water use efficiency of vine, induces typical variations in the isotopic composition of wines. The results of this study demonstrate also the ability of stable isotope and elemental analyses to determine the geographical origin of a wine, and when the region of production is known, to infer the year of production from meteorological data. This method might prove to be an alternative method to radio carbon analysis for the next vintages.

  16. Periodicity of the stable isotopes

    CERN Document Server

    Boeyens, J C A

    2003-01-01

    It is demonstrated that all stable (non-radioactive) isotopes are formally interrelated as the products of systematically adding alpha particles to four elementary units. The region of stability against radioactive decay is shown to obey a general trend based on number theory and contains the periodic law of the elements as a special case. This general law restricts the number of what may be considered as natural elements to 100 and is based on a proton:neutron ratio that matches the golden ratio, characteristic of biological and crystal growth structures. Different forms of the periodic table inferred at other proton:neutron ratios indicate that the electronic configuration of atoms is variable and may be a function of environmental pressure. Cosmic consequences of this postulate are examined. (author)

  17. Soil organic matter (SOM) dynamics determined by stable isotope techniques

    International Nuclear Information System (INIS)

    Gerzabek, M. H.

    1998-09-01

    Being aware of limitations and possible bias the 13 C natural abundance technique using the different 13 C enrichments in plants with differing photosynthetic pathways in a powerful tool to quantify turnover processes, both in long-term field studies and short-term laboratory experiments. Special care is needed in choosing reference plots and the proper number of replicate samples. The combination of 13 C and 14 C measurements has a high potential for a further improvement of isotope techniques in SOM studies. Natural abundance of 15 N is less powerful with respect to quantification of SOM processes than the isotope dilution technique. However its usefulness could be distinctly improved by introducing other stable isotopes into the studies.(author)

  18. Stable isotopes applied as water tracers for infiltration experiment

    International Nuclear Information System (INIS)

    Liu Xiaoyan; Chen Jiansheng; Sun Xiaoxu; Su Zhiguo

    2011-01-01

    The δD and δ 18 O vertical profiles of soil water were measured prior to and after a rainfall event. Mechanisms of soil water movement were deciphered by comparing the soil water isotope profiles with the isotopic composition of precipitation. The results show that evaporation at the upper depth led to enrichment of the heavy isotopes. Compared to the loess profile, the shallow soil water of sand profile is relatively enriched in D and 18 O due to macro-pore and low water-holding capacity. The precipitation is infiltrated into soil in piston mode, accompanied with significant mixing of older soil water. The preferential fluid flow in loess was observed at depths of 0-20 cm, caused by cracks in the depths. The hydrogen and oxygen isotopic compositions in outflow are close to the precipitation, which shows a mixing of the precipitation and old soil water, and indicates that the isotopic composition of outflow water is mainly controlled by that of the precipitation. The δD and δ 18 O in outflow decreased with time until stable δ values of outflow are close to those of the precipitation. (authors)

  19. Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS)--part 2: forensic inter-laboratory trial: bulk carbon and nitrogen stable isotopes in a range of chemical compounds (Australia and New Zealand).

    Science.gov (United States)

    Benson, Sarah J; Lennard, Christopher J; Maynard, Philip; Hill, David M; Andrew, Anita S; Neal, Ken; Stuart-Williams, Hilary; Hope, Janet; Walker, G Stewart; Roux, Claude

    2010-01-01

    Comparability of data over time and between laboratories is a key issue for consideration in the development of global databases, and more broadly for quality assurance in general. One mechanism that can be utilized for evaluating traceability is an inter-laboratory trial. This paper addresses an inter-laboratory trial conducted across a number of Australian and New Zealand isotope ratio mass spectrometry (IRMS) laboratories. The main objective of this trial was to determine whether IRMS laboratories in these countries would record comparable values for the distributed samples. Four carbon containing and four nitrogen containing compounds were distributed to seven laboratories in Australia and one in New Zealand. The laboratories were requested to analyze the samples using their standard procedures. The data from each laboratory was evaluated collectively using International Standard ISO 13528 (Statistical methods for use in proficiency testing by inter-laboratory comparisons). "Warning signals" were raised against one participant in this trial. "Action signals" requiring corrective action were raised against four participants. These participants reviewed the data and possible sources for the discrepancies. This inter-laboratory trial was successful in providing an initial snapshot of the potential for traceability between the participating laboratories. The statistical methods described in this article could be used as a model for others needing to evaluate stable isotope results derived from multiple laboratories, e.g., inter-laboratory trials/proficiency testing. Ongoing trials will be conducted to improve traceability across the Australian and New Zealand IRMS community.

  20. Stable isotopes confirm a coastal diet for critically endangered Mediterranean monk seals.

    Science.gov (United States)

    Karamanlidis, Alexandros A; Curtis, P Jeff; Hirons, Amy C; Psaradellis, Marianna; Dendrinos, Panagiotis; Hopkins, John B

    2014-01-01

    Understanding the ecology and behaviour of endangered species is essential for developing effective management and conservation strategies. We used stable isotope analysis to investigate the foraging behaviour of critically endangered Mediterranean monk seals (Monachus monachus) in Greece. We measured carbon and nitrogen isotope ratios (expressed as δ(13)C and δ(15)N values, respectively) derived from the hair of deceased adult and juvenile seals and the muscle of their known prey to quantify their diets. We tested the hypothesis that monk seals primarily foraged for prey that occupy coastal habitats in Greece. We compared isotope values from seal hair to their coastal and pelagic prey (after correcting all prey for isotopic discrimination) and used these isotopic data and a stable isotope mixing model to estimate the proportion of coastal and pelagic resources consumed by seals. As predicted, we found that seals had similar δ(13)C values as many coastal prey species and higher δ(13)C values than pelagic species; these results, in conjunction with mean dietary estimates (coastal=61 % vs. pelagic=39 %), suggest that seals have a diverse diet comprising prey from multiple trophic levels that primarily occupy the coast. Marine resource managers should consider using the results from this study to inform the future management of coastal habitats in Greece to protect Mediterranean monk seals.

  1. Surface oceanographic fronts influencing deep-sea biological activity: Using fish stable isotopes as ecological tracers

    Science.gov (United States)

    Louzao, Maite; Navarro, Joan; Delgado-Huertas, Antonio; de Sola, Luis Gil; Forero, Manuela G.

    2017-06-01

    Ecotones can be described as transition zones between neighbouring ecological systems that can be shaped by environmental gradients over a range of space and time scales. In the marine environment, the detection of ecotones is complex given the highly dynamic nature of marine systems and the paucity of empirical data over ocean-basin scales. One approach to overcome these limitations is to use stable isotopes from animal tissues since they can track spatial oceanographic variability across marine systems and, in turn, can be used as ecological tracers. Here, we analysed stable isotopes of deep-sea fishes to assess the presence of ecological discontinuities across the western Mediterranean. We were specifically interested in exploring the connection between deep-sea biological activity and particular oceanographic features (i.e., surface fronts) occurring in the pelagic domain. We collected samples for three different abundant deep-sea species in May 2004 from an experimental oceanographic trawling cruise (MEDITS): the Mictophydae jewel lanternfish Lampanyctus crocodilus and two species of the Gadidae family, the silvery pout Gadiculus argenteus and the blue whiting Micromesistius poutassou. The experimental survey occurred along the Iberian continental shelf and the upper and middle slopes, from the Strait of Gibraltar in the SW to the Cape Creus in the NE. The three deep-sea species were highly abundant throughout the study area and they showed geographic variation in their isotopic values, with decreasing values from north to south disrupted by an important change point around the Vera Gulf. Isotopic latitudinal gradients were explained by pelagic oceanographic conditions along the study area and confirm the existence of an ecotone at the Vera Gulf. This area could be considered as an oceanographic boundary where waters of Atlantic origin meet Mediterranean surface waters forming important frontal structures such as the Almeria-Oran front. In fact, our results

  2. Laser Spectroscopic Analysis of Liquid Water Samples for Stable Hydrogen and Oxygen Isotopes

    International Nuclear Information System (INIS)

    2009-01-01

    Stable isotope ratios of hydrogen and oxygen are tracers of choice for water cycle processes in hydrological, atmospheric and ecological studies. The use of isotopes has been limited to some extent because of the relatively high cost of isotope ratio mass spectrometers and the need for specialized operational skills. Here, the results of performance testing of a recently developed laser spectroscopic instrument for measuring stable hydrogen and oxygen isotope ratios of water samples are described, along with a procedure for instrument installation and operation. Over the last four years, the IAEA Water Resources Programme conducted prototype and production model testing of these instruments and this publication is the outcome of those efforts. One of the main missions of the IAEA is to promote the use of peaceful applications of isotope and nuclear methods in Member States and this publication is intended to facilitate the use of laser absorption based instruments for hydrogen and oxygen stable isotope analyses of liquid water samples for hydrological and other studies. The instrument uses off-axis integrated cavity output spectroscopy to measure absolute abundances of 2 HHO, HH 18 O, and HHO via laser absorption. Test results using a number of natural and synthetic water standards and samples with a large range of isotope values demonstrate adequate precision and accuracy (e.g. precisions of 1 per mille for δ 2 H and 0.2 per mille for δ 18 O). The laser instrument has much lower initial and maintenance costs than mass spectrometers and is substantially easier to operate. Thus, these instruments have the potential to bring about a paradigm shift in isotope applications by enabling researchers in all fields to measure isotope ratios by themselves. The appendix contains a detailed procedure for the installation and operation of the instrument. Using the procedure, new users should be able to install the instrument in less than two hours. It also provides step

  3. Modeling of isotope fractionation at the catchment scale: How promising is compound specific isotope analysis (CSIA) as a tool for analyzing diffuse pollution by agrochemicals?

    Science.gov (United States)

    Lutz, S. R.; van Meerveld, H. J.; Waterloo, M. J.; Broers, H. P.; van Breukelen, B. M.

    2012-04-01

    Concentration measurements are indispensable for the assessment of subsurface and surface water pollution by agrochemicals such as pesticides. However, monitoring data is often ambiguous and easily misinterpreted as a decrease in concentration could be caused by transformation, dilution or changes in the application of the pesticide. In this context, compound specific isotope analysis (CSIA) has recently emerged as a complementary monitoring technique. It is based on the measurement of the isotopic composition (e.g. δ13C and δ2H) of the contaminant. Since transformation processes are likely accompanied by isotope fractionation, thus a change in this composition, CSIA offers the opportunity to gain additional knowledge about transport and degradation processes as well as to track pollutants back to their sources. Isotopic techniques have not yet been applied in a comprehensive way in the analysis of catchment-wide organic pollution. We therefore incorporated fractionation processes associated with the fate of pesticides into the numerical flow and solute transport model HydroGeoSphere in order to assess the feasibility of CSIA within the context of catchment monitoring. The model was set up for a hypothetical hillslope transect which drains into a river. Reactive solute transport was driven by two pesticides applications within one year and actual data for rainfall and potential evapotranspiration from a meteorological station in the Netherlands. Degradation of the pesticide was assumed to take place at a higher rate under the prevailing oxic conditions in the topsoil than in deeper, anoxic subsurface layers. In terms of CSIA, these two degradation pathways were associated with different strengths of isotope fractionation for both hydrogen and carbon atoms. By simulating changes in δ13C and δ2H, the share of the oxic and the anoxic reaction on the overall degradation could be assessed. Model results suggest that CSIA is suitable for assessing degradation of

  4. The future of producing separated stable isotopes at Oak Ridge National Laboratory for accelerator applications

    International Nuclear Information System (INIS)

    Collins, E.D.

    1994-01-01

    Separated stable isotopes, produced in the calutrons at Oak Ridge National Laboratory, are essential target materials for production of numerous radioisotopes in accelerators and reactors. Recently, separated stable isotope production has been curtailed because government appropriations were discontinued and salts revenues decreased. The calutrons were placed in standby and the operating staff reduced to enable support by sales from existing inventories. Appeals were made to industry and government to preserve this national capability. Methods for providing volume-based price reductions were created to attract support from commercial isotope users. In 1994, the Department of Energy's Isotope Production and Distribution Program was restructured and a strategy produced to seek appropriated funding for the future production of rare, nonprofitable isotopes for research uses. This strategy, together with new demands for medical isotopes, will enable future operation of the calutrons. Moreover, production may be enhanced by complementing calutron capabilities with the Plasma Separation Process

  5. Stable isotopes in speleothems as proxies of past environmental changes in the Alps

    International Nuclear Information System (INIS)

    Spoetl, C.; Burns, S.J.; Mangini, A.

    2002-01-01

    This short communication presents preliminary results and interpretations from an ongoing research project in the Obir Cave of southeast Austria. This cave system hosts abundant calcite dripstones many of which are actively forming today. The stable isotopic composition of a Holocene stalagmite dated by U-series TIMS techniques shows rather stable values throughout most of the last eight millennia, except for the last few hundred years when both C and O isotope values strongly increase (probably due to changes in the cave air circulation as a result of mining activity). (author)

  6. Caution on the use of liquid nitrogen traps in stable hydrogen isotope-ratio mass spectrometry

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping

    2010-01-01

    An anomalous stable hydrogen isotopic fractionation of 4 ‰ in gaseous hydrogen has been correlated with the process of adding liquid nitrogen (LN2) to top off the dewar of a stainless-steel water trap on a gaseous hydrogen-water platinum equilibration system. Although the cause of this isotopic fractionation is unknown, its effect can be mitigated by (1) increasing the capacity of any dewars so that they do not need to be filled during a daily analytic run, (2) interspersing isotopic reference waters among unknowns, and (3) applying a linear drift correction and linear normalization to isotopic results with a program such as Laboratory Information Management System (LIMS) for Light Stable Isotopes. With adoption of the above guidelines, measurement uncertainty can be substantially improved. For example, the long-term (months to years) δ2H reproducibility (1& sigma; standard deviation) of nine local isotopic reference waters analyzed daily improved substantially from about 1‰ to 0.58 ‰. This isotopically fractionating mechanism might affect other isotope-ratio mass spectrometers in which LN2 is used as a moisture trap for gaseous hydrogen

  7. Use of carbon stable isotope to investigate chloromethane formation in the electrolytic dechlorination of trichloroethylene

    International Nuclear Information System (INIS)

    Fang Yuanxiang; Al-Abed, Souhail R.

    2007-01-01

    Carbon stable isotope trichloroethylene ( 13 C TCE) was used to investigate the formation of chloromethane (CM) during the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite packed cathode. A method was developed to use a conventional GC/MS to analyze and quantify regular and 13 C TCE and their dechlorination products. The concentration of a 13 C compound can be calculated, based on the concentration of its regular counterpart, from the response ratio of two fragments of different mass per charge values from the compounds in a sample and two characteristic MS spectrum ratios: one is the response ratio of the two fragments of the regular compound, and the other is the response ratio of the corresponding fragments of the regular and 13 C compounds at the same concentrations. The method was used to analyze the regular and 13 C compounds observed in an experiment of dechlorination in an ammonium acetate solution that contained both regular TCE and 13 C TCE. Results of analysis confirmed that CM was not a direct product of TCE dechlorination at the granular graphite cathode that cis-DCE was an intermediate product of TCE dechlorination, and that 1,1-DCE was not a dechlorination product

  8. Use of carbon stable isotope to investigate chloromethane formation in the electrolytic dechlorination of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Fang Yuanxiang [National Risk Management Research Laboratory, USEPA 26 W. Martin Luther King Dr. Cincinnati, OH 45268 (United States); Al-Abed, Souhail R. [National Risk Management Research Laboratory, USEPA 26 W. Martin Luther King Dr. Cincinnati, OH 45268 (United States)]. E-mail: Al-Abed.Souhail@epa.gov

    2007-03-22

    Carbon stable isotope trichloroethylene ({sup 13}C TCE) was used to investigate the formation of chloromethane (CM) during the electrolytic dechlorination of trichloroethylene (TCE) at a granular-graphite packed cathode. A method was developed to use a conventional GC/MS to analyze and quantify regular and {sup 13}C TCE and their dechlorination products. The concentration of a {sup 13}C compound can be calculated, based on the concentration of its regular counterpart, from the response ratio of two fragments of different mass per charge values from the compounds in a sample and two characteristic MS spectrum ratios: one is the response ratio of the two fragments of the regular compound, and the other is the response ratio of the corresponding fragments of the regular and {sup 13}C compounds at the same concentrations. The method was used to analyze the regular and {sup 13}C compounds observed in an experiment of dechlorination in an ammonium acetate solution that contained both regular TCE and {sup 13}C TCE. Results of analysis confirmed that CM was not a direct product of TCE dechlorination at the granular graphite cathode that cis-DCE was an intermediate product of TCE dechlorination, and that 1,1-DCE was not a dechlorination product.

  9. Application of the stable-isotope system to the study of sources and fate of Hg in the environment: A review

    International Nuclear Information System (INIS)

    Yin Runsheng; Feng Xinbin; Shi Wenfang

    2010-01-01

    With the improvement of analytical methods and the development of multiple-collector inductively coupled plasma-mass spectrometry (MC-ICP/MS), research on non-traditional stable isotope (Cu, Zn, Fe, Se, Mo, Cr, Hg) in geochemistry has made tremendous progress in the past decade. Recent studies have demonstrated that both organic and inorganic reactions may cause Hg isotope fractionation, and variations of Hg isotopic composition in the environment have been successfully employed to explain Hg pollution history, Hg sources and tracking Hg pathways in nature. Furthermore, Hg isotopic fractionation studies can be a powerful tool in the calibration of global Hg cycling models. Stable isotope geochemistry of Hg is therefore becoming a new frontier subject in earth sciences. Based on summarizing previous research, this paper outlines the main advances in the study of Hg stable isotopes with particular emphasis placed on a brief explanation of Hg isotope analytical techniques, possible Hg isotope fractionation mechanisms observed in both natural and experimental processes, Hg isotope composition variations in different environmental matrices, and the application prospects of the Hg stable isotopes in environmental geosciences.

  10. Geochemistry of the stable isotopes of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Douthitt, C B [California Inst. of Tech., Pasadena (USA). Div. of Geological and Planetary Sciences

    1982-08-01

    One hundred thirty two new measurements of the relative abundances of the stable isotopes of silicon in terrestrial materials are presented. The total variation of delta/sup 30/Si found is 6.2 parts per thousand, centered on the mean of terrestrial mafic and ultramafic igneous rocks, delta/sup 30/Si = -0.4 parts per thousand. Igneous rocks show limited variation; coexisting minerals exhibit small, systematic silicon isotopic fractionations that are roughly 1/3 the magnitude of concomitant oxygen isotopic fractionations at 1150/sup 0/C. In both igneous minerals and rocks, delta/sup 30/Si shows a positive correlation with silicon content, as does delta/sup 18/O. Opal from both sponge spicules and sinters is light, with delta/sup 30/Si = -2.3 and -1.4 parts per thousand respectively. Large delta/sup 30/Si values of both positive and negative sign are reported for the first time from clay minerals, opaline phytoliths, and authigenic quartz. All highly fractionated samples were precipitated from solution at low temperatures; however, aqueous silicon is not measurably fractionated relative to quartz at equilibrium. A kinetic isotope fractionation of approximately 3.5 parts per thousand is postulated to occur during the low temperature precipitation of opal and, possibly, poorly ordered phyllosilicates, with the silicate phase being enriched in /sup 28/Si. This fractionation, coupled with a Rayleigh precipitation model, is capable of explaining most non-magmatic delta/sup 30/Si variations.

  11. High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance

    Science.gov (United States)

    Zare, Richard N.; Kuramoto, Douglas S.; Haase, Christa; Tan, Sze M.; Crosson, Eric R.; Saad, Nabil M. R.

    2009-01-01

    A continuous-flow cavity ring-down spectroscopy (CRDS) system integrating a chromatographic separation technique, a catalytic combustor, and an isotopic 13C/12C optical analyzer is described for the isotopic analysis of a mixture of organic compounds. A demonstration of its potential is made for the geochemically important class of short-chain hydrocarbons. The system proved to be linear over a 3-fold injection volume dynamic range with an average precision of 0.95‰ and 0.67‰ for ethane and propane, respectively. The calibrated accuracy for methane, ethane, and propane is within 3‰ of the values determined using isotope ratio mass spectrometry (IRMS), which is the current method of choice for compound-specific isotope analysis. With anticipated improvements, the low-cost, portable, and easy-to-use CRDS-based instrumental setup is poised to evolve into a credible challenge to the high-cost and complex IRMS-based technique. PMID:19564619

  12. Use of stable sulphur isotopes to monitor directly the behaviour of sulphur in coal during thermal desulphurization

    Science.gov (United States)

    Liu, Chao-Li; Hackley, Keith C.; Coleman, D.D.

    1987-01-01

    A method has been developed using stable sulphur isotope analyses to monitor the behaviour of sulphur forms in a coal during thermal desulphurization. In this method, the natural stable isotopic composition of the pyritic and organic sulphur in coal is used as a tracer to follow their mobility during the desulphurization process. This tracer method is based on the fact that the isotopic compositions of pyritic and organic sulphur are significantly different in some coals. Isotopic results of pyrolysis experiments at temperatures ranging from 350 to 750 ??C indicate that the sulphur released with the volatiles is predominantly organic sulphur. The pyritic sulphur is evolved in significant quantities only when pyrolysis temperatures exceed 500 ??C. The presence of pyrite seems to have no effect on the amount of organic sulphur evolved during pyrolysis. The chemical and isotopic mass balances achieved from three different samples of the Herrin (No. 6) coal of the Illinois Basin demonstrate that this stable isotope tracer method is quantitative. The main disadvantage of this tracing technique is that not all coals contain isotopically distinct organic and pyritic sulphur. ?? 1987.

  13. Stable Isotope Mapping of Alaskan Grasses and Marijuana

    Science.gov (United States)

    Booth, A. L.; Wooller, M. J.

    2008-12-01

    The spatial variation of isotope signatures in organic material is a useful forensic tool, particularly when applied to the task of tracking the production and distribution of plant-derived illicit drugs. In order to identify the likely grow-locations of drugs such as marijuana from unknown locations (i.e., confiscated during trafficking), base isotope maps are needed that include measurements of plants from known grow-locations. This task is logistically challenging in remote, large regions such as Alaska. We are therefore investigating the potential of supplementing our base (marijuana) isotope maps with data derived from other plants from known locations and with greater spatial coverage in Alaska. These currently include >150 samples of modern C3 grasses (Poaceae) as well as marijuana samples (n = 18) from known grow-locations across the state. We conducted oxygen, carbon and nitrogen stable isotope analyses of marijuana and grasses (Poaceae). Poaceae samples were obtained from the University of Alaska Fairbanks (UAF) Museum of the North herbarium collection, originally collected by field botanists from around Alaska. Results indicate that the oxygen isotopic composition of these grasses range from 10‰ to 30‰, and broadly mirror the spatial pattern of water isotopes in Alaska. Our marijuana samples were confiscated around the state of Alaska and supplied to us by the UAF Police Department. δ13C, δ15N and δ18O values exhibit geographic patterns similar to the modern grasses, but carbon and nitrogen isotopes of some marijuana plants appear to be influenced by additional factors related to indoor growing conditions (supplementary CO2 sources and the application of organic fertilizer). As well as providing a potential forensic resource, our Poaceae isotope maps could serve additional value by providing resources for studying ecosystem nutrient cycling, for tracing natural ecological processes (i.e., animal migration and food web dynamics) and providing

  14. Applications of DNA-Stable Isotope Probing in Bioremediation Studies

    Science.gov (United States)

    Chen, Yin; Vohra, Jyotsna; Murrell, J. Colin

    DNA-stable isotope probing, a method to identify active microorganisms without the prerequisite of cultivation, has been widely applied in the study of microorganisms involved in the degradation of environmental pollutants. Recent advances and technique considerations in applying DNA-SIP in bioremediation are highlighted. A detailed protocol of a DNA-SIP experiment is provided.

  15. Passage of stable isotope-labeled grass silage fiber and fiber-bound protein through the gastroinstestinal tract of dairy cows

    NARCIS (Netherlands)

    Warner, D.; Dijkstra, J.; Hendriks, W.H.; Pellikaan, W.F.

    2013-01-01

    Fractional passage rates are required to predict nutrient absorption in ruminants but data on nutrient-specific passage kinetics are largely lacking. With the use of the stable isotope ratio (d) as an internal marker, we assessed passage kinetics of fiber and fiber-bound nitrogen (N) of

  16. Non-traditional Stable Isotope Systematics of Seafloor Hydrothermal Systems

    Science.gov (United States)

    Rouxel, O. J.

    2009-05-01

    Seafloor hydrothermal activity at mid-ocean ridges is one of the fundamental processes controlling the chemistry of the oceans and the altered oceanic crust. Past studies have demonstrated the complexity and diversity of seafloor hydrothermal systems and have highlighted the importance of subsurface environments in controlling the composition of hydrothermal fluids and mineralization types. Traditionally, the behavior of metals in seafloor hydrothermal systems have been investigated by integrating results from laboratory studies, theoretical models, mineralogy and fluid and mineral chemistry. Isotope ratios of various metals and metalloids, such as Fe, Cu, Zn, Se, Cd and Sb have recently provided new approaches for the study of seafloor hydrothermal systems. Despite these initial investigations, the cause of the isotopic variability of these elements remains poorly constrained. We have little understanding of the isotope variations between vent types (black or white smokers) as well as the influence of source rock composition (basalt, felsic or ultrabasic rocks) and alteration types. Here, I will review and present new results of metal isotope systematics of seafloor hydrothermal systems, in particular: (1) determination of empirical isotope fractionation factors for Zn, Fe and Cu-isotopes through isotopic analysis of mono-mineralic sulfide grains lining the internal chimney wall in contact with hydrothermal fluid; (2) comparison of Fe- and Cu-isotope signatures of vent fluids from mid- oceanic and back-arc hydrothermal fields, spanning wide ranges of pH, temperature, metal concentrations and contributions of magmatic fluids enriched in SO2. Ultimately, the use of complementary non-traditional stable isotope systems may help identify and constrain the complex interactions between fluids,minerals, and organisms in seafloor hydrothermal systems.

  17. Normalization Methods and Selection Strategies for Reference Materials in Stable Isotope Analyses - Review

    International Nuclear Information System (INIS)

    Skrzypek, G.; Sadler, R.; Paul, D.; Forizs, I.

    2011-01-01

    A stable isotope analyst has to make a number of important decisions regarding how to best determine the 'true' stable isotope composition of analysed samples in reference to an international scale. It has to be decided which reference materials should be used, the number of reference materials and how many repetitions of each standard is most appropriate for a desired level of precision, and what normalization procedure should be selected. In this paper we summarise what is known about propagation of uncertainties associated with normalization procedures and propagation of uncertainties associated with reference materials used as anchors for the determination of 'true' values for δ''1''3C and δ''1''8O. Normalization methods Several normalization methods transforming the 'raw' value obtained from mass spectrometers to one of the internationally recognized scales has been developed. However, as summarised by Paul et al. different normalization transforms alone may lead to inconsistencies between laboratories. The most common normalization procedures are: single-point anchoring (versus working gas and certified reference standard), modified single-point normalization, linear shift between the measured and the true isotopic composition of two certified reference standards, two-point and multipoint linear normalization methods. The accuracy of these various normalization methods has been compared by using analytical laboratory data by Paul et al., with the single-point and normalization versus tank calibrations resulting in the largest normalization errors, and that also exceed the analytical uncertainty recommended for δ 13 C. The normalization error depends greatly on the relative differences between the stable isotope composition of the reference material and the sample. On the other hand, the normalization methods using two or more certified reference standards produces a smaller normalization error, if the reference materials are bracketing the whole range of

  18. Assessment of Bacterial Degradation of Aromatic Hydrocarbons in the Environment by Analysis of Stable Carbon Isotope Fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Meckenstock, Rainer U. [Eberhard-Karls University of Tuebingen, Center for Applied Geoscience (Germany)], E-mail: rainer.meckenstock@uni-tuebingen.de; Morasch, Barbara [University of Konstanz, Faculty of Biology (Germany); Kaestner, Matthias; Vieth, Andrea; Richnow, Hans Hermann [Center for Environmental Research, Department of Remediation Research (Germany)

    2002-05-15

    {sup 13}C/{sup 12}C stable carbon isotope fractionation was used to assess biodegradation in contaminated aquifers with toluene as a model compound. Different strains of anaerobic bacteria (Thauera aromatica, Geobacter metallireducens, and the sulfate-reducing strain TRM1) showed consistent {sup 13}C/{sup 12}C carbon isotope fractionation with fractionation factors between {alpha}C = 1.0017 and 1.0018. In contrast, three cultures of aerobic organisms, using different mono- and dioxygenase enzyme systems to initiate toluene degradation, showed variable isotope fractionation factors of {alpha}C = 1.0027 (Pseudomonasputida strain mt-2), {alpha}C = 1.0011 (Ralstonia picketii), and{alpha}C = 1.0004 (Pseudomonas putida strain F1). The great variability of isotope fractionation between different aerobic bacterial strains suggests that interpretation of isotope data in oxic habitats can only be qualitative. A soil column was run as a model system for contaminated aquifers with toluene as the carbon source and sulfate as the electron acceptor and samples were taken at different ports along the column. Microbial toluene degradation was calculated based on the {sup 13}C/{sup 12}C isotope fractionation factors of the batch culture experiments together with the observed {sup 13}C/{sup 12}C isotope shifts of the residual toluene fractions. The calculated percentage of biodegradation, B, correlated well with the decreasing toluene concentrations at the sampling ports and indicated the increasing extent of biodegradation along the column. The theoretical toluene concentrations as calculated based on the isotope values matched the measured concentrations at the different sampling ports indicating that the Rayleigh equation can be used to calculate biodegradation in quasi closed systems based on measured isotope shifts. A similar attempt was performed to assess toluene degradation in a contaminated, anoxic aquifer. A transect of groundwater wells was monitored along the main

  19. Reconstructing hydroclimatic variations using compound-specific hydrogen isotope analysis of biomarkers from a maar lake in the Central Highlands, Vietnam

    Science.gov (United States)

    Doiron, K. E.; Stevens, L. R.; Sauer, P. E.

    2017-12-01

    Monsoonal variation in Southeast Asia affects a significant portion of the global population, but knowledge regarding response of the monsoon system to changing boundary conditions is limited. The paleoclimatic tool of compound-specific isotope analysis(CSIA) provides the ability to reconstruct past precipitation using a diverse set of biomarkers preserved in the sedimentary record. Limited proxies in tropical southeast Asia and difficult site access have led to a deficit in paleoclimate records. Ia M'He (14°10'45" N, 107°52' E) is a shallow volcanic crater (maar) lake, approximately 57 ha, located in the Central Highlands of Vietnam. Precipitation in the Central Highlands is sensitive to reorganizations of major climatic features, such as the migration of the ITCZ and the coupled Indo-Asian monsoon, ENSO and related shifts in the Pacific Walker Circulation and typhoon frequency. To examine this complex behavior, this pilot study aims to provide a 500-year record of effective moisture inferred from CSIA of hydrogen isotopes on biomarkers. This study highlights the use of hydrogen isotopes of C28 n-alkanoic acid and dominant n-alkane chain lengths of C27 and C29, associated with terrestrial plant leaf waxes, as tracers for precipitation. The hydrogen isotope ratios of the plant wax components provide a proxy for paleo precipitation in a region where rainfall and droughts heavily influence population dynamics and create social discord. The CSIA record is expected to correlate with records from northern Vietnam, the South China Sea and Indonesia, with greater precipitation during the Little Ice Age. The CSIA data of terrestrial plant leaf waxes will be compared with secondary proxies including: diatoms, C/N and biogenic silica.

  20. Isotope ratios as pollutant source and behaviour indicators

    International Nuclear Information System (INIS)

    1975-01-01

    Recent years have witnessed significant advances in isotope techniques for identifying origins and for studying the behaviour of trace contaminants and pollutants of the environment under actual existing environmental conditions. Improvements in the supply of stable isotopes and their labelled compounds, instrumental analysis and information on stable or radioactive isotopic ratios of existing environmental contaminants as a function of origin or behaviour have provided relatively new tools for the environmental scientist. While variations in natural or existing environmental stable and radioactive nuclides could be regarded as 'background noise' in conventional tracer experiments they promised unique information about sources and behaviour to those who listened carefully. (author)