WorldWideScience

Sample records for compound toxicity based

  1. Multi-class Mode of Action Classification of Toxic Compounds Using Logic Based Kernel Methods.

    Science.gov (United States)

    Lodhi, Huma; Muggleton, Stephen; Sternberg, Mike J E

    2010-09-17

    Toxicity prediction is essential for drug design and development of effective therapeutics. In this paper we present an in silico strategy, to identify the mode of action of toxic compounds, that is based on the use of a novel logic based kernel method. The technique uses support vector machines in conjunction with the kernels constructed from first order rules induced by an Inductive Logic Programming system. It constructs multi-class models by using a divide and conquer reduction strategy that splits multi-classes into binary groups and solves each individual problem recursively hence generating an underlying decision list structure. In order to evaluate the effectiveness of the approach for chemoinformatics problems like predictive toxicology, we apply it to toxicity classification in aquatic systems. The method is used to identify and classify 442 compounds with respect to the mode of action. The experimental results show that the technique successfully classifies toxic compounds and can be useful in assessing environmental risks. Experimental comparison of the performance of the proposed multi-class scheme with the standard multi-class Inductive Logic Programming algorithm and multi-class Support Vector Machine yields statistically significant results and demonstrates the potential power and benefits of the approach in identifying compounds of various toxic mechanisms. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Toxic compounds in honey.

    Science.gov (United States)

    Islam, Md Nazmul; Khalil, Md Ibrahim; Islam, Md Asiful; Gan, Siew Hua

    2014-07-01

    There is a wealth of information about the nutritional and medicinal properties of honey. However, honey may contain compounds that may lead to toxicity. A compound not naturally present in honey, named 5-hydroxymethylfurfural (HMF), may be formed during the heating or preservation processes of honey. HMF has gained much interest, as it is commonly detected in honey samples, especially samples that have been stored for a long time. HMF is a compound that may be mutagenic, carcinogenic and cytotoxic. It has also been reported that honey can be contaminated with heavy metals such as lead, arsenic, mercury and cadmium. Honey produced from the nectar of Rhododendron ponticum contains alkaloids that can be poisonous to humans, while honey collected from Andromeda flowers contains grayanotoxins, which can cause paralysis of limbs in humans and eventually leads to death. In addition, Melicope ternata and Coriaria arborea from New Zealand produce toxic honey that can be fatal. There are reports that honey is not safe to be consumed when it is collected from Datura plants (from Mexico and Hungary), belladonna flowers and Hyoscamus niger plants (from Hungary), Serjania lethalis (from Brazil), Gelsemium sempervirens (from the American Southwest), Kalmia latifolia, Tripetalia paniculata and Ledum palustre. Although the symptoms of poisoning due to honey consumption may differ depending on the source of toxins, most common symptoms generally include dizziness, nausea, vomiting, convulsions, headache, palpitations or even death. It has been suggested that honey should not be considered a completely safe food. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Polyoxometalate-based Catalysts for Toxic Compound Decontamination and Solar Energy Conversion

    Science.gov (United States)

    Guo, Weiwei

    Polyoxometalates (POMs) have been attracting interest from researchers in the fields of Inorganic Chemistry, Physical Chemistry, Biomolecular Chemistry, etc. Their unique structures and properties render them versatile and facilitate applications in medicine, magnetism, electrochemistry, photochemistry and catalysis. In particular, toxic compound (chemical warfare agents (CWAs) and toxic industrial compounds (TICs)) decontamination and solar energy conversion by POM-based materials have becoming promising and important research areas that deserve much attention. The focus of this thesis is to explore the structural features of POMs, to develop POM-based materials and to investigate their applications in toxic compound decontamination and solar energy conversion. The first part of this thesis gives a general introduction on the history, structures, properties and applications of POMs. The second part reports the synthesis, structures, and reactivity of different types of POMs in the destruction of TICs and CWAs. Three tetra-n-butylammonium (TBA) salts of polyvanadotungstates, [n-Bu4N]6[ PW9V3], [n-Bu4N] 5H2PW8V4O40 (PW 8V4), [n-Bu4N]4H 5PW6V6O40· 20H2O (PW6V6) are discussed in detail. These vanadium-substituted Keggin type POMs show effective activity for the aerobic oxidation of formaldehyde (a major TIC and human-environment carcingen) to formic acid under ambient conditions. Moreover, two types of POMs have also been developed for the removal of CWAs and/or their simulants. Specifically, a layered manganese(IV)-containing heteropolyvanadate with a 1:14 Stoichiometry, K4Li2[MnV14O40]˙21H2 O has been prepared. Its catalytic activity for oxidative removal of 2-chloroethyl ethyl sulfide (a mustard simulant) is discussed. The second type of POM developed for decontamination of CWAs and their simulants is the new one-dimensional polymeric polyniobate (P-PONb), K12[Ti 2O2][GeNb12O40]˙19H2O (KGeNb). The complex has been applied to the decontamination of a wide range

  4. Nanoengineered Carbon-Based Materials For Reactive Adsorption of Toxic Industrial Compounds

    Science.gov (United States)

    2015-01-13

    ABSTRACT 2. REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM ELEMENT...07 2013): 0. doi: 10.1016/j.carbon.2013.06.081 Camille Petit, Karifala Kante , Teresa J. Bandosz. The role of sulfur-containing groups in ammonia... Kante , Cesar Nieto-Delgado, J. Rene Rangel-Mendez, Teresa J. Bandosz. Spent coffee-based activated carbon: Specific surface features and their

  5. Medical Applications and Toxicities of Gallium Compounds

    Directory of Open Access Journals (Sweden)

    Christopher R. Chitambar

    2010-05-01

    Full Text Available Over the past two to three decades, gallium compounds have gained importance in the fields of medicine and electronics. In clinical medicine, radioactive gallium and stable gallium nitrate are used as diagnostic and therapeutic agents in cancer and disorders of calcium and bone metabolism. In addition, gallium compounds have displayed anti-inflammatory and immunosuppressive activity in animal models of human disease while more recent studies have shown that gallium compounds may function as antimicrobial agents against certain pathogens. In a totally different realm, the chemical properties of gallium arsenide have led to its use in the semiconductor industry. Gallium compounds, whether used medically or in the electronics field, have toxicities. Patients receiving gallium nitrate for the treatment of various diseases may benefit from such therapy, but knowledge of the therapeutic index of this drug is necessary to avoid clinical toxicities. Animals exposed to gallium arsenide display toxicities in certain organ systems suggesting that environmental risks may exist for individuals exposed to this compound in the workplace. Although the arsenic moiety of gallium arsenide appears to be mainly responsible for its pulmonary toxicity, gallium may contribute to some of the detrimental effects in other organs. The use of older and newer gallium compounds in clinical medicine may be advanced by a better understanding of their mechanisms of action, drug resistance, pharmacology, and side-effects. This review will discuss the medical applications of gallium and its mechanisms of action, the newer gallium compounds and future directions for development, and the toxicities of gallium compounds in current use.

  6. Developmental toxicity of organotin compounds in animals

    Directory of Open Access Journals (Sweden)

    Lijiao eWu

    2014-09-01

    Full Text Available Organotin compounds (OTs have been used as biocides in antifouling paints and agriculture. The IMO introduced a global ban on the use of OTs in antifouling systems in 2001 due to their high toxicity. However, OTs have still been detected in the environment and pose a threat to the ecosystem. Several research groups have summarized the analytical methods, environmental fate, biochemistry, reproductive toxicity and mechanisms of actions of OTs. Here, we reviewed the developmental toxicity of OTs in various organisms such as sea urchin, ascidian, mussel and fish. The differences in sensitivity to OT exposure exist not only in different species but also at different stages in the same species. Though some hypotheses have been proposed to explain the developmental toxicity of OTs, the solid evidences are greatly in need.

  7. Degradation and toxicity of phenyltin compounds in soil

    International Nuclear Information System (INIS)

    Paton, G.I.; Cheewasedtham, W.; Marr, I.L.; Dawson, J.J.C.

    2006-01-01

    Although the fate of organotins has been widely studied in the marine environment, fewer studies have considered their impact in terrestrial systems. The degradation and toxicity of triphenyltin in autoclaved, autoclaved-reinoculated and non-sterilised soil was studied in a 231 day incubation experiment following a single application. Degradation and toxicity of phenyltin compounds in soil was monitored using both chemical and microbial (lux-based bacterial biosensors) methods. Degradation was significantly slower in the sterile soil when compared to non-sterilised soils. In the non-sterilised treatment, the half-life of triphenyltin was 27 and 33 days at amendments of 10 and 20 mg Sn kg -1 , respectively. As initial triphenyltin degradation occurred, there was a commensurate increase in toxicity, reflecting the fact that metabolites produced may be both more bioavailable and toxic to the target receptor. Over time, the toxicity reduced as degradation proceeded. The toxicity impact on non-target receptors for these compounds may be significant. - Triphenyltin degradative metabolites cause toxic responses to biosensors

  8. Carbon dioxide laser absorption spectra of toxic industrial compounds

    International Nuclear Information System (INIS)

    Loper, G.L.; Sasaki, G.R.; Stamps, M.A.

    1982-01-01

    CO 2 laser absorption cross-section data are reported for acrolein, styrene, ethyl acrylate, trichloroethylene, vinyl bromide, and vinylidene chloride. These data indicate that sub parts per billion level, interference-free detection limits should be possible for these compounds by the CO 2 laser photoacoustic technique. Photoacoustic detectabilities below 40 ppb should be possible for these compounds in the presence of ambient air concentrations of water vapor and other anticipated interferences. These compounds are also found not to be important inerference in the detection of toxic hydrazine-based rocket fuels by CO 2 laser spectroscopic techniques

  9. Toxic organic compounds from energy production

    Energy Technology Data Exchange (ETDEWEB)

    Hites, R.A.

    1991-09-20

    The US Department of Energy's Office of Health and Environmental Research (OHER) has supported work in our laboratory since 1977. The general theme of this program has been the identification of potentially toxic organic compounds associated with various combustion effluents, following the fates of these compounds in the environment, and improving the analytical methodology for making these measurements. The projects currently investigation include: an improved sampler for semi-volatile compounds in the atmosphere; the wet and dry deposition of dioxins and furans from the atmosphere; the photodegradation and mobile sources of dioxins and furans; and the bioaccumulation of PAH by tree bark. These projects are all responsive to OHER's interest in the pathways and mechanisms by which energy-related agents move through and are modified by the atmosphere''. The projects on gas chromatographic and liquid chromatographic tandem mass spectrometry are both responsive to OHER's interest in new and more sensitive technologies for chemical measurements''. 35 refs., 9 figs.

  10. Electron beam treatment of toxic volatile organic compounds and dioxins

    International Nuclear Information System (INIS)

    Kojima, Takuji

    2006-01-01

    Considerations of wastes based on the reduction, reuse and recycle in daily life are primary measures to conserve our environment, but the control technology is necessary to support these measures. The electron beam (EB) process is promising as an advanced purification process having advantages such as a quick treatment of big volume gas, applicability even for very low concentration pollutants as the further purification at the downstream of existing process, and decomposition of pollutants into non-toxic substances by one process. The EB technology has been developed for treatment of toxic volatile organic compounds (VOCs) in ventilation gas and dioxins in solid waste incineration flue gas. (author)

  11. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa).

    Science.gov (United States)

    Hong, Jie; Rico, Cyren M; Zhao, Lijuan; Adeleye, Adeyemi S; Keller, Arturo A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-01-01

    The increased production and use of nanoparticles (NPs) has generated concerns about their impact on living organisms. In this study, nCu, bulk Cu, nCuO, bulk CuO, Cu(OH)2 (CuPRO 2005, Kocide 3000), and CuCl2 were exposed for 15 days to 10 days-old hydroponically grown lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Each compound was applied at 0, 5, 10, and 20 mg L(-1). At harvest, we measured the size of the plants and determined the concentration of Cu, macro and microelements by using ICP-OES. Catalase and ascorbate peroxidase activity was also determined. Results showed that all Cu NPs/compounds reduced the root length by 49% in both plant species. All Cu NPs/compounds increased Cu, P, and S (>100%, >50%, and >20%, respectively) in alfalfa shoots and decreased P and Fe in lettuce shoot (>50% and >50%, respectively, excluding Fe in CuCl2 treatment). Biochemical assays showed reduced catalase activity in alfalfa (root and shoot) and increased ascorbate peroxidase activity in roots of both plant species. Results suggest that Cu NPs/compounds not only reduced the size of the plants but altered nutrient content and enzyme activity in both plant species.

  12. Plasmonic photocatalysts based on silver nanoparticles - layered double hydroxides for efficient removal of toxic compounds using solar light

    Science.gov (United States)

    Gilea, Diana; Radu, Teodora; Muresanu, Mihaela; Carja, Gabriela

    2018-06-01

    Plasmon-enhanced photocatalysis holds important promise for chemical processes and outcomes. We present here the self-assemblies of silver nanoparticles (AgNP)/layered double hydroxides (LDHs: MeAlLDHs with Me2+ = Zn2+;Mg2+) and their derived AgNP/MMOs (type AgNP/MgAl2O4; AgNP/ZnO/ZnAl2O4) as novel plasmonic photocatalysts exhibiting activity for phenol photodegradation from aqueous solution by solar-light. The fabrication procedure of AgNP/LDHs assemblies is simple and cost effective and is based on the in-situ synthesis of AgNP on the LDHs matrices during the reconstruction of MgAlLDH and ZnAlLDH in the aqueous solution of Ag2SO4. The tested catalysts were thoroughly investigated - techniques to obtain information on their crystalline structure (XRD), surface properties (XPS), morphological features (TEM) and optical properties (UV-vis). The results show that the solar photocatalytic response of the catalysts is ascribed to the plasmonic response of AgNP though the catalytic efficiency is strongly influenced by the composition of the MeAlLDHs. The best photocatalytic performance was obtained on AgNP/ZnAlLDH750 catalyst that degraded 100% of phenol after 80 min of irradiation with solar light. The results reveal the high potential to tailor AgNP/LDHs and AgNP/MMOs as efficient photo-functional plasmonic hybrids for waste-water cleaning.

  13. Acute oral toxicity test of chemical compounds in silkworms.

    Science.gov (United States)

    Usui, Kimihito; Nishida, Satoshi; Sugita, Takuya; Ueki, Takuro; Matsumoto, Yasuhiko; Okumura, Hidenobu; Sekimizu, Kazuhisa

    2016-02-01

    This study performed an acute oral toxicity test of 59 compounds in silkworms. These compounds are listed in OECD guidelines as standard substances for a cytotoxicity test, and median lethal dose (LD(50)) werecalculated for each compound. Acute oral LD(50) values in mammals are listed in OECD guidelines and acute oral LD(50) values in silkworms were determined in this study. R(2) for the correlation between LD(50) values in mammals and LD(50) values in silkworms was 0.66. In addition, the acute oral toxicity test in silkworms was performed by two different facilities, and test results from the facilities were highly reproducible. These findings suggest that an acute oral toxicity test in silkworms is a useful way to evaluate the toxicity of compounds in mammals.

  14. Toxicity prediction of compounds from turmeric (Curcuma longa L).

    Science.gov (United States)

    Balaji, S; Chempakam, B

    2010-10-01

    Turmeric belongs to the ginger family Zingiberaceae. Currently, cheminformatics approaches are not employed in any of the spices to study the medicinal properties traditionally attributed to them. The aim of this study is to find the most efficacious molecule which does not have any toxic effects. In the present study, toxicity of 200 chemical compounds from turmeric were predicted (includes bacterial mutagenicity, rodent carcinogenicity and human hepatotoxicity). The study shows out of 200 compounds, 184 compounds were predicted as toxigenic, 136 compounds are mutagenic, 153 compounds are carcinogenic and 64 compounds are hepatotoxic. To cross validate our results, we have chosen the popular curcumin and found that curcumin and its derivatives may cause dose dependent hepatotoxicity. The results of these studies indicate that, in contrast to curcumin, few other compounds in turmeric which are non-mutagenic, non-carcinogenic, non-hepatotoxic, and do not have any side-effects. Hence, the cost-effective approach presented in this paper could be used to filter toxic compounds from the drug discovery lifecycle. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Developmental toxicity of thyroid-active compounds in a zebrafish embryotoxicity test

    NARCIS (Netherlands)

    Jomaa, B.; Hermsen, S.A.B.; Kessels, M.Y.; Berg, van den J.H.J.; Peijenburg, A.C.M.; Aarts, J.M.M.J.G.; Piersma, A.H.; Rietjens, I.

    2014-01-01

    Zebrafish embryos were exposed to concentration ranges of selected thyroid-active model compounds in order to assess the applicability of zebrafish-based developmental scoring systems within an alternative testing strategy to detect the developmental toxicity of thyroid-active compounds. Model

  16. Toxicity of six heterocyclic nitrogen compounds to Daphnia pulex

    Science.gov (United States)

    Perry, Cynthia M.; Smith, Stephen B.

    1988-01-01

    We determined the relative toxicities to the aquatic crustacean Daphniz pulex of six heterocyclic nitrogen compunds. These compounds were selected because they were detected in lake trout or walleyes and were commercially available. Stress to the daphnid populations may affect forage fish populations that depend either directly or indirectly on zooplankton as a food source in the Great Lakes.

  17. Toxicity of essential oil compounds against Exorista sorbillans ...

    African Journals Online (AJOL)

    Essential oils of Ageratum conyzoides and Ocimum species are potential candidates for management of Exorista sorbillans (Wiedemann) (Diptera: Culicidae), a serious pest of silkworm. Considering that the pure compounds in essential oil may exhibit efficacy against the parasitoid, contact and topical toxicity of 22 essential ...

  18. Compound toxicity screening and structure-activity relationship modeling in Escherichia coli.

    Science.gov (United States)

    Planson, Anne-Gaëlle; Carbonell, Pablo; Paillard, Elodie; Pollet, Nicolas; Faulon, Jean-Loup

    2012-03-01

    Synthetic biology and metabolic engineering are used to develop new strategies for producing valuable compounds ranging from therapeutics to biofuels in engineered microorganisms. When developing methods for high-titer production cells, toxicity is an important element to consider. Indeed the production rate can be limited due to toxic intermediates or accumulation of byproducts of the heterologous biosynthetic pathway of interest. Conversely, highly toxic molecules are desired when designing antimicrobials. Compound toxicity in bacteria plays a major role in metabolic engineering as well as in the development of new antibacterial agents. Here, we screened a diversified chemical library of 166 compounds for toxicity in Escherichia coli. The dataset was built using a clustering algorithm maximizing the chemical diversity in the library. The resulting assay data was used to develop a toxicity predictor that we used to assess the toxicity of metabolites throughout the metabolome. This new tool for predicting toxicity can thus be used for fine-tuning heterologous expression and can be integrated in a computational-framework for metabolic pathway design. Many structure-activity relationship tools have been developed for toxicology studies in eukaryotes [Valerio (2009), Toxicol Appl Pharmacol, 241(3): 356-370], however, to the best of our knowledge we present here the first E. coli toxicity prediction web server based on QSAR models (EcoliTox server: http://www.issb.genopole.fr/∼faulon/EcoliTox.php). Copyright © 2011 Wiley Periodicals, Inc.

  19. Effects-driven chemical fractionation of heavy fuel oil to isolate compounds toxic to trout embryos.

    Science.gov (United States)

    Bornstein, Jason M; Adams, Julie; Hollebone, Bruce; King, Thomas; Hodson, Peter V; Brown, R Stephen

    2014-04-01

    Heavy fuel oil (HFO) spills account for approximately 60% of ship-source oil spills and are up to 50 times more toxic than medium and light crude oils. Heavy fuel oils contain elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and alkyl-PAHs, known to be toxic to fish; however, little direct characterization of HFO toxicity has been reported. An effects-driven chemical fractionation was conducted on HFO 7102 to separate compounds with similar chemical and physical properties, including toxicity, to isolate the groups of compounds most toxic to trout embryos. After each separation, toxicity tests directed the next phase of fractionation, and gas chromatography-mass spectrometry analysis correlated composition with toxicity, with a focus on PAHs. Low-temperature vacuum distillation permitted the separation of HFO into 3 fractions based on boiling point ranges. The most toxic of these fractions underwent wax precipitation to remove long-chain n-alkanes. The remaining PAH-rich extract was further separated using open column chromatography, which provided distinct fractions that were grouped according to increasing aromatic ring count. The most toxic of these fractions was richest in PAHs and alkyl-PAHs. The results of the present study were consistent with previous crude oil studies that identified PAH-rich fractions as the most toxic. © 2013 SETAC.

  20. Toxic pollutants emitted from thermal decomposition of phthalimide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Chen Kai; Mackie, John C.; Wojtalewicz, Dominika; Kennedy, Eric M. [Process Safety and Environmental Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308 (Australia); Dlugogorski, Bogdan Z., E-mail: Bogdan.Dlugogorski@newcastle.edu.au [Process Safety and Environmental Protection Research Group, School of Engineering, University of Newcastle, Callaghan, New South Wales 2308 (Australia)

    2011-03-15

    Phthalimide (PI) and tetrahydrophthalimide (THPI) are two structurally similar compounds extensively used as intermediates for the synthesis of variety of industrial chemicals. This paper investigates the thermal decomposition of PI and THPI under oxygen rich to oxygen lean conditions, quantifying the production of toxicants and explaining their formation pathways. The experiments involved a plug flow reactor followed by silica cartridges, activated charcoal trap and a condenser, with the decomposition products identified and quantified by Fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GC-MS) and micro gas chromatography ({mu}GC). The density functional theory (DFT) calculations served to obtain dissociation energies and reaction pathways, to elucidate the reaction mechanism. The oxidation of PI and THPI produced several toxic nitrogen-containing gases and volatile organic compounds, including hydrogen cyanide, isocyanic acid, nitrogen oxides, benzonitrile, maleimide and tentatively identified benzenemethanimine. The detection of dibenzo-p-dioxin (DD) and dibenzofuran (DF) suggests potential formation of the toxic persistent organic pollutants (POPs) in fires involving PI and THPI, in presence of a chlorine source. The oxidation of THPI produced 2-cyclohexen-1-one, a toxic unsaturated ketone. The results of the present study provide the data for quantitative risk assessments of emissions of toxicants in combustion processes involving PI and THPI.

  1. Toxic pollutants emitted from thermal decomposition of phthalimide compounds

    International Nuclear Information System (INIS)

    Chen Kai; Mackie, John C.; Wojtalewicz, Dominika; Kennedy, Eric M.; Dlugogorski, Bogdan Z.

    2011-01-01

    Phthalimide (PI) and tetrahydrophthalimide (THPI) are two structurally similar compounds extensively used as intermediates for the synthesis of variety of industrial chemicals. This paper investigates the thermal decomposition of PI and THPI under oxygen rich to oxygen lean conditions, quantifying the production of toxicants and explaining their formation pathways. The experiments involved a plug flow reactor followed by silica cartridges, activated charcoal trap and a condenser, with the decomposition products identified and quantified by Fourier transform infrared spectroscopy (FTIR), gas chromatography-mass spectrometry (GC-MS) and micro gas chromatography (μGC). The density functional theory (DFT) calculations served to obtain dissociation energies and reaction pathways, to elucidate the reaction mechanism. The oxidation of PI and THPI produced several toxic nitrogen-containing gases and volatile organic compounds, including hydrogen cyanide, isocyanic acid, nitrogen oxides, benzonitrile, maleimide and tentatively identified benzenemethanimine. The detection of dibenzo-p-dioxin (DD) and dibenzofuran (DF) suggests potential formation of the toxic persistent organic pollutants (POPs) in fires involving PI and THPI, in presence of a chlorine source. The oxidation of THPI produced 2-cyclohexen-1-one, a toxic unsaturated ketone. The results of the present study provide the data for quantitative risk assessments of emissions of toxicants in combustion processes involving PI and THPI.

  2. MONITORING THE AIR FOR TOXIC AND GENOTOXIC COMPOUNDS

    Science.gov (United States)

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor p...

  3. Toxicity of compounds with endocrine activity in the OECD 421 reproductive toxicity screening test

    NARCIS (Netherlands)

    Piersma AH; Verhoef A; Elvers LH; Wester PW; LEO; LPI

    1998-01-01

    The issue of endocrine disruption has, in view of human risk assessment, raised the question on whether more sensitive test methods are needed to detect the reproductive toxic properties of xenobiotic compounds with endocrine properties. We studied six known and alleged endocrine disruptors in an

  4. A comparative assessment of the acute inhalation toxicity of vanadium compounds.

    Science.gov (United States)

    Rajendran, N; Seagrave, J C; Plunkett, L M; MacGregor, J A

    2016-11-01

    Vanadium compounds have become important in industrial processes, resulting in workplace exposure potential and are present in ambient air as a result of fossil fuel combustion. A series of acute nose-only inhalation toxicity studies was conducted in both rats and mice in order to obtain comparative data on the acute toxicity potential of compounds used commercially. V 2 O 3 , V 2 O 4 , and V 2 O 5 , which have different oxidation states (+3, +4, +5, respectively), were delivered as micronized powders; the highly water-soluble and hygroscopic VOSO 4 (+4) could not be micronized and was instead delivered as a liquid aerosol from an aqueous solution. V 2 O 5 was the most acutely toxic micronized powder in both species. Despite its lower overall percentage vanadium content, a liquid aerosol of VOSO 4 was more toxic than the V 2 O 5 particles in mice, but not in rats. These data suggest that an interaction of characteristics, i.e., bioavailability, solubility and oxidation state, as well as species sensitivity, likely affect the toxicity potential of vanadium compounds. Based on clinical observations and gross necropsy findings, the lung appeared to be the target organ for all compounds. The level of hazard posed will depend on the specific chemical form of the vanadium. Future work to define the inhalation toxicity potential of vanadium compounds of various oxidation states after repeated exposures will be important in understanding how the physico-chemical and biological characteristics of specific vanadium compounds interact to affect toxicity potential and the potential risks posed to human health.

  5. Ionisation detectors as monitors of toxic compounds in air

    International Nuclear Information System (INIS)

    Leonhardt, J.W.

    1994-01-01

    Beta particles cause ionisation in gas mixtures. The ions produced provide information on the concentration and identity of trace compounds in ambient air. Modern ionisation detectors use ion mobilities to monitor toxic compounds. Chemical solvent, phosphororganic compounds, PCB and many other toxins can be detected using ion mobility detectors (IMD) in the ppb range or lower. Ion mobility detectors have large potential in industry and research because of their sensitivity, specificity, fast response and relatively low cost. Portable devices and fixed installations are possible. The paper discusses the following topics: (1) ionisation sources in IMD: 63 Ni, 3 H, photoionization and corona discharge, (2) basic principles of ion production, (3) ion collection in IMD, (4) design, gas supply, automatic identification and quantification of IMD data, and (5) selected applications. Advantages and problems with this new type of nuclear analytical instrument are also discussed. (author). 2 refs., 9 figs., 3 tabs

  6. Review of pulmonary toxicity of indium compounds to animals and humans

    International Nuclear Information System (INIS)

    Tanaka, Akiyo; Hirata, Miyuki; Kiyohara, Yutaka; Nakano, Makiko; Omae, Kazuyuki; Shiratani, Masaharu; Koga, Kazunori

    2010-01-01

    Due to the increased production of ITO, the potential health hazards arising from occupational exposure to this material have attracted much attention. This review consists of three parts: 1) toxic effects of indium compounds on animals, 2) toxic effects of indium compounds on humans, and 3) recommendations for preventing exposure to indium compounds in the workplace. Available data have indicated that insoluble form of indium compounds, such as ITO, indium arsenide (InAs) and indium phosphide (InP), can be toxic to animals. Furthermore, InP has demonstrated clear evidence of carcinogenic potential in long-term inhalation studies using experimental animals. As for the dangers to humans, some data are available concerning adverse health effects to workers who have been exposed to indium-containing particles. The Japan Society for Occupational Health recommended the value of 3 μg/L of indium in serum as the occupational exposure limit based on biological monitoring to preventing adverse health effects in workers resulting from occupational exposure to indium compounds. Accordingly, it is essential that much greater attention is focused on human exposure to indium compounds, and precautions against possible exposure to indium compounds are most important with regard to health management among indium-handling workers.

  7. Formation and elution of toxic compounds from sterilized medical products: toxic compound formation from irradiated products

    International Nuclear Information System (INIS)

    Shintani, Hideharu

    1996-01-01

    No formation of MDA was observed in chain-extended thermoplastic polyurethane (PU) when sterilized by autoclave or γ-ray irradiation. No formation of MDA was observed in nonchain-extended thermoplastic PU when sterilized by γ-ray irradiation. Less than 1 ppm MDA was produced in nonchain-extended thermoplastic PU sterilized by autoclave sterilization. Autoclave sterilization did not produce MDA in thermosetting PU potting material. MDA formation in potting material was promoted by γ-irradiation and increased with increasing irradiation at a quadratic equation of regression. MDA formation at 100 kGy irradiation is a few ppm and < 1 ppm at 25kGy irradiation, therefore the potential risk to human recipients was not significant. The elution of compounds other than MDA from potting material was more problematic. Solvent extracts from potting material presented mutagenicity in the absence of metabolic activity. MDA presented mutagenicity in the presence of metabolic activity, therefore MDA was not the mutagenic trigger. The chemical and biological characteristics of the specific mutagens required to identify in a further study. Negative promotion of MDA formation and a less presence of mutagen in autoclave sterilized potting material indicated that autoclave sterilization was preferable. (Author)

  8. Prediction of human population responses to toxic compounds by a collaborative competition.

    Science.gov (United States)

    Eduati, Federica; Mangravite, Lara M; Wang, Tao; Tang, Hao; Bare, J Christopher; Huang, Ruili; Norman, Thea; Kellen, Mike; Menden, Michael P; Yang, Jichen; Zhan, Xiaowei; Zhong, Rui; Xiao, Guanghua; Xia, Menghang; Abdo, Nour; Kosyk, Oksana; Friend, Stephen; Dearry, Allen; Simeonov, Anton; Tice, Raymond R; Rusyn, Ivan; Wright, Fred A; Stolovitzky, Gustavo; Xie, Yang; Saez-Rodriguez, Julio

    2015-09-01

    The ability to computationally predict the effects of toxic compounds on humans could help address the deficiencies of current chemical safety testing. Here, we report the results from a community-based DREAM challenge to predict toxicities of environmental compounds with potential adverse health effects for human populations. We measured the cytotoxicity of 156 compounds in 884 lymphoblastoid cell lines for which genotype and transcriptional data are available as part of the Tox21 1000 Genomes Project. The challenge participants developed algorithms to predict interindividual variability of toxic response from genomic profiles and population-level cytotoxicity data from structural attributes of the compounds. 179 submitted predictions were evaluated against an experimental data set to which participants were blinded. Individual cytotoxicity predictions were better than random, with modest correlations (Pearson's r < 0.28), consistent with complex trait genomic prediction. In contrast, predictions of population-level response to different compounds were higher (r < 0.66). The results highlight the possibility of predicting health risks associated with unknown compounds, although risk estimation accuracy remains suboptimal.

  9. Low-Toxicity Diindol-3-ylmethanes as Potent Antifouling Compounds.

    Science.gov (United States)

    Wang, Kai-Ling; Xu, Ying; Lu, Liang; Li, Yongxin; Han, Zhuang; Zhang, Jun; Shao, Chang-Lun; Wang, Chang-Yun; Qian, Pei-Yuan

    2015-10-01

    In the present study, eight natural products that belonged to di(1H-indol-3-yl)methane (DIM) family were isolated from Pseudovibrio denitrificans UST4-50 and tested for their antifouling activity against larval settlement (including both attachment and metamorphosis) of the barnacle Balanus (=Amphibalanus) amphitrite and the bryozoan Bugula neritina. All diindol-3-ylmethanes (DIMs) showed moderate to strong inhibitory effects against larval settlement of B. amphitrite with EC50 values ranging from 18.57 to 1.86 μM and could be considered as low-toxicity antifouling compounds since their LC50/EC50 ratios were larger than 15. Furthermore, the DIM- and 4-(di(1H-indol-3-yl)methyl)phenol (DIM-Ph-4-OH)-treated larvae completed normal settlement when they were transferred to clean seawater after being exposed to those compounds for 24 h. DIM also showed comparable antifouling performance to the commercial antifouling biocide Sea-Nine 211(™) in the field test over a period of 5 months, which further confirmed that DIMs can be considered as promising candidates of environmentally friendly antifouling compounds.

  10. Evaluation of Temporal Changes in Urine-based Metabolomic and Kidney Injury Markers to Detect Compound Induced Acute Kidney Tubular Toxicity in Beagle Dogs.

    Science.gov (United States)

    Wagoner, M P; Yang, Y; McDuffie, J E; Klapczynski, M; Buck, W; Cheatham, L; Eisinger, D; Sace, F; Lynch, K M; Sonee, M; Ma, J-Y; Chen, Y; Marshall, K; Damour, M; Stephen, L; Dragan, Y P; Fikes, J; Snook, S; Kinter, L B

    2017-01-01

    Urinary protein biomarkers and metabolomic markers have been leveraged to detect acute Drug Induced Kidney Injury (DIKI) in rats; however, the utility of these indicators to enable early detection of DIKI in canine models has not been well documented. Therefore, we evaluated temporal changes in biomarkers and metabolites in urine from male and female beagle dogs. Gentamicin- induced kidney lesions in male dogs were characterized by moderate to severe tubular epithelial cell degeneration/necrosis, epithelial cell regeneration and dilation; and a unique urinebased metabolomic fingerprint. These metabolite changes included time and treatment-dependent increases in lactate, taurine, glucose, lactate, alanine, and citrate as well as 9 other known metabolites. As early as 3 days post dose, gentamicin induced increases in urinary albumin, clusterin, neutrophil gelatinase associated protein (NGAL) and total protein concentrations. Urinary albumin, clusterin, and NGAL showed earlier and more robust elevations than traditional kidney safety biomarkers, blood urea nitrogen and serum creatinine. Elevations in urinary kidney injury molecule 1 (KIM-1) were less reliable for detection of gentamicin nephrotoxicity in dogs based on values generated utilizing multiple first-generation, canine-specific KIM-1 immunoassays. The metabolic fingerprint was further evaluated in male and female dogs that received Compound A which induced slightly reversible renal tubular alterations characterized as degeneration/necrosis and concurrent significant increases in urinary taurine amongst other markers. These data support further investigations to demonstrate the value of urinary metabolites, albumin, clusterin, NGAL and taurine as promising markers to enable early detection of DIKI in dogs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Identifying developmental vascular disruptor compounds using a predictive signature and alternative toxicity models

    Science.gov (United States)

    Identifying Developmental Vascular Disruptor Compounds Using a Predictive Signature and Alternative Toxicity Models Presenting Author: Tamara Tal Affiliation: U.S. EPA/ORD/ISTD, RTP, NC, USA Chemically induced vascular toxicity during embryonic development can result in a wide...

  12. The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates

    Science.gov (United States)

    2014-01-01

    We investigated the severity of the inhibitory effects of 13 phenolic compounds usually found in spruce hydrolysates (4-hydroxy-3-methoxycinnamaldehyde, homovanilyl alcohol, vanillin, syringic acid, vanillic acid, gallic acid, dihydroferulic acid, p-coumaric acid, hydroquinone, ferulic acid, homovanillic acid, 4-hydroxybenzoic acid and vanillylidenacetone). The effects of the selected compounds on cell growth, biomass yield and ethanol yield were studied and the toxic concentration threshold was defined for each compound. Using Ethanol Red, the popular industrial strain of Saccharomyces cerevisiae, we found the most toxic compound to be 4-hydroxy-3-methoxycinnamaldehyde which inhibited growth at a concentration of 1.8 mM. We also observed that toxicity did not generally follow a trend based on the aldehyde, acid, ketone or alcohol classification of phenolic compounds, but rather that other structural properties such as additional functional groups attached to the compound may determine its toxicity. Three distinctive growth patterns that effectively clustered all the compounds involved in the screening into three categories. We suggest that the compounds have different cellular targets, and that. We suggest that the compounds have different cellular targets and inhibitory mechanisms in the cells, also compounds who share similar pattern on cell growth may have similar inhibitory effect and mechanisms of inhibition. PMID:24949277

  13. Toxic effects on and structure-toxicity relationships of phenylpropanoids, terpenes, and related compounds in Aedes aegypti larvae.

    Science.gov (United States)

    Santos, Sandra R L; Silva, Viviane B; Melo, Manuela A; Barbosa, Juliana D F; Santos, Roseli L C; de Sousa, Damião P; Cavalcanti, Sócrates C H

    2010-12-01

    In the search for toxic compounds against Aedes aegypti L. (Diptera: Culicidae) larvae, a collection of commercially available aromatic and aliphatic diversely substituted compounds were selected and evaluated. p-Cymene exhibited the highest larvicidal potency LC₅₀ = 51 ppm, whereas 1,8-cineole exhibited the lowest activity value LC₅₀ = 1419 ppm. To aid future work on the search for larvicidal compounds, the structure-toxicity relationships of this collection have been evaluated. The presence of lipophilic groups results in an overall increase in potency. In general, the presence of hydroxyl groups resulted in less potent compounds. However, methylation of such hydroxyls led to an overall increase in potency. The most potent compounds showed comparably good larvicidal activity in A. aegypti larvae as other terpenes, which we assume to be the result of the increased lipophilicity.

  14. A Review of the Toxicity of Compounds Found in Herbal Dietary Supplements.

    Science.gov (United States)

    Hudson, Amy; Lopez, Elizabeth; Almalki, Ahmad J; Roe, Amy L; Calderón, Angela I

    2018-04-19

    Use of herbal dietary supplements by the public is common and has been happening for centuries. In the United States, the Food and Drug Administration has a limited scope of regulation over marketed herbal dietary supplements, which may contain toxic botanical compounds that pose a public health risk. While the Food and Drug Administration has made efforts to prohibit the sale of unsafe herbal dietary supplements, numerous reports have proliferated of adverse events due to these supplements. This literature review investigates bioactive plant compounds commonly used in herbal dietary supplements and their relative toxicities. Using primarily the National Library of Medicine journal database and SciFinder for current reports, 47 toxic compounds in 55 species from 46 plant families were found to demonstrate harmful effects due to hepatic, cardiovascular, central nervous system, and digestive system toxicity. This review further contributes a novel and comprehensive view of toxicity across the botanical dietary market, and investigates the toxicity of the top ten botanical dietary supplements purchased in the United States of America to gauge the exposure risk of toxicity to the public. The criteria of measuring toxicity in this review (plant compound, family, quantity, and toxicity effects) across the entire market in the United States, with special attention to those supplements whose exposure to the consumer is maximal, provides a unique contribution to the investigation of botanical supplements. Georg Thieme Verlag KG Stuttgart · New York.

  15. Dietary compounds as modulators of metals and metalloids toxicity.

    Science.gov (United States)

    Jadán-Piedra, Carlos; Chiocchetti, Gabriela Matuoka; Clemente, María Jesús; Vélez, Dinoraz; Devesa, Vicenta

    2017-07-07

    A large part of the population is exposed to metals and metalloids through the diet. Most of the in vivo studies on its toxicokinetics and toxicity are conducted by means of exposure through drinking water or by intragastric or intraperitoneal administration of aqueous standards, and therefore they do not consider the effect of the food matrix on the exposure. Numerous studies show that some components of the diet can modulate the toxicity of these food contaminants, reducing their effect on a systemic level. Part of this protective role may be due to a reduction of intestinal absorption and subsequent tissue accumulation of the toxic element, although it may also be a consequence of their ability to counteract the toxicity directly by their antioxidant and/or anti-inflammatory activity, among other factors. The present review provides a compilation of existing information about the effect that certain components of the diet have on the toxicokinetics and toxicity of the metals and metalloids of greatest toxicological importance that are present in food (arsenic, cadmium, lead, and mercury), and of their most toxic chemical species.

  16. Triorganotin as a compound with potential reproductive toxicity in mammals

    Directory of Open Access Journals (Sweden)

    V.S. Delgado Filho

    2011-09-01

    Full Text Available Organotin compounds are typical environmental contaminants and suspected endocrine-disrupting substances, which cause irreversible sexual abnormality in female mollusks, called "imposex". However, little is known about the capability of triorganotin compounds, such as tributyltin and triphenyltin, to cause disorders in the sexual development and reproductive functions of mammals, including humans and rodents. Moreover, these compounds can act as potential competitive inhibitors of aromatase enzyme and other steroidogenic enzymes, affecting the reproductive capacity of male and female mammals. In this review, we discuss the cellular, biochemical, and molecular mechanisms by which triorganotin compounds induce adverse effects in the mammalian reproductive function.

  17. Accurate prediction of the toxicity of benzoic acid compounds in mice via oral without using any computer codes

    International Nuclear Information System (INIS)

    Keshavarz, Mohammad Hossein; Gharagheizi, Farhad; Shokrolahi, Arash; Zakinejad, Sajjad

    2012-01-01

    Highlights: ► A novel method is introduced for desk calculation of toxicity of benzoic acid derivatives. ► There is no need to use QSAR and QSTR methods, which are based on computer codes. ► The predicted results of 58 compounds are more reliable than those predicted by QSTR method. ► The present method gives good predictions for further 324 benzoic acid compounds. - Abstract: Most of benzoic acid derivatives are toxic, which may cause serious public health and environmental problems. Two novel simple and reliable models are introduced for desk calculations of the toxicity of benzoic acid compounds in mice via oral LD 50 with more reliance on their answers as one could attach to the more complex outputs. They require only elemental composition and molecular fragments without using any computer codes. The first model is based on only the number of carbon and hydrogen atoms, which can be improved by several molecular fragments in the second model. For 57 benzoic compounds, where the computed results of quantitative structure–toxicity relationship (QSTR) were recently reported, the predicted results of two simple models of present method are more reliable than QSTR computations. The present simple method is also tested with further 324 benzoic acid compounds including complex molecular structures, which confirm good forecasting ability of the second model.

  18. Innovative technologies for removing toxic compounds from groundwater and air

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Allen, G.R.; Anderson, G.K.; Bechtold, L.A.; Coogan, J.J.; Heck, H.G.; Kang, M.; McCulla, W.H.; Secker, D.A.; Smith, J.D.; Tennant, R.A.; Wantuck, P.J.

    1992-01-01

    Innovative waste treatment technologies are being developed to remove hazardous organic wastes from water and air. These technologies involve the generation of highly reactive free radicals and their reaction with organic compounds. Two efficient methods of producing these reactive free radicals are radiolysis and electrical-discharge plasmas. Radiolytic technology involves the irradiation of contaminated media with high-energy electron beams or x rays generated from the beams (megavolt energies, hundreds of kilorad doses). This process is best understood in aqueous solutions, in which sizable quantities of the free radicals e aq - , OH*, and H*, as well as the more stable oxidant H 2 0 2 , are produced. These highly reactive species react with organic contaminants to produce C0 2 , H 2 0, and salts, which are no longer hazardous. Nonequilibrium electrical-discharge plasmas involve the generation of copious quantities of reactive free radicals from the dissociation of molecular oxygen by energetic electrons in the gas-based discharge. One of the most promising technologies for plasma processing is based upon the ''silent electrical discharge'' that has proven to be industrially dependable for the generation of large quantities of ozone

  19. Sanitary Assessment of Hazardous Materials Exposed To Highly Toxic Chemical Compounds

    International Nuclear Information System (INIS)

    Rembovskiy, V.; Ermolaeva, E.

    2007-01-01

    -and-plant microflora and hydrocoles. 4. Development of non-standard methodical approaches when determining and interpreting the hazard classes of the wastes, containing high toxic compounds such as nerve gases. In particular, disembodied methods applied for solving the tasks of assessment of chemical compounds toxicity were summarized, as well as a uniform scheme of experimental toxicological assessment of TC of a high risk is presented. A system of quantitative assessment of the TC risk is developed on the basis of integral coefficient of risk (KTC), thus simplifying decision making after toxicological testing. Calculation of the coefficient of the TC risk is based on logarithm of ratio of toxicometry parameters to the value of identical parameters determining affiliation of the TC to the 1st class of risk (extreme risk). Due to the methodology developed in our Institute, we have for the first time estimated the class of toxicity of a highly complicated industrial system. (author)

  20. Plant-associated bacterial degradation of toxic organic compounds in soil.

    LENUS (Irish Health Repository)

    McGuinness, Martina

    2009-08-01

    A number of toxic synthetic organic compounds can contaminate environmental soil through either local (e.g., industrial) or diffuse (e.g., agricultural) contamination. Increased levels of these toxic organic compounds in the environment have been associated with human health risks including cancer. Plant-associated bacteria, such as endophytic bacteria (non-pathogenic bacteria that occur naturally in plants) and rhizospheric bacteria (bacteria that live on and near the roots of plants), have been shown to contribute to biodegradation of toxic organic compounds in contaminated soil and could have potential for improving phytoremediation. Endophytic and rhizospheric bacterial degradation of toxic organic compounds (either naturally occurring or genetically enhanced) in contaminated soil in the environment could have positive implications for human health worldwide and is the subject of this review.

  1. The Study and Development of Metal Oxide Reactive Adsorbents for the Destruction of Toxic Organic Compounds

    National Research Council Canada - National Science Library

    Mitchell, Mark B

    2008-01-01

    ... and other toxic organic compounds. The research program that was developed built upon earlier results achieved in the room temperature oxidative decomposition of a chemical warfare agent simulant, dimethyl methylphosphonate (DMMP...

  2. [Optimization of solid-phase extraction for enrichment of toxic organic compounds in water samples].

    Science.gov (United States)

    Zhang, Ming-quan; Li, Feng-min; Wu, Qian-yuan; Hu, Hong-ying

    2013-05-01

    A concentration method for enrichment of toxic organic compounds in water samples has been developed based on combined solid-phase extraction (SPE) to reduce impurities and improve recoveries of target compounds. This SPE method was evaluated in every stage to identify the source of impurities. Based on the analysis of Waters Oasis HLB without water samples, the eluent of SPE sorbent after dichloromethane and acetone contributed 85% of impurities during SPE process. In order to reduce the impurities from SPE sorbent, soxhlet extraction of dichloromethane followed by acetone and lastly methanol was applied to the sorbents for 24 hours and the results had proven that impurities were reduced significantly. In addition to soxhlet extraction, six types of prevalent SPE sorbents were used to absorb 40 target compounds, the lgK(ow) values of which were within the range of 1.46 and 8.1, and recovery rates were compared. It was noticed and confirmed that Waters Oasis HLB had shown the best recovery results for most of the common testing samples among all three styrenedivinylbenzene (SDB) polymer sorbents, which were 77% on average. Furthermore, Waters SepPak AC-2 provided good recovery results for pesticides among three types of activated carbon sorbents and the average recovery rates reached 74%. Therefore, Waters Oasis HLB and Waters SepPak AC-2 were combined to obtain a better recovery and the average recovery rate for the tested 40 compounds of this new SPE method was 87%.

  3. Compound-specific effects of diverse neurodevelopmental toxicants on global gene expression in the neural embryonic stem cell test (ESTn)

    International Nuclear Information System (INIS)

    Theunissen, P.T.; Robinson, J.F.; Pennings, J.L.A.; Herwijnen, M.H. van; Kleinjans, J.C.S.; Piersma, A.H.

    2012-01-01

    Alternative assays for developmental toxicity testing are needed to reduce animal use in regulatory toxicology. The in vitro murine neural embryonic stem cell test (ESTn) was designed as an alternative for neurodevelopmental toxicity testing. The integration of toxicogenomic-based approaches may further increase predictivity as well as provide insight into underlying mechanisms of developmental toxicity. In the present study, we investigated concentration-dependent effects of six mechanistically diverse compounds, acetaldehyde (ACE), carbamazepine (CBZ), flusilazole (FLU), monoethylhexyl phthalate (MEHP), penicillin G (PENG) and phenytoin (PHE), on the transcriptome and neural differentiation in the ESTn. All compounds with the exception of PENG altered ESTn morphology (cytotoxicity and neural differentiation) in a concentration-dependent manner. Compound induced gene expression changes and corresponding enriched gene ontology biological processes (GO–BP) were identified after 24 h exposure at equipotent differentiation-inhibiting concentrations of the compounds. Both compound-specific and common gene expression changes were observed between subsets of tested compounds, in terms of significance, magnitude of regulation and functionality. For example, ACE, CBZ and FLU induced robust changes in number of significantly altered genes (≥ 687 genes) as well as a variety of GO–BP, as compared to MEHP, PHE and PENG (≤ 55 genes with no significant changes in GO–BP observed). Genes associated with developmentally related processes (embryonic morphogenesis, neuron differentiation, and Wnt signaling) showed diverse regulation after exposure to ACE, CBZ and FLU. In addition, gene expression and GO–BP enrichment showed concentration dependence, allowing discrimination of non-toxic versus toxic concentrations on the basis of transcriptomics. This information may be used to define adaptive versus toxic responses at the transcriptome level.

  4. Compound-specific effects of diverse neurodevelopmental toxicants on global gene expression in the neural embryonic stem cell test (ESTn)

    Energy Technology Data Exchange (ETDEWEB)

    Theunissen, P.T., E-mail: Peter.Theunissen@rivm.nl [Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, Maastricht (Netherlands); Robinson, J.F. [Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, Maastricht (Netherlands); Netherlands Toxicogenomics Centre, Maastricht (Netherlands); Pennings, J.L.A. [Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Netherlands Toxicogenomics Centre, Maastricht (Netherlands); Herwijnen, M.H. van [Department of Toxicogenomics, Maastricht University, Maastricht (Netherlands); Kleinjans, J.C.S. [Department of Toxicogenomics, Maastricht University, Maastricht (Netherlands); Netherlands Toxicogenomics Centre, Maastricht (Netherlands); Piersma, A.H. [Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Netherlands Toxicogenomics Centre, Maastricht (Netherlands); Institute for Risk Assessment Sciences, Faculty of Veterinary Sciences, Utrecht University, Utrecht (Netherlands)

    2012-08-01

    Alternative assays for developmental toxicity testing are needed to reduce animal use in regulatory toxicology. The in vitro murine neural embryonic stem cell test (ESTn) was designed as an alternative for neurodevelopmental toxicity testing. The integration of toxicogenomic-based approaches may further increase predictivity as well as provide insight into underlying mechanisms of developmental toxicity. In the present study, we investigated concentration-dependent effects of six mechanistically diverse compounds, acetaldehyde (ACE), carbamazepine (CBZ), flusilazole (FLU), monoethylhexyl phthalate (MEHP), penicillin G (PENG) and phenytoin (PHE), on the transcriptome and neural differentiation in the ESTn. All compounds with the exception of PENG altered ESTn morphology (cytotoxicity and neural differentiation) in a concentration-dependent manner. Compound induced gene expression changes and corresponding enriched gene ontology biological processes (GO–BP) were identified after 24 h exposure at equipotent differentiation-inhibiting concentrations of the compounds. Both compound-specific and common gene expression changes were observed between subsets of tested compounds, in terms of significance, magnitude of regulation and functionality. For example, ACE, CBZ and FLU induced robust changes in number of significantly altered genes (≥ 687 genes) as well as a variety of GO–BP, as compared to MEHP, PHE and PENG (≤ 55 genes with no significant changes in GO–BP observed). Genes associated with developmentally related processes (embryonic morphogenesis, neuron differentiation, and Wnt signaling) showed diverse regulation after exposure to ACE, CBZ and FLU. In addition, gene expression and GO–BP enrichment showed concentration dependence, allowing discrimination of non-toxic versus toxic concentrations on the basis of transcriptomics. This information may be used to define adaptive versus toxic responses at the transcriptome level.

  5. Dioxin and Dioxin-Like Compounds Toxic Equivalency Information

    Science.gov (United States)

    EPA requires that, in addition to the total grams released for the entire dioxin and dioxin-like compounds category, TRI facilities must report the quantity for each individual member on a new Form R Schedule 1.

  6. Does lipophilicity of toxic compounds determine effects on drought tolerance of the soil collembolan Folsomia candida?

    International Nuclear Information System (INIS)

    Skovlund, Gitte; Damgaard, Christian; Bayley, Mark; Holmstrup, Martin

    2006-01-01

    The ability of Collembola to survive drought stress is crucial for their distribution in the terrestrial environment. Previous studies have suggested that several toxic compounds affect the drought tolerance of Folsomia candida in a synergistic manner and that these compounds have the feature in common that they elicit their toxicity by causing membrane damage. We hypothesised that the detrimental effect of toxic chemicals on drought tolerance in F. candida depends on the lipophilicity (log K ow ) of the compound because a higher log K ow would mean a closer interaction with membranes. In this study the three chemicals 4-nonylphenol, pyrene and p,p'-DDE were tested. Surprisingly, 4-nonylphenol, with the lowest log K ow , was the most potent with respect to reducing drought tolerance followed by pyrene, suggesting that interactions between drought tolerance and chemical stress do not depend on lipophilicity alone. - Toxic stress may reduce drought tolerance of Collembola

  7. Detection of toxic compounds in real water samples using a conductometric tyrosinase biosensor

    International Nuclear Information System (INIS)

    Anh, Tuan Mai; Dzyadevych, Sergei V.; Prieur, Nicolas; Duc, Chien Nguyen; Pham, T.D.; Renault, Nicole Jaffrezic; Chovelon, Jean-Marc

    2006-01-01

    A conductometric tyrosinase biosensor for the detection of some toxic compounds including diuron, atrazine, and copper ions was developed. The work of this biosensor is based on the principle of change of conductivity of the enzyme membrane when tyrosinase either interacts with 4-chlorophenol substrate or is inhibited by pollutants. The different samples tested were solutions containing diuron, atrazine, copper, lead and zinc ions, mixtures of copper/atrazine or copper/diuron and real water samples coming from a Vietnamese river. In the last case, classical techniques such as GC-MS or atomic absorption spectrometry were used in order to estimate exact concentration of these species in real water samples. Results have shown that such a biosensor could be used as an early warning system for the detection of these pollutants, as no matrix effect coming from the real sample was observed and no synergetic or antagonist effects were found for the mixture of toxic compounds. In addition, results were coherent with the content of the tyrosinase inhibitors

  8. Detection of toxic compounds in real water samples using a conductometric tyrosinase biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Anh, Tuan Mai [Laboratoire d' Application de la Chimie a l' Environnement, UMR CNRS 5634, Universite Claude Bernard Lyon I, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex (France); International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Vietnam (Viet Nam); Dzyadevych, Sergei V. [Laboratory of Biomolecular Electronics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., Kiev 03143 (Ukraine); Prieur, Nicolas [Institute of Natural Products Chemistry, Vietnam National Centre for Science and Technology, Hoang Quoc Viet Str., Hanoi, Vietnam (Viet Nam); Duc, Chien Nguyen [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Vietnam (Viet Nam); Pham, T.D. [International Training Institute for Materials Science (ITIMS), Hanoi University of Technology, 1 Dai Co Viet, Hanoi, Vietnam (Viet Nam); Renault, Nicole Jaffrezic [Ecole Centrale de Lyon, CEGELY, UMR CNRS 5005, 36 Avenue Guy de Collongue, 69134 Ecully Cedex (France); Chovelon, Jean-Marc [Laboratoire d' Application de la Chimie a l' Environnement, UMR CNRS 5634, Universite Claude Bernard Lyon I, 43 Boulevard du 11 Nov. 1918, 69622 Villeurbanne Cedex (France)]. E-mail: chovelon@univ-lyon1.fr

    2006-03-15

    A conductometric tyrosinase biosensor for the detection of some toxic compounds including diuron, atrazine, and copper ions was developed. The work of this biosensor is based on the principle of change of conductivity of the enzyme membrane when tyrosinase either interacts with 4-chlorophenol substrate or is inhibited by pollutants. The different samples tested were solutions containing diuron, atrazine, copper, lead and zinc ions, mixtures of copper/atrazine or copper/diuron and real water samples coming from a Vietnamese river. In the last case, classical techniques such as GC-MS or atomic absorption spectrometry were used in order to estimate exact concentration of these species in real water samples. Results have shown that such a biosensor could be used as an early warning system for the detection of these pollutants, as no matrix effect coming from the real sample was observed and no synergetic or antagonist effects were found for the mixture of toxic compounds. In addition, results were coherent with the content of the tyrosinase inhibitors.

  9. Screening of Compounds Toxicity against Human Monocytic cell line-THP-1 by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Pick Neora

    2004-01-01

    Full Text Available The worldwide rapid increase in bacterial resistance to numerous antibiotics requires on-going development of new drugs to enter the market. As the development of new antibiotics is lengthy and costly, early monitoring of compound's toxicity is essential in the development of novel agents. Our interest is in a rapid, simple, high throughput screening method to assess cytotoxicity induced by potential agents. Some intracellular pathogens, such as Mycobacterium tuberculosis primary site of infection is human alveolar macrophages. Thus, evaluation of candidate drugs for macrophage toxicity is crucial. Protocols for high throughput drug toxicity screening of macrophages using flow cytometry are lacking in the literature. For this application we modified a preexisting technique, propidium iodide (PI exclusion staining and utilized it for rapid toxicity tests. Samples were prepared in 96 well plates and analyzed by flow cytometry, which allowed for rapid, inexpensive and precise assessment of compound's toxicity associated with cell death.

  10. Aspects on the toxicity of cadmium and its compounds

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, R

    1970-01-01

    The following literature review is concerned with certain questions relevant to occurrence, biochemical and toxicological effects of cadmium and its compounds. Emphasis has been laid on chronic effects which are of greatest importance from the view-point of environmental toxicology and ecology. The author is well aware of the difficulties when trying to give a well balanced picture of the complex subject involved, and has no ambition to present a complete work. 150 references.

  11. An in vitro assay for compounds toxic to rumen protozoa

    International Nuclear Information System (INIS)

    Campbell, A.J.; Cumming, G.J.; Graham, C.A.; Leng, R.A.

    1982-01-01

    The viability of protozoa in whole rumen fluid was assessed by measuring the incorporation of Me- 14 C-choline in vitro. The use of the technique as an assay for testing antiprotozoal agents was evaluated with a variety of surfactant detergents which have previously been shown to have antiprotozoal activity in vivo. A good correlation was obtained between the potency of these compounds in vitro and in vivo. (auth)

  12. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    Science.gov (United States)

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  13. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  14. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A.C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  15. Paracetamol: overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro.

    Science.gov (United States)

    Wang, Xu; Wu, Qinghua; Liu, Aimei; Anadón, Arturo; Rodríguez, José-Luis; Martínez-Larrañaga, María-Rosa; Yuan, Zonghui; Martínez, María-Aránzazu

    2017-11-01

    Paracetamol (APAP) is one of the most widely used and popular over-the-counter analgesic and antipyretic drugs in the world when used at therapeutic doses. APAP overdose can cause severe liver injury, liver necrosis and kidney damage in human beings and animals. Many studies indicate that oxidative stress is involved in the various toxicities associated with APAP, and various antioxidants were evaluated to investigate their protective roles against APAP-induced liver and kidney toxicities. To date, almost no review has addressed the APAP toxicity in relation to oxidative stress. This review updates the research conducted over the past decades into the production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and oxidative stress as a result of APAP treatments, and ultimately their correlation with the toxicity and metabolism of APAP. The metabolism of APAP involves various CYP450 enzymes, through which oxidative stress might occur, and such metabolic factors are reviewed within. The therapeutics of a variety of compounds against APAP-induced organ damage based on their anti-oxidative effects is also discussed, in order to further understand the role of oxidative stress in APAP-induced toxicity. This review will throw new light on the critical roles of oxidative stress in APAP-induced toxicity, as well as on the contradictions and blind spots that still exist in the understanding of APAP toxicity, the cellular effects in terms of organ injury and cell signaling pathways, and finally strategies to help remedy such against oxidative damage.

  16. Environmental impact by toxic compounds from waste treatment; Miljoepaaverkan fraan toxiska aemnen vid hantering av avfall

    Energy Technology Data Exchange (ETDEWEB)

    Loefblad, Gun; Bisaillon, Mattias; Sundberg, Johan (Profu AB (Sweden))

    2010-07-01

    The study deals with emissions of toxic compounds from waste treatment to the environment with the aim of improving the state of knowledge and to find a way of describing the environmental impact from these substances. Toxicity is one of a number of environmental aspects necessary to address in the planning of waste treatment and in the daily waste treatment routines in order to fulfill the environmental objective A Non-Toxic Environment and other environmental requirements. The study includes waste to incineration, composting and anaerobic digestion. A comparison between methods were made for biological household waste. According to our study, the compounds of importance for waste treatment are metals and persistent organic compounds. These tend to bioaccumulate and enrich in food chains. The substances are important for the environmental objective A Non-Toxic Environment. In a first step the compounds chosen in this study may be suggested for describing toxicity from waste treatment: As, Cd, Cu, Hg, Pb, dioxin, PCB, the phthalate DEHP and the brominated flame retardant HBCDD. Other substances may be added to the list in a next step from up-dated and quality-assured characterisation factors or from other requirements or preferences. There is a limited knowledge on toxic compounds in waste flows and in different environmental compartments. More data are available for metals than for organic substances. There is also a limited knowledge on the fate of the compounds during the waste treatment processes. Most information is found for incineration. During composting and anaerobic digestion the metals will mainly be emitted to the environment by use of the compost and the anaerobic digestion residue. Organic substances will to some extent be degraded during the processes. However, there are gaps of knowledge to fill for the further work on estimating toxic emissions. There is mainly a need for more extensive data on toxic compounds in waste and their variations. A test

  17. Flavoring Compounds Dominate Toxic Aldehyde Production during E-Cigarette Vaping.

    Science.gov (United States)

    Khlystov, Andrey; Samburova, Vera

    2016-12-06

    The growing popularity of electronic cigarettes (e-cigarettes) raises concerns about the possibility of adverse health effects to primary users and people exposed to e-cigarette vapors. E-Cigarettes offer a very wide variety of flavors, which is one of the main factors that attract new, especially young, users. How flavoring compounds in e-cigarette liquids affect the chemical composition and toxicity of e-cigarette vapors is practically unknown. Although e-cigarettes are marketed as safer alternatives to traditional cigarettes, several studies have demonstrated formation of toxic aldehydes in e-cigarette vapors during vaping. So far, aldehyde formation has been attributed to thermal decomposition of the main components of e-cigarette e-liquids (propylene glycol and glycerol), while the role of flavoring compounds has been ignored. In this study, we have measured several toxic aldehydes produced by three popular brands of e-cigarettes with flavored and unflavored e-liquids. We show that, within the tested e-cigarette brands, thermal decomposition of flavoring compounds dominates formation of aldehydes during vaping, producing levels that exceed occupational safety standards. Production of aldehydes was found to be exponentially dependent on concentration of flavoring compounds. These findings stress the need for a further, thorough investigation of the effect of flavoring compounds on the toxicity of e-cigarettes.

  18. The application of FEL-EXPERT system in the interpretation of boron compounds toxicity

    International Nuclear Information System (INIS)

    Strouf, O.; Marik, V.

    1990-01-01

    The effect of substructural features of boron compounds on their toxicity (LD 50 , mice, i.p.) was studied using the FEL-EXPERT system developed by the Czech Technical University of Prague. A set of 108 compounds containing one or two boron atoms in their molecule was arbitrarily divided into three classes: compounds with high toxicity (LD 50 50 50 ≥1000 mg/kg). The compounds were represented by 70 substructural fragments, 27 of them being ''central substructures'' containing boron atom(s). The inference net consisted of 118 nodes (74 of the Bayesian type), 362 production rules and 74 context links. The total classification correctness was 98%. As a case-study, the classification of p-tolylboronic acid (LD 50 =520 mg/kg) and 4-carboxyphenylboronic acid (LD 50 =3838 mg/kg) was discussed. 4 figs., 2 tabs., 11 refs

  19. Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation.

    Science.gov (United States)

    Alves, L; Paixão, S M

    2011-10-01

    The acute toxicity of some compounds used in fossil fuels biodesulphurisation studies, on the respiration activity, was evaluated by Gordonia alkanivorans and Rhodococcus erythropolis. Moreover, the effect of 2-hydroxybiphenyl on cell growth of both strains was also determined, using batch (chronic bioassays) and continuous cultures. The IC₅₀ values obtained showed the toxicity of all the compounds tested to both strains, specially the high toxicity of 2-HBP. These results were confirmed by the chronic toxicity data. The toxicity data sets highlight for a higher sensitivity to the toxicant by the strain presenting a lower growth rate, due to a lower cells number in contact with the toxicant. Thus, microorganisms exhibiting faster generation times could be more resistant to 2-HBP accumulation during a BDS process. The physiological response of both strains to 2-HBP pulse in a steady-state continuous culture shows their potential to be used in a future fossil fuel BDS process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Development of Toxicity Data for Munition Compounds to Support Toxicity Reference Value Derivations for Wildlife

    Science.gov (United States)

    2010-06-01

    kilogram (cmol kg -1 ), with soil pH 5.9. Compound was then dissolved in high purity acetone, and dispersed into deionized water. The solution was...acute and subacute studies. (2) Rabbits orally dosed at greater than 256 mg/kg experienced clonic convulsion to include salivation roughly 21

  1. Comparison of the toxicity of fluoridation compounds in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Rice, Julie R; Boyd, Windy A; Chandra, Dave; Smith, Marjolein V; Den Besten, Pamela K; Freedman, Jonathan H

    2014-01-01

    Fluorides are commonly added to drinking water in the United States to decrease the incidence of dental caries. Silicofluorides, such as sodium hexafluorosilicate (Na2 SiF6 ) and fluorosilicic acid (H2 SiF6 ), are mainly used for fluoridation, although fluoride salts such as sodium fluoride (NaF) are also used. Interestingly, only the toxicity of NaF has been examined and not that of the more often used silicofluorides. In the present study, the toxicities of NaF, Na2 SiF6 , and H2 SiF6 were compared. The toxicity of these fluorides on the growth, feeding, and reproduction in the alternative toxicological testing organism Caenorhabditis elegans was examined. Exposure to these compounds produced classic concentration-response toxicity profiles. Although the effects of the fluoride compounds varied among the 3 biological endpoints, no differences were found between the 3 compounds, relative to the fluoride ion concentration, in any of the assays. This suggests that silicofluorides have similar toxicity to NaF. © 2013 SETAC.

  2. Toxicity assessment of volatile organic compounds and polycyclic aromatic hydrocarbons in motorcycle exhaust

    International Nuclear Information System (INIS)

    Chang, C.-T.; Chen, B.-Y.

    2008-01-01

    This study investigates the toxicity of various pollutant species from motorcycle exhaust via dose-response analysis and margin of safety using Escherichia coli DH5α. The toxicity evaluation of the major components of motorcycle exhaust volatile organic compounds (VOCs), collected with impinger, and polycyclic aromatic hydrocarbons (PAHs), collected with filter and XAD-2, is essential to determine emission standards for motorcycles. The toxicity of benzene (B), toluene (T), ethyl benzene (E) and xylene (X) was selected for comparison as standard VOCs emitted from motorcycles. In addition, three types of reformulated gasoline (high oxygenate and high benzene content (No. 1), low oxygen and high benzene (No. 2), and low oxygen and low benzene (No. 3) were prepared to reveal combined toxicity of individual compositions. Motorcycle exhaust is significantly more toxic than BTEX due to the highly toxic VOCs generated from incomplete combustion. Overall toxicity evaluation showed that the toxicity, indicated as EC 50 , was approximately as follows: PAHs > two-stroke engines > four-stroke engines > BTEX

  3. Toxicity assessment of volatile organic compounds and polycyclic aromatic hydrocarbons in motorcycle exhaust.

    Science.gov (United States)

    Chang, Chang-Tang; Chen, Bor-Yann

    2008-05-30

    This study investigates the toxicity of various pollutant species from motorcycle exhaust via dose-response analysis and margin of safety using Escherichia coli DH5 alpha. The toxicity evaluation of the major components of motorcycle exhaust volatile organic compounds (VOCs), collected with impinger, and polycyclic aromatic hydrocarbons (PAHs), collected with filter and XAD-2, is essential to determine emission standards for motorcycles. The toxicity of benzene (B), toluene (T), ethyl benzene (E) and xylene (X) was selected for comparison as standard VOCs emitted from motorcycles. In addition, three types of reformulated gasoline (high oxygenate and high benzene content (No. 1), low oxygen and high benzene (No. 2), and low oxygen and low benzene (No. 3) were prepared to reveal combined toxicity of individual compositions. Motorcycle exhaust is significantly more toxic than BTEX due to the highly toxic VOCs generated from incomplete combustion. Overall toxicity evaluation showed that the toxicity, indicated as EC50, was approximately as follows: PAHs>two-stroke engines>four-stroke engines>BTEX.

  4. Biological Mimics: A New Paradigm in the Detection of Toxic Compounds

    Science.gov (United States)

    Monty, Chelsea Nicole

    2009-01-01

    The purpose of this thesis is to introduce a new idea: using biological mimics in the detection of toxic compounds. Biological mimics imitate the active site of a given enzyme or have catalytic chemistry similar to enzymes and can be used in place of biological molecules to provide longer stability and simpler operation. In the following text the…

  5. Survival of added bacterial species and metabolism of toxic compounds in natural environments

    International Nuclear Information System (INIS)

    King, V.M.

    1987-01-01

    Bacteria able to degrade either 2,4-dichlorophenol (DCP) or phenanthrene (PHEN) were isolated from polluted freshwater environments. Two isolates able to degrade each compound were tested for mineralization with a sensitive 14 C assay and for survival in lake water and sewage using a selective medium. One DCP isolate was identified as Alcaligenes paradoxus and the other as Alcaligenes sp. One PHEN isolate was identified as Pseudomonas fluorescens and the other as Pseudomonas sp. All four isolates survived and grew in sterile environments which indicated that starvation would not be a factor in survival of these strains. The number of organisms declined immediately in number in nonsterile lake water. However, they did survive or even grow in nonsterile sewage for a short period before declining in number. Biotic factors appeared to be influential for survival and mineralization of target compounds in many environments. The removal of protozoa, which prey on bacteria, improved survival of the added cells, but had no influence on the mineralization of 10 μg DCP/L. In comparison, degradation of 10 and 25 mg DCP/L stopped after a few days. Yeast nitrogen base appeared to overcome the lack of nutrient regeneration, a function attributed to protozoa. The additional nutrients increased toxicant mineralization, especially when seeded with appropriate species. Thus, protozoa may limit growth of added cells but appear to be needed for mineralization of higher concentrations of DCP

  6. Developmental toxicity from exposure to various forms of mercury compounds in medaka fish (Oryzias latipes embryos

    Directory of Open Access Journals (Sweden)

    Wu Dong

    2016-08-01

    Full Text Available This study examined developmental toxicity of different mercury compounds, including some used in traditional medicines. Medaka (Oryzias latipes embryos were exposed to 0.001–10 µM concentrations of MeHg, HgCl2, α-HgS (Zhu Sha, and β-HgS (Zuotai from stage 10 (6–7 hpf to 10 days post fertilization (dpf. Of the forms of mercury in this study, the organic form (MeHg proved the most toxic followed by inorganic mercury (HgCl2, both producing embryo developmental toxicity. Altered phenotypes included pericardial edema with elongated or tube heart, reduction of eye pigmentation, and failure of swim bladder inflation. Both α-HgS and β-HgS were less toxic than MeHg and HgCl2. Total RNA was extracted from survivors three days after exposure to MeHg (0.1 µM, HgCl2 (1 µM, α-HgS (10 µM, or β-HgS (10 µM to examine toxicity-related gene expression. MeHg and HgCl2 markedly induced metallothionein (MT and heme oxygenase-1 (Ho-1, while α-HgS and β-HgS failed to induce either gene. Chemical forms of mercury compounds proved to be a major determinant in their developmental toxicity.

  7. Assessing the Renal Toxicity of Capstone Depleted Uranium Oxides and Other Uranium Compounds

    International Nuclear Information System (INIS)

    Roszell, Laurie E.; Hahn, Fletcher; Lee, Robyn B.; Parkhurst, MaryAnn

    2009-01-01

    The primary target for uranium toxicity is the kidney. The most frequently used guideline for uranium kidney burdens is the International Commission on Radiation Protection (ICRP) value of 3 (micro)g U/g kidney, a value that is based largely upon chronic studies in animals. In the present effort, we have developed a risk model equation to assess potential outcomes of acute uranium exposure. Twenty-seven previously published case studies in which workers were acutely exposed to soluble compounds of uranium (as a result of workplace accidents) were analyzed. Kidney burdens of uranium for these individuals were determined based on uranium in the urine, and correlated with health effects observed over a period of up to 38 years. Based upon the severity of health effects, each individual was assigned a score (- to +++) and then placed into an Effect Group. A discriminant analysis was used to build a model equation to predict the Effect Group based on the amount of uranium in the kidneys. The model equation was able to predict the Effect Group with 85% accuracy. The risk model was used to predict the Effect Group for Soldiers exposed to DU as a result of friendly fire incidents during the 1991 Gulf War. This model equation can also be used to predict the Effect Group of new cases in which acute exposures to uranium have occurred

  8. In vitro approaches to evaluate toxicity induced by organotin compounds tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) in neuroblastoma cells.

    Science.gov (United States)

    Ferreira, Martiña; Blanco, Lucía; Garrido, Alejandro; Vieites, Juan M; Cabado, Ana G

    2013-05-01

    The toxic effects of the organotin compounds (OTCs) monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) were evaluated in vitro in a neuroblastoma human cell line. Mechanisms of cell death, apoptosis versus necrosis, were studied by using several markers: inhibition of cell viability and proliferation, F-actin, and mitochondrial membrane potential changes as well as reactive oxygen species (ROS) production and DNA fragmentation. The most toxic effects were detected with DBT and TBT even at very low concentrations (0.1-1 μM). In contrast, MBT induced lighter cytotoxic changes at the higher doses tested. None of the studied compounds stimulated propidium iodide uptake, although the most toxic chemical, TBT, caused lactate dehydrogenase release at the higher concentrations tested. These findings suggest that in neuroblastoma, OTC-induced cytotoxicity involves different pathways depending on the compound, concentration, and incubation time. A screening method for DBT and TBT quantification based on cell viability loss was developed, allowing a fast detection alternative to complex methodology.

  9. Polybrominated dibenzo-p-dioxins, dibenzofurans, and biphenyls: inclusion in the toxicity equivalency factor concept for dioxin-like compounds.

    Science.gov (United States)

    van den Berg, Martin; Denison, Michael S; Birnbaum, Linda S; Devito, Michael J; Fiedler, Heidelore; Falandysz, Jerzy; Rose, Martin; Schrenk, Dieter; Safe, Stephen; Tohyama, Chiharu; Tritscher, Angelika; Tysklind, Mats; Peterson, Richard E

    2013-06-01

    In 2011, a joint World Health Organization (WHO) and United Nations Environment Programme (UNEP) expert consultation took place, during which the possible inclusion of brominated analogues of the dioxin-like compounds in the WHO Toxicity Equivalency Factor (TEF) scheme was evaluated. The expert panel concluded that polybrominated dibenzo-p-dioxins (PBDDs), dibenzofurans (PBDFs), and some dioxin-like biphenyls (dl-PBBs) may contribute significantly in daily human background exposure to the total dioxin toxic equivalencies (TEQs). These compounds are also commonly found in the aquatic environment. Available data for fish toxicity were evaluated for possible inclusion in the WHO-UNEP TEF scheme (van den Berg et al., 1998). Because of the limited database, it was decided not to derive specific WHO-UNEP TEFs for fish, but for ecotoxicological risk assessment, the use of specific relative effect potencies (REPs) from fish embryo assays is recommended. Based on the limited mammalian REP database for these brominated compounds, it was concluded that sufficient differentiation from the present TEF values of the chlorinated analogues (van den Berg et al., 2006) was not possible. However, the REPs for PBDDs, PBDFs, and non-ortho dl-PBBs in mammals closely follow those of the chlorinated analogues, at least within one order of magnitude. Therefore, the use of similar interim TEF values for brominated and chlorinated congeners for human risk assessment is recommended, pending more detailed information in the future.

  10. Can Dietary Polyphenols Prevent the Formation of Toxic Compounds from Maillard Reaction?

    Science.gov (United States)

    Del Turco, Serena; Basta, Giuseppina

    2016-01-01

    Polyphenols are functional compounds in edible vegetable and food such as tea, coffee and red wine and increasing evidence demonstrates a positive link between consumption of polyphenol-rich foods and disease prevention. In this review we have focused on the current knowledge of the potential anti-glycation effects of polyphenols, particularly in regard to their influence on Maillard reaction, a non-enzymatic reaction between amino acids and reducing sugars that contributes to the production of toxic compounds, mainly reactive carbonyl species, advanced glycation end-products (AGEs) and other toxicants. The Maillard reaction occurs in the human body during hyperglycemic condition, but it is well known as browning reaction in thermally processed foods and it is responsible for flavor and toxicant formation. Dietary polyphenols can have anti-glycation effects and actively participate in Maillard reaction, mitigating the AGE formation and the heat-induced production of toxic compounds. In a time in which the role of a healthy diet in the prevention of chronic diseases is welcome and the borderline between food and medicine is becoming very thin, an improved mechanistic knowledge of how polyphenols can function to reduce harmful and unhealthy substances is mandatory.

  11. Toxicity evaluation of chlorinated organic compounds using immortalized rat hepatocytes; Fushika rat kansaibo wo mochiita yuki enso kagobutsu no dokusei hyoka no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Sone, H; Nakajima, M; Yonemoto, J [National Institute for Environmental Studies, Tsukuba (Japan)

    1997-11-10

    Chlorinated organic compounds has high priority for toxicity screening among environmental hazardous chemicals. In the present study, we used immortalized rat hepatocytes as a liver model in vitro to evaluate the toxicity of nine chlorinated organic compounds. Toxicity of nine chlorinated organic compounds were evaluated to cellular viability of immortalized rat hapatocytes. The potency of the toxicity based on 50% inhibitory concentration (IC50) value was in the following order: triclocalban>triclosan>3,4-dichloroaniline>2,5-diclorophenol> 2,5-dichloroanisole>p-dichlorobenzene> p-chloroaniline>o-dichlorobenzene=tris (2-chloroethyl) phosphate. The rank order of cytotoxic potency of nine chemicals was compared with toxicity information using animals. The rank order of cytotoxic potency did not relative to the order referenced mean lethal dose (LD50) as an index of acute toxicity of rats or mice. However, the rank order of cytotoxic potency relatively correlated non-observed adverse effect level (NOAEL) under the exposure duration adjusted for chronic toxicity in vivo. These data suggests that the origin of testing cell had better to make match target organ of toxic chemicals for extrapolation from data of bioassay in vitro to in vivo. 16 refs., 2 figs., 3 tabs.

  12. NMR-based urine analysis in rats: prediction of proximal tubule kidney toxicity and phospholipidosis.

    Science.gov (United States)

    Lienemann, Kai; Plötz, Thomas; Pestel, Sabine

    2008-01-01

    The aim of safety pharmacology is early detection of compound-induced side-effects. NMR-based urine analysis followed by multivariate data analysis (metabonomics) identifies efficiently differences between toxic and non-toxic compounds; but in most cases multiple administrations of the test compound are necessary. We tested the feasibility of detecting proximal tubule kidney toxicity and phospholipidosis with metabonomics techniques after single compound administration as an early safety pharmacology approach. Rats were treated orally, intravenously, inhalatively or intraperitoneally with different test compounds. Urine was collected at 0-8 h and 8-24 h after compound administration, and (1)H NMR-patterns were recorded from the samples. Variation of post-processing and feature extraction methods led to different views on the data. Support Vector Machines were trained on these different data sets and then aggregated as experts in an Ensemble. Finally, validity was monitored with a cross-validation study using a training, validation, and test data set. Proximal tubule kidney toxicity could be predicted with reasonable total classification accuracy (85%), specificity (88%) and sensitivity (78%). In comparison to alternative histological studies, results were obtained quicker, compound need was reduced, and very importantly fewer animals were needed. In contrast, the induction of phospholipidosis by the test compounds could not be predicted using NMR-based urine analysis or the previously published biomarker PAG. NMR-based urine analysis was shown to effectively predict proximal tubule kidney toxicity after single compound administration in rats. Thus, this experimental design allows early detection of toxicity risks with relatively low amounts of compound in a reasonably short period of time.

  13. Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: compound prioritization, mixture characterization and relationships with biological descriptors.

    Science.gov (United States)

    Ginebreda, Antoni; Kuzmanovic, Maja; Guasch, Helena; de Alda, Miren López; López-Doval, Julio C; Muñoz, Isabel; Ricart, Marta; Romaní, Anna M; Sabater, Sergi; Barceló, Damià

    2014-01-15

    Chemical pollution is typically characterized by exposure to multiple rather than to single or a limited number of compounds. Parent compounds, transformation products and other non-targeted compounds yield mixtures whose composition can only be partially identified by monitoring, while a substantial proportion remains unknown. In this context, risk assessment based on the application of additive ecotoxicity models, such as concentration addition (CA), is rendered somewhat misleading. Here, we show that ecotoxicity risk information can be better understood upon consideration of the probabilistic distribution of risk among the different compounds. Toxic units of the compounds identified in a sample fit a lognormal probability distribution. The parameters characterizing this distribution (mean and standard deviation) provide information which can be tentatively interpreted as a measure of the toxic load and its apportionment among the constituents in the mixture (here interpreted as mixture complexity). Furthermore, they provide information for compound prioritization tailored to each site and enable prediction of some of the functional and structural biological variables associated with the receiving ecosystem. The proposed approach was tested in the Llobregat River basin (NE Spain) using exposure and toxicity data (algae and Daphnia) corresponding to 29 pharmaceuticals and 22 pesticides, and 5 structural and functional biological descriptors related to benthic macroinvertebrates (diversity, biomass) and biofilm metrics (diatom quality, chlorophyll-a content and photosynthetic capacity). Aggregated toxic units based on Daphnia and algae bioassays provided a good indication of the pollution pattern of the Llobregat River basin. Relative contribution of pesticides and pharmaceuticals to total toxic load was variable and highly site dependent, the latter group tending to increase its contribution in urban areas. Contaminated sites' toxic load was typically dominated by

  14. Pharmacokinetic/Toxicity Properties of the New Anti-Staphylococcal Lead Compound SK-03-92

    Directory of Open Access Journals (Sweden)

    William R. Schwan

    2015-11-01

    Full Text Available Because of the potential of a new anti-staphylococcal lead compound SK-03-92 as a topical antibiotic, a patch, or an orally active drug, we sought to determine its safety profile and oral bioavailability. SK-03-92 had a high IC50 (125 μg/mL in vitro against several mammalian cell lines, and mice injected intraperiteonally at the highest dose did not exhibit gross toxicity (e.g., altered gait, ungroomed, significant weight loss. Single dose (100 μg/g pharmacokinetic (PK analysis with formulated SK-03-92 showed that peak plasma concentration (1.64 μg/mL was achieved at 20–30 min. Oral relative bioavailability was 8%, and the drug half-life was 20–30 min, demonstrating that SK-03-92 is likely not a candidate for oral delivery. Five-day and two-week PK analyses demonstrated that SK-03-92 plasma levels were low. Multi-dose analysis showed no gross adverse effects to the mice and a SK-03-92 peak plasma concentration of 2.12 μg/mL with the presence of significant concentrations of breakdown products 15 min after dosing. SK-03-92 appeared to be very safe based on tissue culture and mouse gross toxicity determinations, but the peak plasma concentration suggests that a pro-drug of SK-03-92 or preparation of analogs of SK-03-92 with greater bioavailability and longer half-lives are warranted.

  15. Photoprotective effect and acute oral systemic toxicity evaluation of the novel heterocyclic compound LQFM048.

    Science.gov (United States)

    Vinhal, Daniela C; de Ávila, Renato Ivan; Vieira, Marcelo S; Luzin, Rangel M; Quintino, Michelle P; Nunes, Liliane M; Ribeiro, Antonio Carlos Chaves; de Camargo, Henrique Santiago; Pinto, Angelo C; Dos Santos Júnior, Helvécio M; Chiari, Bruna G; Isaac, Vera; Valadares, Marize C; Martins, Tatiana Duque; Lião, Luciano M; de S Gil, Eric; Menegatti, Ricardo

    2016-08-01

    The new heterocyclic derivative LQFM048 (3) (2,4,6-tris ((E)-ethyl 2-cyano-3-(4-hydroxy-3-methoxyphenyl)acrylate)-1,3,5-triazine) was originally designed through the molecular hybridization strategy from Uvinul® T 150 (1) and (E)-ethyl 2-cyano-3-(4hydroxy-3-methoxyphenyl)acrylate (2) sunscreens, using green chemistry approach. This compound was obtained in global yields (80%) and showed an interesting redox potential. In addition, it is thermally stable up to temperatures around 250°C. It was observed that LQFM048 (3) showed a low degradation after 150min of sunlight exposure at 39°C, whereas the extreme radiation conditions induced a considerable photodegradation of the LQFM048 (3), especially when irradiated by VIS and VIS+UVA. During the determination of sun protection factor, LQFM048 (3) showed interesting results, specially as in association with other photoprotective compounds and commercial sunscreen. Additionally, the compound (3) did not promote cytotoxicity for 3T3 fibroblasts. Moreover, it was not able to trigger acute oral systemic toxicity in mice, being classified as a compound with low acute toxicity hazard (2.000mg/kg>LD50compound synthesized using green chemistry approach is promising showing potential to development of a new sunscreen product with advantage of presenting redox potential, indicating antioxidant properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Photocatalytic Degradation of 4-Nitrophenol by C, N-TiO2: Degradation Efficiency vs. Embryonic Toxicity of the Resulting Compounds

    Science.gov (United States)

    Osin, Oluwatomiwa A.; Yu, Tianyu; Cai, Xiaoming; Jiang, Yue; Peng, Guotao; Cheng, Xiaomei; Li, Ruibin; Qin, Yao; Lin, Sijie

    2018-06-01

    The photocatalytic activity of TiO2 based photocatalysts can be improved by structural modification and elemental doping. In this study, through rational design, one type of carbon and nitrogen co-doped TiO2 (C, N-TiO2) photocatalyst with mesoporous structure was synthesized with improved photocatalytic activity in degrading 4-nitrophenol under simulated sunlight irradiation. The photocatalytic degradation efficiency of the C, N-TiO2 was much higher than the anatase TiO2 (A-TiO2) based on absorbance and HPLC analyses. Moreover, using zebrafish embryos, we showed that the intermediate degradation compounds generated by photocatalytic degradation of 4-nitrophenol had higher toxicity than the parent compound. A repeated degradation process was necessary to render complete degradation and non-toxicity to the zebrafish embryos. Our results demonstrated the importance of evaluating the photocatalytic degradation efficiency in conjunction with the toxicity assessment of the degradation compounds.

  17. Speciation in Metal Toxicity and Metal-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Douglas M. Templeton

    2015-04-01

    Full Text Available Metallic elements, ions and compounds produce varying degrees of toxicity in organisms with which they come into contact. Metal speciation is critical to understanding these adverse effects; the adjectives “heavy” and “toxic” are not helpful in describing the biological properties of individual elements, but detailed chemical structures are. As a broad generalization, the metallic form of an element is inert, and the ionic salts are the species that show more significant bioavailability. Yet the salts and other chelates of a metal ion can give rise to quite different toxicities, as exemplified by a range of carcinogenic potential for various nickel species. Another important distinction comes when a metallic element is organified, increasing its lipophilicity and hence its ability to penetrate the blood brain barrier, as is seen, for example, with organic mercury and tin species. Some metallic elements, such as gold and platinum, are themselves useful therapeutic agents in some forms, while other species of the same element can be toxic, thus focusing attention on species interconversions in evaluating metal-based drugs. The therapeutic use of metal-chelating agents introduces new species of the target metal in vivo, and this can affect not only its desired detoxification, but also introduce a potential for further mechanisms of toxicity. Examples of therapeutic iron chelator species are discussed in this context, as well as the more recent aspects of development of chelation therapy for uranium exposure.

  18. Toxic Compounds Analysis With High Performance Liquid Chromatography Detected By Electro Chemical Detector (Ecd)

    OpenAIRE

    Hideharu Shintaniq

    2014-01-01

    The principal area of application of high performance liquid chromatography-electrochemical detector (HPLC-ECD) has been in the analysis of naturally-occurring analytes, such as catecholamines, and pharmaceuticals in biological samples, HPLC-ECD has also applied to the analysis of pesticides and other analytes of interest to the toxicologist. In this paper, toxic area is described. In these, ammatoxins, aromatic amine, nitro-compounds, algal toxins, fungal toxins, pesticides, veterinary drug ...

  19. Chemopreventive effect of natural dietary compounds on xenobiotic-induced toxicity

    Directory of Open Access Journals (Sweden)

    Jia-Ching Wu

    2017-01-01

    Full Text Available Contaminants (or pollutants that affect human health have become an important issue, spawning a myriad of studies on how to prevent harmful contaminant-induced effects. Recently, a variety of biological functions of natural dietary compounds derived from consumed foods and plants have been demonstrated in a number of studies. Natural dietary compounds exhibited several beneficial effects for the prevention of disease and the inhibition of chemically-induced carcinogenesis. Contaminant-induced toxicity and carcinogenesis are mostly attributed to the mutagenic activity of reactive metabolites and the disruption of normal biological functions. Therefore, the metabolic regulation of hazardous chemicals is key to reducing contaminant-induced adverse health effects. Moreover, promoting contaminant excretion from the body through Phase I and II metabolizing enzymes is also a useful strategy for reducing contaminant-induced toxicity. This review focuses on summarizing the natural dietary compounds derived from common dietary foods and plants and their possible mechanisms of action in the prevention/suppression of contaminant-induced toxicity.

  20. Automated high-content assay for compounds selectively toxic to Trypanosoma cruzi in a myoblastic cell line.

    Directory of Open Access Journals (Sweden)

    Julio Alonso-Padilla

    2015-01-01

    Full Text Available Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, represents a very important public health problem in Latin America where it is endemic. Although mostly asymptomatic at its initial stage, after the disease becomes chronic, about a third of the infected patients progress to a potentially fatal outcome due to severe damage of heart and gut tissues. There is an urgent need for new drugs against Chagas disease since there are only two drugs available, benznidazole and nifurtimox, and both show toxic side effects and variable efficacy against the chronic stage of the disease.Genetically engineered parasitic strains are used for high throughput screening (HTS of large chemical collections in the search for new anti-parasitic compounds. These assays, although successful, are limited to reporter transgenic parasites and do not cover the wide T. cruzi genetic background. With the aim to contribute to the early drug discovery process against Chagas disease we have developed an automated image-based 384-well plate HTS assay for T. cruzi amastigote replication in a rat myoblast host cell line. An image analysis script was designed to inform on three outputs: total number of host cells, ratio of T. cruzi amastigotes per cell and percentage of infected cells, which respectively provides one host cell toxicity and two T. cruzi toxicity readouts. The assay was statistically robust (Z´ values >0.6 and was validated against a series of known anti-trypanosomatid drugs.We have established a highly reproducible, high content HTS assay for screening of chemical compounds against T. cruzi infection of myoblasts that is amenable for use with any T. cruzi strain capable of in vitro infection. Our visual assay informs on both anti-parasitic and host cell toxicity readouts in a single experiment, allowing the direct identification of compounds selectively targeted to the parasite.

  1. Biodegradable alternative for removing toxic compounds from sugarcane bagasse hemicellulosic hydrolysates for valorization in biorefineries.

    Science.gov (United States)

    Silva-Fernandes, T; Santos, J C; Hasmann, F; Rodrigues, R C L B; Izario Filho, H J; Felipe, M G A

    2017-11-01

    Among the major challenges for hemicellulosic hydrolysate application in fermentative processes, there is the presence of toxic compounds generated during the pretreatment of the biomass, which can inhibit microbial growth. Therefore, the development of efficient, biodegradable and cost-effective detoxification methods for lignocellulosic hydrolysates is crucial. In this work, two tannin-based biopolymers (called A and B) were tested in the detoxification of sugarcane bagasse hydrolysate for subsequent fermentation by Candida guilliermondii. The effects of biopolymer concentration, pH, temperature, and contact time were studied using a 2 4 experimental design for both biopolymers. Results revealed that the biopolymer concentration and the pH were the most significant factors in the detoxification step. Biopolymer A removed phenolics, 5-hydroxymethylfurfural, and nickel from the hydrolysate more efficiently than biopolymer B, while biopolymer B was efficient to remove chromium at 15% (v/v). Detoxification enhanced the fermentation of sugarcane bagasse hydrolysate, and the biopolymers showed different influences on the process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Development of multicomponent parts-per-billion-level gas standards of volatile toxic organic compounds

    International Nuclear Information System (INIS)

    Rhoderick, G.C.; Zielinski, W.L. Jr.

    1990-01-01

    This paper reports that the demand for stable, low-concentration multicomponent standards of volatile toxic organic compounds for quantifying national and state measurement of ambient air quality and hazardous waste incineration emissions has markedly increased in recent years. In response to this demand, a microgravimetric technique was developed and validated for preparing such standards; these standards ranged in concentration from several parts per million (ppm) down to one part per billion (ppb) and in complexity from one organic up to 17. Studies using the gravimetric procedure to prepare mixtures of different groups of organics. including multi-components mixtures in the 5 to 20 ppb range, revealed a very low imprecision. This procedure is based on the separate gravimetric introduction of individual organics into an evacuated gas cylinder, followed by the pressurized addition of a precalculated amount of pure nitrogen. Additional studies confirmed the long-term stability of these mixtures. The uncertainty of the concentrations of the individual organics at the 95% confidence level ranged from less than 1% relative at 1 ppm to less than 10% relative at 1 ppb. Over 100 primary gravimetric standards have been developed, validated, and used for certifying the concentrations of a variety of mixtures for monitoring studies

  3. Identification of water soluble and particle bound compounds causing sublethal toxic effects. A field study on sediments affected by a chlor-alkali industry

    International Nuclear Information System (INIS)

    Bosch, Carme; Olivares, Alba; Faria, Melissa; Navas, Jose M.; Olmo, Ivan del; Grimalt, Joan O.; Pina, Benjamin; Barata, Carlos

    2009-01-01

    A combination of cost effective sublethal Daphnia magna feeding tests, yeast- and cell culture-based bioassays and Toxicity Identification Evaluation (TIE) procedures was used to characterize toxic compounds within sediments collected in a river area under the influence of the effluents from a chlor-alkali industry (Ebro River, NE Spain). Tests were designed to measure and identify toxic compounds in the particulate and filtered water fractions of sediment elutriates. The combined use of bioassays responding to elutriates and dioxin-like compounds evidenced the existence of three major groups of hazardous contaminants in the most contaminated site: (A) metals such as cadmium and mercury bound to sediment fine particles that could be easily resuspended and moved downstream, (B) soluble compounds (presumably, lye) able to alkalinize water to toxic levels, and (C) organochlorine compounds with high dioxin-like activity. These results provided evidence that elutriate D. magna feeding responses can be used as surrogate assays for more tedious chronic whole sediment tests, and that the incorporation of such tests in sediment TIE procedures may improve the ability to identify the toxicity of particle-bound and water-soluble contaminants in sediments.

  4. Antibiofilm Activity, Compound Characterization, and Acute Toxicity of Extract from a Novel Bacterial Species of Paenibacillus

    Directory of Open Access Journals (Sweden)

    Saad Musbah Alasil

    2014-01-01

    Full Text Available The effectiveness of many antimicrobial agents is currently decreasing; therefore, it is important to search for alternative therapeutics. Our study was carried out to assess the in vitro antibiofilm activity using microtiter plate assay, to characterize the bioactive compounds using Ultra Performance Liquid Chromatography-Diode Array Detection and Liquid Chromatography-Mass Spectrometry and to test the oral acute toxicity on Sprague Dawley rats of extract derived from a novel bacterial species of Paenibacillus strain 139SI. Our results indicate that the crude extract and its three identified compounds exhibit strong antibiofilm activity against a broad range of clinically important pathogens. Three potential compounds were identified including an amino acid antibiotic C8H20N3O4P (MW 253.237, phospholipase A2 inhibitor C21H36O5 (MW 368.512, and an antibacterial agent C14H11N3O2 (MW 253.260. The acute toxicity test indicates that the mortality rate among all rats was low and that the biochemical parameters, hematological profile, and histopathology examination of liver and kidneys showed no significant differences between experimental groups P>0.05. Overall, our findings suggest that the extract and its purified compounds derived from novel Paenibacillus sp. are nontoxic exhibiting strong antibiofilm activity against Gram-positive and Gram-negative pathogens that can be useful towards new therapeutic management of biofilm-associated infections.

  5. [Assessment of the relationship of properties of chemical compounds and their toxicity to a unified hygienic standardization for chemicals].

    Science.gov (United States)

    Trushkov, V F; Perminov, K A; Sapozhnikova, V V; Ignatova, O L

    2013-01-01

    The connection of thermodynamic properties and parameters of toxicity of chemical substances was determined. Obtained data are used for the evaluation of toxicity and hygienic rate setting of chemical compounds. The relationship between enthalpy and toxicity of chemical compounds has been established. Orthogonal planning of the experiment was carried out in the course of the investigations. Equation of unified hygienic rate setting in combined, complex, conjunct influence on the organism is presented. Prospects of determination of toxicity and methodology of unified hygienic rate setting in combined, complex, conjunct influence on the organism are presented

  6. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels

    KAUST Repository

    Jin, Peng; Wang, Tifeng; Liu, Nana; Dupont, Sam; Beardall, John; Boyd, Philip W.; Riebesell, Ulf; Gao, Kunshan

    2015-01-01

    Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46–212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130–160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28–48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes.

  7. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels

    KAUST Repository

    Jin, Peng

    2015-10-27

    Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46–212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130–160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28–48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes.

  8. Solar driven production of toxic halogenated and nitroaromatic compounds in natural seawater

    Energy Technology Data Exchange (ETDEWEB)

    Calza, Paola [Dipartimento di Chimica Analitica, Universita di Torino, via P. Giuria 5, 10125 Torino (Italy)], E-mail: paola.calza@unito.it; Massolino, Cristina; Pelizzetti, Ezio; Minero, Claudio [Dipartimento di Chimica Analitica, Universita di Torino, via P. Giuria 5, 10125 Torino (Italy)

    2008-07-15

    Natural seawater (NSW) sampled in March and June 2007 in the Gulf of Trieste, Italy, has been spiked with phenol and irradiated in a device simulating solar light spectrum and intensity. Opposite to the case of artificial seawater, for which phenol is slightly degraded by direct photolysis, in NSW the phenol degradation mediated by natural photosensitizers occurs, forming several secondary pollutants, including hydroxyderivatives (1,4-benzoquinone, resorcinol), three chlorophenol isomers, 2,3-dichlorophenol, 2- and 4-bromophenol, 2- and 4-nitrophenol, and several condensed products (2 and 4-phenoxyphenol, 2,2'-, 4,4'- and 2,4-bisphenol). These compounds are toxic to bacteria and other living organisms. Ecotoxicologic effect has been evaluated by using the Vibrio Fischeri luminescent bacteria assay. This technique uses marine organisms, and it is therefore well suited for the study on marine samples. A correlation exists between the intermediates evolution and the toxicity profile, as the largest toxicity is observed when compounds with the lower EC50 (halophenols, phenoxyphenols) are formed at higher concentration.

  9. Solar driven production of toxic halogenated and nitroaromatic compounds in natural seawater

    International Nuclear Information System (INIS)

    Calza, Paola; Massolino, Cristina; Pelizzetti, Ezio; Minero, Claudio

    2008-01-01

    Natural seawater (NSW) sampled in March and June 2007 in the Gulf of Trieste, Italy, has been spiked with phenol and irradiated in a device simulating solar light spectrum and intensity. Opposite to the case of artificial seawater, for which phenol is slightly degraded by direct photolysis, in NSW the phenol degradation mediated by natural photosensitizers occurs, forming several secondary pollutants, including hydroxyderivatives (1,4-benzoquinone, resorcinol), three chlorophenol isomers, 2,3-dichlorophenol, 2- and 4-bromophenol, 2- and 4-nitrophenol, and several condensed products (2 and 4-phenoxyphenol, 2,2'-, 4,4'- and 2,4-bisphenol). These compounds are toxic to bacteria and other living organisms. Ecotoxicologic effect has been evaluated by using the Vibrio Fischeri luminescent bacteria assay. This technique uses marine organisms, and it is therefore well suited for the study on marine samples. A correlation exists between the intermediates evolution and the toxicity profile, as the largest toxicity is observed when compounds with the lower EC50 (halophenols, phenoxyphenols) are formed at higher concentration

  10. Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds.

    Science.gov (United States)

    Liu, ZongLin Lewis

    2018-07-01

    Development of the next-generation biocatalyst is vital for fermentation-based industrial applications and a sustainable bio-based economy. Overcoming the major class of toxic compounds associated with lignocellulose-to-biofuels conversion is one of the significant challenges for new strain development. A significant number of investigations have been made to understand mechanisms of the tolerance for industrial yeast. It is humbling to learn how complicated the cell's response to the toxic chemicals is and how little we have known about yeast tolerance in the universe of the living cell. This study updates our current knowledge on the tolerance of industrial yeast against aldehyde inhibitory compounds at cellular, molecular and the genomic levels. It is comprehensive yet specific based on reproducible evidence and cross confirmed findings from different investigations using varied experimental approaches. This research approaches a rational foundation toward a more comprehensive understanding on the yeast tolerance. Discussions and perspectives are also proposed for continued exploring the puzzle of the yeast tolerance to aid the next-generation biocatalyst development.

  11. Rubber (Hevea brasiliensis seed oil toxicity effect and Linamarin compound analysis

    Directory of Open Access Journals (Sweden)

    Salimon Jumat

    2012-06-01

    Full Text Available Abstract Background The lipid fraction of rubber (Hevea brasiliensis (kunth. Muell seed was extracted and analyzed for toxicological effect. The toxicological compound such as linamarin in rubber seed oil (RSO extracted using different solvents, such as hexane (RSOh, mixture of chloroform + methanol (RSOchl+mth and ethanol (RSOeth were also studied. Various methods analysis such as Fourier transforms infrared spectroscopy (FTIR and colorimetric methods were carried out to determine the present of such compounds. Results FTIR spectrum of RSO did not show any presence of cyanide peak. The determination of cyanide by using colorimetric method was demonstrated no response of the cyanide in RSO and didn’t show any colored comparing with commercial cyanide which observed blue color. The results showed that no functional groups such as cyanide (C ≡ N associated with linamarin were observed. Toxicological test using rats was also conducted to further confirm the absence of such compounds. RSO did not show any toxic potential to the rats. Bioassay experiments using shrimps had been used as test organisms to evaluate the toxicity of linamarin extract from RSOh, RSOchl+mth and RSOeth and LC50 were found to be (211.70 %, 139.40 %, and 117.41 %, respectively. Conclusions This can be attributed no hazardous linamarin were found in RSO.

  12. Rubber (Hevea brasiliensis) seed oil toxicity effect and Linamarin compound analysis.

    Science.gov (United States)

    Salimon, Jumat; Abdullah, Bashar Mudhaffar; Salih, Nadia

    2012-06-13

    The lipid fraction of rubber (Hevea brasiliensis (kunth. Muell)) seed was extracted and analyzed for toxicological effect. The toxicological compound such as linamarin in rubber seed oil (RSO) extracted using different solvents, such as hexane (RSOh), mixture of chloroform + methanol (RSOchl+mth) and ethanol (RSOeth) were also studied. Various methods analysis such as Fourier transforms infrared spectroscopy (FTIR) and colorimetric methods were carried out to determine the present of such compounds. FTIR spectrum of RSO did not show any presence of cyanide peak. The determination of cyanide by using colorimetric method was demonstrated no response of the cyanide in RSO and didn't show any colored comparing with commercial cyanide which observed blue color. The results showed that no functional groups such as cyanide (C ≡ N) associated with linamarin were observed. Toxicological test using rats was also conducted to further confirm the absence of such compounds. RSO did not show any toxic potential to the rats. Bioassay experiments using shrimps had been used as test organisms to evaluate the toxicity of linamarin extract from RSO(h,) RSO(chl+mth) and RSO(eth) and LC50 were found to be (211.70 %, 139.40 %, and 117.41 %, respectively). This can be attributed no hazardous linamarin were found in RSO.

  13. Toxicity of Rhododendron anthopogonoides Essential Oil and Its Constituent Compounds towards Sitophilus zeamais

    Directory of Open Access Journals (Sweden)

    Qi Zhi Liu

    2011-08-01

    Full Text Available The screening of several Chinese medicinal plants for insecticidal principles showed that essential oil of Rhododendron anthopogonoides flowering aerial parts possessed significant toxicity against maize weevils, Sitophilus zeamais. A total of 37 components were identified in the essential oil and the main constituents of the essential oil were 4-phenyl-2-butanone (27.22%, nerolidol (8.08%, 1,4-cineole (7.85%, caryophyllene (7.63% and γ-elemene (6.10%, followed by α-farnesene (4.40% and spathulenol (4.19%. Repeated bioactivity-directed chromatographic separation on silica gel columns led us to isolate three compounds, namely 4-phenyl-2-butanone, 1,4-cineole, and nerolidol. 4-Phenyl-2-butanone shows pronounced contact toxicity against S. zeamais (LD50 = 6.98 mg/adult and was more toxic than either 1,4-cineole or nerolidol (LD50 = 50.86 mg/adult and 29.30 mg/adult, respectively against the maize weevils, while the crude essential oil had a LD50 value of 11.67 mg/adult. 4-Phenyl-2-butanone and 1,4-cineole also possessed strong fumigant toxicity against the adults of S. zeamais (LC50 = 3.80 mg/L and 21.43 mg/L while the crude essential oil had a LC50 value of 9.66 mg/L.

  14. radiochemical studies on the binding of humic materials with toxic elements and compounds

    International Nuclear Information System (INIS)

    Afifi, D.M.I.

    2001-01-01

    industrial nations produce several billion tons of waste every year . this figure will increase as both population and industrial growth increase. there are many kinds of waste, including refinery waste, which consists of hydrocarbons, heavy metals, metal catalysts and caustic solution; dredge spoils, some of which are highly polluted and cntains substances potentially hazardous to human health or the marine ecosystem; chemical waste such as insecticides, pesticides, other complex chemicals and heavy metals; radioactive waste and agricultural waste, anmd most of them are extremely hazardous and harmful to the marine ecosystem and its inhabitants.the aim of this thesis is to study the binding of humic materials with toxic elements and compounds

  15. Comparison of Toxicities to Vibrio fischeri and Fish Based on Discrimination of Excess Toxicity from Baseline Level

    Science.gov (United States)

    Wang, Xiao H.; Yu, Yang; Huang, Tao; Qin, Wei C.; Su, Li M.; Zhao, Yuan H.

    2016-01-01

    Investigations on the relationship of toxicities between species play an important role in the understanding of toxic mechanisms to environmental organisms. In this paper, the toxicity data of 949 chemicals to fish and 1470 chemicals to V. fischeri were used to investigate the modes of action (MOAs) between species. The results show that although there is a positive interspecies correlation, the relationship is poor. Analysis on the excess toxicity calculated from toxic ratios (TR) shows that many chemicals have close toxicities and share the same MOAs between the two species. Linear relationships between the toxicities and octanol/water partition coefficient (log KOW) for baseline and less inert compounds indicate that the internal critical concentrations (CBRs) approach a constant both to fish and V. fischeri for neutral hydrophobic compounds. These compounds share the same toxic mechanisms and bio-uptake processes between species. On the other hand, some hydrophilic compounds exhibit different toxic effects with greatly different log TR values between V. fischeri and fish species. These hydrophilic compounds were identified as reactive MOAs to V. fischeri, but not to fish. The interspecies correlation is improved by adding a hydrophobic descriptor into the correlation equation. This indicates that the differences in the toxic ratios between fish and V. fischeri for these hydrophilic compounds can be partly attributed to the differences of bioconcentration between the two species, rather than the differences of reactivity with the target macromolecules. These hydrophilic compounds may more easily pass through the cell membrane of V. fischeri than the gill and skin of fish, react with the target macromolecules and exhibit excess toxicity. The compounds with log KOW > 7 exhibiting very low toxicity (log TR toxicity and MOAs. PMID:26901437

  16. Acute Toxicity of the Antifouling Compound Butenolide in Non-Target Organisms

    KAUST Repository

    Zhang, Yi-Fan

    2011-08-29

    Butenolide [5-octylfuran-2(5H)-one] is a recently discovered and very promising anti-marine-fouling compound. In this study, the acute toxicity of butenolide was assessed in several non-target organisms, including micro algae, crustaceans, and fish. Results were compared with previously reported results on the effective concentrations used on fouling (target) organisms. According to OECD\\'s guideline, the predicted no effect concentration (PNEC) was 0.168 µg l^(−1), which was among one of the highest in representative new biocides. Mechanistically, the phenotype of butenolide-treated Danio rerio (zebrafish) embryos was similar to the phenotype of the pro-caspase-3 over-expression mutant with pericardial edema, small eyes, small brains, and increased numbers of apoptotic cells in the bodies of zebrafish embryos. Butenolide also induced apoptosis in HeLa cells, with the activation of c-Jun N-terminal kinases (JNK), Bcl-2 family proteins, and caspases and proteasomes/lysosomes involved in this process. This is the first detailed toxicity and toxicology study on this antifouling compound.

  17. Rapid Assessment of the Toxicity of Fungal Compounds Using Luminescent Vibrio qinghaiensis sp. Q67

    Directory of Open Access Journals (Sweden)

    Qijie Jian

    2017-10-01

    Full Text Available Most tropical fruits after harvest are very perishable because of fungal infection. Since some pathogenic fungi can produce hazardous compounds such as mycotoxins, novel rapid and effective methods to assess those hazardous compounds are urgently needed. Herein we report that Vibrio qinghaiensis sp. Q67, a luminescent bacterium, can be used to rapidly assess the toxicities of mycotoxins and cultures from mycotoxin-producing pathogens. A good correlation (R2 > 0.98 between concentrations of the mycotoxins (fumonisin B1, deoxynivalenol, zearalenone, ochratoxin A, patulin, and citrinin and the luminous intensity of V. qinghaiensis sp. Q67 was obtained. Furthermore, significant correlations (R2 > 0.96 between the amount of mycotoxin and the luminous intensity from the cultures of 10 major mycotoxin-producing pathogens were also observed. In addition, Fusarium proliferatum (half-maximal inhibitory concentration (IC50 = 17.49% exhibited greater luminescence suppression than Fusarium semitectum (IC50 = 92.56% or Fusarium oxysporum (IC50 = 28.61%, which was in agreement with the existing higher levels of fumonisin B1, fumonisin B2, and deoxynivalenol, which were measured by high-performance liquid chromatography-tandem mass spectrometry. These results suggest that V. qinghaiensis sp. Q67 is a promising alternative for the rapid evaluation of the toxicity of fungal mycotoxins.

  18. Current data regarding the structure-toxicity relationship of boron-containing compounds.

    Science.gov (United States)

    Farfán-García, E D; Castillo-Mendieta, N T; Ciprés-Flores, F J; Padilla-Martínez, I I; Trujillo-Ferrara, J G; Soriano-Ursúa, M A

    2016-09-06

    Boron is ubiquitous in nature, being an essential element of diverse cells. As a result, humans have had contact with boron containing compounds (BCCs) for a long time. During the 20th century, BCCs were developed as antiseptics, antibiotics, cosmetics and insecticides. Boric acid was freely used in the nosocomial environment as an antiseptic and sedative salt, leading to the death of patients and an important discovery about its critical toxicology for humans. Since then the many toxicological studies done in relation to BCCs have helped to establish the proper limits of their use. During the last 15 years, there has been a boom of research on the design and use of new, potent and efficient boron containing drugs, finding that the addition of boron to some known drugs increases their affinity and selectivity. This mini-review summarizes two aspects of BCCs: toxicological data found with experimental models, and the scarce but increasing data about the structure-activity relationship for toxicity and therapeutic use. As is the case with boron-free compounds, the biological activity of BCCs is related to their chemical structure. We discuss the use of new technology to discover potent and efficient BCCs for medicinal therapy by avoiding toxic effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Estimate of the prevalence and burden of food poisoning by natural toxic compounds in South Korea.

    Science.gov (United States)

    Park, Myoung Su; Bahk, Gyung Jin

    2015-12-01

    Many studies have attempted to accurately estimate the overall number of cases of foodborne illness, but there have not been many attempts to estimate the burden of foodborne disease caused by natural toxic compounds. This study estimated the number of cases due to specific natural toxins (seafood toxins, plant toxins, and mycotoxins) during 2008-2012 in South Korea, using data from the Health Insurance Review and Assessment Service (HIRA), while accounting for uncertainty in the estimate. The estimated annual occurrences of foodborne illness from natural toxic agents were 1088 (90% credible interval [CrI]: 883-1315), which suggests there are 21 times more cases than are reported, with 45.6% (n=496 [388-614]) and 54.4% (n=592 [423-790]), accounting for inpatient stays and outpatient visits, respectively. Among toxins, mushroom and plant toxins caused the highest illnesses, followed by toxic agents in seafood and mycotoxins. The 55-59year olds had the highest proportion of illnesses and those over the age of 40 accounted for 70.6% of all cases. The cases caused by mushroom poison, poisonous plants, and seafood toxins showed clear seasonal and regional differences. These results will be useful to food safety policymakers for the prevention and control of natural food poisons in South Korea. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    Science.gov (United States)

    Umysová, Dáša; Vítová, Milada; Doušková, Irena; Bišová, Kateřina; Hlavová, Monika; Čížková, Mária; Machát, Jiří; Doucha, Jiří; Zachleder, Vilém

    2009-01-01

    Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3) – strain SeIV, selenate (Na2SeO4) – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity. Our study provides a new

  1. Bioaccumulation and toxicity of selenium compounds in the green alga Scenedesmus quadricauda

    Directory of Open Access Journals (Sweden)

    Doucha Jiří

    2009-05-01

    Full Text Available Abstract Background Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes. Results We studied the impact of selenium compounds on the green chlorococcal alga Scenedesmus quadricauda. Both the dose and chemical forms of Se were critical factors in the cellular response. Se toxicity increased in cultures grown under sulfur deficient conditions. We selected three strains of Scenedesmus quadricauda specifically resistant to high concentrations of inorganic selenium added as selenite (Na2SeO3 – strain SeIV, selenate (Na2SeO4 – strain SeVI or both – strain SeIV+VI. The total amount of Se and selenomethionine in biomass increased with increasing concentration of Se in the culturing media. The selenomethionine made up 30–40% of the total Se in biomass. In both the wild type and Se-resistant strains, the activity of thioredoxin reductase, increased rapidly in the presence of the form of selenium for which the given algal strain was not resistant. Conclusion The selenium effect on the green alga Scenedesmus quadricauda was not only dose dependent, but the chemical form of the element was also crucial. With sulfur deficiency, the selenium toxicity increases, indicating interference of Se with sulfur metabolism. The amount of selenium and SeMet in algal biomass was dependent on both the type of compound and its dose. The activity of thioredoxin reductase was affected by selenium treatment in dose-dependent and toxic-dependent manner. The findings implied that the increase in TR activity in algal cells was a stress response to selenium cytotoxicity

  2. Effects of toxic compounds in Montipora capitata on exogenous and endogenous zooxanthellae performance and fertilization success.

    Directory of Open Access Journals (Sweden)

    Mary Hagedorn

    Full Text Available Studies have identified chemicals within the stony coral genus Montipora that have significant biological activities. For example, Montiporic acids A and B and other compounds have been isolated from the adult tissue and eggs of Montipora spp. and have displayed antimicrobial activity and cytotoxicity in cultured cells. The ecological role of these toxic compounds is currently unclear. This study examines the role these toxins play in reproduction. Toxins were found in the eggs and larvae of the coral Montipora capitata. Releasing these toxins by crushing both the eggs and larvae resulted in irreversible inhibition of photosynthesis in endogenous and exogenous zooxanthellae within minutes. Moreover, these toxins were stable, as frozen storage of eggs and larvae did not affect toxicity. Photosynthetic competency of Porites compressa zooxanthellae treated with either frozen or fresh, crushed eggs was inhibited similarly (P > 0.05, ANCOVA. Addition of toxic eggs plugs to live P. compressa fragments caused complete tissue necrosis under the exposed area on the fragments within 1 week. Small volumes of M. capitata crushed eggs added to sperm suspensions reduced in vitro fertilization success by killing the sperm. After 30 min, untreated sperm maintained 90 ± 1.9% SEM motility while those treated with crushed eggs were rendered immotile, 4 ± 1.4% SEM. Flow cytometry indicated membrane disruption of the immotile sperm. Fertilization success using untreated sperm was 79 ± 4% SEM, whereas the success rate dropped significantly after exposure to the crushed eggs, 1.3 ± 0% SEM. Unlike the eggs and the larvae, M. capitata sperm did not reduce the photosynthetic competency of P. compressa zooxanthellae, suggesting the sperm was nontoxic. The identity of the toxins, cellular mechanism of action, advantage of the toxins for M. capitata and their role on the reef are still unknown.

  3. Effects of toxic compounds in Montipora capitata on exogenous and endogenous zooxanthellae performance and fertilization success.

    Science.gov (United States)

    Hagedorn, Mary; Farrell, Ann; Carter, Virginia; Zuchowicz, Nikolas; Johnston, Erika; Padilla-Gamiño, Jacqueline; Gunasekera, Sarath; Paul, Valerie

    2015-01-01

    Studies have identified chemicals within the stony coral genus Montipora that have significant biological activities. For example, Montiporic acids A and B and other compounds have been isolated from the adult tissue and eggs of Montipora spp. and have displayed antimicrobial activity and cytotoxicity in cultured cells. The ecological role of these toxic compounds is currently unclear. This study examines the role these toxins play in reproduction. Toxins were found in the eggs and larvae of the coral Montipora capitata. Releasing these toxins by crushing both the eggs and larvae resulted in irreversible inhibition of photosynthesis in endogenous and exogenous zooxanthellae within minutes. Moreover, these toxins were stable, as frozen storage of eggs and larvae did not affect toxicity. Photosynthetic competency of Porites compressa zooxanthellae treated with either frozen or fresh, crushed eggs was inhibited similarly (P > 0.05, ANCOVA). Addition of toxic eggs plugs to live P. compressa fragments caused complete tissue necrosis under the exposed area on the fragments within 1 week. Small volumes of M. capitata crushed eggs added to sperm suspensions reduced in vitro fertilization success by killing the sperm. After 30 min, untreated sperm maintained 90 ± 1.9% SEM motility while those treated with crushed eggs were rendered immotile, 4 ± 1.4% SEM. Flow cytometry indicated membrane disruption of the immotile sperm. Fertilization success using untreated sperm was 79 ± 4% SEM, whereas the success rate dropped significantly after exposure to the crushed eggs, 1.3 ± 0% SEM. Unlike the eggs and the larvae, M. capitata sperm did not reduce the photosynthetic competency of P. compressa zooxanthellae, suggesting the sperm was nontoxic. The identity of the toxins, cellular mechanism of action, advantage of the toxins for M. capitata and their role on the reef are still unknown.

  4. ToxAlerts: a Web server of structural alerts for toxic chemicals and compounds with potential adverse reactions.

    Science.gov (United States)

    Sushko, Iurii; Salmina, Elena; Potemkin, Vladimir A; Poda, Gennadiy; Tetko, Igor V

    2012-08-27

    The article presents a Web-based platform for collecting and storing toxicological structural alerts from literature and for virtual screening of chemical libraries to flag potentially toxic chemicals and compounds that can cause adverse side effects. An alert is uniquely identified by a SMARTS template, a toxicological endpoint, and a publication where the alert was described. Additionally, the system allows storing complementary information such as name, comments, and mechanism of action, as well as other data. Most importantly, the platform can be easily used for fast virtual screening of large chemical datasets, focused libraries, or newly designed compounds against the toxicological alerts, providing a detailed profile of the chemicals grouped by structural alerts and endpoints. Such a facility can be used for decision making regarding whether a compound should be tested experimentally, validated with available QSAR models, or eliminated from consideration altogether. The alert-based screening can also be helpful for an easier interpretation of more complex QSAR models. The system is publicly accessible and tightly integrated with the Online Chemical Modeling Environment (OCHEM, http://ochem.eu). The system is open and expandable: any registered OCHEM user can introduce new alerts, browse, edit alerts introduced by other users, and virtually screen his/her data sets against all or selected alerts. The user sets being passed through the structural alerts can be used at OCHEM for other typical tasks: exporting in a wide variety of formats, development of QSAR models, additional filtering by other criteria, etc. The database already contains almost 600 structural alerts for such endpoints as mutagenicity, carcinogenicity, skin sensitization, compounds that undergo metabolic activation, and compounds that form reactive metabolites and, thus, can cause adverse reactions. The ToxAlerts platform is accessible on the Web at http://ochem.eu/alerts, and it is constantly

  5. Specificity of carboxylesterase protection against the toxicity of organophosphorus compounds. (Reannouncement with new availability information)

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, D.M.

    1992-12-31

    The ability of endogenous carboxylesterase (CaE) to protect against the lethal effects of a variety of organophosphorus (OP) compounds was examined in rats. The in vivo protection provided by endogenous CaE was measured by the difference in the LD50 values of OP compounds in controlrats and rats whose CaE activity had been inhibited by sc injection with2 mg/kg of 2-(O cresyl)-4H-1,3,2-benzodi oxaphosphorin-2-oxide. Endogenous CaE provided significant protection against the in vivo toxicity of soman, sarin, tabun, and paraoxon, but not against dichlorvos, diisopropyl fluorophosphate, or ethoxymethyl-S-2- (DIISOPROPYLAMINO)ETHYL THIOPHOSPHONATE (VX). The relationship between the in vivo CaE protection against OP compounds and their relative reactivities with CaE and acetylcholinesterase (AChE) was evaluated by measuring the in vitro bimolecular rate constants (ki) for inhibition of plasma CaE and brain AChE. Except for VX, ki values for CaE inhibition varied <10-fold while ki values for AChE inhibition varied 105-fold. Chemical warfare agents, Nerve agents, Organophosphoruscompound soman, VX, Carboxylesterase, Protection, Pretreatment.

  6. Identification of toxic cyclopeptides based on mass spectral library matching

    Directory of Open Access Journals (Sweden)

    Boris L. Milman

    2014-08-01

    Full Text Available To gain perspective on the use of tandem mass spectral libraries for identification of toxic cyclic peptides, the new library was built from 263 mass spectra (mainly MS2 spectra of 59 compounds of that group, such as microcystins, amatoxins, and some related compounds. Mass spectra were extracted from the literature or specially acquired on ESI-Q-ToF and MALDI-ToF/ToF tandem instruments. ESI-MS2 product-ion mass spectra appeared to be rather close to MALDI-ToF/ToF fragment spectra which are uncommon for mass spectral libraries. Testing of the library was based on searches where reference spectra were in turn cross-compared. The percentage of 1st rank correct identifications (true positives was 70% in a general case and 88–91% without including knowingly defective (‘one-dimension’ spectra as test ones. The percentage of 88–91% is the principal estimate for the overall performance of this library that can be used in a method of choice for identification of individual cyclopeptides and also for group recognition of individual classes of such peptides. The approach to identification of cyclopeptides based on mass spectral library matching proved to be the most effective for abundant toxins. That was confirmed by analysis of extracts from two cyanobacterial strains.

  7. Comparison of toxicity of class-based organic chemicals to algae and fish based on discrimination of excess toxicity from baseline level.

    Science.gov (United States)

    Li, Jin J; Tai, Hong W; Yu, Yang; Wen, Yang; Wang, Xiao H; Zhao, Yuan H

    2015-07-01

    Toxicity data to fish and algae were used to investigate excess toxicity between species. Results show that chemicals exhibiting excess toxicity to fish also show excess toxicity to algae for most of the compounds. This indicates that they share the same mode of action between species. Similar relationships between logKOW and toxicities to fish and algae for baseline and less inert compounds suggest that they have similar critical body residues in the two species. Differences in excess toxicity for some compounds suggest that there is a difference of physiological structure and metabolism between fish and algae. Some reactive compounds (e.g. polyamines) exhibit greater toxic effects for algae than those for fish because of relatively low bio-uptake potential of these hydrophilic compounds in fish as compared with that in algae. Esters exhibiting greater toxicity in fish than that in algae indicate that metabolism can affect the discrimination of excess toxicity from baseline level. Algae growth inhibition is a very good surrogate for fish lethality. This is not only because overall toxicity sensitivity to algae is greater than that to fish, but also the excess toxicity calculated from algal toxicity can better reflect reactivity of compounds with target molecules than fish toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Crystal Structure of a Plant Multidrug and Toxic Compound Extrusion Family Protein.

    Science.gov (United States)

    Tanaka, Yoshiki; Iwaki, Shigehiro; Tsukazaki, Tomoya

    2017-09-05

    The multidrug and toxic compound extrusion (MATE) family of proteins consists of transporters responsible for multidrug resistance in prokaryotes. In plants, a number of MATE proteins were identified by recent genomic and functional studies, which imply that the proteins have substrate-specific transport functions instead of multidrug extrusion. The three-dimensional structure of eukaryotic MATE proteins, including those of plants, has not been reported, preventing a better understanding of the molecular mechanism of these proteins. Here, we describe the crystal structure of a MATE protein from the plant Camelina sativa at 2.9 Å resolution. Two sets of six transmembrane α helices, assembled pseudo-symmetrically, possess a negatively charged internal pocket with an outward-facing shape. The crystal structure provides insight into the diversity of plant MATE proteins and their substrate recognition and transport through the membrane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Real-time cell toxicity profiling of Tox21 10K compounds reveals cytotoxicity dependent toxicity pathway linkage.

    Directory of Open Access Journals (Sweden)

    Jui-Hua Hsieh

    Full Text Available Cytotoxicity is a commonly used in vitro endpoint for evaluating chemical toxicity. In support of the U.S. Tox21 screening program, the cytotoxicity of ~10K chemicals was interrogated at 0, 8, 16, 24, 32, & 40 hours of exposure in a concentration dependent fashion in two cell lines (HEK293, HepG2 using two multiplexed, real-time assay technologies. One technology measures the metabolic activity of cells (i.e., cell viability, glo while the other evaluates cell membrane integrity (i.e., cell death, flor. Using glo technology, more actives and greater temporal variations were seen in HEK293 cells, while results for the flor technology were more similar across the two cell types. Chemicals were grouped into classes based on their cytotoxicity kinetics profiles and these classes were evaluated for their associations with activity in the Tox21 nuclear receptor and stress response pathway assays. Some pathways, such as the activation of H2AX, were associated with the fast-responding cytotoxicity classes, while others, such as activation of TP53, were associated with the slow-responding cytotoxicity classes. By clustering pathways based on their degree of association to the different cytotoxicity kinetics labels, we identified clusters of pathways where active chemicals presented similar kinetics of cytotoxicity. Such linkages could be due to shared underlying biological processes between pathways, for example, activation of H2AX and heat shock factor. Others involving nuclear receptor activity are likely due to shared chemical structures rather than pathway level interactions. Based on the linkage between androgen receptor antagonism and Nrf2 activity, we surmise that a subclass of androgen receptor antagonists cause cytotoxicity via oxidative stress that is associated with Nrf2 activation. In summary, the real-time cytotoxicity screen provides informative chemical cytotoxicity kinetics data related to their cytotoxicity mechanisms, and with our

  10. Effect of perfluorooctane sulfonate on toxicity and cell uptake of other compounds with different hydrophobicity in green alga.

    Science.gov (United States)

    Liu, Wei; Zhang, Yao-Bin; Quan, Xie; Jin, Yi-He; Chen, Shuo

    2009-04-01

    Perfluorooctane sulfonate (PFOS) was evaluated alone and in binary mixtures with pentachlorophenol, atrazine and diuron, respectively to investigate the effects of interactions between PFOS and other compounds on the growth rate in Scenedesmus obliquus. Single application of PFOS showed no inhibition on the growth of S. obliquus below 40 mg L(-1), whereas PFOS acting with pentachlorophenol resulted in higher algal growth inhibition in comparison with pentachlorophenol alone. A maximum increase of 45% in the growth inhibition was observed at a pentachlorophenol concentration of 2.56 mg L(-1) together with a PFOS concentration of 40 mg L(-1). On the contrary, the algal growth inhibition of atrazine and diuron was depressed by PFOS. Furthermore, cell uptake was examined to gain some insights into the mechanisms of the effects of PFOS on the toxicity of the other compounds. Cell uptake of pentachlorophenol increased while that of atrazine and diuron was reduced in cells that have been exposed to PFOS. The effects of PFOS on the toxicity of pentachlorophenol, atrazine and diuron were possibly related to the influence of PFOS on the cell uptake of these hydrophobic compounds. Results suggested that PFOS influenced the cell uptake and toxicity of structurally different compounds in dissimilar manners and potentially increased the accessibility and toxicity of more hydrophobic compounds to algal cells.

  11. Synthesis and toxicity evaluation of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Castillo, Alfredo Santiago [Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France); Université européenne de Bretagne (France); Guihéneuf, Solène, E-mail: solene.guiheneuf@wanadoo.fr [Université européenne de Bretagne, Université de Rennes 1, Sciences Chimiques de Rennes, UMR, CNRS 6226, Groupe Ingénierie Chimique & Molécules Pour le Vivant (ICMV), Bât. 10A, Campus de Beaulieu, Avenue du Général Leclerc, CS 74205, 35042 Rennes cedex (France); Le Guével, Rémy [Plate-forme ImPACcell Structure Fédérative de Recherche BIOSIT Université de Rennes 1, Bat. 8, Campus de Villejean, 2 Avenue du Pr. Leon Bernard, CS 34317, 35043 Rennes Cedex (France); Biard, Pierre-François [Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7 (France); Université européenne de Bretagne (France); and others

    2016-04-15

    Highlights: • Description of a VOC depollution system suitable with industrial processes, TPPB. • Novel association of TPPB and hydrophobic ionic liquids. • Synthesis of several hydrophobic ionic liquids designed to fit desired properties. • Toxicity evaluation of these ILs towards cells, animals and bacteria. - Abstract: Synthesis of several hydrophobic ionic liquids (ILs), which might be selected as good candidates for degradation of hydrophobic volatile organic compounds in a two-phase partitioning bioreactor (TPPB), were carried out. Several bioassays were also realized, such as toxicity evaluation on activated sludge and zebrafish, cytotoxicity, fluoride release in aqueous phase and biodegradability in order to verify their possible effects in case of discharge in the aquatic environment and/or human contact during industrial manipulation. The synthesized compounds consist of alkylimidazoliums, functionalized imidazoliums, isoqinoliniums, triazoliums, sulfoniums, pyrrolidiniums and morpholiniums and various counter-ions such as: PF{sub 6}{sup −}, NTf{sub 2}{sup −} and NfO{sup −}. Toxicity evaluation on activated sludge of each compound (5% v/v of IL) was assessed by using a glucose uptake inhibition test. Toxicity against zebrafish and cytotoxicity were evaluated by the ImPACCell platform of Rennes (France). Fluoride release in water was estimated by regular measurements using ion chromatography equipment. IL biodegradability was determined by measuring BOD{sub 28} of aqueous samples (compound concentration,1 mM). All ILs tested were not biodegradable; while some of them were toxic toward activated sludge. Isoquinolinium ILs were toxic to human cancerous cell lines. Nevertheless no toxicity was found against zebrafish Danio rerio. Only one IL released fluoride after long-time agitation.

  12. Synthesis and toxicity evaluation of hydrophobic ionic liquids for volatile organic compounds biodegradation in a two-phase partitioning bioreactor

    International Nuclear Information System (INIS)

    Rodriguez Castillo, Alfredo Santiago; Guihéneuf, Solène; Le Guével, Rémy; Biard, Pierre-François

    2016-01-01

    Highlights: • Description of a VOC depollution system suitable with industrial processes, TPPB. • Novel association of TPPB and hydrophobic ionic liquids. • Synthesis of several hydrophobic ionic liquids designed to fit desired properties. • Toxicity evaluation of these ILs towards cells, animals and bacteria. - Abstract: Synthesis of several hydrophobic ionic liquids (ILs), which might be selected as good candidates for degradation of hydrophobic volatile organic compounds in a two-phase partitioning bioreactor (TPPB), were carried out. Several bioassays were also realized, such as toxicity evaluation on activated sludge and zebrafish, cytotoxicity, fluoride release in aqueous phase and biodegradability in order to verify their possible effects in case of discharge in the aquatic environment and/or human contact during industrial manipulation. The synthesized compounds consist of alkylimidazoliums, functionalized imidazoliums, isoqinoliniums, triazoliums, sulfoniums, pyrrolidiniums and morpholiniums and various counter-ions such as: PF_6"−, NTf_2"− and NfO"−. Toxicity evaluation on activated sludge of each compound (5% v/v of IL) was assessed by using a glucose uptake inhibition test. Toxicity against zebrafish and cytotoxicity were evaluated by the ImPACCell platform of Rennes (France). Fluoride release in water was estimated by regular measurements using ion chromatography equipment. IL biodegradability was determined by measuring BOD_2_8 of aqueous samples (compound concentration,1 mM). All ILs tested were not biodegradable; while some of them were toxic toward activated sludge. Isoquinolinium ILs were toxic to human cancerous cell lines. Nevertheless no toxicity was found against zebrafish Danio rerio. Only one IL released fluoride after long-time agitation.

  13. Acute and chronic toxicity of uranium compounds to Ceriodaphnia-Daphnia dubia

    International Nuclear Information System (INIS)

    Pickett, J.B.; Specht, W.L.; Keyes, J.L.

    1993-01-01

    A study to determine the acute and chronic toxicity of uranyl nitrate, hydrogen uranyl phosphate, and uranium dioxide to the organism Ceriodaphnia dubia was conducted. The toxicity tests were conducted by two independent environmental consulting laboratories. Part of the emphasis for this determination was based on concerns expressed by SCDHEC, which was concerned that a safety factor of 100 must be applied to the previous 1986 acute toxicity result of 0.22 mg/L for Daphnia pulex, This would have resulted in the LETF release limits being based on an instream concentration of 0.0022 mg/L uranium. The NPDES Permit renewal application to SCDHEC utilized the results of this study and recommended that the LETF release limit for uranium be based an instream concentration of 0.004 mg/L uranium. This is based on the fact that the uranium releases from the M-Area LETF will be in the hydrogen uranyl phosphate form, or a uranyl phosphate complex at the pH (6--10) of the Liquid Effluent Treatment Facility effluent stream, and at the pH of the receiving stream (5.5 to 7.0). Based on the chronic toxicity of hydrogen uranyl phosphate, a lower uranium concentration limit for the Liquid Effluent Treatment Facility outfall vs. the existing NPDES permit was recommended: The current NPDES permit ''Guideline'' for uranium at outfall M-004 is 0.500 mg/L average and 1.0 mg/L maximum, at a design flowrate of 60 gpm. It was recommended that the uranium concentration at the M-004 outfall be reduced to 0.28 mg/L average, and 0.56 mg/L, maximum, and to reduce the design flowrate to 30 gpm. The 0.28 mg/L concentration will provide an instream concentration of 0.004 mg/L uranium. The 0.28 mg/L concentration at M-004 is based on the combined flows from A-014, A-015, and A-011 outfalls (since 1985) of 1840 gpm (2.65 MGD) and was the flow rate which was utilized in the 1988 NPDES permit renewal application

  14. Development of a toxicity-based fractionation approach for the identification of phototoxic PAHs in pore water

    International Nuclear Information System (INIS)

    Kosian, P.A.; Makynen, E.A.; Ankley, G.T.; Monson, P.D.

    1995-01-01

    Environmental matrices often contain complex mixtures of chemical compounds, however, typically only a few chemicals are responsible for observed toxicity. To determine those chemicals responsible for toxicity, a toxicity-based fractionation technique coupled with gas chromatography/mass spectrometry (GC/MS) has been used for the isolation and identification of nonpolar toxicants in aqueous samples. In this study, this technique was modified to separate and identify polycyclic aromatic hydrocarbons (PAHs) responsible for phototoxicity in pore water. Whole pore water, obtained from sediments collected near an oil refinery discharge site, was found to be toxic to Lumbriculus variegatus in the presence of ultraviolet (UV) light. Solid phase extraction disks and high pressure liquid chromatography were used, in conjunction with toxicity tests with L. variegatus, to extract and fractionate phototoxic chemicals from the pore water. GC/MS analysis was performed on the toxic fractions and a tentative list of compound identifications were made based on interpretation of mass spectra and elution information from the chromatographic separation. The compounds identified include PAHs and substituted PAHs that are known or predicted to be phototoxic in the presence of UV light. The results show that a modified toxicity-based fractionation approach can be successfully applied to identify phototoxic PAHs in sediment pore water and therefore used in the assessment of contaminated sediments

  15. Acute Toxicity of a Recently Identified Phenol-based Synthetic ...

    African Journals Online (AJOL)

    This paper reports on the acute toxicity of a new phenol based synthetic tsetse fly repellent recently identified at the International Centre for Insect Physiology and Ecology (patent No. ... The repellent can be classified as being highly toxic with central nervous system (CNS) involvement and a mild skin and eye irritant.

  16. Comparative chronic toxicity of homo- and heterocyclic aromatic compounds to benthic and terrestrial invertebrates: Generalizations and exceptions.

    NARCIS (Netherlands)

    Leon Paumen, M.; de Voogt, P.; van Gestel, C.A.M.; Kraak, M.H.S.

    2009-01-01

    The aim of the present study was to elucidate consistent patterns in chronic polycyclic aromatic compound (PAC) toxicity to soil and sediment inhabiting invertebrates. Therefore we examined our experimental dataset, consisting of twenty-one chronic effect concentrations for two soil invertebrates

  17. Comparative chronic toxicity of homo- and heterocyclic aromatic compounds to benthic and terrestrial invertebrates: Generalizations and exceptions

    NARCIS (Netherlands)

    León Paumen, M.; de Voogt, P.; van Gestel, C.A.M.; Kraak, M.H.S.

    2009-01-01

    The aim of the present study was to elucidate consistent patterns in chronic polycyclic aromatic compound (PAC) toxicity to soil and sediment inhabiting invertebrates. Therefore we examined our experimental dataset, consisting of twenty-one chronic effect concentrations for two soil invertebrates

  18. Role of P27 -P55 operon from Mycobacterium tuberculosis in the resistance to toxic compounds

    Directory of Open Access Journals (Sweden)

    Cataldi Angel A

    2011-07-01

    Full Text Available Abstract Background The P27-P55 (lprG-Rv1410c operon is crucial for the survival of Mycobacterium tuberculosis, the causative agent of human tuberculosis, during infection in mice. P55 encodes an efflux pump that has been shown to provide Mycobacterium smegmatis and Mycobacterium bovis BCG with resistance to several drugs, while P27 encodes a mannosylated glycoprotein previously described as an antigen that modulates the immune response against mycobacteria. The objective of this study was to determine the individual contribution of the proteins encoded in the P27-P55 operon to the resistance to toxic compounds and to the cell wall integrity of M. tuberculosis. Method In order to test the susceptibility of a mutant of M. tuberculosis H37Rv in the P27-P55 operon to malachite green, sodium dodecyl sulfate, ethidium bromide, and first-line antituberculosis drugs, this strain together with the wild type strain and a set of complemented strains were cultivated in the presence and in the absence of these drugs. In addition, the malachite green decolorization rate of each strain was obtained from decolorization curves of malachite green in PBS containing bacterial suspensions. Results The mutant strain decolorized malachite green faster than the wild type strain and was hypersensitive to both malachite green and ethidium bromide, and more susceptible to the first-line antituberculosis drugs: isoniazid and ethambutol. The pump inhibitor reserpine reversed M. tuberculosis resistance to ethidium bromide. These results suggest that P27-P55 functions through an efflux-pump like mechanism. In addition, deletion of the P27-P55 operon made M. tuberculosis susceptible to sodium dodecyl sulfate, suggesting that the lack of both proteins causes alterations in the cell wall permeability of the bacterium. Importantly, both P27 and P55 are required to restore the wild type phenotypes in the mutant. Conclusions The results clearly indicate that P27 and P55 are

  19. Contact and fumigant toxicity of Armoracia rusticana essential oil, allyl isothiocyanate and related compounds to Dermatophagoides farinae.

    Science.gov (United States)

    Yun, Yeon-Kyeong; Kim, Hyun-Kyung; Kim, Jun-Ran; Hwang, Kumnara; Ahn, Young-Joon

    2012-05-01

    The toxicity to adult Dermatophagoides farinae of allyl isothiocyanate identified in horseradish, Armoracia rusticana, oil and another 27 organic isothiocyanates was evaluated using contact + fumigant and vapour-phase mortality bioassays. Results were compared with those of two conventional acaricides, benzyl benzoate and dibutyl phthalate. Horseradish oil (24 h LC(50), 1.54 µg cm(-2)) and allyl isothiocyanate (2.52 µg cm(-2)) were highly toxic. Benzyl isothiocyanate (LC(50) , 0.62 µg cm(-2)) was the most toxic compound, followed by 4-chlorophenyl, 3-bromophenyl, 3,5-bis(trifluoromethyl)phenyl, cyclohexyl, 2-chlorophenyl, 4-bromophenyl and 2-bromophenyl isothiocyanates (0.93-1.41 µg cm(-2)). All were more effective than either benzyl benzoate (LC(50) , 4.58 µg cm(-2)) or dibutyl phthalate (24.49 µg cm(-2)). The structure-activity relationship indicates that types of functional group and chemical structure appear to play a role in determining the isothiocyanate toxicities to adult D. farinae. In the vapour-phase mortality bioassay, these isothiocyanates were consistently more toxic in closed versus open containers, indicating that their mode of delivery was, in part, a result of vapour action. In the light of global efforts to reduce the level of highly toxic synthetic acaricides in indoor environments, the horseradish oil-derived compounds and the isothiocyanates described herein merit further study as potential acaricides for the control of house dust mite populations as fumigants with contact action. Copyright © 2011 Society of Chemical Industry.

  20. Research strategies for design and development of NSAIDs: clue to balance potency and toxicity of acetanilide compounds.

    Science.gov (United States)

    Pal, A K; Sen, S; Ghosh, S; Bera, A K; Bhattacharya, S; Chakraborty, S; Banerjee, A

    2001-08-01

    Despite the fact that many modern drug therapies are based on the concept of enzyme inhibition, inhibition of several enzymes leads to pathological disorders. Clinically used nonsteroidal anti-inflammatory drugs (NSAIDs) bind to the active site of the membrane protein, cyclooxygenase (COX) and inhibit the synthesis of prostaglandins, the mediators for causing inflammation. At the same time, inhibition of hepatic cysteine proteases by some NSAID metabolites like NAPQI is implicated in the pathogenesis of hepatotoxicity. As a part of our efforts to develop new effective NSAIDs, a comprehensive investigation starting from synthesis to the study of the final metabolism of acetanilide group of compound has been envisaged with appropriate feedback from kinetic studies to enhance our knowledge and technical competency to feed the know-how to the medicinal chemist to screen out and design new acetanilide derivatives of high potency and low toxicity. Structure-function relationship based on the interaction of acetanilide with its cognate enzyme, cyclooxygenase has been studied critically with adequate comparison with several other available crystal structures of COX-NSAID complexes. Furthermore, to make the receptor based drug design strategy a novel and comprehensive one, both the mechanism of metabolism of acetanilide and structural basis of inhibition of cysteine proteases by the reactive metabolite (NAPQI) formed by cytochrome P450 oxidation of acetanilide have been incorporated in the study. It is hoped that this synergistic approach and the results obtained from such consorted structural investigation at atomic level may guide to dictate synthetic modification with judicious balance between cyclooxygenase inhibition and hepatic cysteine protease inhibition to enhance the potential of such molecular medicine to relieve inflammation on one hand and low hepatic toxicity on the other.

  1. Base catalyzed decomposition of toxic and hazardous chemicals

    International Nuclear Information System (INIS)

    Rogers, C.J.; Kornel, A.; Sparks, H.L.

    1991-01-01

    There are vast amounts of toxic and hazardous chemicals, which have pervaded our environment during the past fifty years, leaving us with serious, crucial problems of remediation and disposal. The accumulation of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), ''dioxins'' and pesticides in soil sediments and living systems is a serious problem that is receiving considerable attention concerning the cancer-causing nature of these synthetic compounds.US EPA scientists developed in 1989 and 1990 two novel chemical Processes to effect the dehalogenation of chlorinated solvents, PCBs, PCDDs, PCDFs, PCP and other pollutants in soil, sludge, sediment and liquids. This improved technology employs hydrogen as a nucleophile to replace halogens on halogenated compounds. Hydrogen as nucleophile is not influenced by steric hinderance as with other nucleophile where complete dehalogenation of organohalogens can be achieved. This report discusses catalyzed decomposition of toxic and hazardous chemicals

  2. Analysis of a ToxCast™ HTS Toxicity Signature for putative Vascular Disruptor Compounds

    Science.gov (United States)

    Recent studies have shown the importance of blood vessel formation during embryo development and the strong correlation to developmental toxicity. Several developmental toxicants, such as thalidomide, have been identified which specifically target the forming embryonic vasculatur...

  3. Overview of toxicity data and risk assessment methods for evaluating the chemical effects of depleted uranium compounds

    International Nuclear Information System (INIS)

    Hartmann, H.M.; Monette, F.A.; Avci, H.I.

    2000-01-01

    In the United States, depleted uranium is handled or used in several chemical forms by both governmental agencies and private industry (primarily companies producing and machining depleted uranium metal for military applications). Human exposure can occur as a result of handling these compounds, routine low-level effluent releases to the environment from processing facilities, or materials being accidentally released from storage locations or during processing or transportation. Exposure to uranium can result in both chemical and radiological toxicity, but in most instances chemical toxicity is of greater concern. This article discusses the chemical toxic effects from human exposure to depleted uranium compounds that are likely to be handled during the long-term management and use of depleted uranium hexafluoride (UF 6 ) inventories in the United States. It also reviews representative publications in the toxicological literature to establish appropriate reference values for risk assessments. Methods are described for evaluating chemical toxicity caused by chronic low-level exposure and acute exposure. Example risk evaluations are provided for illustration. Preliminary results indicate that chemical effects of chronic exposure to uranium compounds under normal operating conditions would be negligibly small. Results also show that acute exposures under certain accident conditions could cause adverse chemical effects among the populations exposed.

  4. A Generally Applicable Computer Algorithm Based on the Group Additivity Method for the Calculation of Seven Molecular Descriptors: Heat of Combustion, LogPO/W, LogS, Refractivity, Polarizability, Toxicity and LogBB of Organic Compounds; Scope and Limits of Applicability

    Directory of Open Access Journals (Sweden)

    Rudolf Naef

    2015-10-01

    Full Text Available A generally applicable computer algorithm for the calculation of the seven molecular descriptors heat of combustion, logPoctanol/water, logS (water solubility, molar refractivity, molecular polarizability, aqueous toxicity (protozoan growth inhibition and logBB (log (cblood/cbrain is presented. The method, an extendable form of the group-additivity method, is based on the complete break-down of the molecules into their constituting atoms and their immediate neighbourhood. The contribution of the resulting atom groups to the descriptor values is calculated using the Gauss-Seidel fitting method, based on experimental data gathered from literature. The plausibility of the method was tested for each descriptor by means of a k-fold cross-validation procedure demonstrating good to excellent predictive power for the former six descriptors and low reliability of logBB predictions. The goodness of fit (Q2 and the standard deviation of the 10-fold cross-validation calculation was >0.9999 and 25.2 kJ/mol, respectively, (based on N = 1965 test compounds for the heat of combustion, 0.9451 and 0.51 (N = 2640 for logP, 0.8838 and 0.74 (N = 1419 for logS, 0.9987 and 0.74 (N = 4045 for the molar refractivity, 0.9897 and 0.77 (N = 308 for the molecular polarizability, 0.8404 and 0.42 (N = 810 for the toxicity and 0.4709 and 0.53 (N = 383 for logBB. The latter descriptor revealing a very low Q2 for the test molecules (R2 was 0.7068 and standard deviation 0.38 for N = 413 training molecules is included as an example to show the limits of the group-additivity method. An eighth molecular descriptor, the heat of formation, was indirectly calculated from the heat of combustion data and correlated with published experimental heat of formation data with a correlation coefficient R2 of 0.9974 (N = 2031.

  5. Repeated-dose toxicological studies of Tithonia diversifolia (Hemsl.) A. gray and identification of the toxic compounds.

    Science.gov (United States)

    Passoni, Flávia Donaire; Oliveira, Rejane Barbosa; Chagas-Paula, Daniela Aparecida; Gobbo-Neto, Leonardo; Da Costa, Fernando Batista

    2013-05-20

    Tithonia diversifolia (Hemsl.) A. Gray has been commonly used in folk medicine to treat abscesses, microbiological infections, snake bites, malaria and diabetes. Both anti-inflammatory and anti-malarial properties have been identified using appropriate assays, but the effective doses have demonstrated toxic effects for the experimental animals. Most of the pharmacological activities have been attributed to sesquiterpene lactones (STLs) and some chlorogenic acid derivatives (CAs) in the leaves of this species. This work aimed to evaluate the repeated-dose toxicity of an aqueous extract (AE) from Tithonia diversifolia leaves and to compare the results with an extract rich in STLs (LRE) and a polar extract (PE) without STLs but rich in CAs. The purpose of this work was to provide insights into the identity of the compounds responsible for the toxic effects of Tithonia diversifolia. The major classes of compounds were confirmed in each extract by IR spectra and HPLC-UV-DAD profiling using previously isolated or standard compounds. The toxicity of each extract was evaluated in a repeated-dose toxicity study in Wistar rats for 90 days. The AE is composed of both STLs and CAs, the LRE is rich in STLs, and the PE is rich in CAs. The AE caused alterations in haematological parameters but few alterations in biochemical parameters and was relatively safe at doses lower than 100mg/kg. However, the PE and LRE demonstrated several adverse effects by damaging the liver and kidneys, respectively. STLs and CAs can be toxic in prolonged use at higher doses in extracts prepared from Tithonia diversifolia by affecting the kidneys and liver. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. The discovery of bioisoster compound for plumbagin using the knowledge-based rational method

    Science.gov (United States)

    Jeong, Seo Hee; Choi, Jung Sup; Ko, Young Kwan; Kang, Nam Sook

    2015-04-01

    Arabidopsis thaliana 7-Keto-8-AminoPelargonic Acid Synthase (AtKAPAS) is a crucial herbicide target, and AtKAPAS inhibitors are widely available in the agrochemical market. The herbicide plumbagin is known as a potent inhibitor for AtKAPAS but it is extremely toxic. In this study, we identified the metabolic site of plumbagin and also performed a similarity-based library analysis using 2D fingerprints and a docking study. Four compounds as virtual hits were derived from plumbagin. Treatment of Digitaria ciliaris with compound 2, one of four hit compounds, stunted the growth of leaves and the leaf tissue was desiccated or burned within three days. Thus, we expect that compound 2 will be developed as a new herbicide and additionally our strategy will provide helpful information for optimizing lead compounds.

  7. Quinoline-Based Hybrid Compounds with Antimalarial Activity

    Directory of Open Access Journals (Sweden)

    Xhamla Nqoro

    2017-12-01

    Full Text Available The application of quinoline-based compounds for the treatment of malaria infections is hampered by drug resistance. Drug resistance has led to the combination of quinolines with other classes of antimalarials resulting in enhanced therapeutic outcomes. However, the combination of antimalarials is limited by drug-drug interactions. In order to overcome the aforementioned factors, several researchers have reported hybrid compounds prepared by reacting quinoline-based compounds with other compounds via selected functionalities. This review will focus on the currently reported quinoline-based hybrid compounds and their preclinical studies.

  8. Assessment of chimeric mice with humanized livers in new drug development: generation of pharmacokinetics, metabolism and toxicity data for selecting the final candidate compound.

    Science.gov (United States)

    Kamimura, Hidetaka; Ito, Satoshi

    2016-01-01

    1. Chimeric mice with humanized livers are expected to be a novel tool for new drug development. This review discusses four applications where these animals can be used efficiently to collect supportive data for selecting the best compound in the final stage of drug discovery. 2. The first application is selection of the final compound based on estimated pharmacokinetic parameters in humans. Since chimeric mouse livers are highly repopulated with human hepatocytes, hepatic clearance values in vivo could be used preferentially to estimate pharmacokinetic profiles for humans. 3. The second is prediction of human-specific or disproportionate metabolites. Chimeric mice reproduce human-specific metabolites of drugs under development to conform to ICH guidance M3(R2), except for compounds that were extensively eliminated by co-existing mouse hepatocytes. 4. The third is identifying metabolites with distinct pharmacokinetic profiles in humans. Slow metabolite elimination specifically in humans increases its exposure level, but if its elimination is faster in laboratory animals, the animal exposure level might not satisfy ICH guidance M3(R2). 5. Finally, two examples of reproducing acute liver toxicity in chimeric mice are introduced. Integrated pharmacokinetics, metabolism and toxicity information are expected to assist pharmaceutical scientists in selecting the best candidate compound in new drug development.

  9. Degradation of based EPDM dielectric compounds

    International Nuclear Information System (INIS)

    Galembeck, F.

    1988-01-01

    The stability of an EPDM compound used as power cables insulation was studied under various conditions of thermal stress. Changes in the dielectric and tensile strenght of the samples were found after the aging. Samples of the EPDM compound were analysed by spectroscopic (photoacoustic, IR) methods showing alterations in its components: Pb 3 O 4 is reduced to PbO and exsuded paraffin is oxidized. Methane is prevalent in the gaseous mixture released by the heated compound and analysed by Gas Chromatography. (author) [pt

  10. Three coordination compounds based on benzene tetracarboxylate ...

    Indian Academy of Sciences (India)

    YUNLONG WU

    nescence, considerable attention has been focused on the construction of coordination .... measurements were performed on ground powder samples at .... Figure 2. (a) Coordination environment of Co1 ion in compound 2. (b) Coordination.

  11. Investigations of chemical warfare agents and toxic industrial compounds with proton-transfer-reaction mass spectrometry for a real-time threat monitoring scenario.

    Science.gov (United States)

    Kassebacher, Thomas; Sulzer, Philipp; Jürschik, Simone; Hartungen, Eugen; Jordan, Alfons; Edtbauer, Achim; Feil, Stefan; Hanel, Gernot; Jaksch, Stefan; Märk, Lukas; Mayhew, Chris A; Märk, Tilmann D

    2013-01-30

    Security and protection against terrorist attacks are major issues in modern society. One especially challenging task is the monitoring and protection of air conditioning and heating systems of buildings against terrorist attacks with toxic chemicals. As existing technologies have low selectivity, long response times or insufficient sensitivity, there is a need for a novel approach such as we present here. We have analyzed various chemical warfare agents (CWAs) and/or toxic industrial compounds (TICs) and related compounds, namely phosgene, diphosgene, chloroacetone, chloroacetophenone, diisopropylaminoethanol, and triethyl phosphate, utilizing a high-resolution proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) instrument with the objective of finding key product ions and their intensities, which will allow a low-resolution quadrupole mass spectrometry based PTR-MS system to be used with high confidence in the assignment of threat agents in the atmosphere. We obtained high accuracy PTR-TOFMS mass spectra of the six compounds under study at two different values for the reduced electric field in the drift tube (E/N). From these data we have compiled a table containing product ions, and isotopic and E/N ratios for highly selective threat compound detection with a compact and cost-effective quadrupole-based PTR-MS instrument. Furthermore, using chloroacetophenone (tear gas), we demonstrated that this instrument's response is highly linear in the concentration range of typical Acute Exposure Guideline Levels (AEGLs). On the basis of the presented results it is possible to develop a compact and cost-effective PTR-QMS instrument that monitors air supply systems and triggers an alarm as soon as the presence of a threat agent is detected. We hope that this real-time surveillance device will help to seriously improve safety and security in environments vulnerable to terrorist attacks with toxic chemicals. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Toxicity Assessment of Atrazine and Related Triazine Compounds in the Microtox Assay, and Computational Modeling for Their Structure-Activity Relationship

    Directory of Open Access Journals (Sweden)

    Jerzy Leszczynski

    2000-10-01

    Full Text Available The triazines are a group of chemically similar herbicides including atrazine, cyanazine, and propazine, primarily used to control broadleaf weeds. About 64 to 80 million lbs of atrazine alone are used each year in the United States, making it one of the two most widely used pesticides in the country. All triazines are somewhat persistent in water and mobile in soil. They are among the most frequently detected pesticides in groundwater. They are considered as possible human carcinogens (Group C based on an increase in mammary gland tumors in female laboratory animals. In this research, we performed the Microtox Assay to investigate the acute toxicity of a significant number of triazines including atrazine, atraton, ametryne, bladex, prometryne, and propazine, and some of their degradation products including atrazine desethyl, atrazine deisopropyl, and didealkyled triazine. Tests were carried out as described by Azur Environmental [1]. The procedure measured the relative acute toxicity of triazines, producing data for the calculation of triazine concentrations effecting 50% reduction in bioluminescence (EC50s. Quantitative structure-activity relationships (QSAR were examined based on the molecular properties obtained from quantum mechanical predictions performed for each compound. Toxicity tests yielded EC50 values of 39.87, 273.20, 226.80, 36.96, 81.86, 82.68, 12.74, 11.80, and 78.50 mg/L for atrazine, propazine, prometryne, atraton, atrazine desethyl, atrazine deisopropyl, didealkylated triazine, ametryne, and bladex, respectively; indicating that ametryne was the most toxic chemical while propazine was the least toxic. QSAR evaluation resulted in a coefficient of determination (r2 of 0.86, indicating a good value of toxicity prediction based on the chemical structures/properties of tested triazines.

  13. Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity in a Drosophila bioassay.

    Science.gov (United States)

    Zhao, G; Yin, G; Inamdar, A A; Luo, J; Zhang, N; Yang, I; Buckley, B; Bennett, J W

    2017-05-01

    Superstorm Sandy provided an opportunity to study filamentous fungi (molds) associated with winter storm damage. We collected 36 morphologically distinct fungal isolates from flooded buildings. By combining traditional morphological and cultural characters with an analysis of ITS sequences (the fungal DNA barcode), we identified 24 fungal species that belong to eight genera: Penicillium (11 species), Fusarium (four species), Aspergillus (three species), Trichoderma (two species), and one species each of Metarhizium, Mucor, Pestalotiopsis, and Umbelopsis. Then, we used a Drosophila larval assay to assess possible toxicity of volatile organic compounds (VOCs) emitted by these molds. When cultured in a shared atmosphere with growing cultures of molds isolated after Hurricane Sandy, larval toxicity ranged from 15 to 80%. VOCs from Aspergillus niger 129B were the most toxic yielding 80% mortality to Drosophila after 12 days. The VOCs from Trichoderma longibrachiatum 117, Mucor racemosus 138a, and Metarhizium anisopliae 124 were relatively non-toxigenic. A preliminary analysis of VOCs was conducted using solid-phase microextraction-gas chromatography-mass spectrometry from two of the most toxic, two of the least toxic, and two species of intermediate toxicity. The more toxic molds produced higher concentrations of 1-octen-3-ol, 3-octanone, 3-octanol, 2-octen-1-ol, and 2-nonanone; while the less toxic molds produced more 3-methyl-1-butanol and 2-methyl-1-propanol, or an overall lower amount of volatiles. Our data support the hypothesis that at certain concentrations, some VOCs emitted by indoor molds are toxigenic. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Quantitative structure-activity relationships for toxicity and genotoxicity of halogenated aliphatic compounds: wing spot test of Drosophila melanogaster.

    Science.gov (United States)

    Chroust, Karel; Pavlová, Martina; Prokop, Zbynek; Mendel, Jan; Bozková, Katerina; Kubát, Zdenek; Zajícková, Veronika; Damborský, Jiri

    2007-02-01

    Halogenated aliphatic compounds were evaluated for toxic and genotoxic effects in the somatic mutation and recombination test employing Drosophila melanogaster. The tested chemicals included chlorinated, brominated and iodinated; mono-, di- and tri-substituted; saturated and unsaturated alkanes: 1,2-dibromoethane, 1-bromo-2-chloroethane, 1-iodopropane, 2,3-dichloropropene, 3-bromo-1-propene, epibromohydrin, 2-iodobutane, 3-chloro-2-methylpropene, 1,2,3-trichloropropane, 1,2-dichloroethane, 1,2-dichlorobutane, 1-chloro-2-methylpropane, 1,3-dichloropropane, 1,2-dichloropropane, 2-chloroethymethylether, 1-bromo-2-methylpropane and 1-chloropentane. N-methyl-N-nitrosourea served as the positive and distilled water as the negative control. The set of chemicals for the toxicological testing was selected by the use of statistical experiment design. Group of unsaturated aliphatic hydrocarbons were generally more toxic than saturated analogues. The genotoxic effect was observed with 14 compounds in the wing spot test, while 3 substances did not show any genotoxicity by using the wing spot test at 50% lethal concentration. The highest number of wing spots was observed in genotoxicity assay with 1-bromo-2-chloroethane, 1,2-dichloroethane, 1,2-dibromoethane and 1-iodopropane. Nucleophilic superdelocalizability calculated by quantum mechanics appears to be a good parameter for prediction of both toxicity and genotoxicity effects of halogenated aliphatic compounds.

  15. Modern materials based on refractory compounds

    International Nuclear Information System (INIS)

    Kosolapova, T.Ya.

    1979-01-01

    Discussed are the existing methods for synthesizing powders of binary refractory compounds and high-productivity techniques which hold promise as regards the manufacture of highly disperse and pure powders. Plasmochemical synthesis is shown to be an effective method for obtaining practically all carbides, nitrides and borides. A description is given of three main methods for obtaining single crystals of refractory compounds (TiN, TiC, ZrC, ZrB 2 , NbC) fairly perfect in structure and composition. These processes include deposition from vapour-gas phase, melting in arc plasma and crystallization from solutions in metallic melts. The advantages have been shown of the self-propagating high-temperature synthesis of refractory compounds, ensuring the manufacture of products, close in composition to stoichiometric ones simultaneously with forming of items. Mechanical, thermal, abrasive, and resistive characteristics of the above materials are presented

  16. Microbial Fuels Cell-Based Biosensor for Toxicity Detection: A Review

    Directory of Open Access Journals (Sweden)

    Tuoyu Zhou

    2017-09-01

    Full Text Available With the unprecedented deterioration of environmental quality, rapid recognition of toxic compounds is paramount for performing in situ real-time monitoring. Although several analytical techniques based on electrochemistry or biosensors have been developed for the detection of toxic compounds, most of them are time-consuming, inaccurate, or cumbersome for practical applications. More recently, microbial fuel cell (MFC-based biosensors have drawn increasing interest due to their sustainability and cost-effectiveness, with applications ranging from the monitoring of anaerobic digestion process parameters (VFA to water quality detection (e.g., COD, BOD. When a MFC runs under correct conditions, the voltage generated is correlated with the amount of a given substrate. Based on this linear relationship, several studies have demonstrated that MFC-based biosensors could detect heavy metals such as copper, chromium, or zinc, as well as organic compounds, including p-nitrophenol (PNP, formaldehyde and levofloxacin. Both bacterial consortia and single strains can be used to develop MFC-based biosensors. Biosensors with single strains show several advantages over systems integrating bacterial consortia, such as selectivity and stability. One of the limitations of such sensors is that the detection range usually exceeds the actual pollution level. Therefore, improving their sensitivity is the most important for widespread application. Nonetheless, MFC-based biosensors represent a promising approach towards single pollutant detection.

  17. New Approaches for the Synthesis, Cytotoxicity and Toxicity of Heterocyclic Compounds Derived from 2-Cyanomethylbenzo[c]imidazole.

    Science.gov (United States)

    Mohareb, Rafat M; Mohamed, Abeer A; Abdallah, Amira E M

    2016-01-01

    The reaction of ethyl cyanoacetate with o-phenylenediamine gave the 2-cyanomethylbenzo[c]imidazole (1). The latter compound was used as the key starting material to synthesise biologically active heterocyclic derivatives. Thus, the reaction of 1 with cyclohexanone and either of benzaldehyde, 4-methoxybenzaldehyde or 4-chlorobenzaldehyde gave the annulated derivatives 2a-c, respectively. The antitumor evaluations of the newly synthesized products against the three cancer cell lines MCF-7 (breast adeno-carcinoma), NCI-H460 (non-small cell lung cancer) and SF-268 (CNS cancer) showed that compounds 2b, 6, 11b, 11c, 12b, 16a, 16b and 18a exhibited optimal cytotoxic effect against cancer cell lines, with IC50 values in the nM range. Bioactive compounds are often toxic to shrimp larvae. Thus, in order to monitor these chemicals in vivo lethality to shrimp larvae (Artemia salina), Brine-Shrimp Lethality Assay was used. Compounds 11b, 12b and 16b showed no toxicity against the tested organisms.

  18. Release behavior and toxicity profiles towards A549 cell lines of ciprofloxacin from its layered zinc hydroxide intercalation compound.

    Science.gov (United States)

    Abdul Latip, Ahmad Faiz; Hussein, Mohd Zobir; Stanslas, Johnson; Wong, Charng Choon; Adnan, Rohana

    2013-01-01

    Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems.

  19. Heterocyclic Schiff bases as non toxic antioxidants: Solvent effect, structure activity relationship and mechanism of action

    Science.gov (United States)

    Shanty, Angamaly Antony; Mohanan, Puzhavoorparambil Velayudhan

    2018-03-01

    Phenolic heterocyclic imine based Schiff bases from Thiophene-2-carboxaldehyde and Pyrrole-2-carboxaldehyde were synthesized and characterized as novel antioxidants. The solvent effects of these Schiff bases were determined and compared with standard antioxidants, BHA employing DPPH assay and ABTS assay. Fixed reaction time and Steady state measurement were used for study. IC50 and EC50 were calculated. Structure-activity relationship revealed that the electron donating group in the phenolic ring increases the activity where as the electron withdrawing moiety decreases the activity. The Schiff base derivatives showed antioxidant property by two different pathways namely SPLET and HAT mechanisms in DPPH assay. While in ABTS method, the reaction between ABTS radical and Schiff bases involves electron transfer followed by proton transfer (ET-PT) mechanism. The cytotoxicity of these compounds has been evaluated by MTT assay. The results showed that all these compounds are non toxic in nature.

  20. Bioassay standardization for the detection of allelopathic compounds and environmental toxicants using lettuce

    Directory of Open Access Journals (Sweden)

    Mateus Salomão Simões

    2013-09-01

    Full Text Available The purpose of this study was to assess different experimental conditions to determine a protocol for bioassays based on seed germination and early seedling growth using lettuce (Lactuca sativa L. cv. Grand Rapids as indicator species. This protocol aims to provide support for the standardization of assays of various chemicals such as allelochemicals and environmental toxicants. The following tests were performed: time of germination, temperature, light, solution volume and Petri dish size. For each test (except for time of germination, the influence of the conditions investigated was determined by the endpoints germination percentage, germination speed index, root length, seedling fresh weight and total dry weight. The results showed that variations in the methods altered the results. It is recommended that bioassays using L. sativa L. cv. Grand Rapids be carried out for a minimum period of four days for assessments of both germination and initial growth and that the experimental conditions include a temperature of 20°C, 90-mm Petri dishes or larger, 0.1 mL cypsela solution, and continuous light or 12-hour photoperiod.

  1. Choose Your Weaponry: Selective Storage of a Single Toxic Compound, Latrunculin A, by Closely Related Nudibranch Molluscs.

    Directory of Open Access Journals (Sweden)

    Karen L Cheney

    Full Text Available Natural products play an invaluable role as a starting point in the drug discovery process, and plants and animals use many interesting biologically active natural products as a chemical defense mechanism against predators. Among marine organisms, many nudibranch gastropods are known to derive defensive metabolites from the sponges they eat. Here we investigated the putative sequestration of the toxic compound latrunculin A--a 16-membered macrolide that prevents actin polymerization within cellular processes--which has been identified from sponge sources, by five closely related nudibranch molluscs of the genus Chromodoris. Only latrunculin A was present in the rim of the mantle of these species, where storage reservoirs containing secondary metabolites are located, whilst a variety of secondary metabolites were found in their viscera. The species studied thus selectively accumulate latrunculin A in the part of the mantle that is more exposed to potential predators. This study also demonstrates that latrunculin-containing sponges are not their sole food source. Latrunculin A was found to be several times more potent than other compounds present in these species of nudibranchs when tested by in vitro and in vivo toxicity assays. Anti-feedant assays also indicated that latrunculin A was unpalatable to rock pool shrimps, in a dose-dependent manner. These findings led us to propose that this group of nudibranchs has evolved means both to protect themselves from the toxicity of latrunculin A, and to accumulate this compound in the mantle rim for defensive purposes. The precise mechanism by which the nudibranchs sequester such a potent compound from sponges without disrupting their own key physiological processes is unclear, but this work paves the way for future studies in this direction. Finally, the possible occurrence of both visual and chemosensory Müllerian mimicry in the studied species is discussed.

  2. Effect of the waste products storage on the environmental pollution by toxic organic compounds

    Directory of Open Access Journals (Sweden)

    Aleksandra Lewkiewicz-Małysa

    2005-11-01

    Full Text Available A permanent deposition of industrial wastes is a method of its neutralization. A storage yard for toxic materials must meet specific site and construction conditions. The storage place region of toxic organic waste materials has to be monitored. The environmental impact of this waste on the groundwater quality, especially the migration of persistent organic pollutants, was discussed on the example of a chemical plant.

  3. Elucidating the mechanisms of nickel compound uptake: A review of particulate and nano-nickel endocytosis and toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Alexandra; Costa, Max, E-mail: Max.Costa@nyumc.org

    2012-04-01

    Nickel (Ni) is a worldwide pollutant and contaminant that humans are exposed to through various avenues resulting in multiple toxic responses — most alarming is its clear carcinogenic nature. A variety of particulate Ni compounds persist in the environment and can be distinguished by characteristics such as solubility, structure, and surface charge. These characteristics influence cellular uptake and toxicity. Some particulate forms of Ni are carcinogenic and are directly and rapidly endocytized by cells. A series of studies conducted in the 1980s observed this process, and we have reanalyzed the results of these studies to help elucidate the molecular mechanism of particulate Ni uptake. Originally the process of uptake observed was described as phagocytosis, however in the context of recent research we hypothesize that the process is macropinocytosis and/or clathrin mediated endocytosis. Primary considerations in determining the route of uptake here include calcium dependence, particle size, and inhibition through temperature and pharmacological approaches. Particle characteristics that influenced uptake include size, charge, surface characteristics, and structure. This discussion is relevant in the context of nanoparticle studies and the emerging interest in nano-nickel (nano-Ni), where toxicity assessments require a clear understanding of the parameters of particulate uptake and where establishment of such parameters is often obscured through inconsistencies across experimental systems. In this regard, this review aims to carefully document one system (particulate nickel compound uptake) and characterize its properties.

  4. Chronic toxicity of polycyclic aromatic compounds to the springtail Folsomia candida and the enchytraeid Enchytraeus crypticus.

    NARCIS (Netherlands)

    Droge, S.T.J.; Leon Paumen, M; Bleeker, E.A.J.; Kraak, M.H.S.; van Gestel, C.A.M.

    2006-01-01

    An urgent need exists for incorporating heterocyclic compounds and (bio)transformation products in ecotoxicological test schemes and risk assessment of polycyclic aromatic compounds (PACs). The aim of the present study therefore was to determine the chronic effects of (heterocyclic) PACs on two

  5. [Elimination of toxic compounds, biological evaluation and partial characterization of the protein from jojoba meal (Simmondsia chinensis [Link] Schneider].

    Science.gov (United States)

    Medina Juárez, L A; Trejo González, A

    1989-12-01

    The purpose of this study was to establish a new methodology to remove the toxic compounds present in jojoba meal and flour. Also, to perform the biological evaluation of the detoxified products and to chemically characterize the protein fractions. Jojoba meal and seed without testa were deffated with hexane and detoxified with a 7:3 isopropanol-water mixture which removed 86% of total phenolic compounds and 100% of simmondsins originally present, the resulting products had reduced bitterness and caused no deaths on experimental animals. NPR values obtained for diets containing such products were significantly different from those obtained with the casein control (p less than 0.05). Total protein was made up of three different fractions: the water-soluble fraction was the most abundant (61.8%), followed by the salt-soluble (23.6%), and the alkaline soluble fraction (14.6%). The nitrogen solubility curves showed that the isoelectric point for the water-soluble and salt-soluble fractions was pH 3.0, while that of the alkaline fraction fell in the range of 4.5-5.0. All fractions had a maximum solubility at pH 7.0. The methodology reported here, offers a viable solution to eliminate toxic compounds from jojoba meal or seeds, and upgrades the potential use of products such as animal feed or raw material for the production of protein isolates.

  6. Determination of bismuth in environmental samples by ICP-MS and basic examination of cell toxicity for their compounds

    International Nuclear Information System (INIS)

    Kobayashi, Jun; Matsukawa, Takehisa; Chiba, Momoko; Yokoyama, Kazuhito; Terada, Hiroshi; Sugiyama, Hideo

    2011-01-01

    We examined both bismuth content levels in some environmental water samples (tapwater, bottled drinking water and slag obtained by sewage disposal) by inductively coupled plasma mass spectrometry (ICP-MS) and cultured cell toxicity of their compounds by the MTT assay. For ICP-MS, the conditions examined were addition of internal standard (IS), apparatus condition, and determination range, etc. When we examined an IS, the advantage was not clear that the ICP-MS response of the IS candidate elements was very variable. However, the sample induction rate into ICP-MS is more changeable at any time. Since the correction of analytical results was enabled by the addition of IS, Tl-203 was selected for IS, and was used in this study. The determination lower limit was 11 ppt by using 10 ppb Tl. Bi was detected in a few environmental water samples at 20.4 ppt - 6.8 ppb (0.07-6.83 μg/g original slags), but Bi concentrations of most samples were lower than the determination limit. On the other hand, concerning cell toxicity, the subgallate and free gallic acid affected the lives of cultured cells. Especially, the toxicity of free gallic acid was higher. It has been understood that the toxicity is weakly adjusted by chelating with Bi. (author)

  7. Toxic Volatile Organic Compounds (VOCs in the Atmospheric Environment: Regulatory Aspects and Monitoring in Japan and Korea

    Directory of Open Access Journals (Sweden)

    Wen-Tien Tsai

    2016-09-01

    Full Text Available In the past decades, hazardous air pollutants (HAPs, so-called air toxics or toxic air pollutants, have been detected in the atmospheric air at low concentration levels, causing public concern about the adverse effect of long-term exposure to HAPs on human health. Most HAPs belong to volatile organic compounds (VOCs. More seriously, most of them are known carcinogens or probably carcinogenic to humans. The objectives of this paper were to report the regulatory aspects and environmental monitoring management of toxic VOCs designated by Japan and Korea under the Air Pollution Control Act, and the Clean Air Conservation Act, respectively. It can be found that the environmental quality standards and environmental monitoring of priority VOCs (i.e., benzene, trichloroethylene, tetrachloroethylene, and dichloromethane have been set and taken by the state and local governments of Japan since the early 2000, but not completely established in Korea. On the other hand, the significant progress in reducing the emissions of some toxic VOCs, including acrylonitrile, benzene, 1,3-butadiene, 1,2-dichloroethane, dichloromethane, chloroform, tetrachloroethylene, and trichloroethylene in Japan was also described as a case study in the brief report paper.

  8. Toxic Compound, Anti-Nutritional Factors and Functional Properties of Protein Isolated from Detoxified Jatropha curcas Seed Cake

    OpenAIRE

    Worapot Suntornsuk; Donlaporn Saetae

    2010-01-01

    Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The ob...

  9. Provisional Peer-Reviewed Toxicity Values for Rubidium Compounds (Rubidium Chloride)

    Science.gov (United States)

    This is a PPRTV for Rubidium Compounds submitted to the Superfund Program.This assessment supports multiple isomers (see related links) and this page is about the chemical rubidium chloride, CASRN 7791-11-9.

  10. Biomonitoring of toxic compounds of airborne particulate matter in urban and industriel areas

    DEFF Research Database (Denmark)

    Klumpp, Andreas; Ro-Poulsen, Helge

    2010-01-01

    The toxicity and ecotoxicity of airborne particulate matter is determined by its physical features, but also by its chemical composition. The standardised exposure of accumulative bioindicator plants is suggested as an efficient and reliable tool to assess and monitor effects of particulate matter...

  11. Short-term toxicity studies with triphenyltin compounds in rats and guinea-pigs

    NARCIS (Netherlands)

    Verschuuren, H.G.; Kroes, R.; Vink, H.H.; Esch, G.J. van

    1966-01-01

    Short-term toxicity studies have been carried out in rats and guinea-pigs fed diets containing triphenyltin acetate (TPTA), triphenyltin hydroxide (TPTH) or triethyltin hydroxide (TETH) for 90 days at levels ranging from 0 to 50 ppm. The lowest dietary levels found to retard growth in rats and

  12. Environmental recovery by destruction of toxic organic compounds using electron beam accelerator

    International Nuclear Information System (INIS)

    Duarte, C.L; Sampa, M.H.O.; Rela, P.R.; Oikawa, H.

    2001-01-01

    The oxidation process has attracted many researchers because of the capacity to mineralise organic compounds. The most efficient oxidation is the use of OH radicals. There are various methods to generate OH radicals as the use of ozone, hydrogen peroxide and ultra-violet (AOP - Advanced Oxidation Process). The most simple and efficient method for generating OH radicals in situ is the interaction of ionizing radiation with water. The reactive species formed by the water irradiation are the reducing radical's solvated electron and H atoms and the oxidising radical hydroxyl OH. The reactive species will react with organic compounds in the water inducing their decomposition. The use of ionizing radiation has great ecological and technologies advantages, especially when compared to physical-chemical and biological methods. It degrades organic compounds, generating substances that are easily biodegraded without the necessity of adding chemical compounds. The purpose of the radiation treatment is the conversion of these substances to biodegradable compounds; sometimes the complete decomposition is not necessary for this conversion

  13. Study on mutagenic and toxic compounds in lake water used as drinking water supply

    International Nuclear Information System (INIS)

    Monarca, S.; Zanardini, A.

    1996-01-01

    Trace amounts of mutagenic and toxic substances are frequently found in drinking water, causing a great concern for their potential health effects. Aim of this work is to develop a reliable and efficient screening method for detecting aquatic mutagens and toxins in surface water used for human consumption. For this purpose different methods of concentration of lake water have been experimented by using three different solid phase extraction systems at different pHs and studying the adsorbates by means of a mutagenicity test (Ames test), a toxicity test (LUMIStox) and chemical analysis (GC,MS). This integrated chemical/biological approach showed to be a suitable system for the preliminary choice of an efficient screening method for aquatic mutagens and toxins and to give useful data for the evaluation of potential health hazards

  14. Effect of Environmental Conditions and Toxic Compounds on the Locomotor Activity of Pediculus humanus capitis (Phthiraptera: Pediculidae).

    Science.gov (United States)

    Ortega-Insaurralde, I; Toloza, A C; Gonzalez-Audino, P; Mougabure-Cueto, G A; Alvarez-Costa, A; Roca-Acevedo, G; Picollo, M I

    2015-09-01

    In this work, we evaluated the effect of environmental variables such as temperature, humidity, and light on the locomotor activity of Pediculus humanus capitis. In addition, we used selected conditions of temperature, humidity, and light to study the effects of cypermethrin and N,N-diethyl-3-methylbenzamide (DEET) on the locomotor activity of head lice. Head lice increased their locomotor activity in an arena at 30°C compared with activity at 20°C. When we tested the influence of the humidity level, the locomotor activity of head lice showed no significant differences related to humidity level, both at 30°C and 20°C. Concerning light influence, we observed that the higher the intensity of light, the slower the movement of head lice. We also demonstrated that sublethal doses of toxics may alter locomotor activity in adults of head lice. Sublethal doses of cypermethrin induced hyperactivated responses in adult head lice. Sublethal doses of DEET evocated hypoactivated responses in head lice. The observation of stereotyped behavior in head lice elicited by toxic compounds proved that measuring locomotor activity in an experimental set-up where environmental conditions are controlled would be appropriate to evaluate compounds of biological importance, such as molecules involved in the host-parasite interaction and intraspecific relationships. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Gas phase THz spectroscopy of toxic agent simulant compounds using the AILES synchrotron beamline

    Science.gov (United States)

    Cuisset, A.; Smirnova, I.; Bocquet, R.; Hindle, F.; Mouret, G.; Yang, C.; Pirali, O.; Roy, P.

    2010-02-01

    A new study is currently underway aiming at recording and assigning the gas phase rovibrational spectra of several organophosphorus and organosulphur compounds in the THz frequency domain. Thanks to the exceptional properties of flux, brilliance and spectral range of the AILES beamline coupled to the FTIR spectrometer, the gas phase vibrational spectra of low volatility organophosphorous compounds have been recorded across the entire THz frequency range. High resolution FTIR spectroscopy was used to record the pure rotational and the low-frequency rovibrational spectrum of DMSO. A comparison between the spectra measured with the AILES beamline and the spectra obtained with optoelectronic THz sources is possible.

  16. COMPUTER-BASED PREDICTION OF TOXICITY USING THE ELECTRON-CONFORMATIONAL METHOD. APPLICATION TO FRAGRANCE ALLERGENS AND OTHER ENVIRONMENTAL POLLUTANTS

    Directory of Open Access Journals (Sweden)

    Natalia N. Gorinchoy

    2012-06-01

    Full Text Available The electron-conformational (EC method is employed for the toxicophore (Tph identification and quantitative prediction of toxicity using the training set of 24 compounds that are considered as fragrance allergens. The values of a=LD50 in oral exposure of rats were chosen as a measure of toxicity. EC parameters are evaluated on the base of conformational analysis and ab initio electronic structure calculations (including solvent influence. The Tph consists of four sites which in this series of compounds are represented by three carbon and one oxygen atoms, but may be any other atoms that have the same electronic and geometric features within the tolerance limits. The regression model taking into consideration the Tph flexibility, anti-Tph shielding, and influence of out-of-Tph functional groups predicts well the experimental values of toxicity (R2 = 0.93 with a reasonable leaveone- out cross-validation.

  17. Acute Toxicity (LC50 96 Hours of Organophosphate Pesticide With Poksim Active Compound And Haematology And Histopathology Review Goldfish (Cyprinus carpio L

    Directory of Open Access Journals (Sweden)

    Dewi Nur Setyorini

    2015-04-01

    Full Text Available This research has the objectives to determine LC50 96 hours value and observation toward hematology, gills and kidney histology of goldfish (Cyprinus carpio exposed to organophosphate pesticide with Poksim active compound (trade brand FOKKER 500 EC. Method used in this paper is experiment to determine LC50 96 hour value with probit analysis. Descriptive method was used for gills and kidney tissues microanatomy observation with hematoxilin eosin (HE coloring and hematology. Toxicity result of Fokker 500 EC pesticide toward goldfish obtained LC50 96 hours with 41,7 ppm. Histological result showed that increasing exposure doses in real test had caused increase gills and kidney tissues damage. Hematology observation result during research obtained that along with the increasing exposure doses of pesticide in the real test, acute toxicity test would caused reduction in total erythrocyte, leukocyte and hemoglobin of goldfish. Result also showed that Fokker pesticide usage was allowed until 1,8 ppm dose based on histology and hematology evaluation. Keywords: acute toxicity, goldfish, histology, hematology, pesticide

  18. Toxic neuropathies: Mechanistic insights based on a chemical perspective.

    Science.gov (United States)

    LoPachin, Richard M; Gavin, Terrence

    2015-06-02

    2,5-Hexanedione (HD) and acrylamide (ACR) are considered to be prototypical among chemical toxicants that cause central-peripheral axonopathies characterized by distal axon swelling and degeneration. Because the demise of distal regions was assumed to be causally related to the onset of neurotoxicity, substantial effort was devoted to deciphering the respective mechanisms. Continued research, however, revealed that expression of the presumed hallmark morphological features was dependent upon the daily rate of toxicant exposure. Indeed, many studies reported that the corresponding axonopathic changes were late developing effects that occurred independent of behavioral and/or functional neurotoxicity. This suggested that the toxic axonopathy classification might be based on epiphenomena related to dose-rate. Therefore, the goal of this mini-review is to discuss how quantitative morphometric analyses and the establishment of dose-dependent relationships helped distinguish primary, mechanistically relevant toxicant effects from non-specific consequences. Perhaps more importantly, we will discuss how knowledge of neurotoxicant chemical nature can guide molecular-level research toward a better, more rational understanding of mechanism. Our discussion will focus on HD, the neurotoxic γ-diketone metabolite of the industrial solvents n-hexane and methyl-n-butyl ketone. Early investigations suggested that HD caused giant neurofilamentous axonal swellings and eventual degeneration in CNS and PNS. However, as our review will point out, this interpretation underwent several iterations as the understanding of γ-diketone chemistry improved and more quantitative experimental approaches were implemented. The chemical concepts and design strategies discussed in this mini-review are broadly applicable to the mechanistic studies of other chemicals (e.g., n-propyl bromine, methyl methacrylate) that cause toxic neuropathies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. APPROACH ON INTELLIGENT OPTIMIZATION DESIGN BASED ON COMPOUND KNOWLEDGE

    Institute of Scientific and Technical Information of China (English)

    Yao Jianchu; Zhou Ji; Yu Jun

    2003-01-01

    A concept of an intelligent optimal design approach is proposed, which is organized by a kind of compound knowledge model. The compound knowledge consists of modularized quantitative knowledge, inclusive experience knowledge and case-based sample knowledge. By using this compound knowledge model, the abundant quantity information of mathematical programming and the symbolic knowledge of artificial intelligence can be united together in this model. The intelligent optimal design model based on such a compound knowledge and the automatically generated decomposition principles based on it are also presented. Practically, it is applied to the production planning, process schedule and optimization of production process of a refining & chemical work and a great profit is achieved. Specially, the methods and principles are adaptable not only to continuous process industry, but also to discrete manufacturing one.

  20. Lead: Aspects of its ecology and environmental toxicity. [physiological effects of lead compound contamination of environment

    Science.gov (United States)

    Siegel, S. M.

    1973-01-01

    An analysis of lead toxicity in the Hawaiian environment was conducted. It was determined that lead enters the environment as an industrial contaminant resulting from the combustion of leaded gasoline. The amount of lead absorbed by the plants in various parts of the Hawaiian Islands is reported. The disposition of lead in the sediments of canals and yacht basins was investigated. The methods for conducting the surveys of lead content are described. Possible consequences of continued environmental pollution by burning leaded gasoline are discussed.

  1. Health risks in international container and bulk cargo transport due to volatile toxic compounds.

    Science.gov (United States)

    Baur, Xaver; Budnik, Lygia Therese; Zhao, Zhiwei; Bratveit, Magne; Djurhuus, Rune; Verschoor, Louis; Rubino, Federico Maria; Colosio, Claudio; Jepsen, Jorgen R

    2015-01-01

    To ensure the preservation and quality of the goods, physical (i.e. radiation) or chemical pest control is needed. The dark side of such consents may bear health risks in international transport and production sharing. In fact, between 10% and 20% of all containers arriving European harbors were shown to contain volatile toxic substances above the exposure limit values. Possible exposure to these toxic chemicals may occur not only for the applicators but also the receiver by off gassing from products, packing materials or transport units like containers. A number of intoxications, some with lethal outcome, occur not only during the fumigation, but also during freight transport (on bulk carriers and other transport vessels), as well as in the logistic lines during loading and unloading. Risk occupations include dock-workers, seafarers, inspectors, as well as the usually uninformed workers of importing enterprises that unload the products. Bystanders as well as vulnerable consumers may also be at risk. Ongoing studies focus on the release of these toxic volatile substances from various goods. It was shown that the half-lives of the off-gassing process range between minutes and months, depending on the toxic substance, its chemical reactivity, concentration, the temperature, the contaminated matrix (goods and packing materials), and the packing density in the transport units. Regulations on declaration and handling dangerous goods are mostly not followed. It is obvious that this hazardous situation in freight transport urgently requires preventive steps. In order to improve awareness and relevant knowledge there is a need for more comprehensive information on chemical hazards and a broader implementation of the already existing regulations and guidelines, such as those from ILO, IMO, and national authorities. It is also necessary to have regular controls by the authorities on a worldwide scale, which should be followed by sanctions in case of disregarding regulations

  2. Toxicity of Rhododendron anthopogonoides Essential Oil and Its Constituent Compounds towards Sitophilus zeamais

    OpenAIRE

    Qi Zhi Liu; Zhi Wei Deng; Shu Shan Du; Cheng Fang Wang; Yu Xin Zhou; Kai Yang; Zhi Long Liu

    2011-01-01

    The screening of several Chinese medicinal plants for insecticidal principles showed that essential oil of Rhododendron anthopogonoides flowering aerial parts possessed significant toxicity against maize weevils, Sitophilus zeamais. A total of 37 components were identified in the essential oil and the main constituents of the essential oil were 4-phenyl-2-butanone (27.22%), nerolidol (8.08%), 1,4-cineole (7.85%), caryophyllene (7.63%) and γ-elemene (6.10%), followed by α-farnesene (4.40%) and...

  3. INVESTIGATING THE ENANTIOSELECTIVE TOXICITY OF CONAZOLE FUNGICIDES IN RAINBOW TROUT THROUGH NMR BASED METABOLOMICS

    Science.gov (United States)

    Recently, metabolomics, or the quantitative measurement of a broad spectrum of metabolic responses of living systems in response to disease onset or genetic modification, has been employed to enable rapid identification of the mechanisms of toxicity for compounds of environmental...

  4. Effects of sludge retention time (SRT) and biosurfactant on the removal of polyaromatic compounds and toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Sponza, Delia Teresa, E-mail: delya.sponza@deu.edu.tr [Dokuz Eylul University, Engineering Faculty, Environmental Engineering Department, Buca Kaynaklar Campus, 35160 Izmir (Turkey); Gok, Oguzhan [Dokuz Eylul University, Engineering Faculty, Environmental Engineering Department, Buca Kaynaklar Campus, 35160 Izmir (Turkey)

    2011-12-15

    Graphical abstract: Acute toxicities in (a) influent wastewater (EC{sub 50} = 45.02 ng ml{sup -1}) and (b) effluent wastewater in aerobic activated sludge reactor at SRT = 25 days (EC{sub 6} = 5.30 ng ml{sup -1}). Highlights: Black-Right-Pointing-Pointer Over 90% of the total PAHs was removed at Rhamnolipid and sludge retention time of 15 mg l{sup -1} and 25 days. Black-Right-Pointing-Pointer 93% of the COD originating from the inert organics was removed in the aerobic reactor. 96-97% of the Rhamnolipid was biodegraded. Black-Right-Pointing-Pointer The EC50 value was reduced from EC{sub 50} = 45.02 ng ml{sup -1} to C{sub 6} = 5.30 ng ml{sup -1} with Daphnia magna. Toxicity removals originating from the PAHs were 96%. - Abstract: A laboratory-scale aerobic activated sludge reactor (AASR) system was employed to investigate the effects of SRT on the removal of three less hydrophobic and six more hydrophobic PAHs in the presence of rhamnolipid (RD), emulsan (EM) and surfactine (SR) biosurfactants. Among the biosurfactants it was found that RD exhibits a better performance than the others in the removal of PAHs. At a RD of 15 mg l{sup -1} aerobic treatment for 25 days SRT was enough to remove over 90% of the total PAHs, 88% of the COD originating from the inert organics (COD{sub inert}) and 93% of the COD originating from the inert soluble microbial products (COD{sub imp}). At this SRT and RD concentration, about 96-98% of the RD was biodegraded by the AASR system, 1.2-1.4% was accumulated in the system, 1.1-1.3% was released in the effluent, and 1.2-1.4% remained in the waste sludge. The addition of electron acceptors (NO{sub 3}{sup -1}, SO{sub 4}{sup -2}) and increasing of temperature up to 45 Degree-Sign C enhanced the PAH yields. The most effective PAH degradation occurred in high-oxygenated and neutral pH conditions. The PAH concentration affecting half of the Daphnia magna organism (EC{sub 50} value) was reduced from EC{sub 50} = 45.02 ng ml{sup -1} to the PAH

  5. Effects of sludge retention time (SRT) and biosurfactant on the removal of polyaromatic compounds and toxicity

    International Nuclear Information System (INIS)

    Sponza, Delia Teresa; Gok, Oguzhan

    2011-01-01

    Graphical abstract: Acute toxicities in (a) influent wastewater (EC 50 = 45.02 ng ml −1 ) and (b) effluent wastewater in aerobic activated sludge reactor at SRT = 25 days (EC 6 = 5.30 ng ml −1 ). Highlights: ► Over 90% of the total PAHs was removed at Rhamnolipid and sludge retention time of 15 mg l −1 and 25 days. ► 93% of the COD originating from the inert organics was removed in the aerobic reactor. 96–97% of the Rhamnolipid was biodegraded. ► The EC50 value was reduced from EC 50 = 45.02 ng ml −1 to C 6 = 5.30 ng ml −1 with Daphnia magna. Toxicity removals originating from the PAHs were 96%. - Abstract: A laboratory-scale aerobic activated sludge reactor (AASR) system was employed to investigate the effects of SRT on the removal of three less hydrophobic and six more hydrophobic PAHs in the presence of rhamnolipid (RD), emulsan (EM) and surfactine (SR) biosurfactants. Among the biosurfactants it was found that RD exhibits a better performance than the others in the removal of PAHs. At a RD of 15 mg l −1 aerobic treatment for 25 days SRT was enough to remove over 90% of the total PAHs, 88% of the COD originating from the inert organics (COD inert ) and 93% of the COD originating from the inert soluble microbial products (COD imp ). At this SRT and RD concentration, about 96–98% of the RD was biodegraded by the AASR system, 1.2–1.4% was accumulated in the system, 1.1–1.3% was released in the effluent, and 1.2–1.4% remained in the waste sludge. The addition of electron acceptors (NO 3 −1 , SO 4 −2 ) and increasing of temperature up to 45 °C enhanced the PAH yields. The most effective PAH degradation occurred in high-oxygenated and neutral pH conditions. The PAH concentration affecting half of the Daphnia magna organism (EC 50 value) was reduced from EC 50 = 45.02 ng ml −1 to the PAH concentration affecting only 6% of the live Daphnia magna (EC 6 = 5.30 ng ml −1 ) at the end of the aerobic treatment at a SRT of 25 days. Toxicity

  6. Health risks in international container and bulk cargo transport due to volatile toxic compounds

    DEFF Research Database (Denmark)

    Baur, Xaver; Budnik, Lygia T; Zhao, Zhiwei

    2015-01-01

    To ensure the preservation and quality of the goods, physical (i.e. radiation) or chemical pest control is needed. The dark side of such consents may bear health risks in international transport and production sharing. In fact, between 10% and 20% of all containers arriving European harbors were...... with lethal outcome, occur not only during the fumigation, but also during freight transport (on bulk carriers and other transport vessels), as well as in the logistic lines during loading and unloading. Risk occupations include dock-workers, seafarers, inspectors, as well as the usually uninformed workers...... of importing enterprises that unload the products. Bystanders as well as vulnerable consumers may also be at risk. Ongoing studies focus on the release of these toxic volatile substances from various goods. It was shown that the half-lives of the off-gassing process range between minutes and months, depending...

  7. The volatile compound BinBase mass spectral database.

    Science.gov (United States)

    Skogerson, Kirsten; Wohlgemuth, Gert; Barupal, Dinesh K; Fiehn, Oliver

    2011-08-04

    Volatile compounds comprise diverse chemical groups with wide-ranging sources and functions. These compounds originate from major pathways of secondary metabolism in many organisms and play essential roles in chemical ecology in both plant and animal kingdoms. In past decades, sampling methods and instrumentation for the analysis of complex volatile mixtures have improved; however, design and implementation of database tools to process and store the complex datasets have lagged behind. The volatile compound BinBase (vocBinBase) is an automated peak annotation and database system developed for the analysis of GC-TOF-MS data derived from complex volatile mixtures. The vocBinBase DB is an extension of the previously reported metabolite BinBase software developed to track and identify derivatized metabolites. The BinBase algorithm uses deconvoluted spectra and peak metadata (retention index, unique ion, spectral similarity, peak signal-to-noise ratio, and peak purity) from the Leco ChromaTOF software, and annotates peaks using a multi-tiered filtering system with stringent thresholds. The vocBinBase algorithm assigns the identity of compounds existing in the database. Volatile compound assignments are supported by the Adams mass spectral-retention index library, which contains over 2,000 plant-derived volatile compounds. Novel molecules that are not found within vocBinBase are automatically added using strict mass spectral and experimental criteria. Users obtain fully annotated data sheets with quantitative information for all volatile compounds for studies that may consist of thousands of chromatograms. The vocBinBase database may also be queried across different studies, comprising currently 1,537 unique mass spectra generated from 1.7 million deconvoluted mass spectra of 3,435 samples (18 species). Mass spectra with retention indices and volatile profiles are available as free download under the CC-BY agreement (http://vocbinbase.fiehnlab.ucdavis.edu). The BinBase

  8. The volatile compound BinBase mass spectral database

    Directory of Open Access Journals (Sweden)

    Barupal Dinesh K

    2011-08-01

    Full Text Available Abstract Background Volatile compounds comprise diverse chemical groups with wide-ranging sources and functions. These compounds originate from major pathways of secondary metabolism in many organisms and play essential roles in chemical ecology in both plant and animal kingdoms. In past decades, sampling methods and instrumentation for the analysis of complex volatile mixtures have improved; however, design and implementation of database tools to process and store the complex datasets have lagged behind. Description The volatile compound BinBase (vocBinBase is an automated peak annotation and database system developed for the analysis of GC-TOF-MS data derived from complex volatile mixtures. The vocBinBase DB is an extension of the previously reported metabolite BinBase software developed to track and identify derivatized metabolites. The BinBase algorithm uses deconvoluted spectra and peak metadata (retention index, unique ion, spectral similarity, peak signal-to-noise ratio, and peak purity from the Leco ChromaTOF software, and annotates peaks using a multi-tiered filtering system with stringent thresholds. The vocBinBase algorithm assigns the identity of compounds existing in the database. Volatile compound assignments are supported by the Adams mass spectral-retention index library, which contains over 2,000 plant-derived volatile compounds. Novel molecules that are not found within vocBinBase are automatically added using strict mass spectral and experimental criteria. Users obtain fully annotated data sheets with quantitative information for all volatile compounds for studies that may consist of thousands of chromatograms. The vocBinBase database may also be queried across different studies, comprising currently 1,537 unique mass spectra generated from 1.7 million deconvoluted mass spectra of 3,435 samples (18 species. Mass spectra with retention indices and volatile profiles are available as free download under the CC-BY agreement (http

  9. Effects of Electron Acceptors, Reducing Agents, and Toxic Metabolites on Anaerobic Degradation of Heterocyclic Compounds

    DEFF Research Database (Denmark)

    Licht, Dorthe; Ahring, Birgitte Kiær; Arvin, Erik

    1996-01-01

    Degradation of four heterocyclic compounds was examined under nitrate-reducing, sulphate-reducing and methanogenic conditions. Soil samples from a creosote-polluted site in Denmark were used as inoculum. Indole and quinoline were degraded under all redox conditions with the highest degradation...... of quinoline under sulphate-reducing conditions which was inhibited by sulphide at concentrations above 0.8 mM. Degradation of quinoline under methanogenic conditions was also inhibited by 3.2 mM sulphide used as a reducing agent, but sulphide had no inhibitory effect on the degradation of indole...... in methanogenic and sulphate-reducing soil slurries...

  10. Toxicity of a plant based mosquito repellent/killer

    Science.gov (United States)

    Singh, Prakash Raj; Mohanty, Manoj Kumar

    2012-01-01

    The mission to make humans less attractive to mosquitoes has fuelled decades of scientific research on mosquito behaviour and control. The search for the perfect topical insect repellent/killer continues. This analysis was conducted to review and explore the scientific information on toxicity produced by the ingredients/contents of a herbal product. In this process of systemic review the following methodology was applied. By doing a MEDLINE search with key words of selected plants, plant based insect repellents/killers pertinent articles published in journals and authentic books were reviewed. The World Wide Web and the Extension Toxicity Network database (IPCS-ITOX) were also searched for toxicology data and other pertinent information. Repellents do not all share a single mode of action and surprisingly little is known about how repellents act on their target insects. Moreover, different mosquito species may react differently to the same repellent. After analysis of available data and information on the ingredient, of the product in relation to medicinal uses, acute and chronic toxicity of the selected medicinal plants, it can be concluded that the ingredients included in the herbal product can be used as active agents against mosquitoes. If the product which contains the powder of the above said plants is applied with care and safety, it is suitable fo use as a mosquito repellent/killer. PMID:23554562

  11. Integrated scientific data bases review on asulacrine and associated toxicity.

    Science.gov (United States)

    Afzal, Attia; Sarfraz, Muhammad; Wu, Zimei; Wang, Guangji; Sun, Jianguo

    2016-08-01

    Asulacrine (ASL), a weakly basic and highly lipophilic drug was synthesized in 1980's in cancer research laboratory of Auckland by modifications to the acridine portion of amsacrine on 3-, 4- and 5-substitution patterns. In contrast to its precursor amsacrine (m-AMSA), ASL was effective not only against leukemia and Lewis lung tumor system but also a wide variety of solid tumor. Its metabolic pathway is not same to amsacrine hence different side effects, hepatotoxicity and excretion was observed. Asulacrine is under phase II clinical trials and has showed promising results but its toxicity especially phlebitis is stumbling block in its clinical implementation. This review is an effort to give a possible clue, based on scientifically proven results, to the researchers to solve the mystery of associated toxicity, phlebitis. Review covers the available literature on asulacrine and other acridine derivatives regarding pharmacology, pharmacokinetics, quantitative structure activity relationship and toxicology via electronic search using scientific databases like PubMed and others. To date, all abstracts and full-text articles were discussed and analyzed. The tabulated comparisons and circuitry mechanism of ASL are the added features of the review which give a complete understanding of hidden aspects of possible route cause of associated toxicity, the phlebitis. Copyright © 2016. Published by Elsevier Ireland Ltd.

  12. Lethal and sublethal endpoints observed for Artemia exposed to two reference toxicants and an ecotoxicological concern organic compound.

    Science.gov (United States)

    Manfra, Loredana; Canepa, Sara; Piazza, Veronica; Faimali, Marco

    2016-01-01

    Swimming speed alteration and mortality assays with the marine crustacean Artemia franciscana were carried out. EC50 and LC50 values after 24-48h exposures were calculated for two reference toxicants, copper sulphate pentahydrate (CuSO4·5H2O) and Sodium Dodecyl Sulphate (SDS), and an ecotoxicological concern organic compound, Diethylene Glycol (DEG). Different end-points have been evaluated, in order to point out their sensitivity levels. The swimming speed alteration (SSA) was compared to mortality values and also to the hatching rate inhibition (literature data). SSA resulted to be more sensitive than the mortality and with a sensitivity comparable to (or even higher than) the hatching rate endpoint. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Assessment of an in vitro model of human cells to evaluate the toxic and irritating potential of chemical compounds

    Directory of Open Access Journals (Sweden)

    M. Catalano

    2011-01-01

    Full Text Available We attempted to induce differentation in unidifferentiated NCTC2544 human keratinocyte line, by exposure to ZnSO4 and CaCl2. Analysis of specific markers, transglutaminase I, involucrin and loricrin, show that basal NCTC2544 (BL reached spinous- (SL and granular-like (GL phenotypes. BL-, SI- and GL- NCTC were exposed to SDS, as irritant stimulus and Neutral red uptake (NRU and MTT cytoxicity tests evidenced a relatively higher toxicity in SL- and GL cells on lysosomes respect to mitochondria. ILIα cytokine was monitored as early inflammation marker. The complex of data provides evidence for the suitability of our in vitro model to the analysis of cytotoxic/biological effects of topically applied exogenous compounds.

  14. Volatile organic compounds released from Microcystis flos-aquae under nitrogen sources and their toxic effects on Chlorella vulgaris.

    Science.gov (United States)

    Xu, Qinghuan; Yang, Lin; Yang, Wangting; Bai, Yan; Hou, Ping; Zhao, Jingxian; Zhou, Lv; Zuo, Zhaojiang

    2017-01-01

    Eutrophication promotes massive growth of cyanobacteria and algal blooms, which can poison other algae and reduce biodiversity. To investigate the differences in multiple nitrogen (N) sources in eutrophicated water on the emission of volatile organic compounds (VOCs) from cyanobacteria, and their toxic effects on other algal growth, we analyzed VOCs emitted from Microcystis flos-aquae with different types and concentrations of nitrogen, and determined the effects under Normal-N and Non-N conditions on Chlorella vulgaris. M. flos-aquae released 27, 22, 20, 27, 19, 25 and 17 compounds, respectively, with NaNO 3 , NaNO 2 , NH 4 Cl, urea, Ser, Lys and Arg as the sole N source. With the reduction in N amount, the emission of VOCs was increased markedly, and the most VOCs were found under Non-N condition. C. vulgaris cell propagation, photosynthetic pigment and Fv/Fm declined significantly following exposure to M. flos-aquae VOCs under Non-N condition, but not under Normal-N condition. When C. vulgaris cells were treated with two terpenoids, eucalyptol and limonene, the inhibitory effects were enhanced with increasing concentrations. Therefore, multiple N sources in eutrophicated water induce different VOC emissions from cyanobacteria, and reduction in N can cause nutrient competition, which can result in emissions of more VOCs. Those VOCs released from M. flos-aquae cells under Non-N for nutrient competition can inhibit other algal growth. Among those VOCs, eucalyptol and limonene are the major toxic agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shitanda, Isao [Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)], E-mail: shitanda@rs.noda.tus.ac.jp; Takamatsu, Satoshi; Watanabe, Kunihiro; Itagaki, Masayuki [Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)

    2009-08-30

    A screen-printed algal biosensor was fabricated for evaluation of toxicity of chemicals. An algal ink was prepared by mixing unicellular microalga Chlorella vulgaris cells, carbon nanotubes and sodium alginate solution. The algal ink was immobilized directly on a screen-printed carbon electrode surface using screen-printing technique. Photosynthetically generated oxygen of the immobilized algae was monitored amperometically. Responses of the algal biosensor to four toxic compounds, 6-chloro-N-ethyl-N-isopropyl-1,3,5-triazine-2,4-diamine (atrazine) and 3-(3,4-dichlorophenyl)-1,1-diethylurea (DCMU) were evaluated as inhibition ratios of the reduction current. The concentrations that gave 50% inhibition of the oxygen reduction current (IC{sup '}{sub 50}) for atrazine and DCMU were 12 and 1 {mu}mol dm{sup -3}, respectively. In comparison with the conventional algal biosensors, in which the algal cells were entrapped in an alginate gel and immobilized on the surface of a transparent indium tin oxide electrode, the present sensor is much smaller and less expensive, with the shorter assay time.

  16. Amperometric screen-printed algal biosensor with flow injection analysis system for detection of environmental toxic compounds

    International Nuclear Information System (INIS)

    Shitanda, Isao; Takamatsu, Satoshi; Watanabe, Kunihiro; Itagaki, Masayuki

    2009-01-01

    A screen-printed algal biosensor was fabricated for evaluation of toxicity of chemicals. An algal ink was prepared by mixing unicellular microalga Chlorella vulgaris cells, carbon nanotubes and sodium alginate solution. The algal ink was immobilized directly on a screen-printed carbon electrode surface using screen-printing technique. Photosynthetically generated oxygen of the immobilized algae was monitored amperometically. Responses of the algal biosensor to four toxic compounds, 6-chloro-N-ethyl-N-isopropyl-1,3,5-triazine-2,4-diamine (atrazine) and 3-(3,4-dichlorophenyl)-1,1-diethylurea (DCMU) were evaluated as inhibition ratios of the reduction current. The concentrations that gave 50% inhibition of the oxygen reduction current (IC ' 50 ) for atrazine and DCMU were 12 and 1 μmol dm -3 , respectively. In comparison with the conventional algal biosensors, in which the algal cells were entrapped in an alginate gel and immobilized on the surface of a transparent indium tin oxide electrode, the present sensor is much smaller and less expensive, with the shorter assay time.

  17. LimTox: a web tool for applied text mining of adverse event and toxicity associations of compounds, drugs and genes.

    Science.gov (United States)

    Cañada, Andres; Capella-Gutierrez, Salvador; Rabal, Obdulia; Oyarzabal, Julen; Valencia, Alfonso; Krallinger, Martin

    2017-07-03

    A considerable effort has been devoted to retrieve systematically information for genes and proteins as well as relationships between them. Despite the importance of chemical compounds and drugs as a central bio-entity in pharmacological and biological research, only a limited number of freely available chemical text-mining/search engine technologies are currently accessible. Here we present LimTox (Literature Mining for Toxicology), a web-based online biomedical search tool with special focus on adverse hepatobiliary reactions. It integrates a range of text mining, named entity recognition and information extraction components. LimTox relies on machine-learning, rule-based, pattern-based and term lookup strategies. This system processes scientific abstracts, a set of full text articles and medical agency assessment reports. Although the main focus of LimTox is on adverse liver events, it enables also basic searches for other organ level toxicity associations (nephrotoxicity, cardiotoxicity, thyrotoxicity and phospholipidosis). This tool supports specialized search queries for: chemical compounds/drugs, genes (with additional emphasis on key enzymes in drug metabolism, namely P450 cytochromes-CYPs) and biochemical liver markers. The LimTox website is free and open to all users and there is no login requirement. LimTox can be accessed at: http://limtox.bioinfo.cnio.es. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. A fluorescence-based rapid screening assay for cytotoxic compounds

    International Nuclear Information System (INIS)

    Montoya, Jessica; Varela-Ramirez, Armando; Estrada, Abril; Martinez, Luis E.; Garza, Kristine; Aguilera, Renato J.

    2004-01-01

    A simple fluorescence-based assay was developed for the rapid screening of potential cytotoxic compounds generated by combinatorial chemistry. The assay is based on detection of nuclear green fluorescent protein (GFP) staining of a human cervical cancer cell line (HeLa) carrying an integrated histone H2B-GFP fusion gene. Addition of a cytotoxic compound to the HeLa-GFP cells results in the eventual degradation of DNA and loss of the GFP nuclear fluorescence. Using this assay, we screened 11 distinct quinone derivatives and found that several of these compounds were cytotoxic. These compounds are structurally related to plumbagin an apoptosis-inducing naphthoquinone isolated from Black Walnut. In order to determine the mechanism by which cell death was induced, we performed additional experiments with the most cytotoxic quinones. These compounds were found to induce morphological changes (blebbing and nuclear condensation) consistent with induction of apoptosis. Additional tests revealed that the cytotoxic compounds induce both necrotic and apoptotic modes of death

  19. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    Science.gov (United States)

    Hui Wang; Mingyue Jiang; Shujun Li; Chung-Yun Hse; Chunde Jin; Fangli Sun; Zhuo Li

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and...

  20. Possibility of use of Azgir underground nuclear cavities for burial of sulfur and her toxic compounds - products of oil refining

    International Nuclear Information System (INIS)

    Akhmetov, E.Z.; Adymov, Zh.I.

    1998-01-01

    The intensive growth of production oil and gas in Western Kazakhstan increases ecological vulnerability of an environment and a fauna because of the pressure of negative consequences arising with production, refining and transportation of the oil raw material, and also because of pernicious influence of accompanying products and wastes of oil refining manufacture being chemically dangerous and toxic, requiring special conditions of the handling, warehousing and storage for provision of ecological safety. A problem of the reclamation, safe warehousing, storage and long-term disposal (burial) of such accompanying products and wastes, as for example, sulfur and its compounds till now is not solved. For example, the mass of the accumulated mountains of crystal sulfur makes on cautious calculations from 2 up to 3 million tonnes also creates real danger of the propagation and harmful influence on the environment. The neutralization of sulfur and its compounds means removal them from the active handling with an environment, i.e. creation of such conditions in which sulfur products for a long time cannot cause harm atmosphere, underground medium and waters, vegetative and animal world. For it is offered to use underground cavities in a salt dome raising Large Azgir and the funnel-shaped hollow in persalt rocks formed as a result of underground nuclear explosions, carried out in 1978-1979 years near village Azgir Atyrau province. The sulfur products is possible to place on a long safe storage in funnel-shaped hollow (the A9 platform) volume 1,5 million cubic meters, by keeping, if necessary, an possibility of their extraction for needs of the future generations or to remove in underground nuclear cavities in stone salt (the A8 and A11 platforms) total volume 330000 cubic meters, from which it is not provided in the future to take out the sulfur products. At this the sulfur is removed from an environment on a storage or burial in the inactive form, i.e. the sulfur products

  1. A pharmacologically-based array to identify targets of cyclosporine A-induced toxicity in cultured renal proximal tubule cells

    International Nuclear Information System (INIS)

    Sarró, Eduard; Jacobs-Cachá, Conxita; Itarte, Emilio; Meseguer, Anna

    2012-01-01

    Mechanisms of cyclosporine A (CsA)-induced nephrotoxicity were generally thought to be hemodynamic in origin; however, there is now accumulating evidence of a direct tubular effect. Although genomic and proteomic experiments by our group and others provided overall information on genes and proteins up- or down-regulated by CsA in proximal tubule cells (PTC), a comprehensive view of events occurring after CsA exposure remains to be described. For this purpose, we applied a pharmacologic approach based on the use of known activities of a large panel of potentially protective compounds and evaluated their efficacy in preventing CsA toxicity in cultured mouse PTC. Our results show that compounds that blocked protein synthesis and apoptosis, together with the CK2 inhibitor DMAT and the PI3K inhibitor apigenin, were the most efficient in preventing CsA toxicity. We also identified GSK3, MMPs and PKC pathways as potential targets to prevent CsA damage. Additionally, heparinase-I and MAPK inhibitors afforded partial but significant protection. Interestingly, antioxidants and calcium metabolism-related compounds were unable to ameliorate CsA-induced cytotoxicity. Subsequent experiments allowed us to clarify the hierarchical relationship of targeted pathways after CsA treatment, with ER stress identified as an early effector of CsA toxicity, which leads to ROS generation, phenotypical changes and cell death. In summary, this work presents a novel experimental approach to characterizing cellular responses to cytotoxics while pointing to new targets to prevent CsA-induced toxicity in proximal tubule cells. Highlights: ► We used a novel pharmacological approach to elucidate cyclosporine (CsA) toxicity. ► The ability of a broad range of compounds to prevent CsA toxicity was evaluated. ► CsA toxicity was monitored using LDH release assay and PARP cleavage. ► Protein synthesis, PI3K, GSK3, MMP, PKC and caspase inhibitors prevented CsA toxicity. ► We also identified ER

  2. A pharmacologically-based array to identify targets of cyclosporine A-induced toxicity in cultured renal proximal tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Sarró, Eduard, E-mail: eduard.sarro@vhir.org [Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Renal Physiopathology, CIBBIM-Nanomedicine, Vall d' Hebron Research Institute (VHIR), 08035 Barcelona (Spain); Jacobs-Cachá, Conxita, E-mail: conxita.jacobs@vhir.org [Renal Physiopathology, CIBBIM-Nanomedicine, Vall d' Hebron Research Institute (VHIR), 08035 Barcelona (Spain); Itarte, Emilio, E-mail: emili.itarte@uab.es [Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Meseguer, Anna, E-mail: ana.meseguer@vhir.org [Renal Physiopathology, CIBBIM-Nanomedicine, Vall d' Hebron Research Institute (VHIR), 08035 Barcelona (Spain); Departament de Bioquimica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)

    2012-01-15

    Mechanisms of cyclosporine A (CsA)-induced nephrotoxicity were generally thought to be hemodynamic in origin; however, there is now accumulating evidence of a direct tubular effect. Although genomic and proteomic experiments by our group and others provided overall information on genes and proteins up- or down-regulated by CsA in proximal tubule cells (PTC), a comprehensive view of events occurring after CsA exposure remains to be described. For this purpose, we applied a pharmacologic approach based on the use of known activities of a large panel of potentially protective compounds and evaluated their efficacy in preventing CsA toxicity in cultured mouse PTC. Our results show that compounds that blocked protein synthesis and apoptosis, together with the CK2 inhibitor DMAT and the PI3K inhibitor apigenin, were the most efficient in preventing CsA toxicity. We also identified GSK3, MMPs and PKC pathways as potential targets to prevent CsA damage. Additionally, heparinase-I and MAPK inhibitors afforded partial but significant protection. Interestingly, antioxidants and calcium metabolism-related compounds were unable to ameliorate CsA-induced cytotoxicity. Subsequent experiments allowed us to clarify the hierarchical relationship of targeted pathways after CsA treatment, with ER stress identified as an early effector of CsA toxicity, which leads to ROS generation, phenotypical changes and cell death. In summary, this work presents a novel experimental approach to characterizing cellular responses to cytotoxics while pointing to new targets to prevent CsA-induced toxicity in proximal tubule cells. Highlights: ► We used a novel pharmacological approach to elucidate cyclosporine (CsA) toxicity. ► The ability of a broad range of compounds to prevent CsA toxicity was evaluated. ► CsA toxicity was monitored using LDH release assay and PARP cleavage. ► Protein synthesis, PI3K, GSK3, MMP, PKC and caspase inhibitors prevented CsA toxicity. ► We also identified ER

  3. BitterSweetForest: A random forest based binary classifier to predict bitterness and sweetness of chemical compounds

    Science.gov (United States)

    Banerjee, Priyanka; Preissner, Robert

    2018-04-01

    Taste of a chemical compounds present in food stimulates us to take in nutrients and avoid poisons. However, the perception of taste greatly depends on the genetic as well as evolutionary perspectives. The aim of this work was the development and validation of a machine learning model based on molecular fingerprints to discriminate between sweet and bitter taste of molecules. BitterSweetForest is the first open access model based on KNIME workflow that provides platform for prediction of bitter and sweet taste of chemical compounds using molecular fingerprints and Random Forest based classifier. The constructed model yielded an accuracy of 95% and an AUC of 0.98 in cross-validation. In independent test set, BitterSweetForest achieved an accuracy of 96 % and an AUC of 0.98 for bitter and sweet taste prediction. The constructed model was further applied to predict the bitter and sweet taste of natural compounds, approved drugs as well as on an acute toxicity compound data set. BitterSweetForest suggests 70% of the natural product space, as bitter and 10 % of the natural product space as sweet with confidence score of 0.60 and above. 77 % of the approved drug set was predicted as bitter and 2% as sweet with a confidence scores of 0.75 and above. Similarly, 75% of the total compounds from acute oral toxicity class were predicted only as bitter with a minimum confidence score of 0.75, revealing toxic compounds are mostly bitter. Furthermore, we applied a Bayesian based feature analysis method to discriminate the most occurring chemical features between sweet and bitter compounds from the feature space of a circular fingerprint.

  4. Synergy Maps: exploring compound combinations using network-based visualization.

    Science.gov (United States)

    Lewis, Richard; Guha, Rajarshi; Korcsmaros, Tamás; Bender, Andreas

    2015-01-01

    The phenomenon of super-additivity of biological response to compounds applied jointly, termed synergy, has the potential to provide many therapeutic benefits. Therefore, high throughput screening of compound combinations has recently received a great deal of attention. Large compound libraries and the feasibility of all-pairs screening can easily generate large, information-rich datasets. Previously, these datasets have been visualized using either a heat-map or a network approach-however these visualizations only partially represent the information encoded in the dataset. A new visualization technique for pairwise combination screening data, termed "Synergy Maps", is presented. In a Synergy Map, information about the synergistic interactions of compounds is integrated with information about their properties (chemical structure, physicochemical properties, bioactivity profiles) to produce a single visualization. As a result the relationships between compound and combination properties may be investigated simultaneously, and thus may afford insight into the synergy observed in the screen. An interactive web app implementation, available at http://richlewis42.github.io/synergy-maps, has been developed for public use, which may find use in navigating and filtering larger scale combination datasets. This tool is applied to a recent all-pairs dataset of anti-malarials, tested against Plasmodium falciparum, and a preliminary analysis is given as an example, illustrating the disproportionate synergism of histone deacetylase inhibitors previously described in literature, as well as suggesting new hypotheses for future investigation. Synergy Maps improve the state of the art in compound combination visualization, by simultaneously representing individual compound properties and their interactions. The web-based tool allows straightforward exploration of combination data, and easier identification of correlations between compound properties and interactions.

  5. Structure-Based Virtual Screening of Commercially Available Compound Libraries.

    Science.gov (United States)

    Kireev, Dmitri

    2016-01-01

    Virtual screening (VS) is an efficient hit-finding tool. Its distinctive strength is that it allows one to screen compound libraries that are not available in the lab. Moreover, structure-based (SB) VS also enables an understanding of how the hit compounds bind the protein target, thus laying ground work for the rational hit-to-lead progression. SBVS requires a very limited experimental effort and is particularly well suited for academic labs and small biotech companies that, unlike pharmaceutical companies, do not have physical access to quality small-molecule libraries. Here, we describe SBVS of commercial compound libraries for Mer kinase inhibitors. The screening protocol relies on the docking algorithm Glide complemented by a post-docking filter based on structural protein-ligand interaction fingerprints (SPLIF).

  6. LC-MS-BASED METABOLOMICS OF XENOBIOTIC-INDUCED TOXICITIES

    Directory of Open Access Journals (Sweden)

    Chi Chen

    2013-01-01

    Full Text Available Xenobiotic exposure, especially high-dose or repeated exposure of xenobiotics, can elicit detrimental effects on biological systems through diverse mechanisms. Changes in metabolic systems, including formation of reactive metabolites and disruption of endogenous metabolism, are not only the common consequences of toxic xenobiotic exposure, but in many cases are the major causes behind development of xenobiotic-induced toxicities (XIT. Therefore, examining the metabolic events associated with XIT generates mechanistic insights into the initiation and progression of XIT, and provides guidance for prevention and treatment. Traditional bioanalytical platforms that target only a few suspected metabolites are capable of validating the expected outcomes of xenobiotic exposure. However, these approaches lack the capacity to define global changes and to identify unexpected events in the metabolic system. Recent developments in high-throughput metabolomics have dramatically expanded the scope and potential of metabolite analysis. Among all analytical techniques adopted for metabolomics, liquid chromatography-mass spectrometry (LC-MS has been most widely used for metabolomic investigations of XIT due to its versatility and sensitivity in metabolite analysis. In this review, technical platform of LC-MS-based metabolomics, including experimental model, sample preparation, instrumentation, and data analysis, are discussed. Applications of LC-MS-based metabolomics in exploratory and hypothesis-driven investigations of XIT are illustrated by case studies of xenobiotic metabolism and endogenous metabolism associated with xenobiotic exposure.

  7. Sub-chronic toxicity study of a novel herbal-based formulation (Semelil on dogs

    Directory of Open Access Journals (Sweden)

    Farzamfar B

    2008-04-01

    Full Text Available Semelil (ANGIPARSTM, a novel herbal-based compound containing extract of Melilotus officinalis, was formulated for treatment of chronic wounds, especially diabetic foot ulcer. The purpose of this study was to investigate safety and toxicity effects of intramuscular administration of Semelil in dogs. "nPreliminary one-month study with Semelil was performed on 8 male and female dogs divided into 2 groups, test and control, four animals each. Semelil was administered intramuscularlyat a dose of 0.07 ml/kg body wt. once a day to the animals of the test group, while the control group received sterile saline. During experiments, general state of the animals including the dynamics of body weight changes, appetite, motor activity and behavior, hair condition, ECG parameters, rectal temperature of animals and data of hematological and biochemical tests were monitored for signs of toxicity and side-effects. Finally, morphology and histology analyses were performed using standard methods."nNo adverse health or toxicity effects were observed through the course of the study. No damaging consequences of Semelil injections on the functional state of main organs of the experimental animals were found. This observation gave a good evidence of a favorable safety profile compatible with potential therapeutic use of Semelil.

  8. Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish.

    Science.gov (United States)

    Juneidi, Ibrahim; Hayyan, Maan; Mohd Ali, Ozair

    2016-04-01

    An investigation on the toxicological assessment of 10 choline chloride (ChCl)-based deep eutectic solvents (DESs) towards four fungi strains and Cyprinus carpio fish was conducted. ChCl was combined with materials from different chemical groups such as alcohols, sugars, acids and others to form DESs. The study was carried out on the individual DES components, their aqueous mixture before DES formation and their formed DESs. The agar disc diffusion method was followed to investigate their toxicity on four fungi strains selected as a model of eukaryotic microorganisms (Phanerochaete chrysosporium, Aspergillus niger, Lentinus tigrinus and Candida cylindracea). Among these DESs, ChCl:ZnCl2 exhibited the highest inhibition zone diameter towards the tested fungi growth in vitro, followed by the acidic group (malonic acid and p-toluenesulfonic acid). Another study was conducted to test the acute toxicity and determine the lethal concentration at 50 % (LC50) of the same DESs on C. carpio fish. The inhibition range and LC50 of DESs were found to be different from their individual components. DESs were found to be less toxic than their mixture or individual components. The LC50 of ChCl:MADES is much higher than that of ChCl:MAMix. Moreover, the DESs acidic group showed a lower inhibition zone on fungi growth. Thus, DESs should be considered as new components with different physicochemical properties and toxicological profiles, and not merely compositions of compounds.

  9. Phosphorus-based compounds for EUV multilayer optics materials

    NARCIS (Netherlands)

    Medvedev, Viacheslav; Yakshin, Andrey; van de Kruijs, Robbert Wilhelmus Elisabeth; Bijkerk, Frederik

    2015-01-01

    We have evaluated the prospects of phosphorus-based compounds in extreme ultraviolet multilayer optics. Boron phosphide (BP) is suggested to be used as a spacer material in reflective multilayer optics operating just above the L-photoabsorption edge of P (λ ≈9.2 nm). Mo, Ag, Ru, Rh, and Pd were

  10. Biomedical Platforms Based on Composite Nanomaterials and Cellular Toxicity

    Science.gov (United States)

    Bellucci, Stefano; Bergamaschi, A.; Bottini, M.; Magrini, A.; Mustelin, T.

    2007-03-01

    Carbon nanotubes possess unique chemical, physical, optical, and magnetic properties, which make them suitable for many uses in industrial products and in the field of nanotechnology, including nanomedicine. We describe fluorescent nanocomposites for use in biosensors or nanoelectronics. Then we describe recent results on the issue of cytotoxicity of carbon nanotubes obtained in our labs. Silica nanoparticles have been widely used for biosensing and catalytic applications due to their large surface area-to-volume ratio, straightforward manufacture, and the compatibility of silica chemistry with covalent coupling of biomolecules. Carbon nanotubes-composite materials, such as those based on Carbon nanotubes bound to nanoparticles, are suitable, in order to tailor Carbon nanotubes properties for specific applications. We present a tunable synthesis of Multi Wall Carbon nanotubes-Silica nanoparticles. The control of the nanotube morphology and the bead size, coupled with the versatility of silica chemistry, makes these structures an excellent platform for the development of biosensors (optical, magnetic and catalytic applications). We describe the construction and characterization of supramolecular nanostructures consisting of ruthenium-complex luminophores, directly grafted onto short oxidized single-walled carbon nanotubes or physically entrapped in silica nanobeads, which had been covalently linked to short oxidized single-walled carbon nanotubes or hydrophobically adsorbed onto full-length multi-walled carbon nanotubes. These structures have been evaluated as potential electron-acceptor complexes for use in the fabrication of photovoltaic devices, and for their properties as fluorescent nanocomposites for use in biosensors or nanoelectronics. Finally, we compare the toxicity of pristine and oxidized Multi Walled Carbon nanotubes on human T cells - which would be among the first exposed cell types upon intravenous administration of Carbon nanotubes in therapeutic

  11. Toward a comparative retrospective analysis of rat and rabbit developmental toxicity studies for pharmaceutical compounds

    NARCIS (Netherlands)

    Theunissen, P. T.; Beken, S.; Cappon, G. D.; Chen, C.; Hoberman, A. M.; van der Laan, J. W.; Stewart, J.; Piersma, A. H.

    2014-01-01

    Based on a proposal made at the ICH Workshop in Tallinn, Estonia (2010), the value of the rabbit embryo-fetal development (EFD) versus the rodent EFD was examined by the HESI DART group. A cross-industry data survey provided anonymised EFD and toxicokinetic data from EFD studies on over 400 marketed

  12. High-Tc Superconductors Based on FeAs Compounds

    CERN Document Server

    Izyumov, Yuri

    2010-01-01

    Physical properties and models of electronic structure are analyzed for a new class of high-TC superconductors which belong to iron-based layered compounds. Despite their variable chemical composition and differences in the crystal structure, these compounds possess similar physical characteristics, due to electron carriers in the FeAs layers and the interaction of these carriers with fluctuations of the magnetic order. A tremendous interest towards these materials is explained by the prospects of their practical use. In this monograph, a full picture of the formation of physical properties of these materials, in the context of existing theory models and electron structure studies, is given. The book is aimed at a broad circle of readers: physicists who study electronic properties of the FeAs compounds, chemists who synthesize them and specialists in the field of electronic structure calculations in solids. It is helpful not only to researchers active in the fields of superconductivity and magnetism, but also...

  13. Synthesis and anticonvulsant activity of certain chalcone based pyrazoline compounds

    Directory of Open Access Journals (Sweden)

    Sudhakara Rao Gerapati

    2015-09-01

    Full Text Available Convulsions are involuntary, violent, spasmodic and prolonged contractions of skeletal muscles. That means a patient may have epilepsy without convulsions and vice versa. Epilepsy is a common neurological abnormality affecting about 1% of the world population. The primary objectives of these synthesized compounds are to suppress seizures and provide neuroprotection by minimizing the effects from seizure attacks. Here some of the chalcones and chalcone based various pyrazolines were evaluated for anticonvulsant activity. Their structures have been elucidated on the basis of elemental analyses and spectroscopic studies (IR, 1H-NMR & Mass spectroscopy. A preliminary evaluation of the prepared compounds has indicated that some of them exhibit moderate to significant anticonvulsant activity compared to a diazepam standard1-3.  All compounds were tested for their anticonvulsant activity using maximal electroshock induced convulsions (MES in mice at a dose level of 4 mg/kg.b.w. The compounds  Ph1, Ph2 , Py2 ,Py3 and Py4 have shown  to  good anticonvulsant activity when doses are administered as 25mg/ kg.b.w  , reduced the phases of seizures severity and  found to be active and also  increased survival rate. Remaining compounds are less efficacious.

  14. Mammalian Toxicity of Munitions Compounds. Phase III. Effects of Life-Time Exposure. Part III. Nitrocellulose.

    Science.gov (United States)

    1980-01-01

    the enzyme reference for each assay. 5. BUN: BUN is measured using the BUN Strate Kit (General Diag- nostic) which is based on the urease method. 12...at the end of cleav- age, is referred to as a blastula and consists of a layer of cells, the blastoderm, surrounding a cavity, the blastocoele. The...involves the forma- tion of germinal layers from the blastoderm. Primary organ rudiments are derived from the germinal layers during organogenesis, the

  15. THE 2005 WORLD HEALTH ORGANIZATION RE-EVALUATION OF HUMAN AND MAMMALIAN TOXIC EQUIVALENCY FACTORS FOR DIOXINS AND DIOXIN-LIKE COMPOUNDS

    Science.gov (United States)

    In June 2005 a WHO-IPCS expert meeting was held in Geneva during which the toxic equivalency factors (TEFs) for dioxin like compounds, including some polychlorinated biphenyls (PCBs), were re-evaluated. For this re-evaluation process the refined TEF database recently published by...

  16. Toward a comparative retrospective analysis of rat and rabbit developmental toxicity studies for pharmaceutical compounds.

    Science.gov (United States)

    Theunissen, P T; Beken, S; Cappon, G D; Chen, C; Hoberman, A M; van der Laan, J W; Stewart, J; Piersma, A H

    2014-08-01

    Based on a proposal made at the ICH Workshop in Tallinn, Estonia (2010), the value of the rabbit embryo-fetal development (EFD) versus the rodent EFD was examined by the HESI DART group. A cross-industry data survey provided anonymised EFD and toxicokinetic data from EFD studies on over 400 marketed and unmarketed drugs (over 800 studies) that were entered by experts at RIVM into US EPA’s ToxRefDB style database. The nature and severity of findings at the lowest observed adverse effect level (LOAEL) are being reviewed to quantitate the frequency with which lesser signs of embryo-fetal effects (e.g., delays in ossification, minor changes in frequency of variants) are driving the LOAELs. Interpretation was based on exposure rather than administered dose. This paper provides an update of this ongoing project as discussed during a workshop of the European Teratology Society in Ispra, Italy (2013). This was the first presentation of the initial data set, allowing debate on future directions, to provide a better understanding of the implications of either delaying a rabbit EFD or waiving the need in particular circumstances.

  17. Problems of Modelling Toxic Compounds Emitted by a Marine Internal Combustion Engine in Unsteady States

    Directory of Open Access Journals (Sweden)

    Rudnicki Jacek

    2015-01-01

    Full Text Available Contemporary engine tests are performed based on the theory of experiment. The available versions of programmes used for analysing experimental data make frequent use of the multiple regression model, which enables examining effects and interactions between input model parameters and a single output variable. The use of multi-equation models provides more freedom in analysing the measured results, as those models enable simultaneous analysis of effects and interactions between many output variables. They can also be used as a tool in preparing experimental material for other advanced diagnostic tools, such as the models making use of neural networks which, when properly prepared, enable also analysing measurement results recorded during dynamic processes.

  18. Method of plasma etching Ga-based compound semiconductors

    Science.gov (United States)

    Qiu, Weibin; Goddard, Lynford L.

    2012-12-25

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.

  19. Isoniazid release from suppositories compounded with selected bases.

    Science.gov (United States)

    Hudson, Kristofer C; Asbill, C Scott; Webster, Andrew A

    2007-01-01

    There is an increasing need for an alternative route of isoniazid adminstration for prophylaxis and treatment of tuberculosis in children. The purpose of this study is to evaluate the in vitro release of isoniazid from extemporaneously compounded isoniazid suppositories with a goal of optimizing the suppository dosage form for this indication. Suppositories were compounded using three different base formulations (cocoa butter, Witepsol H15 Base F, and a combination of polyethylene glycols 3350, 1000, and 400). The release profiles of six compounded suppositories with isoniazid (100 mg) were tested with a United States Pharmacopeial Convention-approved dissolution apparatus. Isoniazid concentrations at predetermined time points were determined using high-performance liquid chromatographic analysis. The results show that drug release from the water-solutble base (mixed polyethylene glycols) was significantly greater than that from the lipophilic bases (cocoa butter and Witepsol H15). The percentage of isoniazid release form the polyethylene glycol suppository formulation (70 +/- 1.4 mg/mL) was greater than that from the cocoa butter (55 +/- 1.1 mg/mL) and Witepsol H15 Base F (18 +/- 0.36 mg/mL) suppository formulations.

  20. Aerosol ionization gas analyzer for continious detection of toxic compounds in industrial gaseous effluents

    International Nuclear Information System (INIS)

    Groze, Kh.; Dering, Kh.; Gleizberg, F.

    1979-01-01

    In is noted that the problem of the environment protection as well as protection of the personnel at their working places against influence of harmful substances in air, demands continious measuring of an increasing number of harmful substances with provision of high sensitivity and accuracy of measurements. The demands are listed to the gas analyzers developed for these purposes: flexibility towards solution of different problems of measurement; great number of the substances to be measured; acceptable threshold of determination of different substances concentration in air and small measurement error; simplicity of maintanance and technical service and high reliability in exploitation; economy of fabrication and application. The data are given for the aerosol ionization gas analyzer which, in many cases, met the requirements listed. In the gas analyzer described, the analysed substance is converted for measuring its concentration into an aerosol by means of the aerosol generator, especially designed for this substance or group of substances. The produced aerosol is introduced into an ionization chamber with build-in radiation source and caused decrease of the ionization current in it. According to the decrease of the ionization current, concentration of the harmful substance in air is determined. Characteristics and possibilities of the gas analyzer exploitation are given and discussed on the base of the results of determination of some harmful substances concentrations in air in the laboratory conditions and in the real conditions of industrial production and in the health protection system [ru

  1. Toxic compound, anti-nutritional factors and functional properties of protein isolated from detoxified Jatropha curcas seed cake.

    Science.gov (United States)

    Saetae, Donlaporn; Suntornsuk, Worapot

    2010-12-28

    Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications.

  2. Lithium Improves Survival of PC12 Pheochromocytoma Cells in High-Density Cultures and after Exposure to Toxic Compounds

    Directory of Open Access Journals (Sweden)

    Cinzia Fabrizi

    2014-01-01

    Full Text Available Autophagy is an evolutionary conserved mechanism that allows for the degradation of long-lived proteins and entire organelles which are driven to lysosomes for digestion. Different kinds of stressful conditions such as starvation are able to induce autophagy. Lithium and rapamycin are potent autophagy inducers with different molecular targets. Lithium stimulates autophagy by decreasing the intracellular myo-inositol-1,4,5-triphosphate levels, while rapamycin acts through the inhibition of the mammalian target of rapamycin (mTOR. The correlation between autophagy and cell death is still a matter of debate especially in transformed cells. In fact, the execution of autophagy can protect cells from death by promptly removing damaged organelles such as mitochondria. Nevertheless, an excessive use of the autophagic machinery can drive cells to death via a sort of self-cannibalism. Our data show that lithium (used within its therapeutic window stimulates the overgrowth of the rat Pheochromocytoma cell line PC12. Besides, lithium and rapamycin protect PC12 cells from toxic compounds such as thapsigargin and trimethyltin. Taken together these data indicate that pharmacological activation of autophagy allows for the survival of Pheochromocytoma cells in stressful conditions such as high-density cultures and exposure to toxins.

  3. Toxic Compound, Anti-Nutritional Factors and Functional Properties of Protein Isolated from Detoxified Jatropha curcas Seed Cake

    Directory of Open Access Journals (Sweden)

    Worapot Suntornsuk

    2010-12-01

    Full Text Available Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications.

  4. The Study of Compound Quality of various Siam Weed (Eupatorium odoratum) Extracts and Toxicity Detoxification mechanisms Against 3rd Instar Larvae of Fruit Fly (Dacus dorsalis)

    International Nuclear Information System (INIS)

    Sutthivaiyakit, Pakawadee; Visetson, Suraphon; Sutthivaiyakit, Somyote; Patharakorn, Thipamon; Patharakorn, Surapol; Piadang, Patharakorn

    2006-09-01

    The 1H-NMR spectroscopy showed signals of DeltaH tild0.71.6 from hexane-leaf extracts from Siam weed (Eupatorium odoratum) These signals derive from protons of non-polar compounds which include fatty acid residues and terpinoids. In addition, the amplification of the signals indicated of some minor DeltaH tild6.2-7.7. This revealed protons from aromatic rings possibly involving in flavonoids from 1H-NMR spectrum. This is a believe that is a believe that these compounds could be varied from slightly polar compounds to moderately polar compounds. Furthermore, the Thin Layer Chromatography (TLC) of hexane, chloroform and methanol fractions showed the extracts composed of majority of less polar. It is and indication of the method of separation is quite food for separation of polarity basis from these extracts. Finally, the TLC of hexane fraction distinctively produced 7-8 compounds from the extracts. Toxicity testing using topical spray method showed that methnoloc extracts gave highest toxicity against 3rd instar larvae of fruit fly (Darcus dorsalis). The root extracts produced ca. 5 fold mohile GSH-S-transferase ws elevated 2-3 fold. The addition of dimethyl maleate into the extraccts increased their toxicity. The persistent experiment of eupathal from the extracts showed that the extracts can be stabilixed under aqueous solution upto 1 month with losing the compound. Finally, the Siam weed extracts prosuced non toxic to non-target organisms such as gabbies, bee, and mouse. The results of LC50 showed 15,000-26,000 mg/L 6,000-15,000 mg/L and 3,000-10,000 mg/L from hexane, chloroform and methanol extracts, respectively.

  5. Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L.

    Science.gov (United States)

    Modlitbová, Pavlína; Novotný, Karel; Pořízka, Pavel; Klus, Jakub; Lubal, Přemysl; Zlámalová-Gargošová, Helena; Kaiser, Jozef

    2018-01-01

    The purpose of this study was to determine the toxicity of two different sources of cadmium, i.e. CdCl 2 and Cd-based Quantum Dots (QDs), for freshwater model plant Lemna minor L. Cadmium telluride QDs were capped with two coating ligands: glutathione (GSH) or 3-mercaptopropionic acid (MPA). Growth rate inhibition and final biomass inhibition of L. minor after 168-h exposure were monitored as toxicity endpoints. Dose-response curves for Cd toxicity and EC50 168h values were statistically evaluated for all sources of Cd to uncover possible differences among the toxicities of tested compounds. Total Cd content and its bioaccumulation factors (BAFs) in L. minor after the exposure period were also determined to distinguish Cd bioaccumulation patterns with respect to different test compounds. Laser-Induced Breakdown Spectroscopy (LIBS) with lateral resolution of 200µm was employed in order to obtain two-dimensional maps of Cd spatial distribution in L. minor fronds. Our results show that GSH- and MPA-capped Cd-based QDs have similar toxicity for L. minor, but are significantly less toxic than CdCl 2 . However, both sources of Cd lead to similar patterns of Cd bioaccumulation and distribution in L. minor fronds. Our results are in line with previous reports that the main mediators of Cd toxicity and bioaccumulation in aquatic plants are Cd 2+ ions dissolved from Cd-based QDs. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Chemical compound-based direct reprogramming for future clinical applications

    Science.gov (United States)

    Takeda, Yukimasa; Harada, Yoshinori; Yoshikawa, Toshikazu; Dai, Ping

    2018-01-01

    Recent studies have revealed that a combination of chemical compounds enables direct reprogramming from one somatic cell type into another without the use of transgenes by regulating cellular signaling pathways and epigenetic modifications. The generation of induced pluripotent stem (iPS) cells generally requires virus vector-mediated expression of multiple transcription factors, which might disrupt genomic integrity and proper cell functions. The direct reprogramming is a promising alternative to rapidly prepare different cell types by bypassing the pluripotent state. Because the strategy also depends on forced expression of exogenous lineage-specific transcription factors, the direct reprogramming in a chemical compound-based manner is an ideal approach to further reduce the risk for tumorigenesis. So far, a number of reported research efforts have revealed that combinations of chemical compounds and cell-type specific medium transdifferentiate somatic cells into desired cell types including neuronal cells, glial cells, neural stem cells, brown adipocytes, cardiomyocytes, somatic progenitor cells, and pluripotent stem cells. These desired cells rapidly converted from patient-derived autologous fibroblasts can be applied for their own transplantation therapy to avoid immune rejection. However, complete chemical compound-induced conversions remain challenging particularly in adult human-derived fibroblasts compared with mouse embryonic fibroblasts (MEFs). This review summarizes up-to-date progress in each specific cell type and discusses prospects for future clinical application toward cell transplantation therapy. PMID:29739872

  7. Investigations on Ce- and Yb-based intermetallic compounds

    International Nuclear Information System (INIS)

    Elenbaas, R.A.

    1980-01-01

    The author describes investigations on a number of cerium- and ytterbium-based intermetallic compounds and alloys, yielding a lot of experimental results which could not always be put in a quantitative picture. All experimental data are consistent with a single-ion behaviour, where the 4f state is more or less modified by the conduction electrons. In the investigated systems several different features of the magnetism of cerium atoms in metals were studied. (Auth.)

  8. Estimation of toxicity using a Java based software tool

    Science.gov (United States)

    A software tool has been developed that will allow a user to estimate the toxicity for a variety of endpoints (such as acute aquatic toxicity). The software tool is coded in Java and can be accessed using a web browser (or alternatively downloaded and ran as a stand alone applic...

  9. High-Density Real-Time PCR-Based in Vivo Toxicogenomic Screen to Predict Organ-Specific Toxicity

    Directory of Open Access Journals (Sweden)

    Laszlo G. Puskas

    2011-09-01

    Full Text Available Toxicogenomics, based on the temporal effects of drugs on gene expression, is able to predict toxic effects earlier than traditional technologies by analyzing changes in genomic biomarkers that could precede subsequent protein translation and initiation of histological organ damage. In the present study our objective was to extend in vivo toxicogenomic screening from analyzing one or a few tissues to multiple organs, including heart, kidney, brain, liver and spleen. Nanocapillary quantitative real-time PCR (QRT-PCR was used in the study, due to its higher throughput, sensitivity and reproducibility, and larger dynamic range compared to DNA microarray technologies. Based on previous data, 56 gene markers were selected coding for proteins with different functions, such as proteins for acute phase response, inflammation, oxidative stress, metabolic processes, heat-shock response, cell cycle/apoptosis regulation and enzymes which are involved in detoxification. Some of the marker genes are specific to certain organs, and some of them are general indicators of toxicity in multiple organs. Utility of the nanocapillary QRT-PCR platform was demonstrated by screening different references, as well as discovery of drug-like compounds for their gene expression profiles in different organs of treated mice in an acute experiment. For each compound, 896 QRT-PCR were done: four organs were used from each of the treated four animals to monitor the relative expression of 56 genes. Based on expression data of the discovery gene set of toxicology biomarkers the cardio- and nephrotoxicity of doxorubicin and sulfasalazin, the hepato- and nephrotoxicity of rotenone, dihydrocoumarin and aniline, and the liver toxicity of 2,4-diaminotoluene could be confirmed. The acute heart and kidney toxicity of the active metabolite SN-38 from its less toxic prodrug, irinotecan could be differentiated, and two novel gene markers for hormone replacement therapy were identified

  10. Testing of toxicity based methods to develop site specific clean up objectives - phase 1: Toxicity protocol screening and applicability

    International Nuclear Information System (INIS)

    Hamilton, H.; Kerr, D.; Thorne, W.; Taylor, B.; Zadnik, M.; Goudey, S.; Birkholz, D.

    1994-03-01

    A study was conducted to develop a cost-effective and practical protocol for using bio-assay based toxicity assessment methods for remediation of decommissioned oil and gas production, and processing facilities. The objective was to generate site-specific remediation criteria for contaminated sites. Most companies have used the chemical-specific approach which, however, did not meet the ultimate land use goal of agricultural production. The toxicity assessment method described in this study dealt with potential impairment to agricultural crop production and natural ecosystems. Human health concerns were not specifically addressed. It was suggested that chemical-specific methods should be used when human health concerns exist. . Results showed that toxicity tests will more directly identify ecological stress caused by site contamination than chemical-specific remediation criteria, which can be unnecessarily protective. 11 refs., 7 tabs., 6 figs

  11. Emissions from Electronic Cigarettes: Assessing Vapers' Intake of Toxic Compounds, Secondhand Exposures, and the Associated Health Impacts.

    Science.gov (United States)

    Logue, Jennifer M; Sleiman, Mohamad; Montesinos, V Nahuel; Russell, Marion L; Litter, Marta I; Benowitz, Neal L; Gundel, Lara A; Destaillats, Hugo

    2017-08-15

    E-cigarettes likely represent a lower risk to health than traditional combustion cigarettes, but they are not innocuous. Recently reported emission rates of potentially harmful compounds were used to assess intake and predict health impacts for vapers and bystanders exposed passively. Vapers' toxicant intake was calculated for scenarios in which different e-liquids were used with various vaporizers, battery power settings and vaping regimes. For a high rate of 250 puff day -1 using a typical vaping regime and popular tank devices with battery voltages from 3.8 to 4.8 V, users were predicted to inhale formaldehyde (up to 49 mg day -1 ), acrolein (up to 10 mg day -1 ) and diacetyl (up to 0.5 mg day -1 ), at levels that exceeded U.S. occupational limits. Formaldehyde intake from 100 daily puffs was higher than the amount inhaled by a smoker consuming 10 conventional cigarettes per day. Secondhand exposures were predicted for two typical indoor scenarios: a home and a bar. Contributions from vaping to air pollutant concentrations in the home did not exceed the California OEHHA 8-h reference exposure levels (RELs), except when a high emitting device was used at 4.8 V. In that extreme scenario, the contributions from vaping amounted to as much as 12 μg m -3 formaldehyde and 2.6 μg m -3 acrolein. Pollutant concentrations in bars were modeled using indoor volumes, air exchange rates and the number of hourly users reported in the literature for U.S. bars in which smoking was allowed. Predicted contributions to indoor air levels were higher than those in the residential scenario. Formaldehyde (on average 135 μg m -3 ) and acrolein (28 μg m -3 ) exceeded the acute 1-h exposure REL for the highest emitting vaporizer/voltage combination. Predictions for these compounds also exceeded the 8-h REL in several bars when less intense vaping conditions were considered. Benzene concentrations in a few bars approached the 8-h REL, and diacetyl levels were close to the lower limit

  12. Integrating the fish embryo toxicity test as triad element for sediment toxicity assessment based on the water framework directive approach

    Energy Technology Data Exchange (ETDEWEB)

    Bartzke, Mariana [Dept. Aquatic Ecotoxicology, Goethe Univ. Frankfurt am Main (Germany); Gobio GmbH, Aarbergen/Kettenbach (Germany); Dept. Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research, UFZ, Leipzig (Germany); Delov, Vera [Dept. Aquatic Ecotoxicology, Goethe Univ. Frankfurt am Main (Germany); Gobio GmbH, Aarbergen/Kettenbach (Germany); Ecotoxicology, Fraunhofer Inst. for Molecular Biology and Applied Ecology IME, Aachen (Germany); Stahlschmidt-Allner, Petra; Allner, Bernhard [Gobio GmbH, Aarbergen/Kettenbach (Germany); Oehlmann, Joerg [Dept. Aquatic Ecotoxicology, Goethe Univ. Frankfurt am Main (Germany)

    2010-04-15

    Purpose: The objective of this study was to complement analyses according to the European Union Water Framework Directive (WFD) with a sediment toxicity analysis as part of an integrated river assessment. To this end, Hessian water courses were analyzed using the sediment quality triad concept according to Chapman with chemical analyses, in situ effect evaluations, and ecotoxicological assessments. For the ecotoxicological assessment (fish embryo toxicity test with Danio rerio), a new evaluation scheme was developed, the fish teratogenicity index (FTI), that allows for a classification of sediments into ecological quality classes compliant to the WFD. Materials and methods sediment and macrozoobenthos samples were taken from tributaries of the rivers Fulda and Lahn. Sediments were characterized regarding particle size, carbon, heavy metals, and polyaromatic hydrocarbon content. Macroinvertebrate samples were taken via multi-habitat sampling. The fish embryo toxicity test with D. rerio was conducted as a contact assay on the basis of DIN 38415-6. Results and discussion The integrated assessment indicated a significant influence of heavy metals and carbon content on macroinvertebrate communities. The bioaccessibility of sediment pollutants were clearly demonstrated by the FTI, which showed a wide range of adverse effects. A significant linear relationship between metals and the FTI was detected. However, there was no statistically significant evidence that macroinvertebrate communities were affected by the hydromorphological quality clements at the sampling sites. Conclusions The new scheme for the assessment of fish embryo toxicity test was successfully applied. The results suggest that sediment compounds impact macroinvertebrate communities and early development of fish. It demonstrates that the quality of sediments should be evaluated on a routine basis as part of an integrated river assessment. (orig.)

  13. Electrochemical properties of copper-based compounds with polyanion frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Yoshifumi; Hata, Shoma; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji, E-mail: kanno@echem.titech.ac.jp

    2016-03-15

    The copper-based polyanion compounds Li{sub 6}CuB{sub 4}O{sub 10} and Li{sub 2}CuP{sub 2}O{sub 7} were synthesized using a conventional solid-state reaction, and their electrochemical properties were determined. Li{sub 6}CuB{sub 4}O{sub 10} showed reversible capacity of 340 mA g{sup −1} at the first discharge–charge process, while Li{sub 2}CuP{sub 2}O{sub 7} showed large irreversible capacity and thus low charge capacity. Ex situ X-ray diffraction (XRD) and X-ray absorption near edge structure (XANES) measurements revealed that the electrochemical Li{sup +} intercalation/deintercalation reaction in Li{sub 6}CuB{sub 4}O{sub 10} occurred via reversible Cu{sup 2+}/Cu{sup +} reduction/oxidation reaction. These differences in their discharge/charge mechanisms are discussed based on the strength of the Cu–O covalency via their inductive effects. - Graphical abstract: Electrochemical properties for Cu-based polyanion compounds were investigated. The electrochemical reaction mechanisms are strongly affected by their Cu–O covalentcy. - Highlights: • Electrochemical properties of Cu-based polyanion compounds were investigated. • The Li{sup +} intercalation/deintercalation reaction progressed in Li{sub 6}CuB{sub 4}O{sub 10}. • The electrochemical displacement reaction progressed in Li{sub 2}CuP{sub 2}O{sub 7}. • The strength of Cu–O covalency affects the reaction mechanism.

  14. Schiff Bases of Benzothiazol-2-ylamine and Thiazolo[5,4-b] pyridin-2-ylamine as Anticonvulsants: Synthesis, Characterization and Toxicity Profiling.

    Science.gov (United States)

    Shukla, Rashmi; Singh, Ajeet P; Sonar, Pankaj K; Mishra, Mudita; Saraf, Shailendra K

    2016-01-01

    Schiff bases have a broad spectrum of biological activities like antiinflammatory, analgesic, antimicrobial, anticonvulsant, antitubercular, anticancer, antioxidant, anthelmintic and so forth. Thus, after a thorough perusal of literature, it was decided to conjugate benzothiazol-2-ylamine/thiazolo [5, 4-b] pyridin-2-ylamine with aromatic and heteroaromatic aldehydes to get a series of Schiff bases. Synthesis, characterization, in-silico toxicity profiling and anticonvulsant activity of the Schiff bases of Benzothiazol-2-ylamine and Thiazolo [5, 4-b] pyridin-2-ylamine. Aniline/4-aminopyridine was converted to the corresponding thiourea derivatives, which were cyclized to obtain benzothiazol-2-ylamine/thiazolo [5, 4-b] pyridin-2-ylamine. Finally, these were condensed with various aromatic and heteroaromatic aldehydes to obtain Schiff bases of benzothiazol-2-ylamine and thiazolo [5, 4-b] pyridin-2-ylamine. The synthesized compounds were characterized and screened for their anticonvulsant activity using maximal electroshock (MES) test and isoniazid (INH) induced convulsions test. In-silico toxicity profiling of all the synthesized compounds was done through "Lazar" and "Osiris" properties explorer. Majority of the compounds were more potent against MES induced convulsions than INH induced convulsions. Schiff bases of benzothiazol-2-ylamine were more effective than thiazolo [5, 4-b] pyridin-2-ylamine against MES induced convulsions. The compound benzothiazol-2-yl-(1H-indol-2-ylmethylene)-amine (VI) was the most potent member of the series against both types of convulsions. Compound VI exhibited the most significant activity profile in both the models. The compounds did not exhibit any carcinogenicity or acute toxicity in the in-silico studies. Thus, it may be concluded that the Schiff bases of benzothiazol-2-ylamine exhibit the potential to be promising and non-toxic anticonvulsant agents.

  15. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors

    Directory of Open Access Journals (Sweden)

    Milena Šetka

    2017-03-01

    Full Text Available The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols.

  16. Successful startup of a full-scale acrylonitrile wastewater biological treatment plant (ACN-WWTP) by eliminating the inhibitory effects of toxic compounds on nitrification.

    Science.gov (United States)

    Han, Yuanyuan; Jin, Xibiao; Wang, Feng; Liu, Yongdi; Chen, Xiurong

    2014-01-01

    During the startup of a full-scale anoxic/aerobic (A/O) biological treatment plant for acrylonitrile wastewater, the removal efficiencies of NH(3)-N and total Kjeldahl nitrogen (TKN) were 1.29 and 0.83% on day 30, respectively. The nitrification process was almost totally inhibited, which was mainly caused by the inhibitory effects of toxic compounds. To eliminate the inhibition, cultivating the bacteria that degrade toxic compounds with patience was applied into the second startup of the biological treatment plant. After 75 days of startup, the inhibitory effects of the toxic compounds on nitrification were eliminated. The treatment plant has been operated stably for more than 3 years. During the last 100 days, the influent concentrations of chemical oxygen demand (COD), NH(3)-N, TKN and total cyanide (TCN) were 831-2,164, 188-516, 306-542 and 1.17-9.57 mg L(-1) respectively, and the effluent concentrations were 257 ± 30.9, 3.30 ± 1.10, 31.6 ± 4.49 and 0.40 ± 0.10 mg L(-1) (n = 100), respectively. Four strains of cyanide-degrading bacteria which were able to grow with cyanide as the sole carbon and nitrogen source were isolated from the full-scale biological treatment plant. They were short and rod-shaped under scanning electron microscopy (SEM) and were identified as Brevundimonas sp., Rhizobium sp., Dietzia natronolimnaea and Microbacterium sp., respectively.

  17. Discovery of potent, novel, non-toxic anti-malarial compounds via quantum modelling, virtual screening and in vitro experimental validation

    Directory of Open Access Journals (Sweden)

    Kaludov Nikola

    2011-09-01

    Full Text Available Abstract Background Developing resistance towards existing anti-malarial therapies emphasize the urgent need for new therapeutic options. Additionally, many malaria drugs in use today have high toxicity and low therapeutic indices. Gradient Biomodeling, LLC has developed a quantum-model search technology that uses quantum similarity and does not depend explicitly on chemical structure, as molecules are rigorously described in fundamental quantum attributes related to individual pharmacological properties. Therapeutic activity, as well as toxicity and other essential properties can be analysed and optimized simultaneously, independently of one another. Such methodology is suitable for a search of novel, non-toxic, active anti-malarial compounds. Methods A set of innovative algorithms is used for the fast calculation and interpretation of electron-density attributes of molecular structures at the quantum level for rapid discovery of prospective pharmaceuticals. Potency and efficacy, as well as additional physicochemical, metabolic, pharmacokinetic, safety, permeability and other properties were characterized by the procedure. Once quantum models are developed and experimentally validated, the methodology provides a straightforward implementation for lead discovery, compound optimizzation and de novo molecular design. Results Starting with a diverse training set of 26 well-known anti-malarial agents combined with 1730 moderately active and inactive molecules, novel compounds that have strong anti-malarial activity, low cytotoxicity and structural dissimilarity from the training set were discovered and experimentally validated. Twelve compounds were identified in silico and tested in vitro; eight of them showed anti-malarial activity (IC50 ≤ 10 μM, with six being very effective (IC50 ≤ 1 μM, and four exhibiting low nanomolar potency. The most active compounds were also tested for mammalian cytotoxicity and found to be non-toxic, with a

  18. Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions.

    Science.gov (United States)

    Stein, Nienke E; Hamelers, Hubertus V M; Buisman, Cees N J

    2010-04-01

    A MFC-based biosensor can act as online toxicity sensor. Electrical current is a direct linear measure for metabolic activity of electrochemically active microorganisms. Microorganisms gain energy from anodic overpotential and current strongly depends on anodic overpotential. Therefore control of anodic overpotential is necessary to detect toxic events and prevent false positive alarms. Anodic overpotential and thus current is influenced by anode potential, pH, substrate and bicarbonate concentrations. In terms of overpotential all factor showed a comparable effect, anode potential 1.2% change in current density per mV, pH 0.43%/mV, bicarbonate 0.75%/mV and acetate 0.8%/mV. At acetate saturation the maximum acetate conversion rate is reached and with that a constant bicarbonate concentration. Control of acetate and bicarbonate concentration can be less strict than control of anode potential and pH. Current density changes due to changing anode potential and pH are in the same order of magnitude as changes due to toxicity. Strict control of pH and anode potential in a small range is required. The importance of anodic overpotential control for detection of toxic compounds is shown. To reach a stable baseline current under nontoxic conditions a MFC-based biosensor should be operated at controlled anode potential, controlled pH and saturated substrate concentrations. 2009 Elsevier B.V. All rights reserved.

  19. Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds

    International Nuclear Information System (INIS)

    Hutchings, G.; Heneghan, C.S.; Taylor, S.H.

    1996-01-01

    The industrial release of hydrocarbons and chlorine-containing organic molecules into the environment continues to attract considerable public concern, which in turn has led to governmental attempts to control such emissions. The challenge is to reduce pollution without stifling economic growth. Chlorine-containing pollutants are known to be particularly stable, and at present the main industrial process for their destruction involves thermal oxidation at 1,000 o C, an expensive process that can lead to the formation of highly toxic by-products such as dioxins and dibenzofurans. Catalytic combustion at lower temperatures could potentially destroy pollutants more efficiently (in terms of energy requirements) and without forming toxic by-products. Current industrial catalysts are based on precious metals that are deactivated rapidly by organochlorine compounds. Here we report that catalysts based on uranium oxide efficiently destroy a range of hydrocarbon and chlorine-containing pollutants, and that these catalysts are resistant to deactivation. We show that benzene, toluene, chlorobutane and chlorobenzene can be destroyed at moderate temperatures ( o C) and industrially relevant flow rates. (Author)

  20. Developmental toxicity assessment of common excipients using a stem cell-based in vitro morphogenesis model.

    Science.gov (United States)

    Yuan, Chloe J; Marikawa, Yusuke

    2017-11-01

    Various chemical compounds can inflict developmental toxicity when sufficiently high concentrations are exposed to embryos at the critical stages of development. Excipients, such as coloring agents and preservatives, are pharmacologically inactive ingredients that are included in various medications, foods, and cosmetics. However, concentrations that may adversely affect embryo development are largely unknown for most excipients. Here, the lowest observed adverse effect level (LOAEL) to inflict developmental toxicity was assessed for three coloring agents (allura red, brilliant blue, and tartrazine) and three preservatives (butylated hydroxyanisole, metabisulfite, and methylparaben). Adverse impact of a compound exposure was determined using the stem cell-based in vitro morphogenesis model, in which three-dimensional cell aggregates, or embryoid bodies (EBs), recapitulate embryonic processes of body axis elongation and patterning. LOAEL to impair EB morphogenesis was 200 μM for methylparaben, 400 μM for butylated hydroxyanisole, 600 μM for allura red and brilliant blue, and 1000 μM for metabisulfite. Gene expression analyses of excipient-treated EBs revealed that butylated hydroxyanisole and methylparaben significantly altered profiles of developmental regulators involved in axial elongation and patterning of the body. The present study may provide a novel in vitro approach to investigate potential developmental toxicity of common excipients with mechanistic insights. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Toxicity testing in the 21 century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways.

    Directory of Open Access Journals (Sweden)

    Sudin Bhattacharya

    Full Text Available The approaches to quantitatively assessing the health risks of chemical exposure have not changed appreciably in the past 50 to 80 years, the focus remaining on high-dose studies that measure adverse outcomes in homogeneous animal populations. This expensive, low-throughput approach relies on conservative extrapolations to relate animal studies to much lower-dose human exposures and is of questionable relevance to predicting risks to humans at their typical low exposures. It makes little use of a mechanistic understanding of the mode of action by which chemicals perturb biological processes in human cells and tissues. An alternative vision, proposed by the U.S. National Research Council (NRC report Toxicity Testing in the 21(st Century: A Vision and a Strategy, called for moving away from traditional high-dose animal studies to an approach based on perturbation of cellular responses using well-designed in vitro assays. Central to this vision are (a "toxicity pathways" (the innate cellular pathways that may be perturbed by chemicals and (b the determination of chemical concentration ranges where those perturbations are likely to be excessive, thereby leading to adverse health effects if present for a prolonged duration in an intact organism. In this paper we briefly review the original NRC report and responses to that report over the past 3 years, and discuss how the change in testing might be achieved in the U.S. and in the European Union (EU. EU initiatives in developing alternatives to animal testing of cosmetic ingredients have run very much in parallel with the NRC report. Moving from current practice to the NRC vision would require using prototype toxicity pathways to develop case studies showing the new vision in action. In this vein, we also discuss how the proposed strategy for toxicity testing might be applied to the toxicity pathways associated with DNA damage and repair.

  2. Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons.

    Science.gov (United States)

    Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J

    2003-11-01

    The objective of this research was to determine the effectiveness of using pecan and almond shell-based granular activated carbons (GACs) in the adsorption of volatile organic compounds (VOCs) of health concern and known toxic compounds (such as bromo-dichloromethane, benzene, carbon tetrachloride, 1,1,1-trichloromethane, chloroform, and 1,1-dichloromethane) compared to the adsorption efficiency of commercially used carbons (such as Filtrasorb 200, Calgon GRC-20, and Waterlinks 206C AW) in simulated test medium. The pecan shell-based GACs were activated using steam, carbon dioxide or phosphoric acid. An almond shell-based GAC was activated with phosphoric acid. Our results indicated that steam- or carbon dioxide-activated pecan shell carbons were superior in total VOC adsorption to phosphoric acid-activated pecan shell or almond shell carbons, inferring that the method of activation selected for the preparation of activated carbons affected the adsorption of VOCs and hence are factors to be considered in any adsorption process. The steam-activated, pecan shell carbon adsorbed more total VOCs than the other experimental carbons and had an adsorption profile similar to the two coconut shell-based commercial carbons, but had greater adsorption than the coal-based commercial carbon. All the carbons studied adsorbed benzene more effectively than the other organics. Pecan shell, steam-activated and acid-activated GACs showed higher adsorption of 1,1,1-trichloroethane than the other carbons studied. Multivariate analysis was conducted to group experimental carbons and commercial carbons based on their physical, chemical, and adsorptive properties. The results of the analysis conclude that steam-activated and acid-activated pecan shell carbons clustered together with coal-based and coconut shell-based commercial carbons, thus inferring that these experimental carbons could potentially be used as alternative sources for VOC adsorption in an aqueous environment.

  3. Assessment of chloroethene degradation rates based on ratios of daughter/parent compounds in groundwater plumes

    Science.gov (United States)

    Höhener, Patrick

    2014-05-01

    Chlorinated solvent spills at industrial and urban sites create groundwater plumes where tetrachloro- and trichloroethene may degrade to their daughter compounds, dichloroethenes, vinyl chloride and ethane. The assessment of degradation and natural attenuation at such sites may be based on the analysis and inverse modelling of concentration data, on the calculation of mass fluxes in transsects, and/or on the analysis of stable isotope ratios in the ethenes. Relatively few work has investigated the possibility of using ratio of concentrations for gaining information on degradation rates. The use of ratios bears the advantage that dilution of a single sample with contaminant-free water does not matter. It will be shown that molar ratios of daughter to parent compounds measured along a plume streamline are a rapid and robust mean of determining whether degradation rates increase or decrease along the degradation chain, and allow furthermore a quantitation of the relative magnitude of degradation rates compared to the rate of the parent compound. Furthermore, ratios of concentration will become constant in zones where degradation is absent, and this allows to sketching the extension of actively degrading zones. The assessment is possible for pure sources and also for mixed sources. A quantification method is proposed in order to estimate first-order degradation rates in zones of constant degradation activity. This quantification method includes corrections that are needed due to longitudinal and transversal dispersivity. The method was tested on a number of real field sites from literature. At the majority of these sites, the first-order degradation rates were decreasing along the degradation chain from tetrachloroethene to vinyl chloride, meaning that the latter was often reaching important concentrations. This is bad news for site owners due to the increased toxicity of vinyl chloride compared to its parent compounds.

  4. An approach to accidents modeling based on compounds road environments.

    Science.gov (United States)

    Fernandes, Ana; Neves, Jose

    2013-04-01

    The most common approach to study the influence of certain road features on accidents has been the consideration of uniform road segments characterized by a unique feature. However, when an accident is related to the road infrastructure, its cause is usually not a single characteristic but rather a complex combination of several characteristics. The main objective of this paper is to describe a methodology developed in order to consider the road as a complete environment by using compound road environments, overcoming the limitations inherented in considering only uniform road segments. The methodology consists of: dividing a sample of roads into segments; grouping them into quite homogeneous road environments using cluster analysis; and identifying the influence of skid resistance and texture depth on road accidents in each environment by using generalized linear models. The application of this methodology is demonstrated for eight roads. Based on real data from accidents and road characteristics, three compound road environments were established where the pavement surface properties significantly influence the occurrence of accidents. Results have showed clearly that road environments where braking maneuvers are more common or those with small radii of curvature and high speeds require higher skid resistance and texture depth as an important contribution to the accident prevention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Transcriptomics-based identification of developmental toxicants through their interference with cardiomyocyte differentiation of embryonic stem cells

    International Nuclear Information System (INIS)

    Dartel, Dorien A.M. van; Pennings, Jeroen L.A.; Schooten, Frederik J. van; Piersma, Aldert H.

    2010-01-01

    The embryonic stem cell test (EST) predicts developmental toxicity based on the inhibition of cardiomyocyte differentiation of embryonic stem cells (ESC). The subjective endpoint, the long culture duration together with the undefined applicability domain and related predictivity need further improvement to facilitate implementation of the EST into regulatory strategies. These aspects may be improved by studying gene expression changes in the ESC differentiation cultures and their modulation by compound exposure using transcriptomics. Here, we tested the developmental toxicants monobutyl phthalate and 6-aminonicotinamide. ESC were allowed to differentiated, and cardiomyocyte differentiation was assessed after 10 days of culture. RNA of solvent controls was collected after 0, 24, 48, 72 and 96 h of exposure, and RNA of developmental-toxicant-exposed cultures was collected after 24 and 96 h. Samples were hybridized to DNA microarrays, and 1355 genes were found differentially expressed among the unexposed experimental groups. These regulated genes were involved in differentiation-related processes, and Principal Component Analysis (PCA) based on these genes showed that the unexposed experimental groups appeared in chronological order in the PCA, which can therefore be regarded as a continuous representation of the differentiation track. The developmental-toxicant-exposed cultures appeared to deviate significantly from this differentiation track, which confirms the compound-modulating effects on the differentiation process. The incorporation of transcriptomics in the EST is expected to provide a more informative and improved endpoint in the EST as compared with morphology, allowing early detection of differentiation modulation. Furthermore, this approach may improve the definition of the applicability domain and predictivity of the EST.

  6. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60

    DEFF Research Database (Denmark)

    Baun, Anders; Sørensen, Sara Nørgaard; Rasmussen, R.F.

    2008-01-01

    The potential of C60-nanoparticles (Buckminster fullerenes) as contaminant carriers in aqueous systems was studied in a series of toxicity tests with algae (Pseudokirchneriella subcapitata) and crustaceans (Daphnia magna). Four common environmental contaminants (atrazine, methyl parathion, pentac...

  7. SEURAT-1 liver gold reference compounds: a mechanism-based review.

    Science.gov (United States)

    Jennings, Paul; Schwarz, Michael; Landesmann, Brigitte; Maggioni, Silvia; Goumenou, Marina; Bower, David; Leonard, Martin O; Wiseman, Jeffrey S

    2014-12-01

    There is an urgent need for the development of alternative methods to replace animal testing for the prediction of repeat dose chemical toxicity. To address this need, the European Commission and Cosmetics Europe have jointly funded a research program for 'Safety Evaluation Ultimately Replacing Animal Testing.' The goal of this program was the development of in vitro cellular systems and associated computational capabilities for the prediction of hepatic, cardiac, renal, neuronal, muscle, and skin toxicities. An essential component of this effort is the choice of appropriate reference compounds that can be used in the development and validation of assays. In this review, we focus on the selection of reference compounds for liver pathologies in the broad categories of cytotoxicity and lipid disorders. Mitochondrial impairment, oxidative stress, and apoptosis are considered under the category of cytotoxicity, while steatosis, cholestasis, and phospholipidosis are considered under the category of lipid dysregulation. We focused on four compound classes capable of initiating such events, i.e., chemically reactive compounds, compounds with specific cellular targets, compounds that modulate lipid regulatory networks, and compounds that disrupt the plasma membrane. We describe the molecular mechanisms of these compounds and the cellular response networks which they elicit. This information will be helpful to both improve our understanding of mode of action and help in the selection of appropriate mechanistic biomarkers, allowing us to progress the development of animal-free models with improved predictivity to the human situation.

  8. Materials Chemistry and Performance of Silicone-Based Replicating Compounds.

    Energy Technology Data Exchange (ETDEWEB)

    Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael; Trujillo, Ana B; Hale, Kevin

    2014-11-01

    Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could remove some residue.

  9. Thin sensing layer based on semi-conducting β-cyclodextrin rotaxane for toxic metals detection

    Energy Technology Data Exchange (ETDEWEB)

    Teka, S.; Gaied, A.; Jaballah, N. [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Université de Monastir, Faculté des Sciences de Monastir, Bd. de l' Environnement, 5019 Monastir (Tunisia); Xiaonan, S. [Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baı̈ f, 75205 Paris Cedex 13 (France); Majdoub, M., E-mail: mustapha.majdoub@fsm.rnu.tn [Laboratoire des Interfaces et Matériaux Avancés (LIMA), Université de Monastir, Faculté des Sciences de Monastir, Bd. de l' Environnement, 5019 Monastir (Tunisia)

    2016-02-15

    Highlights: • Microwave-assisted synthesis of rotaxane based on anthracene and β-cyclodextrin. • Morphological and optical characterization of thin solid film. • Elaboration of impedimetric gold/rotaxane sensor. • Investigation of the membrane sensitivity towards Hg{sup 2+}, Cu{sup 2+} and Pb{sup 2+} cations. - Abstract: An impedimetric sensor based on a new semi-conducting rotaxane has been described for detection of toxic cations. The rotaxane, consists on a π-conjugated material encapsulated into β-cyclodextrin (β-CD); it has been synthesized via the Williamson reaction under microwaves irradiation. The supramolecular structure of the compound was confirmed by NMR and FT-IR spectroscopies. A thin solid film of the rotaxane was deposited by spin-coating to develop a new electrochemical sensor. The morphological properties of the organic membrane were evaluated using contact angle measurements and atomic force microscopy. The gold/rotaxane/solution interfaces were investigated by electrochemical impedance spectroscopy and the obtained data were fitted using an equivalent electrical circuit. The response of the gold/rotaxane membrane towards Hg{sup 2+}, Cu{sup 2+} and Pb{sup 2+} cations was studied and the results showed a good sensitivity to the mercury cations.

  10. Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase - Degradation of compounds does not always eliminate toxicity.

    Science.gov (United States)

    Becker, Dennis; Varela Della Giustina, Saulo; Rodriguez-Mozaz, Sara; Schoevaart, Rob; Barceló, Damià; de Cazes, Matthias; Belleville, Marie-Pierre; Sanchez-Marcano, José; de Gunzburg, Jean; Couillerot, Olivier; Völker, Johannes; Oehlmann, Jörg; Wagner, Martin

    2016-11-01

    In this study, the performance of immobilised laccase (Trametes versicolor) was investigated in combination with the mediator syringaldehyde (SYR) in removing a mixture of 38 antibiotics in an enzymatic membrane reactor (EMR). Antibiotics were spiked in osmosed water at concentrations of 10μg·L(-1) each. Laccase without mediator did not reduce the load of antibiotics significantly. The addition of SYR enhanced the removal: out of the 38 antibiotics, 32 were degraded by >50% after 24h. In addition to chemical analysis, the samples' toxicity was evaluated in two bioassays (a growth inhibition assay and the Microtox assay). Here, the addition of SYR resulted in a time-dependent increase of toxicity in both bioassays. In cooperation with SYR, laccase effectively removes a broad range of antibiotics. However, this enhanced degradation induces unspecific toxicity. If this issue is resolved, enzymatic treatment may be a valuable addition to existing water treatment technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. From crystal to compound: structure-based antimalarial drug discovery.

    Science.gov (United States)

    Drinkwater, Nyssa; McGowan, Sheena

    2014-08-01

    Despite a century of control and eradication campaigns, malaria remains one of the world's most devastating diseases. Our once-powerful therapeutic weapons are losing the war against the Plasmodium parasite, whose ability to rapidly develop and spread drug resistance hamper past and present malaria-control efforts. Finding new and effective treatments for malaria is now a top global health priority, fuelling an increase in funding and promoting open-source collaborations between researchers and pharmaceutical consortia around the world. The result of this is rapid advances in drug discovery approaches and technologies, with three major methods for antimalarial drug development emerging: (i) chemistry-based, (ii) target-based, and (iii) cell-based. Common to all three of these approaches is the unique ability of structural biology to inform and accelerate drug development. Where possible, SBDD (structure-based drug discovery) is a foundation for antimalarial drug development programmes, and has been invaluable to the development of a number of current pre-clinical and clinical candidates. However, as we expand our understanding of the malarial life cycle and mechanisms of resistance development, SBDD as a field must continue to evolve in order to develop compounds that adhere to the ideal characteristics for novel antimalarial therapeutics and to avoid high attrition rates pre- and post-clinic. In the present review, we aim to examine the contribution that SBDD has made to current antimalarial drug development efforts, covering hit discovery to lead optimization and prevention of parasite resistance. Finally, the potential for structural biology, particularly high-throughput structural genomics programmes, to identify future targets for drug discovery are discussed.

  12. Documents for Recommended Toxicity Equivalency Factors for Human Health Risk Assessments of Dioxin and Dioxin-Like Compounds

    Science.gov (United States)

    This document describes the U.S. Environmental Protection Agency’s (U.S. EPA’s) updated approach for evaluating the human health risks from exposures to environmental media containing dioxin-like compounds (DLCs).

  13. Toxic effects of chlorinated organic compounds and potassium dichromate on growth rate and photosynthesis of marine phytoplankton

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Nyholm, Niels

    1992-01-01

    The toxic effects of potassium dichromate (K2Cr2O7), 3,4-dichloroaniline (DCA) and 2,4-dichlorophenol (DCP) on the photosynthesis of natural marine phytoplankton and five species of marine microalgae were investigated. Effect concentrations corresponding to a 50 % depression of photosynthesis (6h...

  14. Granular activated carbon for simultaneous adsorption and biodegradation of toxic oil sands process-affected water organic compounds.

    Science.gov (United States)

    Islam, Md Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed

    2015-04-01

    Naphthenic acids (NAs) released into oil sands process-affected water (OSPW) during bitumen processing in Northern Alberta are problematic for oil sands industries due to their toxicity in the environment and resistance to degradation during conventional wastewater treatment processes. Granular activated carbon (GAC) has shown to be an effective media in removing biopersistent organics from wastewater using a combination of adsorption and biodegradation removal mechanisms. A simultaneous GAC (0.4 g GAC/L) adsorption and biodegradation (combined treatment) study was used for the treatment of raw and ozonated OSPW. After 28 days of batch treatment, classical and oxidized NAs removals for raw OSPW were 93.3% and 73.7%, and for ozonated OSPW were 96.2% and 77.1%, respectively. Synergetic effects of the combined treatment process were observed in removals of COD, the acid extractable fraction, and oxidized NAs, which indicated enhanced biodegradation and bioregeneration in GAC biofilms. A bacteria copy number >10(8) copies/g GAC on GAC surfaces was found using quantitative real time polymerase chain reaction after treatment for both raw and ozonated OSPW. A Microtox(®) acute toxicity test (Vibrio fischeri) showed effective toxicity removal (>95.3%) for the combined treatments. Therefore, the simultaneous GAC adsorption and biodegradation treatment process is a promising technology for the elimination of toxic OSPW NAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Stress Response Monitoring of Photoautotrophic Higher Plant Suspension Cultures by Fluorescence Imaging for High-Throughput Toxic Compound Screening

    Czech Academy of Sciences Publication Activity Database

    Segečová, Anna; Červený, Jan; Roitsch, Thomas

    2017-01-01

    Roč. 8, č. 6 (2017), s. 678-692 ISSN 2152-2197 R&D Projects: GA MŠk(CZ) LO1415; GA ČR(CZ) GA15-17367S; GA MŠk(CZ) LM2015055 Institutional support: RVO:67179843 Keywords : Toxins * Toxicants * Ecotoxicology * PAM Chlorophyll Fluorescence Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology

  16. On the number of EINECS compounds that can be covered by (Q)SAR models for acute toxicity

    NARCIS (Netherlands)

    Zvinavashe, E.; Murk, A.J.; Rietjens, I.M.C.M.

    2009-01-01

    The new EU legislation for managing chemicals called REACH aims to fill in gaps in toxicity information that exist for the chemicals listed on the European Inventory of Existing Chemical Substances (EINECS). REACH advocates the use of alternatives to animal experimentation including, amongst others,

  17. Quantitative structure–activity relationships for toxicity and genotoxicity of halogenated aliphatic compounds: Wing spot test of Drosophila melanogaster

    Czech Academy of Sciences Publication Activity Database

    Chroust, K.; Pavlová, M.; Prokop, Z.; Mendel, Jan; Božková, K.; Kubát, Z.; Zajíčková, V.; Damborský, J.

    2007-01-01

    Roč. 67, č. 1 (2007), s. 152-159 ISSN 0045-6535 Institutional research plan: CEZ:AV0Z60930519 Keywords : toxicity * wing spot test * QSAR Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.739, year: 2007

  18. Toxicity and genotoxicity of the quaternary ammonium compound benzalkonium chloride (BAC) using Daphnia magna and Ceriodaphnia dubia as model systems

    International Nuclear Information System (INIS)

    Lavorgna, Margherita; Russo, Chiara; D'Abrosca, Brigida; Parrella, Alfredo; Isidori, Marina

    2016-01-01

    The toxicity and genotoxicity of the cationic surfactant benzalkonium chloride (BAC) were studied using Daphnia magna and Ceriodaphnia dubia as model systems. Acute and chronic toxicity testing were performed according to the international standard guidelines and the genotoxicity was detected through the comet assay on cells from whole organisms in vivo exposed. Acute effects occurred at concentrations in the order of tens of μg/L in D. magna and hundreds of μg/L in C. dubia. Chronic effects were found at one order of magnitude less than short-term effects maintaining the same difference in sensitivity between D. magna and C. dubia. BAC induced relevant DNA damage, in both cladocerans; the lowest adverse effect levels were 0.4 and 4 ng/L for D. magna and C. dubia, respectively. As these effective concentrations are far lower than BAC occurrence in surface waters (units of μg/L) a concerning environmental risk cannot be excluded. The findings of this study showed that D. magna and C. dubia, could be used as model organisms to detect acute and chronic toxicity as well as genotoxicity at the whole organism level. - Highlights: • Benzalkonium chloride chronic effect in C. dubia was found at dozens of μg/L. • The LOAEC detected by comet assay in D. magna is in the order of hundreds of pg/L. • D. magna and C. dubia are useful model organisms to detect toxicity and genotoxicity. - Benzalkonium chloride showed chronic toxicity and genotoxicity in Daphnia magna and Ceriodaphnia dubia at concentrations of environmental concern. Daphnids are useful model organisms.

  19. Cell death effects of resin-based dental material compounds and mercurials in human gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Reichl, Franz-Xaver [Walther-Straub-Institute of Pharmacology and Toxicology, Munich (Germany); Ludwig-Maximilians-University, Department of Operative Dentistry and Periodontology, Munich (Germany); Esters, Magali; Simon, Sabine; Seiss, Mario [Walther-Straub-Institute of Pharmacology and Toxicology, Munich (Germany); Kehe, Kai [Bundeswehr Institute of Pharmacology and Toxicology, Munich (Germany); Kleinsasser, Norbert [University of Regensburg, Head and Neck Surgery, Department of Otolaryngology, Regensburg (Germany); Folwaczny, Matthias; Glas, Juergen; Hickel, Reinhard [Ludwig-Maximilians-University, Department of Operative Dentistry and Periodontology, Munich (Germany)

    2006-06-15

    In order to test the hypothesis that released dental restorative materials can reach toxic levels in human oral tissues, the cytotoxicities of the resin-based dental (co)monomers hydroxyethylmethacrylate (HEMA), triethyleneglycoldimethacrylate (TEGDMA), urethanedimethacrylate (UDMA), and bisglycidylmethacrylate (BisGMA) compared with methyl mercury chloride (MeHgCl) and the amalgam component mercuric chloride (HgCl{sub 2}) were investigated on human gingival fibroblasts (HGF) using two different test systems: (1) the modified XTT-test and (2) the modified H 33342 staining assay. The HGF were exposed to various concentrations of the test-substances in all test systems for 24 h. All tested (co)monomers and mercury compounds significantly (P<0.05) decreased the formazan formation in the XTT-test. EC{sub 50} values in the XTT assay were obtained as half-maximum-effect concentrations from fitted curves. Following EC{sub 50} values were found (mean [mmol/l]; s.e.m. in parentheses; n=12; * significantly different to HEMA): HEMA 11.530 (0.600); TEGDMA* 3.460 (0.200); UDMA* 0.106 (0.005); BisGMA* 0.087 (0.001); HgCl{sub 2}* 0.013 (0.001); MeHgCl* 0.005 (0.001). Following relative toxicities were found: HEMA 1; TEGDMA 3; UDMA 109; BisGMA 133; HgCl{sub 2} 887; MeHgCl 2306. A significant (P<0.05) increase of the toxicity of (co)monomers and mercurials was found in the XTT-test in the following order: HEMA < TEGDMA < UDMA < BisGMA < HgCl{sub 2} < MeHgCl. TEGDMA and MeHgCl induced mainly apoptotic cell death. HEMA, UDMA, BisGMA, and HgCl{sub 2} induced mainly necrotic cell death. The results of this study indicate that resin composite components have a lower toxicity than mercury from amalgam in HGF. HEMA, BisGMA, UDMA, and HgCl{sub 2} induced mainly necrosis, but it is rather unlikely that eluted substances (solely) can reach concentrations, which might induce necrotic cell death in the human physiological situation, indicating that other (additional) factors may be involved in

  20. Analyzing compound and project progress through multi-objective-based compound quality assessment.

    Science.gov (United States)

    Nissink, J Willem M; Degorce, Sébastien

    2013-05-01

    Compound-quality scoring methods designed to evaluate multiple drug properties concurrently are useful to analyze and prioritize output from drug-design efforts. However, formalized multiparameter optimization approaches are not widely used in drug design. We rank molecules synthesized in drug-discovery projects using simple and aggregated desirability functions reflecting medicinal chemistry 'rules'. Our quality score deals transparently with missing data, a key requirement in drug-hunting projects where data availability is often limited. We further estimate confidence in the interpretation of such a compound-quality measure. Scores and associated confidences provide systematic insight in the quality of emerging chemical equity. Tracking quality of synthetic output over time yields valuable insight into the progress of drug-design teams, with potential applications in risk and resource management of a drug portfolio.

  1. Fluorescence-based assay as a new screening tool for toxic chemicals

    Science.gov (United States)

    Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey

    2016-09-01

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.

  2. Volatile organic compounds discrimination based on dual mode detection

    Science.gov (United States)

    Yu, Yuanyuan; Wu, Enxiu; Chen, Yan; Feng, Zhihong; Zheng, Shijun; Zhang, Hao; Pang, Wei; Liu, Jing; Zhang, Daihua

    2018-06-01

    We report on a volatile organic compound (VOC) sensor that can provide concentration-independent signals toward target gases. The device is based on a dual-mode detection mechanism that can simultaneously record the mechanical (resonant frequency, f r) and electrical (current, I) responses of the same gas adsorption event. The two independent signals form a unique I–f r trace for each target VOC as the concentration varies. The mechanical response (frequency shift, Δf r) resulting from mass load on the device is directly related to the amount of surface adsorptions, while the electrical response (current variation, ΔI) is associated with charge transfer across the sensing interface and changes in carrier mobility. The two responses resulting from independent physical processes reflect intrinsic physical properties of each target gas. The ΔI–Δf r trace combined with the concentration dependent frequency (or current) signals can therefore be used to achieve target both recognition and quantification. The dual-mode device is designed and fabricated using standard complementary metal oxide semiconductor (CMOS) compatible processes. It exhibits consistent and stable performance in our tests with six different VOCs including ethanol, methanol, acetone, formaldehyde, benzene and hexane.

  3. Crystal growth iron based pnictide compounds; Kristallzuechtung eisenbasierter Pniktidverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Nacke, Claudia

    2012-11-15

    The present work is concerned with selected crystal growth method for producing iron-based superconductors. The first part of this work introduces significant results of the crystal growth of BaFe{sub 2}As{sub 2} and the cobalt-substituted compound Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} with x{sub Nom} = 0.025, 0.05, 0.07, 0.10 and 0.20. For this purpose a test procedure for the vertical Bridgman method was developed. The second part of this work contains substantial results for growing a crystal of LiFeAs and the nickel-substituted compound Li{sub 1-δ}Fe{sub 1-x}Ni{sub x}As with x{sub Nom} = 0.015, 0.025, 0.05, 0.06, 0.075 and 0.10. For this purpose a test procedure for the melt flow process has been developed successfully. [German] Die vorliegende Arbeit befasst sich mit ausgewaehlten Kristallzuechtungsverfahren zur Herstellung eisenbasierter Supraleiter. Der erste Teil dieser Arbeit fuehrt wesentliche Ergebnisse der Kristallzuechtung von BaFe{sub 2}As{sub 2} sowie der Cobalt-substituierten Verbindung Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} mit x{sub Nom} =0.025, 0.05, 0.07, 0.10 und 0.20 auf. Hierzu wurde eine Versuchsdurchfuehrung fuer das vertikale Bridgman-Verfahren konzipiert, mit welcher erfolgreich Kristalle dieser Zusammensetzungen gezuechtet wurden. Der zweite Teil dieser Arbeit enthaelt wesentliche Ergebnisse zur Kristallzuechtung von LiFeAs sowie der Nickel-substituierten Verbindung Li{sub 1-δ}Fe{sub 1-x}Ni{sub x}As mit x{sub Nom} = 0.015, 0.025, 0.05, 0.06, 0.075 und 0.10. Hierfuer wurde erfolgreich eine Versuchsdurchfuehrung fuer das Schmelzfluss-Verfahren entwickelt.

  4. Inducers of Senescence, Toxic Compounds, and Senolytics: The Multiple Faces of Nrf2-Activating Phytochemicals in Cancer Adjuvant Therapy

    Directory of Open Access Journals (Sweden)

    Marco Malavolta

    2018-01-01

    Full Text Available The reactivation of senescence in cancer and the subsequent clearance of senescent cells are suggested as therapeutic intervention in the eradication of cancer. Several natural compounds that activate Nrf2 (nuclear factor erythroid-derived 2-related factor 2 pathway, which is involved in complex cytoprotective responses, have been paradoxically shown to induce cell death or senescence in cancer. Promoting the cytoprotective Nrf2 pathway may be desirable for chemoprevention, but it might be detrimental in later stages and advanced cancers. However, senolytic activity shown by some Nrf2-activating compounds could be used to target senescent cancer cells (particularly in aged immune-depressed organisms that escape immunosurveillance. We herein describe in vitro and in vivo effects of fifteen Nrf2-interacting natural compounds (tocotrienols, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, silybin, phenethyl isothiocyanate, sulforaphane, triptolide, allicin, berberine, piperlongumine, fisetin, and phloretin on cellular senescence and discuss their use in adjuvant cancer therapy. In light of available literature, it can be concluded that the meaning and the potential of adjuvant therapy with natural compounds in humans remain unclear, also taking into account the existence of few clinical trials mostly characterized by uncertain results. Further studies are needed to investigate the therapeutic potential of those compounds that display senolytic activity.

  5. Compounds in dictionary-based Cross-language information retrieval_revised

    Directory of Open Access Journals (Sweden)

    2002-01-01

    Full Text Available Compound words form an important part of natural language. From the cross-lingual information retrieval (CLIR point of view it is important that many natural languages are highly productive with compounds, and translation resources cannot include entries for all compounds. Also, compounds are often content bearing words in a sentence. In Swedish, German and Finnish roughly one tenth of the words in a text prepared for information retrieval purposes are compounds. Important research questions concerning compound handling in dictionary-based cross-language information retrieval are 1 compound splitting into components, 2 normalisation of components, 3 translation of components and 4 query structuring for compounds and their components in the target language. The impact of compound processing on the performance of the cross-language information retrieval process is evaluated in this study and the results indicate that the effect is clearly positive.

  6. Acute Oral Toxicity of 3-Chloro-4,4-dimethyl-2-oxazolidinone (Compound 1) in ICR Mice

    Science.gov (United States)

    1990-10-01

    number) FIELD GROUP SUB-GROUP Acute Oral Toxicity, N- Chloramine , Mouse, Mammalian Toxicology, Water Disinfectant , 3-Chloro-4, 4 -dimethyl-2...Amer Ind Hyg Assoc Q 1943; 10:93-96. 7. Mora EC, Kohl HH, Wheatley WB, et al. Properties or a new chloramine disinfectant and detoxicant. Poultry Sci...ORGANIZATION Mammalian Toxicology (If applicable) US Army Biomedical Research Division of Toxicology SGRD-ULE- T and Development Laboratory 6c. ADDRESS

  7. Capture compound mass spectrometry sheds light on the molecular mechanisms of liver toxicity of two Parkinson drugs.

    Science.gov (United States)

    Fischer, Jenny J; Michaelis, Simon; Schrey, Anna K; Graebner, Olivia Graebner nee; Glinski, Mirko; Dreger, Mathias; Kroll, Friedrich; Koester, Hubert

    2010-01-01

    Capture compound mass spectrometry (CCMS) is a novel technology that helps understand the molecular mechanism of the mode of action of small molecules. The Capture Compounds are trifunctional probes: A selectivity function (the drug) interacts with the proteins in a biological sample, a reactivity function (phenylazide) irreversibly forms a covalent bond, and a sorting function (biotin) allows the captured protein(s) to be isolated for mass spectrometric analysis. Tolcapone and entacapone are potent inhibitors of catechol-O-methyltransferase (COMT) for the treatment of Parkinson's disease. We aimed to understand the molecular basis of the difference of both drugs with respect to side effects. Using Capture Compounds with these drugs as selectivity functions, we were able to unambiguously and reproducibly isolate and identify their known target COMT. Tolcapone Capture Compounds captured five times more proteins than entacapone Capture Compounds. Moreover, tolcapone Capture Compounds isolated mitochondrial and peroxisomal proteins. The major tolcapone-protein interactions occurred with components of the respiratory chain and of the fatty acid beta-oxidation. Previously reported symptoms in tolcapone-treated rats suggested that tolcapone might act as decoupling reagent of the respiratory chain (Haasio et al., 2002b). Our results demonstrate that CCMS is an effective tool for the identification of a drug's potential off targets. It fills a gap in currently used in vitro screens for drug profiling that do not contain all the toxicologically relevant proteins. Thereby, CCMS has the potential to fill a technological need in drug safety assessment and helps reengineer or to reject drugs at an early preclinical stage.

  8. Co-Formulants in Glyphosate-Based Herbicides Disrupt Aromatase Activity in Human Cells below Toxic Levels

    Directory of Open Access Journals (Sweden)

    Nicolas Defarge

    2016-02-01

    Full Text Available Pesticide formulations contain declared active ingredients and co-formulants presented as inert and confidential compounds. We tested the endocrine disruption of co-formulants in six glyphosate-based herbicides (GBH, the most used pesticides worldwide. All co-formulants and formulations were comparably cytotoxic well below the agricultural dilution of 1% (18–2000 times for co-formulants, 8–141 times for formulations, and not the declared active ingredient glyphosate (G alone. The endocrine-disrupting effects of all these compounds were measured on aromatase activity, a key enzyme in the balance of sex hormones, below the toxicity threshold. Aromatase activity was decreased both by the co-formulants alone (polyethoxylated tallow amine—POEA and alkyl polyglucoside—APG and by the formulations, from concentrations 800 times lower than the agricultural dilutions; while G exerted an effect only at 1/3 of the agricultural dilution. It was demonstrated for the first time that endocrine disruption by GBH could not only be due to the declared active ingredient but also to co-formulants. These results could explain numerous in vivo results with GBHs not seen with G alone; moreover, they challenge the relevance of the acceptable daily intake (ADI value for GBHs exposures, currently calculated from toxicity tests of the declared active ingredient alone.

  9. Evaluation of acute toxicity of essential oil of garlic (Allium sativum) and its selected major constituent compounds against overwintering Cacopsylla chinensis (Hemiptera: Psyllidae).

    Science.gov (United States)

    Zhao, Na Na; Zhang, Hang; Zhang, Xue Chang; Luan, Xiao Bing; Zhou, Cheng; Liu, Qi Zhi; Shi, Wang Peng; Liu, Zhi Long

    2013-06-01

    In our screening program for insecticidal activity of the essential oils/extracts derived from some Chinese medicinal herbs and spices, garlic (Allium sativum L.) essential oil was found to possess strong insecticidal activity against overwintering adults of Cacopsylla chinensis Yang et Li (Hemiptera: Psyllidae). The commercial essential oil of A. sativum was analyzed by gas chromatography-mass spectrometry. Sixteen compounds, accounting for 97.44% of the total oil, were identified, and the main components of the essential oil of A. sativum were diallyl trisulfide (50.43%), diallyl disulfide (25.30%), diallyl sulfide (6.25%), diallyl tetrasulfide (4.03%), 1,2-dithiolane (3.12%), allyl methyl disulfide (3.07%), 1,3-dithiane (2.12%), and allyl methyl trisulfide (2.08%). The essential oil of A. sativum possessed contact toxicity against overwintering C. chinensis, with an LC50 value of 1.42 microg per adult. The two main constituent compounds, diallyl trisulfide and diallyl disulfide, exhibited strong acute toxicity against the overwintering C. chinensis, with LC50 values of 0.64 and 11.04 /g per adult, respectively.

  10. Quantitative structure activity relationships (QSAR) for binary mixtures at non-equitoxic ratios based on toxic ratios-effects curves.

    Science.gov (United States)

    Tian, Dayong; Lin, Zhifen; Yin, Daqiang

    2013-01-01

    The present study proposed a QSAR model to predict joint effects at non-equitoxic ratios for binary mixtures containing reactive toxicants, cyanogenic compounds and aldehydes. Toxicity of single and binary mixtures was measured by quantifying the decrease in light emission from the Photobacterium phosphoreum for 15 min. The joint effects of binary mixtures (TU sum) can thus be obtained. The results showed that the relationships between toxic ratios of the individual chemicals and their joint effects can be described by normal distribution function. Based on normal distribution equations, the joint effects of binary mixtures at non-equitoxic ratios ( [Formula: see text]) can be predicted quantitatively using the joint effects at equitoxic ratios ( [Formula: see text]). Combined with a QSAR model of [Formula: see text]in our previous work, a novel QSAR model can be proposed to predict the joint effects of mixtures at non-equitoxic ratios ( [Formula: see text]). The proposed model has been validated using additional mixtures other than the one used for the development of the model. Predicted and observed results were similar (p>0.05). This study provides an approach to the prediction of joint effects for binary mixtures at non-equitoxic ratios.

  11. Image-based compound profiling reveals a dual inhibitor of tyrosine kinase and microtubule polymerization

    OpenAIRE

    Tanabe, Kenji

    2016-01-01

    Small-molecule compounds are widely used as biological research tools and therapeutic drugs. Therefore, uncovering novel targets of these compounds should provide insights that are valuable in both basic and clinical studies. I developed a method for image-based compound profiling by quantitating the effects of compounds on signal transduction and vesicle trafficking of epidermal growth factor receptor (EGFR). Using six signal transduction molecules and two markers of vesicle trafficking, 570...

  12. Isolation, identification, screening of toxicity and oligopeptides of some marine and brackish cyanobacteria from Norwegian and Pakistani waters, in the search for bioactive natural compounds

    OpenAIRE

    Hameed, Shaista

    2009-01-01

    Cyanobacteria produce a number of bioactive compounds, most of them are oligopeptides. Almost all are known from freshwater species. The aim of this study was to search for marine and brackish water species producing bioactive compounds. To reach this goal, new strains were isolated from Norwegian and Pakistani coastal waters. These and additional strains from NIVA, UiO and UiB culture collections (24 in total), belonging to Chroococcales and Oscillatoriales, were identified based on morpholo...

  13. Study of in vitro toxicity and ex vivo and in vivo efficiency of calixarene galenic forms developed for the treatment of cutaneous contamination due to uranium compounds

    International Nuclear Information System (INIS)

    Grives, Sophie

    2015-01-01

    In case of radiological skin contamination by uranium compounds, the only treatments currently available consist in rinsing the contaminated skin area with water and detergent, or with a calcium salt of diethylene triamine pentaacetic acid (Ca-DTPA) solution. However, these procedures are not specific and no efficient treatment for cutaneous contamination due to uranium exists. In the absence of such treatments, uranium diffusion through the skin is fast, inducing an internal exposure after its distribution inside the body through the bloodstream. One part of the bioavailable uranium is up-taken in target organs which are the kidneys and the skeleton, where its toxic effects occur. Therefore a topical formulation consisting of an oil-in-water nano-emulsion incorporating a tricarboxylic calixarene molecule, as a specific chelating agent for uranium, was previously developed. The work achieved in this thesis aimed at evaluating the ex vivo and in vivo decontamination efficiency of this new emergency treatment on intact and superficially wounded skin. For this purpose, skin excoriation model was used. Reproducible models of superficial wounds consisting of micro-cuts and micro-punctures were also developed in order to evaluate the efficiency of the nano-emulsion on physical wounds such as incisions. These studies showed that the calixarene nano-emulsion could be an efficient decontaminating treatment, less aggressive than using the current treatment: soaped water. Its potential cutaneous toxicity was evaluated on in vitro reconstructed human epidermis using three different toxicity tests (MTT, LDH and IL-1-α). These studies demonstrated that the calixarene nano-emulsion did not induce skin toxicity even after 24 h of exposure time. (author)

  14. Synthesis and Application of Polymeric Fluorescent Compounds Based on Coumarin

    Directory of Open Access Journals (Sweden)

    Guojun Liu

    2015-06-01

    Full Text Available In this work, a multifunctional yellowing inhibitor was synthesized by the Pechmann method. In order to obtain the target compound, 7-hydroxy-4-methyl coumarin was prepared by using the raw materials of resorcinol and ethyl acetoacetate, with toluene-p-sulfonic acid as the catalyst. New polymeric fluorescent compounds were synthesized by connecting the 7-hydroxy-4-methyl coumarin, the hindered amine light stabilizer 4-amion-2,2,6,6-tetramentylniperidine, and a series of polyethylene glycol segments into the same molecule with cyanuric chloride as a bridge. The structures of the synthesized molecules were confirmed by FT-IR, 1H NMR, and elemental analysis. The luminescent properties of the fluorescent compounds were studied by UV-vis spectroscopy and fluorescence spectroscopy. The integration effect between the fluorescent compounds and paper was tested by a scanning electron microscope. The light stability effect on the paper sheet was tested using an ultraviolet aging apparatus. The results indicate that the polymeric fluorescent compounds had a positive effect on the light stability of the high-yield pulp.

  15. System approach for evaluation of air pollution toxic compounds in the 30-km area of nuclear power plants

    International Nuclear Information System (INIS)

    Shevtsova, O.V.; Zhigunova, L.N.; Makovskaya, N.A.; Pavlovich, E.L.

    2012-01-01

    The article shows the importance of a systematic approach to address environmental problems that arise during the construction of nuclear power plants, and identified the need to consider the transformation and biotransformation of primary pollutants and monitoring secondary pollutants. The basic pathways of pollutants in the air a 30-km zone of nuclear power plants established. The content of primary and secondary air pollutants identified. The evaluation of general toxic risk from primary pollutant and the calculation of the carcinogenic risk of secondary pollutants entering the body by inhalation are carried out. (authors)

  16. Mammalian Toxicity of Munition Compounds. Phase II. Effects of Multiple Doses. Part III. 2,6-Dinitrotoluene

    Science.gov (United States)

    1976-07-01

    and the neuromuscular effects in these dogs were not due to hypocalcemia . The lowest serum calcium concen- tration in these dogs was 4.2 meq/liter...motor end plate might produce a local hypocalcemia . Such a mechanism is purely speculative. Qualitatively and quantitavely, most of the effects of 2,6...I ýNw,- -MIM I/ MIDWEST RESEARCH INS14ITUTE H0q .3L I LU -_ MAMMALIAN TOXICITY OF MUNITIONS COMPOUlNDSPHASE II: EFFECTS OF MiULTIPLE DOSES C* •PART

  17. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels, supplement to: Jin, Peng; Wang, Tifeng; Liu, Nana; Dupont, Sam; Beardall, John; Boyd, Philip W; Riebesell, Ulf; Gao, Kunshan (2015): Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nature Communications, 6, 8714

    KAUST Repository

    Jin, Peng; Wang, Tifeng; Liu, Nana; Dupont, Sam; Beardall, John; Boyd, Philip W; Riebesell, Ulf; Gao, Kunshan

    2016-01-01

    Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46-212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130-160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28-48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes.

  18. Release behavior and toxicity profiles towards A549 cell lines of ciprofloxacin from its layered zinc hydroxide intercalation compound

    OpenAIRE

    Abdul Latip, Ahmad Faiz; Hussein, Mohd Zobir; Stanslas, Johnson; Wong, Charng Choon; Adnan, Rohana

    2013-01-01

    Background Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Results Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analys...

  19. Stevia-derived compounds attenuate the toxic effects of ectopic lipid accumulation in the liver of obese mice: a transcriptomic and metabolomic study.

    Science.gov (United States)

    Holvoet, Paul; Rull, Anna; García-Heredia, Anabel; López-Sanromà, Sílvia; Geeraert, Benjamine; Joven, Jorge; Camps, Jordi

    2015-03-01

    There is a close interaction between Type 2 Diabetes, obesity and liver disease. We have studied the effects of the two most abundant Stevia-derived steviol glycosides, stevioside and rebaudioside A, and their aglycol derivative steviol on liver steatosis and the hepatic effects of lipotoxicity using a mouse model of obesity and insulin resistance. We treated ob/ob and LDLR-double deficient mice with stevioside (10 mg⋅kg(-1)⋅day-1 p.o., n = 8), rebaudioside A (12 mg⋅kg(-1)⋅day-1 p.o., n = 8), or steviol (5 mg⋅kg(-1)⋅day(-1) p.o., n = 8). We determined their effects on liver steatosis and on the metabolic effects of lipotoxicity by histological analysis, and by combined gene-expression and metabolomic analyses. All compounds attenuated hepatic steatosis. This could be explained by improved glucose metabolism, fat catabolism, bile acid metabolism, and lipid storage and transport. We identified PPARs as important regulators and observed differences in effects on insulin resistance, inflammation and oxidative stress between Stevia-derived compounds. We conclude that Stevia-derived compounds reduce hepatic steatosis to a similar extent, despite differences in effects on glucose and lipid metabolism, and inflammation and oxidative stress. Thus our data show that liver toxicity can be reduced through several pathophysiological changes. Further identification of active metabolites and underlying mechanisms are warranted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Fluconazole affects the alkali-metal-cation homeostasis and susceptibility to cationic toxic compounds of Candida glabrata.

    Science.gov (United States)

    Elicharova, Hana; Sychrova, Hana

    2014-08-01

    Candida glabrata is a salt-tolerant and fluconazole (FLC)-resistant yeast species. Here, we analyse the contribution of plasma-membrane alkali-metal-cation exporters, a cation/proton antiporter and a cation ATPase to cation homeostasis and the maintenance of membrane potential (ΔΨ). Using a series of single and double mutants lacking CNH1 and/or ENA1 genes we show that the inability to export potassium and toxic alkali-metal cations leads to a slight hyperpolarization of the plasma membrane of C. glabrata cells; this hyperpolarization drives more cations into the cells and affects cation homeostasis. Surprisingly, a much higher hyperpolarization of C. glabrata plasma membrane was produced by incubating cells with subinhibitory concentrations of FLC. FLC treatment resulted in a substantially increased sensitivity of cells to various cationic drugs and toxic cations that are driven into the cell by negative-inside plasma-membrane potential. The effect of the combination of FLC plus cationic drug treatment was enhanced by the malfunction of alkali-metal-cation transporters that contribute to the regulation of membrane potential and cation homeostasis. In summary, we show that the combination of subinhibitory concentrations of FLC and cationic drugs strongly affects the growth of C. glabrata cells. © 2014 The Authors.

  1. An early developmental vertebrate model for nanomaterial safety: bridging cell-based and mammalian toxicity assessment.

    Science.gov (United States)

    Webster, Carl A; Di Silvio, Desire; Devarajan, Aarthi; Bigini, Paolo; Micotti, Edoardo; Giudice, Chiara; Salmona, Mario; Wheeler, Grant N; Sherwood, Victoria; Bombelli, Francesca Baldelli

    2016-03-01

    With the rise in production of nanoparticles (NPs) for an ever-increasing number of applications, there is an urgent need to efficiently assess their potential toxicity. We propose a NP hazard assessment protocol that combines mammalian cytotoxicity data with embryonic vertebrate abnormality scoring to determine an overall toxicity index. We observed that, after exposure to a range of NPs, Xenopus phenotypic scoring showed a strong correlation with cell based in vitro assays. Magnetite-cored NPs, negative for toxicity in vitro and Xenopus, were further confirmed as nontoxic in mice. The results highlight the potential of Xenopus embryo analysis as a fast screening approach for toxicity assessment of NPs, which could be introduced for the routine testing of nanomaterials.

  2. Comparative toxicity of two azadirachtin-based neem pesticides to Daphnia pulex.

    Science.gov (United States)

    Goktepe, Ipek; Plhak, Leslie C

    2002-01-01

    Azadirachtin (AZA)-based pesticides (Neemix and Bioneem) demonstrated toxicity in 48-h nonrenewal toxicity assays using Daphnia pulex at levels that were comparable with several organophosphate pesticides. The median lethal concentration (LC50) values for the two neem pesticides were found to be 0.028 and 0.033 microl/ml, respectively. The LC50 value for nonformulated (95% pure) AZA was determined to be 0.382 microg AZA/ml. Neemix and Bioneem were exposed to air and northern sky daylight in a light box at 24 and 37 degrees C for 1, 3, 6, and 9 d. Standard 48-h acute toxicity tests were used to determine the effect of aging in these dry environmental conditions. Neemix and Bioneem were also fractionated into volatile and nonvolatile fractions, and the toxicity of each was tested. Compared with Neemix, Bioneem remained toxic longer when exposed to light and air at 37 degrees C, indicating that this pesticide may be less prone to environmental degradation. When fractionated, the nonvolatile fractions for both pesticides exhibited significantly lower LC50 values than the full formulations. These results suggest that, depending on the application rate and environmental fate, AZA-based pesticides may have direct adverse effects on aquatic organisms and that the toxicity and stability of formulated pesticides depend on factors other than only the AZA concentration.

  3. Inquiry-Based Instruction of Compound Microscopy Using Simulated Paleobiogeography

    Science.gov (United States)

    Hodgson, Jay Y. S.; Mateer, Scott C.

    2015-01-01

    The compound microscope is an important tool in biology, and mastering it requires repetition. Unfortunately, introductory activities for students can be formulaic, and consequently, students are often unengaged and fail to develop the required experience to become proficient in microscopy. To engage students, increase repetition, and develop…

  4. Ternary alloys based on II-VI semiconductor compounds

    CERN Document Server

    Tomashyk, Vasyl; Shcherbak, Larysa

    2013-01-01

    Phase Equilibria in the Systems Based on ZnSSystems Based on ZnSeSystems Based on ZnTeSystems Based on CdSSystem Based on CdSeSystem Based on CdTeSystems Based on HgSSystems Based on HgSeSystems Based on HgTeIndexReferences appear at the end of each chapter.

  5. Application of Thermal Desorption Unit (TDU) to treat low-toxicity mineral oil base cuttings in Barinas District, Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Rendon, Ruben [Petroleos de Venezuela, Caracas (Venezuela); Luzardo, Janeth; Alcoba, Alcides [M-I SWACO, Houston, TX (United States)

    2008-07-01

    The potential environmental impact of oil-based drill cuttings is generating increased scrutiny in the oil and gas industry. If left untreated, oil-based cuttings not only increase the risk of environmental liabilities, but also affect revenue, as drilling generates wastes that in most cases require special treatment before disposal. Consequently, the oil industry is looking for technologies to help minimize environmental liabilities. Accordingly, the Barinas District of PDVSA has started a pilot trial to treat oil-based drilling cuttings by applying thermal desorption technology. The main objective of this technology is recovering trapped hydrocarbons, while minimizing wastes and preparing solids to be disposed of through a mobile treatment plant. This novel technology has been used worldwide to treat organic pollutants in soil. Thermal desorption is a technology based on the application of heat in soils polluted with organic compounds. With this technology, target temperatures vary according to the type and concentration of detected pollutants along with its characterization, in such a way that compounds are disposed of by volatilization. As part of the integral waste management development along with the pilot trial for hydrocarbon-contaminated solid waste treatment, trials on soils were undertaken by applying process-generated ashes in equally-sized bins, with different mixtures (ashes, ashes organic material, ashes-organic material-sand, ashes-land). The resulting process offers an immediate soil remediation and final disposal solution for toxic and dangerous waste. (author)

  6. Toxicity testing of heavy metals with the Rhizobium-legume symbiosis: high sensitivity to cadmium and arsenic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, H.; Bode-Kirchhoff, A.; Madeheim, A.; Wetzel, A. [Marburg Univ. (Germany). Fachbereich Biologie

    1998-07-01

    We present data that the formation of nodules (nodulation) may serve for ecotoxicological evaluation of heavy metals in different binding states. Tests were performed in petri dishes with alfalfa (lucerne) seedlings inoculated with Rhizobium meliloti. Cultivation took place in growth cabinets with carefully standardized and documented growth conditions. Data from stressed plants was recorded after 14 days of cultivation on contaminated substrate. A dose responsive decrease in nodulation was found after application of cadmium acetate, cadmium iodide, cadmium chloride, sodium salts of arsenate and arsenite, arsenic pentoxide, and lead nitrate, whereas lead acetate showed no effect up to a concentration of 3 {mu}M. The dose response curves were used to calculate EC10, EC50 and EC90 values. EC50 values for cadmium compounds range from 1.5 to 9.5 {mu}M. Testing different arsenic compounds results in EC50 from 2.6 to 20.1 {mu}M. EC50 of lead nitrate is 2.2 {mu}M. The sensitivity, reproducibility and reliability of this test system is discussed compared to established biotests. (orig./MG)

  7. Evaluation of the Toxicity of Virola sebifera Crude Extracts, Fractions and Isolated Compounds on the Nest of Leaf-Cutting Ants

    Directory of Open Access Journals (Sweden)

    Keylla Utherdyany Bicalho

    2012-01-01

    Full Text Available The phytochemical study of Virola sebifera leaves led to the isolation of three lignans: (+-sesamin, (−-hinokinin, and (−-kusunokinin and three flavonoids: quercetin-3-O-α-L-rhamnoside, quercetin-3-O-β-D-glucoside, and quercetin-3-methoxy-7-O-β-D-glucoside by using techniques as high-speed counter-current chromatography and high-performance liquid chromatography. The crude extracts, fractions, and isolated compounds were evaluated for their insecticidal and fungicidal potential against Atta sexdens rubropilosa and its symbiotic fungus Leucoagaricus gongylophorus. The bioassay results showed a high insecticidal activity for the methanol crude extract of the leaves of V. sebifera and its n-hexane, dichloromethane and ethyl acetate fractions. The fungicidal bioassay revealed high toxicity of the lignans against L. gongylophorus.

  8. [Evaluation of Brodifacoum-induced Toxicity by Metabonomics Approach Based on HPLC-TOF-MS].

    Science.gov (United States)

    Yan, H; Zhuo, X Y; Shen, B H; Xiang, P; Shen, M

    2017-06-01

    To analyse the metabolic changes in urine of rats with brodifacoum intoxication, and to reveal the molecular mechanism of brodifacoum-induced toxicity on rats. By establishing a brodifacoum poisoning rats model, the urine metabolic profiling data of rats were acquired using high performance liquid chromatography-time of flight mass spectrometry (HPLC-TOF-MS). The orthogonal partial least squares analysis-discrimination analysis (OPLS-DA) was applied for the multivariate statistics and the discovery of differential metabolites closely related to toxicity of brodifacoum. OPLS-DA score plot showed that the urinary metabolic at different time points before and after drug administration had good similarity within time period and presented clustering phenomenon. Comparing the urine samples of rats before drug administration with which after drug administration, twenty-two metabolites related to brodifacoum-induced toxicity were selected. The toxic effect of brodifacoum worked by disturbing the metabolic pathways in rats such as tricarboxylic cycle, glycolysis, sphingolipid metabolism and tryptophan metabolism, and the toxicity of brodifacoum is characterized of accumulation effect. The metabonomic method based on urine HPLC-TOF-MS can provide a novel insight into the study on molecular mechanism of brodifacoum-induced toxicity. Copyright© by the Editorial Department of Journal of Forensic Medicine

  9. Bioassay of Lake Onego bottom sediments toxicity based on their chemical composition and deepwater macrozoobenthos state

    Directory of Open Access Journals (Sweden)

    Kalinkina Nataliya Michailovna

    2017-03-01

    Full Text Available The bioassay of the toxicity of bottom sediments sampled in different areas of Lake Onega was carried out by crustaceans biotesting (Ceriodaphnia affinis Lillijeborg. It was shown that in the most areas of Lake Onega there are non-toxic bottom sediments. Toxic bottom sediments were found in Kondopogskaya Bay, intensively polluted with pulp-and-paper mill wastewaters. For the first time in the deep central part of Lake Onega the area was revealed where the toxic bottom sediments contain a high content of iron, manganese and other trace elements typical for the central areas of the lake. The mapping of the bottom of Lake Onega was accomplished, and three zones were identified based on the analysis of the data concerning the chemical composition of bottom sediments, bioassay toxicity data and the results of the deepwater macrozoobenthos assessment. For each zone the parameters of the main groups of benthos (Amphipoda, Oligochaeta, Chironomidae were defined. The first zone is located in the area of intensive anthropogenic influence (Kondopogskaya Bay, Petrozavodskaya Bay, Povenets Bay, Kizhi Skerries. The second zone is located mostly in the deep part of Petrozavodskaya Bay, where the most intensive development of amphipods is observed. The third area is identified for the first time: it is located in the central deep part of Lake Onega, where the communities of macrozoobenthos are limited by a natural toxic factor.

  10. Self-association and infrared spectres of some heterocyclic compounds based on pyrrol in solid state

    International Nuclear Information System (INIS)

    Mulloev, N.; Nurulloev, M.; Narziev, B.N.

    1993-01-01

    Present article is devoted to self-association and infrared spectres of some heterocyclic compounds based on pyrrol in solid state. The study results of self-association specified by molecular hydrogen bonds of some heterocyclic compounds based on pyrrol on spectres of infrared absorption of stretching vibrations of N-H group were considered.

  11. Geochemical investigations into the retention of reactive carbon compounds for toxic heavy metals. Final report; Geochemische Untersuchungen zur Retention von reaktiven Kohlenstoffverbindungen fuer toxische Schwermetalle. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kupsch, H.; Mansel, A.; Crustewitz, C.

    2003-03-01

    The composition, reactivity and stability of reactive organic carbon compounds adsorbed on geogenic matrices was investigated. The surface deposits of NOM and its dependence on geochemical parameters was investigated in selected geomatrices. The retention of toxic heavy metals on these surface deposits of NOM was investigated in consideration of the presence of hydroxy species and inorganic ligands. The investigations of the reactivity of the NOM species requires analyses of these compounds and of the heavy metals in the ultratracer region. This was possible by means of radiochemical methods that were further developed in the context of this project. Radioactive labeling of identified reactive carbon compounds, e.g. with radioactive iodine, on the one hand, and the use of radioactive Cu, Pb, Hg isotopes on the other hand enabled speciation analyses in the binary systems (heavy metal + geomatrix, heavy metal + reactive carbon compounds, reactive carbon compounds + geomatrix) and especially in the ternary system (heavy metal + geomatrix + reactive carbon compounds) in defined conditions. The special labelling techniques were a precondition for distribution measurements in the near-natural, low concentration range. (orig.) [German] Ziel des Projektes war es, mit der vorhandenen Analytik und Expertise die Zusammensetzung, die Reaktivitaet und die Stabilitaet der auf den geogenen Matrizes sorbierten reaktiven organischen Kohlenstoffverbindungen und die damit verbundenen Stoffumsaetze aufzuklaeren. An ausgewaehlten Geomatrizes wurde die Ausbildung von Oberflaechendepositen des NOM und deren Abhaengigkeit gegenueber geochemischen Parametern untersucht. Unter der Beruecksichtigung der Gegenwart von Hydroxyspezies und anorganischen Liganden wurde die Retention toxischer Schwermetalle an diesen Oberflaechendepositen des NOM untersucht. Die Untersuchungen zur Reaktivitaet der NOM-Spezies setzt eine Analytik dieser Verbindungen und der Schwermetalle im Ultraspurenbereich

  12. Protective efficacy of various carbonyl compounds and their metabolites, and nutrients against acute toxicity of some cyanogens in rats: biochemical and physiological studies

    Directory of Open Access Journals (Sweden)

    Bhattacharya Rahul

    2017-09-01

    Full Text Available Cyanogens are widely used in industries and their toxicity is mainly due to cyanogenesis. The antidotes for cyanide are usually instituted for the management of cyanogen poisoning. The present study reports the protective efficacy of 14 carbonyl compounds and their metabolites, and nutrients (1.0 g/kg; oral; +5 min against acute oral toxicity of acetonitrile (ATCN, acrylonitrile (ACN, malononitrile (MCN, propionitrile (PCN, sodium nitroprusside (SNP, succinonitrile (SCN, and potassium ferricyanide (PFCN in rats. Maximum protection index was observed for alpha-ketoglutarate (A-KG against MCN and PCN (5.60, followed by dihydroxyacetone (DHA against MCN (2.79. Further, MCN (0.75 LD50 caused significant increase in cyanide concentration in brain, liver and kidney and inhibition of cytochrome c oxidase activity in brain and liver, which favorably responded to A-KG and DHA treatment. Up-regulation of inducible nitric oxide synthase by MCN, PCN and SNP, and uncoupling protein by PCN and SNP observed in the brain was abolished by A-KG administration. However, no DNA damage was detected in the brain. MCN and SNP significantly decreased the mean arterial pressure, heart rate, respiratory rate and neuromuscular transmission, which were resolved by A-KG. The study suggests a beneficial effect of A-KG in the treatment of acute cyanogen poisoning.

  13. Evaluation of toxic equivalency factors for induction of cytochromes P450 CYP1A1 and CYP1A2 enzyme activity by dioxin-like compounds

    International Nuclear Information System (INIS)

    Toyoshiba, Hiroyoshi; Walker, Nigel J.; Bailer, A. John; Portier, Christopher J.

    2004-01-01

    The toxic equivalency factor (TEF) method has been used to characterize the toxicity of human mixtures of dioxin-like compounds and is being considered for use with other classes of potentially toxic agents. TEFs are estimated by examining the relative potencies of the various congeners for a series of biological and toxicological effects. In this paper, we consider changes in activity for two enzymes, cytochrome P450 1A1 (CYP1A1)-associated 7-ethoxyresorufin-O-deethylase (EROD) and CYP1A2-associated acetanilide-4-hydroxylase (A4H) activity, resulting from exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3',4,4',5-pentachlorobiphenyl (PCB), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) or a mixture of these agents. The ratio of median effective dose (ED 50 ) is one way to estimate the relative potencies, especially for gene expression and protein endpoints. ED 50 's were estimated with a nonlinear regression model in which dose-related changes in mean responses are described by a Hill function. ED 50 's along with other model parameters were estimated by fitting this model to a given data set. Significant differences in estimated model parameters were tested by likelihood ratio methods. The estimated parameters indicated that congener-specific dose-response shapes were significantly different, that additivity failed for these congeners, and that the ratios of ED 50 's did not predict the response seen for the mixture. These results indicate that for some biological responses, the use of a single relative potency factor (RPF) is not appropriate for the comparison of the dose response behavior of different dioxin-like congeners

  14. Identification of compounds with anti-proliferative activity against Trypanosoma brucei brucei strain 427 by a whole cell viability based HTS campaign.

    Directory of Open Access Journals (Sweden)

    Melissa L Sykes

    Full Text Available Human African Trypanosomiasis (HAT is caused by two trypanosome sub-species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Drugs available for the treatment of HAT have significant issues related to difficult administration regimes and limited efficacy across species and disease stages. Hence, there is considerable need to find new alternative and less toxic drugs. An approach to identify starting points for new drug candidates is high throughput screening (HTS of large compound library collections. We describe the application of an Alamar Blue based, 384-well HTS assay to screen a library of 87,296 compounds against the related trypanosome subspecies, Trypanosoma brucei brucei bloodstream form lister 427. Primary hits identified against T.b. brucei were retested and the IC(50 value compounds were estimated for T.b. brucei and a mammalian cell line HEK293, to determine a selectivity index for each compound. The screening campaign identified 205 compounds with greater than 10 times selectivity against T.b. brucei. Cluster analysis of these compounds, taking into account chemical and structural properties required for drug-like compounds, afforded a panel of eight compounds for further biological analysis. These compounds had IC(50 values ranging from 0.22 µM to 4 µM with associated selectivity indices ranging from 19 to greater than 345. Further testing against T.b. rhodesiense led to the selection of 6 compounds from 5 new chemical classes with activity against the causative species of HAT, which can be considered potential candidates for HAT early drug discovery. Structure activity relationship (SAR mining revealed components of those hit compound structures that may be important for biological activity. Four of these compounds have undergone further testing to 1 determine whether they are cidal or static in vitro at the minimum inhibitory concentration (MIC, and 2 estimate the time to kill.

  15. A portable cell-based impedance sensor for toxicity testing of drinking water.

    Science.gov (United States)

    Curtis, Theresa M; Widder, Mark W; Brennan, Linda M; Schwager, Steven J; van der Schalie, William H; Fey, Julien; Salazar, Noe

    2009-08-07

    A major limitation to using mammalian cell-based biosensors for field testing of drinking water samples is the difficulty of maintaining cell viability and sterility without an on-site cell culture facility. This paper describes a portable automated bench-top mammalian cell-based toxicity sensor that incorporates enclosed fluidic biochips containing endothelial cells monitored by Electric Cell-substrate Impedance Sensing (ECIS) technology. Long-term maintenance of cells on the biochips is made possible by using a compact, self-contained disposable media delivery system. The toxicity sensor monitors changes in impedance of cell monolayers on the biochips after the introduction of water samples. The fluidic biochip includes an ECIS electronic layer and a polycarbonate channel layer, which together reduce initial impedance disturbances seen in commercially available open well ECIS chips caused by the mechanics of pipetting while maintaining the ability of the cells to respond to toxicants. A curve discrimination program was developed that compares impedance values over time between the control and treatment channels on the fluidic biochip and determines if they are significantly different. Toxicant responses of bovine pulmonary artery endothelial cells grown on fluidic biochips are similar to cells on commercially-available open well chips, and these cells can be maintained in the toxicity sensor device for at least nine days using an automated media delivery system. Longer-term cell storage is possible; bovine lung microvessel endothelial cells survive for up to four months on the fluidic biochips and remain responsive to a model toxicant. This is the first demonstration of a portable bench top system capable of both supporting cell health over extended periods of time and obtaining impedance measurements from endothelial cell monolayers after toxicant exposure.

  16. Efficient fluorescent deep-blue and hybrid white emitting devices based on carbazole/benzimidazole compound

    KAUST Repository

    Yang, Xiaohui; Zheng, Shijun; Bottger, Rebecca; Chae, HyunSik; Tanaka, Takeshi; Li, Sheng; Mochizuki, Amane; Jabbour, Ghassan E.

    2011-01-01

    We report the synthesis, photophysics, and electrochemical characterization of carbazole/benzimidazole-based compound (Cz-2pbb) and efficient fluorescent deep-blue light emitting devices based on Cz-2pbb with the peak external quantum efficiency

  17. Natural Hg isotopic composition of different Hg compounds in mammal tissues as a proxy for in vivo breakdown of toxic methylmercury.

    Science.gov (United States)

    Perrot, Vincent; Masbou, Jeremy; Pastukhov, Mikhail V; Epov, Vladimir N; Point, David; Bérail, Sylvain; Becker, Paul R; Sonke, Jeroen E; Amouroux, David

    2016-02-01

    In the last decade, specific attention has been paid to total mercury (HgT) stable isotopic composition, especially in natural samples such as aquatic organisms, due to its potential to track the cycle of this toxic element in the environment. Here, we investigated Hg Compound Specific stable Isotopic Composition (CSIC) of natural inorganic Hg (iHg) and methylmercury (MMHg) in various tissues of aquatic mammals (Beluga whale from the Arctic marine environment and seals from the freshwater lake Baikal, Russia). In seals' organs the variation in mass dependent fractionation (MDF, δ(202)Hg) for total Hg was significantly correlated to the respective fraction of iHg and MMHg compounds, with MMHg being enriched by ∼ 3‰ in heavier isotopes relative to iHg. On the other hand, we observe insignificant variation in Hg mass independent isotope fractionation (MIF, Δ(199)Hg) among iHg and MMHg in all organs for the same mammal species and MMHg in prey items. MIF signatures suggest that both MMHg and iHg in aquatic mammals have the same origin (i.e., MMHg from food), and are representative of Hg photochemistry in the water column of the mammal ecosystem. MDF signatures of Hg compounds indicate that MMHg is demethylated in vivo before being stored in the muscle, and the iHg formed is stored in the liver, and to a lesser extent in the kidney, before excretion. Thus, Hg CSIC analysis in mammals can be a powerful tool for tracing the metabolic response to Hg exposure.

  18. Effective anti-leishmanial activity of minimalist squaramide-based compounds.

    Science.gov (United States)

    Marín, Clotilde; Ximenis, Marta; Ramirez-Macías, Inmaculada; Rotger, Carmen; Urbanova, Kristina; Olmo, Francisco; Martín-Escolano, Rubén; Rosales, María José; Cañas, Rocio; Gutierrez-Sánchez, Ramón; Costa, Antonio; Sánchez-Moreno, Manuel

    2016-11-01

    In order to evaluate the in vitro leishmanicidal activity of N,N'-Squaramides derivatives, compounds that feature both hydrogen bond donor and acceptor groups and are capable of multiple interactions with complementary sites, against Leishmania infantum, Leishmania braziliensis and Leishmania donovani a series of 18compounds was prepared and assayed on extracellular and intracellular parasite forms. Infectivity and cytotoxicity tests were performed on J774.2 macrophage cells using meglumine antimoniate (Glucantime) as the reference drug. Changes in metabolite excretion by 1 H-NMR and the ultrastructural alterations occurring in the parasites treated using transmission electron microscopy (TEM), was analyzed. Compounds 1, 7, 11, 14 and 17 were the more active and less toxic. Infection rates showed that the order of effectiveness was 17 > 11 > 14 > 7 for both L. infantum and L. braziliensis and in the same way, the compound 1 for L. donovani. All these compounds have altered the typical structure of the promastigotes, glycosomes and mitochondria. These severe modifications by the compounds are the ultimate reasons for the alterations observed in the excretion products. The Squaramide 17 (3-(butylamino)-4-((3-(dimetilamino)propyl)(methyl)amino)cyclobut-3-en-1,2-dione) was clearly the most efficient of all compounds. The data appear to confirm that the severe modifications generated in organelles such as glycosomes or mitochondria by the compounds are the ultimate reasons for the alterations observed in the excretion products of all species. The activity, stability, low cost of starting materials, and straightforward synthesis make amino squaramides appropriate molecules for the development of an affordable anti-leishmanial agent. Copyright © 2016. Published by Elsevier Inc.

  19. Application of the Hard and Soft, Acids and Bases (HSAB) theory to toxicant--target interactions.

    Science.gov (United States)

    Lopachin, Richard M; Gavin, Terrence; Decaprio, Anthony; Barber, David S

    2012-02-20

    Many chemical toxicants and/or their active metabolites are electrophiles that cause cell injury by forming covalent bonds with nucleophilic targets on biological macromolecules. Covalent reactions between nucleophilic and electrophilic reagents are, however, discriminatory since there is a significant degree of selectivity associated with these interactions. Over the course of the past few decades, the theory of Hard and Soft, Acids and Bases (HSAB) has proven to be a useful tool in predicting the outcome of such reactions. This concept utilizes the inherent electronic characteristic of polarizability to define, for example, reacting electrophiles and nucleophiles as either hard or soft. These HSAB definitions have been successfully applied to chemical-induced toxicity in biological systems. Thus, according to this principle, a toxic electrophile reacts preferentially with biological targets of similar hardness or softness. The soft/hard classification of a xenobiotic electrophile has obvious utility in discerning plausible biological targets and molecular mechanisms of toxicity. The purpose of this perspective is to discuss the HSAB theory of electrophiles and nucleophiles within a toxicological framework. In principle, covalent bond formation can be described by using the properties of their outermost or frontier orbitals. Because these orbital energies for most chemicals can be calculated using quantum mechanical models, it is possible to quantify the relative softness (σ) or hardness (η) of electrophiles or nucleophiles and to subsequently convert this information into useful indices of reactivity. This atomic level information can provide insight into the design of corroborative laboratory research and thereby help investigators discern corresponding molecular sites and mechanisms of toxicant action. The use of HSAB parameters has also been instrumental in the development and identification of potential nucleophilic cytoprotectants that can scavenge toxic

  20. APPLICATION OF THE HARD AND SOFT, ACIDS AND BASES (HSAB) THEORY TO TOXICANT-TARGET INTERACTIONS

    Science.gov (United States)

    LoPachin, Richard M.; Gavin, Terrence; DeCaprio, Anthony; Barber, David S.

    2011-01-01

    Many chemical toxicants and/or their active metabolites are electrophiles that cause cell injury by forming covalent bonds with nucleophilic targets on biological macromolecules. Covalent reactions between nucleophilic and electrophilic reagents are however discriminatory, since there is a significant degree of selectivity associated with these interactions. Over the course of the past few decades, the theory of Hard and Soft, Acid and Bases (HSAB) has proven to be a useful tool in predicting the outcome of such reactions. This concept utilizes the inherent electronic characteristic of polarizability to define, for example, reacting electrophiles and nucleophiles as either hard or soft. These HSAB definitions have been successfully applied to chemical-induced toxicity in biological systems. Thus, according to this principle, a toxic electrophile reacts preferentially with biological targets of similar hardness or softness. The soft/hard classification of a xenobiotic electrophile has obvious utility in discerning plausible biological targets and molecular mechanisms of toxicity. The purpose of this Perspective is to discuss the HSAB theory of electrophiles and nucleophiles within a toxicological framework. In principle, covalent bond formation can be described by using the properties of their outermost or frontier orbitals. Because these orbital energies for most chemicals can be calculated using quantum mechanical models, it is possible to quantify the relative softness (σ) or hardness (η) of electrophiles or nucleophiles and to subsequently convert this information into useful indices of reactivity. This atomic level information can provide insight into the design of corroborative laboratory research and thereby help investigators discern corresponding molecular sites and mechanisms of toxicant action. The use of HSAB parameters has also been instrumental in the development and identification of potential nucleophilic cytoprotectants that can scavenge toxic

  1. Sublethal Toxic effects of spent Oil Based Drilling Mud and Cuttings ...

    African Journals Online (AJOL)

    Sublethal toxic effects of spent oil based drilling mud collected from an abandoned oil drilling site in Mpanak, Akwa Ibom State, Nigeria were assessed in the earthworm Aporrectodea longa. The test annelid was exposed to sub-lethal Concentration of 0ppm SPP; 62,500ppm SPP; 125, 000ppm SPP; 250,000ppm SPP and ...

  2. WEB-BASED INTERSPECIES CORRELATION ESTIMATION (WEB-ICE) FOR ACUTE TOXICITY: USER MANUAL V2

    Science.gov (United States)

    Predictive toxicological models are integral to environmental risk Assessment where data for most species are limited. Web-based Interspecies Correlation Estimation (Web-ICE) models are least square regressions that predict acute toxicity (LC50/LD50) of a chemical to a species, ...

  3. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  4. Application of cell-based assays for toxicity characterization of complex wastewater matrices: Possible applications in wastewater recycle and reuse.

    Science.gov (United States)

    Shrivastava, Preeti; Naoghare, Pravin K; Gandhi, Deepa; Devi, S Saravana; Krishnamurthi, Kannan; Bafana, Amit; Kashyap, Sanjay M; Chakrabarti, Tapan

    2017-08-01

    Exposure to pre-concentrated inlet or outlet STP wastewater extracts at different concentrations (0.001% to 1%) induced dose-dependent toxicity in MCF-7 cells, whereas drinking water extracts did not induce cytotoxicity in cells treated. GC-MS analysis revealed the occurrence of xenobiotic compounds (Benzene, Phthalate, etc.) in inlet/outlet wastewater extracts. Cells exposed to inlet/outlet extract showed elevated levels of reactive oxygen species (ROS: inlet: 186.58%, ploss of mitochondrial membrane potential (Δψm: inlet, 74.91%, pcontrol. These concentrations induced DNA damage (Tail length: inlet: 34.4%, pcontrol (Tail length: 7.5%). Cell cycle analysis displayed drastic reduction in the G1 phase in treated cells (inlet, G1:45.0%; outlet, G1:58.3%) compared to the control (G1:67.3%). Treated cells showed 45.18% and 28.0% apoptosis compared to the control (1.2%). Drinking water extracts did not show any significant alterations with respect to ROS, Δψm, DNA damage, cell cycle and apoptosis compared to the control. Genes involved in cell cycle and apoptosis were found to be differentially expressed in cells exposed to inlet/outlet extracts. Herein, we propose cell-based toxicity assays to evaluate the efficacies of wastewater treatment and recycling processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. [The toxic complications of hydrogen sulfide-based balneotherapy in the spa and health resort practice].

    Science.gov (United States)

    Khodasevich, L S

    2015-01-01

    The present literature review was designed to consider the toxic complications of hydrogen sulfide-based balneotherapy encountered in the spa and health resort practice that should actually be regarded as hydrogen sulfide intoxication taking into consideration that their severity depends on the route through which the toxicant enters the body, its concentration in the therapeutic bath, and the overall duration of balneotherapy. Although such complications rarely occur in everyday practice, they may constitute a threat to the patient's health which implies the necessity of adequate measures for their prevention.

  6. Ecological effects of low toxicity oil-based mud drilling in the Beatrice oilfield

    Energy Technology Data Exchange (ETDEWEB)

    Addy, J M; Hartley, J P; Tibbetts, P J.C.

    1984-12-01

    To investigate the effects of drilling discharges on the seabed fauna, surveys were carried out in the Beatrice oilfield after drilling 13 wells with water-based muds, and then after one and five further wells had been drilled using low toxicity oil-based muds. Localized benthic effects were found after the water-based mud drilling. After the use of oil-based muds, the nature of the effects was different, although there was little increase in the area involved. Possible reasons for this are discussed and burial and organic enrichment are suggested as the major influences. It is concluded that the use of low toxicity oil-based mud at Beatrice has resulted in only limited benthic effects, suggesting that the use of these muds is environmentally acceptable.

  7. Studies on the toxicity of RSU-1069

    International Nuclear Information System (INIS)

    Whitmore, G.F.; Gulyas, S.

    1986-01-01

    RSU-1069 combines an aziridine function with a 2-nitroimidazole and has been reported to exhibit extraordinary radiosensitization both in vitro and in vivo. Such sensitization appears to be at variance with the electron affinity of the compound. In addition, recent experiments suggest that the compound is highly toxic to hypoxic tumor cells in vivo. On the assumption that the observed radiosensitizing ability may be a manifestation of toxicity and because of the high in vivo toxicity, we have investigated aerobic and hypoxic toxicity, both in wild type CHO cells and in mutants sensitive to a variety of DNA damaging agents. With wild type cells under aerobic conditions, the compound is approximately 50 times as toxic as misonidazole and under hypoxic conditions, approximately 250 times as toxic. The ratio of hypoxic to aerobic toxicity is approximately 80 times. Under aerobic conditions, repair-deficient mutants are 10 times as sensitive to RSU-1069 as wild type cells and approximately 100 times as sensitive under hypoxic conditions. The ratio of hypoxic to aerobic toxicity for the mutant cells is approximately 900. Based on these observations, we suggest that under aerobic conditions the aziridine function is primarily responsible for toxicity, whereas, under hypoxic conditions, the aziridine moiety combined with a reduced 2-nitroimidazole moiety produces a bifunctional agent

  8. Soil-based screening for iron toxicity tolerance in rice using pots

    Directory of Open Access Journals (Sweden)

    Mouritala Sikirou

    2016-10-01

    Full Text Available The objective of this study was to assess the reliability of pot-based screening method for iron (Fe toxicity tolerance in rice using soils from hot spots. Five lowland rice varieties with known reaction to Fe toxicity were grown in pots in a screen house for three seasons. Fe-toxic soils from two hot spot fields – Edozighi, Nigeria and Niaouli, Benin were used and soil from Africa Rice Center (AfricaRice experimental farm, Cotonou, Benin was included as control. Leaf bronzing score (LBS was determined at different stages, and grain yield was determined at maturity. Heritability was estimated using data across the three seasons. High heritability was recorded for LBS and grain yield. Grain yield reduction in stress treatment relative to control varied from 15 to 56% depending on the variety and soil. Bao Thai, Suakoko 8, and WITA 4 had better performance under Fe toxicity in terms of LBS, yield and relative yield reduction, whereas Bouake 189 and IR64 had poorer performance. Grain yield and LBS were significantly correlated but negatively at 60 days after sowing (DAS. Overall, the results found in this experiment were consistent with previous field studies. Therefore, pot screening using soils from hot spots can be used by rice breeding programs to reliably assess Fe toxicity tolerance ex situ.

  9. Small Microbial Three-Electrode Cell Based Biosensor for Online Detection of Acute Water Toxicity.

    Science.gov (United States)

    Yu, Dengbin; Zhai, Junfeng; Liu, Changyu; Zhang, Xueping; Bai, Lu; Wang, Yizhe; Dong, Shaojun

    2017-11-22

    The monitoring of toxicity of water is very important to estimate the safety of drinking water and the level of water pollution. Herein, a small microbial three-electrode cell (M3C) biosensor filled with polystyrene particles was proposed for online monitoring of the acute water toxicity. The peak current of the biosensor related with the performance of the bioanode was regarded as the toxicity indicator, and thus the acute water toxicity could be determined in terms of inhibition ratio by comparing the peak current obtained with water sample to that obtained with nontoxic standard water. The incorporation of polystyrene particles in the electrochemical cell not only reduced the volume of the samples used, but also improved the sensitivity of the biosensor. Experimental conditions including washing time with PBS and the concentration of sodium acetate solution were optimized. The stability of the M3C biosensor under optimal conditions was also investigated. The M3C biosensor was further examined by formaldehyde at the concentration of 0.01%, 0.03%, and 0.05% (v/v), and the corresponding inhibition ratios were 14.6%, 21.6%, and 36.4%, respectively. This work provides a new insight into the development of an online toxicity detector based on M3C biosensor.

  10. [Fatal toxic leukoencephalopathy associated with consumption of pasta base of cocaine: Report of three cases].

    Science.gov (United States)

    Cartier R, Luis; González L, Daniela; Harán D, Jorge

    2015-11-01

    The prevalence of drug-associated toxic encephalopathy is unknown, but it is an uncommon condition. Toxic leukoencephalopathy was described associated with heroin consumption, it has been less commonly described with the use of cocaine and there are no reports of its association with consumption pasta base of cocaine (PBC). We report two females aged 31 years and a male aged 19 years, consumers of PBC who developed a fatal toxic leukoencephalopathy. They initiated their disease with severe and persistent headache, sequential focal neurologic deficits and a progressive impairment of consciousness that culminated with their death. Laboratory parameters such as blood count, cerebrospinal fluid analyses or infectious biological indices were normal. MRI showed multifocal lesions in brain white matter of both hemispheres confirming the leukoencephalopathy. There was no response to the use of methylprednisolone.

  11. Advances in Base-Free Oxidation of Bio-Based Compounds on Supported Gold Catalysts

    Directory of Open Access Journals (Sweden)

    Robert Wojcieszak

    2017-11-01

    Full Text Available The oxidation of bio-based molecules in general, and of carbohydrates and furanics in particular, is a highly attractive process. The catalytic conversion of renewable compounds is of high importance. Acids and other chemical intermediates issued from oxidation processes have many applications related, especially, to food and detergents, as well as to pharmaceutics, cosmetics, and the chemical industry. Until now, the oxidation of sugars, furfural, or 5-hydroxymethylfurfural has been mainly conducted through biochemical processes or with strong inorganic oxidants. The use of these processes very often presents many disadvantages, especially regarding products separation and selectivity control. Generally, the oxidation is performed in batch conditions using an appropriate catalyst and a basic aqueous solution (pH 7–9, while bubbling oxygen or air through the slurry. However, there is a renewed interest in working in base-free conditions to avoid the production of salts. Actually, this gives direct access to different acids or diacids without laborious product purification steps. This review focuses on processes applying gold-based catalysts, and on the catalytic properties of these systems in the base-free oxidation of important compounds: C5–C6 sugars, furfural, and 5-hydroxymethylfurfural. A better understanding of the chemical and physical properties of the catalysts and of the operating conditions applied in the oxidation reactions is essential. For this reason, in this review we put emphasis on these most impacting factors.

  12. Translation of Japanese Noun Compounds at Super-Function Based MT System

    Science.gov (United States)

    Zhao, Xin; Ren, Fuji; Kuroiwa, Shingo

    Noun compounds are frequently encountered construction in nature language processing (NLP), consisting of a sequence of two or more nouns which functions syntactically as one noun. The translation of noun compounds has become a major issue in Machine Translation (MT) due to their frequency of occurrence and high productivity. In our previous studies on Super-Function Based Machine Translation (SFBMT), we have found that noun compounds are very frequently used and difficult to be translated correctly, the overgeneration of noun compounds can be dangerous as it may introduce ambiguity in the translation. In this paper, we discuss the challenges in handling Japanese noun compounds in an SFBMT system, we present a shallow method for translating noun compounds by using a word level translation dictionary and target language monolingual corpus.

  13. Building Asphalt Pavement with SBS-based Compound Added Using a Dry Process in Greenland

    DEFF Research Database (Denmark)

    Lee, Hosin; Kim, Yongjoo; Geisler, Nivi

    2009-01-01

    PMA where it is formulated to melt and blend with asphalt quickly during a batch mixing process. The main objectives of this study are to (1) build asphalt pavement using asphalt mixtures with SBS-based compound added using a “dry” process at the batch plant and (2) evaluate its performance under......-based compound seemed to affect the asphalt mix to become more flexible under the heavy loads. By adding SBS-based compound to asphalt mixtures using a “dry” process, it is expected that the pavement would become more resistant to rutting than a typical asphalt mixture used in Greenland while enduring its arctic...

  14. Evaluation of Complex Toxicity of Canbon Nanotubes and Sodium Pentachlorophenol Based on Earthworm Coelomocytes Test.

    Directory of Open Access Journals (Sweden)

    Yang Yang

    Full Text Available As a standard testing organism in soil ecosystems, the earthworm Eisenia fetida has been used widely in toxicity studies. However, tests at the individual level are time- and animal-consuming, with limited sensitivity. Earthworm coelomocytes are important for the assimilation and elimination of exogenous compounds and play a key role in the processes of phagocytosis and inflammation. In this study, we explored an optimal condition to culture coelomocytes of E. fetida in vitro and investigated the cytotoxicity of multiwalled carbon nanotubes (MWCNTs and sodium pentachlorophenol (PCP-Na using coelomocytes via evaluating lethal toxicity, oxidative stress, membrane damage, and DNA damage. The results showed that coelomocytes can be successfully cultured in vitro in primary under the RPMI-1640 medium with 2-4×104 cells/well (1-2×105 cells/mL in 96-well plates at 25°C without CO2. Both MWCNTs and PCP-Na could cause oxidative damage and produce ROS, an evidence for lipid peroxidation with MDA generation and SOD and CAT activity inhibition at high stress. The two chemicals could separately damage the cell membrane structure, increasing permeability and inhibiting mitochondrial membrane potential (MMP. In addition, our results indicate that PCP-Na may be adsorbed onto MWCNTs and its toxicity on earthworm was accordingly alleviated, while a synergetic effect was revealed when PCP-Na and MWCNTs were added separately. In summary, coelomocyte toxicity in in vitro analysis is a sensitive method for detecting the adverse effects of carbon nanotubes combined with various pollutants.

  15. Radiation effects on II-VI compound-based detectors

    CERN Document Server

    Cavallini, A; Dusi, W; Auricchio, N; Chirco, P; Zanarini, M; Siffert, P; Fougeres, P

    2002-01-01

    The performance of room temperature CdTe and CdZnTe detectors exposed to a radiation source can be strongly altered by the interaction of the ionizing particles and the material. Up to now, few experimental data are available on the response of II-VI compound detectors to different types of radiation sources. We have carried out a thorough investigation on the effects of gamma-rays, neutrons and electron irradiation both on CdTe : Cl and Cd sub 0 sub . sub 9 Zn sub 0 sub . sub 1 Te detectors. We have studied the detector response after radiation exposure by means of dark current measurements and of quantitative spectroscopic analyses at low and medium energies. The deep traps present in the material have been characterized by means of PICTS (photo-induced current transient spectroscopy) analyses, which allow to determine the trap apparent activation energy and capture cross-section. The evolution of the trap parameters with increasing irradiation doses has been monitored for all the different types of radiati...

  16. Gadolinium based contrast agents in current practice: Risks of accumulation and toxicity in patients with normal renal function

    Directory of Open Access Journals (Sweden)

    Anju Ranga

    2017-01-01

    Full Text Available Despite being decked as the most prized compounds in the nugget box of contrast agents for clinical radiologists, and carrying an indisputable tag of safety of the US Food and Drug Administration for close to three decades, all may not be seemingly well with the family of gadolinium compounds. If the first signs of violations of primum non nocere in relation to gadolinium-based contrast agents (GBCAs appeared in the millennium year with the first published report of skin fibrosis in patients with compromised renal function, the causal relationship between the development of nephrogenic systemic fibrosis (NSF and GBCAs, first proposed by two European groups in 2006, further precluded their use in renocompromised patients. The toxicity, pharmacokinetics, and pharmacodynamics of GBCAs, however, has come under hawk-eyed scrutiny with recent reports that gadolinium tends to deposit cumulatively in the brain of patients with normal hepatobiliary function and intact blood–brain barrier. While the jury on the long-term hazard significance of this critical scientific finding is still out, the use of GBCAs must be guided by due clinical diligence, avoidance of repeated doses, and preferring GBCAs with the best safety profiles.

  17. Paper-based chromatic toxicity bioassay by analysis of bacterial ferricyanide reduction.

    Science.gov (United States)

    Pujol-Vila, F; Vigués, N; Guerrero-Navarro, A; Jiménez, S; Gómez, D; Fernández, M; Bori, J; Vallès, B; Riva, M C; Muñoz-Berbel, X; Mas, J

    2016-03-03

    Water quality assessment requires a continuous and strict analysis of samples to guarantee compliance with established standards. Nowadays, the increasing number of pollutants and their synergistic effects lead to the development general toxicity bioassays capable to analyse water pollution as a whole. Current general toxicity methods, e.g. Microtox(®), rely on long operation protocols, the use of complex and expensive instrumentation and sample pre-treatment, which should be transported to the laboratory for analysis. These requirements delay sample analysis and hence, the response to avoid an environmental catastrophe. In an attempt to solve it, a fast (15 min) and low-cost toxicity bioassay based on the chromatic changes associated to bacterial ferricyanide reduction is here presented. E. coli cells (used as model bacteria) were stably trapped on low-cost paper matrices (cellulose-based paper discs, PDs) and remained viable for long times (1 month at -20 °C). Apart from bacterial carrier, paper matrices also acted as a fluidic element, allowing fluid management without the need of external pumps. Bioassay evaluation was performed using copper as model toxic agent. Chromatic changes associated to bacterial ferricyanide reduction were determined by three different transduction methods, i.e. (i) optical reflectometry (as reference method), (ii) image analysis and (iii) visual inspection. In all cases, bioassay results (in terms of half maximal effective concentrations, EC50) were in agreement with already reported data, confirming the good performance of the bioassay. The validation of the bioassay was performed by analysis of real samples from natural sources, which were analysed and compared with a reference method (i.e. Microtox). Obtained results showed agreement for about 70% of toxic samples and 80% of non-toxic samples, which may validate the use of this simple and quick protocol in the determination of general toxicity. The minimum instrumentation

  18. Lectin-based food poisoning: a new mechanism of protein toxicity.

    Science.gov (United States)

    Miyake, Katsuya; Tanaka, Toru; McNeil, Paul L

    2007-08-01

    Ingestion of the lectins present in certain improperly cooked vegetables can result in acute GI tract distress, but the mechanism of toxicity is unknown. In vivo, gut epithelial cells are constantly exposed to mechanical and other stresses and consequently individual cells frequently experience plasma membrane disruptions. Repair of these cell surface disruptions allows the wounded cell to survive: failure results in necrotic cell death. Plasma membrane repair is mediated, in part, by an exocytotic event that adds a patch of internal membrane to the defect site. Lectins are known to inhibit exocytosis. We therefore tested the novel hypothesis that lectin toxicity is due to an inhibitory effect on plasma membrane repair. Repair of plasma membrane disruptions and exocytosis of mucus was assessed after treatment of cultured cell models and excised segments of the GI tract with lectins. Plasma membrane disruptions were produced by focal irradiation of individual cells, using a microscope-based laser, or by mechanical abrasion of multiple cells, using a syringe needle. Repair was then assessed by monitoring the cytosolic penetration of dyes incapable of crossing the intact plasma membrane. We found that cell surface-bound lectins potently inhibited plasma membrane repair, and the exocytosis of mucus that normally accompanies the repair response. Lectins potently inhibit plasma membrane repair, and hence are toxic to wounded cells. This represents a novel form of protein-based toxicity, one that, we propose, is the basis of plant lectin food poisoning.

  19. Lectin-based food poisoning: a new mechanism of protein toxicity.

    Directory of Open Access Journals (Sweden)

    Katsuya Miyake

    Full Text Available BACKGROUND: Ingestion of the lectins present in certain improperly cooked vegetables can result in acute GI tract distress, but the mechanism of toxicity is unknown. In vivo, gut epithelial cells are constantly exposed to mechanical and other stresses and consequently individual cells frequently experience plasma membrane disruptions. Repair of these cell surface disruptions allows the wounded cell to survive: failure results in necrotic cell death. Plasma membrane repair is mediated, in part, by an exocytotic event that adds a patch of internal membrane to the defect site. Lectins are known to inhibit exocytosis. We therefore tested the novel hypothesis that lectin toxicity is due to an inhibitory effect on plasma membrane repair. METHODS AND FINDINGS: Repair of plasma membrane disruptions and exocytosis of mucus was assessed after treatment of cultured cell models and excised segments of the GI tract with lectins. Plasma membrane disruptions were produced by focal irradiation of individual cells, using a microscope-based laser, or by mechanical abrasion of multiple cells, using a syringe needle. Repair was then assessed by monitoring the cytosolic penetration of dyes incapable of crossing the intact plasma membrane. We found that cell surface-bound lectins potently inhibited plasma membrane repair, and the exocytosis of mucus that normally accompanies the repair response. CONCLUSIONS: Lectins potently inhibit plasma membrane repair, and hence are toxic to wounded cells. This represents a novel form of protein-based toxicity, one that, we propose, is the basis of plant lectin food poisoning.

  20. Toxicity of organic compounds to marine invertebrate embryos and larvae: a comparison between the sea urchin embryogenesis bioassay and alternative test species.

    Science.gov (United States)

    Bellas, Juan; Beiras, Ricardo; Mariño-Balsa, José Carlos; Fernández, Nuria

    2005-04-01

    This study investigated the toxic effects of the insecticides lindane and chlorpyrifos, the herbicide diuron, the organometallic antifoulant tributyltin (TBT), and the surfactant sodium dodecyl sulfate (SDS) on the early life stages of Paracentrotus lividus (Echinodermata, Euechinoidea), Ciona intestinalis (Chordata, Ascidiacea), Maja squinado and Palaemon serratus (Arthropoda, Crustacea) in laboratory acute toxicity tests. The assays studied embryogenesis success from fertilized egg to normal larvae in P. lividus (48 h incubation at 20 degrees C) and C. intestinalis (24 h incubation at 20 degrees C), and larval mortality at 24 and 48 h in M. squinado and P. serratus. For P. lividus, the median effective concentrations (EC50) reducing percentages of normal larvae by 50% were: 350 microg l(-1) for chlorpyrifos, 5500 microg l(-1) for diuron, 4277 microg l(-1) for SDS, and 0.309 microg l(-1) for TBT. For C. intestinalis, the EC50 values affecting embryogenesis success were 5666 microg l(-1) for chlorpyrifos, 24,397 microg (l-1) for diuron, 4412 microg l(-1) for lindane, 5145 microg I(-1) for SDS, and 7.1 microg l(-1) for TBT. The median lethal concentrations (LC50) for M. squinado larval survival were 0.84 microg l(-1) (24 h) and 0.79 microg l(-1) (48 h) for chlorpyrifos, 2.23 microg(l(-1) (24 h) and 2.18 microg l(-1) (48 h) for lindane, and 687 microg l(-1) (48 h) for SDS. For P. serratus the LC50 values obtained were 0.35 microg l(-1) (24 h) and 0.22 microg l(-1) (48 h) for chlorpyrifos, 3011 microg l(-1) (24 h) and 3044 microg l(-1) (48 h) for diuron, 5.20 microg l(-1) (24 h) and 5.59 microg l(-1) (48 h) for lindane, and 22.30 microg l(-1) (24 h) and 17.52 microg l(-1) (48 h) for TBT. Decapod larvae, as expected, were markedly more sensitive to the insecticides than sea urchins and ascidians, and SDS was the least toxic compound tested for these organisms. Lowest observed effect concentrations (LOEC) of TBT for sea urchin and ascidian embryos, chlorpyrifos and

  1. Modelling of the Kinetics of Sulfure Compounds in Desulfurisation Processes Based on Industry Data of Plant

    Directory of Open Access Journals (Sweden)

    Krivtcova Nadezhda

    2016-01-01

    Full Text Available Modelling of sulfur compounds kinetics was performed, including kinetics of benzothiophene and dibenzothiophene homologues. Modelling is based on experimental data obtained from monitoring of industrial hydrotreating set. Obtained results include kinetic parameters of reactions.

  2. Modelling of the Kinetics of Sulfure Compounds in Desulfurisation Processes Based on Industry Data of Plant

    OpenAIRE

    Krivtsova, Nadezhda Igorevna; Tataurshikov, A.; Kotkova, Elena

    2016-01-01

    Modelling of sulfur compounds kinetics was performed, including kinetics of benzothiophene and dibenzothiophene homologues. Modelling is based on experimental data obtained from monitoring of industrial hydrotreating set. Obtained results include kinetic parameters of reactions.

  3. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries.

    Science.gov (United States)

    Ma, Xiao H; Jia, Jia; Zhu, Feng; Xue, Ying; Li, Ze R; Chen, Yu Z

    2009-05-01

    Machine learning methods have been explored as ligand-based virtual screening tools for facilitating drug lead discovery. These methods predict compounds of specific pharmacodynamic, pharmacokinetic or toxicological properties based on their structure-derived structural and physicochemical properties. Increasing attention has been directed at these methods because of their capability in predicting compounds of diverse structures and complex structure-activity relationships without requiring the knowledge of target 3D structure. This article reviews current progresses in using machine learning methods for virtual screening of pharmacodynamically active compounds from large compound libraries, and analyzes and compares the reported performances of machine learning tools with those of structure-based and other ligand-based (such as pharmacophore and clustering) virtual screening methods. The feasibility to improve the performance of machine learning methods in screening large libraries is discussed.

  4. Green chemistry approach to the synthesis of potentially bioactive aminobenzylated Mannich bases through active hydrogen compounds

    Directory of Open Access Journals (Sweden)

    S. L. VASOYA

    2005-10-01

    Full Text Available An efficient and high yield method for the synthesis of aminobenzylated Mannich bases is described. The synthesis occurs in aqueous medium at 0 ºC. The compounds show moderate antitubercular and antimicrobial activities.

  5. Molecular docking and ADME-toxicity studies of potential compounds of medicinal plants grown in Indonesia as an anti-rheumatoid arthritis

    Science.gov (United States)

    Awaluddin, Rizki; Muhtadi, Wildan Khairi; Chabib, Lutfi; Ikawati, Zullies; Martien, Ronny; Ismail, Hilda

    2017-03-01

    Rheumatoid arthritis (RA) is an autoimmune disease with recurrent bone destruction around the joints that could lead to permanent joint damage. DMARDs (Disease Modifying Anti-Rheumatoid Drugs) and NSAIDs (Non-Steroid Anti-Inflammatory Drugs) are the RA therapies with many side effects on long term use. Based on the ethnomedicine, there are many plants that could be found in Indonesia that contain the potential compounds as alternative RA therapies. The aim of this study is to assess the potential of compounds of various medicinal plants against multiple proteins that play an important role on RA through the molecular docking study and pharmacokinetic prediction. Hesperidin, EGCG (Epigallocatechin gallate), and mangiferin showed higher activity compared to the other compounds against TACE (TNF-α converting enzyme) which play an important role in the inhibition of TNF-α. Inhibition on it could suppress macrophage cell and T-cell activity by suppressing the regulation of cytokine secretion against inflammation. Furthermore, hesperidin, EGCG, and mangiferin did not show effects on CYP450 (cytochrome P450). Modification of drug delivery system must be done to increase the bioavailability of the compounds. It can be concluded that hesperidin, EGCG, and mangiferin are potential to be developed as an RA therapy with a modification of drug delivery system. This study suggest the encapsulation method using liposome as the drug carrier, which is suitable with the charactheristic of hesperidine, EGCG, and mangiferin.

  6. Photocatalytic performance of cylindrical reactor inserted with UV light-emitting-diodes for purification of low-level toxic volatile organic compounds

    International Nuclear Information System (INIS)

    Jo, Wan K.; Kang, Hyun J.

    2012-01-01

    Highlights: ► Photocatalyst baked at 350 °C exhibited the highest BTEX degradation efficiency. ► Conventional lamp evidenced a higher degradation efficiency compared to LEDs. ► LEDs was more energy-efficient than conventional lamp for BTEX degradation. ► As the residence time increased, the average degradation efficiency increased. - Abstract: The present study investigated the photocatalytic performance of a cylindrical reactor inserted with UV light-emitting-diodes for the decomposition of low-level (0.1 ppm) gas-phase organic compounds (benzene, toluene, ethyl benzene and xylene (BTEX)). The morphological and optical properties of photocatalysts (Degussa P-25 TiO 2 ) baked at different temperatures were determined using a range of spectral instruments. The photocatalyst baked at 350 °C exhibited the highest conversion efficiencies for both benzene and toluene (81 and ∼100%, respectively). The conventional lamp showed a higher conversion efficiency for benzene compared to the 380-nm UV-LED and a higher conversion efficiency for benzene and toluene than the 365-nm UV-LED. However, the ratios of conversion efficiency to electric power consumption were 2.5–3.0 times higher for the latter light source than the former source. Moreover, as the residence time increased from 0.2 to 1.2 min, the average conversion efficiencies for BTEX of the 3-h photocatalytic process increased from nearly zero to 81%, 7 to nearly 100%, 20 to nearly 100%, and 29–30 to nearly 100%, respectively. The cylindrical photocatalytic reactor inserted with UV-LEDs could be energy-efficiently applied for the decomposition of low-level toxic compounds after optimization of the operating conditions.

  7. Photocatalytic performance of cylindrical reactor inserted with UV light-emitting-diodes for purification of low-level toxic volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Wan K., E-mail: wkjo@knu.ac.kr [Department of Environmental Engineering, Kyungpook National University, Daegu, 702-701 (Korea, Republic of); Kang, Hyun J., E-mail: khj435@naver.com [Department of Environmental Engineering, Kyungpook National University, Daegu, 702-701 (Korea, Republic of)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Photocatalyst baked at 350 Degree-Sign C exhibited the highest BTEX degradation efficiency. Black-Right-Pointing-Pointer Conventional lamp evidenced a higher degradation efficiency compared to LEDs. Black-Right-Pointing-Pointer LEDs was more energy-efficient than conventional lamp for BTEX degradation. Black-Right-Pointing-Pointer As the residence time increased, the average degradation efficiency increased. - Abstract: The present study investigated the photocatalytic performance of a cylindrical reactor inserted with UV light-emitting-diodes for the decomposition of low-level (0.1 ppm) gas-phase organic compounds (benzene, toluene, ethyl benzene and xylene (BTEX)). The morphological and optical properties of photocatalysts (Degussa P-25 TiO{sub 2}) baked at different temperatures were determined using a range of spectral instruments. The photocatalyst baked at 350 Degree-Sign C exhibited the highest conversion efficiencies for both benzene and toluene (81 and {approx}100%, respectively). The conventional lamp showed a higher conversion efficiency for benzene compared to the 380-nm UV-LED and a higher conversion efficiency for benzene and toluene than the 365-nm UV-LED. However, the ratios of conversion efficiency to electric power consumption were 2.5-3.0 times higher for the latter light source than the former source. Moreover, as the residence time increased from 0.2 to 1.2 min, the average conversion efficiencies for BTEX of the 3-h photocatalytic process increased from nearly zero to 81%, 7 to nearly 100%, 20 to nearly 100%, and 29-30 to nearly 100%, respectively. The cylindrical photocatalytic reactor inserted with UV-LEDs could be energy-efficiently applied for the decomposition of low-level toxic compounds after optimization of the operating conditions.

  8. Determination of sulfur compounds in hydrotreated transformer base oil by potentiometric titration.

    Science.gov (United States)

    Chao, Qiu; Sheng, Han; Cheng, Xingguo; Ren, Tianhui

    2005-06-01

    A method was developed to analyze the distribution of sulfur compounds in model sulfur compounds by potentiometric titration, and applied to analyze hydrotreated transformer base oil. Model thioethers were oxidized to corresponding sulfoxides by tetrabutylammonium periodate and sodium metaperiodate, respectively, and the sulfoxides were titrated by perchloric acid titrant in acetic anhydride. The contents of aliphatic thioethers and total thioethers were then determined from that of sulfoxides in solution. The method was applied to determine the organic sulfur compounds in hydrotreated transformer base oil.

  9. Synthesis and optoelectronic characterization of some triphenylamine-based compounds containing strong acceptor substituents

    Energy Technology Data Exchange (ETDEWEB)

    Grigoras, Mircea, E-mail: grim@icmpp.ro; Ivan, Teofilia; Vacareanu, Loredana; Catargiu, Ana Maria; Tigoianu, Radu

    2014-09-15

    Three novel triphenylamine-based compounds containing strong electron acceptor groups have been synthesized and their comparative photophysical properties are presented. These compounds were obtained by a two-step method: (i) triphenylamine compounds with one, two and three phenylacetylene arms were synthesized by Sonogashira reaction between iodine-substituted triphenylamines and phenylacetylene, followed by (ii) post-modification of these electron-rich alkynes by addition of the strong electron acceptor, tetracyanoethylene. Characterization of all oligomers was made by FTIR, {sup 1}H-NMR, UV–vis and fluorescence spectroscopy. A batochromic shifting of the UV and photoluminescence maxima was observed with the increase of the acceptor group number. The electrochemical behavior was studied by cyclic voltammetry. The cyclic voltammograms have evidenced that triphenylamine-phenylacetylene compounds undergo only oxidation processes while compounds modified with tetracyanoethylene show both oxidation and reduction peaks associated with donor and acceptor groups, respectively. The donor–acceptor compounds coordinate metal ions (i.e., Hg{sup 2+} and Sn{sup 2+}) by cyano groups resulting in the decreasing of charge transfer band intensity, and they can be used as chemosensors. - Highlights: • Three triphenylamine-based ethynylene compounds were prepared by Sonogashira reaction. • Post-modification of ethynylene linkages by tetracyanethylene cycloaddition and retroconversion led to donor–acceptor compounds. • Photophysical properties of donor–acceptor oligomers were studied in different solvents.

  10. Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs.

    Science.gov (United States)

    Lin, Chun-Yuan; Wang, Chung-Hung; Hung, Che-Lun; Lin, Yu-Shiang

    2015-01-01

    Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n (2)), where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC). The intrinsic time complexity of MCC problem is O(k (2) n (2)) with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results.

  11. Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs

    Directory of Open Access Journals (Sweden)

    Chun-Yuan Lin

    2015-01-01

    Full Text Available Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n2, where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC. The intrinsic time complexity of MCC problem is O(k2n2 with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results.

  12. Pyrolysis mechanism of microalgae Nannochloropsis sp. based on model compounds and their interaction

    International Nuclear Information System (INIS)

    Wang, Xin; Tang, Xiaohan; Yang, Xiaoyi

    2017-01-01

    Highlights: • Pyrolysis experiments were conducted by model compounds of algal components. • Interaction affected little bio-crude yield of model compounds co-pyrolysis. • Some interaction pathways between microalgae components were recommended. • N-heterocyclic compounds were further pyrolysis products of Maillard reaction products. • Surfactant synthesis (lipid-amino acids and lipid-glucose) between algal components. - Abstract: Pyrolysis is one of important pathways to convert microalgae to liquid biofuels and key components of microalgae have different chemical composition and structure, which provides a barrier for large-scale microalgae-based liquid biofuel application. Microalgae component pyrolysis mechanism should be researched to optimal pyrolysis process parameters. In this study, single pyrolysis and co-pyrolysis of microalgal components (model compounds castor oil, soybean protein and glucose) were conducted to reveal interaction between them by thermogrametric analysis and bio-crude evaluation. Castor oil (model compound of lipid) has higher pyrolysis temperature than other model compounds and has the maximum contribution to bio-crude formation. Bio-crude from soybean protein has higher N-heterocyclic compounds as well as phenols, which could be important aromatic hydrocarbon source during biorefineries and alternative aviation biofuel production. Potential interaction pathways based on model compounds are recommended including further decomposition of Maillard reaction products (MRPs) and surfactant synthesis, which indicate that glucose played an important role on pyrolysis of microalgal protein and lipid components. The results should provide necessary information for microalgae pyrolysis process optimization and large-scale pyrolysis reactor design.

  13. Screening the Emission Sources of Volatile Organic Compounds (VOCs) in China Based on Multi-effect Evaluation

    Science.gov (United States)

    Niu, H., Jr.

    2015-12-01

    Volatile organic compounds (VOCs) in the atmosphere have adverse impacts via three main pathways: photochemical ozone formation, secondary organic aerosol production, and direct toxicity to humans. Few studies have integrated these effects to prioritize control measures for VOCs sources. In this study, we developed a multi-effect evaluation methodology based on updated emission inventories and source profiles, which was combined with ozone formation potential (OFP), secondary organic aerosol potential (SOAP), and VOC toxicity data to identify important emission sources and key species. We derived species-specific emission inventories for 152 sources. The OFPs, SOAPs, and toxicity of each source were determined, and the contribution and share of each source to each of these adverse effects was calculated. Weightings were given to the three adverse effects by expert scoring, and the integrated impact was determined. Using 2012 as the base year, solvent usage and industrial process were found to be the most important anthropogenic sources, accounting for 24.2 and 23.1% of the integrated environmental effect, respectively. This was followed by biomass burning, transportation, and fossil fuel combustion, all of which had a similar contribution ranging from 16.7 to 18.6%. The top five industrial sources, including plastic products, rubber products, chemical fiber products, the chemical industry, and oil refining, accounted for nearly 70.0% of industrial emissions. In China, emissions reductions are required for styrene, toluene, ethylene, benzene, and m/p-xylene. The 10 most abundant chemical species contributed 76.5% of the integrated impact. Beijing, Chongqing, Shanghai, Jiangsu, and Guangdong were the five leading provinces when considering the integrated effects. Besides, the chemical mass balance model (CMB) was used to verify the VOCs inventories of 47 cities in China, so as to optimize our evaluation results. We suggest that multi-effect evaluation is necessary to

  14. Detection of polyaromatic compounds using antibody-based fiberoptics fluoroimmunosensors

    International Nuclear Information System (INIS)

    Vo-Dinh, T.; Tromberg, B.J.; Griffin, G.D.; Ambrose, K.R.; Sepaniak, M.J.; Alarie, J.P.

    1987-01-01

    In this work we have investigated the performance of an antibody-based fiberoptics sensor for the detection of the carcinogen benzo(a)pyrene and its DNA-adduct product BP-tetrol. The excellent sensitivity of this device - femtomole limits of detection for BP - illustrates that it has considerable potential to perform analyses of chemical and biological samples at trace levels in complex matrices. The results indicate that fiberoptics-based fluoroimmunosensors can be useful in a wide spectrum of biochemical and clinical analyses. 17 refs., 4 figs., 1 tab

  15. Detection of polyaromatic compounds using antibody-based fiberoptics fluoroimmunosensors

    Energy Technology Data Exchange (ETDEWEB)

    Vo-Dinh, T.; Tromberg, B.J.; Griffin, G.D.; Ambrose, K.R.; Sepaniak, M.J.; Alarie, J.P.

    1987-01-01

    In this work we have investigated the performance of an antibody-based fiberoptics sensor for the detection of the carcinogen benzo(a)pyrene and its DNA-adduct product BP-tetrol. The excellent sensitivity of this device - femtomole limits of detection for BP - illustrates that it has considerable potential to perform analyses of chemical and biological samples at trace levels in complex matrices. The results indicate that fiberoptics-based fluoroimmunosensors can be useful in a wide spectrum of biochemical and clinical analyses. 17 refs., 4 figs., 1 tab.

  16. Optimization of the solvent-based dissolution method to sample volatile organic compound vapors for compound-specific isotope analysis.

    Science.gov (United States)

    Bouchard, Daniel; Wanner, Philipp; Luo, Hong; McLoughlin, Patrick W; Henderson, James K; Pirkle, Robert J; Hunkeler, Daniel

    2017-10-20

    The methodology of the solvent-based dissolution method used to sample gas phase volatile organic compounds (VOC) for compound-specific isotope analysis (CSIA) was optimized to lower the method detection limits for TCE and benzene. The sampling methodology previously evaluated by [1] consists in pulling the air through a solvent to dissolve and accumulate the gaseous VOC. After the sampling process, the solvent can then be treated similarly as groundwater samples to perform routine CSIA by diluting an aliquot of the solvent into water to reach the required concentration of the targeted contaminant. Among solvents tested, tetraethylene glycol dimethyl ether (TGDE) showed the best aptitude for the method. TGDE has a great affinity with TCE and benzene, hence efficiently dissolving the compounds during their transition through the solvent. The method detection limit for TCE (5±1μg/m 3 ) and benzene (1.7±0.5μg/m 3 ) is lower when using TGDE compared to methanol, which was previously used (385μg/m 3 for TCE and 130μg/m 3 for benzene) [2]. The method detection limit refers to the minimal gas phase concentration in ambient air required to load sufficient VOC mass into TGDE to perform δ 13 C analysis. Due to a different analytical procedure, the method detection limit associated with δ 37 Cl analysis was found to be 156±6μg/m 3 for TCE. Furthermore, the experimental results validated the relationship between the gas phase TCE and the progressive accumulation of dissolved TCE in the solvent during the sampling process. Accordingly, based on the air-solvent partitioning coefficient, the sampling methodology (e.g. sampling rate, sampling duration, amount of solvent) and the final TCE concentration in the solvent, the concentration of TCE in the gas phase prevailing during the sampling event can be determined. Moreover, the possibility to analyse for TCE concentration in the solvent after sampling (or other targeted VOCs) allows the field deployment of the sampling

  17. TiO2–AgCl Based Nanoparticles for Photocatalytic Production of Phenolic Compounds from Lignocellulosic Residues

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Alvarado-Morales, Merlin; Boscaro, Davide

    2018-01-01

    Lignocellulosic biomass residues can be used as an interesting resource for the production of biochemicals or sustainable fuels. In this optic, lignin represents an interesting raw material for the production of chemicals, such as aromatic compounds, or fuels. This can contribute in moving away...... for optimal phenolic compounds production. It was found that the photocatalytic treatment boosted the phenolic production from wheat straw. The efficiency of the process depended on the initial pH and catalyst concentration. Process optimization towards increased phenolic compounds production was performed...... of toxic compounds presented in the catalyst-straw solution and specifically, HNO3 was toxic to methanogenic communities. Hence, to succeed in an efficient biorefinery framework where total phenols and biogas production are combined, the usage of HNO3 for catalyst synthesis should be avoided....

  18. Consolidating duodenal and small bowel toxicity data via isoeffective dose calculations based on compiled clinical data.

    Science.gov (United States)

    Prior, Phillip; Tai, An; Erickson, Beth; Li, X Allen

    2014-01-01

    To consolidate duodenum and small bowel toxicity data from clinical studies with different dose fractionation schedules using the modified linear quadratic (MLQ) model. A methodology of adjusting the dose-volume (D,v) parameters to different levels of normal tissue complication probability (NTCP) was presented. A set of NTCP model parameters for duodenum toxicity were estimated by the χ(2) fitting method using literature-based tolerance dose and generalized equivalent uniform dose (gEUD) data. These model parameters were then used to convert (D,v) data into the isoeffective dose in 2 Gy per fraction, (D(MLQED2),v) and convert these parameters to an isoeffective dose at another NTCP (D(MLQED2'),v). The literature search yielded 5 reports useful in making estimates of duodenum and small bowel toxicity. The NTCP model parameters were found to be TD50(1)(model) = 60.9 ± 7.9 Gy, m = 0.21 ± 0.05, and δ = 0.09 ± 0.03 Gy(-1). Isoeffective dose calculations and toxicity rates associated with hypofractionated radiation therapy reports were found to be consistent with clinical data having different fractionation schedules. Values of (D(MLQED2'),v) between different NTCP levels remain consistent over a range of 5%-20%. MLQ-based isoeffective calculations of dose-response data corresponding to grade ≥2 duodenum toxicity were found to be consistent with one another within the calculation uncertainty. The (D(MLQED2),v) data could be used to determine duodenum and small bowel dose-volume constraints for new dose escalation strategies. Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  19. Toxicity prediction of ionic liquids based on Daphnia magna by using density functional theory

    Science.gov (United States)

    Nu’aim, M. N.; Bustam, M. A.

    2018-04-01

    By using a model called density functional theory, the toxicity of ionic liquids can be predicted and forecast. It is a theory that allowing the researcher to have a substantial tool for computation of the quantum state of atoms, molecules and solids, and molecular dynamics which also known as computer simulation method. It can be done by using structural feature based quantum chemical reactivity descriptor. The identification of ionic liquids and its Log[EC50] data are from literature data that available in Ismail Hossain thesis entitled “Synthesis, Characterization and Quantitative Structure Toxicity Relationship of Imidazolium, Pyridinium and Ammonium Based Ionic Liquids”. Each cation and anion of the ionic liquids were optimized and calculated. The geometry optimization and calculation from the software, produce the value of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). From the value of HOMO and LUMO, the value for other toxicity descriptors were obtained according to their formulas. The toxicity descriptor that involves are electrophilicity index, HOMO, LUMO, energy gap, chemical potential, hardness and electronegativity. The interrelation between the descriptors are being determined by using a multiple linear regression (MLR). From this MLR, all descriptors being analyzed and the descriptors that are significant were chosen. In order to develop the finest model equation for toxicity prediction of ionic liquids, the selected descriptors that are significant were used. The validation of model equation was performed with the Log[EC50] data from the literature and the final model equation was developed. A bigger range of ionic liquids which nearly 108 of ionic liquids can be predicted from this model equation.

  20. Pharmacogenetic predictors of toxicity to platinum based chemotherapy in non-small cell lung cancer patients.

    Science.gov (United States)

    Pérez-Ramírez, Cristina; Cañadas-Garre, Marisa; Alnatsha, Ahmed; Villar, Eduardo; Delgado, Juan Ramón; Faus-Dáder, María José; Calleja-Hernández, Miguel Ÿngel

    2016-09-01

    Platinum-based chemotherapy is the standard treatment for NSCLC patients with EGFR wild-type, and as alternative to failure to EGFR inhibitors. However, this treatment is aggressive and most patients experience grade 3-4 toxicities. ERCC1, ERCC2, ERCC5, XRCC1, MDM2, ABCB1, MTHFR, MTR, SLC19A1, IL6 and IL16 gene polymorphisms may contribute to individual variation in toxicity to chemotherapy. The aim of this study was to evaluate the effect of these polymorphisms on platinum-based chemotherapy in NSCLC patients. A prospective cohorts study was conducted, including 141 NSCLC patients. Polymorphisms were analyzed by PCR Real-Time with Taqman(®) probes and sequencing. Patients with ERCC1 C118T-T allele (p=0.00345; RR=26.05; CI95%=4.33, 515.77) and ERCC2 rs50872-CC genotype (p=0.00291; RR=4.06; CI95%=1.66, 10.65) had higher risk of general toxicity for platinum-based chemotherapy. ERCC2 Asp312Asn G-alelle, ABCB1 C1236T-TT and the IL1B rs12621220-CT/TT genotypes conferred a higher risk to present multiple adverse events. The subtype toxicity analysis also revealed that ERCC2 rs50872-CC genotype (p=0.01562; OR=3.23; CI95%=1.29, 8.82) and IL16 rs7170924-T allele (p=0.01007; OR=3.19; CI95%=1.35, 7.97) were associated with grade 3-4 hematological toxicity. We did not found the influence of ERCC1 C8092A, ERCC2 Lys751Gln, ERCC2 Asp312Asn, ERCC5 Asp1104His, XRCC1 Arg194Trp, MDM2 rs1690924, ABCB1 C3435T, ABCB1 Ala893Ser/Thr, MTHFR A1298C, MTHFR C677T, IL1B rs1143623, IL1B rs16944, and IL1B rs1143627 on platinum-based chemotherapy toxicity. In conclusion, ERCC1 C118T, ERCC2 rs50872, ERCC2 Asp312Asn, ABCB1 C1236T, IL1B rs12621220 and IL16 rs7170924 polymorphisms may substantially act as prognostic factors in NSCLC patients treated with platinum-based chemotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Characterization and crystal structures of new Schiff base macrocyclic compounds

    Czech Academy of Sciences Publication Activity Database

    Khalaji, A.D.; Ghoran, S.H.; Pojarová, Michaela; Dušek, Michal

    2015-01-01

    Roč. 56, č. 7 (2015), s. 1410-1414 ISSN 0022-4766 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : synthesis * macrocyclic Schiff base * single crystal structure analysis * spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.536, year: 2015

  2. Molecular Recognition: Detection of Colorless Compounds Based on Color Change

    Science.gov (United States)

    Khalafi, Lida; Kashani, Samira; Karimi, Javad

    2016-01-01

    A laboratory experiment is described in which students measure the amount of cetirizine in allergy-treatment tablets based on molecular recognition. The basis of recognition is competition of cetirizine with phenolphthalein to form an inclusion complex with ß-cyclodextrin. Phenolphthalein is pinkish under basic condition, whereas it's complex form…

  3. Microbiological evaluation on toxicity amelioration of soil samples contaminated with petroleum-based products

    International Nuclear Information System (INIS)

    Khairuddin Abdul Rahim; Pauline Liew Woan Ying; Ahmad Nazrul Abd Wahid; Shamsiah Abdul Rahman; Mohd Suhaimi Hamzah; Abdul Khalik Wood; Muhamat Omar

    2004-01-01

    Samples of soil materials from oil sludge landfarm in Melaka and petroleum sludge ready for disposal were analysed on their potentially toxic elements and compounds and their microbial population. These were compared against uncontaminated soil samples from agricultural plots and fresh crude petroleum samples obtained from an oil refinery in Kerteh, Terengganu. Enumeration and isolation of culturable microbial populations in the above samples were conducted using standard plate counts and screening methods. Populations of microorganisms from uncontaminated soils were tested on its potential to degrade petroleum derived products on contaminated soil samples and crude petroleum samples in a laboratory experiment. Microorganisms with great potential to degrade petroleum sludge will be further screened in further bioremediation studies in the field. (Author)

  4. Potential carcinogenicity predicted by computational toxicity evaluation of thiophosphate pesticides using QSTR/QSCarciAR model.

    Science.gov (United States)

    Petrescu, Alina-Maria; Ilia, Gheorghe

    2017-07-01

    This study presents in silico prediction of toxic activities and carcinogenicity, represented by the potential carcinogenicity DSSTox/DBS, based on vector regression with a new Kernel activity, and correlating the predicted toxicity values through a QSAR model, namely: QSTR/QSCarciAR (quantitative structure toxicity relationship/quantitative structure carcinogenicity-activity relationship) described by 2D, 3D descriptors and biological descriptors. The results showed a connection between carcinogenicity (compared to the structure of a compound) and toxicity, as a basis for future studies on this subject, but each prediction is based on structurally similar compounds and the reactivation of the substructures of these compounds.

  5. Rule-based Approach on Extraction of Malay Compound Nouns in Standard Malay Document

    Science.gov (United States)

    Abu Bakar, Zamri; Kamal Ismail, Normaly; Rawi, Mohd Izani Mohamed

    2017-08-01

    Malay compound noun is defined as a form of words that exists when two or more words are combined into a single syntax and it gives a specific meaning. Compound noun acts as one unit and it is spelled separately unless an established compound noun is written closely from two words. The basic characteristics of compound noun can be seen in the Malay sentences which are the frequency of that word in the text itself. Thus, this extraction of compound nouns is significant for the following research which is text summarization, grammar checker, sentiments analysis, machine translation and word categorization. There are many research efforts that have been proposed in extracting Malay compound noun using linguistic approaches. Most of the existing methods were done on the extraction of bi-gram noun+noun compound. However, the result still produces some problems as to give a better result. This paper explores a linguistic method for extracting compound Noun from stand Malay corpus. A standard dataset are used to provide a common platform for evaluating research on the recognition of compound Nouns in Malay sentences. Therefore, an improvement for the effectiveness of the compound noun extraction is needed because the result can be compromised. Thus, this study proposed a modification of linguistic approach in order to enhance the extraction of compound nouns processing. Several pre-processing steps are involved including normalization, tokenization and tagging. The first step that uses the linguistic approach in this study is Part-of-Speech (POS) tagging. Finally, we describe several rules-based and modify the rules to get the most relevant relation between the first word and the second word in order to assist us in solving of the problems. The effectiveness of the relations used in our study can be measured using recall, precision and F1-score techniques. The comparison of the baseline values is very essential because it can provide whether there has been an improvement

  6. Discriminating modes of toxic action in mice using toxicity in BALB/c mouse fibroblast (3T3) cells.

    Science.gov (United States)

    Huang, Tao; Yan, Lichen; Zheng, Shanshan; Wang, Yue; Wang, Xiaohong; Fan, Lingyun; Li, Chao; Zhao, Yuanhui; Martyniuk, Christopher J

    2017-12-01

    The objective of this study was to determine whether toxicity in mouse fibroblast cells (3T3 cells) could predict toxicity in mice. Synthesized data on toxicity was subjected to regression analysis and it was observed that relationship of toxicities between mice and 3T3 cells was not strong (R 2  = 0.41). Inclusion of molecular descriptors (e.g. ionization, pKa) improved the regression to R 2  = 0.56, indicating that this relationship is influenced by kinetic processes of chemicals or specific toxic mechanisms associated to the compounds. However, to determine if we were able to discriminate modes of action (MOAs) in mice using the toxicities generated from 3T3 cells, compounds were first classified into "baseline" and "reactive" guided by the toxic ratio (TR) for each compound in mice. Sequence, binomial and recursive partitioning analyses provided strong predictions of MOAs in mice based upon toxicities in 3T3 cells. The correct classification of MOAs based on these methods was 86%. Nearly all the baseline compounds predicted from toxicities in 3T3 cells were identified as baseline compounds from the TR in mice. The incorrect assignment of MOAs for some compounds is hypothesized to be due to experimental uncertainty that exists in toxicity assays for both mice and 3T3 cells. Conversely, lack of assignment can also arise because some reactive compounds have MOAs that are different in mice compared to 3T3 cells. The methods developed here are novel and contribute to efforts to reduce animal numbers in toxicity tests that are used to evaluate risks associated with organic pollutants in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Gold leaching by organic base polythionates: new non-toxic and secure technology.

    Science.gov (United States)

    Smolyaninov, Vladislav; Shekhvatova, Galina; Vainshtein, Mikhail

    2014-01-01

    The article present a review on own experimental and some published data which are related with the gold leaching. It is well-known that the most common and usual process of the leaching with cyanide can be dangerous, needs a great water consumption, and additional costs for remediation of the poisoned and toxic sites. The experimental data described production of poythionates which are not toxic but perspective for the prosperous gold leaching. The paper dedicated to the safe gold leaching with thiosulfates and organic salts of polythionic acids (organic base polythionates). The method of production of these polythionates based on the Smolyaninov reaction is described in stages and in details for the first time. Possible application of the polythionates application in the gold leaching is discussed and its advantages are compared with the gold leaching by cyanation.

  8. Preclinical animal acute toxicity studies of new developed MRI contrast agent based on gadolinium

    Science.gov (United States)

    Nam, I. F.; Zhuk, V. V.

    2015-04-01

    Acute toxicity test of new developed MRI contrast agent based on disodium salt of gadopentetic acid complex were carried out on Mus musculus and Sprague Dawley rats according to guidelines of preclinical studies [1]. Groups of six animals each were selected for experiment. Death and clinical symptoms of animals were recorded during 14 days. As a result the maximum tolerated dose (MTD) for female mice is 2.8 mM/kg of body weight, male mice - 1.4 mM/kg, female rats - 2.8 mM/kg, male rats - 5.6 mM/kg of body weight. No Observed Adverse Effect Dose (NOAEL) for female mice is 1.4 mM/kg, male mice - 0.7 mM/kg, male and female rats - 0.7 mM/kg. According to experimental data new developed MRI contrast agent based on Gd-DTPA complex is low-toxic.

  9. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods.

    Science.gov (United States)

    Ribas-Agustí, Albert; Martín-Belloso, Olga; Soliva-Fortuny, Robert; Elez-Martínez, Pedro

    2017-06-13

    Phenolic compounds are important constituents of plant-based foods, as their presence is related to protective effects on health. To exert their biological activity, phenolic compounds must be released from the matrix during digestion in an absorbable form (bioaccessible) and finally absorbed and transferred to the bloodstream (bioavailable). Chemical structure and matrix interactions are some food-related factors that hamper phenolic compounds bioaccessibility and bioavailability, and that can be counteracted by food processing. It has been shown that food processing can induce chemical or physical modifications in food that enhance phenolic compounds bioaccessibility and bioavailability. These changes include: (i) chemical modifications into more bioaccessible and bioavailable forms; (ii) cleavage of covalent or hydrogen bonds or hydrophobic forces that attach phenolic compounds to matrix macromolecules; (iii) damaging microstructural barriers such as cell walls that impede the release from the matrix; and (iv) create microstructures that protect phenolic compounds until they are absorbed. Indeed, food processing can produce degradation of phenolic compounds, however, it is possible to counteract it by modulating the operating conditions in favor of increased bioaccessibility and bioavailability. This review compiles the current knowledge on the effects of processing on phenolic compounds bioaccessibility or bioavailability, while suggesting new guidelines in the search of optimal processing conditions as a step forward towards the design of healthier foods.

  10. Schiff bases derived from 1-aminoanthraquinone: a new class of analgesic compounds

    International Nuclear Information System (INIS)

    Fareed, G.; Rizwan, G.H.; Fareed, N.

    2017-01-01

    A series of Schiff bases 1-17 were synthesised by way of a facile condensation between 1-amino-anthraquinone with a variety of carbonyl compounds in the presence of a catalytic amount of dodeca-tungstosilicic acid/P 2O5 under solvent free conditions at room temperature. These were charachterised by1H- and 13C-NMR, LCMS, FTIR and elemental analyses. All the compounds were screened for their analgesic activity using hot plate thermal stimuli method at dose of 10 and 30 mg/kg. Diclofenac sodium was used as a reference drug. All the compounds at dose of 10 and 30 mg/kg body weight showed the significant (p<0.05) increase in latency time as compared to control (normal saline). Compound 5 showed excellent activity after 120 min of drug administration (10 mg/kg) of body weight. Compound 10 was found to be potent (10.48+-1.19s, 11.27+-1.2s and 10.24+-1.9s) at dose of 30 mg/kg at 30, 60 and 120 min, respectively when compared to the standard drug. Compound 6 (10.13+-0.4s) was also found to be an excellent analgesic compound at a dose of 30 mg/kg at 120 min. However, the studies on analgesic activity revealed that some of the target compounds may be strong candidates as an analgesic drug. (author)

  11. Highly-sensitive electrocatalytic determination for toxic phenols based on coupled cMWCNT/cyclodextrin edge-functionalized graphene composite

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Juanjuan; Liu, Maoxiang [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Song, Haiou, E-mail: songhaiou2011@126.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Zhang, Shupeng, E-mail: shupeng_2006@126.com [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Qian, Yueyue [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Li, Aimin, E-mail: liaimin@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2016-11-15

    Highlights: • Phenol detection based on coupled cMWCNT/CD edge-functionalized graphene composite. • Increased conductivity can inspire enhancement of electrocatalytic performance. • The synergistic combination of the trace amounts of CDs and cMWCNT is a pivotal. • GN-CD-cMWCNT shows an excellent electrocatalytic and anti-interference ability. - Abstract: Highly-sensitive electrocatalytic determination of toxic phenol compounds is of significance in environmental monitoring due to their low degradation and high toxicity to the environment and humans. In this paper, a rapid and sensitive electrochemical sensor based on coupled carboxyl-multi-walled carbon nanotube (cMWCNT) and cyclodextrin (CD) edge-functionalized graphene composite was successfully employed towards trace detection of three typical phenols (4-aminophenol, 4-AP; 4-chlorophenol, 4-CP; 4-nitrophenol, 4-NP). The morphology studies from scanning electron microscope and transmission electron microscope analysis revealed that cMWCNTs as conductive bridges were successfully incorporated into CD edge-functionalized graphene layers. Further, The electrocatalytic detection performance of the 3D simultaneously reduced and self-assembled sensing architecture (GN-CD-cMWCNT) with trace amounts of CDs was evaluated. The electrochemical studies demonstrated that GN-CD-cMWCNT displays excellent electrocatalytic activity, high sensitivity and stability. Under optimal conditions, the current responses of 4-AP, 4-CP and 4-NP are linear to concentrations over two different ranges, with low detection limit of 0.019, 0.017 and 0.027 μM (S/N = 3), respectively. And, GN-CD-cMWCNT shows an excellent anti-interference ability against electroactive species and metal ions. In addition, validation of the applicability of the presented sensor was also performed for the determination of three phenols in tap water sample with satisfactory results.

  12. Development of complex-shaped liver multicellular spheroids as a human-based model for nanoparticle toxicity assessment in vitro

    International Nuclear Information System (INIS)

    Dubiak-Szepietowska, Monika; Karczmarczyk, Aleksandra; Jönsson-Niedziółka, Martin; Winckler, Thomas; Feller, Karl-Heinz

    2016-01-01

    The emergence of human-based models is incontestably required for the study of complex physiological pathways and validation of reliable in vitro methods as alternative for in vivo studies in experimental animals for toxicity assessment. With this objective, we have developed and tested three dimensional environments for cells using different types of hydrogels including transglutaminase-cross-linked gelatin, collagen type I, and growth-factor depleted Matrigel. Cells grown in Matrigel exhibited the greatest cell proliferation and spheroid diameter. Moreover, analysis of urea and albumin biosynthesis revealed that the created system allowed the immortalized liver cell line HepG2 to re-establish normal hepatocyte-like properties which were not observed under the conditions of conventional cell cultures. This study presents a scalable technology for production of complex-shaped liver multicellular spheroids as a system which improves the predictive value of cell-based assays for safety and risk assessment. The time- and dose-dependent toxicity of nanoparticles demonstrates a higher cytotoxic effect when HepG2 cells grown as monolayer than embedded in hydrogels. The experimental setup provided evidence that the cell environment has significant influence on cell sensitivity and that liver spheroid is a useful and novel tool to examine nanoparticle dosing effect even at the level of in vitro studies. Therefore, this system can be applied to a wide variety of potentially hostile compounds in basic screening to provide initial warning of adverse effects and trigger subsequent analysis and remedial actions. - Highlights: • Comparison of HepG2 cells growth in Matrigel, Collagen I gel and gelatin gel. • Examination of nanoparticles (NP) dosing effect at the level of in vitro studies. • Influence of the cell culture media composition on the cytotoxic effect of NP.

  13. Development of complex-shaped liver multicellular spheroids as a human-based model for nanoparticle toxicity assessment in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Dubiak-Szepietowska, Monika, E-mail: Monika.Dubiak-Szepietowska@fh-jena.de [Department of Medical Engineering and Biotechnology, Ernst-Abbe-University of Applied Sciences Jena, Carl-Zeiss Promenade 2, 07745 Jena (Germany); Karczmarczyk, Aleksandra [Department of Medical Engineering and Biotechnology, Ernst-Abbe-University of Applied Sciences Jena, Carl-Zeiss Promenade 2, 07745 Jena (Germany); Jönsson-Niedziółka, Martin [Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa (Poland); Winckler, Thomas [Institute of Pharmacy, Friedrich Schiller University Jena, Semmelweissstraße 10, 07743 Jena (Germany); Feller, Karl-Heinz [Department of Medical Engineering and Biotechnology, Ernst-Abbe-University of Applied Sciences Jena, Carl-Zeiss Promenade 2, 07745 Jena (Germany)

    2016-03-01

    The emergence of human-based models is incontestably required for the study of complex physiological pathways and validation of reliable in vitro methods as alternative for in vivo studies in experimental animals for toxicity assessment. With this objective, we have developed and tested three dimensional environments for cells using different types of hydrogels including transglutaminase-cross-linked gelatin, collagen type I, and growth-factor depleted Matrigel. Cells grown in Matrigel exhibited the greatest cell proliferation and spheroid diameter. Moreover, analysis of urea and albumin biosynthesis revealed that the created system allowed the immortalized liver cell line HepG2 to re-establish normal hepatocyte-like properties which were not observed under the conditions of conventional cell cultures. This study presents a scalable technology for production of complex-shaped liver multicellular spheroids as a system which improves the predictive value of cell-based assays for safety and risk assessment. The time- and dose-dependent toxicity of nanoparticles demonstrates a higher cytotoxic effect when HepG2 cells grown as monolayer than embedded in hydrogels. The experimental setup provided evidence that the cell environment has significant influence on cell sensitivity and that liver spheroid is a useful and novel tool to examine nanoparticle dosing effect even at the level of in vitro studies. Therefore, this system can be applied to a wide variety of potentially hostile compounds in basic screening to provide initial warning of adverse effects and trigger subsequent analysis and remedial actions. - Highlights: • Comparison of HepG2 cells growth in Matrigel, Collagen I gel and gelatin gel. • Examination of nanoparticles (NP) dosing effect at the level of in vitro studies. • Influence of the cell culture media composition on the cytotoxic effect of NP.

  14. Highly-sensitive electrocatalytic determination for toxic phenols based on coupled cMWCNT/cyclodextrin edge-functionalized graphene composite

    International Nuclear Information System (INIS)

    Gao, Juanjuan; Liu, Maoxiang; Song, Haiou; Zhang, Shupeng; Qian, Yueyue; Li, Aimin

    2016-01-01

    Highlights: • Phenol detection based on coupled cMWCNT/CD edge-functionalized graphene composite. • Increased conductivity can inspire enhancement of electrocatalytic performance. • The synergistic combination of the trace amounts of CDs and cMWCNT is a pivotal. • GN-CD-cMWCNT shows an excellent electrocatalytic and anti-interference ability. - Abstract: Highly-sensitive electrocatalytic determination of toxic phenol compounds is of significance in environmental monitoring due to their low degradation and high toxicity to the environment and humans. In this paper, a rapid and sensitive electrochemical sensor based on coupled carboxyl-multi-walled carbon nanotube (cMWCNT) and cyclodextrin (CD) edge-functionalized graphene composite was successfully employed towards trace detection of three typical phenols (4-aminophenol, 4-AP; 4-chlorophenol, 4-CP; 4-nitrophenol, 4-NP). The morphology studies from scanning electron microscope and transmission electron microscope analysis revealed that cMWCNTs as conductive bridges were successfully incorporated into CD edge-functionalized graphene layers. Further, The electrocatalytic detection performance of the 3D simultaneously reduced and self-assembled sensing architecture (GN-CD-cMWCNT) with trace amounts of CDs was evaluated. The electrochemical studies demonstrated that GN-CD-cMWCNT displays excellent electrocatalytic activity, high sensitivity and stability. Under optimal conditions, the current responses of 4-AP, 4-CP and 4-NP are linear to concentrations over two different ranges, with low detection limit of 0.019, 0.017 and 0.027 μM (S/N = 3), respectively. And, GN-CD-cMWCNT shows an excellent anti-interference ability against electroactive species and metal ions. In addition, validation of the applicability of the presented sensor was also performed for the determination of three phenols in tap water sample with satisfactory results.

  15. Sensitivity of energy-packed compounds based on superfine and nanoporous silicon to pulsed electrical treatments

    Energy Technology Data Exchange (ETDEWEB)

    Zegrya, G. G. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Savenkov, G. G. [Saint-Petersburg State Engineering Institute (Technical University) (Russian Federation); Morozov, V. A. [Saint-Petersburg State University (Russian Federation); Zegrya, A. G.; Ulin, N. V., E-mail: Ulin@mail.ioffe.ru; Ulin, V. P. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Lukin, A. A. [Saint-Petersburg State Engineering Institute (Technical University) (Russian Federation); Bragin, V. A.; Oskin, I. A. [AO Scientific Production Association Poisk (Russian Federation); Mikhailov, Yu. M. [Russian Academy of Sciences, Institute of Problems of Chemical Physics (Russian Federation)

    2017-04-15

    The sensitivity of an energy-packed compound based on nanoporous silicon and calcium perchlorate to a high-current electron beam is studied. The initiation of explosive transformations in a mixture of potassium picrate with a highly dispersed powder of boron-doped silicon by means of a high-voltage discharge is examined. It is shown that explosive transformation modes (combustion and explosion) appear in the energy-packed compound under study upon its treatment with an electron beam. A relationship is established between the explosive transformation modes and the density of the energy-packed compound and between the breakdown (initiation) voltage and the mass fraction of the silicon powder.

  16. Synthesis and Antimicrobial Activity of New Schiff Base Compounds Containing 2-Hydroxy-4-pentadecylbenzaldehyde Moiety

    Directory of Open Access Journals (Sweden)

    Gadada Naganagowda

    2014-01-01

    Full Text Available Various novel Schiff base compounds have been synthesized by reaction of 2-hydroxy-4-pentadecylbenzaldehyde with substituted benzothiophene-2-carboxylic acid hydrazide and different substituted aromatic or heterocyclic amines in the presence of acetic acid in ethanol. The structures of all these compounds were confirmed by elemental analysis, IR, 1H-NMR, 13C-NMR, and mass spectral data and have been screened for antibacterial and antifungal activity.

  17. Comments on possible preferential order-disorder in A-15 compounds based upon Nb

    International Nuclear Information System (INIS)

    Cox, D.E.

    1977-01-01

    The possible existence of preferential B-site disorder in A-15 compounds recently claimed on the basis of x-ray powder diffraction data but questioned from the viewpoint of known phase diagrams is examined for some Nb-based compounds of this type. It is concluded that x-ray powder data do not allow the determination of both order and compositional variables as suggested, and the latter must therefore be determined by some other method. (author)

  18. Performance Evaluation of Frequency Transform Based Block Classification of Compound Image Segmentation Techniques

    Science.gov (United States)

    Selwyn, Ebenezer Juliet; Florinabel, D. Jemi

    2018-04-01

    Compound image segmentation plays a vital role in the compression of computer screen images. Computer screen images are images which are mixed with textual, graphical, or pictorial contents. In this paper, we present a comparison of two transform based block classification of compound images based on metrics like speed of classification, precision and recall rate. Block based classification approaches normally divide the compound images into fixed size blocks of non-overlapping in nature. Then frequency transform like Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) are applied over each block. Mean and standard deviation are computed for each 8 × 8 block and are used as features set to classify the compound images into text/graphics and picture/background block. The classification accuracy of block classification based segmentation techniques are measured by evaluation metrics like precision and recall rate. Compound images of smooth background and complex background images containing text of varying size, colour and orientation are considered for testing. Experimental evidence shows that the DWT based segmentation provides significant improvement in recall rate and precision rate approximately 2.3% than DCT based segmentation with an increase in block classification time for both smooth and complex background images.

  19. Nanoscale Device Properties of Tellurium-based Chalcogenide Compounds

    Science.gov (United States)

    Dahal, Bishnu R.

    The great progress achieved in miniaturization of microelectronic devices has now reached a distinct bottleneck, as devices are starting to approach the fundamental fabrication and performance limit. Even if a major breakthrough is made in the fabrication process, these scaled down electronic devices will not function properly since the quantum effects can no longer be neglected in the nanoscale regime. Advances in nanotechnology and new materials are driving novel technologies for future device applications. Current microelectronic devices have the smallest feature size, around 10 nm, and the industry is planning to switch away from silicon technology in the near future. The new technology will be fundamentally different. There are several leading technologies based on spintronics, tunneling transistors, and the newly discovered 2-dimensional material systems. All of these technologies are at the research level, and are far from ready for use in making devices in large volumes. This dissertation will focus on a very promising material system, Te-based chalcogenides, which have potential applications in spintronics, thermoelectricity and topological insulators that can lead to low-power-consumption electronics. Very recently it was predicted and experimentally observed that the spin-orbit interaction in certain materials can lead to a new electronic state called topological insulating phase. The topological insulator, like an ordinary insulator, has a bulk energy gap separating the highest occupied electronic band from the lowest empty band. However, the surface states in the case of a three-dimensional or edge states in a two-dimensional topological insulator allow electrons to conduct at the surface, due to the topological character of the bulk wavefunctions. These conducting states are protected by time-reversal symmetry, and cannot be eliminated by defects or chemical passivation. The edge/surface states satisfy Dirac dispersion relations, and hence the physics

  20. Image-based compound profiling reveals a dual inhibitor of tyrosine kinase and microtubule polymerization.

    Science.gov (United States)

    Tanabe, Kenji

    2016-04-27

    Small-molecule compounds are widely used as biological research tools and therapeutic drugs. Therefore, uncovering novel targets of these compounds should provide insights that are valuable in both basic and clinical studies. I developed a method for image-based compound profiling by quantitating the effects of compounds on signal transduction and vesicle trafficking of epidermal growth factor receptor (EGFR). Using six signal transduction molecules and two markers of vesicle trafficking, 570 image features were obtained and subjected to multivariate analysis. Fourteen compounds that affected EGFR or its pathways were classified into four clusters, based on their phenotypic features. Surprisingly, one EGFR inhibitor (CAS 879127-07-8) was classified into the same cluster as nocodazole, a microtubule depolymerizer. In fact, this compound directly depolymerized microtubules. These results indicate that CAS 879127-07-8 could be used as a chemical probe to investigate both the EGFR pathway and microtubule dynamics. The image-based multivariate analysis developed herein has potential as a powerful tool for discovering unexpected drug properties.

  1. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kunwar P., E-mail: kpsingh_52@yahoo.com; Gupta, Shikha

    2014-03-15

    Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R{sup 2}) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R{sup 2} and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals. - Graphical abstract: Importance of input variables in DTB and DTF classification models for (a) two-category, and (b) four-category toxicity intervals in T. pyriformis data. Generalization and predictive abilities of the

  2. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

    International Nuclear Information System (INIS)

    Singh, Kunwar P.; Gupta, Shikha

    2014-01-01

    Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R 2 ) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R 2 and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals. - Graphical abstract: Importance of input variables in DTB and DTF classification models for (a) two-category, and (b) four-category toxicity intervals in T. pyriformis data. Generalization and predictive abilities of the

  3. AFFINITY BIOSENSOR BASED ON SCREEN-PRINTED ELECTRODE MODIFIED WITH DNA FOR GENOTOXIC COMPOUNDS DETECTION

    Directory of Open Access Journals (Sweden)

    Bambang Kuswandi

    2010-06-01

    Full Text Available An electrochemical method for the detection of the genotoxic compounds using a DNA-modified electrode was developed. This electrode was successfully used for the electrochemical detection of genotoxic compounds in water samples. The electrochemical results clearly demonstrated that, the development is related to the molecular interaction between the surface-linked DNA obtained from calf thymus and the target compounds, such as pollutants, in order to develop a simple device for rapid screening of genotoxic compounds in environmental samples. The detection of such compounds was measured by their effect on the oxidation signal of the guanine peak of the DNA immobilised on the surface of carbon based Screen-Printed Electrode (SPE in disposable mode, and monitored by square-wave voltametric analysis. The DNA biosensor is able to detect known intercalating and groove-binding genotoxic compounds such as Dioxin, Bisphenol A, PCBs, and Phtalates. Application to real water samples is discussed and reported.   Keywords: electrochemical, screen-printed electrode, DNA biosensor, genotoxic compounds

  4. Microbial fuel cell-based biosensor for toxic carbon monoxide monitoring

    DEFF Research Database (Denmark)

    Zhou, Shaofeng; Huang, Shaobin; Li, Yi

    2018-01-01

    This study presents an innovative microbial fuel cell-based biosensor for carbon monoxide (CO) monitoring. The hypothesis for the function of the biosensor is that CO inhibits bacterial activity in the anode and thereby reduces electricity production. A mature electrochemically active biofilm...... increasing CO concentration over 70%. Besides, the response time of the biosensor was 1 h. The compact design and simple operation of the biosensor makes it easy to be integrated in existing CO-based industrial facilities either as a forewarning sensor for CO toxicity or even as an individual on...

  5. Evaluation of the toxic effects of brominated compounds (BDE-47, 99, 209, TBBPA) and bisphenol A (BPA) using a zebrafish liver cell line, ZFL

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jie; Chan, King Ming, E-mail: kingchan@cuhk.edu.hk

    2015-02-15

    Highlights: • A homologous zebrafish thyroid hormone (TH) receptor (TR) reporter gene system was developed in a zebrafish liver cell-line (ZFL) to study the possible effects of chemicals on TR activities. • BPA was found to have antagonistic effects on T3 induced TR activity, BDE-47, BDE-99, and TBBPA did not show any interference of TR activity. • Down regulation of deiodinases and some sulfation enzymes or phase II enzymes by the tested chemicals indicated their impacts on TH eleiminations. • The up-regulation of tranthyretin by BDE-47 at 96 h long-term exposure gave a link to the CYP family for its role in producing a more toxic and oxidized form. - Abstract: The toxic effects of three polybrominated diphenyl ether (PBDE) congeners (BDE-47, -99, and -209), tetrabromobisphenol A (TBBPA) and bisphenol A (BPA), were evaluated by determining their 24 h and 96 h median lethal concentrations using a zebrafish liver cell line, ZFL. It was found that BDE-47, BDE-99 and TBBPA showed comparative cytotoxicity within the range of 1.2–4.2 μM, and were more toxic than BPA (367.1 μM at 24 h and 357.6 μM at 96 h). However, BDE-209 induced only 15% lethality with exposures up to 25 μM. The molecular stresses of BDE-47, -99, TBBPA and BPA involved in thyroid hormone (TH) homeostasis and hepatic metabolism were also investigated. Using a reporter gene system to detect zebrafish thyroid hormone receptor β (zfTRβ) transcriptional activity, the median effective concentration of triiodothyronine (T3) was determined to be 9.2 × 10{sup −11} M. BDE-47, BDE-99, TBBPA and BPA alone, however, did not exhibit zfTRβ agonistic activity. BPA displayed T3 (0.1 nM) induced zfTRβ antagonistic activity with a median inhibitory concentration of 19.3 μM. BDE-47, BDE-99 and TBBPA displayed no antagonistic effects of T3-induced zfTRβ activity. Target gene expressions were also examined under acute exposures. The significant inhibition of different types of deiodinases by all of

  6. Phenolic and flavonoid compounds in aqueous extracts of thunbergia laurifolia leaves and their effect on the toxicity of the carbamate insecticide methomyl to murine macrophage cells

    Directory of Open Access Journals (Sweden)

    Marasri Junsi

    2017-07-01

    Full Text Available Background: Thunbergia laurifolia is a Thai herb and has been used in Thai folklore medicine for centuries. Generally, Thais consume T. laurifolia as a herbal tea because of its beneficial properties as an antidote for chemical toxins, drug-, arsenic-, strychnine-, alcohol- and food-poisoning. However, its effectively against some insecticide compounds, e.g. methomyl, has not yet been determined. Objective: To examine the protective effect of aqueous extract from leaves of T. laurifolia on methomyl (MT poisoning of murine macrophage cells (anti-MT effect and to identify phenolic and flavonoid compounds in the extract. Methods: T. laurifolia was extracted with water and stored in freeze-dried form. The extract was investigated for its antioxidant activity and some phenolic and flavonoid compounds were identified using liquid chromatography–mass spectrometry (LC-MS. To study anti-MT effects in RAW264.7 murine macrophage cells, these were treated with leaf extract either before (pre-treatment, concomitantly (combined or after (post-treatment exposure to MT and cell viability determined in an MTT test (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide. Results: The extract exhibited strong antioxidant properties based on total extractable phenolic content (TPC, total extractable flavonoid content (TFC, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS radical scavenging, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging and Ferric ion reducing antioxidant power (FRAP activity. The LC-MS analyses of phenolic compounds indicated the presence of caffeic acid, rosmarinic acid, catechin, rutin, isoquercetin, quercetin and apigenin as bioactive compounds. Viability of RAW 264.7 murine macrophage cells treated with MT was increased significantly by post-treatment with leaf extract but not by combined or pre-treatments. Conclusion: The aqueous extract of T. laurifolia leaves contained abundant antioxidant activity. Flavonoids

  7. Patterns of presentation and clinical features of toxicity after reported use of ([2-aminopropyl]-2,3-dihydrobenzofurans), the 'benzofuran' compounds. A report from the United Kingdom National Poisons Information Service.

    Science.gov (United States)

    Kamour, Ashraf; James, David; Lupton, David J; Cooper, Gillian; Eddleston, Micheal; Vale, Allister; Thompson, John P; Thanacoody, Ruben; Hill, Simon L; Thomas, Simon H L

    2014-12-01

    To characterise the patterns of presentation and clinical features of toxicity following reported recreational use of benzofuran compounds ((2-aminopropyl)-2,3-dihydrobenzofurans) in the UK, as reported to the National Poisons Information Service (NPIS), and to compare clinical features of toxicity with those after reported mephedrone use. NPIS patient-specific telephone enquiries and user sessions for TOXBASE(®), the NPIS online information database, related to (2-aminopropyl)-2,3-dihydrobenzofurans and associated synonyms were reviewed from March 2009 to August 2013. These data were compared with those of mephedrone, the recreational substance most frequently reported to NPIS, collected over the same period. There were 63 telephone enquiries concerning 66 patients and 806 TOXBASE(®) user sessions regarding benzofuran compounds during the period of study. The first telephone enquiry was made in July 2010 and the highest numbers of enquiries were received in August 2010 (33 calls, 112 TOXBASE(®) sessions). Patients were predominantly male (82%) with a median age of 29 years; 9 reported co-ingestion of other substances. Comparing the 57 patients who reported ingesting benzofuran compounds alone with 315 patients ingesting mephedrone alone, benzofurans were more often associated with stimulant features, including tachycardia, hypertension, mydriasis, palpitation, fever, increased sweating, and tremor, (72% vs. 38%, odds ratio [OR] 4.2, 95% confidence interval [CI] 2.27-7.85, P < 0.0001) and mental health disturbances (58% vs. 38%, OR 2.3, 95% CI 1.29-4.07, P = 0.006). Other features reported after benzofuran compound ingestion included gastrointestinal symptoms (16%), reduced level of consciousness (9%), chest pain (7%), and creatinine kinase elevation (5%). Reported ingestion of benzofuran compounds is associated with similar toxic effects to those of amphetamines and cathinones. Mental health disturbances and stimulant features were reported more frequently

  8. Toxicity assessment strategies, data requirements, and risk assessment approaches to derive health based guidance values for non-relevant metabolites of plant protection products.

    Science.gov (United States)

    Dekant, Wolfgang; Melching-Kollmuss, Stephanie; Kalberlah, Fritz

    2010-03-01

    In Europe, limits for tolerable concentrations of "non-relevant metabolites" for active ingredients (AI) of plant protection products in drinking water between 0.1 and 10 microg/L are discussed depending on the toxicological information available. "Non-relevant metabolites" are degradation products of AIs, which do not or only partially retain the targeted toxicities of AIs. For "non-relevant metabolites" without genotoxicity (to be confirmed by testing in vitro), the application of the concept of "thresholds of toxicological concern" results in a health-based drinking water limit of 4.5 microg/L even for Cramer class III compounds, using the TTC threshold of 90 microg/person/day (divided by 10 and 2). Taking into account the thresholds derived from two reproduction toxicity data bases a drinking water limit of 3.0 microg/L is proposed. Therefore, for "non-relevant metabolites" whose drinking water concentration is below 3.0 microg/L, no toxicity testing is necessary. This work develops a toxicity assessment strategy as a basis to delineate health-based limits for "non-relevant metabolites" in ground and drinking water. Toxicological testing is recommended to investigate, whether the metabolites are relevant or not, based on the hazard properties of the parent AIs, as outlined in the SANCO Guidance document. Also, genotoxicity testing of the water metabolites is clearly recommended. In this publication, tiered testing strategies are proposed for non-relevant metabolites, when drinking water concentrations >3.0 microg/L will occur. Conclusions based on structure-activity relationships and the detailed toxicity database on the parent AI should be included. When testing in animals is required for risk assessment, key aspects are studies along OECD-testing guidelines with "enhanced" study designs addressing additional endpoints such as reproductive toxicity and a developmental screening test to derive health-based tolerable drinking water limits with a limited number

  9. Toxicity Thresholds Based on EDTA Extractable Nickel and Barley Root Elongation in Chinese Soils

    Directory of Open Access Journals (Sweden)

    Guangyun Zhu

    2018-04-01

    Full Text Available The uncertainty in the risk assessment of trace metal elements in soils when total metal contents are used can be decreased by assessing their availability and/or extractability when the soils have a high background value or different sources of trace metal elements. In this study, the added water-soluble nickel (Ni toxicity to barley root elongation was studied in 17 representative Chinese soil samples with and without artificial rainwater leaching. The extractability of added Ni in soils was estimated by three sequential extractions with ethylenediaminetetraacetic acid (EDTA. The results showed that the effective concentration of EDTA extractable Ni (EC50, which caused 50% inhibition of barley root elongation, ranged from 46 to 1019 mg/kg in unleached soils and 24 to 1563 mg/kg in leached soils. Regression models for EDTA extractable Ni and total Ni added to soils against soil properties indicated that EDTA extractable Ni was significantly correlated with the total Ni added to soils and that pH was the most important control factor. Regression models for toxicity thresholds based on EDTA extractable Ni against soil properties showed that soil citrate dithionate extractable Fe was more important than soil pH in predicting Ni toxicity. These results can be used to accurately assess the risk of contaminated soils with high background values and/or different Ni sources.

  10. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder.

    Science.gov (United States)

    Bjørklund, Geir; Skalny, Anatoly V; Rahman, Md Mostafizur; Dadar, Maryam; Yassa, Heba A; Aaseth, Jan; Chirumbolo, Salvatore; Skalnaya, Margarita G; Tinkov, Alexey A

    2018-06-11

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, verbal and non-verbal communication, and stereotypic behaviors. Many studies support a significant relationship between many different environmental factors in ASD etiology. These factors include increased daily exposure to various toxic metal-based environmental pollutants, which represent a cause for concern in public health. This article reviews the most relevant toxic metals, commonly found, environmental pollutants, i.e., lead (Pb), mercury (Hg), aluminum (Al), and the metalloid arsenic (As). Additionally, it discusses how pollutants can be a possible pathogenetic cause of ASD through various mechanisms including neuroinflammation in different regions of the brain, fundamentally occurring through elevation of the proinflammatory profile of cytokines and aberrant expression of nuclear factor kappa B (NF-κB). Due to the worldwide increase in toxic environmental pollution, studies on the role of pollutants in neurodevelopmental disorders, including direct effects on the developing brain and the subjects' genetic susceptibility and polymorphism, are of utmost importance to achieve the best therapeutic approach and preventive strategies. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Improved synthesis of N-benzylaminoferrocene-based prodrugs and evaluation of their toxicity and antileukemic activity.

    Science.gov (United States)

    Daum, Steffen; Chekhun, Vasiliy F; Todor, Igor N; Lukianova, Natalia Yu; Shvets, Yulia V; Sellner, Leopold; Putzker, Kerstin; Lewis, Joe; Zenz, Thorsten; de Graaf, Inge A M; Groothuis, Geny M M; Casini, Angela; Zozulia, Oleksii; Hampel, Frank; Mokhir, Andriy

    2015-02-26

    We report on an improved method of synthesis of N-benzylaminoferrocene-based prodrugs and demonstrate its applicability by preparing nine new aminoferrocenes. Their effect on the viability of selected cancer cells having different p53 status was studied. The obtained data are in agreement with the hypothesis that the toxicity of aminoferrocenes is not dependent upon p53 status. Subsequently the toxicity of a selected prodrug (4) was investigated ex vivo using rat precision cut liver slices and in vivo on hybrid male mice BDF1. In both experiments no toxicity was observed: ex vivo, up to 10 μM; in vivo, up to 6 mg/kg. Finally, prodrug 4 was shown to extend the survival of BDF1 mice carrying L1210 leukemia from 13.7 ± 0.6 days to 17.5 ± 0.7 days when injected daily 6 times at a dose of 26 μg/kg starting from the second day after injection of L1210 cells.

  12. Coexistence of magnetism and superconductivity in the hole doped FeAs-based superconducting compound

    International Nuclear Information System (INIS)

    Lu, T.P.; Wu, C.C.; Chou, W.H.; Lan, M.D.

    2010-01-01

    The magnetic and superconducting properties of the Sm-doped FeAs-based superconducting compound were investigated under wide ranges of temperature and magnetic field. After the systematical magnetic ion substitution, the superconducting transition temperature decreases with increasing magnetic moment. The hysteresis loop of the La 0.87-x Sm x Sr 0.13 FeAsO sample shows a superconducting hysteresis and a paramagnetic background signal. The paramagnetic signal is mainly attributed to the Sm moments. The experiment demonstrates that the coexistence of magnetism and superconductivity in the hole doped FeAs-based superconducting compounds is possible. Unlike the electron doped FeAs-based superconducting compounds SmFeAsOF, the hole doped superconductivity is degraded by the substitution of La by Sm. The hole-doped and electron-doped sides are not symmetric.

  13. Rapid screening of aquatic toxicity of several metal-based nanoparticles using the MetPLATE™ bioassay

    International Nuclear Information System (INIS)

    Pokhrel, Lok R.; Silva, Thilini; Dubey, Brajesh; El Badawy, Amro M.; Tolaymat, Thabet M.; Scheuerman, Phillip R.

    2012-01-01

    Current understanding of potential toxicity of engineered nanomaterials to aquatic microorganisms is limited for risk assessment and management. Here we evaluate if the MetPLATE™ test can be used as an effective and rapid screening tool to test for potential aquatic toxicity of various metal-based nanoparticles (NPs). The MetPLATE bioassay is a heavy metal sensitive test based on β-galactosidase activity in Escherichia coli. Five different types of metal-based NPs were screened for toxicity: (1) citrate coated nAg (Citrate-nanosilver), (2) polyvinylpyrrolidone coated nAg (PVP-nAg), (3) uncoated nZnO, (4) uncoated nTiO 2 and (5) 1-Octadecylamine coated CdSe Quantum Dots (CdSe QDs); and compared with their corresponding ionic salt toxicity. Citrate-nAg was further fractionated into clean Citrate-nAg, unclean Citrate-nAg and permeate using a tangential flow filtration (TFF) system to eliminate residual ions and impurities from the stock Citrate-nAg suspension and also to differentiate between ionic- versus nano-specific toxicity. Our results showed that nAg, nZnO and CdSe QDs were less toxic than their corresponding ionic salts tested, while nano- or ionic form of TiO 2 was not toxic as high as 2.5 g L −1 to the MetPLATE™ bacteria. Although coating-dependent toxicity was noticeable between two types of Ag NPs evaluated, particle size and surface charge were not adequate to explain the observed toxicity; hence, the toxicity appeared to be material-specific. Overall, the toxicity followed the trend: CdCl 2 > AgNO 3 > PVP-nAg > unclean Citrate-nAg > clean Citrate-nAg > ZnSO 4 > nZnO > CdSe QDs > nTiO 2 /TiO 2 . These results indicate that an evaluation of β-galactosidase inhibition in MetPLATE™ E. coli can be an important consideration for rapid screening of metal-based NP toxicity, and should facilitate ecological risk assessment of these emerging contaminants. - Highlights: ► MetPLATE bioassay was evaluated as a rapid screening tool for nanotoxicity.

  14. Ligand efficiency based approach for efficient virtual screening of compound libraries.

    Science.gov (United States)

    Ke, Yi-Yu; Coumar, Mohane Selvaraj; Shiao, Hui-Yi; Wang, Wen-Chieh; Chen, Chieh-Wen; Song, Jen-Shin; Chen, Chun-Hwa; Lin, Wen-Hsing; Wu, Szu-Huei; Hsu, John T A; Chang, Chung-Ming; Hsieh, Hsing-Pang

    2014-08-18

    Here we report for the first time the use of fit quality (FQ), a ligand efficiency (LE) based measure for virtual screening (VS) of compound libraries. The LE based VS protocol was used to screen an in-house database of 125,000 compounds to identify aurora kinase A inhibitors. First, 20 known aurora kinase inhibitors were docked to aurora kinase A crystal structure (PDB ID: 2W1C); and the conformations of docked ligand were used to create a pharmacophore (PH) model. The PH model was used to screen the database compounds, and rank (PH rank) them based on the predicted IC50 values. Next, LE_Scale, a weight-dependant LE function, was derived from 294 known aurora kinase inhibitors. Using the fit quality (FQ = LE/LE_Scale) score derived from the LE_Scale function, the database compounds were reranked (PH_FQ rank) and the top 151 (0.12% of database) compounds were assessed for aurora kinase A inhibition biochemically. This VS protocol led to the identification of 7 novel hits, with compound 5 showing aurora kinase A IC50 = 1.29 μM. Furthermore, testing of 5 against a panel of 31 kinase reveals that it is selective toward aurora kinase A & B, with <50% inhibition for other kinases at 10 μM concentrations and is a suitable candidate for further development. Incorporation of FQ score in the VS protocol not only helped identify a novel aurora kinase inhibitor, 5, but also increased the hit rate of the VS protocol by improving the enrichment factor (EF) for FQ based screening (EF = 828), compared to PH based screening (EF = 237) alone. The LE based VS protocol disclosed here could be applied to other targets for hit identification in an efficient manner. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  15. Exploring the Q-marker of "sweat soaking method" processed radix Wikstroemia indica: Based on the "effect-toxicity-chemicals" study.

    Science.gov (United States)

    Feng, Guo; Chen, Yun-Long; Li, Wei; Li, Lai-Lai; Wu, Zeng-Guang; Wu, Zi-Jun; Hai, Yue; Zhang, Si-Chao; Zheng, Chuan-Qi; Liu, Chang-Xiao; He, Xin

    2018-06-01

    Radix Wikstroemia indica (RWI), named "Liao Ge Wang" in Chinese, is a kind of toxic Chinese herbal medicine (CHM) commonly used in Miao nationality of South China. "Sweat soaking method" processed RWI could effectively decrease its toxicity and preserve therapeutic effect. However, the underlying mechanism of processing is still not clear, and the Q-markers database for processed RWI has not been established. Our study is to investigate and establish the quality evaluation system and potential Q-markers based on "effect-toxicity-chemicals" relationship of RWI for quality/safety assessment of "sweat soaking method" processing. The variation of RWI in efficacy and toxicity before and after processing was investigated by pharmacological and toxicological studies. Cytotoxicity test was used to screen the cytotoxicity of components in RWI. The material basis in ethanol extract of raw and processed RWI was studied by UPLC-Q-TOF/MS. And the potential Q-markers were analyzed and predicted according to "effect-toxicity-chemical" relationship. RWI was processed by "sweat soaking method", which could preserve efficacy and reduce toxicity. Raw RWI and processed RWI did not show significant difference on the antinociceptive and anti-inflammatory effect, however, the injury of liver and kidney by processed RWI was much weaker than that by raw RWI. The 20 compounds were identified from the ethanol extract of raw product and processed product of RWI using UPLC-Q-TOF/MS, including daphnoretin, emodin, triumbelletin, dibutyl phthalate, Methyl Paraben, YH-10 + OH and matairesinol, arctigenin, kaempferol and physcion. Furthermore, 3 diterpenoids (YH-10, YH-12 and YH-15) were proved to possess the high toxicity and decreased by 48%, 44% and 65%, respectively, which could be regarded as the potential Q-markers for quality/safety assessment of "sweat soaking method" processed RWI. A Q-marker database of processed RWI by "sweat soaking method" was established according to the results

  16. Photonic-Crystal-Based Thin Film Sensor for Detecting Volatile Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyung Kwan; Park, Jung Yul [Sogang Univ., Seoul (Korea, Republic of)

    2016-03-15

    Early detection of toxic gases, such as volatile organic compounds (VOCs), is important for safety and environmental protection. However, the conventional detection methods require long-term measurement times and expensive equipment. In this study, we propose a thin-film-type chemical sensor for VOCs, which consists of self assembled monosize nanoparticles for 3-D photonic crystal structures and polydimthylsiloxane (PDMS) film. It is operated without any external power source, is truly portable, and has a fast response time. The structure color of the sensor changes when it is exposed to VOCs, because VOCs induce a swelling of the PDMS. Therefore, using this principle of color change, we can create a thin-film sensor for immediate detection of various types of VOCs. The proposed device evidences that a fast response time of just seconds, along with a clear color change, are successfully observed when the sensor is exposed to gas-phase VOCs.

  17. Response of Bioluminescent Bacteria to Alkyltin Compounds.

    Science.gov (United States)

    1987-12-01

    found in the butyltiri series of compounds; tributyltin was (’Stimes more toxic than dibutyltin and (- 50 times more toxic than (mono)butyltin. When...correlations between compounds, tributyltin was -35 tine more Kicrotxit and fish bLoessays for pure toxic than dibutyltin end -750 times More compounds and...the compounds as a decrease in toxicity (5) tributyltin compounds ea -150 tines more and a method to study synergistic andtoxic than trinethyltia

  18. A new feedback image encryption scheme based on perturbation with dynamical compound chaotic sequence cipher generator

    Science.gov (United States)

    Tong, Xiaojun; Cui, Minggen; Wang, Zhu

    2009-07-01

    The design of the new compound two-dimensional chaotic function is presented by exploiting two one-dimensional chaotic functions which switch randomly, and the design is used as a chaotic sequence generator which is proved by Devaney's definition proof of chaos. The properties of compound chaotic functions are also proved rigorously. In order to improve the robustness against difference cryptanalysis and produce avalanche effect, a new feedback image encryption scheme is proposed using the new compound chaos by selecting one of the two one-dimensional chaotic functions randomly and a new image pixels method of permutation and substitution is designed in detail by array row and column random controlling based on the compound chaos. The results from entropy analysis, difference analysis, statistical analysis, sequence randomness analysis, cipher sensitivity analysis depending on key and plaintext have proven that the compound chaotic sequence cipher can resist cryptanalytic, statistical and brute-force attacks, and especially it accelerates encryption speed, and achieves higher level of security. By the dynamical compound chaos and perturbation technology, the paper solves the problem of computer low precision of one-dimensional chaotic function.

  19. Evaluating the mutagenic potential of aerosol organic compounds using informatics-based screening

    Science.gov (United States)

    Decesari, Stefano; Kovarich, Simona; Pavan, Manuela; Bassan, Arianna; Ciacci, Andrea; Topping, David

    2018-02-01

    Whilst general policy objectives to reduce airborne particulate matter (PM) health effects are to reduce exposure to PM as a whole, emerging evidence suggests that more detailed metrics associating impacts with different aerosol components might be needed. Since it is impossible to conduct toxicological screening on all possible molecular species expected to occur in aerosol, in this study we perform a proof-of-concept evaluation on the information retrieved from in silico toxicological predictions, in which a subset (N = 104) of secondary organic aerosol (SOA) compounds were screened for their mutagenicity potential. An extensive database search showed that experimental data are available for 13 % of the compounds, while reliable predictions were obtained for 82 %. A multivariate statistical analysis of the compounds based on their physico-chemical, structural, and mechanistic properties showed that 80 % of the compounds predicted as mutagenic were grouped into six clusters, three of which (five-membered lactones from monoterpene oxidation, oxygenated multifunctional compounds from substituted benzene oxidation, and hydroperoxides from several precursors) represent new candidate groups of compounds for future toxicological screenings. These results demonstrate that coupling model-generated compositions to in silico toxicological screening might enable more comprehensive exploration of the mutagenic potential of specific SOA components.

  20. Check specific compounds lyrics Saeb and Biddle, based on syntactic and semantic core composition

    Directory of Open Access Journals (Sweden)

    khodabakhsh asadollahi

    2016-02-01

    Full Text Available Saebe Tabrizi and Bidele Dehlavi of the most famous poets in Hindi, which each in turn, the Iranian branch and Hindi Hindi style, the lyrics have been changed in this period. Most scholars who have studied the poetry Biddle to research, Specific compounds as one of the most important factors in a monopoly ambiguity Biddle poetry and in the making and meaning of these compounds have less reflection. Here are the lyrics to rely on dictionary and Biddle, the Iranian branch of specific compounds in both Hindi and Hindi poetry style is investigated. Combining both his first two exocentric and endocentric compounds is assorted, Based on Syntactic relations, various models of deep structure and composition relationships is presented. Saeb specific compounds and Biddle in deep syntactic relations as diverse as the relationship between the finite, nominative, accusative, amendment and so on.The semantic structure, certain combinations of the two poets more varied combinations are commonplace in standard language, so that some of the compounds exist in terms of meaning in language

  1. Metabolomics-Based Screening of Biofilm-Inhibitory Compounds against Pseudomonas aeruginosa from Burdock Leaf

    Directory of Open Access Journals (Sweden)

    Zaixiang Lou

    2015-09-01

    Full Text Available Screening of anti-biofilm compounds from the burdock leaf based on metabolomics is reported here. The crystal violet assay indicated 34% ethanol elution fraction of burdock leaf could completely inhibit biofilm formation of Pseudomonas aeruginosa at 1 mg·mL−1. Then, the chemical composition of burdock leaf fraction was analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS and 11 active compounds (chlorogenic acid, caffeic acid, p-coumaric acid, quercetin, ursolic acid, rutin, cynarin, luteolin, crocin, benzoic acid, and Tenacissoside I were identified. Lastly, UPLC-MS analysis was employed to obtain the metabolic fingerprints of burdock leaf fractions before and after inhibiting the biofilm of Pseudomonas aeruginosa. The metabolic fingerprints were transformed to data, analyzed with PLS-DA (partial least squares discriminant analysis and the peaks whose area was significantly changed were found out. Thus, 81 compounds were screened as potential anti-biofilm ingredients. Among them, rutin, ursolic acid, caffeic acid, p-coumaric acid and quercetin were identified and confirmed as the main anti-biofilm compounds in burdock leaf. The study provided basic anti-biofilm profile data for the compounds in burdock leaf, as well as provided a convenient method for fast screening of anti-biofilm compounds from natural plants.

  2. Toxicity assessment of organochlorine compounds detected in water environment using cultured human cell lines; Hito yurai saibo baiyokei wo mochiita suikankyo shiryochu no yuki enso kagobutsu no dokusei hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Kunimoto, M; Yonemoto, J; Soma, Y; Nakasugi, O [National Institute for Environmental Studies, Tsukuba (Japan)

    1997-11-10

    As part of validation processes of in vitro toxicity assays for the risk assessment of environmental hazards, we applied an in vitro toxicity test using two human cell lines, neuroblastoma NB-1 cells and glioblastoma U-87 MG cells, to the assessment of organochlorine compounds detected in the water environment. The in vitro toxicity assay using NB-1 cells was calibrated by testing reference chemicals proposed by MEIC (Multicenter Evaluation of In Vitro Cytotoxicity), an international program for the validation of in vitro cytotoxicity assays. Beforehand, an assay using cells in frozen stock without subcultivation was examined by comparing IC50 values with the ordinary assay using subcultured cells. IC50 values for MEIC reference chemicals from the former assay showed good correlation with those from the latter assay, suggesting that the assay using cells in frozen stock can be used at least for the assessment of basal cytotoxicity. IC50 values for ten organochlorine compounds frequently detected in the sediment samples from contaminated rivers, p-chloroaniline, 3,4-dichloroaniline, p-dichlorobenzene, o-dichlorobenzene, Tris (2-chloroethyl)-phosphate, 2,5-dichlorophenol, 2,5-dichloroanisol, Triclosan and Triclocarban, were obtained with the in vitro assays and compared with their LD50 values in rats. No significant correlation, however, was seen between the IC50 and LD50 values, indicating that further improvement of in vitro toxicity assays is necessary for the application to the risk assessment of environmental hazards. 7 refs., 4 figs., 1 tab.

  3. Synthesis characterization and toxicity of lanthanide complexes with schiff bases derived from S-benzoyl dithiocarbazate and aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqi, K S; Tabassum, S; Zaidi, S A.A.; Kureshy, R I; Khan, N H [Aligarh Muslim Univ. (India). Dept. of Chemistry

    1989-12-01

    New O:N:S and N:S donor ligands namely, S-benzoyl-N-(o-hydroxybenzaldehyde) dithiocarbazate, S-benzoyl-N-(N,N-dimethylaminobenzaldehyde ) dithiocarbazate, S-benzoyl-N(N-thiophene-2-aldehyde) dithiocarbazate and their complexes with La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Yb(III), and Lu(III) have been synthesized and characterized on the basis of elemental analysis, IR, NMR and electronic spectroscopy. The nephelauxetic effect(1-{beta}overlined), bonding parameter, {beta}overlined, bsup(1/2) and Sinha covalency parameter {delta}, have been calculated. Their positive values indicate covalent nature of metal-ligand bond which is also supported by their molar conductances measured in nitrobenzene. Magnetic moment values exhibit paramagnetic nature of the complexes. Log K,{Delta}G, {Delta}H and {Delta}S values have also been ca lculated. Toxicity of the compounds has been evaluated against cockroaches and fungi(Aspergillus flavus and A. niger). The LD{sub 50} and % inhibition values demonstrate greater efficacy of the complexes than that of the free bases. (author). 4 tabs., 12 refs.

  4. Synthesis characterization and toxicity of lanthanide complexes with schiff bases derived from S-benzoyl dithiocarbazate and aldehydes

    International Nuclear Information System (INIS)

    Siddiqi, K.S.; Tabassum, S.; Zaidi, S.A.A.; Kureshy, R.I.; Khan, N.H.

    1989-01-01

    New O:N:S and N:S donor ligands namely, S-benzoyl-N-(o-hydroxybenzaldehyde) dithiocarbazate, S-benzoyl-N-(N,N-dimethylaminobenzaldehyde ) dithiocarbazate, S-benzoyl-N(N-thiophene-2-aldehyde) dithiocarbazate and their complexes with La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III), Yb(III), and Lu(III) have been synthesized and characterized on the basis of elemental analysis, IR, NMR and electronic spectroscopy. The nephelauxetic effect(1-βoverlined), bonding parameter, βoverlined, bsup(1/2) and Sinha covalency parameter δ, have been calculated. Their positive values indicate covalent nature of metal-ligand bond which is also supported by their molar conductances measured in nitrobenzene. Magnetic moment values exhibit paramagnetic nature of the complexes. Log K,ΔG, ΔH and ΔS values have also been ca lculated. Toxicity of the compounds has been evaluated against cockroaches and fungi(Aspergillus flavus and A. niger). The LD 50 and % inhibition values demonstrate greater efficacy of the complexes than that of the free bases. (author). 4 tabs., 12 refs

  5. Diffusion dynamics and concentration of toxic materials from quantum dots-based nanotechnologies: an agent-based modeling simulation framework

    Energy Technology Data Exchange (ETDEWEB)

    Agusdinata, Datu Buyung, E-mail: bagusdinata@niu.edu; Amouie, Mahbod [Northern Illinois University, Department of Industrial & Systems Engineering and Environment, Sustainability, & Energy Institute (United States); Xu, Tao [Northern Illinois University, Department of Chemistry and Biochemistry (United States)

    2015-01-15

    Due to their favorable electrical and optical properties, quantum dots (QDs) nanostructures have found numerous applications including nanomedicine and photovoltaic cells. However, increased future production, use, and disposal of engineered QD products also raise concerns about their potential environmental impacts. The objective of this work is to establish a modeling framework for predicting the diffusion dynamics and concentration of toxic materials released from Trioctylphosphine oxide-capped CdSe. To this end, an agent-based model simulation with reaction kinetics and Brownian motion dynamics was developed. Reaction kinetics is used to model the stability of surface capping agent particularly due to oxidation process. The diffusion of toxic Cd{sup 2+} ions in aquatic environment was simulated using an adapted Brownian motion algorithm. A calibrated parameter to reflect sensitivity to reaction rate is proposed. The model output demonstrates the stochastic spatial distribution of toxic Cd{sup 2+} ions under different values of proxy environmental factor parameters. With the only chemistry considered was oxidation, the simulation was able to replicate Cd{sup 2+} ion release from Thiol-capped QDs in aerated water. The agent-based method is the first to be developed in the QDs application domain. It adds both simplicity of the solubility and rate of release of Cd{sup 2+} ions and complexity of tracking of individual atoms of Cd at the same time.

  6. Diffusion dynamics and concentration of toxic materials from quantum dots-based nanotechnologies: an agent-based modeling simulation framework

    International Nuclear Information System (INIS)

    Agusdinata, Datu Buyung; Amouie, Mahbod; Xu, Tao

    2015-01-01

    Due to their favorable electrical and optical properties, quantum dots (QDs) nanostructures have found numerous applications including nanomedicine and photovoltaic cells. However, increased future production, use, and disposal of engineered QD products also raise concerns about their potential environmental impacts. The objective of this work is to establish a modeling framework for predicting the diffusion dynamics and concentration of toxic materials released from Trioctylphosphine oxide-capped CdSe. To this end, an agent-based model simulation with reaction kinetics and Brownian motion dynamics was developed. Reaction kinetics is used to model the stability of surface capping agent particularly due to oxidation process. The diffusion of toxic Cd 2+ ions in aquatic environment was simulated using an adapted Brownian motion algorithm. A calibrated parameter to reflect sensitivity to reaction rate is proposed. The model output demonstrates the stochastic spatial distribution of toxic Cd 2+ ions under different values of proxy environmental factor parameters. With the only chemistry considered was oxidation, the simulation was able to replicate Cd 2+ ion release from Thiol-capped QDs in aerated water. The agent-based method is the first to be developed in the QDs application domain. It adds both simplicity of the solubility and rate of release of Cd 2+ ions and complexity of tracking of individual atoms of Cd at the same time

  7. Fourier-transform infrared spectroscopy as a novel approach to providing effect-based endpoints in duckweed toxicity testing.

    Science.gov (United States)

    Hu, Li-Xin; Ying, Guang-Guo; Chen, Xiao-Wen; Huang, Guo-Yong; Liu, You-Sheng; Jiang, Yu-Xia; Pan, Chang-Gui; Tian, Fei; Martin, Francis L

    2017-02-01

    Traditional duckweed toxicity tests only measure plant growth inhibition as an endpoint, with limited effects-based data. The present study aimed to investigate whether Fourier-transform infrared (FTIR) spectroscopy could enhance the duckweed (Lemna minor L.) toxicity test. Four chemicals (Cu, Cd, atrazine, and acetochlor) and 4 metal-containing industrial wastewater samples were tested. After exposure of duckweed to the chemicals, standard toxicity endpoints (frond number and chlorophyll content) were determined; the fronds were also interrogated using FTIR spectroscopy under optimized test conditions. Biochemical alterations associated with each treatment were assessed and further analyzed by multivariate analysis. The results showed that comparable x% of effective concentration (ECx) values could be achieved based on FTIR spectroscopy in comparison with those based on traditional toxicity endpoints. Biochemical alterations associated with different doses of toxicant were mainly attributed to lipid, protein, nucleic acid, and carbohydrate structural changes, which helped to explain toxic mechanisms. With the help of multivariate analysis, separation of clusters related to different exposure doses could be achieved. The present study is the first to show successful application of FTIR spectroscopy in standard duckweed toxicity tests with biochemical alterations as new endpoints. Environ Toxicol Chem 2017;36:346-353. © 2016 SETAC. © 2016 SETAC.

  8. Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines.

    Science.gov (United States)

    Zhang, Yanfeng; Han, Yuwei; Yang, Jinxi; Zhu, Lingyan; Zhong, Wenjue

    2017-12-01

    The occurrence, toxicities, and ecological risks of five heavy metals (Pb, Cu, Cd, Zn and Ni) in the sediment of Taihu Lake were investigated in this study. To evaluate the toxicities caused by the heavy metals, the toxicities induced by organic contaminants and ammonia in the sediments were screened out with activated carbon and zeolite. The toxicities of heavy metals in sediments were tested with benthic invertebrates (tubificid and chironomid). The correlations between toxicity of sediment and the sediment quality guidelines (SQGs) derived previously were evaluated. There were significant correlations (pheavy metals based on SQGs, indicating that threshold effect level (TEL) and probable effect level (PEL) were reliable to predict the toxicities of heavy metals in the sediments of Taihu Lake. By contrast, the method based on acid volatile sulfides (AVS) and simultaneously extracted metals (SEM), such as ∑SEM/AVS and ∑SEM-AVS, did not show correlations with the toxicities. Moreover, the predictive ability of SQGs was confirmed by a total predicting accuracy of 77%. Ecological risk assessment based on TELs and PELs showed that the contaminations of Pb, Cu, Cd and Zn in the sediments of Taihu Lake were at relatively low or medium levels. The risks caused by heavy metals in the sediments of northern bay of the lake, which received more wastewater discharge from upper stream, were higher than other area of the lake. Copyright © 2017. Published by Elsevier B.V.

  9. Leaching of the potentially toxic pollutants from composites based on waste raw material

    Directory of Open Access Journals (Sweden)

    Terzić Anja

    2012-01-01

    Full Text Available The disposal of the fly ash generated in coal based power-plants may pose a significant risk to the environment due to the possible leaching of hazardous pollutants, such as toxic metals. Also, there is a risk of leaching even when fly ash is built-in the construction composites. Fly ashes from various landfills were applied in several composite samples (mortar, concrete and brick without any physical or thermal pre-treatment. The leachability of the potentially toxic pollutants from the fly ash based products was investigated. The leaching behavior and potential environmental impact of the 11 potentially hazardous elements was tracked: Pb, Cd, Zn, Cu, Ni, Cr, Hg, As, Ba, Sb and Se. A detailed study of physico-chemical characteristics of the fly ash, with accent on trace elements and the chemical composition investigation is included. Physico/chemical properties of fly ash were investigated by means of X-ray fluorescence, differential thermal analysis and X-ray diffraction methods. Scanning electron microscope was used in microstructural analysis. The results show that most of the elements are more easily leachable from the fly ash in comparison with the fly ash based composites. The leaching of investigated pollutants is within allowed range thus investigated fly ashes can be reused in construction materials production.

  10. Recycling of Gamma Irradiated Inner Tubes in Butyl Based Rubber Compound

    International Nuclear Information System (INIS)

    Karaagac, B.

    2006-01-01

    Crosslinked elastomeric materials, such as tyres are of great challenge concerning the environmental and ecological reasons. Ionizing radiation seems to offer unique opportunities to tackle the problem of recycling of polymers and rubbers on account of its ability to cause chain scission and/or cross-linking of polymeric materials. There is only limited amount of work reported on the irradiation-induced degradation of rubbers. Unlike the majority of the elastomers with high levels of unsaturation, butyl rubber exhibits significant degradation by ionizing radiation action. In this study, recycling of gamma irradiated inner tubes made of butyl rubber in butyl based rubber compounds was studied. Used inner tubes were irradiated with gamma rays in air at 100 and 120 kGy absorbed doses. The compatibility of irradiated inner tubes with virgin butyl rubber was first investigated. Gamma irradiated inner tube wastes were replaced with butyl rubber up to 15 phr in the compound recipe. Similar recipes were also prepared by using the same quantity of commercial butyl rubber crumbs devulcanized by conventional methods. The rheological and mechanical properties and carbon black dispersion degree for both types of compounds prepared by using inner tubes scraps and commercial butyl crumbs were measured and were compared to the values of virgin butyl rubber compound. It is well known that mechanical properties are deteriorated when rubber crumb is added to the virgin compound. It was observed that the decrease in the mechanical properties was much lower for the compounds prepared from the tubes irradiated at 120 kGy than irradiated at 100 kGy. The better mechanical properties were obtained for the compounds prepared by recycling of irradiated inner tubes at 120 kGy than the compounds prepared by using commercial butyl crumbs. Almost similar carbon black distributions were observed for the all compounds studied. It has been concluded that gamma irradiated inner tubes are compatible

  11. Classification of baseline toxicants for QSAR predictions to replace fish acute toxicity studies.

    Science.gov (United States)

    Nendza, Monika; Müller, Martin; Wenzel, Andrea

    2017-03-22

    Fish acute toxicity studies are required for environmental hazard and risk assessment of chemicals by national and international legislations such as REACH, the regulations of plant protection products and biocidal products, or the GHS (globally harmonised system) for classification and labelling of chemicals. Alternative methods like QSARs (quantitative structure-activity relationships) can replace many ecotoxicity tests. However, complete substitution of in vivo animal tests by in silico methods may not be realistic. For the so-called baseline toxicants, it is possible to predict the fish acute toxicity with sufficient accuracy from log K ow and, hence, valid QSARs can replace in vivo testing. In contrast, excess toxicants and chemicals not reliably classified as baseline toxicants require further in silico, in vitro or in vivo assessments. Thus, the critical task is to discriminate between baseline and excess toxicants. For fish acute toxicity, we derived a scheme based on structural alerts and physicochemical property thresholds to classify chemicals as either baseline toxicants (=predictable by QSARs) or as potential excess toxicants (=not predictable by baseline QSARs). The step-wise approach identifies baseline toxicants (true negatives) in a precautionary way to avoid false negative predictions. Therefore, a certain fraction of false positives can be tolerated, i.e. baseline toxicants without specific effects that may be tested instead of predicted. Application of the classification scheme to a new heterogeneous dataset for diverse fish species results in 40% baseline toxicants, 24% excess toxicants and 36% compounds not classified. Thus, we can conclude that replacing about half of the fish acute toxicity tests by QSAR predictions is realistic to be achieved in the short-term. The long-term goals are classification criteria also for further groups of toxicants and to replace as many in vivo fish acute toxicity tests as possible with valid QSAR

  12. Development of thresholds of excess toxicity for environmental species and their application to identification of modes of acute toxic action.

    Science.gov (United States)

    Li, Jin J; Zhang, Xu J; Yang, Yi; Huang, Tao; Li, Chao; Su, Limin; Zhao, Yuan H; Cronin, Mark T D

    2018-03-01

    The acute toxicity of organic pollutants to fish, Daphnia magna, Tetrahymena pyriformis, and Vibrio fischeri was investigated. The results indicated that the Toxicity Ratio (TR) threshold of log TR =1, which has been based on the distribution of toxicity data to fish, can also be used to discriminate reactive or specifically acting compounds from baseline narcotics for Daphnia magna and Vibrio fischeri. A log TR=0.84 is proposed for Tetrahymena pyriformis following investigation of the relationships between the species sensitivity and the absolute averaged residuals (AAR) between the predicted baseline toxicity and the experimental toxicity. Less inert compounds exhibit relatively higher toxicity to the lower species (Tetrahymena pyriformis and Vibrio fischeri) than the higher species (fish and Daphnia magna). A greater number of less inert compounds with log TR greater than the thresholds was observed for Tetrahymena pyriformis and Vibrio fischeri. This may be attributed to the hydrophilic compounds which may pass more easily through cell membranes than the skin or exoskeleton of organisms and have higher bioconcentration factors in the lower species, leading to higher toxicity. Most of classes of chemical associated with excess toxicity to one species also exhibited excess toxicity to other species, however, a few classes with excess toxicity to one species exhibiting narcotic toxicity to other species and thus may have different MOAs between species. Some ionizable compounds have log TR much lower than one because of the over-estimated log K OW . The factors that influence the toxicity ratio calculated from baseline level are discussed in this paper. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Contact-based ligand-clustering approach for the identification of active compounds in virtual screening

    Directory of Open Access Journals (Sweden)

    Mantsyzov AB

    2012-09-01

    Full Text Available Alexey B Mantsyzov,1 Guillaume Bouvier,2 Nathalie Evrard-Todeschi,1 Gildas Bertho11Université Paris Descartes, Sorbonne, Paris, France; 2Institut Pasteur, Paris, FranceAbstract: Evaluation of docking results is one of the most important problems for virtual screening and in silico drug design. Modern approaches for the identification of active compounds in a large data set of docked molecules use energy scoring functions. One of the general and most significant limitations of these methods relates to inaccurate binding energy estimation, which results in false scoring of docked compounds. Automatic analysis of poses using self-organizing maps (AuPosSOM represents an alternative approach for the evaluation of docking results based on the clustering of compounds by the similarity of their contacts with the receptor. A scoring function was developed for the identification of the active compounds in the AuPosSOM clustered dataset. In addition, the AuPosSOM efficiency for the clustering of compounds and the identification of key contacts considered as important for its activity, were also improved. Benchmark tests for several targets revealed that together with the developed scoring function, AuPosSOM represents a good alternative to the energy-based scoring functions for the evaluation of docking results.Keywords: scoring, docking, virtual screening, CAR, AuPosSOM

  14. Assessment of sediment quality based on toxic equivalent benzo[a]Pyrene concentration

    International Nuclear Information System (INIS)

    King, T.L.; Lee, K.

    2004-01-01

    This study examined benzo[a]pyrene (B[a]P) as an indicator and its thresholds for polycyclic aromatic hydrocarbons (PAH) in sediments. The indicator, based on toxicity and carcinogenic effects, was selected to assess the marine environment and changes in marine environmental quality (MEQ) in Sydney Harbour, Nova Scotia. It was shown that the bioavailability of B[a]P and other PAHs is greatly affected by the quality and quantity of dissolved organic matter and organic carbon content. Two coal coke facilities were constructed on the shore of Sydney Harbour in the 19th century. For many years, the coke-ovens discharged toxic liquid effluent through the Tar Ponds into the harbour, contaminating the ground and surface water with arsenic, lead and other toxins. It also led to the accumulation of PAHs and polychlorinated biphenyls. A recent assessment of PAH contamination of Sydney Harbour has focused on the exposure of organisms to contaminants as well as the biological effects on the organisms. All samples collected from the South Arm of Sydney Harbour exceeded the upper threshold of established regulatory guidelines. Samples from the Northwest Arm were within regulatory limits, suggesting that industrial and municipal sources were the primary sources of pollution. PAH concentrations were used to identify sediments that exceed effects thresholds based on MEQ guidelines. The results were compared to actual observations of biological effects. Toxic equivalency factors were established for B[a]P and other PAHs in order to estimate cumulative exposure levels. The concentrations can be compared to regulatory sediment quality guidelines established in Canada and the United States for the protection of marine life. 34 refs., 6 tabs., 2 figs

  15. Synthesis and preliminary biological evaluation of a small library of hybrid compounds based on Ugi isocyanide multicomponent reactions with a marine natural product scaffold.

    Science.gov (United States)

    Avilés, Edward; Prudhomme, Jacques; Le Roch, Karine G; Franzblau, Scott G; Chandrasena, Kevin; Mayer, Alejandro M S; Rodríguez, Abimael D

    2015-11-15

    A mixture-based combinatorial library of five Ugi adducts (4-8) incorporating known antitubercular and antimalarial pharmacophores was successfully synthesized, starting from the naturally occurring diisocyanide 3, via parallel Ugi four-center three-component reactions (U-4C-3CR). The novel α-acylamino amides obtained were evaluated for their antiinfective potential against laboratory strains of Mycobacterium tuberculosis H37Rv and chloroquine-susceptible 3D7 Plasmodium falciparum. Interestingly, compounds 4-8 displayed potent in vitro antiparasitic activity with higher cytotoxicity in comparison to their diisocyanide precursor 3, with the best compound exhibiting an IC50 value of 3.6 nM. Additionally, these natural product inspired hybrids potently inhibited in vitro thromboxane B2 (TXB2) and superoxide anion (O2(-)) generation from Escherichia coli lipopolysaccharide (LPS)-activated rat neonatal microglia, with concomitant low short-term toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Influence of Element Substitution on Corrosion Behavior of Bi2Te3-Based Compounds

    Science.gov (United States)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2018-02-01

    Atmospheric water may condense on the surface of Bi2Te3-based compounds constituting the Peltier module, depending on the operating environment used. In the stage of disposal, Bi2Te3-based compounds may come into contact with water in waste disposal sites. There are very few publications about the influence of condensed water on Peltier modules. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudo binary system compounds are used as p-type material or n-type material, respectively. The lattice distortion will be induced in the crystal of Bi2Te3-based compounds by element substitution due to the reduction in their thermal conductivity. However, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds with practical compositions has been investigated. Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 was prepared by the vertical Bridgman method. The electrochemical properties at room temperature were evaluated by cyclic voltammetry in a standard three-electrode cell. The working electrolyte was a naturally aerated 0.6 or 3.0 mass% NaCl solution. From the tendency for corrosion potential for all the samples, the corrosion sensitivity of ternary compounds was slightly higher than that of binary compounds. From the trend of current density, it was found that Bi0.5Sb1.5Te3 had a corrosion resistance intermediate between Bi2Te3 and Sb2Te3. On the other hand, corrosion resistance was affected despite a small amount of Se substitution, and the corrosion resistance of Bi2Te2.85Se0.15 was close to or lower than that of Bi2Se3. From the observation results of the corrosion products, the trends of morphology and composition of corrosion products for Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 were consistent with those of Sb2Te3 or Bi2Se3, respectively. From the results of x-ray photoelectron spectroscopy for the electrolyte after testing, the possibility that a

  17. Influence of Element Substitution on Corrosion Behavior of Bi2Te3-Based Compounds

    Science.gov (United States)

    Kohri, Hitoshi; Yagasaki, Takayoshi

    2018-06-01

    Atmospheric water may condense on the surface of Bi2Te3-based compounds constituting the Peltier module, depending on the operating environment used. In the stage of disposal, Bi2Te3-based compounds may come into contact with water in waste disposal sites. There are very few publications about the influence of condensed water on Peltier modules. Bi2Te3-Sb2Te3 or Bi2Te3-Bi2Se3 pseudo binary system compounds are used as p-type material or n-type material, respectively. The lattice distortion will be induced in the crystal of Bi2Te3-based compounds by element substitution due to the reduction in their thermal conductivity. However, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds remains unclear. In this study, the influence of element substitution on the corrosion behavior of Bi2Te3-based compounds with practical compositions has been investigated. Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 was prepared by the vertical Bridgman method. The electrochemical properties at room temperature were evaluated by cyclic voltammetry in a standard three-electrode cell. The working electrolyte was a naturally aerated 0.6 or 3.0 mass% NaCl solution. From the tendency for corrosion potential for all the samples, the corrosion sensitivity of ternary compounds was slightly higher than that of binary compounds. From the trend of current density, it was found that Bi0.5Sb1.5Te3 had a corrosion resistance intermediate between Bi2Te3 and Sb2Te3. On the other hand, corrosion resistance was affected despite a small amount of Se substitution, and the corrosion resistance of Bi2Te2.85Se0.15 was close to or lower than that of Bi2Se3. From the observation results of the corrosion products, the trends of morphology and composition of corrosion products for Bi0.5Sb1.5Te3 or Bi2Te2.85Se0.15 were consistent with those of Sb2Te3 or Bi2Se3, respectively. From the results of x-ray photoelectron spectroscopy for the electrolyte after testing, the possibility that a

  18. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine.

    Science.gov (United States)

    Zhang, Yongbin; Petibone, Dayton; Xu, Yang; Mahmood, Meena; Karmakar, Alokita; Casciano, Dan; Ali, Syed; Biris, Alexandru S

    2014-05-01

    Carbon-based nanomaterials have attracted great interest in biomedical applications such as advanced imaging, tissue regeneration, and drug or gene delivery. The toxicity of the carbon nanotubes and graphene remains a debated issue although many toxicological studies have been reported in the scientific community. In this review, we summarize the biological effects of carbon nanotubes and graphene in terms of in vitro and in vivo toxicity, genotoxicity and toxicokinetics. The dose, shape, surface chemistry, exposure route and purity play important roles in the metabolism of carbon-based nanomaterials resulting in differential toxicity. Careful examination of the physico-chemical properties of carbon-based nanomaterials is considered a basic approach to correlate the toxicological response with the unique properties of the carbon nanomaterials. The reactive oxygen species-mediated toxic mechanism of carbon nanotubes has been extensively discussed and strategies, such as surface modification, have been proposed to reduce the toxicity of these materials. Carbon-based nanomaterials used in photothermal therapy, drug delivery and tissue regeneration are also discussed in this review. The toxicokinetics, toxicity and efficacy of carbon-based nanotubes and graphene still need to be investigated further to pave a way for biomedical applications and a better understanding of their potential applications to humans.

  19. Chiral halogenated Schiff base compounds: green synthesis, anticancer activity and DNA-binding study

    Science.gov (United States)

    Ariyaeifar, Mahnaz; Amiri Rudbari, Hadi; Sahihi, Mehdi; Kazemi, Zahra; Kajani, Abolghasem Abbasi; Zali-Boeini, Hassan; Kordestani, Nazanin; Bruno, Giuseppe; Gharaghani, Sajjad

    2018-06-01

    Eight enantiomerically pure halogenated Schiff base compounds were synthesized by reaction of halogenated salicylaldehydes with 3-Amino-1,2-propanediol (R or S) in water as green solvent at ambient temperature. All compounds were characterized by elemental analyses, NMR (1H and 13C), circular dichroism (CD) and FT-IR spectroscopy. FS-DNA binding studies of these compounds carried out by fluorescence quenching and UV-vis spectroscopy. The obtained results revealed that the ligands bind to DNA as: (Rsbnd ClBr) > (Rsbnd Cl2) > (Rsbnd Br2) > (Rsbnd I2) and (Ssbnd ClBr) > (Ssbnd Cl2) > (Ssbnd Br2) > (Ssbnd I2), indicating the effect of halogen on binding constant. In addition, DNA-binding constant of the Ssbnd and R-enantiomers are different from each other. The ligands can form halogen bonds with DNA that were confirmed by molecular docking. This method was also measured the bond distances and bond angles. The study of obtained data can have concluded that binding affinity of the ligands to DNA depends on strength of halogen bonds. The potential anticancer activity of ligands were also evaluated on MCF-7 and HeLa cancer cell lines by using MTT assay. The results showed that the anticancer activity and FS-DNA interaction is significantly dependent on the stereoisomers of Schiff base compounds as R-enantiomers displayed significantly higher activity than S-enantiomers. The molecular docking was also used to illustrate the specific DNA-binding of synthesized compounds and groove binding mode of DNA interaction was proposed for them. In addition, molecular docking results indicated that there are three types of bonds (Hsbnd and X-bond and hX-bond) between synthesized compounds and base pairs of DNA.

  20. Electrospray[+] tandem quadrupole mass spectrometry in the elucidation of ergot alkaloids chromatographed by HPLC: screening of grass or forage samples for novel toxic compounds.

    Science.gov (United States)

    Lehner, Andreas F; Craig, Morrie; Fannin, Neil; Bush, Lowell; Tobin, Tom

    2005-11-01

    Ergot alkaloids are mycotoxins generated by grass and grain pathogens such as Claviceps, for example. Ergot alkaloid-poisoning syndromes, such as tall fescue toxicosis from endophyte-infected tall fescue grass, are important veterinary problems for cattle, horses, sheep, pigs and chickens, with consequent impact on food, meat and dairy industries. Damage to livestock is of the order of a billion dollars a year in the United States alone. HPLC with UV and fluorescence detection are the predominant means of ergot alkaloid determination, with focus on quantitation of the marker compound ergovaline, although ELISA methods are undergoing investigation. These techniques are excellent for rapid detection, but of poor specificity in defining new or poorly characterized ergot alkaloids and related compounds. This paper demonstrates the facility of using electrospray(+) mass spectrometry with multiple reaction monitoring (MRM) detection during chromatographic examination of ergot alkaloid standards of lysergic acid, lysergol, ergonovine, ergovaline, ergotamine, ergocornine, ergocryptine and ergocrystine by HPLC. Ergoline-8 position epimers could be separated on the gradient HPLC system for ergocornine, ergocrystine and ergonovine and appeared as shoulders for ergotamine and ergovaline; epimers generally showed different patterns of relative intensity for specific MRM transitions. There was reasonable correspondence between retention of standards on the 2-mm ESI(+)MS phenyl-hexyl-based reverse phase column and those on the 4-mm C18-based column. Since up to 10% of clinical cases involving toxin exposure display unidentified chromatographic peaks, 11 samples of feed components associated with such cases were studied with developed MRM methods to attempt elucidation of crucial components if possible. Ergotamine appeared in all, ergovaline appeared in five and ergocornine appeared in six; ergonovine, ergocryptine, ergocrystine and lysergol also appeared in several. In addition

  1. Multipurpose Compound

    Science.gov (United States)

    1983-01-01

    Specially formulated derivatives of an unusual basic compound known as Alcide may be the answer to effective treatment and prevention of the disease bovine mastitis, a bacterial inflammation of a cow's mammary gland that results in loss of milk production and in extreme cases, death. Manufactured by Alcide Corporation the Alcide compound has killed all tested bacteria, virus and fungi, shortly after contact, with minimal toxic effects on humans or animals. Alcide Corporation credits the existence of the mastitis treatment/prevention products to assistance provided the company by NERAC, Inc.

  2. Models for the field-based toxicity of copper and zinc salts to wheat in 11 Australian soils and comparison to laboratory-based models

    International Nuclear Information System (INIS)

    Warne, Michael St.J.; Heemsbergen, Diane; McLaughlin, Mike; Bell, Mike; Broos, Kris; Whatmuff, Mark; Barry, Glenn; Nash, David; Pritchard, Deb; Penney, Nancy

    2008-01-01

    Laboratory-based relationships that model the phytotoxicity of metals using soil properties have been developed. This paper presents the first field-based phytotoxicity relationships. Wheat (Triticum aestivum L.) was grown at 11 Australian field sites at which soil was spiked with copper (Cu) and zinc (Zn) salts. Toxicity was measured as inhibition of plant growth at 8 weeks and grain yield at harvest. The added Cu and Zn EC10 values for both endpoints ranged from approximately 3 to 4760 mg/kg. There were no relationships between field-based 8-week biomass and grain yield toxicity values for either metal. Cu toxicity was best modelled using pH and organic carbon content while Zn toxicity was best modelled using pH and the cation exchange capacity. The best relationships estimated toxicity within a factor of two of measured values. Laboratory-based phytotoxicity relationships could not accurately predict field-based phytotoxicity responses. - Field-based toxicity of Cu and Zn to wheat can be modelled using soil properties. Laboratory-based models should not be used to estimate toxicity in the field

  3. INTER-SPECIES MODELS FOR ACUTE AQUATIC TOXICITY BASED ON MECHANISM OF ACTION

    Science.gov (United States)

    This presentation will provide interspecies QSARs for acute toxicity to 17 aquatic species, such as fish, snail, tadpole, hydrozoan, crustacean, insect larvae, and bacteria developed using 5,000 toxic effect results for approximately 2400 chemicals.

  4. Virtual Embryo: Cell-Agent Based Modeling of Developmental Processes and Toxicities (CSS BOSC)

    Science.gov (United States)

    Spatial regulation of cellular dynamics is fundamental to morphological development. As such, chemical disruption of spatial dynamics is a determinant of developmental toxicity. Incorporating spatial dynamics into AOPs for developmental toxicity is desired but constrained by the ...

  5. Matrix- and tensor-based recommender systems for the discovery of currently unknown inorganic compounds

    Science.gov (United States)

    Seko, Atsuto; Hayashi, Hiroyuki; Kashima, Hisashi; Tanaka, Isao

    2018-01-01

    Chemically relevant compositions (CRCs) and atomic arrangements of inorganic compounds have been collected as inorganic crystal structure databases. Machine learning is a unique approach to search for currently unknown CRCs from vast candidates. Herein we propose matrix- and tensor-based recommender system approaches to predict currently unknown CRCs from database entries of CRCs. Firstly, the performance of the recommender system approaches to discover currently unknown CRCs is examined. A Tucker decomposition recommender system shows the best discovery rate of CRCs as the majority of the top 100 recommended ternary and quaternary compositions correspond to CRCs. Secondly, systematic density functional theory (DFT) calculations are performed to investigate the phase stability of the recommended compositions. The phase stability of the 27 compositions reveals that 23 currently unknown compounds are newly found to be stable. These results indicate that the recommender system has great potential to accelerate the discovery of new compounds.

  6. Human neuronal cell based assay: A new in vitro model for toxicity evaluation of ciguatoxin.

    Science.gov (United States)

    Coccini, Teresa; Caloni, Francesca; De Simone, Uliana

    2017-06-01

    Ciguatoxins (CTXs) are emerging marine neurotoxins representing the main cause of ciguatera fish poisoning, an intoxication syndrome which configures a health emergency and constitutes an evolving issue constantly changing due to new vectors and derivatives of CTXs, as well as their presence in new non-endemic areas. The study applied the neuroblastoma cell model of human origin (SH-SY5Y) to evaluate species-specific mechanistic information on CTX toxicity. Metabolic functionality, cell morphology, cytosolic Ca 2+ i responses, neuronal cell growth and proliferation were assessed after short- (4-24h) and long-term exposure (10days) to P-CTX-3C. In SH-SY5Y, P-CTX-3C displayed a powerful cytotoxicity requiring the presence of both Veratridine and Ouabain. SH-SY5Y were very sensitive to Ouabain: 10 and 0.25nM appeared the optimal concentrations, for short- and long-term toxicity studies, respectively, to be used in co-incubation with Veratridine (25μM), simulating the physiological and pathological endogenous Ouabain levels in humans. P-CTX-3C cytotoxic effect, on human neurons co-incubated with OV (Ouabain+Veratridine) mix, was expressed starting from 100pM after short- and 25pM after long-term exposure. Notably, P-CTX-3C alone at 25nM induced cytotoxicity after 24h and prolonged exposure. This human brain-derived cell line appears a suitable cell-based-model to evaluate cytotoxicity of CTX present in marine food contaminated at low toxic levels and to characterize the toxicological profile of other/new congeners. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Leaching characteristics of calcium-based compounds in MSWI Residues: From the viewpoint of clogging risk.

    Science.gov (United States)

    Xia, Yi; Zhang, Hua; Phoungthong, Khamphe; Shi, Dong-Xiao; Shen, Wen-Hui; Shao, Li-Ming; He, Pin-Jing

    2015-08-01

    Leachate collection system (LCS) clogging caused by calcium precipitation would be disadvantageous to landfill stability and operation. Meanwhile, calcium-based compounds are the main constituents in both municipal solid waste incineration bottom ash (MSWIBA) and stabilized air pollution control residues (SAPCR), which would increase the risk of LCS clogging once these calcium-rich residues were disposed in landfills. The leaching behaviors of calcium from the four compounds and municipal solid waste incineration (MSWI) residues were studied, and the influencing factors on leaching were discussed. The results showed that pH was the crucial factor in the calcium leaching process. CaCO3 and CaSiO3 began leaching when the leachate pH decreased to less than 7 and 10, respectively, while Ca3(PO4)2 leached at pHleaching rate for the different calcium-based compounds is as follows: CaSiO3>Ca3(PO4)2>CaCO3. The calcium leaching from the MSWIBA and SAPCR separately started from pHleaching respectively, which was proven by the X-ray diffraction results. Based on the leaching characteristics of the different calcium compounds and the mineral phase of calcium in the incineration residues, simulated computation of their clogging potential was conducted, providing the theoretical basis for the risk assessment pertaining to LCS clogging in landfills. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. FilTer BaSe: A web accessible chemical database for small compound libraries.

    Science.gov (United States)

    Kolte, Baban S; Londhe, Sanjay R; Solanki, Bhushan R; Gacche, Rajesh N; Meshram, Rohan J

    2018-03-01

    Finding novel chemical agents for targeting disease associated drug targets often requires screening of large number of new chemical libraries. In silico methods are generally implemented at initial stages for virtual screening. Filtering of such compound libraries on physicochemical and substructure ground is done to ensure elimination of compounds with undesired chemical properties. Filtering procedure, is redundant, time consuming and requires efficient bioinformatics/computer manpower along with high end software involving huge capital investment that forms a major obstacle in drug discovery projects in academic setup. We present an open source resource, FilTer BaSe- a chemoinformatics platform (http://bioinfo.net.in/filterbase/) that host fully filtered, ready to use compound libraries with workable size. The resource also hosts a database that enables efficient searching the chemical space of around 348,000 compounds on the basis of physicochemical and substructure properties. Ready to use compound libraries and database presented here is expected to aid a helping hand for new drug developers and medicinal chemists. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    OpenAIRE

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screen...

  10. Normalization references for USEtoxTM-based toxic impact categories: North American and European economic systems

    DEFF Research Database (Denmark)

    Laurent, Alexis; Lautier, Anne; Rosenbaum, Ralph K.

    2011-01-01

    economic regions, North America and Europe, to calculate normalization references for the three currently-modelled USEtoxTM-based impact categories, i.e. freshwater ecotoxicity, human toxicity, divided into cancer effects and non-cancer effects. Base years for the references are 2004 for Europe and 2006...... coverage of organics in both the inventory and the CF databases. With respect to the intended global character of the USEtoxTM model, different approaches to determine normalization references of other economic systems (e.g. Asia or world) are discussed in relation to these findings. Overall, we thus...... recommend the use of the provided set of normalization references for USEtoxTM, but we also advocate 1) to perform an update as soon as a more comprehensive inventory can be obtained and as soon as characterization factors for metals are revised; 2) to consider extension to other economic systems in order...

  11. Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity.

    Science.gov (United States)

    Tabet, Lyes; Bussy, Cyrill; Setyan, Ari; Simon-Deckers, Angélique; Rossi, Michel J; Boczkowski, Jorge; Lanone, Sophie

    2011-01-21

    carbon nanotubes (CNT) can have adverse effects on health. Therefore, minimizing the risk associated with CNT exposure is of crucial importance. The aim of this work was to evaluate if coating multi-walled CNT (MWCNT) with polymers could modify their toxicity, thus representing a useful strategy to decrease adverse health effects of CNT. We used industrially-produced MWCNT uncoated (NT1) or coated (50/50 wt%) with acid-based (NT2) or polystyrene-based (NT3) polymer, and exposed murine macrophages (RAW 264.7 cell line) or Balb/c mice by intratracheal administration. Biological experiments were performed both in vitro and in vivo, examining time- and dose-dependent effects of CNT, in terms of cytotoxicity, expression of genes and proteins related to oxidative stress, inflammation and tissue remodeling, cell and lung tissue morphology (optical and transmission electron microscopy), and bronchoalveolar lavage fluid content analysis. extensive physico-chemical characterization of MWCNT was performed, and showed, although similar dimensions for the 3 MWCNT, a much smaller specific surface area for NT2 and NT3 as compared to NT1 (54.1, 34 and 227.54 m(2)/g respectively), along with different surface characteristics. MWCNT-induced cytotoxicity, oxidative stress, and inflammation were increased by acid-based and decreased by polystyrene-based polymer coating both in vitro in murine macrophages and in vivo in lung of mice monitored for 6 months. these results demonstrate that coating CNT with polymers, without affecting their intrinsic structure, may constitute a useful strategy for decreasing CNT toxicity, and may hold promise for improving occupational safety and that of general the user.

  12. Vaginal Dose Is Associated With Toxicity in Image Guided Tandem Ring or Ovoid-Based Brachytherapy

    International Nuclear Information System (INIS)

    Susko, Matthew; Craciunescu, Oana; Meltsner, Sheridan; Yang, Yun; Steffey, Beverly; Cai, Jing; Chino, Junzo

    2016-01-01

    Purpose: To calculate vaginal doses during image guided brachytherapy with volume-based metrics and correlate with long-term vaginal toxicity. Methods and Materials: In this institutional review board–approved study, institutional databases were searched to identify women undergoing computed tomography and/or magnetic resonance–guided brachytherapy at the Duke Cancer Center from 2009 to 2015. All insertions were contoured to include the vagina as a 3-dimensional structure. All contouring was performed on computed tomography or magnetic resonance imaging and used a 0.4-cm fixed brush to outline the applicator and/or packing, expanded to include any grossly visible vagina. The surface of the cervix was specifically excluded from the contour. High-dose-rate (HDR) and low-dose-rate (LDR) doses were converted to the equivalent dose in 2-Gy fractions using an α/β of 3 for late effects. The parameters D0.1cc, D1cc, and D2cc were calculated for all insertions and summed with prior external beam therapy. Late and subacute toxicity to the vagina were determined by the Common Terminology Criteria for Adverse Events version 4.0 and compared by the median and 4th quartile doses, via the log-rank test. Univariate and multivariate hazard ratios were calculated via Cox regression. Results: A total of 258 insertions in 62 women who underwent definitive radiation therapy including brachytherapy for cervical (n=48) and uterine cancer (n=14) were identified. Twenty HDR tandem and ovoid, 32 HDR tandem and ring, and 10 LDR tandem and ovoid insertions were contoured. The median values (interquartile ranges) for vaginal D0.1cc, D1cc, and D2cc were 157.9 (134.4-196.53) Gy, 112.6 (96.7-124.6) Gy, and 100.5 (86.8-108.4) Gy, respectively. At the 4th quartile cutoff of 108 Gy for D2cc, the rate of late grade 1 toxicity at 2 years was 61.2% (95% confidence interval [CI] 43.0%-79.4%) below 108 Gy and 83.9% (63.9%-100%) above (P=.018); grade 2 or greater toxicity was 36.2% (95% CI 15

  13. Vaginal Dose Is Associated With Toxicity in Image Guided Tandem Ring or Ovoid-Based Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Susko, Matthew; Craciunescu, Oana; Meltsner, Sheridan; Yang, Yun; Steffey, Beverly; Cai, Jing; Chino, Junzo, E-mail: junzo.chino@duke.edu

    2016-04-01

    Purpose: To calculate vaginal doses during image guided brachytherapy with volume-based metrics and correlate with long-term vaginal toxicity. Methods and Materials: In this institutional review board–approved study, institutional databases were searched to identify women undergoing computed tomography and/or magnetic resonance–guided brachytherapy at the Duke Cancer Center from 2009 to 2015. All insertions were contoured to include the vagina as a 3-dimensional structure. All contouring was performed on computed tomography or magnetic resonance imaging and used a 0.4-cm fixed brush to outline the applicator and/or packing, expanded to include any grossly visible vagina. The surface of the cervix was specifically excluded from the contour. High-dose-rate (HDR) and low-dose-rate (LDR) doses were converted to the equivalent dose in 2-Gy fractions using an α/β of 3 for late effects. The parameters D0.1cc, D1cc, and D2cc were calculated for all insertions and summed with prior external beam therapy. Late and subacute toxicity to the vagina were determined by the Common Terminology Criteria for Adverse Events version 4.0 and compared by the median and 4th quartile doses, via the log-rank test. Univariate and multivariate hazard ratios were calculated via Cox regression. Results: A total of 258 insertions in 62 women who underwent definitive radiation therapy including brachytherapy for cervical (n=48) and uterine cancer (n=14) were identified. Twenty HDR tandem and ovoid, 32 HDR tandem and ring, and 10 LDR tandem and ovoid insertions were contoured. The median values (interquartile ranges) for vaginal D0.1cc, D1cc, and D2cc were 157.9 (134.4-196.53) Gy, 112.6 (96.7-124.6) Gy, and 100.5 (86.8-108.4) Gy, respectively. At the 4th quartile cutoff of 108 Gy for D2cc, the rate of late grade 1 toxicity at 2 years was 61.2% (95% confidence interval [CI] 43.0%-79.4%) below 108 Gy and 83.9% (63.9%-100%) above (P=.018); grade 2 or greater toxicity was 36.2% (95% CI 15

  14. Vaginal Dose Is Associated With Toxicity in Image Guided Tandem Ring or Ovoid-Based Brachytherapy.

    Science.gov (United States)

    Susko, Matthew; Craciunescu, Oana; Meltsner, Sheridan; Yang, Yun; Steffey, Beverly; Cai, Jing; Chino, Junzo

    2016-04-01

    To calculate vaginal doses during image guided brachytherapy with volume-based metrics and correlate with long-term vaginal toxicity. In this institutional review board-approved study, institutional databases were searched to identify women undergoing computed tomography and/or magnetic resonance-guided brachytherapy at the Duke Cancer Center from 2009 to 2015. All insertions were contoured to include the vagina as a 3-dimensional structure. All contouring was performed on computed tomography or magnetic resonance imaging and used a 0.4-cm fixed brush to outline the applicator and/or packing, expanded to include any grossly visible vagina. The surface of the cervix was specifically excluded from the contour. High-dose-rate (HDR) and low-dose-rate (LDR) doses were converted to the equivalent dose in 2-Gy fractions using an α/β of 3 for late effects. The parameters D0.1cc, D1cc, and D2cc were calculated for all insertions and summed with prior external beam therapy. Late and subacute toxicity to the vagina were determined by the Common Terminology Criteria for Adverse Events version 4.0 and compared by the median and 4th quartile doses, via the log-rank test. Univariate and multivariate hazard ratios were calculated via Cox regression. A total of 258 insertions in 62 women who underwent definitive radiation therapy including brachytherapy for cervical (n=48) and uterine cancer (n=14) were identified. Twenty HDR tandem and ovoid, 32 HDR tandem and ring, and 10 LDR tandem and ovoid insertions were contoured. The median values (interquartile ranges) for vaginal D0.1cc, D1cc, and D2cc were 157.9 (134.4-196.53) Gy, 112.6 (96.7-124.6) Gy, and 100.5 (86.8-108.4) Gy, respectively. At the 4th quartile cutoff of 108 Gy for D2cc, the rate of late grade 1 toxicity at 2 years was 61.2% (95% confidence interval [CI] 43.0%-79.4%) below 108 Gy and 83.9% (63.9%-100%) above (P=.018); grade 2 or greater toxicity was 36.2% (95% CI 15.8%-56.6%) below 108 Gy and 70.7% (95% CI 45

  15. Structure-based virtual screening and characterization of a novel IL-6 antagonistic compound from synthetic compound database

    Directory of Open Access Journals (Sweden)

    Wang J

    2016-12-01

    Full Text Available Jing Wang,1,* Chunxia Qiao,1,* He Xiao,1 Zhou Lin,1 Yan Li,1 Jiyan Zhang,1 Beifen Shen,1 Tinghuan Fu,2 Jiannan Feng1 1Department of Molecular Immunology, Beijing Institute of Basic Medical Sciences, 2First Affiliated Hospital of PLA General Hospital, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: According to the three-dimensional (3D complex structure of (hIL-6·hIL-6R·gp 1302 and the binding orientation of hIL-6, three compounds with high affinity to hIL-6R and bioactivity to block hIL-6 in vitro were screened theoretically from the chemical databases, including 3D-Available Chemicals Directory (ACD and MDL Drug Data Report (MDDR, by means of the computer-guided virtual screening method. Using distance geometry, molecular modeling and molecular dynamics trajectory analysis methods, the binding mode and binding energy of the three compounds were evaluated theoretically. Enzyme-linked immunosorbent assay analysis demonstrated that all the three compounds could block IL-6 binding to IL-6R specifically. However, only compound 1 could effectively antagonize the function of hIL-6 and inhibit the proliferation of XG-7 cells in a dose-dependent manner, whereas it showed no cytotoxicity to SP2/0 or L929 cells. These data demonstrated that the compound 1 could be a promising candidate of hIL-6 antagonist. Keywords: virtual screening, structural optimization, human interlukin-6, small molecular antagonist, XG-7 cells, apoptosis

  16. Use of reporter-gene based bacteria to quantify phenanthrene biodegradation and toxicity in soil

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Doyun [Department of Civil and Environmental Engineering, Seoul National University, Gwanakno 599, Seoul 151-742 (Korea, Republic of); Moon, Hee Sun [School of Earth and Environmental Science, Seoul National University, Gwanakno 599, Seoul 151-742 (Korea, Republic of); Lin, Chu-Ching; Barkay, Tamar [Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901 (United States); Nam, Kyoungphile, E-mail: kpnam@snu.ac.k [Department of Civil and Environmental Engineering, Seoul National University, Gwanakno 599, Seoul 151-742 (Korea, Republic of)

    2011-02-15

    A phenanthrene-degrading bacterium, Sphingomonas paucimobilis EPA505 was used to construct two fluorescence-based reporter strains. Strain D harboring gfp gene was constructed to generate green fluorescence when the strain started to biodegrade phenanthrene. Strain S possessing gef gene was designed to die once phenanthrene biodegradation was initiated and thus to lose green fluorescence when visualized by a live/dead cell staining. Confocal laser scanning microscopic observation followed by image analysis demonstrates that the fluorescence intensity generated by strain D increased and the intensity by strain S decreased linearly at the phenanthrene concentration of up to 200 mg/L. Such quantitative increase and decrease of fluorescence intensity in strain D (i.e., from 1 to 11.90 {+-} 0.72) and strain S (from 1 to 0.40 {+-} 0.07) were also evident in the presence of Ottawa sand spiked with the phenanthrene up to 1000 mg/kg. The potential use of the reporter strains in quantitatively determining biodegradable or toxic phenanthrene was discussed. - Research highlights: A novel reporter bacterial strain has been developed. The bacterium can quantitatively determine the change in fluorescence intensity. The intensity can represent the bioavailable phenanthrene in solid matrix. - A cell-killing gene harboring reporter bacterium shows phenanthrene toxicity.

  17. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms.

    Science.gov (United States)

    Rogosnitzky, Moshe; Branch, Stacy

    2016-06-01

    Gadolinium chelates are widely used as contrast media for magnetic resonance imaging. The approved gadolinium-based contrast agents (GBCAs) have historically been considered safe and well tolerated when used at recommended dosing levels. However, for nearly a decade, an association between GBCA administration and the development of nephrogenic systemic fibrosis (NSF) has been recognized in patients with severe renal impairment. This has led to modifications in clinical practices aimed at reducing the potential and incidence of NSF development. Newer reports have emerged regarding the accumulation of gadolinium in various tissues of patients who do not have renal impairment, including bone, brain, and kidneys. Despite the observations of gadolinium accumulation in tissues regardless of renal function, very limited clinical data regarding the potential for and mechanisms of toxicity is available. This significant gap in knowledge warrants retrospective cohort study efforts, as well as prospective studies that involve gadolinium ion (Gd(3+)) testing in patients exposed to GBCA. This review examines the potential biochemical and molecular basis of gadolinium toxicity, possible clinical significance of gadolinium tissue retention and accumulation, and methods that can limit gadolinium body burden.

  18. XeBr excilamp based on a non-toxic component mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kelman, V A; Shpenik, Yu O; Zhmenyak, Yu V, E-mail: mironkle@rambler.ru [Institute of Electron Physics, National Academy of Sciences of Ukraine, Universitetska 21, 88017 Uzhgorod (Ukraine)

    2011-06-29

    This paper presents the results of experimental studies on obtaining UV luminescence of XeBr* molecules at the excitation of a non-toxic Xe-CsBr gas-vapour mixture by a longitudinal pulse-periodic discharge. Effective UV emission yield of the exciplex XeBr* molecules (spectral maximum at 282 nm) is observed within a wide range of excitation conditions. The spectral distribution in the UV emission under the optimal excitation conditions does not differ essentially from that in other XeBr excilamps based on toxic components. The emission of the B {yields} X band of the XeBr* molecules provides the main contribution to the total power of the discharge UV emission. The determined average power of the UV emission for the experimental discharge tube is 12 W at an efficiency of 1%. Spectral, power-related and time-dependent parameters of the laboratory excilamp are presented for a wide range of excitation parameters. A new mechanism of exciplex molecule formation at the excitation of a rare gas/alkali halide vapour mixture is discussed.

  19. XeBr excilamp based on a non-toxic component mixture

    International Nuclear Information System (INIS)

    Kelman, V A; Shpenik, Yu O; Zhmenyak, Yu V

    2011-01-01

    This paper presents the results of experimental studies on obtaining UV luminescence of XeBr* molecules at the excitation of a non-toxic Xe-CsBr gas-vapour mixture by a longitudinal pulse-periodic discharge. Effective UV emission yield of the exciplex XeBr* molecules (spectral maximum at 282 nm) is observed within a wide range of excitation conditions. The spectral distribution in the UV emission under the optimal excitation conditions does not differ essentially from that in other XeBr excilamps based on toxic components. The emission of the B → X band of the XeBr* molecules provides the main contribution to the total power of the discharge UV emission. The determined average power of the UV emission for the experimental discharge tube is 12 W at an efficiency of 1%. Spectral, power-related and time-dependent parameters of the laboratory excilamp are presented for a wide range of excitation parameters. A new mechanism of exciplex molecule formation at the excitation of a rare gas/alkali halide vapour mixture is discussed.

  20. Metal and proton toxicity to lake zooplankton: A chemical speciation based modelling approach

    International Nuclear Information System (INIS)

    Stockdale, Anthony; Tipping, Edward; Lofts, Stephen; Fott, Jan; Garmo, Øyvind A.; Hruska, Jakub; Keller, Bill; Löfgren, Stefan; Maberly, Stephen C.; Majer, Vladimir; Nierzwicki-Bauer, Sandra A.; Persson, Gunnar; Schartau, Ann-Kristin; Thackeray, Stephen J.

    2014-01-01

    The WHAM-F TOX model quantifies the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (F TOX ), a linear combination of the products of organism-bound cation and a toxic potency coefficient for each cation. We describe the application of the model to predict an observable ecological field variable, species richness of pelagic lake crustacean zooplankton, studied with respect to either acidification or the impacts of metals from smelters. The fitted results give toxic potencies increasing in the order H + TOX to relate combined toxic effects of protons and metal cations towards lake crustacean zooplankton. • The fitted results give toxic potencies increasing in the order H + TOX model has been applied to field data for pelagic lake crustacean zooplankton. The fitted results give metal toxic potencies increasing in the order H + < Al < Cu < Zn < Ni

  1. Analysis of cell death inducing compounds

    DEFF Research Database (Denmark)

    Spicker, Jeppe; Pedersen, Henrik Toft; Nielsen, Henrik Bjørn

    2007-01-01

    Biomarkers for early detection of toxicity hold the promise of improving the failure rates in drug development. In the present study, gene expression levels were measured using full-genome RAE230 version 2 Affymetrix GeneChips on rat liver tissue 48 h after administration of six different compounds......), ornithine aminotransferase (OAT) and Cytochrome P450, subfamily IIC (mephenytoin 4-hydroxylase) (Cyp2C29). RT-PCR for these three genes was performed and four additional compounds were included for validation. The quantitative RT-PCR analysis confirmed the findings based on the microarray data and using...... the three genes a classification rate of 55 of 57 samples was achieved for the classification of not toxic versus toxic. The single most promising biomarker (OAT) alone resulted in a surprisingly 100% correctly classified samples. OAT has not previously been linked to toxicity and cell death...

  2. Body Composition as a Predictor of Toxicity in Patients Receiving Anthracycline and Taxane Based Chemotherapy for Early Stage Breast Cancer

    Science.gov (United States)

    Shachar, Shlomit Strulov; Deal, Allison M.; Weinberg, Marc; Williams, Grant R.; Nyrop, Kirsten A.; Popuri, Karteek; Choi, Seul Ki; Muss, Hyman B.

    2017-01-01

    Purpose Poor body composition metrics (BCM) are associated with inferior cancer outcomes; however, in early breast cancer (EBC) there is a paucity of evidence regarding BCM’s impact on toxicities. This study investigates associations between BCM and treatment-related toxicity in EBC patients receiving anthracyclines-taxane based chemotherapy. Experimental Design Pretreatment computerized tomography (CT) images were evaluated for skeletal muscle area (SMA), density (SMD), and fat tissue at the 3rd lumbar vertebrae. Skeletal muscle index (SMI) (SMA/height2) and skeletal muscle gauge (SMG=SMI x SMD) were also calculated. Relative risks (RR) are reported for associations between body composition measures and toxicity outcomes, after adjustment for age and body surface area (BSA). Results BCM were calculated for 151 patients with EBC (median age 49, range 23 to 75). Fifty patients (33%) developed grade 3 or 4 toxicity, which was significantly higher in those with low SMI (RR=1.29, p=0.002), low SMG (RR=1.09, p=0.01), and low LBM (RR=1.48, p=.002). ROC analysis showed the SMG measure to be the best predictor of grade 3 and 4 toxicity. Dividing SMG into tertiles showed toxicity rates of 46%, and 22% for lowest versus highest tertile, respectively (p=0.005). After adjusting for age and BSA, low SMG (<1475 units) was significantly associated with hematological (RR=2.12, p=0.02), gastrointestinal grade 3–4 toxicities (RR=6.49, p=0.02), and hospitalizations (RR=1.91, p=0.05). Conclusions Poor BCM are significantly associated with increased treatment-related toxicities. Further studies are needed to investigate how these metrics can be used to more precisely dose chemotherapy to reduce treatment related toxicity while maintaining efficacy. PMID:28143874

  3. Acute toxicity of ingested fluoride.

    Science.gov (United States)

    Whitford, Gary Milton

    2011-01-01

    This chapter discusses the characteristics and treatment of acute fluoride toxicity as well as the most common sources of overexposure, the doses that cause acute toxicity, and factors that can influence the clinical outcome. Cases of serious systemic toxicity and fatalities due to acute exposures are now rare, but overexposures causing toxic signs and symptoms are not. The clinical course of systemic toxicity from ingested fluoride begins with gastric signs and symptoms, and can develop with alarming rapidity. Treatment involves minimizing absorption by administering a solution containing calcium, monitoring and managing plasma calcium and potassium concentrations, acid-base status, and supporting vital functions. Approximately 30,000 calls to US poison control centers concerning acute exposures in children are made each year, most of which involve temporary gastrointestinal effects, but others require medical treatment. The most common sources of acute overexposures today are dental products - particularly dentifrices because of their relatively high fluoride concentrations, pleasant flavors, and their presence in non-secure locations in most homes. For example, ingestion of only 1.8 ounces of a standard fluoridated dentifrice (900-1,100 mg/kg) by a 10-kg child delivers enough fluoride to reach the 'probably toxic dose' (5 mg/kg body weight). Factors that may influence the clinical course of an overexposure include the chemical compound (e.g. NaF, MFP, etc.), the age and acid-base status of the individual, and the elapsed time between exposure and the initiation of treatment. While fluoride has well-established beneficial dental effects and cases of serious toxicity are now rare, the potential for toxicity requires that fluoride-containing materials be handled and stored with the respect they deserve. Copyright © 2011 S. Karger AG, Basel.

  4. Multi-view 3D echocardiography compounding based on feature consistency

    Science.gov (United States)

    Yao, Cheng; Simpson, John M.; Schaeffter, Tobias; Penney, Graeme P.

    2011-09-01

    Echocardiography (echo) is a widely available method to obtain images of the heart; however, echo can suffer due to the presence of artefacts, high noise and a restricted field of view. One method to overcome these limitations is to use multiple images, using the 'best' parts from each image to produce a higher quality 'compounded' image. This paper describes our compounding algorithm which specifically aims to reduce the effect of echo artefacts as well as improving the signal-to-noise ratio, contrast and extending the field of view. Our method weights image information based on a local feature coherence/consistency between all the overlapping images. Validation has been carried out using phantom, volunteer and patient datasets consisting of up to ten multi-view 3D images. Multiple sets of phantom images were acquired, some directly from the phantom surface, and others by imaging through hard and soft tissue mimicking material to degrade the image quality. Our compounding method is compared to the original, uncompounded echocardiography images, and to two basic statistical compounding methods (mean and maximum). Results show that our method is able to take a set of ten images, degraded by soft and hard tissue artefacts, and produce a compounded image of equivalent quality to images acquired directly from the phantom. Our method on phantom, volunteer and patient data achieves almost the same signal-to-noise improvement as the mean method, while simultaneously almost achieving the same contrast improvement as the maximum method. We show a statistically significant improvement in image quality by using an increased number of images (ten compared to five), and visual inspection studies by three clinicians showed very strong preference for our compounded volumes in terms of overall high image quality, large field of view, high endocardial border definition and low cavity noise.

  5. Multi-view 3D echocardiography compounding based on feature consistency

    International Nuclear Information System (INIS)

    Yao Cheng; Schaeffter, Tobias; Penney, Graeme P; Simpson, John M

    2011-01-01

    Echocardiography (echo) is a widely available method to obtain images of the heart; however, echo can suffer due to the presence of artefacts, high noise and a restricted field of view. One method to overcome these limitations is to use multiple images, using the 'best' parts from each image to produce a higher quality 'compounded' image. This paper describes our compounding algorithm which specifically aims to reduce the effect of echo artefacts as well as improving the signal-to-noise ratio, contrast and extending the field of view. Our method weights image information based on a local feature coherence/consistency between all the overlapping images. Validation has been carried out using phantom, volunteer and patient datasets consisting of up to ten multi-view 3D images. Multiple sets of phantom images were acquired, some directly from the phantom surface, and others by imaging through hard and soft tissue mimicking material to degrade the image quality. Our compounding method is compared to the original, uncompounded echocardiography images, and to two basic statistical compounding methods (mean and maximum). Results show that our method is able to take a set of ten images, degraded by soft and hard tissue artefacts, and produce a compounded image of equivalent quality to images acquired directly from the phantom. Our method on phantom, volunteer and patient data achieves almost the same signal-to-noise improvement as the mean method, while simultaneously almost achieving the same contrast improvement as the maximum method. We show a statistically significant improvement in image quality by using an increased number of images (ten compared to five), and visual inspection studies by three clinicians showed very strong preference for our compounded volumes in terms of overall high image quality, large field of view, high endocardial border definition and low cavity noise.

  6. A category approach to predicting the developmental (neuro) toxicity of organotin compounds: The value of the zebrafish (Danio rerio) embryotoxicity test (ZET)

    NARCIS (Netherlands)

    Beker van Woudenberg, A.; Wolterbeek, A.; Brake, L. te; Snel, C.; Menke, A.; Rubingh, C.; Groot, D. de; Kroese, D.

    2013-01-01

    Zebrafish embryos were exposed to different organotin compounds during very early development (<100. h post fertilization). Morphology, histopathology and swimming activity (in a motor activity test) were the endpoints analyzed. DBTC was, by far, the most embryotoxic compound at all time points and

  7. The radiation chemistry of the purine bases within DNA and related model compounds

    International Nuclear Information System (INIS)

    Cadet, J.; Berger, M.; Shaw, A.

    1986-01-01

    Both the direct and indirect effects of ionizing radiations are believed to contribute to the chemical changes induced in cellular DNA. Relevant information on the possible degradation pathways has been provided by studies using DNA model compounds, the major proportion of which have focused on pyrimidine components and sugar derivatives. With the development of powerful analytical tools such as high performance liquid chromatography and soft ionization mass spectrometry techniques, progress has recently been made in the elucidation of the nature of the radiation-induced chemical modifications of purine bases in DNA and related nucleosides and nucleotides. This short review details recent aspects of the radiation-induced degradation of adenine and guanine bases in DNA and its model compounds as the result of both direct and indirect effects. 11 refs., 2 figs., 1 tab

  8. Methylene-Cycloalkylacetate (MCA) Scaffold-Based Compounds as Novel Neurotropic Agents.

    Science.gov (United States)

    Lankri, David; Haham, Dikla; Lahiani, Adi; Lazarovici, Philip; Tsvelikhovsky, Dmitry

    2018-04-18

    One of the main symptoms in degenerative diseases is death of neuronal cell followed by the loss of neuronal pathways. In neuronal cultures, neurite outgrowths are cell sprouts capable of transforming into either axons or dendrites, to further form functional neuronal synaptic connections. Such connections have an important role in brain cognition, neuronal plasticity, neuronal survival, and regeneration. Therefore, drugs that stimulate neurite outgrowth may be found beneficial in ameliorating neural degeneration. Here, we establish the existence of a unique family of methylene-cycloalkylacetate-based molecules (MCAs) that interface with neuronal cell properties and operate as acceptable pharmacophores for a novel neurotropic (neurite outgrowth inducing) lead compounds. Using an established PC12 cell bioassay, we investigated the neurotropic effect of methylene-cycloalkylacetate compounds by comparison to NGF, a known neurotropic factor. Micrographs of the cells were collected by using a light microscope camera, and digitized photographs were analyzed for compound-induced neurotropic activity using an NIH image protocol. The results indicate that the alkene element, integrated within the cycloalkylacetate core, is indispensable for neurotropic activity. The discovered lead compounds need further mechanistic investigation and may be improved toward development of a neurotropic drug.

  9. Development of fluorescence imaging-based assay for screening cardioprotective compounds from medicinal plants.

    Science.gov (United States)

    Wang, Yi; Zhao, Xiaoping; Gao, Xiumei; Nie, Xiaojing; Yang, Yingxin; Fan, Xiaohui

    2011-09-19

    Medicinal plants have been widely recognized as a renewable resource for the discovery of novel leads and drug. In this study, an approach for screening and identification compounds with cardioprotective activity from medicinal plant extracts by cellular-fluorescence imaging technique was developed. It is a cell-based assay for measuring mitochondrial membrane potential changes in H9c2 cardiac muscle cells exposed to H(2)O(2) by using a fluorescence automatic microscopy screening platform. Rhodamine 123 was used as the fluorescent dye to indicate the change of mitochondrial membrane potential. The sensitivity and linear range of the proposed approach were evaluated and validated using vitamin C, an antioxidative compound. The method was applied to screen active components with potent cardioprotective effects from a traditional Chinese formula. The potential cardioprotective components were identified by liquid chromatography coupled with mass spectrometry (LC/MS). Moreover, the utility of the proposed approach was further validated by three compounds (salvianolic acid B, protocatechuic aldehyde, and tanshinone II A) identified from the formula which showed cardioprotective effects in a dose-dependent manner. These applications suggested that the proposed rapid and sensitive screening approach offers an efficient way to discover active components or compounds from medicinal plants. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database.

    Science.gov (United States)

    Mangal, Manu; Sagar, Parul; Singh, Harinder; Raghava, Gajendra P S; Agarwal, Subhash M

    2013-01-01

    Plant-derived molecules have been highly valued by biomedical researchers and pharmaceutical companies for developing drugs, as they are thought to be optimized during evolution. Therefore, we have collected and compiled a central resource Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database (NPACT, http://crdd.osdd.net/raghava/npact/) that gathers the information related to experimentally validated plant-derived natural compounds exhibiting anti-cancerous activity (in vitro and in vivo), to complement the other databases. It currently contains 1574 compound entries, and each record provides information on their structure, manually curated published data on in vitro and in vivo experiments along with reference for users referral, inhibitory values (IC(50)/ED(50)/EC(50)/GI(50)), properties (physical, elemental and topological), cancer types, cell lines, protein targets, commercial suppliers and drug likeness of compounds. NPACT can easily be browsed or queried using various options, and an online similarity tool has also been made available. Further, to facilitate retrieval of existing data, each record is hyperlinked to similar databases like SuperNatural, Herbal Ingredients' Targets, Comparative Toxicogenomics Database, PubChem and NCI-60 GI(50) data.

  11. Assessment of combinations of antiandrogenic compounds vinclozolin and flutamide in a yeast based reporter assay.

    Science.gov (United States)

    Kolle, Susanne N; Melching-Kollmuss, Stephanie; Krennrich, Gerhard; Landsiedel, Robert; van Ravenzwaay, Bennard

    2011-08-01

    Humans are exposed to a combination of various substances such as cosmetic ingredients, drugs, biocides, pesticides and natural-occurring substances in food. The combined toxicological effects of two or more substances can simply be additive on the basis of response-addition, or it can be greater (synergistic) or smaller (antagonistic) than this. The need to assess combined effects of compounds with endocrine activity is currently discussed for regulatory risk assessment. We have used a well described yeast based androgen receptor transactivation assay YAS to assess the combinatorial effects of vinclozolin and flutamide; both mediating antiandrogenicity via the androgen receptor. Both vinclozolin and flutamide were antiandrogens of similar potency in the YAS assay. In the concentration range tested the two antiandrogens vinclozolin and flutamide did not act synergistically. Concentration additivity was observed in the linear, non-receptor-saturated concentration range. At high concentrations of one of the two substances tested the contribution of the second at lower concentration levels was less than additive. The combined response of both compounds at high concentration levels was also less than additive (saturation effect). At concentration levels which did not elicit a response of the individual compounds, the combination of these compounds also did not elicit a response. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database

    Science.gov (United States)

    Mangal, Manu; Sagar, Parul; Singh, Harinder; Raghava, Gajendra P. S.; Agarwal, Subhash M.

    2013-01-01

    Plant-derived molecules have been highly valued by biomedical researchers and pharmaceutical companies for developing drugs, as they are thought to be optimized during evolution. Therefore, we have collected and compiled a central resource Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database (NPACT, http://crdd.osdd.net/raghava/npact/) that gathers the information related to experimentally validated plant-derived natural compounds exhibiting anti-cancerous activity (in vitro and in vivo), to complement the other databases. It currently contains 1574 compound entries, and each record provides information on their structure, manually curated published data on in vitro and in vivo experiments along with reference for users referral, inhibitory values (IC50/ED50/EC50/GI50), properties (physical, elemental and topological), cancer types, cell lines, protein targets, commercial suppliers and drug likeness of compounds. NPACT can easily be browsed or queried using various options, and an online similarity tool has also been made available. Further, to facilitate retrieval of existing data, each record is hyperlinked to similar databases like SuperNatural, Herbal Ingredients’ Targets, Comparative Toxicogenomics Database, PubChem and NCI-60 GI50 data. PMID:23203877

  13. An alkali ion source based on graphite intercalation compounds for ion mobility spectrometry

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud; Hosseini, Zahra S

    2008-01-01

    A variety of alkali cation emitters were developed as the ion source for ion mobility spectrometry. The cation emitters were constructed based on alkali ion graphite intercalation compounds (GICs). The compounds were prepared by fusing alkali salts with ground graphite. In order to produce alkali ions, the compounds were loaded on a filament and heated to red. Reactant ions of the form alk + ions were observed for the alkali salts NaCl, KCl.LiCl, CsCl and SrCl. In addition to Na + ions, K + ions were observed at the beginning of thermionic emission from Na-GIC. This is due to the low ionization potential of potassium that exists in trace amounts in sodium salts. In addition to the potassium ion, Na + was observed in the case of LiCl salt. The Na + and K + peaks originating from impurities totally disappeared after about 40 min. However, the thermionic emission of the main ion of the corresponding salt lasted for several days. No negative ions were observed upon reversing the drift field. Selected organic compounds (methyl isobutyl ketone, dimethyl sulfoxide, acetone and tetrahydrofuran) were also ionized via alkali cation attachment reaction. Distinct ion mobility patterns were observed for different substances using one type of alkali reactant ion. However, the ion mobility pattern for a given substance changed when a different alkali reactant ion was used. Ammonia and amines were not ionized when this source was used

  14. O-methylation of natural phenolic compounds based on green chemistry using dimethyl carbonate

    Science.gov (United States)

    Prakoso, N. I.; Pangestu, P. H.; Wahyuningsih, T. D.

    2016-02-01

    The alkyl aryl ether compounds, of which methyl eugenol and veratraldehyde are the simplest intermediates can be synthesized by reacting eugenol and vanillin with the green reagent dimethyl carbonate (DMC). The reaction was carried out under mild of temperature and pressure. Excellent yields and selective products were obtained (95-96%) after a few hours. In the end of the reaction, the catalysts (base and Phase Transfer Catalyst) can be recovered and regenerated.

  15. Stochastic Interest Model Based on Compound Poisson Process and Applications in Actuarial Science

    OpenAIRE

    Li, Shilong; Yin, Chuancun; Zhao, Xia; Dai, Hongshuai

    2017-01-01

    Considering stochastic behavior of interest rates in financial market, we construct a new class of interest models based on compound Poisson process. Different from the references, this paper describes the randomness of interest rates by modeling the force of interest with Poisson random jumps directly. To solve the problem in calculation of accumulated interest force function, one important integral technique is employed. And a conception called the critical value is introduced to investigat...

  16. Standard Test Method for Preparing Aircraft Cleaning Compounds, Liquid Type, Water Base, for Storage Stability Testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers the determination of the stability in storage, of liquid, water-base chemical cleaning compounds, used to clean the exterior surfaces of aircraft. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  17. Molecular docking, QSAR and ADMET based mining of natural compounds against prime targets of HIV.

    Science.gov (United States)

    Vora, Jaykant; Patel, Shivani; Sinha, Sonam; Sharma, Sonal; Srivastava, Anshu; Chhabria, Mahesh; Shrivastava, Neeta

    2018-01-07

    AIDS is one of the multifaceted diseases and this underlying complexity hampers its complete cure. The toxicity of existing drugs and emergence of multidrug-resistant virus makes the treatment worse. Development of effective, safe and low-cost anti-HIV drugs is among the top global priority. Exploration of natural resources may give ray of hope to develop new anti-HIV leads. Among the various therapeutic targets for HIV treatment, reverse transcriptase, protease, integrase, GP120, and ribonuclease are the prime focus. In the present study, we predicted potential plant-derived natural molecules for HIV treatment using computational approach, i.e. molecular docking, quantitative structure activity relationship (QSAR), and ADMET studies. Receptor-ligand binding studies were performed using three different software for precise prediction - Discovery studio 4.0, Schrodinger and Molegrow virtual docker. Docking scores revealed that Mulberrosides, Anolignans, Curcumin and Chebulic acid are promising candidates that bind with multi targets of HIV, while Neo-andrographolide, Nimbolide and Punigluconin were target-specific candidates. Subsequently, QSAR was performed using biologically proved compounds which predicted the biological activity of compounds. We identified Anolignans, Curcumin, Mulberrosides, Chebulic acid and Neo-andrographolide as potential natural molecules for HIV treatment from results of molecular docking and 3D-QSAR. In silico ADMET studies showed drug-likeness of these lead molecules. Structure similarities of identified lead molecules were compared with identified marketed drugs by superimposing both the molecules. Using in silico studies, we have identified few best fit molecules of natural origin against identified targets which may give new drugs to combat HIV infection after wet lab validation.

  18. Water-Based Automobile Paints Potentially Reduce the Exposure of Refinish Painters to Toxic Metals

    Directory of Open Access Journals (Sweden)

    Der-Jen Hsu

    2018-05-01

    Full Text Available Exposure to lead-containing dusts is a global public health concern. This work addresses an important issue of whether eco-friendly water-based paints reduce the exposure potential of auto-repainting workers to metals. With this aim, metal levels in automobile paints and worker metal exposure were measured using both solvent- and water-based paints. The levels of metals, and particularly Pb, Cr (total, Fe, and Cu, in solvent-based paints varied greatly among colors and brands. Lead concentrations ranged from below the detection limit (~0.25 μg/g to 107,928 μg/g (dry film across all samples. In water-based paints, the concentrations of Pb and Cr (total were generally two to three orders of magnitude lower, but the concentrations of Al and Cu exceeded those in some solvent-based paints. The personal short-term exposure of workers who applied water-based paints of popular colors, such as black and white, were generally low, with Pb levels of less than <4 µg/m3 and Cr (total levels of less than 1 µg/m3. Conversely, mean short-term exposure to Pb during the painting of a yellow cab using solvent-based paints were 2028 µg/m3, which was ~14 times the Taiwan short-term permissible exposure limit, while the mean level of exposure to Cr (total was 290 µg/m3, which was well below the exposure limit. This study demonstrates that water-based paints reduce the exposure potential to lead, and highlights the importance of source control in limiting the toxic metals in paints.

  19. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    Directory of Open Access Journals (Sweden)

    Bal-Ram Adhikari

    2015-09-01

    Full Text Available Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs, reduced graphene oxide (rGO, SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH, and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics.

  20. {sup 1}H NMR-based metabolomics reveals sub-lethal toxicity of a mixture of diabetic and lipid-regulating pharmaceuticals on amphibian larvae

    Energy Technology Data Exchange (ETDEWEB)

    Melvin, Steven D., E-mail: s.melvin@griffith.edu.au [Australian Rivers Institute, Griffith University, Southport, QLD 4222 (Australia); Habener, Leesa J. [Griffith School of Environment, Griffith University, Southport, QLD 4222 (Australia); Leusch, Frederic D.L. [Australian Rivers Institute, Griffith University, Southport, QLD 4222 (Australia); Griffith School of Environment, Griffith University, Southport, QLD 4222 (Australia); Carroll, Anthony R. [Griffith School of Environment, Griffith University, Southport, QLD 4222 (Australia)

    2017-03-15

    Highlights: • Pharmaceutical pollutants are a concern for eliciting adverse effects in wildlife. • Diabetes and lipid regulating drugs are widely used and poorly removed from sewage. • We explored the toxicity of a mixture of metformin, atorvastatin and bezafibrate on tadpoles. • Exposure caused increased growth and development but no effects on lipids or cholesterol. • {sup 1}H NMR-based metabolomics reveal increased lactic acid and BCAAs in exposed animals. - Abstract: Pharmaceuticals are widely used for the treatment of various physical and psychological ailments. Due to incomplete removal during sewage treatment many pharmaceuticals are frequently detected in aquatic waterways at trace concentrations. The diversity of pharmaceutical contaminants and potential for complex mixtures to occur makes it very difficult to predict the toxicity of these compounds on wildlife, and robust methods are therefore needed to explore sub-lethal effects. Metabolic syndrome is one of the most widespread health concerns currently facing the human population, and various drugs, including anti-diabetic medications and lipid- and cholesterol-lowering fibrates and statins, are widely prescribed as treatment. In this study, we exposed striped marsh frog (Limnodynastes peronii) tadpoles to a mixture of the drugs metformin, atorvastatin and bezafibrate at 0.5, 5, 50 and 500 μg/L to explore possible effects on growth and development, energy reserves (triglycerides and cholesterol), and profiles of small polar metabolites extracted from hepatic tissues. It was hypothesised that exposure would result in a general reduction in energy reserves, and that this would subsequently correspond with reduced growth and development. Responses differed from expected outcomes based on the known mechanisms of these compounds in humans, with no changes to hepatic triglycerides or cholesterol and a general increase in mass and condition with increasing exposure concentration. Deviation from the

  1. "1H NMR-based metabolomics reveals sub-lethal toxicity of a mixture of diabetic and lipid-regulating pharmaceuticals on amphibian larvae

    International Nuclear Information System (INIS)

    Melvin, Steven D.; Habener, Leesa J.; Leusch, Frederic D.L.; Carroll, Anthony R.

    2017-01-01

    Highlights: • Pharmaceutical pollutants are a concern for eliciting adverse effects in wildlife. • Diabetes and lipid regulating drugs are widely used and poorly removed from sewage. • We explored the toxicity of a mixture of metformin, atorvastatin and bezafibrate on tadpoles. • Exposure caused increased growth and development but no effects on lipids or cholesterol. • "1H NMR-based metabolomics reveal increased lactic acid and BCAAs in exposed animals. - Abstract: Pharmaceuticals are widely used for the treatment of various physical and psychological ailments. Due to incomplete removal during sewage treatment many pharmaceuticals are frequently detected in aquatic waterways at trace concentrations. The diversity of pharmaceutical contaminants and potential for complex mixtures to occur makes it very difficult to predict the toxicity of these compounds on wildlife, and robust methods are therefore needed to explore sub-lethal effects. Metabolic syndrome is one of the most widespread health concerns currently facing the human population, and various drugs, including anti-diabetic medications and lipid- and cholesterol-lowering fibrates and statins, are widely prescribed as treatment. In this study, we exposed striped marsh frog (Limnodynastes peronii) tadpoles to a mixture of the drugs metformin, atorvastatin and bezafibrate at 0.5, 5, 50 and 500 μg/L to explore possible effects on growth and development, energy reserves (triglycerides and cholesterol), and profiles of small polar metabolites extracted from hepatic tissues. It was hypothesised that exposure would result in a general reduction in energy reserves, and that this would subsequently correspond with reduced growth and development. Responses differed from expected outcomes based on the known mechanisms of these compounds in humans, with no changes to hepatic triglycerides or cholesterol and a general increase in mass and condition with increasing exposure concentration. Deviation from the

  2. A Comparative Study of the Eco toxicity of Palm-Based Methyl Ester Sulphonates (MES) to Tilapia and Daphnia magna

    International Nuclear Information System (INIS)

    Razmah, G.; Afida, I.S.; Zulina, A.M.; Noorazah, Z.; Hazimah, A.H.

    2016-01-01

    Methyl ester sulphonates (MES) is a surfactant derived from plant resources, suitable as active ingredient in detergents. MES possesses good surface-active properties, good detergency and tolerant to water hardness. In this study, the eco toxicity of MES was evaluated through the 48 hr Daphnia magna immobilisation test and the 96 hr fish acute toxicity test with Tilapia. MES samples with different alkyl chain lengths (C14, C16 and C16:18) produced by the Malaysian Palm Oil Board (MPOB) and commercial MES (C16:18) were tested. Results from all tests indicated that Daphnia was more sensitive to toxic effects from MES than was Tilapia. There is also significant difference in eco toxicity responses for palm-based MES of various chain lengths regardless of the species tested. The eco toxicity increased as the hydrophobicity of the MES increased due to increase of alkyl chain length. However, less than 30 % of MES is used in detergent products and will not pose environmental effects on aquatic organisms. MES is therefore suitable for environmental compatible cleaning products in view of its eco toxicity that is on par to the widely used anionic surfactants, such as linear alkylbenzene sulphonate (LAS). The use of MES in cleaning products may help the industry to fulfil its social responsibility to a cleaner and better environment. (author)

  3. Environmentally Friendly Procedure Based on Supercritical Fluid Chromatography and Tandem Mass Spectrometry Molecular Networking for the Discovery of Potent Antiviral Compounds from Euphorbia semiperfoliata.

    Science.gov (United States)

    Nothias, Louis-Félix; Boutet-Mercey, Stéphanie; Cachet, Xavier; De La Torre, Erick; Laboureur, Laurent; Gallard, Jean-François; Retailleau, Pascal; Brunelle, Alain; Dorrestein, Pieter C; Costa, Jean; Bedoya, Luis M; Roussi, Fanny; Leyssen, Pieter; Alcami, José; Paolini, Julien; Litaudon, Marc; Touboul, David

    2017-10-27

    A supercritical fluid chromatography-based targeted purification procedure using tandem mass spectrometry and molecular networking was developed to analyze, annotate, and isolate secondary metabolites from complex plant extract mixture. This approach was applied for the targeted isolation of new antiviral diterpene esters from Euphorbia semiperfoliata whole plant extract. The analysis of bioactive fractions revealed that unknown diterpene esters, including jatrophane esters and phorbol esters, were present in the samples. The purification procedure using semipreparative supercritical fluid chromatography led to the isolation and identification of two new jatrophane esters (13 and 14) and one known (15) and three new 4-deoxyphorbol esters (16-18). The structure and absolute configuration of compound 16 were confirmed by X-ray crystallography. This compound was found to display antiviral activity against Chikungunya virus (EC 50 = 0.45 μM), while compound 15 proved to be a potent and selective inhibitor of HIV-1 replication in a recombinant virus assay (EC 50 = 13 nM). This study showed that a supercritical fluid chromatography-based protocol and molecular networking can facilitate and accelerate the discovery of bioactive small molecules by targeting molecules of interest, while minimizing the use of toxic solvents.

  4. Standardization of Tragopogon graminifolius DC. Extract Based on Phenolic Compounds and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Mohammad Hosein Farzaei

    2014-01-01

    Full Text Available Tragopogon graminifolius DC. (TG, Compositae family, is traditionally used for the treatment of various diseases like gastrointestinal and hepatic disorders. The aim of the present study is to standardize extracts from TG used for preparation of different dosage forms in traditional Iranian medicine (TIM based on phenolic compounds. For this purpose, total phenolic content and some phenolic compounds were determined in ethanolic extracts from aerial part and root of TG by HPLC method. Furthermore, antioxidant activity was evaluated using DPPH-HPLC methods. Caffeic acid, gallic acid, ρ-coumaric acid, ferulic acid, and catechin were detected in root and aerial part of TG. ρ-Coumaric acid (6.357 ± 0.014 mg·g−1 was dominant phenolic compound in aerial part followed by ferulic acid (1.24 ± 0.018 mg·g−1. Also, ρ-coumaric acid (2.685 ± 0.031 mg·g−1 was highly abundant in root, followed by catechin (2.067 ± 0.021 mg·g−1. Antioxidant activity of root extract (460.45 ± 0.78 µg Vit.E.E·mL−1 was better than that of aerial part. Generally, phenolic compounds are one of the major constituents of TG and could be used as markers for standardization of dosage forms prepared from this plant. Also, TG demonstrated significant antioxidant activity using DPPH-HPLC method. Phenolic compounds of TG may be responsible for its marked antioxidant properties.

  5. Soil microbial toxicity of eight polycyclic aromatic compounds: effects on nitrification, the genetic diversity of bacteria, and the total number of protozoans

    DEFF Research Database (Denmark)

    Sverdrup, Line Emilie; Ekelund, Flemming; Krogh, Paul Henning

    2002-01-01

    mg/kg. For effects on nitrification, toxicity (NOEC values) expressed as soil pore-water concentrations (log10(micromol/L)) showed a significant inverse relationship with lipophilicity (log octanol-water partition coefficient) of the substances (r2 = 0.69, p = 0.011, n = 8). This finding could...

  6. Particle size distribution of aerosols sprayed from household hand-pump sprays containing fluorine-based and silicone-based compounds.

    Science.gov (United States)

    Kawakami, Tsuyoshi; Isama, Kazuo; Ikarashi, Yoshiaki

    2015-01-01

    Japan has published safety guideline on waterproof aerosol sprays. Furthermore, the Aerosol Industry Association of Japan has adopted voluntary regulations on waterproof aerosol sprays. Aerosol particles of diameter less than 10 µm are considered as "fine particles". In order to avoid acute lung injury, this size fraction should account for less than 0.6% of the sprayed aerosol particles. In contrast, the particle size distribution of aerosols released by hand-pump sprays containing fluorine-based or silicone-based compounds have not been investigated in Japan. Thus, the present study investigated the aerosol particle size distribution of 16 household hand-pump sprays. In 4 samples, the ratio of fine particles in aerosols exceeded 0.6%. This study confirmed that several hand-pump sprays available in the Japanese market can spray fine particles. Since the hand-pump sprays use water as a solvent and their ingredients may be more hydrophilic than those of aerosol sprays, the concepts related to the safety of aerosol-sprays do not apply to the hand pump sprays. Therefore, it may be required for the hand-pump spray to develop a suitable method for evaluating the toxicity and to establish the safety guideline.

  7. An exposure-based framework for grouping pollutants for a cumulative risk assessment approach: case study of indoor semi-volatile organic compounds.

    Science.gov (United States)

    Fournier, Kevin; Glorennec, Philippe; Bonvallot, Nathalie

    2014-04-01

    Humans are exposed to a large number of contaminants, many of which may have similar health effects. This paper presents a framework for identifying pollutants to be included in a cumulative risk assessment approach. To account for the possibility of simultaneous exposure to chemicals with common toxic modes of action, the first step of the traditional risk assessment process, i.e. hazard identification, is structured in three sub-steps: (1a) Identification of pollutants people are exposed to, (1b) identification of effects and mechanisms of action of these pollutants, (1c) grouping of pollutants according to similarity of their mechanism of action and health effects. Based on this exposure-based grouping we can derive "multi-pollutant" toxicity reference values, in the "dose-response assessment" step. The approach proposed in this work is original in that it is based on real exposures instead of a limited number of pollutants from a unique chemical family, as traditionally performed. This framework is illustrated by the case study of semi-volatile organic compounds in French dwellings, providing insights into practical considerations regarding the accuracy of the available toxicological information. This case study illustrates the value of the exposure-based approach as opposed to the traditional cumulative framework, in which chemicals with similar health effects were not always included in the same chemical class. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Predictive factors for gastroduodenal toxicity based on endoscopy following radiotherapy in patients with hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, H. [Sungkyunkwan Univ., Seoul (Korea, Republic of). Dept. of Health Sciences and Technology; Oh, D.; Park, H.C.; Han, Y.; Lim, D.H. [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of). Dept. of Radiation Oncology; Kang, S.W. [Korea Univ., Seoul (Korea, Republic of). Dept. of Radiologic Science; Paik, S.W. [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of). Dept. of Medicine

    2013-07-15

    Purpose: The aim of this work was to determine predictive factors for gastroduodenal (GD) toxicity in hepatocellular carcinoma (HCC) patients who were treated with radiotherapy (RT). Patients and methods: A total of 90 HCC patients who underwent esophagogastroduodenoscopy (EGD) before and after RT were enrolled. RT was delivered as 30-50 Gy (median 37.5 Gy) in 2-5 Gy (median 3.5 Gy) per fraction. All endoscopic findings were reviewed and GD toxicities related to RT were graded by the Common Toxicity Criteria for Adverse Events, version 3.0. The predictive factors for the {>=} grade 2 GD toxicity were investigated. Results: Endoscopic findings showed erosive gastritis in 14 patients (16 %), gastric ulcers in 8 patients (9 %), erosive duodenitis in 15 patients (17 %), and duodenal ulcers in 14 patients (16 %). Grade 2 toxicity developed in 19 patients (21 %) and grade 3 toxicity developed in 8 patients (9 %). V{sub 25} for stomach and V{sub 35} for duodenum (volume receiving a RT dose of more than x Gy) were the most predictive factors for {>=} grade 2 toxicity. The gastric toxicity rate at 6 months was 2.9 % for V{sub 25} {<=} 6.3 % and 57.1 % for V{sub 25} > 6.3 %. The duodenal toxicity rate at 6 months was 9.4 % for V{sub 35} > 5.4 % and 45.9 % for V{sub 35} > 5.4 %. By multivariate analysis including the clinical factors, V{sub 25} for stomach and V{sub 35} for duodenum were the significant factors. Conclusion: EGD revealed that GD toxicity is common following RT for HCC. V{sub 25} for the stomach and V{sub 35} for the duodenum were the significant factors to predict {>=} grade 2 GD toxicity. (orig.)

  9. Evaluation of toxicity to the biological treatment and removal of recalcitrant organic compounds from oil refineries wastewaters; Avaliacao da toxicidade ao tratamento biologico e remocao de compostos organicos recalcitrantes existentes em efluentes de refinarias de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Barros Junior, Laerte M.; Macedo, Gorete R.; Bezerra, Marcio S.; Pereira, Franklin M.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica; Schmidell, Willibaldo [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2004-07-01

    Oil industry waste water usually contains recalcitrant chemical compounds, like phenol, benzene, toluene, xylene, naphthalene and acenaphthene. The respirometry, determination of respiration rate of an active biomass, is an adequate methodology for quantification of aerobic activity biological. This study aims evaluate the inhibition effect of phenol in the oxidation capacity of an industrial sludge. This work also intends to study the phenol removal through biological and photochemical-biological processes. The respirometry was carried out with synthetic solution, using sludge from an oil processing industry. The phenol degradation experiments were carried out in an activated sludge unit and in a photochemical reactor. This work suggests the potential of photochemical-biological treatment use, in relation to the biological process with a no-acclimated sludge, in the removal of refractory organic compounds from oil industry wastewaters. The characterization of biomass using the respirometry methodology showed which is a useful tool in evaluation of phenol toxicity to biological treatment. (author)

  10. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    Science.gov (United States)

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed. PMID:27306095

  11. USING H.264/AVC-INTRA FOR DCT BASED SEGMENTATION DRIVEN COMPOUND IMAGE COMPRESSION

    Directory of Open Access Journals (Sweden)

    S. Ebenezer Juliet

    2011-08-01

    Full Text Available This paper presents a one pass block classification algorithm for efficient coding of compound images which consists of multimedia elements like text, graphics and natural images. The objective is to minimize the loss of visual quality of text during compression by separating text information which needs high special resolution than the pictures and background. It segments computer screen images into text/graphics and picture/background classes based on DCT energy in each 4x4 block, and then compresses both text/graphics pixels and picture/background blocks by H.264/AVC with variable quantization parameter. Experimental results show that the single H.264/AVC-INTRA coder with variable quantization outperforms single coders such as JPEG, JPEG-2000 for compound images. Also the proposed method improves the PSNR value significantly than standard JPEG, JPEG-2000 and while keeping competitive compression ratios.

  12. Gold-Catalyzed Cyclizations of Alkynol-Based Compounds: Synthesis of Natural Products and Derivatives

    Directory of Open Access Journals (Sweden)

    Pedro Almendros

    2011-09-01

    Full Text Available The last decade has witnessed dramatic growth in the number of reactions catalyzed by gold complexes because of their powerful soft Lewis acid nature. In particular, the gold-catalyzed activation of propargylic compounds has progressively emerged in recent years. Some of these gold-catalyzed reactions in alkynes have been optimized and show significant utility in organic synthesis. Thus, apart from significant methodology work, in the meantime gold-catalyzed cyclizations in alkynol derivatives have become an efficient tool in total synthesis. However, there is a lack of specific review articles covering the joined importance of both gold salts and alkynol-based compounds for the synthesis of natural products and derivatives. The aim of this Review is to survey the chemistry of alkynol derivatives under gold-catalyzed cyclization conditions and its utility in total synthesis, concentrating on the advances that have been made in the last decade, and in particular in the last quinquennium.

  13. 1H NMR-based serum metabolomics reveals erythromycin-induced liver toxicity in albino Wistar rats

    Directory of Open Access Journals (Sweden)

    Atul Rawat

    2016-01-01

    Full Text Available Introduction: Erythromycin (ERY is known to induce hepatic toxicity which mimics other liver diseases. Thus, ERY is often used to produce experimental models of drug-induced liver-toxicity. The serum metabolic profiles can be used to evaluate the liver-toxicity and to further improve the understanding of underlying mechanism. Objective: To establish the serum metabolic patterns of Erythromycin induced hepatotoxicity in albino wistar rats using 1H NMR based serum metabolomics. Experimental: Fourteen male rats were randomly divided into two groups (n = 7 in each group: control and ERY treated. After 28 days of intervention, the metabolic profiles of sera obtained from ERY and control groups were analyzed using high-resolution 1D 1H CPMG and diffusion-edited nuclear magnetic resonance (NMR spectra. The histopathological and SEM examinations were employed to evaluate the liver toxicity in ERY treated group. Results: The serum metabolic profiles of control and ERY treated rats were compared using multivariate statistical analysis and the metabolic patterns specific to ERY-induced liver toxicity were established. The toxic response of ERY was characterized with: (a increased serum levels of Glucose, glutamine, dimethylamine, malonate, choline, phosphocholine and phospholipids and (b decreased levels of isoleucine, leucine, valine, alanine, glutamate, citrate, glycerol, lactate, threonine, circulating lipoproteins, N-acetyl glycoproteins, and poly-unsaturated lipids. These metabolic alterations were found to be associated with (a decreased TCA cycle activity and enhanced fatty acid oxidation, (b dysfunction of lipid and amino acid metabolism and (c oxidative stress. Conclusion and Recommendations: Erythromycin is often used to produce experimental models of liver toxicity; therefore, the established NMR-based metabolic patterns will form the basis for future studies aiming to evaluate the efficacy of anti-hepatotoxic agents or the hepatotoxicity of new

  14. Leaching characteristics of calcium-based compounds in MSWI Residues: From the viewpoint of clogging risk

    International Nuclear Information System (INIS)

    Xia, Yi; Zhang, Hua; Phoungthong, Khamphe; Shi, Dong-Xiao; Shen, Wen-Hui; Shao, Li-Ming; He, Pin-Jing

    2015-01-01

    Highlights: • The leaching behavior of Ca-based compounds commonly in MSWI residues was studied. • pH is the crucial factor for calcium leaching process. • CaCO 3 was the most sensitive to leaching temperature and Ca 3 (PO 4 ) 2 was the least. • Ca leaching of MSWIBA and SAPCR attributed to CaCO 3 and Ca 3 (PO 4 ) 2 respectively. • Potential clogging ability of MSWI residues leachate in open air was calculated. - Abstract: Leachate collection system (LCS) clogging caused by calcium precipitation would be disadvantageous to landfill stability and operation. Meanwhile, calcium-based compounds are the main constituents in both municipal solid waste incineration bottom ash (MSWIBA) and stabilized air pollution control residues (SAPCR), which would increase the risk of LCS clogging once these calcium-rich residues were disposed in landfills. The leaching behaviors of calcium from the four compounds and municipal solid waste incineration (MSWI) residues were studied, and the influencing factors on leaching were discussed. The results showed that pH was the crucial factor in the calcium leaching process. CaCO 3 and CaSiO 3 began leaching when the leachate pH decreased to less than 7 and 10, respectively, while Ca 3 (PO 4 ) 2 leached at pH < 12. CaSO 4 could hardly dissolve in the experimental conditions. Moreover, the sequence of the leaching rate for the different calcium-based compounds is as follows: CaSiO 3 > Ca 3 (PO 4 ) 2 > CaCO 3 . The calcium leaching from the MSWIBA and SAPCR separately started from pH < 7 and pH < 12, resulting from CaCO 3 and Ca 3 (PO 4 ) 2 leaching respectively, which was proven by the X-ray diffraction results. Based on the leaching characteristics of the different calcium compounds and the mineral phase of calcium in the incineration residues, simulated computation of their clogging potential was conducted, providing the theoretical basis for the risk assessment pertaining to LCS clogging in landfills

  15. Leaching characteristics of calcium-based compounds in MSWI Residues: From the viewpoint of clogging risk

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yi [State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092 (China); Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092 (China); Zhang, Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092 (China); Phoungthong, Khamphe [State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092 (China); Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092 (China); Shi, Dong-Xiao; Shen, Wen-Hui [Changzhou Domestic Waste Treatment Center, Changzhou 213000 (China); Shao, Li-Ming [Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092 (China); Center for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban–Rural Development of PR China (MOHURD), Shanghai 200092 (China); He, Pin-Jing, E-mail: solidwaste@tongji.edu.cn [Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092 (China); Center for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban–Rural Development of PR China (MOHURD), Shanghai 200092 (China)

    2015-08-15

    Highlights: • The leaching behavior of Ca-based compounds commonly in MSWI residues was studied. • pH is the crucial factor for calcium leaching process. • CaCO{sub 3} was the most sensitive to leaching temperature and Ca{sub 3}(PO{sub 4}){sub 2} was the least. • Ca leaching of MSWIBA and SAPCR attributed to CaCO{sub 3} and Ca{sub 3}(PO{sub 4}){sub 2} respectively. • Potential clogging ability of MSWI residues leachate in open air was calculated. - Abstract: Leachate collection system (LCS) clogging caused by calcium precipitation would be disadvantageous to landfill stability and operation. Meanwhile, calcium-based compounds are the main constituents in both municipal solid waste incineration bottom ash (MSWIBA) and stabilized air pollution control residues (SAPCR), which would increase the risk of LCS clogging once these calcium-rich residues were disposed in landfills. The leaching behaviors of calcium from the four compounds and municipal solid waste incineration (MSWI) residues were studied, and the influencing factors on leaching were discussed. The results showed that pH was the crucial factor in the calcium leaching process. CaCO{sub 3} and CaSiO{sub 3} began leaching when the leachate pH decreased to less than 7 and 10, respectively, while Ca{sub 3}(PO{sub 4}){sub 2} leached at pH < 12. CaSO{sub 4} could hardly dissolve in the experimental conditions. Moreover, the sequence of the leaching rate for the different calcium-based compounds is as follows: CaSiO{sub 3} > Ca{sub 3}(PO{sub 4}){sub 2} > CaCO{sub 3}. The calcium leaching from the MSWIBA and SAPCR separately started from pH < 7 and pH < 12, resulting from CaCO{sub 3} and Ca{sub 3}(PO{sub 4}){sub 2} leaching respectively, which was proven by the X-ray diffraction results. Based on the leaching characteristics of the different calcium compounds and the mineral phase of calcium in the incineration residues, simulated computation of their clogging potential was conducted, providing the

  16. Where does the toxicity come from in saponin extract?

    Science.gov (United States)

    Jiang, Xiaogang; Cao, Yi; Jørgensen, Louise von Gersdorff; Strobel, Bjarne W; Hansen, Hans Chr Bruun; Cedergreen, Nina

    2018-08-01

    Saponin-rich plant extracts contain bioactive natural compounds and have many applications, e.g. as biopesticides and biosurfactants. The composition of saponin-rich plant extracts is very diverse, making environmental monitoring difficult. In this study various ecotoxicity data as well as exposure data have been collected to explore which compounds in the plant extract are relevant as plant protection agents and furthermore to clarify which compounds may cause undesired side-effects due to their toxicity. Hence, we quantified the toxicity of different fractions (saponins/non-saponins) in the plant extracts on the aquatic crustacean Daphnia magna and zebrafish (Danio rerio) embryos. In addition, we tested the toxicity changes during saponin degradation as well. The results confirm that saponins are responsible for the majority of toxicity (85.1-93.6%) of Quillaja saponaria extract. We, therefore, suggest saponins to be the main target of saponin-rich plant extracts, for instance in the saponin-based biopesticide regulation. Furthermore, we suggest that an abundant saponin fraction, QS-18 from Q. saponaria, can be a key monitoring target to represent the environmental concentration of the saponins, as it contributes with 26% and 61% of the joint toxicity to D. magna and D. rerio, respectively out of the total saponins. The degradation products of saponins are 3-7 times less toxic than the parent compound; therefore the focus should be mainly on the parent compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Potent antifouling compounds produced by marine Streptomyces

    KAUST Repository

    Xu, Ying

    2010-02-01

    Biofouling causes huge economic loss and a recent global ban on organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. Five structurally similar compounds were isolated from the crude extract of a marine Streptomyces strain obtained from deep-sea sediments. Antifouling activities of these five compounds and four other structurally-related compounds isolated from a North Sea Streptomyces strain against major fouling organisms were compared to probe structure-activity relationships of compounds. The functional moiety responsible for antifouling activity lies in the 2-furanone ring and that the lipophilicity of compounds substantially affects their antifouling activities. Based on these findings, a compound with a straight alkyl side-chain was synthesized and proved itself as a very effective non-toxic, anti-larval settlement agent against three major fouling organisms. The strong antifouling activity, relatively low toxicity, and simple structures of these compounds make them promising candidates for new antifouling additives. © 2009 Elsevier Ltd. All rights reserved.

  18. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY TOXIC INDUSTRIAL CHEMICALS

    Science.gov (United States)

    One of the reported effects for exposure to many of the toxic industrial chemicals is DNA damage. The present study describes a simple, rapid and innovative assay to detect DNA damage resulting from exposure of surrogate DNA to toxic industrial chemicals (acrolein, allylamine, ch...

  19. Confidence Limits for Hazardous Concentrations Based on Logistically Distributed NOEC Toxicity Data

    NARCIS (Netherlands)

    Aldenberg T; Slob W

    1991-01-01

    This paper deals with the calculation of Hazardous Concentrations of toxic substances from small sets of laboratory toxicity data, e.g. NOECs. A procedure due to Van Straalen and Denneman, as adapted from Kooijman (case n=1), in which one seeks a concentration that protects 95% of the biological

  20. Targeting aquaporin function: potent inhibition of aquaglyceroporin-3 by a gold-based compound.

    Directory of Open Access Journals (Sweden)

    Ana Paula Martins

    Full Text Available Aquaporins (AQPs are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III complexes screened on human red blood cells (hRBC and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50 = 0.8±0.08 µM in hRBC. Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.

  1. Hypermethylation of the DPYD promoter region is not a major predictor of severe toxicity in 5-fluorouracil based chemotherapy

    Directory of Open Access Journals (Sweden)

    Aebi Stefan

    2008-10-01

    Full Text Available Abstract Background The activity of dihydropyrimidine dehydrogenase (DPD, the key enzyme of pyrimidine catabolism, is thought to be an important determinant for the occurrence of severe toxic reactions to 5-fluorouracil (5-FU, which is one of the most commonly prescribed chemotherapeutic agents for the treatment of solid cancers. Genetic variation in the DPD gene (DPYD has been proposed as a main factor for variation in DPD activity in the population. However, only a small proportion of severe toxicities in 5-FU based chemotherapy can be explained with such rare deleterious DPYD mutations resulting in severe enzyme deficiencies. Recently, hypermethylation of the DPYD promoter region has been proposed as an alternative mechanism for DPD deficiency and thus as a major cause of severe 5-FU toxicity. Methods Here, the prognostic significance of this epigenetic marker with respect to severe 5-FU toxicity was assessed in 27 cancer patients receiving 5-FU based chemotherapy, including 17 patients experiencing severe toxic side effects following drug administration, none of which were carriers of a known deleterious DPYD mutation, and ten control patients. The methylation status of the DPYD promoter region in peripheral blood mononuclear cells was evaluated by analysing for each patient between 19 and 30 different clones of a PCR-amplified 209 base pair fragment of the bisulfite-modified DPYD promoter region. The fragments were sequenced to detect bisulfite-induced, methylation-dependent sequence differences. Results No evidence of DPYD promoter methylation was observed in any of the investigated patient samples, whereas in a control experiment, as little as 10% methylated genomic DNA could be detected. Conclusion Our results indicate that DYPD promoter hypermethylation is not of major importance as a prognostic factor for severe toxicity in 5-FU based chemotherapy.

  2. Toxicity tests based on predator-prey and competitive interactions between freshwater macroinvertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, E.J.; Blockwell, S.J.; Pascoe, D. [Univ. of Wales Coll. of Cardiff (United Kingdom)

    1994-12-31

    Simple multi-species toxicity tests based on the predation of Daphnia magna Straus by Hydra oligactis (Pallas) and competition between Gammarus pulex (L.) and Asellus aquaticus (L.) were used to determine the effects of three reference chemicals. Criteria examined included functional responses; time to first captures; handling times (predator/prey systems) and co-existence and growth. The tests which proved most practicable and sensitive (lowest observed effects 0.1, 21, and 80 {micro}g/l for lindane, copper and 3,4 dichloroaniline, respectively) were: (1) predator-prey tests: determining changes in the size-structure of predated D. magna populations and (2) competition tests: measuring the feeding rate of G. pulex competing with A. aquaticus, using a bioassay based on the time-response analysis of the consumption of Artemia salina eggs. The concentration of a chemical which affected particular response criteria was fond to depend on the test system employed. Results of the tests indicated that effects were often not dose-related and that a given criterion could be variously affected by different test concentrations. The complex pattern of responses may be explained in terms of the differential sensitivity of the interacting species and perhaps subtle alteration in strategies. The sensitivity of the bioassay endpoints is compared to those of a range of single species tests, and their value for predicting the impact pollutants may have upon natural freshwater ecosystems is discussed.

  3. A novel marine algal toxicity bioassay based on sporulation inhibition in the green macroalga Ulva pertusa (Chlorophyta)

    Energy Technology Data Exchange (ETDEWEB)

    Han, Taejun [Division of Biology and Chemistry, University of Incheon, Incheon 402-749 (Korea, Republic of)]. E-mail: hanalgae@incheon.ac.kr; Choi, Gye-Woon [Department of Civil and Environmental System Engineering, University of Incheon, Incheon 402-749 (Korea, Republic of)

    2005-11-10

    A 5-day aquatic toxicity test based on sporulation inhibition of the green macroalga Ulva pertusa Kjellman has been developed. Optimal test conditions determined for photon irradiance, salinity and temperature were 60-200 {mu}mol photons m{sup -2} s{sup -1}, 25-35%o and 15-20 deg C, respectively. Tests were conducted by exposing U. pertusa thallus disks to a reference toxicant (sodium dodecyl sulfate; SDS), metals (Cd{sup 2+}, Cu{sup 2+}, Zn{sup 2+}, Pb{sup 2+}) and elutriates of sludge collected from nine different locations. The EC{sub 50} values for SDS was 5.35 mg L{sup -1}. When four heavy metals were assayed, the NOECs were highest for lead (0.625 mg L{sup -1}) and lowest for copper (0.031 mg L{sup -1}). The EC{sub 50} values showed the following toxicity rankings: Cu{sup 2+} (0.061 mg L{sup -1}) > Cd{sup 2+} (0.326 mg L{sup -1}) > Zn{sup 2+} (0.738 mg L{sup -1}) > Pb{sup 2+} (0.877 mg L{sup -1}). The bioassay indicated also that the sporulation endpoint could be a sensitive indicator of toxicity effects of elutriates of sludge as reflected from the NOEC values equal to or lower than the lowest concentration employed (6.25%). Sporulation was significantly inhibitied in all elutriates with the greatest and least effects observed in elutriates of sludge from industrial waste (EC{sub 50} 6.78%) and filtration bed (EC{sub 50} 15.0%), respectively. The results of the Spearman rank correlation analysis for EC{sub 50} data versus the concentrations of toxicants in the sludge presented a significant correlation between toxicity and four heavy metals (Cd{sup 2+}, Cu{sup 2+}, Pb{sup 2+}, Zn{sup 2+}). Introduction of the concept of toxicity unit (TU) showed that these metals were the main cause of toxicity in elutriates of at least four out of nine sludge samples. Members of the order Ulvales show a wide geographic distribution and have similar reproductive characteristics, thus making it possible to apply the present test method to other algae of this taxa, elsewhere

  4. A novel marine algal toxicity bioassay based on sporulation inhibition in the green macroalga Ulva pertusa (Chlorophyta)

    International Nuclear Information System (INIS)

    Han, Taejun; Choi, Gye-Woon

    2005-01-01

    A 5-day aquatic toxicity test based on sporulation inhibition of the green macroalga Ulva pertusa Kjellman has been developed. Optimal test conditions determined for photon irradiance, salinity and temperature were 60-200 μmol photons m -2 s -1 , 25-35%o and 15-20 deg C, respectively. Tests were conducted by exposing U. pertusa thallus disks to a reference toxicant (sodium dodecyl sulfate; SDS), metals (Cd 2+ , Cu 2+ , Zn 2+ , Pb 2+ ) and elutriates of sludge collected from nine different locations. The EC 50 values for SDS was 5.35 mg L -1 . When four heavy metals were assayed, the NOECs were highest for lead (0.625 mg L -1 ) and lowest for copper (0.031 mg L -1 ). The EC 50 values showed the following toxicity rankings: Cu 2+ (0.061 mg L -1 ) > Cd 2+ (0.326 mg L -1 ) > Zn 2+ (0.738 mg L -1 ) > Pb 2+ (0.877 mg L -1 ). The bioassay indicated also that the sporulation endpoint could be a sensitive indicator of toxicity effects of elutriates of sludge as reflected from the NOEC values equal to or lower than the lowest concentration employed (6.25%). Sporulation was significantly inhibitied in all elutriates with the greatest and least effects observed in elutriates of sludge from industrial waste (EC 50 6.78%) and filtration bed (EC 50 15.0%), respectively. The results of the Spearman rank correlation analysis for EC 50 data versus the concentrations of toxicants in the sludge presented a significant correlation between toxicity and four heavy metals (Cd 2+ , Cu 2+ , Pb 2+ , Zn 2+ ). Introduction of the concept of toxicity unit (TU) showed that these metals were the main cause of toxicity in elutriates of at least four out of nine sludge samples. Members of the order Ulvales show a wide geographic distribution and have similar reproductive characteristics, thus making it possible to apply the present test method to other algae of this taxa, elsewhere. This novel method will be a useful tool for assessing the aquatic toxicity of a wide range of toxicants, once the

  5. [Matrix transdermal systems for caffeine delivery based on polymer and emulsion compounds].

    Science.gov (United States)

    Kuznetsova, E G; Kuryleva, O M; Salomatina, L A; Sevast'ianov, V I

    2008-01-01

    The goal of this work was to develop and test transdermal therapeutic systems for caffeine delivery. In vitro experiments showed that the rate of caffeine diffusion through untreated rabbit skin from a transdermal therapeutic systems based on polymer compound containing 50 mg medicine was 67.2 (9.1 microg/cm2h; for a system based on emulsion compound it was 173 (19 microg/cm2h. Methods for studying the caffeine release rate and quantitative measurement of caffeine content in the emulsion-based transdermal therapeutic system were developed. These methods are required to obtain data for standard drug documentation. The results of in vivo experiments in rabbits showed the absence of irritating effect of the emulsion-based transdermal therapeutic system. The obtained data on the specific efficiency of the transdermal therapeutic systems for caffeine delivery (50 mg) in healthy volunteers showed that this medicine could be used as a nonnarcotic psychoactivator for improving mental and physical activities and attention concentration.

  6. Acute Toxicity of Organophosphorus Compounds in Guinea Pigs Is Sex- and Age-Dependent and Cannot Be Solely Accounted for by Acetylcholinesterase Inhibition

    OpenAIRE

    Fawcett, William P.; Aracava, Yasco; Adler, Michael; Pereira, Edna F. R.; Albuquerque, Edson X.

    2008-01-01

    This study was designed to test the hypothesis that the acute toxicity of the nerve agents S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), O-pinacolyl methylphosphonofluoridate (soman), and O-isopropyl methylphosphonofluoridate (sarin) in guinea pigs is age- and sex-dependent and cannot be fully accounted for by the irreversible inhibition of acetylcholinesterase (AChE). The subcutaneous doses of nerve agents needed to decrease 24-h survival of guine...

  7. Model for fusion and cool compound nucleus formation based on the fragmentation theory

    International Nuclear Information System (INIS)

    Malhotra, N.; Aroumougame, R.; Saroha, D.R.; Gupta, R.K.

    1986-01-01

    Collective potential energy surfaces are calculated in both the adiabatic and sudden approximations by using the asymmetric two-center shell model in the Strutinsky method. It is shown that fusion of two colliding heavy ions occurs by their crossing over of the adiabatic interaction barrier. The adiabatic scattering potentials present two barriers, whereas no barrier is shown to occur in sudden scattering potentials. The first barrier is obtained just past the saddle shape but is too low, such that a deep inelastic process is expected. The other, inner, barrier is high enough to let the system fall into the fusion well, whose excitation energy then determines whether a cool compound nucleus is produced or the fusion-fission process occurs. For a given compound nucleus, the excitation energy is found to be small for only a few target-projectile combinations, which increase as their mass asymmetry increases. Such target-projectile combinations which refer to a cool compound nucleus can be identified by a simple calculation of the fragmentation potential based on the ground state binding energies with Coulomb and proximity effects calculated at a constant relative separation of the two nuclei. Our calculations are made for the composite systems with 102 < or =Z < or =114

  8. Model for fusion and cool compound nucleus formation based on the fragmentation theory

    International Nuclear Information System (INIS)

    Malhotra, N.; Aroumougame, R.; Saroha, D.R.; Gupta, R.K.

    1985-07-01

    The collective potential energy surfaces are calculated in both the adiabatic and sudden approximations by using the asymmetric two centre shell model in Strutinsky method. It is shown that fusion of two colliding heavy ions occur by their crossing over of the adiabatic interaction barrier. The adiabatic scattering potentials present two barriers whereas no barrier is shown to occur in sudden scattering potentials. The first barrier is obtained just past the saddle shape but is too low, such that a deep inelastic process is expected. The other, inner, barrier is high enough to let the system fall into the fusion well, whose excitation energy then determine whether a cool compound nucleus is produced or the fusion-fission process occurs. For a given compound nucleus, the excitation energy is found to be small for only a few target-projectile combinations, which increase as their mass asymmetry increases. Such target-projectile combinations which refer to a cool compound nucleus, can be identified by a simple calculation of the fragmentation potential based on the ground state binding energies with Couloumb and proximity effects calculated at a constant relative separation of the two nuclei. Our calculations are made for the composite systems with 102<=Z<=114. (author)

  9. Screening for Antifibrotic Compounds Using High Throughput System Based on Fluorescence Polarization

    Directory of Open Access Journals (Sweden)

    Branko Stefanovic

    2014-04-01

    Full Text Available Fibroproliferative diseases are one of the leading causes of death worldwide. They are characterized by reactive fibrosis caused by uncontrolled synthesis of type I collagen. There is no cure for fibrosis and development of therapeutics that can inhibit collagen synthesis is urgently needed. Collagen α1(I mRNA and α2(I mRNA encode for type I collagen and they have a unique 5' stem-loop structure in their 5' untranslated regions (5'SL. Collagen 5'SL binds protein LARP6 with high affinity and specificity. The interaction between LARP6 and the 5'SL is critical for biosynthesis of type I collagen and development of fibrosis in vivo. Therefore, this interaction represents is an ideal target to develop antifibrotic drugs. A high throughput system to screen for chemical compounds that can dissociate LARP6 from 5'SL has been developed. It is based on fluorescence polarization and can be adapted to screen for inhibitors of other protein-RNA interactions. Screening of 50,000 chemical compounds yielded a lead compound that can inhibit type I collagen synthesis at nanomolar concentrations. The development, characteristics, and critical appraisal of this assay are presented.

  10. Iron based superconductors and related compounds synthesized by solid state metathesis and high temperature reactions

    International Nuclear Information System (INIS)

    Frankovsky, Rainer

    2013-01-01

    The results of this thesis can be divided into three major topics, which can also be seen as different approaches of solid state chemistry to reveal interesting features of known and unknown compounds and to develop alternative synthesis routes. Firstly, known compounds with related structural motifs to the superconducting iron-arsenides were investigated regarding their structural and physical properties. In case of La 3 Pd 4 Ge 4 the influence of Fe doping on the properties was studied, whereas in the series ZrMAs (M=Ti,V) the physical properties have not yet been reported at all and were investigated for the first time. Secondly, an alternative synthesis route has been developed for the synthesis of superconducting LaFeAsO 1-x F x . This solid state metathesis reaction distinctly increased the quality of the samples compared to conventionally prepared products. Furthermore, the reaction pathway was investigated and clarified, which helps to understand the processes during high temperature solid state metathesis reactions in general. Thirdly, this alternative synthesis route was expanded to other systems and new compounds like co-substituted LaFe 1-x Mn x AsO 1-y F y were prepared and thoroughly investigated. This led to a complex study of the interplay of magnetism, electronic and structural conditions and the occurrence of superconducting properties. The investigation and understanding of such complex coherences will probably be decisive for the further understanding of the superconducting mechanism in iron based superconductors.

  11. Petroleum Hydrocarbon Mixture Toxicity and a Trait Based Approach to Soil Invertebrate Species for Site Specific Risk Assessments.

    Science.gov (United States)

    Gainer, Amy; Cousins, Mark; Hogan, Natacha; Siciliano, Steven D

    2018-05-05

    Although petroleum hydrocarbons (PHCs) released to the environment typically occur as mixtures, PHC remediation guidelines often reflect individual substance toxicity. It is well documented that groups of aliphatic PHCs act via the same mechanism of action, nonpolar narcosis and, theoretically, concentration addition mixture toxicity principles apply. To assess this theory, ten standardized acute and chronic soil invertebrate toxicity tests on a range of organisms (Eisenia fetida, Lumbricus terrestris, Enchytraeus crypticus, Folsomia candida, Oppia nitens and Hypoaspis aculeifer) were conducted with a refined PHC binary mixture. Reference models for concentration addition and independent action were applied to the mixture toxicity data with consideration of synergism, antagonism and dose level toxicity. Both concentration addition and independent action, without further interactions, provided the best fit with observed response to the mixture. Individual fraction effective concentration values were predicted from optimized, fitted reference models. Concentration addition provided a better estimate than independent action of individual fraction effective concentrations based on comparison with available literature and species trends observed in toxic responses to the mixture. Interspecies differences in standardized laboratory soil invertebrate species responses to PHC contaminated soil was reflected in unique traits. Diets that included soil, large body size, permeable cuticle, low lipid content, lack of ability to molt and no maternal transfer were traits linked to a sensitive survival response to PHC contaminated soil in laboratory tests. Traits linked to sensitive reproduction response in organisms tested were long life spans with small clutch sizes. By deriving single fraction toxicity endpoints considerate of mixtures, we reduce resources and time required in conducting site specific risk assessments for the protection of soil organism's exposure pathway. This

  12. Detection of palytoxin-like compounds by a flow cytometry-based immunoassay supported by functional and analytical methods.

    Science.gov (United States)

    Fraga, María; Vilariño, Natalia; Louzao, M Carmen; Fernández, Diego A; Poli, Mark; Botana, Luis M

    2016-01-15

    Palytoxin (PLTX) is a complex marine toxin produced by zoanthids (i.e. Palythoa), dinoflagellates (Ostreopsis) and cyanobacteria (Trichodesmium). PLTX outbreaks are usually associated with Indo-Pacific waters, however their recent repeated occurrence in Mediterranean-European Atlantic coasts demonstrate their current worldwide distribution. Human sickness and fatalities have been associated with toxic algal blooms and ingestion of seafood contaminated with PLTX-like molecules. These toxins represent a serious threat to human health. There is an immediate need to develop easy-to-use, rapid detection methods due to the lack of validated protocols for their detection and quantification. We have developed an immuno-detection method for PLTX-like molecules based on the use of microspheres coupled to flow-cytometry detection (Luminex 200™). The assay consisted of the competition between free PLTX-like compounds in solution and PLTX immobilized on the surface of microspheres for binding to a specific monoclonal anti-PLTX antibody. This method displays an IC50 of 1.83 ± 0.21 nM and a dynamic range of 0.47-6.54 nM for PLTX. An easy-to-perform extraction protocol, based on a mixture of methanol and acetate buffer, was applied to spiked mussel samples providing a recovery rate of 104 ± 8% and a range of detection from 374 ± 81 to 4430 ± 150 μg kg(-1) when assayed with this method. Extracts of Ostreopsis cf. siamensis and Palythoa tuberculosa were tested and yielded positive results for PLTX-like molecules. However, the data obtained for the coral sample suggested that this antibody did not detect 42-OH-PLTX efficiently. The same samples were further analyzed using a neuroblastoma cytotoxicity assay and UPLC-IT-TOF spectrometry, which also pointed to the presence of PLTX-like compounds. Therefore, this single detection method for PLTX provides a semi-quantitative tool useful for the screening of PLTX-like molecules in different matrixes. Copyright © 2015

  13. Study of the relationship between chemical structure and antimicrobial activity in a series of hydrazine-based coordination compounds.

    Science.gov (United States)

    Dobrova, B N; Dimoglo, A S; Chumakov, Y M

    2000-08-01

    The dependence of antimicrobial activity on the structure of compounds is studied in a series of compounds based on hydrazine coordinated with ions of Cu(II), Ni(II) and Pd(II). The study has been carried out by means of the original electron-topological method developed earlier. A molecular fragment has been found that is only characteristic of biologically active compounds. Its spatial and electron parameters have been used for the quantitative assessment of the activity in view. The results obtained can be used for the antimicrobial activity prediction in a series of compounds with similar structures.

  14. Studies on in vitro biostability and blood compatibility of polyurethane potting compound based on aromatic polymeric MDI for extracorporeal devices.

    Science.gov (United States)

    Hridya, V K; Jayabalan, M

    2009-12-01

    Polyurethane potting compound based on aromatic isocyanurate of polymeric MDI, poly propylene glycol (PPG400) and trimethylol propane (TMP) has significant favourable properties, good pot life and setting characteristics. The cured potting compound of this formulation has appreciable thermal stability and mechanical properties. In vitro biostability of cured potting compound has been found to be excellent without any significant degradation in simulated physiological media and chemical environment. Studies on blood-material interaction and cytotoxicity reveal in vitro blood compatibility and compatibility with cells of this potting compound.

  15. Comparison of Sampling Probe and Thermal Desorber in Hazardous Air Pollutants on Site (HAPSITE) Extended Range (ER) for Analysis of Toxic Organic (TO)-15 Compounds

    Science.gov (United States)

    2014-03-01

    compounds in a bag To prepare 20 ppbv TO-15 compounds in a 5 L ALTEF polypropylene bag (Jensen Inert Products , Coral Springs, FL, USA), 100 mL was taken...Bromopentafluorobenzene (BPFB; an IS)  117  5.70 6,730,000 8,500,000 11,400,000 8,876,667 1,220,000  1,200,000 1,190,000 1,203,333 Ethylbenzene   91  5.91 136 1,960,000...Trichloroethane Toluene Methyl Butyl Ketone (2-Hexanone) Dibromochloromethane 12-Dibromoethane Tetrachloroethylene Chlorobenzene Ethylbenzene p/m

  16. Lead toxicity thresholds in 17 Chinese soils based on substrate-induced nitrification assay.

    Science.gov (United States)

    Li, Ji; Huang, Yizong; Hu, Ying; Jin, Shulan; Bao, Qiongli; Wang, Fei; Xiang, Meng; Xie, Huiting

    2016-06-01

    The influence of soil properties on toxicity threshold values for Pb toward soil microbial processes is poorly recognized. The impact of leaching on the Pb threshold has not been assessed systematically. Lead toxicity was screened in 17 Chinese soils using a substrate-induced nitrification (SIN) assay under both leached and unleached conditions. The effective concentration of added Pb causing 50% inhibition (EC50) ranged from 185 to >2515mg/kg soil for leached soil and 130 to >2490mg/kg soil for unleached soil. These results represented >13- and >19-fold variations among leached and unleached soils, respectively. Leaching significantly reduced Pb toxicity for 70% of both alkaline and acidic soils tested, with an average leaching factor of 3.0. Soil pH and CEC were the two most useful predictors of Pb toxicity in soils, explaining over 90% of variance in the unleached EC50 value. The relationships established in the present study predicted Pb toxicity within a factor of two of measured values. These relationships between Pb toxicity and soil properties could be used to establish site-specific guidance on Pb toxicity thresholds. Copyright © 2016. Published by Elsevier B.V.

  17. A network-based multi-target computational estimation scheme for anticoagulant activities of compounds.

    Directory of Open Access Journals (Sweden)

    Qian Li

    Full Text Available BACKGROUND: Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. METHODOLOGY: We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671 between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. CONCLUSIONS: This article proposes a network-based multi-target computational estimation

  18. A network-based multi-target computational estimation scheme for anticoagulant activities of compounds.

    Science.gov (United States)

    Li, Qian; Li, Xudong; Li, Canghai; Chen, Lirong; Song, Jun; Tang, Yalin; Xu, Xiaojie

    2011-03-22

    Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by

  19. Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions

    NARCIS (Netherlands)

    Stein, N.E.; Hamelers, H.V.M.; Buisman, C.J.N.

    2010-01-01

    A MFC-based biosensor can act as online toxicity sensor Electrical current is a direct linear measure for metabolic activity of electrochemically active microorganisms Microorganisms gain energy from anodic overpotential and current strongly depends on anodic overpotential Therefore control of

  20. Human Pluripotent Stem Cell-Based Assay Predicts Developmental Toxicity Potential of ToxCast Chemicals (ACT meeting)

    Science.gov (United States)

    Worldwide initiatives to screen for toxicity potential among the thousands of chemicals currently in use require inexpensive and high-throughput in vitro models to meet their goals. The devTOX quickPredict platform is an in vitro human pluripotent stem cell-based assay used to as...

  1. Bioaccumulation and Toxicity of Single-Walled Carbon Nanotubes to Benthic Organisms at the Base of the Marine Food Chain

    Science.gov (United States)

    As the use of single-walled carbon nanotubes (SWNTs) increases over time, so does the potential for environmental release. This research aimed to determine the toxicity, bioavailability, and bioaccumulation of SWNTs in marine benthic organisms at the base of the food chain. The t...

  2. Web-based Interspecies Correlation Estimation (Web-ICE) for Acute Toxicity: User Manual Version 3.1

    Science.gov (United States)

    Predictive toxicological models are integral to ecological risk assessment because data for most species are limited. Web-based Interspecies Correlation Estimation (Web-ICE) models are least square regressions that predict acute toxicity (LC50/LD50) of a chemical to a species, ge...

  3. Bond-based linear indices in QSAR: computational discovery of novel anti-trichomonal compounds

    Science.gov (United States)

    Marrero-Ponce, Yovani; Meneses-Marcel, Alfredo; Rivera-Borroto, Oscar M.; García-Domenech, Ramón; De Julián-Ortiz, Jesus Vicente; Montero, Alina; Escario, José Antonio; Barrio, Alicia Gómez; Pereira, David Montero; Nogal, Juan José; Grau, Ricardo; Torrens, Francisco; Vogel, Christian; Arán, Vicente J.

    2008-08-01

    Trichomonas vaginalis ( Tv) is the causative agent of the most common, non-viral, sexually transmitted disease in women and men worldwide. Since 1959, metronidazole (MTZ) has been the drug of choice in the systemic treatment of trichomoniasis. However, resistance to MTZ in some patients and the great cost associated with the development of new trichomonacidals make necessary the development of computational methods that shorten the drug discovery pipeline. Toward this end, bond-based linear indices, new TOMOCOMD-CARDD molecular descriptors, and linear discriminant analysis were used to discover novel trichomonacidal chemicals. The obtained models, using non-stochastic and stochastic indices, are able to classify correctly 89.01% (87.50%) and 82.42% (84.38%) of the chemicals in the training (test) sets, respectively. These results validate the models for their use in the ligand-based virtual screening. In addition, they show large Matthews' correlation coefficients ( C) of 0.78 (0.71) and 0.65 (0.65) for the training (test) sets, correspondingly. The result of predictions on the 10% full-out cross-validation test also evidences the robustness of the obtained models. Later, both models are applied to the virtual screening of 12 compounds already proved against Tv. As a result, they correctly classify 10 out of 12 (83.33%) and 9 out of 12 (75.00%) of the chemicals, respectively; which is the most important criterion for validating the models. Besides, these classification functions are applied to a library of seven chemicals in order to find novel antitrichomonal agents. These compounds are synthesized and tested f